Loading...
HomeMy WebLinkAbout23019_Connections Rexburg_StructCalcs_29March2023Structural Calculations WCA Project #23019 Connections Lot 13, Lot 14 450, 470 First American Circle Rexburg, ID 83440 CLIENT INFORMATION: Clarity Design Group 5525 South 900 East, Ste 340 Murray, Utah 84117 442 North Main Street, Suite 200 Bountiful UT 84010 801.298.1118 Fax 801.298.1122 JC WCA Structural Engineering, Inc.JOB TITLE Connections 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.23019 SHEET NO. (801)298-1118 CALCULATED BY JC DATE 3/1/23 CHECKED BY CC DATE STRUCTURAL CALCULATIONS FOR Connections Rexburg, ID Page 1 of 417 3/29/2023 WCA Structural Engineering, Inc.JOB TITLE Connections 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.23019 SHEET NO. (801)298-1118 CALCULATED BY JC DATE 3/1/23 CHECKED BY CC DATE Code Search Code: Occupancy: Occupancy Group =See architect Risk Category & Importance Factors: Risk Category =II Wind factor =1.00 Snow factor =1.00 Seismic factor =1.00 Type of Construction: Fire Rating: Roof =0.0 hr Floor =0.0 hr Building Geometry: Roof angle (θ)0.25 / 12 1.2 deg Building length 162.0 ft Least width 126.0 ft Mean Roof Ht (h)41.0 ft Parapet ht above grd 44.3 ft Minimum parapet ht 3.3 ft Live Loads: Roof 0 to 200 sf: 20 psf 200 to 600 sf: 24 - 0.02Area, but not less than 12 psf over 600 sf: 12 psf 50 psf 15 psf 100 psf 75 psf Floor: Typical Floor Partitions Stairs and exit ways Balconies (1.5 times live load) International Building Code 2018 Page 2 of 417 WCA Structural Engineering, Inc.JOB TITLE Connections 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.23019 SHEET NO. (801)298-1118 CALCULATED BY JC DATE 3/1/23 CHECKED BY CC DATE Wind Loads :ASCE 7- 16 Ultimate Wind Speed 105 mph Nominal Wind Speed 81.3 mph Risk Category II Exposure Category C Enclosure Classif.Enclosed Building Internal pressure +/-0.18 Directionality (Kd)0.85 Kh case 1 1.049 Kh case 2 1.049 Type of roof Monoslope Topographic Factor (Kzt) Topography Flat Hill Height (H)80.0 ft Half Hill Length (Lh) 100.0 ft Actual H/Lh =0.80 Use H/Lh =0.50 Modified Lh = 160.0 ft From top of crest: x =50.0 ft Bldg up/down wind?downwind H/Lh=0.50 K1 =0.000 x/Lh =0.31 K2 =0.792 z/Lh =0.26 K3 =1.000 At Mean Roof Ht: Kzt = (1+K1K2K3)^2 =1.00 Ground Elevation Factor (Ke) Grd level above sea level = 4869.0 ft Ke =0.8384 Constant = 0.00256 Adj Constant =0.00215 Page 3 of 417 WCA Structural Engineering, Inc.JOB TITLE Connections 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.23019 SHEET NO. (801)298-1118 CALCULATED BY JC DATE 3/1/23 CHECKED BY CC DATE Wind Loads - MWFRS h≤60' (Low-rise Buildings) except for open buildings Kz = Kh (case 1) =1.05 Edge Strip (a) =12.6 ftBase pressure (qh) =21.1 psf End Zone (2a) =25.2 ft GCpi = +/-0.18 Zone 2 length =63.0 ft Wind Pressure Coefficients CASE A CASE B Surface GCpf w/-GCpi w/+GCpi GCpf w/-GCpi w/+GCpi 1 0.40 0.58 0.22 -0.45 -0.27 -0.63 2 -0.69 -0.51 -0.87 -0.69 -0.51 -0.87 3 -0.37 -0.19 -0.55 -0.37 -0.19 -0.55 4 -0.29 -0.11 -0.47 -0.45 -0.27 -0.63 5 0.40 0.58 0.22 6 -0.29 -0.11 -0.47 1E 0.61 0.79 0.43 -0.48 -0.30 -0.66 2E -1.07 -0.89 -1.25 -1.07 -0.89 -1.25 3E -0.53 -0.35 -0.71 -0.53 -0.35 -0.71 4E -0.43 -0.25 -0.61 -0.48 -0.30 -0.66 5E 0.61 0.79 0.436E-0.43 -0.25 -0.61 Ultimate Wind Surface Pressures (psf) 1 12.2 4.6 -5.7 -13.3 2 -10.8 -18.4 -10.8 -18.4 3 -4.0 -11.6 -4.0 -11.6 4 -2.3 -9.9 -5.7 -13.3 5 12.2 4.6 6 -2.3 -9.9 1E 16.7 9.1 -6.3 -13.9 2E -18.8 -26.4 -18.8 -26.4 3E -7.4 -15.0 -7.4 -15.0 4E -5.3 -12.9 -6.3 -13.9 5E 16.7 9.16E-5.3 -12.9 Parapet Windward parapet = 32.2 psf (GCpn = +1.5)Windward roof Leeward parapet = -21.4 psf (GCpn = -1.0)overhangs =14.8 psf (upward) add to windward roof pressure Horizontal MWFRS Simple Diaphragm Pressures (psf) Transverse direction (normal to L) Interior Zone: Wall 14.6 psf Roof -6.8 psf ** End Zone: Wall 21.9 psf Roof -11.4 psf ** Longitudinal direction (parallel to L) Interior Zone: Wall 14.6 psf End Zone: Wall 21.9 psf ** NOTE: Total horiz force shall not be less than that determined by neglecting roof forces (except for MWFRS moment frames). The code requires the MWFRS be designed for a min ultimate force of 16 psf multiplied by the wall area plus an 8 psf force applied to the vertical projection of the roof. θ = 1.2 deg Page 4 of 417 WCA Structural Engineering, Inc.JOB TITLE Connections 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.23019 SHEET NO. (801)298-1118 CALCULATED BY JC DATE 3/1/23 CHECKED BY CC DATE Ultimate Wind Pressures Wind Loads - Components & Cladding : h ≤ 60' Kh (case 2) =1.05 h =41.0 ft 0.2h =8.2 ft Base pressure (qh) =21.1 psf 0.6h =24.6 ft Minimum parapet ht =3.3 ft GCpi =+/-0.18 Roof Angle (θ) =1.2 deg qi = qh = 21.1 psf Type of roof =Monoslope Roof Surface Pressure (psf)User input Area 10 sf 20 sf 50 sf 100 sf 200 sf 350 sf 500 sf 1000 sf 50 sf 125 sf Negative Zone 1 -39.7 -37.1 -33.6 -31 -28.4 -26.2 -24.9 -24.9 -33.6 -30.1 Negative Zone 1'-22.8 -22.8 -22.8 -22.8 -19.6 -17.0 -16.0 -16.0 -22.8 -21.8 Negative Zone 2 -52.3 -49 -44.5 -41.2 -37.8 -35.1 -33.3 -33.3 -44.5 -40.1Negative Zone 3 -52.3 -49 -44.5 -41.2 -37.8 -35.1 -33.3 -33.3 -44.5 -40.1 Positive Zone 1 & 1'16 16 16 16 16.0 16.0 16.0 16.0 16.0 16.0 Positive Zones 2 & 3 22.8 21.8 20.4 19.4 18.4 17.6 17.1 16.1 20.4 19.1 Overhang Zone 1&1'-35.9 -35.2 -34.4 -33.8 -28.3 -23.9 -21.1 -21.1 -34.4 -32.0Overhang Zone 2 -48.5 -44 -38.1 -33.6 -29.1 -25.5 -23.2 -23.2 -38.1 -32.2 Overhang Zone 3 -48.5 -44 -38.1 -33.6 -29.1 -25.5 -23.2 -23.2 -38.1 -32.2 Negative zone 3 = zone 2, since parapet >= 3ft. Overhang pressures in the table above assume an internal pressure coefficient (Gcpi) of 0.0Overhang soffit pressure equals adj wall pressure (which includes internal pressure of 3.8 psf) Parapet qp =21.4 psf Surface Pressure (psf)User input Solid Parapet Pressure 10 sf 20 sf 50 sf 100 sf 200 sf 500 sf 50 sf CASE A: Zone 2 :68.6 64.2 58.3 53.8 49.4 43.5 58.3 Zone 3 :68.6 64.2 58.3 53.8 49.4 43.5 58.3 CASE B : Interior zone : -40.5 -38.5 -35.8 -33.7 -31.7 -28.9 -35.8Corner zone :-46.3 -43.2 -39.2 -36.1 -33.0 -28.9 -39.2 wall a =12.6 ft Walls GCp +/- GCpi Surface Pressure at h Area 10 sf 100 sf 200 sf 500 sf 10 sf 100 sf 200 sf 500 sf 50 sf 56 sf Negative Zone 4 -1.17 -1.01 -0.96 -0.90 -24.7 -21.3 -20.3 -19.0 -22.3 -17.9 Negative Zone 5 -1.44 -1.12 -1.03 -0.90 -30.4 -23.7 -21.7 -19.0 -25.7 -20.5 Positive Zone 4 & 5 1.08 0.92 0.87 0.81 22.8 19.4 18.4 17.1 20.4 16.4 Note: GCp reduced by 10% due to roof angle <= 10 deg. User input Page 5 of 417 WCA Structural Engineering, Inc.JOB TITLE Connections 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.23019 SHEET NO. (801)298-1118 CALCULATED BY JC DATE 3/17/23 CHECKED BY CC DATE Wind Loads - Other Structures:ASCE 7- 16 Ultimate Wind Pressures Wind Factor =1.00 Gust Effect Factor (G) = 0.85 105 mph Kzt = 1.00 Exposure = C A. Solid Freestanding Walls & Solid Signs (& open signs with less than 30% open) s/h = 1.00 Case A & B Dist to sign top (h) 8.0 ft B/s = 6.38 Cf = 1.34 Height (s) 8.0 ft Lr/s = 0.00 F = qz G Cf As =19.4 As Width (B)51.0 ft Kz = 0.849 As = 10.0 sf Wall Return (Lr) = 0.0 ft qz =17.1 psf F = 194 lbs Directionality (Kd) 0.85 Percent of open area Open reduction CaseC to gross area 0.0%factor = 1.00 Horiz dist from windward edge Cf F=qzGCfAs (psf) Case C reduction factors 0 to s 2.67 38.7 As Factor if s/h>0.8 = 0.80 s to 2s 1.75 25.4 As Wall return factor 2s to 3s 1.27 18.4 As for Cf at 0 to s = 1.00 3s to 10s 0.84 16.0 As Ultimate W ind Speed = Page 6 of 417 WCA Structural Engineering, Inc.JOB TITLE Connections 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.23019 SHEET NO. (801)298-1118 CALCULATED BY JC DATE 3/1/23 CHECKED BY CC DATE Seismic Loads:IBC 2018 Strength Level Forces Risk Category : II Importance Factor (I) : 1.00 Site Class : D Ss (0.2 sec) =37.20 %g S1 (1.0 sec) =14.40 %g A site specific ground motion analysis is required for seismically isolated structures or with damping systems Fa =1.502 Sms =0.559 SDS =0.373 Design Category =C Fv =2.312 Sm1 =0.333 SD1 =0.222 Design Category =D Seismic Design Category =D Redundancy Coefficient ρ =1.30 Code exception must be met for p to equal 1.0 Number of Stories:3 Structure Type:All other building systems Horizontal Struct Irregularities:2) Reentrant Corners See ASCE7 Sect 12.3.3.4 Vertical Structural Irregularities:No vertical Irregularity Flexible Diaphragms: Yes Building System: Bearing Wall Systems Seismic resisting system: Special reinforced masonry shear walls System Structural Height Limit: 160 ft Actual Structural Height (hn) =41.0 ft See ASCE7 Section 12.2.5 for exceptions and other system limitations DESIGN COEFFICIENTS AND FACTORS Response Modification Coefficient (R) =5 Over-Strength Factor (Ωo) =2 Deflection Amplification Factor (Cd) =3.5 SDS =0.373 SD1 =0.222 Seismic Load Effect (E) = Eh +/-Ev = ρ QE +/- 0.2SDS D = Qe +/-0.075D Special Seismic Load Effect (Em) =Emh +/- Ev = Ωo QE +/- 0.2SDS D = 2Qe +/-0.075D D = dead load PERMITTED ANALYTICAL PROCEDURES Simplified Analysis - Use Equivalent Lateral Force Analysis Equivalent Lateral-Force Analysis - Permitted Building period coef. (CT) =0.020 Cu = 1.48 Approx fundamental period (Ta) =CThnx = 0.324 sec x= 0.75 Tmax = CuTa = 0.479 User calculated fundamental period (T) =sec Use T = 0.324 Long Period Transition Period (TL) =ASCE7 map =6 Seismic response coef. (Cs) =SdsI/R =0.075 need not exceed Cs =Sd1 I /RT =0.137 but not less than Cs =0.044SdsI =0.016 USE Cs =0.075 Design Base Shear V =0.075W See ASCE7 Sect 12.3.3.4 for 25% connection increase Model & Seismic Response Analysis - Permitted (see code for procedure) ALLOWABLE STORY DRIFT Structure Type:All other structures Allowable story drift Δa =0.020hsx where hsx is the story height below level x QE = horizontal seismic force Page 7 of 417 Masonry controls over wood design WCA Structural Engineering, Inc.JOB TITLE Connections 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.23019 SHEET NO. (801)298-1118 CALCULATED BY JC DATE 3/1/23 CHECKED BY CC DATE Seismic Loads - cont. :Strength Level Forces Seismic Design Category (SDC)=D Ie =1.00 CONNECTIONS Sds =0.373 Force to connect smaller portions of structure to remainder of structure Fp = 0.133Sdswp =0.050 wp or Fp = 0.05wp =0.05 wp Use Fp =0.05 wp wp = weight of smaller portion Beam, girder or truss connection for resisting horizontal force parallel to member FP = no less than 0.05 times dead plus live load vertical reaction Anchorage of Structural Walls to elements providing lateral support Fp = not less than 0.2KaIeWp Flexible diaphragm span Lf =162.00 ft Fp =0.4SdsKaIeWp =0.298Wp, but not less than 0.4Wp (flexible diaphragm)ka=2 Fp =0.400 Wp Fp =0.4SdskaIeWp = 0.149 Wp, but not less than 0.2Wp (rigid diaphragm)ka= 1 Fp =0.200 Wp but Fp shall not be less than 5 psf MEMBER DESIGN Bearing Walls and Shear Walls (out of plane force) Fp = 0.4SdsIeWw =0.149 ww but not less than 0.10 ww Use Fp =0.15 ww Diaphragms Fp = (Sum Fi / Sum Wi)Wpx + Vpx =(Sum Fi / Sum Wi)Wpx + Vpx need not exceed 0.4 SdsIeWpx + Vpx =0.149 Wpx + Vpx but not less than 0.2 SdsIeWpx + Vpx =0.075 Wpx + Vpx Page 8 of 417 WCA Structural Engineering, Inc.JOB TITLE Connections 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.23019 SHEET NO. (801)298-1118 CALCULATED BY JC DATE 3/1/23 CHECKED BY CC DATE Snow Loads :ASCE 7- 16 Nominal Snow Forces Roof slope =1.2 deg Horiz. eave to ridge dist (W) =126.0 ft Roof length parallel to ridge (L) =162.0 ft Type of Roof Monoslope Ground Snow Load Pg =50.0 psf Risk Category =II Importance Factor I =1.0 Thermal Factor Ct =1.00 Exposure Factor Ce =1.0 Pf = 0.7*Ce*Ct*I*Pg =35.0 psf Unobstructed Slippery Surface no Sloped-roof Factor Cs =1.00 Balanced Snow Load =35.0 psf Near ground level surface balanced snow load = 50.0 psf Rain on Snow Surcharge Angle 2.52 deg Code Maximum Rain Surcharge 5.0 psf Rain on Snow Surcharge =0.0 psf Ps plus rain surcharge =35.0 psf Minimum Snow Load Pm =20.0 psf Uniform Roof Design Snow Load =35.0 psf Windward Snow Drifts 1 - Against walls, parapets, etc Up or downwind fetch lu =68.0 ft Projection height h =5.0 ftProjection width/length lp =126.0 ft Snow density g =20.5 pcf Balanced snow height hb =1.71 ft hd =2.54 ft hc =3.29 ft hc/hb >0.2 =1.9 Therefore, design for drift Drift height (hd)=2.54 ft Drift width w =10.15 ft Surcharge load: pd = γ*hd =52.0 psf Balanced Snow load: =35.0 psf 87.0 psf Windward Snow Drifts 2 - Against walls, parapets, etc Up or downwind fetch lu =125.0 ft Projection height h =5.0 ft Projection width/length lp =126.0 ft Snow density g =20.5 pcf Balanced snow height hb =1.71 ft hd =3.36 ft hc =3.29 ft hc/hb >0.2 =1.9 Therefore, design for drift Drift height (hc)=3.29 ft Drift width w =13.74 ft Surcharge load: pd = γ*hd =67.5 psf Balanced Snow load: =35.0 psf 102.5 psf Note: If bottom of projection is at least 2 feet above hb then snow drift is not required. NOTE: Alternate spans of continuous beams shall be loaded with half the design roof snow load so as to produce the greatest possible effect - see code for loading diagrams and exceptions for gable roofs.. Windward Snow Drifts 3 - Against walls, parapets, etc lu = 55.0 ft h = 12.0 ft lp = 23.0 ft g = 20.5 pcf Up or downwind fetch Projection heightProjection width/length Snow density Balanced snow height hb = 1.71 ft hd =2.29 ft hc = 10.29 ft Therefore, design for drift =2.29 ft w =9.15 ft hc/hb >0.2 =6.0 Drift height (hd) Drift width Surcharge load: pd = γ*hd =46.9 psf Balanced Snow load: =35.0 psf 81.9 psf Page 9 of 417 WCA Structural Engineering, Inc.JOB TITLE Connections 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.23019 SHEET NO. (801)298-1118 CALCULATED BY JC DATE 3/1/23 CHECKED BY CC DATE Snow Loads - from adjacent building or roof:ASCE 7- 16 Nominal Snow Forces Leeward Snow Drifts - from adjacent higher roof Upper roof length lu =60.0 ft Snow density ɣ =20.5 pcf Balanced snow height hb =1.71 ft hc =20.29 ft hc/hb >0.2 =11.9 Therefore, design for drift Adj structure factor =1.00 Drift height hd =3.19 ft Drift width w =12.74 ft Surcharge load: pd = γ*hd =65.3 psf Balanced Snow load: =35.0 psf 100.3 psf Leeward drift controls Windward Snow Drifts - from low roof against high roof Lower roof length lu =56.0 ft Adj structure factor =1.00 Drift height hd =2.31 ft Drift width w =9.24 ft Surcharge load: pd = γ*hd =47.3 psf Balanced Snow load: =35.0 psf 82.3 psf Page 10 of 417 WCA Structural Engineering, Inc.JOB TITLE Connections 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.23019 SHEET NO. (801)298-1118 CALCULATED BY JC DATE 3/1/23 CHECKED BY CC DATE Roof Design Loads Items Description Multiple psf (max)psf (min) Roofing Single ply 1.0 0.7 Decking 5/8" plywood/OSB 2.2 1.8 Framing TJI @ 24"2.0 1.0 Insulation Closed cell foam (2 pcf; R=6 x 4.0 0.8 0.6 Ceiling Suspended acoustical tile 1.8 1.0 Mech & Elec Mech. & Elec.2.0 0.0 Sprinklers Sprinklers 2.0 0.0 Decking 2x6 T&G 3.0 4.3 Actual Dead Load 14.8 9.4 Use this DL instead 20.0 9.0 Live Load 20.0 0.0 Snow Load 35.0 0.0 Ultimate Wind (zone 2 - 100sf)19.4 -22.8 ASD Loading D + S 55.0 - D + 0.75(0.6*W + S) 55.0 - 0.6*D + 0.6*W --8.3 LRFD Loading 1.2D + 1.6 S + 0.5W 89.7 - 1.2D + 1.0W + 0.5S 60.9 - 0.9D + 1.0W --14.7 Page 11 of 417 WCA Structural Engineering, Inc.JOB TITLE Connections 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.23019 SHEET NO. (801)298-1118 CALCULATED BY JC DATE 3/1/23 CHECKED BY CC DATE Floor Design Loads Items Description Multiple psf (max)psf (min) Flooring Carpet & pad 1.0 1.0 Topping Poured gypsum per 1"x 1.5 15.0 12.8 Decking 3/4" plywood/OSB 2.7 2.3 Framing TJI @ 24"2.0 1.0 Framing Steel floor/roof girder beams 2.5 2.0 Ceiling Suspended acoustical tile 1.8 1.0 Sprinklers Sprinklers 2.0 0.0 Mech & Elec Mech. & Elec.2.0 0.0 None 0.0 0.0 Actual Dead Load 29.0 20.1 Use this DL instead 30.0 65.0 Partitions 15.0 0.0 Live Load 50.0 0.0 Total Live Load 65.0 0.0 Total Load 95.0 65.0 Page 12 of 417 WCA Structural Engineering, Inc.JOB TITLE Connections 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.23019 SHEET NO. (801)298-1118 CALCULATED BY JC DATE 3/1/23 CHECKED BY CC DATE CODE SUMMARY Code:International Building Code 2018 Live Loads: Roof 0 to 200 sf: 20 psf 200 to 600 sf: 24 - 0.02Area, but not less than 12 psf over 600 sf: 12 psf Typical Floor 50 psf Partitions 15 psf Stairs and exit ways 100 psf Corridors above first floor 80 psf Balconies (1.5 times live load)75 psf Dead Loads: Floor 30.0 psf Roof 20.0 psf Wind Design Data: Ultimate Design Wind Speed 105 mph Nominal Design Wind Speed 81.33 mph Risk Category II Mean Roof Ht (h)41.0 ft Exposure Category C Enclosure Classif.Enclosed Building Internal pressure Coef.+/-0.18 Directionality (Kd)0.85 Roof Snow Loads: Design Uniform Roof Snow load =35.0 psf Flat Roof Snow Load Pf =35.0 psf Balanced Snow Load Ps =35.0 psf Ground Snow Load Pg =50.0 psf Importance Factor I =1.00 Snow Exposure Factor Ce =1.00 Thermal Factor Ct =1.00 Sloped-roof Factor Cs =1.00 Drift Surcharge load Pd = Width of Snow Drift w = Earthquake Design Data: Risk Category =II Importance Factor I =1.00 Mapped spectral response accelerat Ss =37.20 S1 =14.40 Site Class = code default Spectral Response Coef.Sds =0.373 Sd1 =0.222 Seismic Design Category =D Basic Structural System =Bearing Wall Systems Seismic Resisting System =Special reinforced masonry shear walls Design Base Shear V =0.075W Seismic Response Coef.Cs =0.075 Response Modification Factor R =5 Analysis Procedure =Equivalent Lateral-Force Analysis Page 13 of 417 Page 14 of 417 Page 15 of 417 ASCE 7 Hazards Report Address: 450 First American Cir Rexburg, Idaho 83440 Standard:ASCE/SEI 7-16 Latitude:43.834072 Risk Category:II Longitude:-111.770676 Soil Class:D - Default (see Section 11.4.3) Elevation:4869.4 ft (NAVD 88) Wind Results: Wind Speed 105 Vmph 10-year MRI 75 Vmph 25-year MRI 81 Vmph 50-year MRI 86 Vmph 100-year MRI 91 Vmph Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2 Date Accessed: Thu Feb 23 2023 Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years). Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Page 1 of 4https://asce7hazardtool.online/Thu Feb 23 2023Page 16 of 417 City web site is 90 mph, use 105 mph for newer codes SS : 0.372 S1 : 0.144 F a : 1.503 F v : 2.312 SMS : 0.558 SM1 : 0.333 SDS : 0.372 SD1 : 0.222 T L : 6 PGA : 0.158 PGA M : 0.234 F PGA : 1.484 Ie : 1 C v : 0.948 Seismic Design Category: D - Default (see Section 11.4.3) D Design Response Spectrum S (g) vs T(s)a MCE Response SpectrumR S (g) vs T(s)a Design Vertical Response Spectrum S (g) vs T(s)a MCE Vertical Response SpectrumR S (g) vs T(s)a Seismic Site Soil Class: Results: Data Accessed: Thu Feb 23 2023 Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS. Page 2 of 4https://asce7hazardtool.online/Thu Feb 23 2023 Snow Results: Ground Snow Load, p : 50 lb/ftg 2 Elevation: 4869.4 ft Data Source: Date Accessed: Thu Feb 23 2023 Statutory requirements of the Authority Having Jurisdiction are not included. Rain Results: Data Source: Date Accessed: 15-minute duration: No Data 60-minute duration: No Data NOAA National Weather Service, Precipitation Frequency Data Server, Atlas 14 (https://www.nws.noaa.gov/oh/hdsc/) Thu Feb 23 2023 For rainfall-event data in this area, see NOAA Hydrometeorological Design Studies Center, Current Precipitation Frequency Information and Documents for Idaho. Page 3 of 4https://asce7hazardtool.online/Thu Feb 23 2023 The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided “as is” and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE. ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard. In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool. Page 4 of 4https://asce7hazardtool.online/Thu Feb 23 2023 F.F. Level 1 100'-0"F.F. Level 1100'-0" F.F. Level 2 113'-5" F.F. Level 2113'-5" ROOF PLAN 140'-3" ROOF PLAN140'-3" B.O. FOOTING 97'-0"B.O. FOOTING97'-0" F.F. LEVEL 3 126'-10" F.F. LEVEL 3126'-10" DECK BEARING 140'-10" DECK BEARING140'-10" Lateral Design Forces Seismic & Wind Lateral Force Calculations 1-Story : Codes: ASCE 7/IBC Note: Longitudinal direction is parallel to L, Transverse direction is parallel to W. Building or building portion: Block 1, section a Building Geometry: (Input is required for yellow boxes) Building length:L 59ft:=Roof Dead load:Ddia 20psf:= Building width:W 52ft:=Roof Live/snow load:S 35psf:=Story height of Roof diaphragm:Hdia 16.5ft:= Building elevation:Elev 4869ft:= Parapet heights (windward (taller)):HWpar 5 ft:=Include live/snow w/ seimic mass: (leeward (shorter)):HLpar 5ft:= Roof overhang (horz. dist):dov 0 ft:= Seismic mass/weights and design data: Wall properties: (weights should be averaged for brick veneer, etc.) For percent of wall & parapet that is solid for seismic mass, (value should be entered as a % or a decimal) (percent of wall masses affect the seismic calculations only) WallIZT 14.6psf:= Wall dead load: Wall % solid: Gable wall dead load: Roof Slope,rise (in/ft): Front wall:Wfr 60psf:=%fr 100%:=WGfr 0psf:=yfr 0 in:= Back wall:Wba 60psf:=%ba 100%:=WGba 0psf:=yba 0 in:= Left wall:Wle 60psf:=%le 100%:=WGle 0psf:=yle 0 in:= Right wall:Wri 60psf:=%ri 50%:=WGri 0psf:=yri 0 in:= Roof_Slope "FLAT roof"= Seismic design data, see Code Search excel output sheets: Occupancy/Risk Category: Importance Factor:IE 1.00= Seismic Design Category: Design spectral response parameter (short periods):SDS 0.373:= Approx fundamental period:Ta 0.324sec:= Vertical distribution exponent:k 1= Longitudinal, parallel to L: Transverse, parallel to W: Response modification factor:RL 5:=RT 5:= Seismic response coefficient:Cs_L 0.075:=Cs_T 0.075:= Wind design pressures data: Wind design pressures, see Code Search excel output sheets, the minimum loads are also checked. (Code calculated values that are negative, should be input as negative.) Wind loads, ASD or Ultimate: Edge strip:a 13ft:=Edge zone:2 a26 ft=windmin 16 psf= Longitudinal Wall pressures: End zone:WallEZL 21.9psf:=Interior zone:WallIZL 14.6psf:= Longitudinal pitched roof/gable pressures: PEZL 0 psf:=Interior zone:PIZL 0psf:=End zone: Longitudinal parapet pressures: Windward:PWPL 32.2psf:=Leeward:PLPL 21.4-psf:= Transverse Wall pressures: End zone:WallEZT 21.9psf:=Interior zone: Wall location: 1/4 Transverse pitched roof/gable pressures: End zone:PEZT 0 psf:=Interior zone:PIZT 0psf:= Transverse parapet pressures: Windward:PWPT 32.2psf:=Leeward:PLPT 21.4-psf:= Seismic Design: Seismic mass breakdown: Roof mass:Wroof Wdia L 2 dov+( ) W 2 dov+( ) :=Wroof 82.8 kip= Front wall mass:Wfr.wall Wfr L%fr( )  Hdia 2 Hav.par+ WGfr L yfr 12 in L 20.5 +:=Wfr.wall 46.9 kip= Back wall mass:Wba.wall Wba L%ba( )  Hdia 2 Hav.par+ WGba L yba 12 in L 20.5 +:=Wba.wall 46.9 kip= Left wall mass:Wle.wall Wle W%le( )  Hdia 2 Hav.par+ WGle W yle 12 in W 20.5 +:=Wle.wall 41.3 kip= Right wall mass:Wri.wall Wri W%ri( )  Hdia 2 Hav.par+ WGri W yri 12 in W 20.5 +:=Wri.wall 20.7 kip= Total building mass:Wtotal Wroof Wfr.wall+Wba.wall+Wle.wall+Wri.wall+:=Wtotal 238.7 kip= Vb.T 17.9 kip= Cv.r Wtotal Hdia ft( ) k Wtotal Hdia ft( ) k :=Cv.r 1= Vb.L Cs_L Wtotal( ) :=Vb.T Cs_T Wtotal( ) :=Vb.L 17.9 kip= Shear force at roof diaphragm level due to vertical distribution factor: Fr.L Cv.r Vb.L:=Fr.T Cv.r Vb.T:=Fr.L 17.9 kip=Fr.T 17.9 kip= Shear wall force distribution: (Program assumes diaphragm is flexible, half to each wall and walls take their own load) Longitudinal distributed uniform load at diaphragm for shear wall forces: WV.L Fr.L W:=WV.L 344 plf= Longitudinal direction shear wall forces: Vfr Vb.L Wroof Wle.wall+Wri.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.L Wfr.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vfr 8.9 kip= Vba Vb.L Wroof Wle.wall+Wri.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.L Wba.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vba 8.9 kip= Transverse distributed uniform load at diaphragm for shear wall forces: WV.T Fr.T L:=WV.T 303 plf= Transverse direction shear wall forces: Vle Vb.T Wroof Wfr.wall+Wba.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.T Wle.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vle 9.7 kip= Vri Vb.T Wroof Wfr.wall+Wba.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.T Wri.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vri 8.2 kip= Vertical distribution factor: Seismic base shear for longitudinal & transverse directions: 2/4 Diaphragm force distribution: ASCE 7 Eq. 11.7-1 for SDC=A and Eq. 12.10-1 (Fpx = (Fi/wi)*wpx) for SDC=B..F Fpx.L 0.01 SDC "A"=if 0.4 S DSIE0.4 S DSIE Fr.L Wtotal <  SDC "A"if Fr.L Wtotal 0.2 SDSIE Fr.L Wtotal 0.4 SDSIE  SDC "A"if 0.2 S DSIE0.2 S DSIE Fr.L Wtotal >  SDC "A"if :=Fpx.T 0.01 SDC "A"=if 0.4 S DSIE0.4 S DSIE Fr.T Wtotal < if Fr.T Wtotal 0.2 SDSIE Fr.T Wtotal  if 0.2 S DSIE0.2 S DSIE Fr.T Wtotal > if := Fpx.L 0.075=Fpx.T 0.075= Diaphragm distribution forces at the top of wall: (diaphragm forces include the mass of the diaphragm and mass of walls perpendicular to direction of force, walls parallel to direction of force carry their own mass.) wF.pL Fpx.L Wroof Wle.wall+Wri.wall+( ) W:=wF.pL 209 plf= wF.pT Fpx.T Wroof Wfr.wall+Wba.wall+( ) L:=wF.pT 225 plf= Unit diaphragm shears: υL wF.pL W 2   L:=υT wF.pT L 2   W:=υL 92 plf= υT 127 plf= Wind Design: Height of pitched roof: Hpit max yfr 12 in L 2  yba 12 in L 2 , yle 12 in W 2 , yri 12 in W 2 ,  :=Hpit 0= Direction with the gable end walls: Roof_Slope "FLAT roof"= Shear wall force distribution: Uniform loads at the top of wall (use weighted average of End and Inter. zones with half the building length/width) Longitudinal wind forces: αL 0.5 Roof_Slope "SLOPED Roof (ridge parallel to L)"=if 0.5 Roof_Slope "SLOPED Roof (on all sides)"=if 1.0 otherwise :=αL 1= WL.wall WallEZL 2 a( )WallIZL W 0.5( ) 2 a( )-[ ]+ W 0.5( ) Hdia 2:=WL.wall 180.7 plf= WL.gable PEZL 2 a( )PIZL W 0.5( ) 2 a( )-[ ]+ W 0.5( ) αL Hpit( ) :=WL.gable 0plf WL.gable 0 plfif WL.gable otherwise :=WL.gable 0 plf= WL.par PWPL HWpar( ) PLPL HLpar( ) +:=WL.par 268 plf= WL.min windmin Hdia 2 windmin HWpar( ) +windmin αL Hpit( ) +:=WL.min 212 plf= WL max WL.wall WL.gable+WL.par+( ) WL.min, :=WL 449 plf= 3/4 Transverse wind forces: αT 0.5 Roof_Slope "SLOPED Roof (ridge parallel to W)"=if 0.5 Roof_Slope "SLOPED Roof (on all sides)"=if 1.0 otherwise :=αT 1= WT.wall WallEZT 2 a( )WallIZT L 0.5( ) 2 a( )-[ ]+ L 0.5( ) Hdia 2:=WT.wall 173.5 plf= WT.gable PEZT 2 a( )PIZT L 0.5( ) 2 a( )-[ ]+ L 0.5( ) αT Hpit( ) :=WT.gable 0plf WT.gable 0 plfif WT.gable otherwise :=WT.gable 0 plf= WT.par PWPT HWpar( ) PLPT HLpar( ) +:=WT.par 268 plf= WT.min windmin Hdia 2 windmin HWpar( ) +windmin αT Hpit( ) +:=WT.min 212 plf= WT max WT.wall WT.gable+WT.par+( ) WT.min, :=WT 442 plf= Shear wall forces: (since only two walls force is the same on each side) VL.w WL W 2:=VL.w 11.7 kip= VT.w WT L 2:=VT.w 13 kip= Unit diaphragm shears: (since only two walls force is the same on each side) υL.w VL.w L:=υL.w 198 plf= υT.w VT.w W:=υT.w 250 plf= ========================================================================================== 4/4 Seismic & Wind Lateral Force Calculations 1-Story : Codes: ASCE 7/IBC Note: Longitudinal direction is parallel to L, Transverse direction is parallel to W. Building or building portion: Block 1, section b Building Geometry: (Input is required for yellow boxes) Building length:L 16ft:=Roof Dead load:Ddia 20psf:= Building width:W 25ft:=Roof Live/snow load:S 35psf:=Story height of Roof diaphragm:Hdia 16.5ft:= Building elevation:Elev 4869ft:= Parapet heights (windward (taller)):HWpar 5 ft:=Include live/snow w/ seimic mass: (leeward (shorter)):HLpar 5ft:= Roof overhang (horz. dist):dov 0 ft:= Seismic mass/weights and design data: Wall properties: (weights should be averaged for brick veneer, etc.) For percent of wall & parapet that is solid for seismic mass, (value should be entered as a % or a decimal) (percent of wall masses affect the seismic calculations only) WallIZT 14.6psf:= Wall dead load: Wall % solid: Gable wall dead load: Roof Slope,rise (in/ft): Front wall:Wfr 60psf:=%fr 100%:=WGfr 0psf:=yfr 0 in:= Back wall:Wba 60psf:=%ba 100%:=WGba 0psf:=yba 0 in:= Left wall:Wle 0psf:=%le 100%:=WGle 0psf:=yle 0 in:= Right wall:Wri 60psf:=%ri 100%:=WGri 0psf:=yri 0 in:= Roof_Slope "FLAT roof"= Seismic design data, see Code Search excel output sheets: Occupancy/Risk Category: Importance Factor:IE 1.00= Seismic Design Category: Design spectral response parameter (short periods):SDS 0.373:= Approx fundamental period:Ta 0.324sec:= Vertical distribution exponent:k 1= Longitudinal, parallel to L: Transverse, parallel to W: Response modification factor:RL 5:=RT 5:= Seismic response coefficient:Cs_L 0.075:=Cs_T 0.075:= Wind design pressures data: Wind design pressures, see Code Search excel output sheets, the minimum loads are also checked. (Code calculated values that are negative, should be input as negative.) Wind loads, ASD or Ultimate: Edge strip:a 13ft:=Edge zone:2 a26 ft=windmin 16 psf= Longitudinal Wall pressures: End zone:WallEZL 21.9psf:=Interior zone:WallIZL 14.6psf:= Longitudinal pitched roof/gable pressures: PEZL 0 psf:=Interior zone:PIZL 0psf:=End zone: Longitudinal parapet pressures: Windward:PWPL 32.2psf:=Leeward:PLPL 21.4-psf:= Transverse Wall pressures: End zone:WallEZT 21.9psf:=Interior zone: Wall location: 1/4 Transverse pitched roof/gable pressures: End zone:PEZT 0 psf:=Interior zone:PIZT 0psf:= Transverse parapet pressures: Windward:PWPT 32.2psf:=Leeward:PLPT 21.4-psf:= Seismic Design: Seismic mass breakdown: Roof mass:Wroof Wdia L 2 dov+( ) W 2 dov+( ) :=Wroof 10.8 kip= Front wall mass:Wfr.wall Wfr L%fr( )  Hdia 2 Hav.par+ WGfr L yfr 12 in L 20.5 +:=Wfr.wall 12.7 kip= Back wall mass:Wba.wall Wba L%ba( )  Hdia 2 Hav.par+ WGba L yba 12 in L 20.5 +:=Wba.wall 12.7 kip= Left wall mass:Wle.wall Wle W%le( )  Hdia 2 Hav.par+ WGle W yle 12 in W 20.5 +:=Wle.wall 0 kip= Right wall mass:Wri.wall Wri W%ri( )  Hdia 2 Hav.par+ WGri W yri 12 in W 20.5 +:=Wri.wall 19.9 kip= Total building mass:Wtotal Wroof Wfr.wall+Wba.wall+Wle.wall+Wri.wall+:=Wtotal 56.1 kip= Vb.T 4.2 kip= Cv.r Wtotal Hdia ft( ) k Wtotal Hdia ft( ) k :=Cv.r 1= Vb.L Cs_L Wtotal( ) :=Vb.T Cs_T Wtotal( ) :=Vb.L 4.2 kip= Shear force at roof diaphragm level due to vertical distribution factor: Fr.L Cv.r Vb.L:=Fr.T Cv.r Vb.T:=Fr.L 4.2 kip=Fr.T 4.2 kip= Shear wall force distribution: (Program assumes diaphragm is flexible, half to each wall and walls take their own load) Longitudinal distributed uniform load at diaphragm for shear wall forces: WV.L Fr.L W:=WV.L 168 plf= Longitudinal direction shear wall forces: Vfr Vb.L Wroof Wle.wall+Wri.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.L Wfr.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vfr 2.1 kip= Vba Vb.L Wroof Wle.wall+Wri.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.L Wba.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vba 2.1 kip= Transverse distributed uniform load at diaphragm for shear wall forces: WV.T Fr.T L:=WV.T 263 plf= Transverse direction shear wall forces: Vle Vb.T Wroof Wfr.wall+Wba.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.T Wle.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vle 1.4 kip= Vri Vb.T Wroof Wfr.wall+Wba.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.T Wri.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vri 2.8 kip= Vertical distribution factor: Seismic base shear for longitudinal & transverse directions: 2/4 Diaphragm force distribution: ASCE 7 Eq. 11.7-1 for SDC=A and Eq. 12.10-1 (Fpx = (Fi/wi)*wpx) for SDC=B..F Fpx.L 0.01 SDC "A"=if 0.4 S DSIE0.4 S DSIE Fr.L Wtotal <  SDC "A"if Fr.L Wtotal 0.2 SDSIE Fr.L Wtotal 0.4 SDSIE  SDC "A"if 0.2 S DSIE0.2 S DSIE Fr.L Wtotal >  SDC "A"if :=Fpx.T 0.01 SDC "A"=if 0.4 S DSIE0.4 S DSIE Fr.T Wtotal < if Fr.T Wtotal 0.2 SDSIE Fr.T Wtotal  if 0.2 S DSIE0.2 S DSIE Fr.T Wtotal > if := Fpx.L 0.075=Fpx.T 0.075= Diaphragm distribution forces at the top of wall: (diaphragm forces include the mass of the diaphragm and mass of walls perpendicular to direction of force, walls parallel to direction of force carry their own mass.) wF.pL Fpx.L Wroof Wle.wall+Wri.wall+( ) W:=wF.pL 92 plf= wF.pT Fpx.T Wroof Wfr.wall+Wba.wall+( ) L:=wF.pT 170 plf= Unit diaphragm shears: υL wF.pL W 2   L:=υT wF.pT L 2   W:=υL 72 plf= υT 54 plf= Wind Design: Height of pitched roof: Hpit max yfr 12 in L 2  yba 12 in L 2 , yle 12 in W 2 , yri 12 in W 2 ,  :=Hpit 0= Direction with the gable end walls: Roof_Slope "FLAT roof"= Shear wall force distribution: Uniform loads at the top of wall (use weighted average of End and Inter. zones with half the building length/width) Longitudinal wind forces: αL 0.5 Roof_Slope "SLOPED Roof (ridge parallel to L)"=if 0.5 Roof_Slope "SLOPED Roof (on all sides)"=if 1.0 otherwise :=αL 1= WL.wall WallEZL 2 a( )WallIZL W 0.5( ) 2 a( )-[ ]+ W 0.5( ) Hdia 2:=WL.wall 245.7 plf= WL.gable PEZL 2 a( )PIZL W 0.5( ) 2 a( )-[ ]+ W 0.5( ) αL Hpit( ) :=WL.gable 0plf WL.gable 0 plfif WL.gable otherwise :=WL.gable 0 plf= WL.par PWPL HWpar( ) PLPL HLpar( ) +:=WL.par 268 plf= WL.min windmin Hdia 2 windmin HWpar( ) +windmin αL Hpit( ) +:=WL.min 212 plf= WL max WL.wall WL.gable+WL.par+( ) WL.min, :=WL 514 plf= 3/4 Transverse wind forces: αT 0.5 Roof_Slope "SLOPED Roof (ridge parallel to W)"=if 0.5 Roof_Slope "SLOPED Roof (on all sides)"=if 1.0 otherwise :=αT 1= WT.wall WallEZT 2 a( )WallIZT L 0.5( ) 2 a( )-[ ]+ L 0.5( ) Hdia 2:=WT.wall 316.2 plf= WT.gable PEZT 2 a( )PIZT L 0.5( ) 2 a( )-[ ]+ L 0.5( ) αT Hpit( ) :=WT.gable 0plf WT.gable 0 plfif WT.gable otherwise :=WT.gable 0 plf= WT.par PWPT HWpar( ) PLPT HLpar( ) +:=WT.par 268 plf= WT.min windmin Hdia 2 windmin HWpar( ) +windmin αT Hpit( ) +:=WT.min 212 plf= WT max WT.wall WT.gable+WT.par+( ) WT.min, :=WT 584 plf= Shear wall forces: (since only two walls force is the same on each side) VL.w WL W 2:=VL.w 6.4 kip= VT.w WT L 2:=VT.w 4.7 kip= Unit diaphragm shears: (since only two walls force is the same on each side) υL.w VL.w L:=υL.w 401 plf= υT.w VT.w W:=υT.w 187 plf= ========================================================================================== 4/4 Seismic & Wind Lateral Force Calculations 1-Story : Codes: ASCE 7/IBC Note: Longitudinal direction is parallel to L, Transverse direction is parallel to W. Building or building portion: Block 1, section c Building Geometry: (Input is required for yellow boxes) Building length:L 23ft:=Roof Dead load:Ddia 20psf:= Building width:W 8ft:=Roof Live/snow load:S 35psf:=Story height of Roof diaphragm:Hdia 16.5ft:= Building elevation:Elev 4869ft:= Parapet heights (windward (taller)):HWpar 0 ft:=Include live/snow w/ seimic mass: (leeward (shorter)):HLpar 0ft:= Roof overhang (horz. dist):dov 3 ft:= Seismic mass/weights and design data: Wall properties: (weights should be averaged for brick veneer, etc.) For percent of wall & parapet that is solid for seismic mass, (value should be entered as a % or a decimal) (percent of wall masses affect the seismic calculations only) WallIZT 14.6psf:= Wall dead load: Wall % solid: Gable wall dead load: Roof Slope,rise (in/ft): Front wall:Wfr 15psf:=%fr 100%:=WGfr 0psf:=yfr 0 in:= Back wall:Wba 15psf:=%ba 100%:=WGba 0psf:=yba 0 in:= Left wall:Wle 15psf:=%le 100%:=WGle 0psf:=yle 0 in:= Right wall:Wri 15psf:=%ri 100%:=WGri 0psf:=yri 0 in:= Roof_Slope "FLAT roof"= Seismic design data, see Code Search excel output sheets: Occupancy/Risk Category: Importance Factor:IE 1.00= Seismic Design Category: Design spectral response parameter (short periods):SDS 0.373:= Approx fundamental period:Ta 0.324sec:= Vertical distribution exponent:k 1= Longitudinal, parallel to L: Transverse, parallel to W: Response modification factor:RL 5:=RT 5:= Seismic response coefficient:Cs_L 0.075:=Cs_T 0.075:= Wind design pressures data: Wind design pressures, see Code Search excel output sheets, the minimum loads are also checked. (Code calculated values that are negative, should be input as negative.) Wind loads, ASD or Ultimate: Edge strip:a 13ft:=Edge zone:2 a26 ft=windmin 16 psf= Longitudinal Wall pressures: End zone:WallEZL 21.9psf:=Interior zone:WallIZL 14.6psf:= Longitudinal pitched roof/gable pressures: PEZL 0 psf:=Interior zone:PIZL 0psf:=End zone: Longitudinal parapet pressures: Windward:PWPL 32.2psf:=Leeward:PLPL 21.4-psf:= Transverse Wall pressures: End zone:WallEZT 21.9psf:=Interior zone: Wall location: 1/4 Transverse pitched roof/gable pressures: End zone:PEZT 0 psf:=Interior zone:PIZT 0psf:= Transverse parapet pressures: Windward:PWPT 32.2psf:=Leeward:PLPT 21.4-psf:= Seismic Design: Seismic mass breakdown: Roof mass:Wroof Wdia L 2 dov+( ) W 2 dov+( ) :=Wroof 11 kip= Front wall mass:Wfr.wall Wfr L%fr( )  Hdia 2 Hav.par+ WGfr L yfr 12 in L 20.5 +:=Wfr.wall 2.8 kip= Back wall mass:Wba.wall Wba L%ba( )  Hdia 2 Hav.par+ WGba L yba 12 in L 20.5 +:=Wba.wall 2.8 kip= Left wall mass:Wle.wall Wle W%le( )  Hdia 2 Hav.par+ WGle W yle 12 in W 20.5 +:=Wle.wall 1 kip= Right wall mass:Wri.wall Wri W%ri( )  Hdia 2 Hav.par+ WGri W yri 12 in W 20.5 +:=Wri.wall 1 kip= Total building mass:Wtotal Wroof Wfr.wall+Wba.wall+Wle.wall+Wri.wall+:=Wtotal 18.6 kip= Vb.T 1.4 kip= Cv.r Wtotal Hdia ft( ) k Wtotal Hdia ft( ) k :=Cv.r 1= Vb.L Cs_L Wtotal( ) :=Vb.T Cs_T Wtotal( ) :=Vb.L 1.4 kip= Shear force at roof diaphragm level due to vertical distribution factor: Fr.L Cv.r Vb.L:=Fr.T Cv.r Vb.T:=Fr.L 1.4 kip=Fr.T 1.4 kip= Shear wall force distribution: (Program assumes diaphragm is flexible, half to each wall and walls take their own load) Longitudinal distributed uniform load at diaphragm for shear wall forces: WV.L Fr.L W:=WV.L 175 plf= Longitudinal direction shear wall forces: Vfr Vb.L Wroof Wle.wall+Wri.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.L Wfr.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vfr 0.7 kip= Vba Vb.L Wroof Wle.wall+Wri.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.L Wba.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vba 0.7 kip= Transverse distributed uniform load at diaphragm for shear wall forces: WV.T Fr.T L:=WV.T 61 plf= Transverse direction shear wall forces: Vle Vb.T Wroof Wfr.wall+Wba.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.T Wle.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vle 0.7 kip= Vri Vb.T Wroof Wfr.wall+Wba.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.T Wri.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vri 0.7 kip= Vertical distribution factor: Seismic base shear for longitudinal & transverse directions: 2/4 Diaphragm force distribution: ASCE 7 Eq. 11.7-1 for SDC=A and Eq. 12.10-1 (Fpx = (Fi/wi)*wpx) for SDC=B..F Fpx.L 0.01 SDC "A"=if 0.4 S DSIE0.4 S DSIE Fr.L Wtotal <  SDC "A"if Fr.L Wtotal 0.2 SDSIE Fr.L Wtotal 0.4 SDSIE  SDC "A"if 0.2 S DSIE0.2 S DSIE Fr.L Wtotal >  SDC "A"if :=Fpx.T 0.01 SDC "A"=if 0.4 S DSIE0.4 S DSIE Fr.T Wtotal < if Fr.T Wtotal 0.2 SDSIE Fr.T Wtotal  if 0.2 S DSIE0.2 S DSIE Fr.T Wtotal > if := Fpx.L 0.075=Fpx.T 0.075= Diaphragm distribution forces at the top of wall: (diaphragm forces include the mass of the diaphragm and mass of walls perpendicular to direction of force, walls parallel to direction of force carry their own mass.) wF.pL Fpx.L Wroof Wle.wall+Wri.wall+( ) W:=wF.pL 121 plf= wF.pT Fpx.T Wroof Wfr.wall+Wba.wall+( ) L:=wF.pT 54 plf= Unit diaphragm shears: υL wF.pL W 2   L:=υT wF.pT L 2   W:=υL 21 plf= υT 78 plf= Wind Design: Height of pitched roof: Hpit max yfr 12 in L 2  yba 12 in L 2 , yle 12 in W 2 , yri 12 in W 2 ,  :=Hpit 0= Direction with the gable end walls: Roof_Slope "FLAT roof"= Shear wall force distribution: Uniform loads at the top of wall (use weighted average of End and Inter. zones with half the building length/width) Longitudinal wind forces: αL 0.5 Roof_Slope "SLOPED Roof (ridge parallel to L)"=if 0.5 Roof_Slope "SLOPED Roof (on all sides)"=if 1.0 otherwise :=αL 1= WL.wall WallEZL 2 a( )WallIZL W 0.5( ) 2 a( )-[ ]+ W 0.5( ) Hdia 2:=WL.wall 511.9 plf= WL.gable PEZL 2 a( )PIZL W 0.5( ) 2 a( )-[ ]+ W 0.5( ) αL Hpit( ) :=WL.gable 0plf WL.gable 0 plfif WL.gable otherwise :=WL.gable 0 plf= WL.par PWPL HWpar( ) PLPL HLpar( ) +:=WL.par 0 plf= WL.min windmin Hdia 2 windmin HWpar( ) +windmin αL Hpit( ) +:=WL.min 132 plf= WL max WL.wall WL.gable+WL.par+( ) WL.min, :=WL 512 plf= 3/4 Transverse wind forces: αT 0.5 Roof_Slope "SLOPED Roof (ridge parallel to W)"=if 0.5 Roof_Slope "SLOPED Roof (on all sides)"=if 1.0 otherwise :=αT 1= WT.wall WallEZT 2 a( )WallIZT L 0.5( ) 2 a( )-[ ]+ L 0.5( ) Hdia 2:=WT.wall 256.6 plf= WT.gable PEZT 2 a( )PIZT L 0.5( ) 2 a( )-[ ]+ L 0.5( ) αT Hpit( ) :=WT.gable 0plf WT.gable 0 plfif WT.gable otherwise :=WT.gable 0 plf= WT.par PWPT HWpar( ) PLPT HLpar( ) +:=WT.par 0 plf= WT.min windmin Hdia 2 windmin HWpar( ) +windmin αT Hpit( ) +:=WT.min 132 plf= WT max WT.wall WT.gable+WT.par+( ) WT.min, :=WT 257 plf= Shear wall forces: (since only two walls force is the same on each side) VL.w WL W 2:=VL.w 2 kip= VT.w WT L 2:=VT.w 3 kip= Unit diaphragm shears: (since only two walls force is the same on each side) υL.w VL.w L:=υL.w 89 plf= υT.w VT.w W:=υT.w 369 plf= ========================================================================================== 4/4 Seismic & Wind Lateral Force Calculations 1-Story : Codes: ASCE 7/IBC Note: Longitudinal direction is parallel to L, Transverse direction is parallel to W. Building or building portion: Block 2 Building Geometry: (Input is required for yellow boxes) Building length:L 73ft:=Roof Dead load:Ddia 20psf:= Building width:W 56ft:=Roof Live/snow load:S 35psf:=Story height of Roof diaphragm:Hdia 27ft:= Building elevation:Elev 4869ft:= Parapet heights (windward (taller)):HWpar 5 ft:=Include live/snow w/ seimic mass: (leeward (shorter)):HLpar 5ft:= Roof overhang (horz. dist):dov 0 ft:= Seismic mass/weights and design data: Wall properties: (weights should be averaged for brick veneer, etc.) For percent of wall & parapet that is solid for seismic mass, (value should be entered as a % or a decimal) (percent of wall masses affect the seismic calculations only) WallIZT 14.6psf:= Wall dead load: Wall % solid: Gable wall dead load: Roof Slope,rise (in/ft): Front wall:Wfr 60psf:=%fr 100%:=WGfr 0psf:=yfr 0 in:= Back wall:Wba 60psf:=%ba 100%:=WGba 0psf:=yba 0 in:= Left wall:Wle 60psf:=%le 100%:=WGle 0psf:=yle 0 in:= Right wall:Wri 60psf:=%ri 100%:=WGri 0psf:=yri 0 in:= Roof_Slope "FLAT roof"= Seismic design data, see Code Search excel output sheets: Occupancy/Risk Category: Importance Factor:IE 1.00= Seismic Design Category: Design spectral response parameter (short periods):SDS 0.373:= Approx fundamental period:Ta 0.324sec:= Vertical distribution exponent:k 1= Longitudinal, parallel to L: Transverse, parallel to W: Response modification factor:RL 5:=RT 5:= Seismic response coefficient:Cs_L 0.075:=Cs_T 0.075:= Wind design pressures data: Wind design pressures, see Code Search excel output sheets, the minimum loads are also checked. (Code calculated values that are negative, should be input as negative.) Wind loads, ASD or Ultimate: Edge strip:a 13ft:=Edge zone:2 a26 ft=windmin 16 psf= Longitudinal Wall pressures: End zone:WallEZL 21.9psf:=Interior zone:WallIZL 14.6psf:= Longitudinal pitched roof/gable pressures: PEZL 0 psf:=Interior zone:PIZL 0psf:=End zone: Longitudinal parapet pressures: Windward:PWPL 32.2psf:=Leeward:PLPL 21.4-psf:= Transverse Wall pressures: End zone:WallEZT 21.9psf:=Interior zone: Wall location: 1/4 Transverse pitched roof/gable pressures: End zone:PEZT 0 psf:=Interior zone:PIZT 0psf:= Transverse parapet pressures: Windward:PWPT 32.2psf:=Leeward:PLPT 21.4-psf:= Seismic Design: Seismic mass breakdown: Roof mass:Wroof Wdia L 2 dov+( ) W 2 dov+( ) :=Wroof 110.4 kip= Front wall mass:Wfr.wall Wfr L%fr( )  Hdia 2 Hav.par+ WGfr L yfr 12 in L 20.5 +:=Wfr.wall 81 kip= Back wall mass:Wba.wall Wba L%ba( )  Hdia 2 Hav.par+ WGba L yba 12 in L 20.5 +:=Wba.wall 81 kip= Left wall mass:Wle.wall Wle W%le( )  Hdia 2 Hav.par+ WGle W yle 12 in W 20.5 +:=Wle.wall 62.2 kip= Right wall mass:Wri.wall Wri W%ri( )  Hdia 2 Hav.par+ WGri W yri 12 in W 20.5 +:=Wri.wall 62.2 kip= Total building mass:Wtotal Wroof Wfr.wall+Wba.wall+Wle.wall+Wri.wall+:=Wtotal 396.8 kip= Vb.T 29.8 kip= Cv.r Wtotal Hdia ft( ) k Wtotal Hdia ft( ) k :=Cv.r 1= Vb.L Cs_L Wtotal( ) :=Vb.T Cs_T Wtotal( ) :=Vb.L 29.8 kip= Shear force at roof diaphragm level due to vertical distribution factor: Fr.L Cv.r Vb.L:=Fr.T Cv.r Vb.T:=Fr.L 29.8 kip=Fr.T 29.8 kip= Shear wall force distribution: (Program assumes diaphragm is flexible, half to each wall and walls take their own load) Longitudinal distributed uniform load at diaphragm for shear wall forces: WV.L Fr.L W:=WV.L 531 plf= Longitudinal direction shear wall forces: Vfr Vb.L Wroof Wle.wall+Wri.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.L Wfr.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vfr 14.9 kip= Vba Vb.L Wroof Wle.wall+Wri.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.L Wba.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vba 14.9 kip= Transverse distributed uniform load at diaphragm for shear wall forces: WV.T Fr.T L:=WV.T 408 plf= Transverse direction shear wall forces: Vle Vb.T Wroof Wfr.wall+Wba.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.T Wle.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vle 14.9 kip= Vri Vb.T Wroof Wfr.wall+Wba.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.T Wri.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vri 14.9 kip= Vertical distribution factor: Seismic base shear for longitudinal & transverse directions: 2/4 Diaphragm force distribution: ASCE 7 Eq. 11.7-1 for SDC=A and Eq. 12.10-1 (Fpx = (Fi/wi)*wpx) for SDC=B..F Fpx.L 0.01 SDC "A"=if 0.4 S DSIE0.4 S DSIE Fr.L Wtotal <  SDC "A"if Fr.L Wtotal 0.2 SDSIE Fr.L Wtotal 0.4 SDSIE  SDC "A"if 0.2 S DSIE0.2 S DSIE Fr.L Wtotal >  SDC "A"if :=Fpx.T 0.01 SDC "A"=if 0.4 S DSIE0.4 S DSIE Fr.T Wtotal < if Fr.T Wtotal 0.2 SDSIE Fr.T Wtotal  if 0.2 S DSIE0.2 S DSIE Fr.T Wtotal > if := Fpx.L 0.075=Fpx.T 0.075= Diaphragm distribution forces at the top of wall: (diaphragm forces include the mass of the diaphragm and mass of walls perpendicular to direction of force, walls parallel to direction of force carry their own mass.) wF.pL Fpx.L Wroof Wle.wall+Wri.wall+( ) W:=wF.pL 314 plf= wF.pT Fpx.T Wroof Wfr.wall+Wba.wall+( ) L:=wF.pT 280 plf= Unit diaphragm shears: υL wF.pL W 2   L:=υT wF.pT L 2   W:=υL 121 plf= υT 182 plf= Wind Design: Height of pitched roof: Hpit max yfr 12 in L 2  yba 12 in L 2 , yle 12 in W 2 , yri 12 in W 2 ,  :=Hpit 0= Direction with the gable end walls: Roof_Slope "FLAT roof"= Shear wall force distribution: Uniform loads at the top of wall (use weighted average of End and Inter. zones with half the building length/width) Longitudinal wind forces: αL 0.5 Roof_Slope "SLOPED Roof (ridge parallel to L)"=if 0.5 Roof_Slope "SLOPED Roof (on all sides)"=if 1.0 otherwise :=αL 1= WL.wall WallEZL 2 a( )WallIZL W 0.5( ) 2 a( )-[ ]+ W 0.5( ) Hdia 2:=WL.wall 288.6 plf= WL.gable PEZL 2 a( )PIZL W 0.5( ) 2 a( )-[ ]+ W 0.5( ) αL Hpit( ) :=WL.gable 0plf WL.gable 0 plfif WL.gable otherwise :=WL.gable 0 plf= WL.par PWPL HWpar( ) PLPL HLpar( ) +:=WL.par 268 plf= WL.min windmin Hdia 2 windmin HWpar( ) +windmin αL Hpit( ) +:=WL.min 296 plf= WL max WL.wall WL.gable+WL.par+( ) WL.min, :=WL 557 plf= 3/4 Transverse wind forces: αT 0.5 Roof_Slope "SLOPED Roof (ridge parallel to W)"=if 0.5 Roof_Slope "SLOPED Roof (on all sides)"=if 1.0 otherwise :=αT 1= WT.wall WallEZT 2 a( )WallIZT L 0.5( ) 2 a( )-[ ]+ L 0.5( ) Hdia 2:=WT.wall 267.3 plf= WT.gable PEZT 2 a( )PIZT L 0.5( ) 2 a( )-[ ]+ L 0.5( ) αT Hpit( ) :=WT.gable 0plf WT.gable 0 plfif WT.gable otherwise :=WT.gable 0 plf= WT.par PWPT HWpar( ) PLPT HLpar( ) +:=WT.par 268 plf= WT.min windmin Hdia 2 windmin HWpar( ) +windmin αT Hpit( ) +:=WT.min 296 plf= WT max WT.wall WT.gable+WT.par+( ) WT.min, :=WT 535 plf= Shear wall forces: (since only two walls force is the same on each side) VL.w WL W 2:=VL.w 15.6 kip= VT.w WT L 2:=VT.w 19.5 kip= Unit diaphragm shears: (since only two walls force is the same on each side) υL.w VL.w L:=υL.w 213 plf= υT.w VT.w W:=υT.w 349 plf= ========================================================================================== 4/4 Seismic & Wind Lateral Force Calculations 1-Story : Codes: ASCE 7/IBC Note: Longitudinal direction is parallel to L, Transverse direction is parallel to W. Building or building portion: Block 3a Building Geometry: (Input is required for yellow boxes) Building length:L 38ft:=Roof Dead load:Ddia 30psf:= Building width:W 18ft:=Roof Live/snow load:S 100psf:=Story height of Roof diaphragm:Hdia 13ft:= Building elevation:Elev 4869ft:= Parapet heights (windward (taller)):HWpar 0 ft:=Include live/snow w/ seimic mass: (leeward (shorter)):HLpar 0ft:= Roof overhang (horz. dist):dov 0 ft:= Seismic mass/weights and design data: Wall properties: (weights should be averaged for brick veneer, etc.) For percent of wall & parapet that is solid for seismic mass, (value should be entered as a % or a decimal) (percent of wall masses affect the seismic calculations only) Wtotal 64.9 kip= Wall dead load: Wall % solid: Gable wall dead load: Roof Slope,rise (in/ft): Front wall:Wfr 60psf:=%fr 100%:=WGfr 0psf:=yfr 0 in:= Back wall:Wba 15psf:=%ba 100%:=WGba 0psf:=yba 0 in:= Left wall:Wle 15psf:=%le 100%:=WGle 0psf:=yle 0 in:= Right wall:Wri 60psf:=%ri 100%:=WGri 0psf:=yri 0 in:= Roof_Slope "FLAT roof"= Seismic design data, see Code Search excel output sheets: Occupancy/Risk Category: Importance Factor:IE 1.00= Seismic Design Category: Design spectral response parameter (short periods):SDS 0.373:= Approx fundamental period:Ta 0.324sec:= Vertical distribution exponent:k 1= Longitudinal, parallel to L: Transverse, parallel to W: Response modification factor:RL 5:=RT 5:= Seismic response coefficient:Cs_L 0.075:=Cs_T 0.075:= Seismic Design: Seismic mass breakdown: Roof mass:Wroof Wdia L 2 dov+( ) W 2 dov+( ) :=Wroof 37.6 kip= Front wall mass:Wfr.wall Wfr L%fr( )  Hdia 2 Hav.par+ WGfr L yfr 12 in L 20.5 +:=Wfr.wall 14.8 kip= Back wall mass:Wba.wall Wba L%ba( )  Hdia 2 Hav.par+ WGba L yba 12 in L 20.5 +:=Wba.wall 3.7 kip= Left wall mass:Wle.wall Wle W%le( )  Hdia 2 Hav.par+ WGle W yle 12 in W 20.5 +:=Wle.wall 1.8 kip= Right wall mass:Wri.wall Wri W%ri( )  Hdia 2 Hav.par+ WGri W yri 12 in W 20.5 +:=Wri.wall 7 kip= Total building mass:Wtotal Wroof Wfr.wall+Wba.wall+Wle.wall+Wri.wall+:= Wall location: 1/3 Vba Vb.L Wroof Wle.wall+Wri.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.L Wba.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:= Cv.r Wtotal Hdia ft( ) k Wtotal Hdia ft( ) k :=Cv.r 1= wF.pT Fpx.T Wroof Wfr.wall+Wba.wall+( ) L:= Vb.L Cs_L Wtotal( ) :=Vb.T Cs_T Wtotal( ) :=Vb.L 4.9 kip=Vb.T 4.9 kip= Shear force at roof diaphragm level due to vertical distribution factor: Fr.L Cv.r Vb.L:=Fr.T Cv.r Vb.T:=Fr.L 4.9 kip=Fr.T 4.9 kip= Shear wall force distribution: (Program assumes diaphragm is flexible, half to each wall and walls take their own load) Longitudinal distributed uniform load at diaphragm for shear wall forces: WV.L Fr.L W:=WV.L 271 plf= Longitudinal direction shear wall forces: Vfr Vb.L Wroof Wle.wall+Wri.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.L Wfr.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vfr 2.9 kip= wF.pT 111 plf= Vba 2 kip= Transverse distributed uniform load at diaphragm for shear wall forces: WV.T Fr.T L:=WV.T 128 plf= Transverse direction shear wall forces: Vle Vb.T Wroof Wfr.wall+Wba.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.T Wle.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vle 2.2 kip= Vri Vb.T Wroof Wfr.wall+Wba.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.T Wri.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vri 2.6 kip= Diaphragm force distribution: ASCE 7 Eq. 11.7-1 for SDC=A and Eq. 12.10-1 (Fpx = (Fi/wi)*wpx) for SDC=B..F Fpx.L 0.01 SDC "A"=if 0.4 S DSIE0.4 S DSIE Fr.L Wtotal <  SDC "A"if Fr.L Wtotal 0.2 SDSIE Fr.L Wtotal 0.4 SDSIE  SDC "A"if 0.2 S DSIE0.2 S DSIE Fr.L Wtotal >  SDC "A"if :=Fpx.T 0.01 SDC "A"=if 0.4 S DSIE0.4 S DSIE Fr.T Wtotal < if Fr.T Wtotal 0.2 SDSIE Fr.T Wtotal  if 0.2 S DSIE0.2 S DSIE Fr.T Wtotal > if := Fpx.L 0.075=Fpx.T 0.075= Diaphragm distribution forces at the top of wall: (diaphragm forces include the mass of the diaphragm and mass of walls perpendicular to direction of force, walls parallel to direction of force carry their own mass.) wF.pL Fpx.L Wroof Wle.wall+Wri.wall+( ) W:=wF.pL 193 plf= Vertical distribution factor: Seismic base shear for longitudinal & transverse directions: 2/3 Unit diaphragm shears: υL wF.pL W 2   L:=υT wF.pT L 2   W:=υL 46 plf= υT 117 plf= ========================================================================================== 3/3 Seismic & Wind Lateral Force Calculations 1-Story : Codes: ASCE 7/IBC Note: Longitudinal direction is parallel to L, Transverse direction is parallel to W. Building or building portion: Block 3b Building Geometry: (Input is required for yellow boxes) Building length:L 34ft:=Roof Dead load:Ddia 30psf:= Building width:W 12ft:=Roof Live/snow load:S 100psf:=Story height of Roof diaphragm:Hdia 13ft:= Building elevation:Elev 4869ft:= Parapet heights (windward (taller)):HWpar 0 ft:=Include live/snow w/ seimic mass: (leeward (shorter)):HLpar 0ft:= Roof overhang (horz. dist):dov 0 ft:= Seismic mass/weights and design data: Wall properties: (weights should be averaged for brick veneer, etc.) For percent of wall & parapet that is solid for seismic mass, (value should be entered as a % or a decimal) (percent of wall masses affect the seismic calculations only) Wtotal 44.9 kip= Wall dead load: Wall % solid: Gable wall dead load: Roof Slope,rise (in/ft): Front wall:Wfr 60psf:=%fr 100%:=WGfr 0psf:=yfr 0 in:= Back wall:Wba 15psf:=%ba 100%:=WGba 0psf:=yba 0 in:= Left wall:Wle 60psf:=%le 100%:=WGle 0psf:=yle 0 in:= Right wall:Wri 15psf:=%ri 100%:=WGri 0psf:=yri 0 in:= Roof_Slope "FLAT roof"= Seismic design data, see Code Search excel output sheets: Occupancy/Risk Category: Importance Factor:IE 1.00= Seismic Design Category: Design spectral response parameter (short periods):SDS 0.373:= Approx fundamental period:Ta 0.324sec:= Vertical distribution exponent:k 1= Longitudinal, parallel to L: Transverse, parallel to W: Response modification factor:RL 5:=RT 5:= Seismic response coefficient:Cs_L 0.075:=Cs_T 0.075:= Seismic Design: Seismic mass breakdown: Roof mass:Wroof Wdia L 2 dov+( ) W 2 dov+( ) :=Wroof 22.4 kip= Front wall mass:Wfr.wall Wfr L%fr( )  Hdia 2 Hav.par+ WGfr L yfr 12 in L 20.5 +:=Wfr.wall 13.3 kip= Back wall mass:Wba.wall Wba L%ba( )  Hdia 2 Hav.par+ WGba L yba 12 in L 20.5 +:=Wba.wall 3.3 kip= Left wall mass:Wle.wall Wle W%le( )  Hdia 2 Hav.par+ WGle W yle 12 in W 20.5 +:=Wle.wall 4.7 kip= Right wall mass:Wri.wall Wri W%ri( )  Hdia 2 Hav.par+ WGri W yri 12 in W 20.5 +:=Wri.wall 1.2 kip= Total building mass:Wtotal Wroof Wfr.wall+Wba.wall+Wle.wall+Wri.wall+:= Wall location: 1/3 Vba Vb.L Wroof Wle.wall+Wri.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.L Wba.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:= Cv.r Wtotal Hdia ft( ) k Wtotal Hdia ft( ) k :=Cv.r 1= wF.pT Fpx.T Wroof Wfr.wall+Wba.wall+( ) L:= Vb.L Cs_L Wtotal( ) :=Vb.T Cs_T Wtotal( ) :=Vb.L 3.4 kip=Vb.T 3.4 kip= Shear force at roof diaphragm level due to vertical distribution factor: Fr.L Cv.r Vb.L:=Fr.T Cv.r Vb.T:=Fr.L 3.4 kip=Fr.T 3.4 kip= Shear wall force distribution: (Program assumes diaphragm is flexible, half to each wall and walls take their own load) Longitudinal distributed uniform load at diaphragm for shear wall forces: WV.L Fr.L W:=WV.L 280 plf= Longitudinal direction shear wall forces: Vfr Vb.L Wroof Wle.wall+Wri.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.L Wfr.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vfr 2.1 kip= wF.pT 86 plf= Vba 1.3 kip= Transverse distributed uniform load at diaphragm for shear wall forces: WV.T Fr.T L:=WV.T 99 plf= Transverse direction shear wall forces: Vle Vb.T Wroof Wfr.wall+Wba.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.T Wle.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vle 1.8 kip= Vri Vb.T Wroof Wfr.wall+Wba.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.T Wri.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vri 1.6 kip= Diaphragm force distribution: ASCE 7 Eq. 11.7-1 for SDC=A and Eq. 12.10-1 (Fpx = (Fi/wi)*wpx) for SDC=B..F Fpx.L 0.01 SDC "A"=if 0.4 S DSIE0.4 S DSIE Fr.L Wtotal <  SDC "A"if Fr.L Wtotal 0.2 SDSIE Fr.L Wtotal 0.4 SDSIE  SDC "A"if 0.2 S DSIE0.2 S DSIE Fr.L Wtotal >  SDC "A"if :=Fpx.T 0.01 SDC "A"=if 0.4 S DSIE0.4 S DSIE Fr.T Wtotal < if Fr.T Wtotal 0.2 SDSIE Fr.T Wtotal  if 0.2 S DSIE0.2 S DSIE Fr.T Wtotal > if := Fpx.L 0.075=Fpx.T 0.075= Diaphragm distribution forces at the top of wall: (diaphragm forces include the mass of the diaphragm and mass of walls perpendicular to direction of force, walls parallel to direction of force carry their own mass.) wF.pL Fpx.L Wroof Wle.wall+Wri.wall+( ) W:=wF.pL 177 plf= Vertical distribution factor: Seismic base shear for longitudinal & transverse directions: 2/3 Unit diaphragm shears: υL wF.pL W 2   L:=υT wF.pT L 2   W:=υL 31 plf= υT 122 plf= ========================================================================================== 3/3 Seismic & Wind Lateral Force Calculations 3-Story : Codes: ASCE 7/IBC Note: Longitudinal direction is parallel to L, Transverse direction is parallel to W. Building or building portion: Block 4 Cs_L 0.075:= Building length:L 126ft:=Roof dead load:Dr.dia 20psf:= Building width:W 65ft:=Roof live/snow load:S 35psf:=Story height of roof and floor diaphragms: (heights are from diaphragm to diaphragm) r.dia = roof, f2.dia = second floor, f1.dia = first floor Hr.dia 14ft:= Building elevation:Elev 4869ft:=Hf2.dia 13.5ft:= Include snow with seimic mass:Hf1.dia 13.5ft:= Second floor dead load:Df2.dia 30psf:= Parapet heights (windward (taller)):HWpar 4 ft:=Second floor live load:Lf2.dia 50 15+( )psf:= (leeward (shorter)):HLpar 4ft:= Include second floor live w/ seimic:Roof overhang (horz. dist): Cs_T 0.075:= First floor dead load:Df1.dia 30psf:= First floor live load:Lf1.dia 50 15+( )psf:= Include first floor live w/ seimic: Seismic mass/weights and design data: Wall properties: (weights should be averaged for brick veneer, etc.) For percent of wall & parapet that is solid for seismic mass, (value should be entered as a % or a decimal) (percent of wall masses affect the seismic calculations only) yba 0 in:= Wall dead load: Wall % solid: Gable wall dead load: Roof Slope,rise (in/ft): Front wall at roof:Wr.fr 15psf:=%r.fr 100%:=WGfr 0 psf:=yfr 0 in:= Back wall at roof:Wr.ba 60psf:=%r.ba 100%:=WGba 0psf:= %f2.fr 100%:= Left wall at roof:Wr.le 15psf:=%r.le 100%:=WGle 0 psf:=yle 0 in:= Right wall at roof:Wr.ri 15psf:=%r.ri 100%:=WGri 0 psf:=yri 0 in:= Roof_Slope "FLAT roof"=Front wall at second floor:Wf2.fr 15psf:= Back wall at second floor:Wf2.ba 60psf:=%f2.ba 100%:= Left wall at second floor:Wf2.le 15psf:=%f2.le 100%:= Right wall at second floor:Wf2.ri 15psf:=%f2.ri 100%:= Front wall at first floor:Wf1.fr 15psf:=%f1.fr 100%:= Back wall at first floor:Wf1.ba 60psf:=%f1.ba 100%:= Left wall at first floor:Wf1.le 15psf:=%f1.le 100%:= Right wall at first floor:Wf1.ri 15psf:=%f1.ri 100%:= Seismic design data, see Code Search excel output sheets: Occupancy/Risk Category: Importance Factor:IE 1.00= Seismic Design Category: Design spectral response parameter (short periods):SDS 0.373:= Approx fundamental period:Ta 0.373sec:= Vertical distribution exponent:k 1= Longitudinal, parallel to L: Transverse, parallel to W: Response modification factor:RL 5:=RT 5:= Seismic response coefficient: Wall location: dov 0 ft:= Building Geometry: (Input is required for yellow boxes) 1/8 Wind design pressures data: Wind design pressures, see Code Search excel output sheets, the minimum loads are also checked. (Code calculated values that are negative, should be input as negative.) Wind loads, ASD or Ultimate: Edge strip:a 13ft:=Edge zone:2 a26 ft=windmin 16 psf= Longitudinal Wall pressures: End zone:WallEZL 21.9psf:=Interior zone:WallIZL 14.6psf:= Longitudinal pitched roof/gable pressures: PEZL 0 psf:=Interior zone:PIZL 0psf:=End zone: Longitudinal parapet pressures: Windward:PWPL 32.2psf:=Leeward:PLPL 21.4-psf:= Transverse Wall pressures: End zone:WallEZT 21.9psf:=Interior zone:WallIZT 14.6psf:= Transverse pitched roof/gable pressures: End zone:PEZT 0 psf:=Interior zone:PIZT 0psf:= Transverse parapet pressures: Windward:PWPT 32.2psf:=Leeward:PLPT 21.4-psf:= Seismic Design: Seismic mass breakdown: Roof level: Roof mass:Wr Wr.dia L 2 d ov+( ) W 2 d ov+( ) :=Wr 221.1 kip= Front wall mass at roof: Wr.fr.wall Wr.fr L%r.fr( )  Hr.dia 2 Hav.par+ WGfr L yfr 12 in L 20.5 +:=Wr.fr.wall 20.8 kip= Back wall mass at roof: Wr.ba.wall Wr.ba L%r.ba( )  Hr.dia 2 Hav.par+ WGba L yba 12 in L 20.5 +:=Wr.ba.wall 83.2 kip= Left wall mass at roof: Wr.le.wall Wr.le W%r.le( )  Hr.dia 2 Hav.par+ WGle W yle 12 in W 20.5 +:=Wr.le.wall 10.7 kip= Right wall mass at roof: Wr.ri.wall Wr.ri W%r.ri( )  Hr.dia 2 Hav.par+ WGri W yri 12 in W 20.5 +:=Wr.ri.wall 10.7 kip= Total roof mass:Wr.total Wr Wr.fr.wall+Wr.ba.wall+Wr.le.wall+Wr.ri.wall+:=Wr.total 346.5 kip= Floor level 2: Floor 2 mass:Wf2 327.6 kip= Front wall mass at floor 2: Wf2.fr.wall Wr.fr L%r.fr( )  Hr.dia 2  Wf2.fr L%f2.fr( )  Hf2.dia 2  +:=Wf2.fr.wall 26 kip= Back wall mass at floor 2: Wf2.ba.wall Wr.ba L%r.ba( )  Hr.dia 2  Wf2.ba L%f2.ba( )  Hf2.dia 2  +:=Wf2.ba.wall 104 kip= Left wall mass at floor 2: Wf2.le.wall Wr.le W%r.le( )  Hr.dia 2  Wf2.le W%f2.le( )  Hf2.dia 2  +:=Wf2.le.wall 13.4 kip= Right wall mass at floor 2: Wf2.ri.wall Wr.ri W%r.ri( )  Hr.dia 2  Wf2.ri W%f2.ri( )  Hf2.dia 2  +:=Wf2.ri.wall 13.4 kip= Total floor 2 mass: Wf2.total Wf2 Wf2.fr.wall+Wf2.ba.wall+Wf2.le.wall+Wf2.ri.wall+:=Wf2.total 484.4 kip= Floor level 1: Floor 1 mass:Wf1 Wf1.dia L( )W( ):=Wf1 327.6 kip= Front wall mass at floor 1:Wf1.fr.wall Wf2.fr L%f2.fr( )  Hf2.dia 2  Wf1.fr L%f1.fr( )  Hf1.dia 2  +:=Wf1.fr.wall 25.5 kip= Wf2 Wf2.dia L( )W( ):= 2/8 Back wall mass at floor 1: Wf1.ba.wall Wf2.ba L%f2.ba( )  Hf2.dia 2  Wf1.ba L%f1.ba( )  Hf1.dia 2  +:=Wf1.ba.wall 102.1 kip= Left wall mass at floor 1: Wf1.le.wall Wf2.le W%f2.le( )  Hf2.dia 2  Wf1.le W%f1.le( )  Hf1.dia 2  +:=Wf1.le.wall 13.2 kip= Right wall mass at floor 1: Wf1.ri.wall Wf2.ri W%f2.ri( )  Hf2.dia 2  Wf1.ri W%f1.ri( )  Hf1.dia 2  +:=Wf1.ri.wall 13.2 kip= Total floor 1 mass: Wf1.total Wf1 Wf1.fr.wall+Wf1.ba.wall+Wf1.le.wall+Wf1.ri.wall+:=Wf1.total 481.5 kip= Total building mass: Wtotal Wr.total Wf2.total+Wf1.total+:=Wtotal 1312.4 kip= Vr.le Vb.T Wr Wr.fr.wall+Wr.ba.wall+( ) Hroof ft( ) k WxHsum   1 2Vb.T Wr.le.wall Hroof ft( ) k WxHsum   +:= Hroof Hr.dia Hf2.dia+Hf1.dia+:=Hfloor2 Hf2.dia Hf1.dia+:=Hfloor1 Hf1.dia:= WxHsum Wr.total Hroof ft( ) kWf2.total Hfloor2 ft( ) k+Wf1.total Hfloor1 ft( ) k+:= Roof distribution factor: Cv.r Wr.total Hroof ft( ) k WxHsum :=Cv.r 0.42= Floor level 2 distribution factor: Cv.f2 Wf2.total Hfloor2 ft( ) k WxHsum :=Cv.f2 0.39= Floor level 1 distribution factor: Cv.f1 Wf1.total Hfloor1 ft( ) k WxHsum :=Cv.f1 0.19= Vr.le 20.7 kip= Vb.L Cs_L Wtotal( ) :=Vb.T Cs_T Wtotal( ) :=Vb.L 98.4 kip=Vb.T 98.4 kip= Shear force at roof diaphragm level due to vertical distribution factor: Fr.L Cv.r Vb.L:=Fr.T Cv.r Vb.T:=Fr.L 41.4 kip=Fr.T 41.4 kip= Shear force at floor level 2 diaphragm level due to vertical distribution factor: Ff2.L Cv.f2 Vb.L:=Ff2.T Cv.f2 Vb.T:=Ff2.L 38.1 kip=Ff2.T 38.1 kip= Shear force at floor level 1 diaphragm level due to vertical distribution factor: Ff1.L Cv.f1 Vb.L:=Ff1.T Cv.f1 Vb.T:=Ff1.L 18.9 kip=Ff1.T 18.9 kip= Shear wall force distribution: (Program assumes diaphragm is flexible, half to each wall and walls take their own load) Longitudinal distributed uniform load at roof diaphragm for shear wall forces: WV.L.r Fr.L W:=WV.L.r 637 plf= Roof longitudinal direction shear wall forces: Vr.fr Vb.L Wr Wr.le.wall+Wr.ri.wall+( ) Hroof ft( ) k WxHsum   1 2Vb.L Wr.fr.wall Hroof ft( ) k WxHsum   +:=Vr.fr 17 kip= Vr.ba Vb.L Wr Wr.le.wall+Wr.ri.wall+( ) Hroof ft( ) k WxHsum   1 2Vb.L Wr.ba.wall Hroof ft( ) k WxHsum   +:=Vr.ba 24.4 kip= Transverse distributed uniform load at roof diaphragm for shear wall forces: WV.T.r Fr.T L:=WV.T.r 329 plf= Roof transverse direction shear wall forces: Vertical distribution factors: Seismic base shear for longitudinal & transverse directions: 3/8 Vr.ri Vb.T Wr Wr.fr.wall+Wr.ba.wall+( ) Hroof ft( ) k WxHsum   1 2Vb.T Wr.ri.wall Hroof ft( ) k WxHsum   +:=Vr.ri 20.7 kip= Longitudinal distributed uniform load at floor level 2 diaphragm for shear wall forces: WV.L.f2 Ff2.L W:=WV.L.f2 586 plf= Floor level 2 longitudinal direction shear wall forces: Vf2.fr Vb.L Wf2 Wf2.le.wall+Wf2.ri.wall+( ) Hfloor2 ft( ) k WxHsum   1 2Vb.L Wf2.fr.wall Hfloor2 ft( ) k WxHsum   +:=Vf2.fr 16 kip= Vf2.ba Vb.L Wf2 Wf2.le.wall+Wf2.ri.wall+( ) Hfloor2 ft( ) k WxHsum   1 2Vb.L Wf2.ba.wall Hfloor2 ft( ) k WxHsum   +:=Vf2.ba 22.1 kip= Transverse distributed uniform load at floor level 2 diaphragm for shear wall forces: WV.T.f2 Ff2.T L:=WV.T.f2 302 plf= Floor level 2 transverse direction shear wall forces: Vf2.le Vb.T Wf2 Wf2.fr.wall+Wf2.ba.wall+( ) Hfloor2 ft( ) k WxHsum   1 2Vb.T Wf2.le.wall Hfloor2 ft( ) k WxHsum   +:=Vf2.le 19 kip= Vf2.ri Vb.T Wf2 Wf2.fr.wall+Wf2.ba.wall+( ) Hfloor2 ft( ) k WxHsum   1 2Vb.T Wf2.ri.wall Hfloor2 ft( ) k WxHsum   +:=Vf2.ri 19 kip= Longitudinal distributed uniform load at floor level 1 diaphragm for shear wall forces: WV.L.f1 Ff1.L W:=WV.L.f1 291 plf= Floor level 1 longitudinal direction shear wall forces: Vf1.fr Vb.L Wf1 Wf1.le.wall+Wf1.ri.wall+( ) Hfloor1 ft( ) k WxHsum   1 2Vb.L Wf1.fr.wall Hfloor1 ft( ) k WxHsum   +:=Vf1.fr 8 kip= Vf1.ba Vb.L Wf1 Wf1.le.wall+Wf1.ri.wall+( ) Hfloor1 ft( ) k WxHsum   1 2Vb.L Wf1.ba.wall Hfloor1 ft( ) k WxHsum   +:=Vf1.ba 11 kip= Transverse distributed uniform load at floor level 1 diaphragm for shear wall forces: WV.T.f1 Ff1.T L:=WV.T.f1 150 plf= Floor level 1 transverse direction shear wall forces: Vf1.le Vb.T Wf1 Wf1.fr.wall+Wf1.ba.wall+( ) Hfloor1 ft( ) k WxHsum   1 2Vb.T Wf1.le.wall Hfloor1 ft( ) k WxHsum   +:=Vf1.le 9.5 kip= Vf1.ri Vb.T Wf1 Wf1.fr.wall+Wf1.ba.wall+( ) Hfloor1 ft( ) k WxHsum   1 2Vb.T Wf1.ri.wall Hfloor1 ft( ) k WxHsum   +:=Vf1.ri 9.5 kip= 4/8 Diaphragm force distribution: ASCE 7 Eq. 11.7-1 for SDC=A and Eq. 12.10-1 (Fpx = (SFi/Swi)*wpx) for SDC=B..F Roof distribution: Fpx.r.L 0.01 SDC "A"=if 0.4 SDSIE0.4 S DSIE Fr.L Wr.total <  SDC "A"if Fr.L Wr.total 0.2 SDSIE Fr.L Wr.total 0.4 SDSIE  SDC "A"if 0.2 SDSIE0.2 S DSIE Fr.L Wr.total >  SDC "A"if :=Fpx.r.T 0.01 SDC "A"=if 0.4 S DSIE0.4 S DSIE F W< if Fr.T Wr.total 0.2 SDSIE Fr.T Wr.total  if 0.2 S DSIE0.2 S DSIE F W> if := Fpx.r.L 0.119=Fpx.r.T 0.119= Floor distribution calc's Fpx.f2.L 0.096=Fpx.f2.T 0.096= Fpx.f1.L 0.075=Fpx.f1.T 0.075= Roof diaphragm distribution forces at the top of wall: (diaphragm forces include the mass of the diaphragm and mass of walls perpendicular to direction of force, walls parallel to direction of force carry their own mass.) wF.p.r.L Fpx.r.L Wr Wr.le.wall+Wr.ri.wall+( ) W:=wF.p.r.L 446 plf= wF.p.r.T Fpx.r.T Wr Wr.fr.wall+Wr.ba.wall+( ) L:=wF.p.r.T 308 plf= Roof unit diaphragm shears: υr.L wF.p.r.L W 2( ) L:=υr.L 115 plf= υr.T wF.p.r.T L 2( ) W:=υr.T 299 plf= Floor level 2 diaphragm distribution forces at the top of wall: (diaphragm forces include the mass of the diaphragm and mass of walls perpendicular to direction of force, walls parallel to direction of force carry their own mass.) wF.p.f2.L Fpx.f2.L Wf2 Wf2.le.wall+Wf2.ri.wall+( ) W:=wF.p.f2.L 522 plf= wF.p.f2.T Fpx.f2.T Wf2 Wf2.fr.wall+Wf2.ba.wall+( ) L:=wF.p.f2.T 347 plf= Floor level 2 unit diaphragm shears: υf2.L wF.p.f2.L W 2( ) L:=υf2.L 135 plf= υf2.T wF.p.f2.T L 2( ) W:=υf2.T 337 plf= Floor level 1 diaphragm distribution forces at the top of wall: (diaphragm forces include the mass of the diaphragm and mass of walls perpendicular to direction of force, walls parallel to direction of force carry their own mass.) wF.p.f1.L Fpx.f1.L Wf1 Wf1.le.wall+Wf1.ri.wall+( ) W:=wF.p.f1.L 408 plf= wF.p.f1.T Fpx.f1.T Wf1 Wf1.fr.wall+Wf1.ba.wall+( ) L:=wF.p.f1.T 271 plf= Floor level 1 unit diaphragm shears: υf1.L wF.p.f1.L W 2( ) L:=υf1.L 105 plf= υf1.T wF.p.f1.T L 2( ) W:=υf1.T 263 plf= 5/8 Wind Design: Height of pitched roof: Hpit max yfr 12 in L 2  yba 12 in L 2 , yle 12 in W 2 , yri 12 in W 2 ,  :=Hpit 0= Direction with the gable end walls: Roof_Slope "FLAT roof"= Shear wall force distribution: Uniform loads at the top of wall (use weighted average of End and Inter. zones with half the building length/width) Roof longitudinal wind forces: αL 0.5 Roof_Slope "SLOPED Roof (ridge parallel to L)"=if 0.5 Roof_Slope "SLOPED Roof (on all sides)"=if 1.0 otherwise :=αL 1= WL.r.wall WallEZL 2 a( )WallIZL W 0.5( ) 2 a( )-[ ]+ W 0.5( ) Hr.dia 2:=WL.r.wall 143.1 plf= WL.r.gable PEZL 2 a( )PIZL W 0.5( ) 2 a( )-[ ]+ W 0.5( ) αL Hpit( ) := WL.r.gable 0plf WL.r.gable 0 plfif WL.r.gable otherwise :=WL.r.gable 0 plf= WL.r.par PWPL HWpar( ) PLPL HLpar( ) +:=WL.r.par 214.4 plf= WL.r.des WL.r.wall WL.r.gable+WL.r.par+( ) :=WL.r.des 357.5 plf= WL.r.min windmin Hr.dia 2 windmin HWpar( ) +windmin αL Hpit( ) +:=WL.r.min 176 plf= Roof transverse wind forces: αT 0.5 Roof_Slope "SLOPED Roof (ridge parallel to W)"=if 0.5 Roof_Slope "SLOPED Roof (on all sides)"=if 1.0 otherwise :=αT 1= WT.r.wall WallEZT 2 a( )WallIZT L 0.5( ) 2 a( )-[ ]+ L 0.5( ) Hr.dia 2:=WT.r.wall 123.3 plf= WT.r.gable PEZT 2 a( )PIZT L 0.5( ) 2 a( )-[ ]+ L 0.5( ) αT Hpit( ) := WT.r.gable 0plf WT.r.gable 0 plfif WT.r.gable otherwise :=WT.r.gable 0 plf= WT.r.par PWPT HWpar( ) PLPT HLpar( ) +:=WT.r.par 214.4 plf= WT.r.des WT.r.wall WT.r.gable+WT.r.par+( ) :=WT.r.des 337.7 plf= WT.r.min windmin Hr.dia 2 windmin HWpar( ) +windmin αT Hpit( ) +:=WT.r.min 176 plf= Floor level 2 longitudinal wind forces: WL.f2.wall WallEZL 2 a( )WallIZL W 0.5( ) 2 a( )-[ ]+ W 0.5( ) Hr.dia 2 Hf2.dia 2+ :=WL.f2.wall 281.1 plf= WL.f2.min windmin Hr.dia 2 Hf2.dia 2+ :=WL.f2.min 220 plf= 6/8 Floor level 2 transverse wind forces: WT.f2.wall WallEZT 2 a( )WallIZT L 0.5( ) 2 a( )-[ ]+ L 0.5( ) Hr.dia 2 Hf2.dia 2+ :=WT.f2.wall 242.2 plf= WT.f2.min windmin Hr.dia 2 Hf2.dia 2+ :=WT.f2.min 220 plf= Floor level 1 longitudinal wind forces: WL.f1.wall WallEZL 2 a( )WallIZL W 0.5( ) 2 a( )-[ ]+ W 0.5( ) Hf2.dia 2 Hf1.dia 2+ :=WL.f1.wall 275.9 plf= WL.f1.min windmin Hf2.dia 2 Hf1.dia 2+ :=WL.f1.min 216 plf= Floor level 1 transverse wind forces: WT.f1.wall WallEZT 2 a( )WallIZT L 0.5( ) 2 a( )-[ ]+ L 0.5( ) Hf2.dia 2 Hf1.dia 2+ :=WT.f1.wall 237.8 plf= WT.f1.min windmin Hf2.dia 2 Hf1.dia 2+ :=WT.f1.min 216 plf= Roof wind diaphragm loads: WL.r WL.r.des WL.r.des WL.f2.wall+WL.f1.wall+( ) WL.r.min WL.f2.min+WL.f1.min+( ) if WL.r.min WL.r.des WL.f2.wall+WL.f1.wall+( ) WL.r.min WL.f2.min+WL.f1.min+( ) <if :=WL.r 357 plf= WT.r WT.r.des WT.r.des WT.f2.wall+WT.f1.wall+( ) WT.r.min WT.f2.min+WT.f1.min+( ) if WT.r.min WT.r.des WT.f2.wall+WT.f1.wall+( ) WT.r.min WT.f2.min+WT.f1.min+( ) <if :=WT.r 338 plf= Floor level 2 wind diaphragm loads: WL.f2 WL.f2.wall WL.r.des WL.f2.wall+WL.f1.wall+( ) WL.r.min WL.f2.min+WL.f1.min+( ) if WL.f2.min WL.r.des WL.f2.wall+WL.f1.wall+( ) WL.r.min WL.f2.min+WL.f1.min+( ) <if :=WL.f2 281 plf= WT.f2 WT.f2.wall WT.r.des WT.f2.wall+WT.f1.wall+( ) WT.r.min WT.f2.min+WT.f1.min+( ) if WT.f2.min WT.r.des WT.f2.wall+WT.f1.wall+( ) WT.r.min WT.f2.min+WT.f1.min+( ) <if :=WT.f2 242 plf= Floor level 1 wind diaphragm loads: WL.f1 WL.f1.wall WL.r.des WL.f2.wall+WL.f1.wall+( ) WL.r.min WL.f2.min+WL.f1.min+( ) if WL.f1.min WL.r.des WL.f2.wall+WL.f1.wall+( ) WL.r.min WL.f2.min+WL.f1.min+( ) <if :=WL.f1 276 plf= WT.f1 WT.f1.wall WT.r.des WT.f2.wall+WT.f1.wall+( ) WT.r.min WT.f2.min+WT.f1.min+( ) if WT.f1.min WT.r.des WT.f2.wall+WT.f1.wall+( ) WT.r.min WT.f2.min+WT.f1.min+( ) <if :=WT.f1 238 plf= Shear wall forces: (since only two walls force is the same on each side) Roof shear wall forces: VL.w.r WL.r W 2:=VT.w.r WT.r L 2:=VL.w.r 11.6 kip= VT.w.r 21.3 kip= Floor level 2 shear wall forces: VL.w.f2 WL.f2 W 2:=VT.w.f2 WT.f2 L 2:=VL.w.f2 9.1 kip= VT.w.f2 15.3 kip= Floor level 1 shear wall forces: VL.w.f1 WL.f1 W 2:=VT.w.f1 WT.f1 L 2:=VL.w.f1 9 kip= VT.w.f1 15 kip= 7/8 Unit diaphragm shears: (since only two walls force is the same on each side) υL.r.w VL.w.r L:=υT.r.w VT.w.r W:=υL.r.w 92 plf= υT.r.w 327 plf= υL.f2.w VL.w.f2 L:=υT.f2.w VT.w.f2 W:=υL.f2.w 72 plf= υT.f2.w 235 plf=Floor level 1 unit shear diaphragm forces: υL.f1.w VL.w.f1 L:=υT.f1.w VT.w.f1 W:=υL.f1.w 71 plf= υT.f1.w 230 plf= ========================================================================================== Roof unit shear diaphragm forces: Floor level 2 unit shear diaphragm forces: 8/8 Lateral distribution of forces for Block 4 ((3) story) Shear forces parallel to number grids Grid 1 Grid 1.75 Grid 2.75 Grid 4.5 Grid 5.5 Grid 7 Length 0.00 ft 25.83 ft 21.33 ft 32.67 ft 16.67 ft 35.83 ft 132.33 ft Shear line parallel to letter grids wall spacing Grid A.2 Grid B Grid C Grid D Grid E Length 0.00 ft 11.67 ft 22.67 ft 18.00 ft 11.00 ft 63.33 ft Roof Shear load parallel to number grids Diaphragm shear load Ws =329 plf Wsd =308 plf Ww =338 plf Wwd =338 plf Shear forces parallel to number grids Grid 1 Grid 1.75 Grid 2.75 Grid 4.5 Grid 5.5 Grid 7 Wall, E 4.2 kip 7.8 kip 8.9 kip 8.1 kip 8.6 kip 5.9 kip Wall, W 4.4 kip 8.0 kip 9.1 kip 8.3 kip 8.9 kip 6.1 kip Diaph, E 63 plf 63 plf 79 plf 79 plf 87 plf 87 plf Diaph, W 69 plf 69 plf 87 plf 87 plf 96 plf 96 plf Shear load parallel to letter grids Diaphragm shear load Ws =637 plf Wsd =446 plf Ww =357 plf Wwd =357 plf Shear forces parallel to letter grids Grid B Grid C Grid D Grid E Wall, E 14.7 kip 13.0 kip 9.2 kip 3.5 kip Wall, W 8.2 kip 7.3 kip 5.2 kip 2.0 kip Diaph, E 38 plf 38 plf 30 plf 19 plf Diaph, W 31 plf 31 plf 24 plf 15 plf 3rd Floor Shear load parallel to number grids Diaphragm shear load Ws =302 plf Wsd =347 plf Ww =242 plf Wwd =242 plf Shear forces parallel to number grids Grid 1 Grid 1.75 Grid 2.75 Grid 4.5 Grid 5.5 Grid 7 Wall, E 3.9 kip 7.1 kip 8.2 kip 7.4 kip 7.9 kip 5.4 kip Wall, W 3.1 kip 5.7 kip 6.5 kip 6.0 kip 6.4 kip 4.3 kip Diaph, E 71 plf 71 plf 89 plf 89 plf 98 plf 98 plf Diaph, W 49 plf 49 plf 62 plf 62 plf 68 plf 68 plf Shear load parallel to letter grids Diaphragm shear load Ws =586 plf Wsd =522 plf Ww =281 plf Wwd =281 plf Shear forces parallel to letter grids Grid B Grid C Grid D Grid E Wall, E 13.5 kip 11.9 kip 8.5 kip 3.2 kip Wall, W 6.5 kip 5.7 kip 4.1 kip 1.5 kip Diaph, E 45 plf 45 plf 36 plf 22 plf Diaph, W 24 plf 24 plf 19 plf 12 plf 2nd Floor Shear load parallel to number grids Diaphragm shear load Ws =150 plf Wsd =271 plf Ww =238 plf Wwd =238 plf Shear forces parallel to number grids Grid 1 Grid 1.75 Grid 2.75 Grid 4.5 Grid 5.5 Grid 7 Wall, E 1.9 kip 3.5 kip 4.1 kip 3.7 kip 3.9 kip 2.7 kip Wall, W 3.1 kip 5.6 kip 6.4 kip 5.9 kip 6.2 kip 4.3 kip Diaph, E 55 plf 55 plf 70 plf 70 plf 77 plf 77 plf Diaph, W 49 plf 49 plf 61 plf 61 plf 67 plf 67 plf Shear load parallel to letter grids Diaphragm shear load Ws =291 plf Wsd =408 plf Ww =276 plf Wwd =276 plf Shear forces parallel to letter grids Grid B Grid C Grid D Grid E Wall, E 6.7 kip 5.9 kip 4.2 kip 1.6 kip Wall, W 6.3 kip 5.6 kip 4.0 kip 1.5 kip Diaph, E 35 plf 35 plf 28 plf 17 plf Diaph, W 24 plf 24 plf 19 plf 11 plf Seismic & Wind Lateral Force Calculations 1-Story : Codes: ASCE 7/IBC Note: Longitudinal direction is parallel to L, Transverse direction is parallel to W. Building or building portion: Block 5 Building Geometry: (Input is required for yellow boxes) Building length:L 24ft:=Roof Dead load:Ddia 20psf:= Building width:W 13ft:=Roof Live/snow load:S 35psf:=Story height of Roof diaphragm:Hdia 15ft:= Building elevation:Elev 4869ft:= Parapet heights (windward (taller)):HWpar 0 ft:=Include live/snow w/ seimic mass: (leeward (shorter)):HLpar 0ft:= Roof overhang (horz. dist):dov 0 ft:= Seismic mass/weights and design data: Wall properties: (weights should be averaged for brick veneer, etc.) For percent of wall & parapet that is solid for seismic mass, (value should be entered as a % or a decimal) (percent of wall masses affect the seismic calculations only) WallIZT 14.6psf:= Wall dead load: Wall % solid: Gable wall dead load: Roof Slope,rise (in/ft): Front wall:Wfr 5psf:=%fr 100%:=WGfr 0psf:=yfr 0 in:= Back wall:Wba 5 psf:=%ba 100%:=WGba 0psf:=yba 0 in:= Left wall:Wle 5psf:=%le 100%:=WGle 0psf:=yle 0 in:= Right wall:Wri 5psf:=%ri 50%:=WGri 0psf:=yri 0 in:= Roof_Slope "FLAT roof"= Seismic design data, see Code Search excel output sheets: Occupancy/Risk Category: Importance Factor:IE 1.00= Seismic Design Category: Design spectral response parameter (short periods):SDS 0.373:= Approx fundamental period:Ta 0.324sec:= Vertical distribution exponent:k 1= Longitudinal, parallel to L: Transverse, parallel to W: Response modification factor:RL 5:=RT 5:= Seismic response coefficient:Cs_L 0.075:=Cs_T 0.075:= Wind design pressures data: Wind design pressures, see Code Search excel output sheets, the minimum loads are also checked. (Code calculated values that are negative, should be input as negative.) Wind loads, ASD or Ultimate: Edge strip:a 13ft:=Edge zone:2 a26 ft=windmin 16 psf= Longitudinal Wall pressures: End zone:WallEZL 21.9psf:=Interior zone:WallIZL 14.6psf:= Longitudinal pitched roof/gable pressures: PEZL 0 psf:=Interior zone:PIZL 0psf:=End zone: Longitudinal parapet pressures: Windward:PWPL 32.2psf:=Leeward:PLPL 21.4-psf:= Transverse Wall pressures: End zone:WallEZT 21.9psf:=Interior zone: Wall location: 1/4 Transverse pitched roof/gable pressures: End zone:PEZT 0 psf:=Interior zone:PIZT 0psf:= Transverse parapet pressures: Windward:PWPT 32.2psf:=Leeward:PLPT 21.4-psf:= Seismic Design: Seismic mass breakdown: Roof mass:Wroof Wdia L 2 dov+( ) W 2 dov+( ) :=Wroof 8.4 kip= Front wall mass:Wfr.wall Wfr L%fr( )  Hdia 2 Hav.par+ WGfr L yfr 12 in L 20.5 +:=Wfr.wall 0.9 kip= Back wall mass:Wba.wall Wba L%ba( )  Hdia 2 Hav.par+ WGba L yba 12 in L 20.5 +:=Wba.wall 0.9 kip= Left wall mass:Wle.wall Wle W%le( )  Hdia 2 Hav.par+ WGle W yle 12 in W 20.5 +:=Wle.wall 0.5 kip= Right wall mass:Wri.wall Wri W%ri( )  Hdia 2 Hav.par+ WGri W yri 12 in W 20.5 +:=Wri.wall 0.2 kip= Total building mass:Wtotal Wroof Wfr.wall+Wba.wall+Wle.wall+Wri.wall+:=Wtotal 11 kip= Vb.T 0.8 kip= Cv.r Wtotal Hdia ft( ) k Wtotal Hdia ft( ) k :=Cv.r 1= Vb.L Cs_L Wtotal( ) :=Vb.T Cs_T Wtotal( ) :=Vb.L 0.8 kip= Shear force at roof diaphragm level due to vertical distribution factor: Fr.L Cv.r Vb.L:=Fr.T Cv.r Vb.T:=Fr.L 0.8 kip=Fr.T 0.8 kip= Shear wall force distribution: (Program assumes diaphragm is flexible, half to each wall and walls take their own load) Longitudinal distributed uniform load at diaphragm for shear wall forces: WV.L Fr.L W:=WV.L 63 plf= Longitudinal direction shear wall forces: Vfr Vb.L Wroof Wle.wall+Wri.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.L Wfr.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vfr 0.4 kip= Vba Vb.L Wroof Wle.wall+Wri.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.L Wba.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vba 0.4 kip= Transverse distributed uniform load at diaphragm for shear wall forces: WV.T Fr.T L:=WV.T 34 plf= Transverse direction shear wall forces: Vle Vb.T Wroof Wfr.wall+Wba.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.T Wle.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vle 0.4 kip= Vri Vb.T Wroof Wfr.wall+Wba.wall+( ) Hdia ft( ) k Wtotal Hdia ft( ) k   1 2Vb.T Wri.wall Hdia ft( ) k Wtotal Hdia ft( ) k   +:=Vri 0.4 kip= Vertical distribution factor: Seismic base shear for longitudinal & transverse directions: 2/4 Diaphragm force distribution: ASCE 7 Eq. 11.7-1 for SDC=A and Eq. 12.10-1 (Fpx = (Fi/wi)*wpx) for SDC=B..F Fpx.L 0.01 SDC "A"=if 0.4 S DSIE0.4 S DSIE Fr.L Wtotal <  SDC "A"if Fr.L Wtotal 0.2 SDSIE Fr.L Wtotal 0.4 SDSIE  SDC "A"if 0.2 S DSIE0.2 S DSIE Fr.L Wtotal >  SDC "A"if :=Fpx.T 0.01 SDC "A"=if 0.4 S DSIE0.4 S DSIE Fr.T Wtotal < if Fr.T Wtotal 0.2 SDSIE Fr.T Wtotal  if 0.2 S DSIE0.2 S DSIE Fr.T Wtotal > if := Fpx.L 0.075=Fpx.T 0.075= Diaphragm distribution forces at the top of wall: (diaphragm forces include the mass of the diaphragm and mass of walls perpendicular to direction of force, walls parallel to direction of force carry their own mass.) wF.pL Fpx.L Wroof Wle.wall+Wri.wall+( ) W:=wF.pL 53 plf= wF.pT Fpx.T Wroof Wfr.wall+Wba.wall+( ) L:=wF.pT 32 plf= Unit diaphragm shears: υL wF.pL W 2   L:=υT wF.pT L 2   W:=υL 14 plf= υT 29 plf= Wind Design: Height of pitched roof: Hpit max yfr 12 in L 2  yba 12 in L 2 , yle 12 in W 2 , yri 12 in W 2 ,  :=Hpit 0= Direction with the gable end walls: Roof_Slope "FLAT roof"= Shear wall force distribution: Uniform loads at the top of wall (use weighted average of End and Inter. zones with half the building length/width) Longitudinal wind forces: αL 0.5 Roof_Slope "SLOPED Roof (ridge parallel to L)"=if 0.5 Roof_Slope "SLOPED Roof (on all sides)"=if 1.0 otherwise :=αL 1= WL.wall WallEZL 2 a( )WallIZL W 0.5( ) 2 a( )-[ ]+ W 0.5( ) Hdia 2:=WL.wall 328.5 plf= WL.gable PEZL 2 a( )PIZL W 0.5( ) 2 a( )-[ ]+ W 0.5( ) αL Hpit( ) :=WL.gable 0plf WL.gable 0 plfif WL.gable otherwise :=WL.gable 0 plf= WL.par PWPL HWpar( ) PLPL HLpar( ) +:=WL.par 0 plf= WL.min windmin Hdia 2 windmin HWpar( ) +windmin αL Hpit( ) +:=WL.min 120 plf= WL max WL.wall WL.gable+WL.par+( ) WL.min, :=WL 329 plf= 3/4 Transverse wind forces: αT 0.5 Roof_Slope "SLOPED Roof (ridge parallel to W)"=if 0.5 Roof_Slope "SLOPED Roof (on all sides)"=if 1.0 otherwise :=αT 1= WT.wall WallEZT 2 a( )WallIZT L 0.5( ) 2 a( )-[ ]+ L 0.5( ) Hdia 2:=WT.wall 228.1 plf= WT.gable PEZT 2 a( )PIZT L 0.5( ) 2 a( )-[ ]+ L 0.5( ) αT Hpit( ) :=WT.gable 0plf WT.gable 0 plfif WT.gable otherwise :=WT.gable 0 plf= WT.par PWPT HWpar( ) PLPT HLpar( ) +:=WT.par 0 plf= WT.min windmin Hdia 2 windmin HWpar( ) +windmin αT Hpit( ) +:=WT.min 120 plf= WT max WT.wall WT.gable+WT.par+( ) WT.min, :=WT 228 plf= Shear wall forces: (since only two walls force is the same on each side) VL.w WL W 2:=VL.w 2.1 kip= VT.w WT L 2:=VT.w 2.7 kip= Unit diaphragm shears: (since only two walls force is the same on each side) υL.w VL.w L:=υL.w 89 plf= υT.w VT.w W:=υT.w 211 plf= ========================================================================================== 4/4 F.F. Level 1 100'-0"F.F. Level 1100'-0" F.F. Level 2 113'-5" F.F. Level 2113'-5" ROOF PLAN 140'-3" ROOF PLAN140'-3" B.O. FOOTING 97'-0"B.O. FOOTING97'-0" F.F. LEVEL 3 126'-10" F.F. LEVEL 3126'-10" DECK BEARING 140'-10" DECK BEARING140'-10" Diaphragm Designs (roof sheathing nailing, steel decking and connections) 442 NORTH MAIN STREET, BOUNTIFUL, UTAH 84010 801-298-1118 OFFICE 801-298-1122 FAX wca@wcaeng.com PROJECT: CLIENT: TOPIC: DATE: ENGINEER: PROJECT # ________________________________________________________________________________________________________ Building roof Gravity loading - with high drifting Span 6ft 0in+:= D 20psf:=(on the deck) S 35psf:= Drift 68psf:= Total deck load Use: 20 ga Verco HSB (2014 cataloge values) GF = 165/132 psf with a 6'-0" & (3) Span conditionTLD S+Drift+:=TL 123 psf= ============================================== Lateral loading Span 6ft 0in+:= W 250plf:=0.6 W150 plf= E 260plf:=0.7 E182 plf= Controlling deck shear load Use: 20 ga Verco HSB (2014 cataloge values) w/ 36/4 Weld pattern at supports & TSW's at 18" O.C. at side laps GF = 861 plf with a 6'-0" Vmax max 0.6 W0.7 E, ( ):=Vmax 182 plf= ========================================= Connections 23019 Steel decking and connections www.vercodeck.com VERCO DECKING, INC.VR4 29 Type PLB ™-36 or HSB®-36 Allowable Uniform Loads (psf) SPAN DECK GAGE CRITERIA SPAN (ft-in.) 2'-0" 3'-0" 4'-0" 5'-0" 5'-6" 6'-0" 6'-6" 7'-0" 7'-6" 8'-0" 8'-6" 9'-0" 9'-6" 10'-0" 11'-0" 12'-0" 22 Stress 300 300 220 141 116 98 83 72 63 55 49 43 39 35 29 24 L/360 287 121 62 47 36 28 23 18 15 13 11 9 8 6 4 L/240 1829370544234282319161412 9 7 L/180 124 93 72 56 45 37 30 25 21 18 15 12 9 20 Stress 300 300 288 184 152 128 109 94 82 72 64 57 51 46 38 32 L/360 150 77 58 44 35 28 23 19 16 13 11 10 7 6 L/240 225 115 86 67 52 42 34 28 23 20 17 14 11 8 L/180 153 115 89 70 56 45 37 31 26 22 19 14 11 18 Stress 300 300 300 251 208 174 149 128 112 98 87 78 70 63 52 44 L/360 207 106 79 61 48 39 31 26 22 18 15 13 10 8 L/240 159 119 92 72 58 47 39 32 27 23 20 15 11 L/180 212 159 122 96 77 63 52 43 36 31 26 20 15 16 Stress 300 300 300 300 264 222 189 163 142 125 110 99 88 80 66 55 L/360 261 133 100 77 61 49 40 33 27 23 19 17 13 10 L/240 200 150 116 91 73 59 49 41 34 29 25 19 14 L/180 267 200 154 121 97 79 65 54 46 39 33 25 19 22 Stress 300 300 235 150 124 104 89 77 67 59 52 46 42 38 31 26 L/360 122 94 74 59 48 40 33 28 24 20 15 12 L/240 49 42 35 30 23 18 L/180 30 23 20 Stress 300 300 296 190 157 132 112 97 84 74 66 59 53 47 39 33 L/360 146 113 89 71 58 48 40 33 28 24 18 14 L/240 71 59 50 43 37 27 21 L/180 37 28 18 Stress 300 300 300 265 219 184 157 135 118 103 92 82 73 66 55 46 L/360 258 194 149 117 94 76 63 53 44 38 32 24 19 L/240 11594796656483628 L/180 64 48 37 16 Stress 300 300 300 300 271 228 194 167 146 128 113 101 91 82 68 57 L/360 241 186 146 117 95 78 65 55 47 40 30 23 L/240 143 118 98 83 70 60 45 35 L/180 80 60 46 22 Stress 300 300 294 188 155 131 111 96 84 73 65 58 52 47 39 33 L/360 247 127 95 73 58 46 38 31 26 22 18 16 12 9 L/240 143 110 86 69 56 46 39 33 28 24 18 14 L/180 92 75 62 52 43 37 32 24 18 20 Stress 300 300 300 237 196 165 140 121 105 93 82 73 66 59 49 41 L/360 298 152 115 88 69 56 45 37 31 26 22 19 14 11 L/240 229 172 132 104 83 68 56 47 39 33 29 21 17 L/180 139 111 90 74 62 52 44 38 29 22 18 Stress 300 300 300 300 274 230 196 169 147 129 115 102 92 83 68 57 L/360 202 152 117 92 74 60 49 41 35 29 25 19 15 L/240 228 175 138 110 90 74 62 52 44 38 28 22 L/180 184 147 120 99 82 69 59 50 38 29 16 Stress 300 300 300 300 300 285 243 209 182 160 142 127 114 103 85 71 L/360 251 189 145 114 92 74 61 51 43 37 31 24 18 L/240 283 218 172 137 112 92 77 65 55 47 35 27 L/180 229 183 149 123 102 86 73 63 47 36 See footnotes on page 27. www.vercodeck.com VERCO DECKING, INC.VR4 67 Type HSB®-36 36/4 Weld Pattern at Supports Sidelaps connected with Button Punch or 1½" Top Seam Weld Allowable Diaphragm Shear Strength, q (plf) and Flexibility Factors, F ((in./lb)x106 ) DECK GAGE SIDELAP ATTACHMENT SPAN (ft-in.) 4'-0" 5'-0" 6'-0" 7'-0" 8'-0" 9'-0" 10'-0" 11'-0" 12'-0" 22 BP @ 24"q 282 234 190 169 144 135 121 F -1.3+267R 4.2+212R 9.1+174R 12.6+148R 16.3+127R 18.9+112R 22.1+98R BP @ 12"q 318 262 226 199 180 167 157 F -2.3+267R 3.1+212R 7.2+175R 10.5+149R 13.3+129R 15.7+114R 17.9+101R TSW @ 24"q 628 649 562 588 526 552 505 F -9.4+271R -6.3+217R -3.5+181R -2.2+155R -0.5+135R 0.1+120R 1.2+108R TSW @ 18"q 763 756 663 673 681 622 633 F -10.2+271R -6.9+217R -4.2+181R -2.8+155R -1.7+136R -0.4+121R 0.2+108R TSW @ 12"q 871 846 828 815 805 798 791 F -10.7+272R -7.3+217R -5.1+181R -3.5+155R -2.3+136R -1.3+121R -0.6+109R TSW @ 6"q 1117 1107 1101 1096 1092 1089 1001 F -11.6+272R -8.2+217R -6+181R -4.4+155R -3.2+136R -2.3+121R -1.5+109R 20 BP @ 24"q 403 336 275 246 211 195 175 169 155 F 3.1+167R 7.2+132R 11.1+108R 13.8+91R 16.9+78R 19+68R 21.7+59R 23.4+53R 25.8+47R BP @ 12"q 454 378 326 290 262 241 227 216 206 F 2.2+168R 6.2+133R 9.3+109R 11.9+93R 14.2+80R 16.1+70R 17.8+62R 19.4+55R 20.8+50R TSW @ 24"q 824 846 733 764 685 715 654 683 634 F -4.2+171R -2.3+137R -0.4+114R 0.3+98R 1.5+86R 1.9+76R 2.7+68R 2.8+62R 3.4+57R TSW @ 18"q 993 981 861 872 879 804 818 829 774 F -5+172R -2.9+137R -1.1+114R -0.2+98R 0.5+86R 1.4+76R 1.8+69R 2.1+62R 2.6+57R TSW @ 12"q 1127 1093 1069 1051 1037 1026 1018 1010 912 F -5.5+172R -3.3+137R -1.9+115R -0.8+98R 0+86R 0.6+76R 1+69R 1.4+62R 1.8+57R TSW @ 6"q 1435 1422 1412 1406 1400 1396 1313 1085 912 F -6.2+172R -4.1+138R -2.7+115R -1.7+98R -0.9+86R -0.3+76R 0.1+69R 0.5+63R 0.8+57R 18 BP @ 24"q 704 592 487 438 379 353 314 300 275 F 6.3+80R 9.1+63R 11.9+51R 13.9+42R 16.3+35R 17.8+30R 20+26R 21.3+22R 23.3+19R BP @ 12"q 794 666 579 517 470 434 405 383 366 F 5.5+81R 8.2+63R 10.4+52R 12.2+43R 13.9+37R 15.3+32R 16.7+28R 17.9+24R 19+22R TSW @ 24"q 1272 1293 1121 1160 1040 1081 989 1028 955 F 0+84R 0.8+67R 1.9+56R 2.2+48R 2.9+42R 3+37R 3.5+33R 3.5+30R 3.9+28R TSW @ 18"q 1513 1486 1306 1316 1323 1210 1227 1241 1160 F -0.7+84R 0.3+67R 1.3+56R 1.7+48R 2+42R 2.6+37R 2.7+33R 2.9+30R 3.2+28R TSW @ 12"q 1705 1648 1607 1577 1554 1535 1520 1508 1394 F -1.1+84R -0.1+67R 0.7+56R 1.2+48R 1.6+42R 1.9+37R 2.1+34R 2.3+30R 2.5+28R TSW @ 6"q 2150 2127 2111 2099 2090 2083 2007 1659 1394 F -1.8+84R -0.8+67R -0.1+56R 0.4+48R 0.8+42R 1.1+37R 1.3+34R 1.5+31R 1.7+28R 16 BP @ 24"q 912 778 641 584 506 477 425 408 371 F 7.1+44R 9.2+34R 11.5+27R 13.1+22R 15.1+18R 16.4+15R 18.3+12R 19.4+10R 21.2+8R BP @ 12"q 1041 893 784 707 649 604 568 538 514 F 6.4+45R 8.4+35R 10.1+28R 11.6+23R 13+19R 14.2+16R 15.3+14R 16.3+12R 17.3+10R TSW @ 24"q 1643 1679 1460 1515 1361 1417 1299 1352 1257 F 1.4+48R 1.8+38R 2.6+32R 2.7+27R 3.2+24R 3.2+21R 3.6+19R 3.5+17R 3.8+16R TSW @ 18"q 1957 1929 1702 1718 1731 1586 1610 1630 1525 F 0.8+48R 1.3+38R 2.1+32R 2.3+27R 2.4+24R 2.8+21R 2.9+19R 2.9+17R 3.2+16R TSW @ 12"q 2203 2136 2088 2053 2026 2004 1986 1971 1941 F 0.4+48R 1+38R 1.5+32R 1.8+27R 2+24R 2.2+21R 2.3+19R 2.4+17R 2.5+16R TSW @ 6"q 2753 2727 2710 2696 2686 2678 2671 2310 1941 F -0.2+48R 0.4+38R 0.8+32R 1.1+27R 1.3+24R 1.5+21R 1.6+19R 1.7+17R 1.8+16R See footnotes on page 28. 52 VF5 VERCO DECKING, INC. www.vercodeck.com Maximum Unshored Clear Span (ft-in.) Concrete Properties Deck Gage Number of Deck Spans Density (pcf) Uniform Weight (psf) Uniform Volume (yd3/100 ft2) Compressive Strength, f'c (psi)123 22 7'-9" 9'-0" 9'-2" 145 36.3 0.926 3000 21 8'-6"9'-8"10'-0"Notes: 1. Volumes and weights do not include allowance for deflection. 2. Weights are for concrete only and do not include weight of steel deck. 3. Total slab depth is nominal depth from top of concrete to bottom of steel deck. 20 9'-3" 10'-3" 10'-8" 19 10'-0"11'-5"11'-10" 18 10'-5" 12'-3" 12'-5" 16 11'-2"13'-11"13'-1" Shoring is required for spans greater than those shown above. See Footnote 1 on page 51 for required bearing. Allowable Superimposed Loads (psf) Deck Gage Number of Deck Spans Span (ft-in.) 6'-0" 7'-0" 7'-6" 8'-0" 8'-6" 9'-0" 9'-6" 10'-0"10'-6" 11'-0" 11'-6" 12'-0" 12'-6" 13'-0" 14'-0" 22 1 337 261 232 172 152 135 120 107 96 86 78 70 63 57 46 2 337 261 232 209 189 171 120 107 96 86 78 70 63 57 46 3 337 261 232 209 189 171 120 107 96 86 78 70 63 57 46 21 1 377 292 260 234 211 155 139 125 112 101 91 82 75 68 55 2 377 292 260 234 211 192 175 125 112 101 91 82 75 68 55 3 377 292 260 234 211 192 175 161 112 101 91 82 75 68 55 20 1 400 324 288 259 234 213 158 142 128 116 105 95 86 79 65 2 400 324 288 259 234 213 195 179 128 116 105 95 86 79 65 3 400 324 288 259 234 213 195 179 165 116 105 95 86 79 65 19 1 400 389 347 311 275 242 214 190 161 146 133 121 110 99 81 2 400 389 347 311 275 242 214 190 169 152 133 121 110 99 81 3 400 389 347 311 275 242 214 190 169 152 136 121 110 99 81 18 1 400 400 386 335 293 258 229 203 181 162 146 131 118 105 84 2 400 400 386 335 293 258 229 203 181 162 146 131 118 105 84 3 400 400 386 335 293 258 229 203 181 162 146 131 118 105 84 16 1 400 400 396 356 322 292 261 233 208 187 157 143 131 116 93 2 400 400 396 356 322 292 261 233 208 187 168 148 131 116 93 3 400 400 396 356 322 292 261 233 208 187 168 148 131 116 93 See footnotes on page 51. Shoring required in shaded areas to right of heavy line. Allowable Diaphragm Shear Strengths, q (plf) and Flexibility Factors, F (in./lb. x 106 ) Attachment Pattern Deck Gage Span (ft-in.) 6'-0" 7'-0" 7'-6" 8'-0" 8'-6" 9'-0" 9'-6" 10'-0"10'-6" 11'-0" 11'-6" 12'-0" 12'-6" 13'-0" 14'-0" 36/3 22 q 1674 1635 1619 1606 1594 1583 1573 1565 1557 1550 1543 1537 1532 1527 1518 21 q 1680 1637 1620 1605 1592 1580 1570 1560 1552 1544 1537 1530 1524 1519 1509 20 q 1689 1643 1624 1608 1593 1580 1569 1559 1549 1541 1533 1526 1519 1513 1503 19 q 1714 1659 1637 1618 1602 1587 1573 1561 1550 1540 1531 1523 1515 1508 1496 18 q 1739 1678 1653 1632 1613 1596 1581 1568 1556 1545 1534 1525 1517 1509 1495 16 q 1809 1733 1702 1675 1652 1631 1612 1595 1580 1566 1553 1541 1531 1521 1503 36/4 22 q 1834 1762 1734 1708 1686 1667 1649 1633 1619 1606 1594 1583 1573 1563 1547 21 q 1867 1788 1756 1729 1704 1683 1663 1646 1630 1616 1602 1590 1579 1569 1551 20 q 1902 1816 1781 1751 1725 1701 1680 1661 1643 1628 1613 1600 1588 1577 1557 19 q 1977 1877 1836 1801 1770 1742 1718 1696 1675 1657 1640 1625 1611 1598 1575 18 q 2044 1931 1886 1847 1812 1781 1753 1729 1706 1686 1667 1650 1634 1619 1593 16 q 2212 2071 2015 1965 1922 1883 1848 1817 1789 1763 1740 1718 1698 1680 1647 See footnotes on page 51. PLW2™ or W2 FORMLOK™ 4 in. TOTAL SLAB DEPTH Normal Weight Concrete Stair landings Wood Structural Panel Design National Design Specification for Wood Construction, Design method for ASD (Load combinations are pre-design) Member: Roof sheathing w/ worst case snow drift Loading Criteria: Sheathing span: L 24in:=Uniform dead load (on sheathing): WDL 10psf:= Support thickness: tsupport 1.5in:= Uniform live load: WLL 35 68+( )psf:= Defection criteria: Is live load from wind: (check box if yes)Type of span: Adjustment Factors: Load duration factor:CD 1.15:=Panel grade and construction factors: CG_Bending 1.0:= Wet service factor:CM 1.0:=CG_Shear 1.0:= Temperature factor:Ct 1.0:=CG_Stiffness 1.0:= Size factor: (see NDS commentary) Cs 1.0:= Sheathing Criteria: Sheathing: Sheathing span rating (thickness): Sheathing panel grade: Stress direction to Strength Axis: Calculations Panel Load Design: wload 113 psf= Mmax 678 lbf in ft= Vmax 132 lbf ft= Δmax 0.056 in= Panel Design Results: Flexurecheck "Flexure ratio = 0.79, OK"= Shearcheck "Shear ratio = 0.56, OK"= Deflectioncheck "Deflection ratio = 0.44, OK"= Wood Structural Panel Design National Design Specification for Wood Construction, Design method for ASD (Load combinations are pre-design) Member: Floor sheathing Loading Criteria: Sheathing span: L 24in:=Uniform dead load (on sheathing): WDL 30psf:= Support thickness: tsupport 1.5in:= Uniform live load: WLL 100psf:= Defection criteria: Is live load from wind: (check box if yes)Type of span: Adjustment Factors: Load duration factor:CD 1.0:=Panel grade and construction factors: CG_Bending 1.0:= Wet service factor:CM 1.0:=CG_Shear 1.0:= Temperature factor:Ct 1.0:=CG_Stiffness 1.0:= Size factor: (see NDS commentary) Cs 1.0:= Sheathing Criteria: Sheathing: Sheathing span rating (thickness): Sheathing panel grade: Stress direction to Strength Axis: Calculations Panel Load Design: wload 130 psf= Mmax 780 lbf in ft= Vmax 152 lbf ft= Δmax 0.042 in= Panel Design Results: Flexurecheck "Flexure ratio = 0.78, OK"= Shearcheck "Shear ratio = 0.61, OK"= Deflectioncheck "Deflection ratio = 0.33, OK"= 442 NORTH MAIN STREET, BOUNTIFUL, UTAH 84010 801-298-1118 OFFICE 801-298-1122 FAX wca@wcaeng.com PROJECT: CLIENT: TOPIC: DATE: ENGINEER: PROJECT # ________________________________________________________________________________________________________ Roof diaphragms Block 1 controls Wood sheathing areas - Values are maximum for direction and taken different areas/blocks Panel strong axis lateral loading W 250plf:=0.6 W150 plf= E 102plf:=0.7 E71 plf= Controlling deck shear load Vmax max 0.6 W0.7 E, ( ):=Vmax 150 plf=Use: 19/32" sheathing with 10d nails at 6-12, unblocked GF: W= 800plf/2 = 400 plf S= 570plf/2 = 285 plf ============================================ Panel weak axis lateral loading W 198plf:=0.6 W119 plf= E 82plf:=0.7 E57 plf= Controlling deck shear load Vmax max 0.6 W0.7 E, ( ):=Vmax 119 plf=Use: 19/32" sheathing with 10d nails at 6-12, unblocked GF: W= 600plf/2 = 300 plf S= 430plf/2 = 215 plf ============================================ Sheathing over 2x6 T&G - Gym roof Block 2 controls (diaphragm is blocked due to 2x6) W 369plf:=0.6 W221 plf= E 182plf:=0.7 E127 plf= Controlling deck shear load Vmax max 0.6 W0.7 E, ( ):=Vmax 221 plf= Use: 2x6 T&G decking overlain with 23/32" wood sheathing (T&G decking acts as blocking) Secure sheathing to T&G with 6d nails at 2-1/2-4-12 nail pattern GF: q= 840/2= 420 plf (23/32" required to ensure 6d nails to not pentrate the 2x6 =========================================== Connections 23019 Roof diaphragm nailing 442 NORTH MAIN STREET, BOUNTIFUL, UTAH 84010 801-298-1118 OFFICE 801-298-1122 FAX wca@wcaeng.com PROJECT: CLIENT: TOPIC: DATE: ENGINEER: PROJECT # ________________________________________________________________________________________________________ Floor diaphragms Block 4, 3rd floor controls Panel strong axis lateral loading W 68plf:=0.6 W41 plf= E 98plf:=0.7 E69 plf= Controlling deck shear load Vmax max 0.6 W0.7 E, ( ):=Vmax 69 plf= Use: 23/32" sheathing with 10d nails at 6-12, unblocked GF: W= 800plf/2 = 400 plf S= 570plf/2 = 285 plf ============================================ Panel weak axis lateral loading W 24plf:=0.6 W14 plf= E 45plf:=0.7 E31 plf= Controlling deck shear load Vmax max 0.6 W0.7 E, ( ):=Vmax 31 plf= Use: 23/32" sheathing with 10d nails at 6-12, unblocked GF: W= 600plf/2 = 300 plf S= 430plf/2 = 215 plf ============================================ Connections 23019 Roof diaphragm nailing Simpson Strong-Tie® Wood Construction Connectors 62 Ho l d o w n s a n d Te n s i o n T i e s C- C - 2 0 2 1 © 2 0 2 1 S I M P S O N S T R O N G - T I E C O M P A N Y I N C . PA/HPA/PAI/MPAI ASCE7 12.11.2.2.5 States: ... Diaphragm to structural wall anchorage using embedded straps shall have the straps attached to or hooked around the reinforcing steel, or otherwise terminated to effectively transfer forces to the reinforcing steel. Purlin Anchors 81⁄4" HP A 3 5 e m b e d m e n t 21⁄16" 2" 13⁄4" Lengt h 6" H P A 2 8 e m b e d m e n t HPA35 Preservative-treatedbarrier may berequired #4 rebar min. Min. solid 3x(nominal) ordouble 2x 4" for PA 6" for HPA28 81⁄4" for HPA35 Hanger not shown for clarity PA/HPA Purlin to Concrete Wall PAI/MPAI for I-joist applications #4 rebar min. PA/PAI/MPAI Purlin to Grout-Filled Concrete-Block Wall (refer to installation notes above) Purlin anchors offer solutions for wood-to-concrete and concrete-block connections which satisfy code requirements. The HPA offers the highest capacity in concrete. The PA’s dual-embedment line allows installation in concrete or concrete block. Material: PA/PAI — 12 gauge; HPA — 10 gauge; MPAI — 14 gauge Finish: Galvanized; PAs available HDG or ZMAX® coating Installation: •Use all specified fasteners; some models have extra fastener holes. See General Notes. •Purlin anchor must hook around rebar. •Allowable loads are for a horizontal installation into the side of a concrete or masonry wall. •For vertical installation in the top of GFCMU, refer to engineering letter L-C-PAGFCMUUP on strongtie.com. •Strap may be bent one full cycle. (Bent vertical 90° then bent horizontal.) Edge Distance — Minimum concrete edge distance is 5". Minimum concrete block left-to-right edge distance is 20". Concrete Block Wall — The minimum wall specifications are: A One #4 vertical rebar, 32" long, 16” each side of anchor B Two courses of grout-filled block above and below the anchor (no cold joints allowed) C A horizontal bond beam with two #4 rebars, 40" long, a maximum of two courses above or below the anchor D Minimum masonry compressive strength, f'm = 1,500 psi Options: See LTT and HTT tension ties for alternate retrofit solutions Codes: See p. 11 for Code Reference Key Chart CM U w a l l a n d conc r e t e e m b e d m e n t MPAI 6" C M U w a l l e m b e d m e n t 4" Co n c r e t e e m b e d m e n t PAI Preservative-treatedbarrier maybe required 25⁄16"min. #4rebar Hanger not shownfor clarity PAI Purlin to Concrete Wall (MPAI similar) 2" 6" M a s o n r y e m b e d m e n t 4" C o n c r e t e e m b e d m e n t 13⁄4"21⁄16" PA PA Holdown/Purlin AnchorHPA Purlin AnchorPAI Purlin AnchorMPAI Purlin Anchor Simpson Strong-Tie® Wood Construction Connectors 63 Ho l d o w n s a n d Te n s i o n T i e s C- C - 2 0 2 1 © 2 0 2 1 S I M P S O N S T R O N G - T I E C O M P A N Y I N C . PA/HPA/PAI/MPAI Purlin Anchors (cont.) These products are available with additional corrosion protection. For more information, see p. 14. Wind and SDC A&B – Allowable Tension Loads (160) Max Ledger Size Model No. Strap Length, L (in.) Embed Length, le (in.)Uncracked Concrete Cracked Concrete GFCMU Wall Max. Allowable Strap Tension Deflection at Allowable Load (in.) Code Ref.Concrete GFCMU Required Nails (in.)Tension Required Nails (in.)Tension Required Nails (in.)Tension 4x Ledger PA18 18 1/2 4 6 (12) 0.148 x 3 2,430 (12) 0.148 x 3 2,260 (12) 0.148 x 3 1,890 NA 0.087 IBC, FL PAI18 18 4 6 (10) 0.148 x 1 1/2 2,025 (10) 0.148 x 1 1/2 2,025 (9) 0.148 x 1 1/2 1,055 NA 0.1 PA23 23 3⁄4 4 6 (16) 0.148 x 3 3,220 (12) 0.148 x 3 2,260 (16) 0.148 x 3 2,815 NA 0.118 PAI23 23 4 6 (15) 0.148 x 1 1/2 3,035 (12) 0.148 x 1 1/2 2,260 (14) 0.148 x 1 1/2 1,805 NA 0.158 PA28 29 4 6 (16) 0.148 x 3 3,230 (12) 0.148 x 3 2,260 (16) 0.148 x 3 2,815 NA 0.085 PAI28 29 4 6 (16) 0.148 x 1 1/2 3,230 (12) 0.148 x 1 1/2 2,260 (16) 0.148 x 1 1/2 2,705 NA 0.167 PA35 35 4 6 (16) 0.148 x 3 3,230 (12) 0.148 x 3 2,260 (16) 0.148 x 3 2,815 NA 0.085 PAI35 35 4 6 (16) 0.148 x 1 1/2 3,230 (12) 0.148 x 1 1/2 2,260 (18) 0.148 x 1 1/2 2,815 NA 0.13 MPAI32 33 1/2 5 1/2 (16) 0.148 x 1 1/2 2,885 (16) 0.148 x 1 1/2 2,885 (16) 0.148 x 1 1/2 2,355 NA 0.167 MPAI44 45 1/2 5 1/2 (16) 0.148 x 1 1/2 2,885 (16) 0.148 x 1 1/2 2,885 (24) 0.148 x 1 1/2 2,865 NA 0.167 HPA28 32 1/2 6 6 (22) 0.148 x 3 5,145 (20) 0.148 x 3 4,675 — —NA 0.133 HPA35 38 1/2 8 1/4 8 1/4 (22) 0.148 x 3 5,145 (22) 0.148 x 3 5,145 — —NA 0.132 SDC C–F – Allowable Tension Loads (160) Max Ledger Size Model No. Strap Length, L (in.) Embed Length, le (in.)Uncracked Concrete Cracked Concrete GFCMU Wall Max. Allowable Strap Tension Deflection at Allowable Load (in.) Code Ref.Concrete GFCMU Required Nails (in.)Tension Required Nails (in.)Tension Required Nails (in.)Tension 4x Ledger PA18 18 1/2 4 6 (12) 0.148 x 3 2,430 (10) 0.148 x 3 1,980 (12) 0.148 x 3 1,890 3,220 0.087 IBC, FL PAI18 18 4 6 (10) 0.148 x 1 1/2 2,025 (10) 0.148 x 1 1/2 1,980 (9) 0.148 x 1 1/2 1,055 4,180 0.1 PA23 23 3⁄4 4 6 (14) 0.148 x 3 2,830 (10) 0.148 x 3 1,980 (16) 0.148 x 3 2,815 3,220 0.118 PAI23 23 4 6 (14) 0.148 x 1 1/2 2,830 (10) 0.148 x 1 1/2 1,980 (14) 0.148 x 1 1/2 1,805 4,180 0.158 PA28 29 4 6 (14) 0.148 x 3 2,830 (10) 0.148 x 3 1,980 (16) 0.148 x 3 2,815 3,935 0.085 PAI28 29 4 6 (14) 0.148 x 1 1/2 2,830 (10) 0.148 x 1 1/2 1,980 (16) 0.148 x 1 1/2 2,705 5,070 0.167 PA35 35 4 6 (14) 0.148 x 3 2,830 (10) 0.148 x 3 1,980 (16) 0.148 x 3 2,815 3,935 0.085 PAI35 35 4 6 (14) 0.148 x 1 1/2 2,830 (10) 0.148 x 1 1/2 1,980 (18) 0.148 x 1 1/2 2,815 5,070 0.13 MPAI32 33 1/2 5 1/2 (16) 0.148 x 1 1/2 2,885 (16) 0.148 x 1 1/2 2,885 (16) 0.148 x 1 1/2 2,355 3,205 0.167 MPAI44 45 1/2 5 1/2 (16) 0.148 x 1 1/2 2,885 (16) 0.148 x 1 1/2 2,885 (24) 0.148 x 1 1/2 2,865 3,205 0.167 HPA28 32 1/2 6 6 (22) 0.148 x 3 5,145 (18) 0.148 x 3 4,090 — —5,145 0.133 HPA35 38 1/2 8 1/4 8 1/4 (22) 0.148 x 3 5,145 (22) 0.148 x 3 5,145 — —5,145 0.132 1. Allowable loads have been increased for wind or earthquake loading with no further increase allowed. Reduce where other loads govern. 2. Deflection listed is at the highest allowable load. 3. Multiply Seismic and Wind ASD load values by 1.43 or 1.67, respectively, to obtain LRF D capacities. 4. Nail quantities are based on Douglas fir (DF) or equivalent specific gravity of 0.50 or better. For use in spruce-pine-fir (SPF) or hem-fir (HF), nails quantities shall be increased by 1.15 to achieve loads listed. 5. For wall anchorage systems in SDC C-F, the maximum strap allowable load shall not be less than 1.4 times the ASD anchor design load. 6. Minimum center-to-center spacing is 3x the required embedment — i.e., standard installation is based on a minimum 5" end distance. 7. Structural composite lumber beams have sides that show either the wide face or the lumber strands/veneers. Values in the tables reflect installation into the wide face. 8. Concrete shall have a minimum compressive strength of f'c = 3,000 psi. 9. Grout-filled CMU (GFCMU) shall have a minimum compressive strength of f'm = 1,500 psi. 10. PA models installed vertically in the top of a grouted masonry wall with 6" embedment and (12) 0.148" x 3" nails achieve an allowable uplift load of 1,890 lb. 11. For PA models, 0.148" x 1 1/2" nails may be substituted for 0.148" x 3" nails at 100% of listed load and with a 15% increase in deflection. For installation over sheathing, use 3"-long nails minimum. 12. For PAI/MPAI models, 0.148" x 1 1/2" nails shall be used directly onto framing member. For installation over sheathing, use 2 1⁄8"-long nails minimum. 13. Fasteners: Nail dimensions are listed diameter by length. See pp. 21–22 for fastener information. PA Holdown/Purlin AnchorHPA Purlin AnchorPAI Purlin AnchorMPAI Purlin Anchor Simpson Strong-Tie® Wood Construction Connectors 273 St r a p s a n d T i e s C- C - 2 0 2 1 © 2 0 2 1 S I M P S O N S T R O N G - T I E C O M P A N Y I N C . CS/CMST/CMSTC/CSHP Coiled Straps (cont.) Typical CSHP Installation (CS/CMST similar)Typical CSHP Installation Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 348–352 for more information. These products are available with additional corrosion protection. For more information, see p. 14. For stainless-steel fasteners, see p. 21. Model No.Total L Ga. DF/SP SPF/HF Allowable Tension Loads (160) Code Ref.Fasteners (in.) End Length (in.) Fasteners (in.) End Length (in.) CMST12 40'12 (74) 0.162 x 2 1/2 33 (84) 0.162 x 2 1/2 38 9,215 IBC, FL, LA (86) 0.148 x 2 1/2 39 (98) 0.148 x 2 1/2 44 9,215 CMST14 52 1/2'14 (56) 0.162 x 2 1/2 26 (66) 0.162 x 2 1/2 30 6,475 (66) 0.148 x 2 1/2 30 (76) 0.148 x 2 1/2 34 6,475 CMSTC16 54'16 (50) 0.148 x 3 1/4 20 (58) 0.148 x 3 1/4 25 4,690 CS14 100'14 (26) 0.148 x 2 1/2 15 (30) 0.148 x 2 1/2 16 2,490 (30) 0.131 x 2 1/2 16 (36) 0.131 x 2 1/2 19 2,490 CS16 150'16 (20) 0.148 x 2 1/2 11 (22) 0.148 x 2 1/2 13 1,705 (22) 0.131 x 2 1/2 13 (26) 0.131 x 2 1/2 15 1,705 CS20 250'20 (12) 0.148 x 2 1/2 7 (14) 0.148 x 2 1/2 9 1,030 (14) 0.131 x 2 1/2 9 (16) 0.131 x 2 1/2 9 1,030 CSHP18 75'18 (14) 0.148 x 2 1/2 9 (16) 0.148 x 2 1/2 10 1,540 (16) 0.131 x 2 1/2 10 (18) 0.131 x 2 1/2 11 1,540 CSHP20 75'20 (12) 0.148 x 2 1/2 8 (12) 0.148 x 2 1/2 8 1,160 (12) 0.131 x 2 1/2 8 (14) 0.131 x 2 1/2 9 1,160 1. See pp. 266–267 for Straps and Ties General Notes. 2. Calculate the connector value for a reduced number of nails as follows: Example: CMSTC16 in DF/SP with 40 nails total. (Half of the nails in each member being connected) 3. See p. 274 for alternate nailing and lap splice information. 4. Fasteners: Nail dimensions are listed diameter by length. See pp. 21–22 for fastener information. No. of Nails UsedAllowable Load =x Table LoadNo. of Nails in Table 50 Nails (Table) 40 Nails (Used)x 4,690 lb. = 3,752 lb.Allowable Load = CMST Coiled StrapCMSTC Coiled StrapCS Coiled StrapCSHP High-Performance Coiled Strap F.F. Level 1 100'-0"F.F. Level 1100'-0" F.F. Level 2 113'-5" F.F. Level 2113'-5" ROOF PLAN 140'-3" ROOF PLAN140'-3" B.O. FOOTING 97'-0"B.O. FOOTING97'-0" F.F. LEVEL 3 126'-10" F.F. LEVEL 3126'-10" DECK BEARING 140'-10" DECK BEARING140'-10" Wood shear wall designs Wood Structural Panel Shear Wall - Multiple Pier Design International Building Code, 2018 IBC Sec. 1605.3.1 ASD Basic Load Combinations (Live loads are assumed to be supported by other elements) Wall Line: Grid 1.1 Roof ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ VE/W W T C q DL Point O Holdown Offset, HO w h Wall pier properties: Typ. Holdown offset: HO 6in:= Num. of wall or piers (12 max):n 3:= Effective pier length: Effective pier height: Pier roof tributary: w1 4.5ft:=h1 10ft:=Tr1 2ft:= w2 5.75ft:=h2 10ft:=Tr2 2ft:= w3 7.5ft:=h3 10ft:=Tr3 2ft:= w4 0 ft:=h4 0ft:=Tr4 2ft:= w5 0 ft:=h5 0ft:=Tr5 0ft:= w6 0 ft:=h6 0ft:=Tr6 0ft:= w7 0 ft:=h7 0ft:=Tr7 0ft:= w8 0 ft:=h8 0ft:=Tr8 0ft:= Loads: Gravity loads: Lateral loads: Roof dead load (psf): DLroof 20psf:=Wind load (ultimate level): VW 4.4kip:= Wall dead load (psf): DLwall 15psf:=Seismic load (ultimate level): VE 4.2kip:= ρ 1.3:= SDS 0.373:= Calculations Design unit shears and wall aspect ratios: Unit_Shear "Wind unit shear, q = 149 plf" "Seismic unit shear, q = 215 plf"  = Aspect_Ratio "Pier aspect ratios between 2:1 & 3 1/2:1, OK for W, reduce nominal shear by 1.25-0.125h/w = 0.972 for EQ" "Pier aspect ratios meet 2:1, OK for W & EQ" "Pier aspect ratios meet 2:1, OK for W & EQ"   = Design tension at boundary elements and holdowns: Max_Tension "Seismic controls tension holdowns, T = 2.16 kip" "Seismic controls tension holdowns, T = 2.03 kip" "Seismic controls tension holdowns, T = 1.89 kip"   = Use: 7/16" w/ 8d nails at 6-12 GF: W= 730/2 = 365 plf E= 520/2*0.972 = 253 plf Reinforce opening with CS14 strapping, top and bottom Use: Simpson MST48 at end of walls GF = 3210 lb Wood Structural Panel Shear Wall - Multiple Pier Design International Building Code, 2018 IBC Sec. 1605.3.1 ASD Basic Load Combinations (Live loads are assumed to be supported by other elements) Wall Line: Grid 7 Roof End pier sits atop masory------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ VE/W W T C q DL Point O Holdown Offset, HO w h Wall pier properties: Typ. Holdown offset: HO 6in:= Num. of wall or piers (12 max):n 7:= Effective pier length: Effective pier height: Pier roof tributary: w1 5 ft:=h1 7ft:=Tr1 2ft:= w2 3.25ft:=h2 7ft:=Tr2 2ft:= w3 3.25ft:=h3 7ft:=Tr3 2ft:= w4 5.33ft:=h4 7ft:=Tr4 2ft:= w5 4.5ft:=h5 7ft:=Tr5 2ft:= w6 7.5ft:=h6 7ft:=Tr6 2ft:= w7 3.5ft:=h7 7ft:=Tr7 2ft:= w8 0 ft:=h8 0ft:=Tr8 0ft:= Loads: Gravity loads: Lateral loads: Roof dead load (psf): DLroof 20psf:=Wind load (ultimate level): VW 6.1kip:= Wall dead load (psf): DLwall 15psf:=Seismic load (ultimate level): VE 5.9kip:= ρ 1.3:= SDS 0.373:= Calculations Design unit shears and wall aspect ratios: Unit_Shear "Wind unit shear, q = 113 plf" "Seismic unit shear, q = 166 plf"  = Aspect_Ratio "Pier aspect ratios meet 2:1, OK for W & EQ" "Pier aspect ratios between 2:1 & 3 1/2:1, OK for W, reduce nominal shear by 1.25-0.125h/w = 0.981 for EQ" "Pier aspect ratios between 2:1 & 3 1/2:1, OK for W, reduce nominal shear by 1.25-0.125h/w = 0.981 for EQ" "Pier aspect ratios meet 2:1, OK for W & EQ" "Pier aspect ratios meet 2:1, OK for W & EQ" "Pier aspect ratios meet 2:1, OK for W & EQ" "Pier aspect ratios meet 2:1, OK for W & EQ"   = Design tension at boundary elements and holdowns: Max_Tension "Seismic controls tension holdowns, T = 1.07 kip" "Seismic controls tension holdowns, T = 1.22 kip" "Seismic controls tension holdowns, T = 1.22 kip" "Seismic controls tension holdowns, T = 1.05 kip" "Seismic controls tension holdowns, T = 1.11 kip" "Seismic controls tension holdowns, T = 0.93 kip" "Seismic controls tension holdowns, T = 1.19 kip"   = Use: 7/16" w/ 8d nails at 6-12 GF: W= 730/2 = 365 plf E= 520/2*0.981 = 255 plf Reinforce opening with CS14 strapping, top and bottom Use: Simpson MST48 at end of walls GF = 3210 lb or at wall above CMU Simpson HDU4-SDS2.5 at end of walls, GF = 4565 lb w/ Simpson SB5/8x24 GF = 5730 lb Wood Structural Panel Shear Wall - Multiple Pier Design International Building Code, 2018 IBC Sec. 1605.3.1 ASD Basic Load Combinations (Live loads are assumed to be supported by other elements) Wall Line: Grid F.8 Roof ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ VE/W W T C q DL Point O Holdown Offset, HO w h Wall pier properties: Typ. Holdown offset: HO 6in:= Num. of wall or piers (12 max):n 7:= Effective pier length: Effective pier height: Pier roof tributary: w1 4 ft:=h1 10ft:=Tr1 24ft:= w2 3.5ft:=h2 10ft:=Tr2 24ft:= w3 3 ft:=h3 10ft:=Tr3 24ft:= w4 10ft:=h4 10ft:=Tr4 24ft:= w5 3 ft:=h5 10ft:=Tr5 24ft:= w6 3.75ft:=h6 10ft:=Tr6 24ft:= w7 3.5ft:=h7 10ft:=Tr7 24ft:= w8 0 ft:=h8 0ft:=Tr8 0ft:= Loads: Gravity loads: Lateral loads: Roof dead load (psf): DLroof 20psf:=Wind load (ultimate level): VW 11.7 4+( )kip:= Wall dead load (psf): DLwall 15psf:=Seismic load (ultimate level): VE 5.7 1.4+( )kip:= ρ 1.3:= SDS 0.373:= Calculations Design unit shears and wall aspect ratios: Unit_Shear "Wind unit shear, q = 306 plf" "Seismic unit shear, q = 210 plf"  = Aspect_Ratio "Pier aspect ratios between 2:1 & 3 1/2:1, OK for W, reduce nominal shear by 1.25-0.125h/w = 0.938 for EQ" "Pier aspect ratios between 2:1 & 3 1/2:1, OK for W, reduce nominal shear by 1.25-0.125h/w = 0.893 for EQ" "Pier aspect ratios between 2:1 & 3 1/2:1, OK for W, reduce nominal shear by 1.25-0.125h/w = 0.833 for EQ" "Pier aspect ratios meet 2:1, OK for W & EQ" "Pier aspect ratios between 2:1 & 3 1/2:1, OK for W, reduce nominal shear by 1.25-0.125h/w = 0.833 for EQ" "Pier aspect ratios between 2:1 & 3 1/2:1, OK for W, reduce nominal shear by 1.25-0.125h/w = 0.917 for EQ" "Pier aspect ratios between 2:1 & 3 1/2:1, OK for W, reduce nominal shear by 1.25-0.125h/w = 0.893 for EQ"   = Design tension at boundary elements and holdowns: Max_Tension "Wind controls tension holdowns, T = 2.64 kip" "Wind controls tension holdowns, T = 2.8 kip" "Wind controls tension holdowns, T = 3 kip" "Wind controls tension holdowns, T = 1.24 kip" "Wind controls tension holdowns, T = 3 kip" "Wind controls tension holdowns, T = 2.72 kip" "Wind controls tension holdowns, T = 2.8 kip"   = Use: 7/16" w/ 8d nails at 6-12 GF: W= 730/2 = 365 plf E= 520/2*0.833 = 216 plf Reinforce opening with CS14 strapping, top and bottom Use: Simpson HDU4-SDS2.5 at end of walls, GF = 4565 lb w/ Simpson SB5/8x24 GF = 5730 lb Wood Structural Panel Shear Wall - Multiple Pier Design International Building Code, 2018 IBC Sec. 1605.3.1 ASD Basic Load Combinations (Live loads are assumed to be supported by other elements) Wall Line: Grid F Mezzanine block 3a ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ VE/W W T C q DL Point O Holdown Offset, HO w h Wall pier properties: Typ. Holdown offset: HO 6in:= Num. of wall or piers (12 max):n 1:= Effective pier length: Effective pier height: Pier roof tributary: w1 7.25ft:=h1 13.5ft:=Tr1 8ft:= w2 0 ft:=h2 10ft:=Tr2 0ft:= w3 0 ft:=h3 10ft:=Tr3 0ft:= w4 0 ft:=h4 0ft:=Tr4 0ft:= w5 0 ft:=h5 0ft:=Tr5 0ft:= w6 0 ft:=h6 0ft:=Tr6 0ft:= w7 0 ft:=h7 0ft:=Tr7 0ft:= w8 0 ft:=h8 0ft:=Tr8 0ft:= Loads: Gravity loads: Lateral loads: Roof dead load (psf): DLroof 30psf:=Wind load (ultimate level): VW 0kip:= Wall dead load (psf): DLwall 15psf:=Seismic load (ultimate level): VE 2.2kip:= ρ 1.3:= SDS 0.373:= Calculations Design unit shears and wall aspect ratios: Unit_Shear "Wind unit shear, q = 0 plf" "Seismic unit shear, q = 276 plf"  = Aspect_Ratio "Pier aspect ratios meet 2:1, OK for W & EQ"( )= Design tension at boundary elements and holdowns: Max_Tension "Seismic controls tension holdowns, T = 3.06 kip"( )= Use: 7/16" w/ 8d nails at 4-12 GF: W= 1065/2 = 533 plf E= 760/2 = 380 plf Use: Simpson HDU4-SDS2.5 GF = 4565 lb w/ Simpson PAB5 GF: 6675 lb with 6" embed C- C - 2 0 1 9 © 2 0 1 9 S I M P S O N S T R O N G - T I E C O M P A N Y I N C . Simpson Strong-Tie® Wood Construction Connectors 53 Ho l d o w n s a n d Te n s i o n T i e s HDU/DTT Holdowns (cont.) Studs/post Floorjoist (2) 2xblocking Threadedrod Typical HDU Tie Between Floors HDU HoldownDTT Deck Tension Tie Model No.Ga. Dimensions (in.) Fasteners (in.)Minimum Wood Member Size (in.) Allowable Tension Loads (160)Code Ref.W H B CL SO Anchor Bolt Dia. (in.) Wood Fasteners DF/SP SPF/HF Deflection at Allowable Load (in.) DTT1Z 14 1 1/2 7 1⁄8 1 7⁄1 6 3/4 3⁄16 3⁄8 (6) SD #9 x 1 1/2 1 1/2 x 5 1/2 840 840 0.17 IBC, FL, LA (6) 0.148 x 1 1/2 910 640 0.167 (8) 0.148 x 1 1/2 910 850 0.167 DTT2Z 14 3 1⁄4 6 15⁄16 1 5/8 13⁄16 3⁄16 1/2 (8) 1⁄4 x 1 1/2 SDS 1 1/2 x 3 1/2 1,825 1,800 0.105 (8) 1⁄4 x 1 1/2 SDS 3 x 3 1/2 2,145 1,835 0.128 DTT2Z-SDS2.5 (8) 1⁄4 x 2 1/2 SDS 3 x 3 1/2 2,145 2,105 0.128 HDU2-SDS2.5 14 3 8 11⁄1 6 3 1⁄4 1 5⁄16 1 3⁄8 5/8 (6) 1⁄4 x 2 1/2 SDS 3 x 3 1/2 3,075 2,215 0.088 HDU4-SDS2.5 14 3 10 15⁄16 3 1⁄4 1 5⁄16 1 3⁄8 5/8 (10) 1⁄4 x 2 1/2 SDS 3 x 3 1/2 4,565 3,285 0.114 HDU5-SDS2.5 14 3 13 3⁄16 3 1⁄4 1 5⁄16 1 3⁄8 5/8 (14) 1⁄4 x 2 1/2 SDS 3 x 3 1/2 5,645 4,340 0.115 HDU8-SDS2.5 10 3 16 5/8 3 1/2 1 3⁄8 1 1/2 7⁄8 (20) 1⁄4 x 2 1/2 SDS 3 x 3 1/2 6,765 5,820 0.11 3 1/2 x 3 1/2 6,970 5,995 0.116 3 1/2 x 4 1/2 7,870 6,580 0.113 HDU11-SDS2.5 10 3 22 1⁄4 3 1/2 1 3⁄8 1 1/2 1 (30) 1⁄4 x 2 1/2 SDS 3 1/2 x 5 1/2 9,335 8,030 0.137 3 1/2 x 7 1⁄4 11,175 9,610 0.137 HDU14-SDS2.5 7 3 25 11⁄1 6 3 1/2 1 9⁄16 1 9⁄16 1 (36) 1⁄4 x 2 1/2 SDS 3 1/2 x 5 1/22 10,770 9,260 0.122 — 3 1/2 x 7 1⁄4 14,390 12,375 0.177 IBC, FL, LA5 1/2 x 5 1/2 14,445 12,425 0.172 1. HDU14 requires heavy-hex anchor nut to achieve tabulated loads (supplied with holdown). 2. Where noted in table, loads are applicable to installation on either the narrow or the wide face of the post. Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 335-337 for more information. These products are available with additional corrosion protection. For more information, see p. 15. For stainless- steel fasteners, see p. 21. C- C - 2 0 1 9 © 2 0 1 9 S I M P S O N S T R O N G - T I E C O M P A N Y I N C . Simpson Strong-Tie® Wood Construction Connectors 32 Co n c r e t e C o n n e c t o r s an d A n c h o r s SB Anchor Bolt The SB anchor bolt offers an anchorage solution for our holdowns that call for a 5/8"-diameter, a 7⁄8"-diameter and a 1"-diameter anchor. SB anchor bolts are code listed by ICC-ES under the 2012/ 2015/ 2018 IBC and IRC. Features: •Identification on the bolt head showing embedment angle and model •Sweep geometry to optimize position in form •Rolled thread for higher tensile capacity •Hex nuts and plate washer fixed in position •Available in HDG for additional corrosion resistance Material: ASTM F1554, Grade 36 Finish: None. May be ordered HDG; contact Simpson Strong-Tie. Installation: •SB is only for concrete applications poured monolithically except where noted. •Top nuts and washers for holdown attachment are not supplied with the SB; install standard nuts, couplers and/or washers as required. •On HDG SB anchors, chase the threads to use standard nuts or couplers or use overtapped products in accordance with ASTM A563, for example Simpson Strong-Tie NUT5/8 -OST, NUT 7⁄8 -OST and NUT1-OST, CNW5/8 -OST, CNW 7⁄8-OST and CNW 1-OST. •Install SB before the concrete pour using AnchorMate® anchor bolt holders. Install the SB per the plan view detail. •Minimum concrete compressive strength is 2,500 psi. •When rebar is required it does not need to be tied to the SB. Codes: See p. 12 for Code Reference Key Chart This product is preferable to similar connectors because of (a) easier installation, (b) higher loads, (c) lower installed cost, or a combination of these features. Embedment line(top of concrete) 13⁄4" min.edge distance 3" to 5" #4 rebar (may be foundation rebar) Footing W Typical SB Installation Perspective View Corner Midwall Endwall #4 rebar 3"-5" from top End Wall 13⁄4" min. 41⁄4" min. (SB5⁄8 and 7⁄8) 5" min. (SB1) mi n . r e b a r l e n g t h 2 x l e Midwall mi n . r e b a r l e n g t h or t o e n d o f w a l l 2 x l e 2 x l e 1. 5 l e mi n . 13⁄4" min. Locateapprox. 45°to 90°from wall #4 rebar 2x le m i n . r e b a r l e n g t h 41⁄4" min. (SB5⁄8 and 7⁄8) 5" min. (SB1) Place SB arrowdiagonal in cornerapplication 16" min. return 13⁄4" min. Corner Stemwall Plan Views 30 Embedmentline (top ofconcrete) Le n g t h le 6"(standard onall models) SB1x30 (other models similar) 24 2424Outer edge of concrete (typ.) Anchor bolt (typ.) CornerInstallation (install with arrow on top of the bolt oriented as shown) CornerInstallation (install with arrow on top of the bolt oriented as shown) Non-CornerInstallation (bolt may be installed @ 45° to 135° as shown) Plan View of SB Placement in Concrete These products are available with additional corrosion protection. For more information, see p. 15. SB Bolts at Stemwall Model No. Dimensions (in.)Allowable Tension Loads Code Ref.Stemwall Width Dia.Length Min. Embed. (le) Wind and SDC A&B SDC C–F Midwall Corner End Wall Midwall Corner End Wall SB5/8X24 6 5/8 24 18 6,675 6,550 6,550 6,675 5,730 5,730 IBC, FL, LASB7/8X24 8 7⁄8 24 18 10,055 8,980 6,550 8,795 7,855 5,730 SB1X30 8 1 30 24 13,110 9,505 6,930 11,470 8,315 6,065 1. Rebar is required at the top of stem wall foundations, but is not required for slab-on-grade edge and garage curb, or stem wall garage front installations. 2. Minimum end distances for SB bolts are as shown in graphics. 3. To obtain LRF D values, multiply ASD seismic load values by 1.4 and wind load values by 1.67 (1.6 for 2012 IBC). 4. Per Section 1613 of the IBC, detached one- and two-story dwellings in SDC C may use “Wind and SDC A&B” allowable loads. 5. Midwall loads apply when anchor is 1.5 le or greater from the end. For bolts acting in tension simultaneously, the minimum bolt center-to-center spacing is 3 le. 6. Full catalog loads apply for two-pour installation for slab-on-grade: edge. SB Anchor Bolt Simpson Strong-Tie® Wood Construction Connectors 43 Co n c r e t e C o n n e c t o r s an d A n c h o r s C- C - 2 0 2 1 © 2 0 2 1 S I M P S O N S T R O N G - T I E C O M P A N Y I N C . PAB Pre-Assembled Anchor Bolt (cont.) PAB Anchor Bolt – Anchorage Solutions Design Criteria Diameter (in.) Anchor Bolt 2,500 psi Concrete 3,000 psi Concrete Dimensions (in.)Tension Load Dimensions (in.)Tension Load de F ASD LRF D de F ASD LRF D Wind 1/2 PAB4 4 1/2 7 4,270 6,405 4 6 4,270 6,405 5⁄8 PAB5 4 6 4,030 6,720 4 6 4,415 7,360 6 9 6,675 10,010 5 1/2 8 1/2 6,675 10,010 3⁄4 PAB6 5 1/2 8 1/2 6,500 10,835 5 7 1/2 6,175 10,290 7 1/2 11 1/2 9,610 14,415 7 10 1/2 9,610 14,415 7⁄8 PAB7 6 9 7,405 12,345 5 1/2 8 1/2 7,120 11,870 9 13 1/2 13,080 19,620 8 1/2 13 13,080 19,620 PAB7H 9 13 1/2 13,610 22,680 8 1/2 13 13,680 22,805 14 21 27,060 40,590 13 1/2 20 1/2 27,060 40,590 1 PAB8 8 12 11,405 19,005 7 1/2 11 1/2 11,340 18,900 10 1/2 16 17,080 25,565 10 15 17,080 25,560 PAB8H 10 1/2 16 17,150 28,580 10 15 17,460 29,100 16 1/2 25 35,345 53,015 15 1/2 23 1/2 35,345 53,015 1 1⁄8 PAB9 9 13 1/2 13,610 22,680 8 12 12,495 20,820 12 1/2 19 21,620 32,430 12 18 21,620 32,430 1 1/4 PAB10 14 21 26,690 40,035 13 1/2 20 1/2 26,690 40,035 Seismic 1/2 PAB4 5 7 1/2 4,270 6,405 4 1/2 7 4,270 6,405 5⁄8 PAB5 6 1/2 10 6,675 10,010 6 9 6,675 10,010 3⁄4 PAB6 7 1/2 11 1/2 9,060 12,940 7 10 1/2 8,945 12,780 8 12 9,610 14,415 7 1/2 11 1/2 9,610 14,415 7⁄8 PAB7 9 13 1/2 11,905 17,010 8 1/2 13 11,970 17,100 10 15 13,080 19,620 9 1/2 14 1/2 13,080 19,620 PAB7H 14 1/2 22 25,350 36,215 13 1/2 20 1/2 24,650 35,215 15 1/2 23 1/2 27,060 40,590 14 1/2 22 27,060 40,590 1 PAB8 11 16 1/2 15,996 22,850 10 1/2 16 16,435 23,480 11 1/2 17 1/2 17,080 25,625 11 16 1/2 17,080 25,625 PAB8H 17 25 1/2 33,045 47,205 16 24 32,720 46,740 18 27 35,345 53,015 17 25 1/2 35,345 53,015 1 1⁄8 PAB9 12 1/2 19 19,795 28,275 12 18 20,255 28,940 13 1/2 20 1/2 21,620 32,430 12 1/2 19 21,620 32,430 1 1/4 PAB10 14 1/2 22 25,350 36,215 14 21 26,190 37,415 15 22 1/2 26,690 40,035 14 1/2 22 26,690 40,035 1. Anchorage designs conform to ACI 318-14 and assume cracked concrete with no supplementary reinforcement. 2. Seismic indicates Seismic Design Category C-F and designs comply with ACI 318-14, Section 17.2.3.4. Per Section 1613 of the 2012/2015/2018/2021 IBC, detached one- and two-family dwellings in SDC C may use wind values. 3. Wind includes Seismic Design Category A and B. 4. Foundation dimensions are for anchorage only. Foundation design (size and reinforcement) by designer. The registered design professional may specify alternative embedment, footing size, and anchor bolt. 5. Where tension loads are governed by anchor steel, the design provisions from AISC 360 are used to determine the tensile steel limit. LRF D values are calculated by multiplying the nominal AISC steel capacity by a 0.75 phi factor, and allowable values are calculated by dividing the AISC nominal capacity by a 2.0 omega factor. 6. Where tension loads are governed by ACI 318 concrete limit, the Allowable Stress Design (ASD) values are obtained by multiplying Load Resistance Factor Design (LRF D) capacities by 0.7 for Seismic and by 0.6 for Wind. PAB Anchor Bolt Simpson Strong-Tie® Wood Construction Connectors 273 St r a p s a n d T i e s C- C - 2 0 2 1 © 2 0 2 1 S I M P S O N S T R O N G - T I E C O M P A N Y I N C . CS/CMST/CMSTC/CSHP Coiled Straps (cont.) Typical CSHP Installation (CS/CMST similar)Typical CSHP Installation Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 348–352 for more information. These products are available with additional corrosion protection. For more information, see p. 14. For stainless-steel fasteners, see p. 21. Model No.Total L Ga. DF/SP SPF/HF Allowable Tension Loads (160) Code Ref.Fasteners (in.) End Length (in.) Fasteners (in.) End Length (in.) CMST12 40'12 (74) 0.162 x 2 1/2 33 (84) 0.162 x 2 1/2 38 9,215 IBC, FL, LA (86) 0.148 x 2 1/2 39 (98) 0.148 x 2 1/2 44 9,215 CMST14 52 1/2'14 (56) 0.162 x 2 1/2 26 (66) 0.162 x 2 1/2 30 6,475 (66) 0.148 x 2 1/2 30 (76) 0.148 x 2 1/2 34 6,475 CMSTC16 54'16 (50) 0.148 x 3 1/4 20 (58) 0.148 x 3 1/4 25 4,690 CS14 100'14 (26) 0.148 x 2 1/2 15 (30) 0.148 x 2 1/2 16 2,490 (30) 0.131 x 2 1/2 16 (36) 0.131 x 2 1/2 19 2,490 CS16 150'16 (20) 0.148 x 2 1/2 11 (22) 0.148 x 2 1/2 13 1,705 (22) 0.131 x 2 1/2 13 (26) 0.131 x 2 1/2 15 1,705 CS20 250'20 (12) 0.148 x 2 1/2 7 (14) 0.148 x 2 1/2 9 1,030 (14) 0.131 x 2 1/2 9 (16) 0.131 x 2 1/2 9 1,030 CSHP18 75'18 (14) 0.148 x 2 1/2 9 (16) 0.148 x 2 1/2 10 1,540 (16) 0.131 x 2 1/2 10 (18) 0.131 x 2 1/2 11 1,540 CSHP20 75'20 (12) 0.148 x 2 1/2 8 (12) 0.148 x 2 1/2 8 1,160 (12) 0.131 x 2 1/2 8 (14) 0.131 x 2 1/2 9 1,160 1. See pp. 266–267 for Straps and Ties General Notes. 2. Calculate the connector value for a reduced number of nails as follows: Example: CMSTC16 in DF/SP with 40 nails total. (Half of the nails in each member being connected) 3. See p. 274 for alternate nailing and lap splice information. 4. Fasteners: Nail dimensions are listed diameter by length. See pp. 21–22 for fastener information. No. of Nails UsedAllowable Load =x Table LoadNo. of Nails in Table 50 Nails (Table) 40 Nails (Used)x 4,690 lb. = 3,752 lb.Allowable Load = CMST Coiled StrapCMSTC Coiled StrapCS Coiled StrapCSHP High-Performance Coiled Strap Simpson Strong-Tie® Wood Construction Connectors 270 St r a p s a n d T i e s C- C - 2 0 2 1 © 2 0 2 1 S I M P S O N S T R O N G - T I E C O M P A N Y I N C . Strap Ties (cont.) MST/MSTA/MSTC Codes: See p. 11 for Code Reference Key Chart These products are available with additional corrosion protection. For more information, see p. 14. Clear spa n End length End length Cut length Nails not required in clear span Sheathing not shown for clarity Floor-to-Floor Tie Installation Showing a Clear Span TOP OF SM1 FORM ATTACHMENT HOLES EMBEDMENTLINE TOP OF SM1 FORM ATTACHMENT HOLES EMBEDMENTLINE STHDshown When nailing the strap over wood structural panel sheathing, use 2 ⁄" long nail, minimum. Nails are not requiredin the rim board area Typical Detail with Strap Installed over Wood Structural Panel Sheathing See footnotes below. Model No.Ga. Dimensions (in.) Fasteners (Total) Allowable Tension Loads (DF/SP) Allowable Tension Loads (SPF/HF)Code Ref.W L Nails (in.)Bolts Nails Bolts Nails Bolts Qty.Dia.(160) (160) (160) (160) MST27 12 2 1/16 27 (30) 0.162 x 2 1/2 4 1/2 3,700 2,165 3,210 2,000 IBC, FL, LA MST37 2 1/16 37 1/2 (42) 0.162 x 2 1/2 6 1/2 5,070 3,030 4,495 2,800 MST48 2 1/16 48 (50) 0.162 x 2 1/2 8 1/2 5,310 3,675 5,190 3,395 MST60 10 2 1/16 60 (68) 0.162 x 2 1/2 10 1/2 6,730 4,490 6,475 4,150 MST72 2 1/16 72 (68) 0.162 x 2 1/2 10 1/2 6,730 4,490 6,475 4,150 1. See pp. 266–267 for Straps and Ties General Notes. 2. Install bolts or nails as specified by designer. Bolt and nail values may not be combined. 3. Allowable bolt loads are based on parallel-to-grain loading and minimum member thickness: MST – 2 1/2". 4. Splitting may be a problem with installations on lumber smaller than 3 1/2"; either fill every nail hole with 0.148" x 1 1/2" nails or fill every other hole with 0.162" x 2 1/2" nails. Reduce the allowable load based on the size and quantity of fasteners used. 5. Fasteners: Nail dimensions are listed diameter by length. See pp. 21–22 for fastener information. Floor to Floor Span Table Model No. Clear Span (in.) Fasteners (Total) (in.) Allowable Tension Loads (DF/SP) Allowable Tension Loads (SPF/HF) (160)(160) MSTA49 18 (26) 0.148 x 2 1/2 2,020 2,020 16 (26) 0.148 x 2 1/2 2,020 2,020 MSTC28 18 (12) 0.148 x 3 1/4 1,150 995 16 (16) 0.148 x 3 1/4 1,535 1,330 MSTC40 24 (20) 0.148 x 3 1/4 1,920 1,660 18 (28) 0.148 x 3 1/4 2,690 2,325 16 (32) 0.148 x 3 1/4 3,070 2,655 MSTC52 24 (36) 0.148 x 3 1/4 3,455 2,990 18 (44) 0.148 x 3 1/4 4,225 3,650 16 (48) 0.148 x 3 1/4 4,610 3,985 MSTC66 30 (48) 0.148 x 3 1/4 4,775 4,130 24 (54) 0.148 x 3 1/4 5,375 4,645 18 (64) 0.148 x 3 1/4 5,850 5,505 16 (68) 0.148 x 3 1/4 5,850 5,850 MSTC78 30 (64) 0.148 x 3 1/4 5,850 5,505 24 (72) 0.148 x 3 1/4 5,850 5,850 18 (76) 0.148 x 3 1/4 5,850 5,850 MST37 24 (14) 0.162 x 2 1/2 1,720 1,500 18 (20) 0.162 x 2 1/2 2,460 2,140 16 (22) 0.162 x 2 1/2 2,705 2,355 MST48 24 (26) 0.162 x 2 1/2 3,210 2,780 18 (32) 0.162 x 2 1/2 3,950 3,425 16 (34) 0.162 x 2 1/2 4,200 3,640 MST60 30 (34) 0.162 x 2 1/2 4,605 3,995 24 (40) 0.162 x 2 1/2 5,240 4,700 18 (46) 0.162 x 2 1/2 6,235 5,405 MST72 30 (48) 0.162 x 2 1/2 6,505 5,640 24 (54) 0.162 x 2 1/2 6,730 6,345 18 (62) 0.162 x 2 1/2 6,730 6,475 Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 348–352 for more information. MST Strap TieMSTA Strap TieMSTC Strap Tie 2018 NDS F.F. Level 1 100'-0"F.F. Level 1100'-0" F.F. Level 2 113'-5" F.F. Level 2113'-5" ROOF PLAN 140'-3" ROOF PLAN140'-3" B.O. FOOTING 97'-0"B.O. FOOTING97'-0" F.F. LEVEL 3 126'-10" F.F. LEVEL 3126'-10" DECK BEARING 140'-10" DECK BEARING140'-10" Masonry shear wall designs ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry shear wall - Forces in a wall line based on relative rigidity TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (IBC) Shear wall line: Grid B 2nd level Shear wall criteria: Wall dead load:WD 60 psf3:= Roof/floor dead load:RD 20 11( ) 30 112( )+[ ]psf:= Roof tributary width:Rtrib 1 ft:= Wall floor to floor height:ffht 13.5 ft:= Header height over openings:hhoo 13.5 ft:= Total wall length:TL 16.0ft:= Distance from face to center of overturning steel:c 8 in:= Design for: "Special Masonry Shear Walls" Seismic Coefficient SDS:SDS 0.373:= Masonry compressive strength: Modulous of elastisity of masonry: TMS 402-16, Section 4.2.2 Grade of reinf. steel: ATMS 402-16, Section 8.3.3.1 Loads: (ultimate loads) W 8.2 6.5+6.3+( )kip:=Vw 0.6 W:=Vw 12.6 kip= E 14.7 13.5+6.7+( )kip:=ρ 1.3:=VE 0.7 ρE:=VE 31.76 kip= Number of piers in wall line n 1:=i 1 n..:= Distribute shear to walls according to relative rigidity: (Pier length) (Pier Height) (Equivalent Thickness) (fix or cant) (Horizontal steel area) (Horizontal steel spacing) Pier 1:L1 16 ft:=h1 13.5 ft:=b1 4.9 in:=α1 C:=Av1 2 0.20in2( ):=s1 48in:= L2 0 ft:=h2 0 ft:=b2 0 in:=α2 F:=Av2 0 0.0in2( ):=s2 0in:=Pier 2: L3 0 ft:=h3 0 ft:=b3 0 in:=α3 F:=Av3 0 0.0in2( ):=s3 0in:=Pier 3: L4 0 ft:=h4 0 ft:=b4 0 in:=α4 F:=Av4 0 0.0in2( ):=s4 0in:=Pier 4: L5 0 ft:=h5 0 ft:=b5 0 in:=α5 F:=Av5 0 0.0in2( ):=s5 0in:=Pier 5: L6 0 ft:=h6 0 ft:=b6 0 in:=α6 F:=Av6 0 0.0in2( ):=s6 0in:=Pier 6: L7 0 ft:=h7 0 ft:=b7 0 in:=α7 F:=Av7 0 0.0in2( ):=s7 0in:=Pier 7: L8 0 ft:=h8 0 ft:=b8 0 in:=α8 F:=Av8 0 0.0in2( ):=s8 0in:=Pier 8: L9 0 ft:=h9 0 ft:=b9 0 in:=α9 F:=Av9 0 0.0in2( ):=s9 0in:=Pier 9: L10 0 ft:=h10 0 ft:=b10 0 in:=α10 F:=Av10 0 0.0in2( ):=s10 0in:=Pier 10: L11 0 ft:=h11 0 ft:=b11 0 in:=α11 F:=Av11 0 0.0in2( ):=s11 0in:=Pier 11: L12 0 ft:=h12 0 ft:=b12 0 in:=α12 F:=Av12 0 0.0in2( ):=s12 0in:=Pier 12: 1 of 4 Rigidity Calculations: Fixity coefficient: (Cant = C Fix = F)C 0.4F 0.1 Relative rigidity:Reli 1 1 b i αi hi Li   3 0.3 h i Li   +   :=Sum of relative rigidities:SumR i Reli:= Length of entire wall:lew i Li:= Effective height of wall:ehi if αi F= h i 2  , h i,  :=Effective length of wall:d L c-:= Unit shears: Wind unit shear to each wall:vW i Reli SumR  Vw:=SumvW i vW i:=SumvW 12.6 kip= Seismic unit shear to each wall:vEi Reli SumR  VE:=SumvE i vEi:=SumvE 31.76 kip= Overturning calculations: Wind: Determine Pier Overturning Moment: Overturning moment:WOtmi vW i ehi:= Uniform load on wall:Wwi WD hhoo( ) RD Rtrib( ) +:= Righting moment:WRmi 0.6 Wwid i( ) 2 2:= Net overturning moment:MW WOtm WRm-:=MW i MW i MW i 0 ft kipif 0 ftkipotherwise := Determine Global Overturning Moment: Overturning moment:Wotm Vw ffht:= Uniform load on wall:Wwlwt WD hhooRD Rtrib+:= Righting moment:Wrm 0.6 WwlwtTL( ) 2 2:= Net overturning moment:GMW Wotm Wrm-:=GMW GMW GMW 0 ft kipif 0 ftkipotherwise := Seismic: Determine Pier Overturning Moment: Overturning moment:EOtmi vEi ehi:= Uniform load on wall:Ewi WD hhoo( ) RD Rtrib( ) +:= Righting moment:ERmi 0.6 0.7 0.2 SDS( ) -Ewid i( ) 2 2:= Net overturning moment:ME EOtm ERm-:=MEi MEi MEi 0ft kipif 0 ftkipotherwise := 2 of 4 Determine Global Overturning Moment: Overturning moment:Eotm VE ffht:= Uniform load on wall:Ewlwt WD hhooRD Rtrib+:= Righting moment:Erm 0.6 0.7 0.2 S DS( ) -EwlwtTL( ) 2 2:= Net overturning moment:GME Eotm Erm-:=GME GME GME 0 ft kipif 0 ftkipotherwise := Shear calculations: Calculated shear stress: TMS 402-16, Section 8.3.5.1.3 Wind shear stress:fvW i vW i bi d i:= Masonry shear wall increase: (for special masonry shear walls) ξ 1.5=TMS 402-16, Section 7.3.2.6.1.2 Seismic shear stress:fvE i ξ vEi b i di:= Allowable shear stress: Limits: LimitMVD 0.25 1.0  :=LimitASD 3 f'mpsi 2 f'mpsi   134.16 89.44  psi=:=An i di b i:= Shear steel: Fvsi 0.5 Av i Fsdi An i si   := Wind: WFvmi 1 4 4.0 1.75 min 1.0 MW i vW i di,     -   f'm   psiSM "Yes"=if 1 2 4.0 1.75 min 1.0 MW i vW i di,     -   f'm   psiSM "No"=if := WFv_limiti 3 f'mpsi MW i vW i di0.25if linterp LimitMVD LimitASD, MW i vW i d i,   0.25 MW i vW i di1.0if 2 f'mpsi MW i vW i di1.0if :=WFvi min WFvmi Fvsi+WFv_limiti, ( ) := 3 of 4 Seismic: EFvmi 1 4 4.0 1.75 min 1.0 MEi vEi d i,     -   f'm   psiSM "Yes"=if 1 2 4.0 1.75 min 1.0 MEi vEi d i,     -   f'm   psiSM "No"=if := EFv_limiti 3 f'mpsi MEi vEi di0.25if linterp Limit MVD Limit ASD, MEi vEi di,   0.25 MEi vEi di1.0if 2 f'mpsi MEi vEi di1.0if :=EFvi min EFvmi Fvsi+EFv_limiti, ( ) := Overturning calculations: Individual pier overturning Global overturning Tensile force:T i max MW i MEi, ( ) d i :=T 14.1( )kip=Tensile force:GT max GMW GME, ( ) TL :=GT 12.3 kip= Required area of steel: As i T i Fs :=Required area of steel: GAs GT Fs := ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Final checks: Wind shear DCR: Seismic shear DCR: Area of steel at end of pier/walls: Pier steel: Global wall end steel: fvW i WFvi 0.2( )= fvE i EFvi 0.8( )=As i 0.44( )in2=GAs 0.38 in2= (2) #5 at end of wall As 0.31 in2( )20.62 in2=:= Special reinforced shear wall maximum steel ratio, ACI 530-13 Section 8.3.4.4 SteelRatioi "M/Vd < 1.0, No limit to flexural tensile reinforcement ratio, ρ.max"( )= ========================================================================================== 4 of 4 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry shear wall - Forces in a wall line based on relative rigidity TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (IBC) Shear wall line: Grid C 2nd level Shear wall criteria: Wall dead load:WD 75 psf3:= Roof/floor dead load:RD 20 11( ) 30 112( )+[ ]psf:= Roof tributary width:Rtrib 1 ft:= Wall floor to floor height:ffht 13.5 ft:= Header height over openings:hhoo 13.5 ft:= Total wall length:TL 8ft:= Distance from face to center of overturning steel:c 8 in:= Design for: "Special Masonry Shear Walls" Seismic Coefficient SDS:SDS 0.373:= Masonry compressive strength: Modulous of elastisity of masonry: TMS 402-16, Section 4.2.2 Grade of reinf. steel: ATMS 402-16, Section 8.3.3.1 Loads: (ultimate loads) W 7.3 5.7+5.6+( )kip:=Vw 0.6 W:=Vw 11.16 kip= E 13.0 11.9+5.9+( )kip:=ρ 1.3:=VE 0.7 ρE:=VE 28.03 kip= Number of piers in wall line n 1:=i 1 n..:= Distribute shear to walls according to relative rigidity: (Pier length) (Pier Height) (Equivalent Thickness) (fix or cant) (Horizontal steel area) (Horizontal steel spacing) Pier 1:L1 8 ft:=h1 13.5 ft:=b1 7.6 in:=α1 C:=Av1 2 0.20in2( ):=s1 24in:= L2 0 ft:=h2 0 ft:=b2 0 in:=α2 F:=Av2 0 0.0in2( ):=s2 0in:=Pier 2: L3 0 ft:=h3 0 ft:=b3 0 in:=α3 F:=Av3 0 0.0in2( ):=s3 0in:=Pier 3: L4 0 ft:=h4 0 ft:=b4 0 in:=α4 F:=Av4 0 0.0in2( ):=s4 0in:=Pier 4: L5 0 ft:=h5 0 ft:=b5 0 in:=α5 F:=Av5 0 0.0in2( ):=s5 0in:=Pier 5: L6 0 ft:=h6 0 ft:=b6 0 in:=α6 F:=Av6 0 0.0in2( ):=s6 0in:=Pier 6: L7 0 ft:=h7 0 ft:=b7 0 in:=α7 F:=Av7 0 0.0in2( ):=s7 0in:=Pier 7: L8 0 ft:=h8 0 ft:=b8 0 in:=α8 F:=Av8 0 0.0in2( ):=s8 0in:=Pier 8: L9 0 ft:=h9 0 ft:=b9 0 in:=α9 F:=Av9 0 0.0in2( ):=s9 0in:=Pier 9: L10 0 ft:=h10 0 ft:=b10 0 in:=α10 F:=Av10 0 0.0in2( ):=s10 0in:=Pier 10: L11 0 ft:=h11 0 ft:=b11 0 in:=α11 F:=Av11 0 0.0in2( ):=s11 0in:=Pier 11: L12 0 ft:=h12 0 ft:=b12 0 in:=α12 F:=Av12 0 0.0in2( ):=s12 0in:=Pier 12: 1 of 4 Rigidity Calculations: Fixity coefficient: (Cant = C Fix = F)C 0.4F 0.1 Relative rigidity:Reli 1 1 b i αi hi Li   3 0.3 h i Li   +   :=Sum of relative rigidities:SumR i Reli:= Length of entire wall:lew i Li:= Effective height of wall:ehi if αi F= h i 2  , h i,  :=Effective length of wall:d L c-:= Unit shears: Wind unit shear to each wall:vW i Reli SumR  Vw:=SumvW i vW i:=SumvW 11.16 kip= Seismic unit shear to each wall:vEi Reli SumR  VE:=SumvE i vEi:=SumvE 28.03 kip= Overturning calculations: Wind: Determine Pier Overturning Moment: Overturning moment:WOtmi vW i ehi:= Uniform load on wall:Wwi WD hhoo( ) RD Rtrib( ) +:= Righting moment:WRmi 0.6 Wwid i( ) 2 2:= Net overturning moment:MW WOtm WRm-:=MW i MW i MW i 0 ft kipif 0 ftkipotherwise := Determine Global Overturning Moment: Overturning moment:Wotm Vw ffht:= Uniform load on wall:Wwlwt WD hhooRD Rtrib+:= Righting moment:Wrm 0.6 WwlwtTL( ) 2 2:= Net overturning moment:GMW Wotm Wrm-:=GMW GMW GMW 0 ft kipif 0 ftkipotherwise := Seismic: Determine Pier Overturning Moment: Overturning moment:EOtmi vEi ehi:= Uniform load on wall:Ewi WD hhoo( ) RD Rtrib( ) +:= Righting moment:ERmi 0.6 0.7 0.2 SDS( ) -Ewid i( ) 2 2:= Net overturning moment:ME EOtm ERm-:=MEi MEi MEi 0ft kipif 0 ftkipotherwise := 2 of 4 Determine Global Overturning Moment: Overturning moment:Eotm VE ffht:= Uniform load on wall:Ewlwt WD hhooRD Rtrib+:= Righting moment:Erm 0.6 0.7 0.2 S DS( ) -EwlwtTL( ) 2 2:= Net overturning moment:GME Eotm Erm-:=GME GME GME 0 ft kipif 0 ftkipotherwise := Shear calculations: Calculated shear stress: TMS 402-16, Section 8.3.5.1.3 Wind shear stress:fvW i vW i bi d i:= Masonry shear wall increase: (for special masonry shear walls) ξ 1.5=TMS 402-16, Section 7.3.2.6.1.2 Seismic shear stress:fvE i ξ vEi b i di:= Allowable shear stress: Limits: LimitMVD 0.25 1.0  :=LimitASD 3 f'mpsi 2 f'mpsi   134.16 89.44  psi=:=An i di b i:= Shear steel: Fvsi 0.5 Av i Fsdi An i si   := Wind: WFvmi 1 4 4.0 1.75 min 1.0 MW i vW i di,     -   f'm   psiSM "Yes"=if 1 2 4.0 1.75 min 1.0 MW i vW i di,     -   f'm   psiSM "No"=if := WFv_limiti 3 f'mpsi MW i vW i di0.25if linterp LimitMVD LimitASD, MW i vW i d i,   0.25 MW i vW i di1.0if 2 f'mpsi MW i vW i di1.0if :=WFvi min WFvmi Fvsi+WFv_limiti, ( ) := 3 of 4 Seismic: EFvmi 1 4 4.0 1.75 min 1.0 MEi vEi d i,     -   f'm   psiSM "Yes"=if 1 2 4.0 1.75 min 1.0 MEi vEi d i,     -   f'm   psiSM "No"=if := EFv_limiti 3 f'mpsi MEi vEi di0.25if linterp Limit MVD Limit ASD, MEi vEi di,   0.25 MEi vEi di1.0if 2 f'mpsi MEi vEi di1.0if :=EFvi min EFvmi Fvsi+EFv_limiti, ( ) := Overturning calculations: Individual pier overturning Global overturning Tensile force:T i max MW i MEi, ( ) d i :=T 43.7( )kip=Tensile force:GT max GMW GME, ( ) TL :=GT 38.7 kip= Required area of steel: As i T i Fs :=Required area of steel: GAs GT Fs := ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Final checks: Wind shear DCR: Seismic shear DCR: Area of steel at end of pier/walls: Pier steel: Global wall end steel: fvW i WFvi 0.3( )= fvE i EFvi 1( )=As i 1.37( )in2=GAs 1.21 in2= (4) #5 at end of wall ((4) bars okay with remainder of wall bars) As 0.31 in2( )41.24 in2=:= Special reinforced shear wall maximum steel ratio, ACI 530-13 Section 8.3.4.4 SteelRatioi "M/Vd > 1.0, if axial load is greater than 9.1 kip/ft, the flexural tesile steel ratio must not exceed ρ.max = 0.0058"( )= ========================================================================================== 4 of 4 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry shear wall - Forces in a wall line based on relative rigidity TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (IBC) Shear wall line: Grid 1.8 2nd level Shear wall criteria: Wall dead load:WD 75 psf3:= Roof/floor dead load:RD 20 2( ) 30 22( )+[ ]psf:= Roof tributary width:Rtrib 1 ft:= Wall floor to floor height:ffht 13.5 ft:= Header height over openings:hhoo 13.5 ft:= Total wall length:TL 10ft 8in+:= Distance from face to center of overturning steel:c 8 in:= Design for: "Special Masonry Shear Walls" Seismic Coefficient SDS:SDS 0.373:= Masonry compressive strength: Modulous of elastisity of masonry: TMS 402-16, Section 4.2.2 Grade of reinf. steel: ATMS 402-16, Section 8.3.3.1 Loads: (ultimate loads) W 8.0 5.7+5.6+( )kip:=Vw 0.6 W:=Vw 11.58 kip= E 7.8 7.1+3.5+( )kip:=ρ 1.3:=VE 0.7 ρE:=VE 16.74 kip= Number of piers in wall line n 1:=i 1 n..:= Distribute shear to walls according to relative rigidity: (Pier length) (Pier Height) (Equivalent Thickness) (fix or cant) (Horizontal steel area) (Horizontal steel spacing) Pier 1:L1 10.667 ft:=h1 13.5 ft:=b1 4.9 in:=α1 C:=Av1 2 0.20in2( ):=s1 48in:= L2 0 ft:=h2 0 ft:=b2 0 in:=α2 F:=Av2 0 0.0in2( ):=s2 0in:=Pier 2: L3 0 ft:=h3 0 ft:=b3 0 in:=α3 F:=Av3 0 0.0in2( ):=s3 0in:=Pier 3: L4 0 ft:=h4 0 ft:=b4 0 in:=α4 F:=Av4 0 0.0in2( ):=s4 0in:=Pier 4: L5 0 ft:=h5 0 ft:=b5 0 in:=α5 F:=Av5 0 0.0in2( ):=s5 0in:=Pier 5: L6 0 ft:=h6 0 ft:=b6 0 in:=α6 F:=Av6 0 0.0in2( ):=s6 0in:=Pier 6: L7 0 ft:=h7 0 ft:=b7 0 in:=α7 F:=Av7 0 0.0in2( ):=s7 0in:=Pier 7: L8 0 ft:=h8 0 ft:=b8 0 in:=α8 F:=Av8 0 0.0in2( ):=s8 0in:=Pier 8: L9 0 ft:=h9 0 ft:=b9 0 in:=α9 F:=Av9 0 0.0in2( ):=s9 0in:=Pier 9: L10 0 ft:=h10 0 ft:=b10 0 in:=α10 F:=Av10 0 0.0in2( ):=s10 0in:=Pier 10: L11 0 ft:=h11 0 ft:=b11 0 in:=α11 F:=Av11 0 0.0in2( ):=s11 0in:=Pier 11: L12 0 ft:=h12 0 ft:=b12 0 in:=α12 F:=Av12 0 0.0in2( ):=s12 0in:=Pier 12: 1 of 4 Rigidity Calculations: Fixity coefficient: (Cant = C Fix = F)C 0.4F 0.1 Relative rigidity:Reli 1 1 b i αi hi Li   3 0.3 h i Li   +   :=Sum of relative rigidities:SumR i Reli:= Length of entire wall:lew i Li:= Effective height of wall:ehi if αi F= h i 2  , h i,  :=Effective length of wall:d L c-:= Unit shears: Wind unit shear to each wall:vW i Reli SumR  Vw:=SumvW i vW i:=SumvW 11.58 kip= Seismic unit shear to each wall:vEi Reli SumR  VE:=SumvE i vEi:=SumvE 16.74 kip= Overturning calculations: Wind: Determine Pier Overturning Moment: Overturning moment:WOtmi vW i ehi:= Uniform load on wall:Wwi WD hhoo( ) RD Rtrib( ) +:= Righting moment:WRmi 0.6 Wwid i( ) 2 2:= Net overturning moment:MW WOtm WRm-:=MW i MW i MW i 0 ft kipif 0 ftkipotherwise := Determine Global Overturning Moment: Overturning moment:Wotm Vw ffht:= Uniform load on wall:Wwlwt WD hhooRD Rtrib+:= Righting moment:Wrm 0.6 WwlwtTL( ) 2 2:= Net overturning moment:GMW Wotm Wrm-:=GMW GMW GMW 0 ft kipif 0 ftkipotherwise := Seismic: Determine Pier Overturning Moment: Overturning moment:EOtmi vEi ehi:= Uniform load on wall:Ewi WD hhoo( ) RD Rtrib( ) +:= Righting moment:ERmi 0.6 0.7 0.2 SDS( ) -Ewid i( ) 2 2:= Net overturning moment:ME EOtm ERm-:=MEi MEi MEi 0ft kipif 0 ftkipotherwise := 2 of 4 Determine Global Overturning Moment: Overturning moment:Eotm VE ffht:= Uniform load on wall:Ewlwt WD hhooRD Rtrib+:= Righting moment:Erm 0.6 0.7 0.2 S DS( ) -EwlwtTL( ) 2 2:= Net overturning moment:GME Eotm Erm-:=GME GME GME 0 ft kipif 0 ftkipotherwise := Shear calculations: Calculated shear stress: TMS 402-16, Section 8.3.5.1.3 Wind shear stress:fvW i vW i bi d i:= Masonry shear wall increase: (for special masonry shear walls) ξ 1.5=TMS 402-16, Section 7.3.2.6.1.2 Seismic shear stress:fvE i ξ vEi b i di:= Allowable shear stress: Limits: LimitMVD 0.25 1.0  :=LimitASD 3 f'mpsi 2 f'mpsi   134.16 89.44  psi=:=An i di b i:= Shear steel: Fvsi 0.5 Av i Fsdi An i si   := Wind: WFvmi 1 4 4.0 1.75 min 1.0 MW i vW i di,     -   f'm   psiSM "Yes"=if 1 2 4.0 1.75 min 1.0 MW i vW i di,     -   f'm   psiSM "No"=if := WFv_limiti 3 f'mpsi MW i vW i di0.25if linterp LimitMVD LimitASD, MW i vW i d i,   0.25 MW i vW i di1.0if 2 f'mpsi MW i vW i di1.0if :=WFvi min WFvmi Fvsi+WFv_limiti, ( ) := 3 of 4 Seismic: EFvmi 1 4 4.0 1.75 min 1.0 MEi vEi d i,     -   f'm   psiSM "Yes"=if 1 2 4.0 1.75 min 1.0 MEi vEi d i,     -   f'm   psiSM "No"=if := EFv_limiti 3 f'mpsi MEi vEi di0.25if linterp Limit MVD Limit ASD, MEi vEi di,   0.25 MEi vEi di1.0if 2 f'mpsi MEi vEi di1.0if :=EFvi min EFvmi Fvsi+EFv_limiti, ( ) := Overturning calculations: Individual pier overturning Global overturning Tensile force:T i max MW i MEi, ( ) d i :=T 13.8( )kip=Tensile force:GT max GMW GME, ( ) TL :=GT 11.9 kip= Required area of steel: As i T i Fs :=Required area of steel: GAs GT Fs := ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Final checks: Wind shear DCR: Seismic shear DCR: Area of steel at end of pier/walls: Pier steel: Global wall end steel: fvW i WFvi 0.3( )= fvE i EFvi 0.8( )=As i 0.43( )in2=GAs 0.37 in2= (2) #5 at end of wall As 0.31 in2( )20.62 in2=:= Special reinforced shear wall maximum steel ratio, ACI 530-13 Section 8.3.4.4 SteelRatioi "M/Vd < 1.0, No limit to flexural tensile reinforcement ratio, ρ.max"( )= ========================================================================================== 4 of 4 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry shear wall - Forces in a wall line based on relative rigidity TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (IBC) Shear wall line: Grid 2.6 2nd level Shear wall criteria: Wall dead load:WD 75 psf3:= Roof/floor dead load:RD 20 2( ) 30 22( )+[ ]psf:= Roof tributary width:Rtrib 1 ft:= Wall floor to floor height:ffht 13.5 ft:= Header height over openings:hhoo 13.5 ft:= Total wall length:TL 10ft 8in+:= Distance from face to center of overturning steel:c 8 in:= Design for: "Special Masonry Shear Walls" Seismic Coefficient SDS:SDS 0.373:= Masonry compressive strength: Modulous of elastisity of masonry: TMS 402-16, Section 4.2.2 Grade of reinf. steel: ATMS 402-16, Section 8.3.3.1 Loads: (ultimate loads) W 9.1 6.5+6.4+( )kip:=Vw 0.6 W:=Vw 13.2 kip= E 8.9 8.2+4.1+( )kip:=ρ 1.3:=VE 0.7 ρE:=VE 19.29 kip= Number of piers in wall line n 1:=i 1 n..:= Distribute shear to walls according to relative rigidity: (Pier length) (Pier Height) (Equivalent Thickness) (fix or cant) (Horizontal steel area) (Horizontal steel spacing) Pier 1:L1 10.667 ft:=h1 13.5 ft:=b1 4.9 in:=α1 C:=Av1 2 0.20in2( ):=s1 48in:= L2 0 ft:=h2 0 ft:=b2 0 in:=α2 F:=Av2 0 0.0in2( ):=s2 0in:=Pier 2: L3 0 ft:=h3 0 ft:=b3 0 in:=α3 F:=Av3 0 0.0in2( ):=s3 0in:=Pier 3: L4 0 ft:=h4 0 ft:=b4 0 in:=α4 F:=Av4 0 0.0in2( ):=s4 0in:=Pier 4: L5 0 ft:=h5 0 ft:=b5 0 in:=α5 F:=Av5 0 0.0in2( ):=s5 0in:=Pier 5: L6 0 ft:=h6 0 ft:=b6 0 in:=α6 F:=Av6 0 0.0in2( ):=s6 0in:=Pier 6: L7 0 ft:=h7 0 ft:=b7 0 in:=α7 F:=Av7 0 0.0in2( ):=s7 0in:=Pier 7: L8 0 ft:=h8 0 ft:=b8 0 in:=α8 F:=Av8 0 0.0in2( ):=s8 0in:=Pier 8: L9 0 ft:=h9 0 ft:=b9 0 in:=α9 F:=Av9 0 0.0in2( ):=s9 0in:=Pier 9: L10 0 ft:=h10 0 ft:=b10 0 in:=α10 F:=Av10 0 0.0in2( ):=s10 0in:=Pier 10: L11 0 ft:=h11 0 ft:=b11 0 in:=α11 F:=Av11 0 0.0in2( ):=s11 0in:=Pier 11: L12 0 ft:=h12 0 ft:=b12 0 in:=α12 F:=Av12 0 0.0in2( ):=s12 0in:=Pier 12: 1 of 4 Rigidity Calculations: Fixity coefficient: (Cant = C Fix = F)C 0.4F 0.1 Relative rigidity:Reli 1 1 b i αi hi Li   3 0.3 h i Li   +   :=Sum of relative rigidities:SumR i Reli:= Length of entire wall:lew i Li:= Effective height of wall:ehi if αi F= h i 2  , h i,  :=Effective length of wall:d L c-:= Unit shears: Wind unit shear to each wall:vW i Reli SumR  Vw:=SumvW i vW i:=SumvW 13.2 kip= Seismic unit shear to each wall:vEi Reli SumR  VE:=SumvE i vEi:=SumvE 19.29 kip= Overturning calculations: Wind: Determine Pier Overturning Moment: Overturning moment:WOtmi vW i ehi:= Uniform load on wall:Wwi WD hhoo( ) RD Rtrib( ) +:= Righting moment:WRmi 0.6 Wwid i( ) 2 2:= Net overturning moment:MW WOtm WRm-:=MW i MW i MW i 0 ft kipif 0 ftkipotherwise := Determine Global Overturning Moment: Overturning moment:Wotm Vw ffht:= Uniform load on wall:Wwlwt WD hhooRD Rtrib+:= Righting moment:Wrm 0.6 WwlwtTL( ) 2 2:= Net overturning moment:GMW Wotm Wrm-:=GMW GMW GMW 0 ft kipif 0 ftkipotherwise := Seismic: Determine Pier Overturning Moment: Overturning moment:EOtmi vEi ehi:= Uniform load on wall:Ewi WD hhoo( ) RD Rtrib( ) +:= Righting moment:ERmi 0.6 0.7 0.2 SDS( ) -Ewid i( ) 2 2:= Net overturning moment:ME EOtm ERm-:=MEi MEi MEi 0ft kipif 0 ftkipotherwise := 2 of 4 Determine Global Overturning Moment: Overturning moment:Eotm VE ffht:= Uniform load on wall:Ewlwt WD hhooRD Rtrib+:= Righting moment:Erm 0.6 0.7 0.2 S DS( ) -EwlwtTL( ) 2 2:= Net overturning moment:GME Eotm Erm-:=GME GME GME 0 ft kipif 0 ftkipotherwise := Shear calculations: Calculated shear stress: TMS 402-16, Section 8.3.5.1.3 Wind shear stress:fvW i vW i bi d i:= Masonry shear wall increase: (for special masonry shear walls) ξ 1.5=TMS 402-16, Section 7.3.2.6.1.2 Seismic shear stress:fvE i ξ vEi b i di:= Allowable shear stress: Limits: LimitMVD 0.25 1.0  :=LimitASD 3 f'mpsi 2 f'mpsi   134.16 89.44  psi=:=An i di b i:= Shear steel: Fvsi 0.5 Av i Fsdi An i si   := Wind: WFvmi 1 4 4.0 1.75 min 1.0 MW i vW i di,     -   f'm   psiSM "Yes"=if 1 2 4.0 1.75 min 1.0 MW i vW i di,     -   f'm   psiSM "No"=if := WFv_limiti 3 f'mpsi MW i vW i di0.25if linterp LimitMVD LimitASD, MW i vW i d i,   0.25 MW i vW i di1.0if 2 f'mpsi MW i vW i di1.0if :=WFvi min WFvmi Fvsi+WFv_limiti, ( ) := 3 of 4 Seismic: EFvmi 1 4 4.0 1.75 min 1.0 MEi vEi d i,     -   f'm   psiSM "Yes"=if 1 2 4.0 1.75 min 1.0 MEi vEi d i,     -   f'm   psiSM "No"=if := EFv_limiti 3 f'mpsi MEi vEi di0.25if linterp Limit MVD Limit ASD, MEi vEi di,   0.25 MEi vEi di1.0if 2 f'mpsi MEi vEi di1.0if :=EFvi min EFvmi Fvsi+EFv_limiti, ( ) := Overturning calculations: Individual pier overturning Global overturning Tensile force:T i max MW i MEi, ( ) d i :=T 17.3( )kip=Tensile force:GT max GMW GME, ( ) TL :=GT 15.1 kip= Required area of steel: As i T i Fs :=Required area of steel: GAs GT Fs := ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Final checks: Wind shear DCR: Seismic shear DCR: Area of steel at end of pier/walls: Pier steel: Global wall end steel: fvW i WFvi 0.4( )= fvE i EFvi 0.9( )=As i 0.54( )in2=GAs 0.47 in2= (2) #5 at end of wall As 0.31 in2( )20.62 in2=:= Special reinforced shear wall maximum steel ratio, ACI 530-13 Section 8.3.4.4 SteelRatioi "M/Vd < 1.0, No limit to flexural tensile reinforcement ratio, ρ.max"( )= ========================================================================================== 4 of 4 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry shear wall - Forces in a wall line based on relative rigidity TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (IBC) Shear wall line: Grid 1.8 2nd level Shear wall criteria: Wall dead load:WD 75 psf3:= Roof/floor dead load:RD 20 2( ) 30 22( )+[ ]psf:= Roof tributary width:Rtrib 1 ft:= Wall floor to floor height:ffht 13.5 ft:= Header height over openings:hhoo 13.5 ft:= Total wall length:TL 10ft 8in+:= Distance from face to center of overturning steel:c 8 in:= Design for: "Special Masonry Shear Walls" Seismic Coefficient SDS:SDS 0.373:= Masonry compressive strength: Modulous of elastisity of masonry: TMS 402-16, Section 4.2.2 Grade of reinf. steel: ATMS 402-16, Section 8.3.3.1 Loads: (ultimate loads) W 8.0 5.7+5.6+( )kip:=Vw 0.6 W:=Vw 11.58 kip= E 7.8 7.1+3.5+( )kip:=ρ 1.3:=VE 0.7 ρE:=VE 16.74 kip= Number of piers in wall line n 1:=i 1 n..:= Distribute shear to walls according to relative rigidity: (Pier length) (Pier Height) (Equivalent Thickness) (fix or cant) (Horizontal steel area) (Horizontal steel spacing) Pier 1:L1 10.667 ft:=h1 13.5 ft:=b1 7.6 in:=α1 C:=Av1 2 0.20in2( ):=s1 24in:= L2 0 ft:=h2 0 ft:=b2 0 in:=α2 F:=Av2 0 0.0in2( ):=s2 0in:=Pier 2: L3 0 ft:=h3 0 ft:=b3 0 in:=α3 F:=Av3 0 0.0in2( ):=s3 0in:=Pier 3: L4 0 ft:=h4 0 ft:=b4 0 in:=α4 F:=Av4 0 0.0in2( ):=s4 0in:=Pier 4: L5 0 ft:=h5 0 ft:=b5 0 in:=α5 F:=Av5 0 0.0in2( ):=s5 0in:=Pier 5: L6 0 ft:=h6 0 ft:=b6 0 in:=α6 F:=Av6 0 0.0in2( ):=s6 0in:=Pier 6: L7 0 ft:=h7 0 ft:=b7 0 in:=α7 F:=Av7 0 0.0in2( ):=s7 0in:=Pier 7: L8 0 ft:=h8 0 ft:=b8 0 in:=α8 F:=Av8 0 0.0in2( ):=s8 0in:=Pier 8: L9 0 ft:=h9 0 ft:=b9 0 in:=α9 F:=Av9 0 0.0in2( ):=s9 0in:=Pier 9: L10 0 ft:=h10 0 ft:=b10 0 in:=α10 F:=Av10 0 0.0in2( ):=s10 0in:=Pier 10: L11 0 ft:=h11 0 ft:=b11 0 in:=α11 F:=Av11 0 0.0in2( ):=s11 0in:=Pier 11: L12 0 ft:=h12 0 ft:=b12 0 in:=α12 F:=Av12 0 0.0in2( ):=s12 0in:=Pier 12: 1 of 4 Rigidity Calculations: Fixity coefficient: (Cant = C Fix = F)C 0.4F 0.1 Relative rigidity:Reli 1 1 b i αi hi Li   3 0.3 h i Li   +   :=Sum of relative rigidities:SumR i Reli:= Length of entire wall:lew i Li:= Effective height of wall:ehi if αi F= h i 2  , h i,  :=Effective length of wall:d L c-:= Unit shears: Wind unit shear to each wall:vW i Reli SumR  Vw:=SumvW i vW i:=SumvW 11.58 kip= Seismic unit shear to each wall:vEi Reli SumR  VE:=SumvE i vEi:=SumvE 16.74 kip= Overturning calculations: Wind: Determine Pier Overturning Moment: Overturning moment:WOtmi vW i ehi:= Uniform load on wall:Wwi WD hhoo( ) RD Rtrib( ) +:= Righting moment:WRmi 0.6 Wwid i( ) 2 2:= Net overturning moment:MW WOtm WRm-:=MW i MW i MW i 0 ft kipif 0 ftkipotherwise := Determine Global Overturning Moment: Overturning moment:Wotm Vw ffht:= Uniform load on wall:Wwlwt WD hhooRD Rtrib+:= Righting moment:Wrm 0.6 WwlwtTL( ) 2 2:= Net overturning moment:GMW Wotm Wrm-:=GMW GMW GMW 0 ft kipif 0 ftkipotherwise := Seismic: Determine Pier Overturning Moment: Overturning moment:EOtmi vEi ehi:= Uniform load on wall:Ewi WD hhoo( ) RD Rtrib( ) +:= Righting moment:ERmi 0.6 0.7 0.2 SDS( ) -Ewid i( ) 2 2:= Net overturning moment:ME EOtm ERm-:=MEi MEi MEi 0ft kipif 0 ftkipotherwise := 2 of 4 Determine Global Overturning Moment: Overturning moment:Eotm VE ffht:= Uniform load on wall:Ewlwt WD hhooRD Rtrib+:= Righting moment:Erm 0.6 0.7 0.2 S DS( ) -EwlwtTL( ) 2 2:= Net overturning moment:GME Eotm Erm-:=GME GME GME 0 ft kipif 0 ftkipotherwise := Shear calculations: Calculated shear stress: TMS 402-16, Section 8.3.5.1.3 Wind shear stress:fvW i vW i bi d i:= Masonry shear wall increase: (for special masonry shear walls) ξ 1.5=TMS 402-16, Section 7.3.2.6.1.2 Seismic shear stress:fvE i ξ vEi b i di:= Allowable shear stress: Limits: LimitMVD 0.25 1.0  :=LimitASD 3 f'mpsi 2 f'mpsi   134.16 89.44  psi=:=An i di b i:= Shear steel: Fvsi 0.5 Av i Fsdi An i si   := Wind: WFvmi 1 4 4.0 1.75 min 1.0 MW i vW i di,     -   f'm   psiSM "Yes"=if 1 2 4.0 1.75 min 1.0 MW i vW i di,     -   f'm   psiSM "No"=if := WFv_limiti 3 f'mpsi MW i vW i di0.25if linterp LimitMVD LimitASD, MW i vW i d i,   0.25 MW i vW i di1.0if 2 f'mpsi MW i vW i di1.0if :=WFvi min WFvmi Fvsi+WFv_limiti, ( ) := 3 of 4 Seismic: EFvmi 1 4 4.0 1.75 min 1.0 MEi vEi d i,     -   f'm   psiSM "Yes"=if 1 2 4.0 1.75 min 1.0 MEi vEi d i,     -   f'm   psiSM "No"=if := EFv_limiti 3 f'mpsi MEi vEi di0.25if linterp Limit MVD Limit ASD, MEi vEi di,   0.25 MEi vEi di1.0if 2 f'mpsi MEi vEi di1.0if :=EFvi min EFvmi Fvsi+EFv_limiti, ( ) := Overturning calculations: Individual pier overturning Global overturning Tensile force:T i max MW i MEi, ( ) d i :=T 13.8( )kip=Tensile force:GT max GMW GME, ( ) TL :=GT 11.9 kip= Required area of steel: As i T i Fs :=Required area of steel: GAs GT Fs := ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Final checks: Wind shear DCR: Seismic shear DCR: Area of steel at end of pier/walls: Pier steel: Global wall end steel: fvW i WFvi 0.2( )= fvE i EFvi 0.4( )=As i 0.43( )in2=GAs 0.37 in2= (2) #5 at end of wall As 0.31 in2( )20.62 in2=:= Special reinforced shear wall maximum steel ratio, ACI 530-13 Section 8.3.4.4 SteelRatioi "M/Vd < 1.0, No limit to flexural tensile reinforcement ratio, ρ.max"( )= ========================================================================================== 4 of 4 FOOTING - WEIGHT OF Masonry Shear Wall grid B uplift footing FOOTING: Length =5 ft. Width =5 ft. Thickness =1.333 ft. SOIL: Height above footing =0.333 ft. OTHER INFORMATION: Wt. of concrete =0.15 kcf Wt. of soil =0.115 kcf Angle of soil =30 deg. =0.523599 radians TOTAL WEIGHT =6.03 kips Volumn Weight Footing 33.325 4.99875 Soil Sq.8.325 0.957375 Soil Tri.0.64021794 0.07362506 Soil Pyr.0.01641157 0.00188733 Masonry Shear Wall grid C uplift footing FOOTING: Length =5 ft. Width =5 ft. Thickness =1.333 ft. SOIL: Height above footing =5 ft.(Shaft depth) OTHER INFORMATION: Wt. of concrete =0.15 kcf Wt. of soil =0.115 kcf Angle of soil =30 deg. =0.523599 radians TOTAL WEIGHT =42.36 kips Volumn Weight Footing 33.325 4.99875 Soil Sq.125 14.375 Soil Tri.144.337567 16.5988202 Soil Pyr.55.5555556 6.38888889 Masonry Shear Wall grid 2.6 uplift footing FOOTING: Length =5.5 ft. Width =5.5 ft. Thickness =1.333 ft. SOIL: Height above footing =0.333 ft. OTHER INFORMATION: Wt. of concrete =0.15 kcf Wt. of soil =0.115 kcf Angle of soil =30 deg. =0.523599 radians TOTAL WEIGHT =7.29 kips Volumn Weight Footing 40.32325 6.0484875 Soil Sq.10.07325 1.15842375 Soil Tri.0.70423973 0.08098757 Soil Pyr.0.01641157 0.00188733 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry shear wall - Forces in a wall line based on relative rigidity TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (IBC) Shear wall line: Grid 7.1 at Event Center Shear wall criteria: Wall dead load:WD 60 psf:= Roof/floor dead load:RD 20 psf:= Roof tributary width:Rtrib 3 ft:= Wall floor to floor height:ffht 16 ft:= Header height over openings:hhoo 6 ft:= Total wall length:TL 24ft:= Distance from face to center of overturning steel:c 8 in:= Design for: "Special Masonry Shear Walls" Seismic Coefficient SDS:SDS 0.373:= Masonry compressive strength: Modulous of elastisity of masonry: TMS 402-16, Section 4.2.2 Grade of reinf. steel: ATMS 402-16, Section 8.3.3.1 Loads: (ultimate loads) W 13 4.7+( )kip:=Vw 0.6 W:=Vw 10.62 kip= E 8.2 1.4+( )kip:=ρ 1.3:=VE 0.7 ρE:=VE 8.74 kip= Number of piers in wall line n 2:=i 1 n..:= Distribute shear to walls according to relative rigidity: (Pier length) (Pier Height) (Equivalent Thickness) (fix or cant) (Horizontal steel area) (Horizontal steel spacing) Pier 1:L1 5 ft:=h1 10 ft:=b1 4.9 in:=α1 F:=Av1 2 0.20in2( ):=s1 48in:= L2 4 ft:=h2 10 ft:=b2 4.9 in:=α2 F:=Av2 2 0.20in2( ):=s2 48in:=Pier 2: L3 0 ft:=h3 0 ft:=b3 0 in:=α3 F:=Av3 0 0.0in2( ):=s3 0in:=Pier 3: L4 0 ft:=h4 0 ft:=b4 0 in:=α4 F:=Av4 0 0.0in2( ):=s4 0in:=Pier 4: L5 0 ft:=h5 0 ft:=b5 0 in:=α5 F:=Av5 0 0.0in2( ):=s5 0in:=Pier 5: L6 0 ft:=h6 0 ft:=b6 0 in:=α6 F:=Av6 0 0.0in2( ):=s6 0in:=Pier 6: L7 0 ft:=h7 0 ft:=b7 0 in:=α7 F:=Av7 0 0.0in2( ):=s7 0in:=Pier 7: L8 0 ft:=h8 0 ft:=b8 0 in:=α8 F:=Av8 0 0.0in2( ):=s8 0in:=Pier 8: L9 0 ft:=h9 0 ft:=b9 0 in:=α9 F:=Av9 0 0.0in2( ):=s9 0in:=Pier 9: L10 0 ft:=h10 0 ft:=b10 0 in:=α10 F:=Av10 0 0.0in2( ):=s10 0in:=Pier 10: L11 0 ft:=h11 0 ft:=b11 0 in:=α11 F:=Av11 0 0.0in2( ):=s11 0in:=Pier 11: L12 0 ft:=h12 0 ft:=b12 0 in:=α12 F:=Av12 0 0.0in2( ):=s12 0in:=Pier 12: 1 of 4 Rigidity Calculations: Fixity coefficient: (Cant = C Fix = F)C 0.4F 0.1 Relative rigidity:Reli 1 1 b i αi hi Li   3 0.3 h i Li   +   :=Sum of relative rigidities:SumR i Reli:= Length of entire wall:lew i Li:= Effective height of wall:ehi if αi F= h i 2  , h i,  :=Effective length of wall:d L c-:= Unit shears: Wind unit shear to each wall:vW i Reli SumR  Vw:=SumvW i vW i:=SumvW 10.62 kip= Seismic unit shear to each wall:vEi Reli SumR  VE:=SumvE i vEi:=SumvE 8.74 kip= Overturning calculations: Wind: Determine Pier Overturning Moment: Overturning moment:WOtmi vW i ehi:= Uniform load on wall:Wwi WD hhoo( ) RD Rtrib( ) +:= Righting moment:WRmi 0.6 Wwid i( ) 2 2:= Net overturning moment:MW WOtm WRm-:=MW i MW i MW i 0 ft kipif 0 ftkipotherwise := Determine Global Overturning Moment: Overturning moment:Wotm Vw ffht:= Uniform load on wall:Wwlwt WD hhooRD Rtrib+:= Righting moment:Wrm 0.6 WwlwtTL( ) 2 2:= Net overturning moment:GMW Wotm Wrm-:=GMW GMW GMW 0 ft kipif 0 ftkipotherwise := Seismic: Determine Pier Overturning Moment: Overturning moment:EOtmi vEi ehi:= Uniform load on wall:Ewi WD hhoo( ) RD Rtrib( ) +:= Righting moment:ERmi 0.6 0.7 0.2 SDS( ) -Ewid i( ) 2 2:= Net overturning moment:ME EOtm ERm-:=MEi MEi MEi 0ft kipif 0 ftkipotherwise := 2 of 4 Determine Global Overturning Moment: Overturning moment:Eotm VE ffht:= Uniform load on wall:Ewlwt WD hhooRD Rtrib+:= Righting moment:Erm 0.6 0.7 0.2 S DS( ) -EwlwtTL( ) 2 2:= Net overturning moment:GME Eotm Erm-:=GME GME GME 0 ft kipif 0 ftkipotherwise := Shear calculations: Calculated shear stress: TMS 402-16, Section 8.3.5.1.3 Wind shear stress:fvW i vW i bi d i:= Masonry shear wall increase: (for special masonry shear walls) ξ 1.5=TMS 402-16, Section 7.3.2.6.1.2 Seismic shear stress:fvE i ξ vEi b i di:= Allowable shear stress: Limits: LimitMVD 0.25 1.0  :=LimitASD 3 f'mpsi 2 f'mpsi   134.16 89.44  psi=:=An i di b i:= Shear steel: Fvsi 0.5 Av i Fsdi An i si   := Wind: WFvmi 1 4 4.0 1.75 min 1.0 MW i vW i di,     -   f'm   psiSM "Yes"=if 1 2 4.0 1.75 min 1.0 MW i vW i di,     -   f'm   psiSM "No"=if := WFv_limiti 3 f'mpsi MW i vW i di0.25if linterp LimitMVD LimitASD, MW i vW i d i,   0.25 MW i vW i di1.0if 2 f'mpsi MW i vW i di1.0if :=WFvi min WFvmi Fvsi+WFv_limiti, ( ) := 3 of 4 Seismic: EFvmi 1 4 4.0 1.75 min 1.0 MEi vEi d i,     -   f'm   psiSM "Yes"=if 1 2 4.0 1.75 min 1.0 MEi vEi d i,     -   f'm   psiSM "No"=if := EFv_limiti 3 f'mpsi MEi vEi di0.25if linterp Limit MVD Limit ASD, MEi vEi di,   0.25 MEi vEi di1.0if 2 f'mpsi MEi vEi di1.0if :=EFvi min EFvmi Fvsi+EFv_limiti, ( ) := Overturning calculations: Individual pier overturning Global overturning Tensile force:T i max MW i MEi, ( ) d i :=T 7.1 5.6  kip=Tensile force:GT max GMW GME, ( ) TL :=GT 4.1 kip= Required area of steel: As i T i Fs :=Required area of steel: GAs GT Fs := ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Final checks: Wind shear DCR: Seismic shear DCR: Area of steel at end of pier/walls: Pier steel: Global wall end steel: fvW i WFvi 0.5 0.4  = fvE i EFvi 0.6 0.5  =As i 0.22 0.17  in2=GAs 0.13 in2= (2) #5 at end of wall As 0.31 in2( )20.62 in2=:= Special reinforced shear wall maximum steel ratio, ACI 530-13 Section 8.3.4.4 SteelRatioi "M/Vd > 1.0, if axial load is greater than 5.9 kip/ft, the flexural tesile steel ratio must not exceed ρ.max = 0.0058" "M/Vd > 1.0, if axial load is greater than 5.9 kip/ft, the flexural tesile steel ratio must not exceed ρ.max = 0.0058"  = ========================================================================================== 4 of 4 F.F. Level 1 100'-0"F.F. Level 1100'-0" F.F. Level 2 113'-5" F.F. Level 2113'-5" ROOF PLAN 140'-3" ROOF PLAN140'-3" B.O. FOOTING 97'-0"B.O. FOOTING97'-0" F.F. LEVEL 3 126'-10" F.F. LEVEL 3126'-10" DECK BEARING 140'-10" DECK BEARING140'-10" Wall Anchorage and Drag Connections 442 NORTH MAIN STREET, BOUNTIFUL, UTAH 84010 801-298-1118 OFFICE 801-298-1122 FAX wca@wcaeng.com PROJECT: CLIENT: TOPIC: DATE: ENGINEER: PROJECT # ________________________________________________________________________________________________________ Diaphragm criteria: Diaphragm length:Lf 100ft:=Seismic importance factor:IE 1.0:= Height to deck bearing:h d 15ft:=Design spectal parapmeter:S DS 0.373:= Parapet height (from deck):h p 0 ft:=Irregular structure (in-plane):Irr 1= Wall weight:Wp 60psf:=Seismic Design Category: Joist anchor spacing:S joist 8 ft:=Diaphragm rigidity: Embed anchor spacing:S embed 96in:=Design methodology: In-plane diaphragm loads (unit shears): Wind unit shear (Ult. loads):Wip 349plf:=Wip Wip Design "LRFD"=if 0.6 WipDesign "ASD"=if :=Wip 209.4 plf= Seismic unit shear (Ult. loads):Eip 182plf:=Eip Eip IrrDesign "LRFD"=if 0.7 EipIrrDesign "ASD"=if :=Eip 127.4 plf= Out-of-plane diaphragm connection force: Amplication factor for diapragm flexibiltiy:ka min 2.0 1.0 Lf 100 ft( )+ ,  :=ka 2= Seismic Out-of-plane force (Ult):Fp max 5 psf 0.2 Wp, ( ) SDC "A"=if max 0.2 Wp0.4 S DSIEWp, ( ) SDC "A"Rigidity "Rigid"=if max 0.2 Wp0.4 S DSkaIEWp, ( ) SDC "A"Rigidity "Flex"=if := Fp 17.9 psf=Fp Fp Design "LRFD"=if 0.7 FpDesign "ASD"=if :=Fp 12.53 psf= Increase factor for steel elements in SDC C through F: Steelincr 1.0 SDC "A"=( )SDC "B"=( )if 1.4 otherwise :=Steelincr 1.4= Connection forces: Out-of-plane anchorage forces: Maximum Out-of-plane force at embed:Pns_oop Fp hd 2 hp+ Sjoist:=Pns_oop 0.8 kip= Psteel_oop Pns_oop Steelincr:=Psteel_oop 1.1 kip= ======================================================================================== Wall anchorage for cmu walls Connections 23019 Simpson Strong-Tie® Wood Construction Connectors 55 Ho l d o w n s a n d Te n s i o n T i e s C- C - 2 0 2 1 © 2 0 2 1 S I M P S O N S T R O N G - T I E C O M P A N Y I N C . Model No.Ga. Dimensions (in.)SO (in.) Fasteners (in.)Minimum Wood Member Size (in.) Allowable Tension Loads (160)Deflection at Highest Allowable Load (in.) Code Ref. W L CL Anchor Rod Diameter Wood Fasteners DF/SP SPF/HF LTTP2 10 2 9/16 14 15/16 1 1⁄8 7/16 1/2, 5⁄8, 3⁄4 (15) 0.148 x 2 1/2 1 1/2 x 3 1/2 (narrow edge)4,5 1,845 1,695 0.009 IBC, FL, LA 1/2 (12) 0.148 x 1 1/2 1 1/2 x 3 1/2 1,680 6 1,5456 0.008 5⁄8, 3⁄4 2,135 1,965 0.011 1/2 (12) #9 x 1 1/2" SD 1 1/2 x 3 1/2 2,320 1,970 0.013 5⁄8, 3⁄4 2,570 2,045 0.015 1/2, 5⁄8, 3⁄4 (12) 0.148 x 2 1/2 3 x 3 1/2 2,275 2,230 0.013 LTTI31 18 3 3⁄4 31 1 3/8 1/4 5⁄8 (18) 0.148 x 1 1/2 3 x 3 1/2 1,350 1,160 0.193 HTT4 11 2 1/2 12 3/8 1 5/16 7/16 5⁄8 (18) 0.148 x 1 1/2 1 1/2 x 3 1/2 3,000 2,580 0.090 — (18) 0.148 x 1 1/2 3 x 3 1/2 3,610 3,105 0.086 IBC, FL, LA(18) 0.162 x 2 1/2 3 x 3 1/2 4,235 3,640 0.123 (18) #10 x 1 1/2" SD 1 1/2 x 5 1/2 4,455 3,830 0.112 —(18) #10 x 1 1/2" SD 3 x 3 1/2 4,455 3,830 0.112 HTT5 11 2 1/2 16 1 7/16 7/16 5⁄8 (26) 0.148 x 1 1/2 3 x 3 1/2 4,350 3,740 0.120 IBC, FL, LA(26) 0.148 x 3 3 x 3 1/2 4,670 4,015 0.116 (26) 0.162 x 2 1/2 3 x 3 1/2 5,090 4,375 0.135 (26) #10 x 1 1/2" SD 1 1/2 x 5 1/2 4,555 3,915 0.114 —HTT5KT 11 2 1/2 16 1 7/16 7/16 5⁄8 (26) #10 x 2 1/2" SD 3 x 3 1/2 5,445 5,360 0.103 HTT5-3/4 11 2 1/2 16 1 7/16 7/16 3⁄4 (26) 0.148 x 1 1/2 1 1/2 x 5 1/2 4,065 3,495 0.103 IBC, FL(26) 0.162 x 2 1/2 3 x 3 1/2 5,090 4,375 0.121 (26) #10 x 1 1/2" SD 1 1/2 x 7 1/4 4,830 4,155 0.100 1. LTTI31 installed flush with concrete or masonry has an allowable load of 2,285 lb. 2. Allowable load for HTT5 with a BP5 /8-2 bearing-plate washer installed in the seat of the holdown is 5,295 lb. for DF/SP and 4,555 lb. for SPF/HF. 3. For LTTP2, standard cut washer is required when using 1/2" and 5⁄8" anchor rods. 4. For (15) nail installations on narrow edge of 2x4 (minimum) joist, LTTP2 installed flush with concrete or masonry has an allowable load of 2,560 lb. for DF/SP and 2,355 lb. for SPF/HF. 5. LTTP2 installed with (15) #9 x 1 1/2" SD screws on narrow edge of 2x joist has an allowable load of 2,105 lb. for DF/SP and 1,935 lb. for SPF/HF. 6. For (12) nail installations on I-joist or wide face of 2x member, LTTP2 installed flush with concrete or masonry has an allowable load of 1,950 lb. for DF/SP and 1,795 lb. for SPF/HF. 7. Fasteners: Nail dimensions are listed diameter by length. SD screws are Simpson Strong-Tie® Strong-Drive SD Connector screws. See pp. 21–22 for fastener information. LTT/HTT Tension Ties (cont.) These products are available with additional corrosion protection. For more information, see p. 14. We’ve made selecting the right anchor bolt for the holdown easier. Check out our Holdown Anchorage Solutions table on p. 44 or the Post-to-Foundation Designer at app.strongtie.com/pfd. Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 348–352 for more information. LTT/LTTI Tension TieHTT Tension Tie Simpson Strong-Tie® Wood Construction Connectors 273 St r a p s a n d T i e s C- C - 2 0 2 1 © 2 0 2 1 S I M P S O N S T R O N G - T I E C O M P A N Y I N C . CS/CMST/CMSTC/CSHP Coiled Straps (cont.) Typical CSHP Installation (CS/CMST similar)Typical CSHP Installation Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 348–352 for more information. These products are available with additional corrosion protection. For more information, see p. 14. For stainless-steel fasteners, see p. 21. Model No.Total L Ga. DF/SP SPF/HF Allowable Tension Loads (160) Code Ref.Fasteners (in.) End Length (in.) Fasteners (in.) End Length (in.) CMST12 40'12 (74) 0.162 x 2 1/2 33 (84) 0.162 x 2 1/2 38 9,215 IBC, FL, LA (86) 0.148 x 2 1/2 39 (98) 0.148 x 2 1/2 44 9,215 CMST14 52 1/2'14 (56) 0.162 x 2 1/2 26 (66) 0.162 x 2 1/2 30 6,475 (66) 0.148 x 2 1/2 30 (76) 0.148 x 2 1/2 34 6,475 CMSTC16 54'16 (50) 0.148 x 3 1/4 20 (58) 0.148 x 3 1/4 25 4,690 CS14 100'14 (26) 0.148 x 2 1/2 15 (30) 0.148 x 2 1/2 16 2,490 (30) 0.131 x 2 1/2 16 (36) 0.131 x 2 1/2 19 2,490 CS16 150'16 (20) 0.148 x 2 1/2 11 (22) 0.148 x 2 1/2 13 1,705 (22) 0.131 x 2 1/2 13 (26) 0.131 x 2 1/2 15 1,705 CS20 250'20 (12) 0.148 x 2 1/2 7 (14) 0.148 x 2 1/2 9 1,030 (14) 0.131 x 2 1/2 9 (16) 0.131 x 2 1/2 9 1,030 CSHP18 75'18 (14) 0.148 x 2 1/2 9 (16) 0.148 x 2 1/2 10 1,540 (16) 0.131 x 2 1/2 10 (18) 0.131 x 2 1/2 11 1,540 CSHP20 75'20 (12) 0.148 x 2 1/2 8 (12) 0.148 x 2 1/2 8 1,160 (12) 0.131 x 2 1/2 8 (14) 0.131 x 2 1/2 9 1,160 1. See pp. 266–267 for Straps and Ties General Notes. 2. Calculate the connector value for a reduced number of nails as follows: Example: CMSTC16 in DF/SP with 40 nails total. (Half of the nails in each member being connected) 3. See p. 274 for alternate nailing and lap splice information. 4. Fasteners: Nail dimensions are listed diameter by length. See pp. 21–22 for fastener information. No. of Nails UsedAllowable Load =x Table LoadNo. of Nails in Table 50 Nails (Table) 40 Nails (Used)x 4,690 lb. = 3,752 lb.Allowable Load = CMST Coiled StrapCMSTC Coiled StrapCS Coiled StrapCSHP High-Performance Coiled Strap Simpson Strong-Tie® Wood Construction Connectors 347 Fa s t e n e r s C- C - 2 0 2 1 © 2 0 2 1 S I M P S O N S T R O N G - T I E C O M P A N Y I N C . Strong-Drive® SDS HEAVY-DUTY CONNECTOR Screw S6 Threadlength Length Identification on all SDS screw heads (¼" x 6" SDS shown) Type-17 point reduces installation torque and makes driving easier The Simpson Strong-Tie® Strong-Drive SDS Heavy-Duty Connector screw is a 1/4"-diameter structural wood screw ideal for various connector installations as well as wood-to-wood applications. It installs with no predrilling and has been extensively tested in various applications. For more information about package quantities, visit strongtie.com. Features: •The Type-17 point reduces installation torque and makes driving easier with no predrilling and minimal wood splitting. •Available with a double-barrier coating or in Type 316 stainless steel. Carbon steel loads apply to corresponding stainless-steel models. •3/8" hex washer head is stamped with the No-Equal sign and fastener length for easy identification after installation. •For the 3/8" hex-head driver bit, order model no. BITHEXR38-R1. Material: Heat-treated carbon steel, Type 316 stainless steel Finish: Double barrier (all lengths); Type 316 stainless steel (1 1/2" thru 3 1/2" lengths) Codes: See p. 11 for Code Reference Key Chart Structural Fastener 1/4" x 6" Strong-Drive SDS Heavy-Duty Connector Screw Strong-Drive SDS Heavy-Duty Connector Screw Model No. Size (in.) Thread Length (in.) Fasteners per Carton6 DF/SP Allowable Loads (lb.)4 SPF/HF Allowable Loads (lb.)4 Code Ref. Shear (100)Withdrawal5 (100) Shear (100)Withdrawal5 (100)Wood Side Plate3 Steel Side Plate Wood Side Plate3 Steel Side Plate 1 1/2"1 3/4" SCL 16 ga. 14 ga. and 12 ga. 10 ga. or Greater Wood or Steel Side Plate 1 1/2"1 3/4" SPF LVL 16 ga. 14 ga. and 12 ga. 10 ga. or Greater Wood or Steel Side Plate SDS25112 1/4 x 1 1/2 1 1,500 ——250 250 250 170 ——180 180 180 120 IBC, FL, LA SDS25200 1/4 x 2 1 1/4 1,300 ——250 290 290 215 ——180 210 210 150 SDS25212 1/4 x 2 1/2 1 1/2 1,100 190 —250 390 420 255 135 —180 280 300 180 SDS25300 1/4 x 3 2 950 280 —250 420 420 345 200 —180 300 300 240 SDS25312 1/4 x 3 1/2 2 1/4 900 340 340 250 420 420 385 245 245 180 300 300 270 SDS25412 1/4 x 4 1/2 2 3⁄4 800 350 340 250 420 420 475 250 245 180 300 300 330 SDS25500 1/4 x 5 2 3⁄4 500 350 340 250 420 420 475 250 245 180 300 300 330 SDS25600 1/4 x 6 3 1/4 600 350 340 250 420 420 560 250 245 180 300 300 395 SDS25800 1/4 x 8 3 1/4 400 350 340 250 420 420 560 250 245 180 300 300 395 1. Screws may be provided with the 4CUT™ or Type-17 point. 2. Strong-Drive SDS Heavy-Duty Connector screws install best using a low-speed 1/2" drill with a 3/8" hex-head driver. 3. Shear values are valid for connections between two members with full thread penetration into the main member. For other wood side plate values, see Fastening Systems Technical Guide (C-F-2019TECHSUP) at strongtie.com. 4. Allowable loads are shown at a wood load duration factor of CD = 1.0. Loads may be increased for load duration per the building code up to a CD = 1.6. Tabulated values must be multiplied by all applicable NDS adjustment factors. 5. Withdrawal loads shown are in pounds (lb.) and are based on penetration of the screw's entire threaded section into the main member. If thread penetration into the main member is less than the Thread Length as shown in the table for DF/SP, reduce allowable load by 172 lb./in. of thread not in main member. Use 121 lb./in. for SPF/HF. 6. Fasteners per Carton represents the quantity of screws that are available in bulk packaging. Screws are also available in mini-bulk and retail packs. Refer to Simpson Strong-Tie Fastening Systems catalog (C-F-2019) at strongtie.com. 7. LSL wood-to-wood applications that require 4 1/2", 5", 6" or 8" SDS Heavy-Duty Connector screws are limited to interior-dry use only. 8. Where predrilling is required for Strong-Drive SDS Heavy-Duty Connector screws, predrill diameter is 5/32". 9. Minimum spacing, edge, and end distance requirements are listed in ICC-ES ESR-2236. For smaller spacing, please contact Simpson Strong-Tie Engineering. These products are available with additional corrosion protection. For more information, see p. 14.For stainless-steel fasteners, see p. 21. Strong-Drive® SDS HEAVY-DUTY CONNECTOR Screw F.F. Level 1 100'-0"F.F. Level 1100'-0" F.F. Level 2 113'-5" F.F. Level 2113'-5" ROOF PLAN 140'-3" ROOF PLAN140'-3" B.O. FOOTING 97'-0"B.O. FOOTING97'-0" F.F. LEVEL 3 126'-10" F.F. LEVEL 3126'-10" DECK BEARING 140'-10" DECK BEARING140'-10" Wall Designs for out of Plane Forces Wood and Masonry Wood Wall Stud Design - Out-of-Plane Design : National Design Specification for Wood Construction, Loads combinations per IBC Sec. 1605.3.1 (ASD Basic) (Program assumes IBC Sec. 2306.2.1 is followed for wind design) Member: WW-1, office exterior wall studs at floors Wind end zone pressures Loading: Material: DL 20psf 8ft 30psf 8ft( ) 2+:=(Dead, plf)W 0.6 20.2psf( ):=(Wind service level, psf) Material "SAW":= Type "DF/L #2":=LL 50 15+( )psf 8ft[ ] 2:=(Live, plf)EQ 0.15 15psf( ):=(EQ. strength level, psf) Fc 1350 psi=SL 35psf 8ft:=(Snow/Roof, plf)SDS 0.373:= Fb 900 psi=SLper 25%:=(Snow/Roof load included with seismic) E 1600000 psi=Trib 16in:=(Stud spacing) ecc 0in:=(Axial load eccentricity) Δ 240:=D = Allowable deflection (70% of wind used in deflection calculations IBC Table 1604.3 footnote f). Member Properties: Size: b 1.5in:=smaller/weak direction lx 14ft:=strong axis unbraced length (Program assumes strong axis bending)d 5.5in:=larger/strong direction ly 0ft:=weak axis unbraced length Ply 1:=Is stud member built-up? If ly = 0ft (i.e. stud wall w/ sheathing) CL (beam stability factor) for bending is unity, CL = 1 (NDS 3.3.3) Calculations Check Ch1: Check Ch2: F'bx 1053 1170 1170 1170 2527.2 2152.8 2527.2 2152.8   psi= >fbx 0 0 0 0 628.24 81.64 471.18 61.23   psi=F'c 464.87 470.76 470.76 470.76 489.1 489.1 489.1 489.1   psi= >fc 103.43 271.52 148.69 263.43 103.43 108.84 263.43 243.38   psi= Check Ch3: Check Ch4: interactioni 0.05 0.33 0.1 0.31 0.36 0.1 0.67 0.3   = <= 1.0 δ 0 0 0 0 0.29 0.05 0.22 0.04   in=<= Δallow 0.7 in= Load Combinations: 1 - D 2 - D + L 3 - D + S 4 - D + 0.75(L) + 0.75(S) 5 - D + W 6 - D + 0.7(E) 7 - D + 0.75(W) + 0.75(L) + 0.75(S) 8 - D + 0.75(0.7(E)) + 0.75(L) + 0.75(S) (E = rQE ± 0.2(SDS)D) Ch1 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch2 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch3 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch4 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   = Wood Wall Stud Design - Out-of-Plane Design : National Design Specification for Wood Construction, Loads combinations per IBC Sec. 1605.3.1 (ASD Basic) (Program assumes IBC Sec. 2306.2.1 is followed for wind design) Member: WW-2, gym mezzanine bearing wall studs Wind end zone pressures Loading: Material: DL 20psf 9ft:=(Dead, plf)W 5psf:=(Wind service level, psf) Material "SAW":= Type "DF/L #2":=LL 100psf 9ft:=(Live, plf)EQ 0.15 15psf( ):=(EQ. strength level, psf) Fc 1350 psi=SL 0psf 0ft:=(Snow/Roof, plf)SDS 0.373:= Fb 900 psi=SLper 25%:=(Snow/Roof load included with seismic) E 1600000 psi=Trib 12in:=(Stud spacing) ecc 0in:=(Axial load eccentricity) Δ 240:=D = Allowable deflection (70% of wind used in deflection calculations IBC Table 1604.3 footnote f). Member Properties: Size: b 1.5in:=smaller/weak direction lx 14ft:=strong axis unbraced length (Program assumes strong axis bending)d 5.5in:=larger/strong direction ly 0ft:=weak axis unbraced length Ply 1:=Is stud member built-up? If ly = 0ft (i.e. stud wall w/ sheathing) CL (beam stability factor) for bending is unity, CL = 1 (NDS 3.3.3) Calculations Check Ch1: Check Ch2: F'bx 1053 1170 1170 1170 2527.2 2152.8 2527.2 2152.8   psi= >fbx 0 0 0 0 194.38 61.23 145.79 45.92   psi=F'c 464.87 470.76 470.76 470.76 489.1 489.1 489.1 489.1   psi= >fc 21.82 130.91 21.82 103.64 21.82 22.96 103.64 104.78   psi= Check Ch3: Check Ch4: interactioni 0 0.08 0 0.05 0.08 0.03 0.12 0.07   = <= 1.0 δ 0 0 0 0 0.09 0.04 0.07 0.03   in=<= Δallow 0.7 in= Load Combinations: 1 - D 2 - D + L 3 - D + S 4 - D + 0.75(L) + 0.75(S) 5 - D + W 6 - D + 0.7(E) 7 - D + 0.75(W) + 0.75(L) + 0.75(S) 8 - D + 0.75(0.7(E)) + 0.75(L) + 0.75(S) (E = rQE ± 0.2(SDS)D) Ch1 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch2 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch3 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch4 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   = Wood Wall Stud Design - Out-of-Plane Design : National Design Specification for Wood Construction, NDS Loads combinations per IBC Sec. 1605.3.1 (ASD Basic) (Program assumes IBC Sec. 2306.2.1 is followed for wind design) Member: Tall exterior wall studs, grids 6-7 and A-C Wind end zone pressures Loading: Material: DL 20psf 8ft 30psf 8ft+:=(Dead, plf)W 0.6 17.2psf( ):=(Wind service level, psf) Material "LAM":= Type "LSL 1.5E":=LL 50 15+( )psf 8ft:=(Live, plf)EQ 0.15 15psf( ):=(EQ. strength level, psf) Fc 2105 psi=SL 35psf 8ft:=(Snow/Roof, plf)SDS 0.373:= Fb 2250 psi=SLper 25%:=(Snow/Roof load included with seismic) E 1500000 psi=Trib 12in:=(Stud spacing) ecc 0in:=(Axial load eccentricity) Δ 240:=D = Allowable deflection (70% of wind used in deflection calculations IBC Table 1604.3 footnote f). Member Properties: Size: b 1.5in:=smaller/weak direction lx 26.83ft:=strong axis unbraced length (Program assumes strong axis bending)d 7.25in:=larger/strong direction ly 0ft:=weak axis unbraced length Ply 1:=Is stud member built-up? If ly = 0ft (i.e. stud wall w/ sheathing) CL (beam stability factor) for bending is unity, CL = 1 (NDS 3.3.3) Calculations Check Ch1: Check Ch2: F'bx 2025 2250 2250 2250 3744 3744 3744 3744   psi= >fbx 0 0 0 0 848 129.42 636 97.06   psi=F'c 311.79 312.49 312.49 312.49 314.69 314.69 314.69 314.69   psi= >fc 36.78 84.6 62.53 91.95 36.78 38.7 91.95 79.39   psi= Check Ch3: Check Ch4: interactioni 0.01 0.07 0.04 0.09 0.27 0.05 0.32 0.1   = <= 1.0 δ 0 0 0 0 1.18 0.26 0.88 0.19   in=<= Δallow 1.34 in= Load Combinations: 1 - D 2 - D + L 3 - D + S 4 - D + 0.75(L) + 0.75(S) 5 - D + W 6 - D + 0.7(E) 7 - D + 0.75(W) + 0.75(L) + 0.75(S) 8 - D + 0.75(0.7(E)) + 0.75(L) + 0.75(S) (E = rQE ± 0.2(SDS)D) Ch1 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch2 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch3 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch4 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   = Wood King Stud Design - Out-of-Plane Design : National Design Specification for Wood Construction, NDS Loads combinations per IBC Sec. 1605.3.1 (ASD Basic) (Program assumes IBC Sec. 2306.2.1 is followed for wind design) Member: Typical wall opening king stud. 12'-9" opening, with wind end zone pressures. Loading: Material: DL 20psf 16ft 12in:=(Dead, lb)W 0.6 20.2psf( ):=(Wind service level, psf) Material "SAW":= Type "DF/L #2":=LL 0lbf:=(Live, lb)EQ 0.15 15psf( ):=(EQ. strength level, psf) Fc 1350 psi=SL 35psf 16ft 12in:=(Snow/Roof, lb)SDS 0.373:= Fb 900 psi=ecc 0in:=(Axial load eccentricity)SLper 25%:=(Snow/Roof load included with seismic) E 1600000 psi=Trib 48in:=(Lateral load tributary) Δ 120:=D = Allowable deflection (70% of wind used in deflection calculations IBC Table 1604.3 footnote f). Member Properties: Size: b 1.5in:=smaller/weak direction lx 14ft:=strong axis unbraced length (Program assumes strong axis bending)d 5.5in:=larger/strong direction ly 0ft:=weak axis unbraced length Ply 2:=Is stud member built-up? If ly = 0ft (i.e. stud wall w/ sheathing) CL (beam stability factor) for bending is unity, CL = 1 (NDS 3.3.3) Calculations Check Ch1: Check Ch2: F'bx 1053 1170 1170 1170 1872 1872 1872 1872   psi= >fbx 0 0 0 0 942.36 122.46 706.77 91.84   psi=F'c 278.92 282.45 282.45 282.45 293.46 293.46 293.46 293.46   psi= >fc 19.39 19.39 53.33 44.85 19.39 20.41 44.85 26.77   psi= Check Ch3: Check Ch4: interactioni 0 0 0.04 0.03 0.53 0.07 0.44 0.06   = <= 1.0 δ 0 0 0 0 0.44 0.08 0.33 0.06   in=<= Δallow 1.4 in= Load Combinations: 1 - D 2 - D + L 3 - D + S 4 - D + 0.75(L) + 0.75(S) 5 - D + W 6 - D + 0.7(E) 7 - D + 0.75(W) + 0.75(L) + 0.75(S) 8 - D + 0.75(0.7(E)) + 0.75(L) + 0.75(S) (E = rQE ± 0.2(SDS)D) Ch1 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch2 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch3 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch4 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   = Wood King Stud Design - Out-of-Plane Design : National Design Specification for Wood Construction, NDS Loads combinations per IBC Sec. 1605.3.1 (ASD Basic) (Program assumes IBC Sec. 2306.2.1 is followed for wind design) Member: 16' opening king stud at event wind end zone pressures. Loading: Material: DL 20psf 2ft 12in:=(Dead, lb)W 0.6 20.2psf( ):=(Wind service level, psf) Material "SAW":= Type "DF/L #2":=LL 0lbf:=(Live, lb)EQ 0.15 15psf( ):=(EQ. strength level, psf) Fc 1350 psi=SL 35psf 2ft 12in:=(Snow/Roof, lb)SDS 0.373:= Fb 900 psi=ecc 0in:=(Axial load eccentricity)SLper 25%:=(Snow/Roof load included with seismic) E 1600000 psi=Trib 96in:=(Lateral load tributary) Δ 120:=D = Allowable deflection (70% of wind used in deflection calculations IBC Table 1604.3 footnote f). Member Properties: Size: b 1.5in:=smaller/weak direction lx 16ft:=strong axis unbraced length (Program assumes strong axis bending)d 5.5in:=larger/strong direction ly 0ft:=weak axis unbraced length Ply 3:=Is stud member built-up? If ly = 0ft (i.e. stud wall w/ sheathing) CL (beam stability factor) for bending is unity, CL = 1 (NDS 3.3.3) Calculations Check Ch1: Check Ch2: F'bx 1053 1170 1170 1170 1872 1872 1872 1872   psi= >fbx 0 0 0 0 1641.11 213.26 1230.83 159.95   psi=F'c 219.74 221.65 221.65 221.65 227.67 227.67 227.67 227.67   psi= >fc 1.62 1.62 4.44 3.74 1.62 1.7 3.74 2.23   psi= Check Ch3: Check Ch4: interactioni 0 0 0 0 0.88 0.11 0.66 0.09   = <= 1.0 δ 0 0 0 0 1 0.19 0.75 0.14   in=<= Δallow 1.6 in= Load Combinations: 1 - D 2 - D + L 3 - D + S 4 - D + 0.75(L) + 0.75(S) 5 - D + W 6 - D + 0.7(E) 7 - D + 0.75(W) + 0.75(L) + 0.75(S) 8 - D + 0.75(0.7(E)) + 0.75(L) + 0.75(S) (E = rQE ± 0.2(SDS)D) Ch1 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch2 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch3 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch4 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   = Wood King Stud Design - Out-of-Plane Design : National Design Specification for Wood Construction, NDS Loads combinations per IBC Sec. 1605.3.1 (ASD Basic) (Program assumes IBC Sec. 2306.2.1 is followed for wind design) Member: Tall wall opening king stud. 8'-0" opening, with wind end zone pressures. Loading: Material: DL 20psf 8ft 12in:=(Dead, lb)W 0.6 17.2psf( ):=(Wind service level, psf) Material "LAM":= Type "LSL 1.5E":=LL 0lbf:=(Live, lb)EQ 0.15 15psf( ):=(EQ. strength level, psf) Fc 2105 psi=SL 35psf 8ft 12in:=(Snow/Roof, lb)SDS 0.373:= Fb 2250 psi=ecc 0in:=(Axial load eccentricity)SLper 25%:=(Snow/Roof load included with seismic) E 1500000 psi=Trib 48in:=(Lateral load tributary) Δ 120:=D = Allowable deflection (70% of wind used in deflection calculations IBC Table 1604.3 footnote f). Member Properties: Size: b 1.5in:=smaller/weak direction lx 26.83ft:=strong axis unbraced length (Program assumes strong axis bending)d 7.25in:=larger/strong direction ly 0ft:=weak axis unbraced length Ply 3:=Is stud member built-up? If ly = 0ft (i.e. stud wall w/ sheathing) CL (beam stability factor) for bending is unity, CL = 1 (NDS 3.3.3) Calculations Check Ch1: Check Ch2: F'bx 2025 2250 2250 2250 3600 3600 3600 3600   psi= >fbx 0 0 0 0 1130.67 172.56 848 129.42   psi=F'c 187.08 187.49 187.49 187.49 188.82 188.82 188.82 188.82   psi= >fc 4.9 4.9 13.49 11.34 4.9 5.16 11.34 6.77   psi= Check Ch3: Check Ch4: interactioni 0 0 0.01 0 0.32 0.05 0.25 0.04   = <= 1.0 δ 0 0 0 0 1.57 0.34 1.18 0.26   in=<= Δallow 2.68 in= Load Combinations: 1 - D 2 - D + L 3 - D + S 4 - D + 0.75(L) + 0.75(S) 5 - D + W 6 - D + 0.7(E) 7 - D + 0.75(W) + 0.75(L) + 0.75(S) 8 - D + 0.75(0.7(E)) + 0.75(L) + 0.75(S) (E = rQE ± 0.2(SDS)D) Ch1 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch2 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch3 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch4 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   = MASONRY WALL - Out-of-Plane Design TMS 402-16 Building Code Requirements for Masonry Structures Loads combinations per IBC Sec. 1605.3.1 (ASD Basic) Member/Wall No.: Masonry wall MW-1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ e d d t d = t / 2 h D, L & S E W DBL REINFORCING SINGLE REINFORCING Loading Conditions: Dead load:D 20psf 30 psf2+:= Floor live load:L 50 15+( )psf 2:= Roof live/snow load:S 35psf:= Percent of snow included in seismic:Sper 0 %:= Load tributary length:Trib 12ft:= Load eccentricity:ecc 8 in( ) 0.01:= C&C wind load (ultimate level):W 20.2psf:= Seismic load (ultimate level):E 0.15 60psf( ):= Spectral response coef.:SDS 0.373:= Wall Geometry: Wall reinforcing spacing:Sp 32in:= Equivalent thickness:t 5.2in:= Dist. from compression face to steel:d 3.8in:= Wall height:h 14ft:= Reinforcing bar size #: Wall reinforcing: Masonry and Reinforcing Steel Properties: Masonry compressive strength: Weight of masonry wall pier:Ww 60psf:= Radius of gyration of masonry block:r 2.53in:= Modulous of elastisity of masonry: TMS 402-16, Section 4.2.2 Grade of reinf. steel: TMS 402-16, Section 8.3.3.1 Modulous of elastisity of reinf. steel:Es 29000ksi:=TMS 402-16, Section 4.2.2 Calculations: Code stress checks: Load Combinations: (E = rQE ± 0.2(SDS)D) Eq.16-8 = D Eq.16-9 = D + L Eq.16-10 = D + S Eq.16-11 = D + 0.75(L) + 0.75(S) Eq.16-12a = D + 0.6(W) Eq.16-12b = D + 0.7(E) Eq.16-13a = D + 0.75(0.6(W)) + 0.75(L) + 0.75(S) Eq.16-13b = D + 0.75(0.7(E)) + 0.75(L) + 0.75(S) Ch1 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch2 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch3 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch4 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   = 1 of 1 MASONRY WALL - Out-of-Plane Design TMS 402-16 Building Code Requirements for Masonry Structures Loads combinations per IBC Sec. 1605.3.1 (ASD Basic) Member/Wall No.: Masonry wall MW-2 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ e d d t d = t / 2 h D, L & S E W DBL REINFORCING SINGLE REINFORCING Loading Conditions: Dead load:D 20psf 3430 psf62+30psf 9+:= Floor live load:L 50 15+( )psf 62100psf 9+:= Roof live/snow load:S 35psf 34:= Percent of snow included in seismic:Sper 0 %:= Load tributary length:Trib 1 ft:= Load eccentricity:ecc 8 in( ) 0.01:= C&C wind load (ultimate level):W 10psf:= Seismic load (ultimate level):E 0.15 60psf( ):= Spectral response coef.:SDS 0.373:= Wall Geometry: Wall reinforcing spacing:Sp 32in:= Equivalent thickness:t 5.2in:= Dist. from compression face to steel:d 3.8in:= Wall height:h 14ft:= Reinforcing bar size #: Wall reinforcing: Masonry and Reinforcing Steel Properties: Masonry compressive strength: Weight of masonry wall pier:Ww 60psf:= Radius of gyration of masonry block:r 2.53in:= Modulous of elastisity of masonry: TMS 402-16, Section 4.2.2 Grade of reinf. steel: TMS 402-16, Section 8.3.3.1 Modulous of elastisity of reinf. steel:Es 29000ksi:=TMS 402-16, Section 4.2.2 Calculations: Code stress checks: Load Combinations: (E = rQE ± 0.2(SDS)D) Eq.16-8 = D Eq.16-9 = D + L Eq.16-10 = D + S Eq.16-11 = D + 0.75(L) + 0.75(S) Eq.16-12a = D + 0.6(W) Eq.16-12b = D + 0.7(E) Eq.16-13a = D + 0.75(0.6(W)) + 0.75(L) + 0.75(S) Eq.16-13b = D + 0.75(0.7(E)) + 0.75(L) + 0.75(S) Ch1 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch2 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch3 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch4 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   = 1 of 1 MASONRY WALL - Out-of-Plane Design TMS 402-16 Building Code Requirements for Masonry Structures Loads combinations per IBC Sec. 1605.3.1 (ASD Basic) Member/Wall No.: Masonry wall MW-3 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ e d d t d = t / 2 h D, L & S E W DBL REINFORCING SINGLE REINFORCING Loading Conditions: Dead load:D 20psf:= Floor live load:L 0 psf:= Roof live/snow load:S 35psf:= Percent of snow included in seismic:Sper 0 %:= Load tributary length:Trib 34ft:= Load eccentricity:ecc 8 in( ) 0.01:= C&C wind load (ultimate level):W 17.1psf:= Seismic load (ultimate level):E 0.15 60psf( ):= Spectral response coef.:SDS 0.373:= Wall Geometry: Wall reinforcing spacing:Sp 24in:= Equivalent thickness:t 5.2in:= Dist. from compression face to steel:d 3.8in:= Wall height:h 27ft:= Reinforcing bar size #: Wall reinforcing: Masonry and Reinforcing Steel Properties: Masonry compressive strength: Weight of masonry wall pier:Ww 60psf:= Radius of gyration of masonry block:r 2.53in:= Modulous of elastisity of masonry: TMS 402-16, Section 4.2.2 Grade of reinf. steel: TMS 402-16, Section 8.3.3.1 Modulous of elastisity of reinf. steel:Es 29000ksi:=TMS 402-16, Section 4.2.2 Calculations: Code stress checks: Load Combinations: (E = rQE ± 0.2(SDS)D) Eq.16-8 = D Eq.16-9 = D + L Eq.16-10 = D + S Eq.16-11 = D + 0.75(L) + 0.75(S) Eq.16-12a = D + 0.6(W) Eq.16-12b = D + 0.7(E) Eq.16-13a = D + 0.75(0.6(W)) + 0.75(L) + 0.75(S) Eq.16-13b = D + 0.75(0.7(E)) + 0.75(L) + 0.75(S) Ch1 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch2 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch3 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch4 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   = 1 of 1 MASONRY WALL - Out-of-Plane Design TMS 402-16 Building Code Requirements for Masonry Structures Loads combinations per IBC Sec. 1605.3.1 (ASD Basic) Member/Wall No.: Masonry wall MW-4 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ e d d t d = t / 2 h D, L & S E W DBL REINFORCING SINGLE REINFORCING Loading Conditions: Dead load:D 20psf:= Floor live load:L 0 psf:= Roof live/snow load:S 35psf:= Percent of snow included in seismic:Sper 0 %:= Load tributary length:Trib 34ft:= Load eccentricity:ecc 8 in( ) 0.01:= C&C wind load (ultimate level):W 17.1psf:= Seismic load (ultimate level):E 0.15 60psf( ):= Spectral response coef.:SDS 0.373:= Wall Geometry: Wall reinforcing spacing:Sp 32in:= Equivalent thickness:t 5.2in:= Dist. from compression face to steel:d 3.8in:= Wall height:h 16ft:= Reinforcing bar size #: Wall reinforcing: Masonry and Reinforcing Steel Properties: Masonry compressive strength: Weight of masonry wall pier:Ww 60psf:= Radius of gyration of masonry block:r 2.53in:= Modulous of elastisity of masonry:TMS 402-16, Section 4.2.2 Grade of reinf. steel:TMS 402-16, Section 8.3.3.1 Modulous of elastisity of reinf. steel:Es 29000ksi:=TMS 402-16, Section 4.2.2 Calculations: Code stress checks: Load Combinations: (E = rQE ± 0.2(SDS)D) Eq.16-8 = D Eq.16-9 = D + L Eq.16-10 = D + S Eq.16-11 = D + 0.75(L) + 0.75(S) Eq.16-12a = D + 0.6(W) Eq.16-12b = D + 0.7(E) Eq.16-13a = D + 0.75(0.6(W)) + 0.75(L) + 0.75(S) Eq.16-13b = D + 0.75(0.7(E)) + 0.75(L) + 0.75(S) Ch1 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch2 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch3 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch4 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   = 1 of 1 F.F. Level 1 100'-0"F.F. Level 1100'-0" F.F. Level 2 113'-5" F.F. Level 2113'-5" ROOF PLAN 140'-3" ROOF PLAN140'-3" B.O. FOOTING 97'-0"B.O. FOOTING97'-0" F.F. LEVEL 3 126'-10" F.F. LEVEL 3126'-10" DECK BEARING 140'-10" DECK BEARING140'-10" Masonry Wall Piers and Columns MASONRY WALL PIER - Out-of-Plane Design TMS 402-16 Building Code Requirements for Masonry Structures Loads combinations per IBC Sec. 1605.3.1 (ASD Basic) Member/Pier No.: MP-1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Loading Conditions: Lop H L Lwp t d d t d = t / 2 e E W DBL REINFORCING SINGLE REINFORCING Dead load:D 20psf 30psf 2+:= Floor live load:L 50 15+( )psf 2:= Roof live/snow load:S 35psf:= Percent of snow included in seismic:Sper 0 %:= Load tributary length:Trib 12ft:= Load eccentricity:ecc 8 in( ) 0.01:= C&C wind load (ultimate level):W 20.2psf:= Seismic load (ultimate level):E 0.15 75psf( ):= Spectral response coef.:SDS 0.373:= Wall Geometry: Wall pier length:Lwp 8 in:= Equivalent pier thickness:t 7.63in:= Dist. from compression face to steel:d 5.25in:= Wall pier height at opening:l 8ft:= Wall pier height above opening:H 6ft:=K 0.85:= Effective height of wall pier height:h l H+( )K:= Opening length:Lop 4ft:= Wall reinforcing, "DBL" or "S": Reinforcing bar size #: # of reinforcing bars in wall pier:NBar 2:= Masonry and Reinforcing Steel Properties: Masonry compressive strength: Weight of masonry wall pier:Ww 75psf:= Radius of gyration of masonry block:r 2.19in:= Is steel tied (stirrups), "Y" or "N":tie "Y":=TMS 402-16, Section 8.3.3.3 Modulous of elastisity of masonry: TMS 402-16, Section 4.2.2 Grade of reinf. steel: TMS 402-16, Section 8.3.3.1 Modulous of elastisity of reinf. steel:Es 29000ksi:=TMS 402-16, Section 4.2.2 Calculations: Code stress checks: Load Combinations: (E = QE ± 0.2(SDS)D) Eq.16-8 = D Eq.16-9 = D + L Eq.16-10 = D + S Eq.16-11 = D + 0.75(L) + 0.75(S) Eq.16-12a = D + 0.6(W) Eq.16-12b = D + 0.7(E) Eq.16-13a = D + 0.75(0.6(W)) + 0.75(L) + 0.75(S) Eq.16-13b = D + 0.75(0.7(E)) + 0.75(L) + 0.75(S) Ch1 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch2 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch3 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch4 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   = 1 of 1 MASONRY WALL PIER - Out-of-Plane Design TMS 402-16 Building Code Requirements for Masonry Structures Loads combinations per IBC Sec. 1605.3.1 (ASD Basic) Member/Pier No.: MP-2 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Loading Conditions: Lop H L Lwp t d d t d = t / 2 e E W DBL REINFORCING SINGLE REINFORCING Dead load:D 20psf 3430psf 62+:= Floor live load:L 50 15+( )psf 62100psf 9+:= Roof live/snow load:S 35psf 34:= Percent of snow included in seismic:Sper 0 %:= Load tributary length:Trib 1 ft:= Load eccentricity:ecc 8 in( ) 0.01:= C&C wind load (ultimate level):W 10psf:= Seismic load (ultimate level):E 0.15 75psf( ):= Spectral response coef.:SDS 0.373:= Wall Geometry: Wall pier length:Lwp 16in:= Equivalent pier thickness:t 7.63in:= Dist. from compression face to steel:d 5.25in:= Wall pier height at opening:l 8ft:= Wall pier height above opening:H 6ft:=K 0.85:= Effective height of wall pier height:h l H+( )K:= Opening length:Lop 7ft:= Wall reinforcing, "DBL" or "S": Reinforcing bar size #: # of reinforcing bars in wall pier:NBar 4:= Masonry and Reinforcing Steel Properties: Masonry compressive strength: Weight of masonry wall pier:Ww 75psf:= Radius of gyration of masonry block:r 2.19in:= Is steel tied (stirrups), "Y" or "N":tie "Y":=TMS 402-16, Section 8.3.3.3 Modulous of elastisity of masonry: TMS 402-16, Section 4.2.2 Grade of reinf. steel: TMS 402-16, Section 8.3.3.1 Modulous of elastisity of reinf. steel:Es 29000ksi:=TMS 402-16, Section 4.2.2 Calculations: Code stress checks: Load Combinations: (E = QE ± 0.2(SDS)D) Eq.16-8 = D Eq.16-9 = D + L Eq.16-10 = D + S Eq.16-11 = D + 0.75(L) + 0.75(S) Eq.16-12a = D + 0.6(W) Eq.16-12b = D + 0.7(E) Eq.16-13a = D + 0.75(0.6(W)) + 0.75(L) + 0.75(S) Eq.16-13b = D + 0.75(0.7(E)) + 0.75(L) + 0.75(S) Ch1 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch2 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch3 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch4 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   = 1 of 1 MASONRY WALL PIER - Out-of-Plane Design TMS 402-16 Building Code Requirements for Masonry Structures Loads combinations per IBC Sec. 1605.3.1 (ASD Basic) Member/Pier No.: MP-3 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Loading Conditions: Lop H L Lwp t d d t d = t / 2 e E W DBL REINFORCING SINGLE REINFORCING Dead load:D 20psf 3430psf 62+:= Floor live load:L 50 15+( )psf 62100psf 9+:= Roof live/snow load:S 35psf 34:= Percent of snow included in seismic:Sper 0 %:= Load tributary length:Trib 1 ft:= Load eccentricity:ecc 8 in( ) 0.01:= C&C wind load (ultimate level):W 10psf:= Seismic load (ultimate level):E 0.15 75psf( ):= Spectral response coef.:SDS 0.373:= Wall Geometry: Wall pier length:Lwp 8 in:= Equivalent pier thickness:t 7.63in:= Dist. from compression face to steel:d 5.25in:= Wall pier height at opening:l 8ft:= Wall pier height above opening:H 6ft:=K 0.85:= Effective height of wall pier height:h l H+( )K:= Opening length:Lop 3ft:= Wall reinforcing, "DBL" or "S": Reinforcing bar size #: # of reinforcing bars in wall pier:NBar 2:= Masonry and Reinforcing Steel Properties: Masonry compressive strength: Weight of masonry wall pier:Ww 75psf:= Radius of gyration of masonry block:r 2.19in:= Is steel tied (stirrups), "Y" or "N":tie "N":=TMS 402-16, Section 8.3.3.3 Modulous of elastisity of masonry: TMS 402-16, Section 4.2.2 Grade of reinf. steel: TMS 402-16, Section 8.3.3.1 Modulous of elastisity of reinf. steel:Es 29000ksi:=TMS 402-16, Section 4.2.2 Calculations: Code stress checks: Load Combinations: (E = QE ± 0.2(SDS)D) Eq.16-8 = D Eq.16-9 = D + L Eq.16-10 = D + S Eq.16-11 = D + 0.75(L) + 0.75(S) Eq.16-12a = D + 0.6(W) Eq.16-12b = D + 0.7(E) Eq.16-13a = D + 0.75(0.6(W)) + 0.75(L) + 0.75(S) Eq.16-13b = D + 0.75(0.7(E)) + 0.75(L) + 0.75(S) Ch1 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch2 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch3 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch4 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   = 1 of 1 MASONRY WALL PIER - Out-of-Plane Design TMS 402-16 Building Code Requirements for Masonry Structures Loads combinations per IBC Sec. 1605.3.1 (ASD Basic) Member/Pier No.: MP-4 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Loading Conditions: Lop H L Lwp t d d t d = t / 2 e E W DBL REINFORCING SINGLE REINFORCING Dead load:D 20psf:= Floor live load:L 0 psf:= Roof live/snow load:S 35psf:= Percent of snow included in seismic:Sper 0 %:= Load tributary length:Trib 4 ft:= Load eccentricity:ecc 8 in( ) 0.01:= C&C wind load (ultimate level):W 17.1psf:= Seismic load (ultimate level):E 0.15 75psf( ):= Spectral response coef.:SDS 0.373:= Wall Geometry: Wall pier length:Lwp 16in:= Equivalent pier thickness:t 7.63in:= Dist. from compression face to steel:d 5.25in:= Wall pier height at opening:l 10ft:= Wall pier height above opening:H 17ft:=K 0.85:= Effective height of wall pier height:h l H+( )K:= Opening length:Lop 6ft:= Wall reinforcing, "DBL" or "S": Reinforcing bar size #: # of reinforcing bars in wall pier:NBar 4:= Masonry and Reinforcing Steel Properties: Masonry compressive strength: Weight of masonry wall pier:Ww 75psf:= Radius of gyration of masonry block:r 2.19in:= Is steel tied (stirrups), "Y" or "N":tie "Y":=TMS 402-16, Section 8.3.3.3 Modulous of elastisity of masonry: TMS 402-16, Section 4.2.2 Grade of reinf. steel: TMS 402-16, Section 8.3.3.1 Modulous of elastisity of reinf. steel:Es 29000ksi:=TMS 402-16, Section 4.2.2 Calculations: Code stress checks: Load Combinations: (E = QE ± 0.2(SDS)D) Eq.16-8 = D Eq.16-9 = D + L Eq.16-10 = D + S Eq.16-11 = D + 0.75(L) + 0.75(S) Eq.16-12a = D + 0.6(W) Eq.16-12b = D + 0.7(E) Eq.16-13a = D + 0.75(0.6(W)) + 0.75(L) + 0.75(S) Eq.16-13b = D + 0.75(0.7(E)) + 0.75(L) + 0.75(S) Ch1 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch2 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch3 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch4 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   = 1 of 1 MASONRY COLUMN - Combine axial and flexure TMS 402-16 Building Code Requirements for Masonry Structures Loads combinations per IBC Sec. 1605.3.1 (ASD Basic) (All ecc. moments are additive with flexure moments) Member/Col No.: MP-5 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ st r o n g a x i s Y axis X axis Width De p t h d d weak axis Column Geometry: Effective column height:h 14ft:= Column width:Cw 7.625in:= Column depth:Cd 23.625in:= Load eccentricity (x-axis bending):eccx 0 in:= Load eccentricity (y-axis bending):eccy 0.01 8in:= Dist. from compression face to steel: (for x-axis bending) dx 20in:= Dist. from compression face to steel: (for y-axis bending) dy 3.81in:= Reinforcing bar size #: # of reinforcing bars in column:NBar 6:= # of bars for x-axis flexure:NBar.x 2:= # of bars for y-axis flexure:NBar.y 2:= Loading Conditions: Gravity loads: Flexure loads: Dead load:PD 18.3kip:=C&C wind moment (ultimate level):MW.x 0 kip ft:= Floor live load:PL 29.7kip:=MW.y 0 kip ft:= Roof live/snow load:PS 16kip:=Seismic moment (ultimate level):ME.x 0kip ft:= Percent of snow included in seismic:Sper 0 %:=ME.y 0kip ft:= Spectral response coef.:SDS 0.373:= Masonry and Reinforcing Steel Properties: Masonry compressive strength: Weight of masonry column:Wcol 150pcf:= Is steel tied (stirrups), "Y" or "N":tie "Y":=TMS 402-16, Section 8.3.3.3 Modulous of elastisity of masonry: TMS 402-16, Section 4.2.2 Grade of reinf. steel: TMS 402-16, Section 8.3.3.1 Modulous of elastisity of reinf. steel:Es 29000ksi:=TMS 402-16, Section 4.2.2 Design Calculations Code stress checks: Load Combinations: (E = rQE ± 0.2(SDS)D) Eq.16-8 = D Eq.16-9 = D + L Eq.16-10 = D + S Eq.16-11 = D + 0.75(L) + 0.75(S) Eq.16-12a = D + 0.6(W) Eq.16-12b = D + 0.7(E) Eq.16-13a = D + 0.75(0.6(W)) + 0.75(L) + 0.75(S) Eq.16-13b = D + 0.75(0.7(E)) + 0.75(L) + 0.75(S) Ch1 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch2 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch3 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   =Ch4 "OK" "OK" "OK" "OK" "OK" "OK" "OK" "OK"   = 1 of 1 F.F. Level 1 100'-0"F.F. Level 1100'-0" F.F. Level 2 113'-5" F.F. Level 2113'-5" ROOF PLAN 140'-3" ROOF PLAN140'-3" B.O. FOOTING 97'-0"B.O. FOOTING97'-0" F.F. LEVEL 3 126'-10" F.F. LEVEL 3126'-10" DECK BEARING 140'-10" DECK BEARING140'-10" Steel Roof Joist V2020.1JWWW.VULCRAFT.COM 203 LOAD TABLES ASD - LH-SERIES 138 139 ASDASD Joist Designation Depth (in.)28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 Approx. Wt. (lbs./ft.) Span (ft.) 28 626 831 968 1036 1342 1438 1570 1839 2034 2459 2665 626 831 968 1036 1342 1438 1570 1839 1944 2459 2665 29 596 791 920 983 1271 1362 1487 1741 1922 2324 2518 2962 596 791 920 983 1271 1362 1487 1674 1747 2324 2518 2839 30 568 755 874 934 1204 1291 1409 1651 1818 2199 2383 2798 568 755 874 934 1186 1291 1380 1510 1576 2130 2317 2561 31 542 720 831 889 1143 1225 1337 1566 1722 2083 2257 2647 542 720 818 873 1074 1169 1249 1367 1427 1928 2098 2319 32 517 687 791 846 1085 1163 1270 1488 1633 1975 2140 2507 2888 499 658 743 793 975 1062 1134 1242 1296 1751 1905 2106 2406 33 494 656 753 806 1032 1106 1207 1414 1550 1875 2032 2377 2738 454 600 677 722 888 967 1033 1131 1181 1595 1735 1918 2192 34 472 627 718 768 982 1052 1149 1346 1474 1782 1931 2257 2592 2936 415 548 618 660 811 883 944 1033 1079 1457 1585 1752 2002 2286 35 451 600 685 733 935 1002 1094 1282 1402 1695 1837 2137 2445 2791 380 502 566 604 743 809 865 946 988 1335 1452 1605 1834 2094 36 432 574 654 700 892 956 1043 1223 1335 1614 1750 2018 2310 2655 2995 349 461 520 555 682 743 794 869 907 1226 1333 1474 1684 1923 2127 37 414 550 625 669 851 912 996 1166 1272 1539 1668 1910 2186 2527 2833 321 424 478 511 628 684 731 800 835 1128 1227 1356 1550 1770 1958 38 396 527 598 640 813 871 951 1113 1214 1468 1591 1810 2071 2395 2685 296 391 441 471 579 631 674 738 770 1040 1132 1251 1429 1632 1806 39 380 505 573 612 777 833 909 1065 1160 1402 1520 1717 1965 2273 2548 274 362 408 435 536 583 623 682 712 962 1046 1157 1321 1509 1670 40 365 485 549 587 743 797 870 1019 1108 1340 1453 1632 1867 2159 2421 254 335 378 403 496 540 577 632 659 891 969 1071 1224 1398 1546 41 350 466 526 562 708 763 833 976 1060 1282 1390 1553 1777 2055 2303 2884 236 311 351 374 460 501 536 586 612 827 899 994 1136 1297 1435 1782 42 337 448 505 540 667 729 780 857 895 1228 1331 1479 1692 1957 2194 2747 219 289 326 348 428 466 498 545 569 769 836 924 1056 1206 1334 1657 43 323 429 484 517 639 704 762 837 874 1177 1275 1410 1614 1866 2092 2620 2925 205 270 305 325 400 439 475 520 543 716 779 861 983 1123 1243 1543 1708 44 310 412 464 496 612 679 736 818 854 1129 1223 1346 1541 1782 1998 2501 2793 192 253 285 305 375 414 448 496 518 668 726 803 917 1048 1159 1439 1593 45 297 395 445 475 586 651 711 800 835 1083 1174 1287 1473 1703 1909 2390 2669 2936 180 238 267 285 351 388 423 476 495 624 679 750 857 979 1083 1345 1489 1688 46 286 379 427 456 563 625 682 782 816 1040 1128 1231 1409 1629 1827 2287 2553 2808 169 223 251 268 329 364 397 454 472 584 635 702 802 916 1013 1258 1393 1579 47 275 364 410 438 540 600 655 766 799 999 1084 1179 1349 1560 1749 2190 2445 2689 159 209 236 252 309 342 373 435 452 547 595 658 751 858 950 1179 1305 1480 48 265 350 394 420 519 576 629 737 782 958 1043 1130 1293 1495 1676 2099 2344 2578 2950 150 197 222 236 291 322 351 408 433 513 558 617 705 805 891 1106 1225 1389 1510 49 255 337 379 403 499 554 605 709 766 919 1004 1084 1240 1434 1608 2014 2248 2473 2836 142 186 209 222 274 303 331 383 415 482 525 580 663 757 837 1040 1151 1305 1419 50 245 324 365 387 481 533 582 682 751 882 964 1041 1191 1377 1544 1933 2159 2374 2727 133 175 197 209 258 285 312 361 396 454 493 546 623 712 788 978 1083 1228 1335 51 237 313 352 371 463 513 561 656 722 848 926 1000 1144 1323 1484 1858 2074 2281 2625 126 166 186 196 243 269 294 340 373 427 465 514 587 670 742 921 1020 1156 1257 52 228 301 339 357 446 495 540 632 694 815 891 962 1101 1273 1427 1786 1995 2194 2529 119 156 176 185 228 255 278 321 352 403 438 485 554 632 700 869 962 1090 1186 53 220 291 327 344 430 477 521 609 668 784 857 925 1059 1225 1373 1719 1920 2111 2437 113 148 166 175 216 241 263 303 332 380 414 457 523 597 660 820 908 1029 1119 54 213 281 319 331 415 460 502 587 643 755 826 891 1020 1180 1322 1656 1849 2033 2351 107 140 158 165 204 228 249 285 314 359 391 432 494 564 624 775 858 973 1058 55 206 271 305 319 401 444 485 566 620 728 796 859 983 1137 1275 1596 1782 1960 2269 102 133 150 156 193 215 236 270 297 340 370 409 467 534 591 733 812 921 1001 56 199 262 295 308 387 429 468 546 598 702 767 828 948 1096 1229 1539 1718 1890 2191 97 126 142 148 183 204 223 256 281 322 350 387 443 505 559 695 769 872 948 23 28LH13 28LH14 28LH15 28LH1628LH1028LH1128LH12 13 16 17 18 21 1112527303538427988102495663 STANDARD LOAD TABLE/OPEN WEB STEEL JOISTS, LH-SERIES Based on a 50 ksi Maximum Yield Strength - Loads Shown In Pounds Per Linear Foot (plf) 28LH20 28LH21 28LH2228LH19 28LH2328LH1728LH1828LH0528LH0628LH0728LH0828LH09 Ge n e r a l I n f o r m a t i o n Br i d g i n g & A c c . Ec o n o m i c J o i s t G u i d e Co d e o f S t a n d a r d P r a c t i c e St a n d a r d S p e c i f i c a t i o n K & K C S LH & D L H Jo i s t G i r d e r s Fi r e R a t i n g s SJ-1 SJ-2 LOAD TABLES ASD - K-SERIES V2020.1JWWW.VULCRAFT.COM 155 72 73 Joist Designation Depth (In.)18 18 18 18 18 18 18 20 20 20 20 20 20 20 22 22 22 22 22 22 22 Approx. Wt. (lbs./ft.) Span (ft.) 18 550 550 550 550 550 550 550 550 550 550 550 550 550 550 19 514 550 550 550 550 550 550 550 550 550 550 550 550 550 494 523 523 523 523 523 523 550 550 550 550 550 550 550 20 463 550 550 550 550 550 550 517 550 550 550 550 550 550 423 490 490 490 490 490 490 517 550 550 550 550 550 550 21 420 506 550 550 550 550 550 468 550 550 550 550 550 550 550 550 550 550 550 550 550 364 426 460 460 460 460 460 453 520 520 520 520 520 520 550 550 550 550 550 550 550 22 382 460 518 550 550 550 550 426 514 550 550 550 550 550 550 550 550 550 550 550 550 316 370 414 438 438 438 438 393 461 490 490 490 490 490 548 548 548 548 548 548 548 23 349 420 473 516 550 550 550 389 469 529 550 550 550 550 518 550 550 550 550 550 550 276 323 362 393 418 418 418 344 402 451 468 468 468 468 491 518 518 518 518 518 518 24 320 385 434 473 526 550 550 357 430 485 528 550 550 550 475 536 550 550 550 550 550 242 284 318 345 382 396 396 302 353 396 430 448 448 448 431 483 495 495 495 495 495 25 294 355 400 435 485 550 550 329 396 446 486 541 550 550 438 493 537 550 550 550 550 214 250 281 305 337 377 377 266 312 350 380 421 426 426 381 427 464 474 474 474 474 26 272 328 369 402 448 538 550 304 366 412 449 500 550 550 404 455 496 550 550 550 550 190 222 249 271 299 354 361 236 277 310 337 373 405 405 338 379 411 454 454 454 454 27 252 303 342 372 415 498 550 281 339 382 416 463 550 550 374 422 459 512 550 550 550 169 198 222 241 267 315 347 211 247 277 301 333 389 389 301 337 367 406 432 432 432 28 234 282 318 346 385 463 548 261 315 355 386 430 517 550 348 392 427 475 550 550 550 151 177 199 216 239 282 331 189 221 248 269 298 353 375 270 302 328 364 413 413 413 29 218 263 296 322 359 431 511 243 293 330 360 401 482 550 324 365 398 443 532 550 550 136 159 179 194 215 254 298 170 199 223 242 268 317 359 242 272 295 327 387 399 399 30 203 245 276 301 335 402 477 227 274 308 336 374 450 533 302 341 371 413 497 550 550 123 144 161 175 194 229 269 153 179 201 218 242 286 336 219 245 266 295 349 385 385 31 190 229 258 281 313 376 446 212 256 289 314 350 421 499 283 319 347 387 465 550 550 111 130 146 158 175 207 243 138 162 182 198 219 259 304 198 222 241 267 316 369 369 32 178 215 242 264 294 353 418 199 240 271 295 328 395 468 265 299 326 363 436 517 549 101 118 132 144 159 188 221 126 147 165 179 199 235 276 180 201 219 242 287 337 355 33 168 202 228 248 276 332 393 187 226 254 277 309 371 440 249 281 306 341 410 486 532 92 108 121 131 145 171 201 114 134 150 163 181 214 251 164 183 199 221 261 307 334 34 158 190 214 233 260 312 370 176 212 239 261 290 349 414 235 265 288 321 386 458 516 84 98 110 120 132 156 184 105 122 137 149 165 195 229 149 167 182 202 239 280 314 35 149 179 202 220 245 294 349 166 200 226 246 274 329 390 221 249 272 303 364 432 494 77 90 101 110 121 143 168 96 112 126 137 151 179 210 137 153 167 185 219 257 292 36 141 169 191 208 232 278 330 157 189 213 232 259 311 369 209 236 257 286 344 408 467 70 82 92 101 111 132 154 88 103 115 125 139 164 193 126 141 153 169 201 236 269 37 148 179 202 220 245 294 349 198 223 243 271 325 386 442 81 95 106 115 128 151 178 116 130 141 156 185 217 247 38 141 170 191 208 232 279 331 187 211 230 256 308 366 419 74 87 98 106 118 139 164 107 119 130 144 170 200 228 39 133 161 181 198 220 265 314 178 200 218 243 292 347 397 69 81 90 98 109 129 151 98 110 120 133 157 185 211 40 127 153 172 188 209 251 298 169 190 207 231 278 330 377 64 75 84 91 101 119 140 91 102 111 123 146 171 195 41 161 181 197 220 264 314 359 85 95 103 114 135 159 181 42 153 173 188 209 252 299 342 79 88 96 106 126 148 168 43 146 165 179 200 240 285 326 73 82 89 99 117 138 157 44 139 157 171 191 229 272 311 68 76 83 92 109 128 146 AASSDD Based on a 50 ksi Maximum Yield Strength - Loads Shown In Pounds Per Linear Foot (plf) STANDARD LOAD TABLE FOR OPEN WEB STEEL JOISTS, K-SERIES 18K7 18K9 18K10 20K3 22K418K318K418K518K620K920K10 22K520K420K520K620K7 22K6 22K7 22K9 22K10 22K11 8.9 10.1 11.6 6.56.4 7.2 7.7 8.4 10.1 11.6 7.3 7.77.2 7.7 8.4 8.9 8.5 9.0 10.2 11.7 11.9 ASD Ge n e r a l I n f o r m a t i o n Br i d g i n g & A c c . Ec o n o m i c J o i s t G u i d e Co d e o f S t a n d a r d P r a c t i c e St a n d a r d S p e c i f i c a t i o n K & K C S LH & D L H Jo i s t G i r d e r s Fi r e R a t i n g s SJ-3 F.F. Level 1 100'-0"F.F. Level 1100'-0" F.F. Level 2 113'-5" F.F. Level 2113'-5" ROOF PLAN 140'-3" ROOF PLAN140'-3" B.O. FOOTING 97'-0"B.O. FOOTING97'-0" F.F. LEVEL 3 126'-10" F.F. LEVEL 3126'-10" DECK BEARING 140'-10" DECK BEARING140'-10" Steel Beams RAM Structural System V17.04.03.05. - Floor Plan: Roof JSC DataBase: 23019 03/16/23 11:07:15 1 1 1.71.9 2 2 2.4 3 3 3.7 4 4 4.5 5 5 5.6 6 6 6.3 6.4 6.6 7 7 7.2 7.7 7.7 8 8 G G F F E.7 E E D D C C B B A A 1 2 34 5 67 8 91 0 1 1 12 1 3 1 4 15 1 6 1 7 18 1 9 2 0 21 2 2 2 3 24 2 5 2 6 27 2 8 2 9 30 3 1 3 2 3 3 34 3 5 3 6 3 7 38 3 9 4 0 4 1 42 43 44 4 5 4 6 4 7 48 4 9 5 0 5 1 52 5 3 5 4 5 5 56 5 7 5 8 5 9 60 6 1 6 2 6 3 64 6 5 6 6 6 7 68 6 9 7 0 7 1 72 7 3 7 4 75 76 7 7 7 8 7 9 80 8 1 8 2 8 3 84 8 5 8 6 8 7 88 8 9 9 0 9 1 92 93 94 9 5 9 6 9 7 98 9 9 1 0 0 1 0 1 10 2 1 0 3 1 0 4 1 0 5 10 6 1 0 7 1 0 8 1 0 9 11 0 1 1 1 1 1 2 1 1 3 11 4 1 1 5 1 1 6 1 1 7 11 8 1 1 9 1 2 0 1 2 1 12 2 1 2 3 1 2 4 1 2 5 126 127 128 12 9 1 3 0 1 3 1 1 3 2 13 3 1 3 4 1 3 5 1 3 6 13 7 1 3 8 1 3 9 1 4 0 14 1 1 4 2 1 4 3 1 4 4 14 5 1 4 6 1 4 7 14 8 1 4 9 1 5 0 15 1 1 5 2 1 5 3 15 4 15 5 1 5 6 1 5 7 15 8 1 5 9 1 6 0 161 16 2 1 6 3 1 6 4 165 16 6 1 6 7 1 6 8 16 9 1 7 0 1 7 1 17 2 1 7 3 1 7 4 1 7 5 17 6 1 7 7 1 7 8 17 9 1 8 0 1 8 1 18 2 18 3 184 18 5 186 18 7 18 8 189 19 0 1 9 1 192 19 3 19 4 1 9 5 1 9 6 1 9 7 19 8 1 9 9 2 0 0 2 0 1 20 2 2 0 3 2 0 4 2 0 5 206 20 7 2 0 8 2 0 9 2 1 0 21 1 2 1 2 2 1 3 2 1 4 21 5 2 1 6 2 1 7 2 1 8 21 9 2 2 0 2 2 1 2 2 2 22 3 2 2 4 2 2 5 2 2 6 22 7 2 2 8 2 2 9 2 3 0 23 1 2 3 2 2 3 3 2 3 4 23 5 2 3 6 2 3 7 2 3 8 23 9 2 4 0 2 4 1 2 4 2 24 3 2 4 4 2 4 5 2 4 6 24 7 2 4 8 24 9 Steel Beam Numbers Roof Level Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof Beam Number = 1 SPAN INFORMATION (ft): I-End (7.00,70.33) J-End (31.88,70.33) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = W14X26 Fy = 50.0 ksi Total Beam Length (ft) = 24.88 Mp (kip-ft) = 167.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 2.000 0.59 0.00 0.0 0.00 0.00 0.0 2.73 Snow 0.00 4.000 0.59 0.00 0.0 0.00 0.00 0.0 2.44 Snow 0.00 6.000 0.59 0.00 0.0 0.00 0.00 0.0 2.16 Snow 0.00 8.000 0.59 0.00 0.0 0.00 0.00 0.0 1.89 Snow 0.00 10.000 0.59 0.00 0.0 0.00 0.00 0.0 1.64 Snow 0.00 12.000 0.59 0.00 0.0 0.00 0.00 0.0 1.40 Snow 0.00 14.000 0.59 0.00 0.0 0.00 0.00 0.0 1.23 Snow 0.00 16.000 0.59 0.00 0.0 0.00 0.00 0.0 1.20 Snow 0.00 18.000 0.59 0.00 0.0 0.00 0.00 0.0 1.20 Snow 0.00 20.000 0.59 0.00 0.0 0.00 0.00 0.0 1.20 Snow 0.00 22.000 0.59 0.00 0.0 0.00 0.00 0.0 1.20 Snow 0.00 24.000 0.59 0.00 0.0 0.00 0.00 0.0 1.20 Snow 0.00 SHEAR: Max Va (DL+LL) = 14.26 kips Vn/1.50 = 70.89 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 82.9 12.0 2.0 1.00 1.67 100.30 Controlling DL+LL 82.9 12.0 2.0 1.00 1.67 100.30 REACTIONS (kips): Left Right DL reaction 3.36 3.67 Max +LL reaction 10.90 8.61 Max +total reaction 14.26 12.28 DEFLECTIONS:Ratio Dead load (in) at 12.44 ft = -0.355 < -1.000 L/D = 842 0.35 Live load (in) at 12.19 ft = -0.946 L/D = 315 > 240 0.76 Net Total load (in) at 12.19 ft = -1.301 L/D = 229 > 180 0.78 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof Beam Number = 2 SPAN INFORMATION (ft): I-End (7.00,88.29) J-End (31.88,88.29) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = W14X26 Fy = 50.0 ksi Total Beam Length (ft) = 24.88 Mp (kip-ft) = 167.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 2.000 0.64 0.00 0.0 0.00 0.00 0.0 3.01 Snow 0.00 4.000 0.64 0.00 0.0 0.00 0.00 0.0 2.69 Snow 0.00 6.000 0.64 0.00 0.0 0.00 0.00 0.0 2.38 Snow 0.00 8.000 0.64 0.00 0.0 0.00 0.00 0.0 2.08 Snow 0.00 10.000 0.64 0.00 0.0 0.00 0.00 0.0 1.79 Snow 0.00 12.000 0.64 0.00 0.0 0.00 0.00 0.0 1.52 Snow 0.00 14.000 0.64 0.00 0.0 0.00 0.00 0.0 1.31 Snow 0.00 16.000 0.64 0.00 0.0 0.00 0.00 0.0 1.28 Snow 0.00 18.000 0.64 0.00 0.0 0.00 0.00 0.0 1.25 Snow 0.00 20.000 0.80 0.00 0.0 0.00 0.00 0.0 1.57 Snow 0.00 22.000 0.81 0.00 0.0 0.00 0.00 0.0 1.58 Snow 0.00 24.000 0.81 0.00 0.0 0.00 0.00 0.0 1.55 Snow 0.00 SHEAR: Max Va (DL+LL) = 15.77 kips Vn/1.50 = 70.89 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 92.1 12.0 2.0 1.01 1.67 100.30 Controlling DL+LL 92.1 12.0 2.0 1.01 1.67 100.30 REACTIONS (kips): Left Right DL reaction 3.75 4.48 Max +LL reaction 12.02 10.00 Max +total reaction 15.77 14.47 DEFLECTIONS:Ratio Dead load (in) at 12.44 ft = -0.403 < -1.000 L/D = 741 0.40 Live load (in) at 12.31 ft = -1.048 L/D = 285 > 240 0.84 Net Total load (in) at 12.31 ft = -1.451 L/D = 206 > 180 0.87 Page 2/20 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof Beam Number = 42 SPAN INFORMATION (ft): I-End (31.88,70.33) J-End (55.29,70.33) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length (ft) = 23.42 Mp (kip-ft) = 138.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.125 0.59 0.00 0.0 0.00 0.00 0.0 1.20 Snow 0.00 3.125 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 5.125 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 7.125 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 9.125 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 11.125 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 13.125 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 15.125 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 17.125 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 19.125 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 21.125 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 23.125 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 SHEAR: Max Va (DL+LL) = 11.15 kips Vn/1.50 = 63.02 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 61.6 11.1 2.0 1.02 1.67 82.83 Controlling DL+LL 61.6 11.1 2.0 1.02 1.67 82.83 REACTIONS (kips): Left Right DL reaction 3.39 3.64 Max +LL reaction 6.98 7.51 Max +total reaction 10.37 11.15 DEFLECTIONS:Ratio Dead load (in) at 11.71 ft = -0.344 < -1.000 L/D = 818 0.34 Live load (in) at 11.71 ft = -0.708 L/D = 397 > 240 0.60 Net Total load (in) at 11.71 ft = -1.052 L/D = 267 > 180 0.67 Page 3/20 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof Beam Number = 43 SPAN INFORMATION (ft): I-End (31.88,88.29) J-End (55.29,88.29) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length (ft) = 23.42 Mp (kip-ft) = 138.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.125 0.81 0.00 0.0 0.00 0.00 0.0 1.52 Snow 0.00 3.125 0.81 0.00 0.0 0.00 0.00 0.0 1.49 Snow 0.00 5.125 0.81 0.00 0.0 0.00 0.00 0.0 1.46 Snow 0.00 7.125 0.81 0.00 0.0 0.00 0.00 0.0 1.43 Snow 0.00 9.125 0.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 11.125 0.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 13.125 0.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 15.125 0.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 17.125 0.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 19.125 0.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 21.125 0.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 23.125 0.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 SHEAR: Max Va (DL+LL) = 13.90 kips Vn/1.50 = 63.02 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 77.1 11.1 2.0 1.02 1.67 82.83 Controlling DL+LL 77.1 11.1 2.0 1.02 1.67 82.83 REACTIONS (kips): Left Right DL reaction 4.70 5.04 Max +LL reaction 8.42 8.85 Max +total reaction 13.12 13.90 DEFLECTIONS:Ratio Dead load (in) at 11.71 ft = -0.476 < -1.000 L/D = 590 0.48 Live load (in) at 11.71 ft = -0.839 L/D = 335 > 240 0.72 Net Total load (in) at 11.71 ft = -1.316 L/D = 214 > 180 0.84 Page 4/20 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof Beam Number = 75 SPAN INFORMATION (ft): I-End (47.21,110.92) J-End (72.54,110.92) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = W14X26 Fy = 50.0 ksi Total Beam Length (ft) = 25.33 Mp (kip-ft) = 167.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.792 0.67 0.00 0.0 0.00 0.00 0.0 1.35 Snow 0.00 3.792 0.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 5.792 0.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 7.792 0.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 9.792 0.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 11.792 0.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 13.792 0.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 15.792 1.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 17.792 1.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 19.792 1.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 21.792 0.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 23.792 0.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 SHEAR: Max Va (DL+LL) = 14.63 kips Vn/1.50 = 70.89 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 94.8 13.8 2.0 1.01 1.67 100.30 Controlling DL+LL 94.8 13.8 2.0 1.01 1.67 100.30 REACTIONS (kips): Left Right DL reaction 4.96 6.27 Max +LL reaction 8.17 8.36 Max +total reaction 13.13 14.63 DEFLECTIONS:Ratio Dead load (in) at 13.05 ft = -0.639 < -1.000 L/D = 476 0.64 Live load (in) at 12.79 ft = -0.899 L/D = 338 > 240 0.71 Net Total load (in) at 12.79 ft = -1.537 L/D = 198 > 180 0.91 Page 5/20 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof Beam Number = 92 SPAN INFORMATION (ft): I-End (55.29,70.33) J-End (72.54,70.33) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 17.25 Mp (kip-ft) = 102.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.708 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 3.708 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 5.708 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 7.708 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 9.708 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 11.708 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 13.708 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 15.708 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 SHEAR: Max Va (DL+LL) = 7.26 kips Vn/1.50 = 57.34 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 33.3 7.7 2.0 1.00 1.67 61.63 Controlling DL+LL 33.3 7.7 2.0 1.00 1.67 61.63 REACTIONS (kips): Left Right DL reaction 2.32 2.37 Max +LL reaction 4.80 4.90 Max +total reaction 7.12 7.26 DEFLECTIONS:Ratio Dead load (in) at 8.63 ft = -0.155 < -1.000 L/D = 1339 0.15 Live load (in) at 8.63 ft = -0.320 L/D = 647 > 240 0.37 Net Total load (in) at 8.63 ft = -0.474 L/D = 436 > 180 0.41 Page 6/20 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof Beam Number = 93 SPAN INFORMATION (ft): I-End (55.29,88.29) J-End (72.54,88.29) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 17.25 Mp (kip-ft) = 102.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.708 0.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 3.708 0.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 5.708 0.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 7.708 1.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 9.708 1.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 11.708 1.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 13.708 0.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 15.708 0.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 SHEAR: Max Va (DL+LL) = 10.70 kips Vn/1.50 = 57.34 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 51.9 9.7 2.0 1.00 1.67 61.63 Controlling DL+LL 51.9 9.7 2.0 1.00 1.67 61.63 REACTIONS (kips): Left Right DL reaction 4.53 4.97 Max +LL reaction 5.63 5.74 Max +total reaction 10.15 10.70 DEFLECTIONS:Ratio Dead load (in) at 8.71 ft = -0.351 < -1.000 L/D = 590 0.35 Live load (in) at 8.71 ft = -0.375 L/D = 552 > 240 0.43 Net Total load (in) at 8.71 ft = -0.726 L/D = 285 > 180 0.63 Page 7/20 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof Beam Number = 126 SPAN INFORMATION (ft): I-End (72.54,70.33) J-End (79.87,70.33) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 7.33 Mp (kip-ft) = 102.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.458 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 2.458 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 4.458 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 6.458 0.42 0.00 0.0 0.00 0.00 0.0 0.87 Snow 0.00 SHEAR: Max Va (DL+LL) = 3.74 kips Vn/1.50 = 57.34 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 5.9 4.5 2.0 1.02 1.67 61.63 Controlling DL+LL 5.9 4.5 2.0 1.02 1.67 61.63 REACTIONS (kips): Left Right DL reaction 1.22 0.96 Max +LL reaction 2.53 1.99 Max +total reaction 3.74 2.95 DEFLECTIONS:Ratio Dead load (in) at 3.67 ft = -0.005 < -1.000 L/D = 17896 0.00 Live load (in) at 3.67 ft = -0.010 L/D = 8632 > 240 0.03 Net Total load (in) at 3.67 ft = -0.015 L/D = 5823 > 180 0.03 Page 8/20 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof Beam Number = 127 SPAN INFORMATION (ft): I-End (72.54,88.29) J-End (90.54,88.29) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 18.00 Mp (kip-ft) = 102.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.458 1.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 2.458 1.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 4.458 1.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 6.458 0.58 0.00 0.0 0.00 0.00 0.0 1.02 Snow 0.00 7.333 0.58 0.00 0.0 0.00 0.00 0.0 1.08 Snow 0.00 9.333 1.81 0.00 0.0 0.00 0.00 0.0 1.54 Snow 0.00 11.333 1.81 0.00 0.0 0.00 0.00 0.0 1.54 Snow 0.00 13.333 1.81 0.00 0.0 0.00 0.00 0.0 1.54 Snow 0.00 15.333 0.81 0.00 0.0 0.00 0.00 0.0 1.54 Snow 0.00 17.333 0.81 0.00 0.0 0.00 0.00 0.0 1.54 Snow 0.00 SHEAR: Max Va (DL+LL) = 14.54 kips Vn/1.50 = 57.34 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 61.1 9.3 2.0 1.02 1.67 61.63 Controlling DL+LL 61.1 9.3 2.0 1.02 1.67 61.63 REACTIONS (kips): Left Right DL reaction 7.58 6.08 Max +LL reaction 6.97 7.08 Max +total reaction 14.54 13.17 DEFLECTIONS:Ratio Dead load (in) at 9.00 ft = -0.465 < -1.000 L/D = 465 0.46 Live load (in) at 9.00 ft = -0.470 L/D = 460 > 240 0.52 Net Total load (in) at 9.00 ft = -0.935 L/D = 231 > 180 0.78 Page 9/20 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof Beam Number = 128 SPAN INFORMATION (ft): I-End (72.54,110.92) J-End (88.21,110.92) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 15.67 Mp (kip-ft) = 102.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.458 1.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 2.458 1.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 4.458 1.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 6.458 0.49 0.00 0.0 0.00 0.00 0.0 0.99 Snow 0.00 7.333 0.49 0.00 0.0 0.00 0.00 0.0 0.99 Snow 0.00 9.333 1.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 11.333 1.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 13.333 1.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 15.333 0.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 SHEAR: Max Va (DL+LL) = 12.01 kips Vn/1.50 = 57.34 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 41.9 7.3 2.0 1.00 1.67 61.63 Controlling DL+LL 41.9 7.3 2.0 1.00 1.67 61.63 REACTIONS (kips): Left Right DL reaction 6.23 5.56 Max +LL reaction 5.78 5.87 Max +total reaction 12.01 11.43 DEFLECTIONS:Ratio Dead load (in) at 7.91 ft = -0.249 < -1.000 L/D = 754 0.25 Live load (in) at 7.83 ft = -0.248 L/D = 757 > 240 0.32 Net Total load (in) at 7.83 ft = -0.498 L/D = 378 > 180 0.48 Page 10/20 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof Beam Number = 154 SPAN INFORMATION (ft): I-End (84.37,59.00) J-End (84.37,70.33) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = HSS8X4X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 11.33 Mp (kip-ft) = 55.42 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 10.818 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 6.182 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 4.808 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 0.172 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.165 0.300 --- NonR 0.000 11.333 0.165 0.300 0.000 SHEAR: Max Va (DL+LL) = 7.09 kips Vn/1.67 = 61.12 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 19.0 5.9 11.3 1.20 1.67 33.18 Controlling DL+LL 19.0 5.9 11.3 1.20 1.67 33.18 REACTIONS (kips): Left Right DL reaction 2.50 2.41 Max +LL reaction 4.58 4.42 Max +total reaction 7.09 6.82 DEFLECTIONS:Ratio Dead load (in) at 5.67 ft = -0.119 < -0.750 L/D = 1145 0.16 Live load (in) at 5.67 ft = -0.218 L/D = 625 > 360 0.58 Net Total load (in) at 5.67 ft = -0.336 L/D = 404 > 240 0.59 Page 11/20 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof Beam Number = 161 SPAN INFORMATION (ft): I-End (88.21,110.92) J-End (103.83,110.92) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 15.62 Mp (kip-ft) = 102.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.667 0.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 3.667 0.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 5.667 0.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 7.667 0.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 9.667 0.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 11.667 0.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 13.667 0.70 0.00 0.0 0.00 0.00 0.0 1.41 Snow 0.00 SHEAR: Max Va (DL+LL) = 7.38 kips Vn/1.50 = 57.34 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 31.7 7.7 2.0 1.02 1.67 61.63 Controlling DL+LL 31.7 7.7 2.0 1.02 1.67 61.63 REACTIONS (kips): Left Right DL reaction 2.45 2.37 Max +LL reaction 4.93 4.76 Max +total reaction 7.38 7.14 DEFLECTIONS:Ratio Dead load (in) at 7.81 ft = -0.122 < -1.000 L/D = 1543 0.12 Live load (in) at 7.81 ft = -0.244 L/D = 768 > 240 0.31 Net Total load (in) at 7.81 ft = -0.366 L/D = 513 > 180 0.35 Page 12/20 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof Beam Number = 165 SPAN INFORMATION (ft): I-End (90.54,88.29) J-End (96.54,88.29) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 6.00 Mp (kip-ft) = 102.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.333 0.81 0.00 0.0 0.00 0.00 0.0 1.54 Snow 0.00 3.333 0.81 0.00 0.0 0.00 0.00 0.0 1.54 Snow 0.00 5.333 0.73 0.00 0.0 0.00 0.00 0.0 1.39 Snow 0.00 SHEAR: Max Va (DL+LL) = 3.70 kips Vn/1.50 = 57.34 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 5.7 3.3 2.0 1.12 1.67 61.63 Controlling DL+LL 5.7 3.3 2.0 1.12 1.67 61.63 REACTIONS (kips): Left Right DL reaction 1.07 1.28 Max +LL reaction 2.03 2.43 Max +total reaction 3.11 3.70 DEFLECTIONS:Ratio Dead load (in) at 3.00 ft = -0.003 < -1.000 L/D = 22656 0.00 Live load (in) at 3.00 ft = -0.006 L/D = 11949 > 240 0.02 Net Total load (in) at 3.00 ft = -0.009 L/D = 7823 > 180 0.02 Page 13/20 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof Beam Number = 172 SPAN INFORMATION (ft): I-End (95.87,59.00) J-End (95.87,70.33) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = HSS8X4X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 11.33 Mp (kip-ft) = 55.42 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.172 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 4.808 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.165 0.300 --- NonR 0.000 11.333 0.165 0.300 0.000 SHEAR: Max Va (DL+LL) = 6.01 kips Vn/1.67 = 61.12 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 13.5 4.8 11.3 1.22 1.67 33.18 Controlling DL+LL 13.5 4.8 11.3 1.22 1.67 33.18 REACTIONS (kips): Left Right DL reaction 2.12 1.27 Max +LL reaction 3.88 2.32 Max +total reaction 6.01 3.58 DEFLECTIONS:Ratio Dead load (in) at 5.55 ft = -0.082 < -0.750 L/D = 1649 0.11 Live load (in) at 5.55 ft = -0.151 L/D = 902 > 360 0.40 Net Total load (in) at 5.55 ft = -0.233 L/D = 583 > 240 0.41 Page 14/20 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof Beam Number = 182 SPAN INFORMATION (ft): I-End (100.21,79.96) J-End (100.21,88.29) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = W8X15 Fy = 50.0 ksi Total Beam Length (ft) = 8.33 Mp (kip-ft) = 56.67 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 4.167 10.00 SHEAR: Max Va (DL+LL) = 5.00 kips Vn/1.50 = 39.74 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 20.8 4.2 8.3 1.32 1.67 31.48 Controlling DL 20.8 4.2 8.3 1.32 1.67 31.48 REACTIONS (kips): Left Right DL reaction 5.00 5.00 Max +total reaction 5.00 5.00 DEFLECTIONS:Ratio Dead load (in) at 4.17 ft = -0.150 < -0.750 L/D = 668 0.20 Live load (in) at 4.17 ft = -0.000 Net Total load (in) at 4.17 ft = -0.150 L/D = 668 > 240 0.36 Page 15/20 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof Beam Number = 184 SPAN INFORMATION (ft): I-End (101.87,70.33) J-End (111.54,70.33) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 9.67 Mp (kip-ft) = 102.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 2.000 0.42 0.00 0.0 0.00 0.00 0.0 0.92 Snow 0.00 4.000 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 6.000 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 8.000 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 SHEAR: Max Va (DL+LL) = 3.62 kips Vn/1.50 = 57.34 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 9.7 4.0 2.0 1.00 1.67 61.63 Controlling DL+LL 9.7 4.0 2.0 1.00 1.67 61.63 REACTIONS (kips): Left Right DL reaction 1.00 1.18 Max +LL reaction 2.11 2.44 Max +total reaction 3.10 3.62 DEFLECTIONS:Ratio Dead load (in) at 4.88 ft = -0.014 < -1.000 L/D = 8218 0.01 Live load (in) at 4.88 ft = -0.029 L/D = 3942 > 240 0.06 Net Total load (in) at 4.88 ft = -0.044 L/D = 2664 > 180 0.07 Page 16/20 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof Beam Number = 188 SPAN INFORMATION (ft): I-End (103.83,104.83) J-End (103.83,122.63) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = W14X34 Fy = 50.0 ksi Total Beam Length (ft) = 17.79 Mp (kip-ft) = 227.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 6.083 7.26 0.00 0.0 0.00 0.00 0.0 15.78 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.020 0.000 --- Snow 0.000 17.791 0.020 0.000 0.000 2 0.000 0.000 0.034 --- Snow 0.000 6.791 0.000 0.034 0.000 3 6.792 0.000 0.070 --- Snow 0.000 17.791 0.000 0.174 0.000 4 0.000 0.000 0.007 --- Snow 0.000 6.083 0.000 0.007 0.000 5 6.084 0.020 0.000 --- Snow 0.000 17.791 0.020 0.000 0.000 6 6.084 0.000 0.036 --- Snow 0.000 6.791 0.000 0.036 0.000 SHEAR: Max Va (DL+LL) = 16.01 kips Vn/1.50 = 79.80 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 96.3 6.1 0.0 1.00 1.67 136.23 Controlling DL+LL 96.3 6.1 0.0 1.00 1.67 136.23 REACTIONS (kips): Left Right DL reaction 5.03 2.82 Max +LL reaction 10.98 6.44 Max +total reaction 16.01 9.26 DEFLECTIONS:Ratio Dead load (in) at 8.18 ft = -0.138 < -1.000 L/D = 1544 0.14 Live load (in) at 8.18 ft = -0.304 L/D = 703 > 240 0.34 Net Total load (in) at 8.18 ft = -0.442 L/D = 483 > 180 0.37 Page 17/20 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof Beam Number = 189 SPAN INFORMATION (ft): I-End (103.83,110.92) J-End (131.50,110.92) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = W14X34 Fy = 50.0 ksi Total Beam Length (ft) = 27.67 Mp (kip-ft) = 227.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.375 0.33 0.00 0.0 0.00 0.00 0.0 0.61 Snow 0.00 2.042 0.65 0.00 0.0 0.00 0.00 0.0 1.32 Snow 0.00 4.042 0.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 6.042 0.69 0.00 0.0 0.00 0.00 0.0 1.38 Snow 0.00 8.042 0.69 0.00 0.0 0.00 0.00 0.0 1.37 Snow 0.00 10.042 0.75 0.00 0.0 0.00 0.00 0.0 1.46 Snow 0.00 12.042 0.75 0.00 0.0 0.00 0.00 0.0 1.44 Snow 0.00 14.042 0.75 0.00 0.0 0.00 0.00 0.0 1.61 Snow 0.00 16.042 0.75 0.00 0.0 0.00 0.00 0.0 1.90 Snow 0.00 18.042 0.75 0.00 0.0 0.00 0.00 0.0 2.20 Snow 0.00 20.042 0.75 0.00 0.0 0.00 0.00 0.0 2.51 Snow 0.00 22.042 0.75 0.00 0.0 0.00 0.00 0.0 2.82 Snow 0.00 24.042 0.75 0.00 0.0 0.00 0.00 0.0 3.14 Snow 0.00 26.042 0.68 0.00 0.0 0.00 0.00 0.0 3.13 Snow 0.00 SHEAR: Max Va (DL+LL) = 20.11 kips Vn/1.50 = 79.80 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 124.2 16.0 2.0 1.00 1.67 136.23 Controlling DL+LL 124.2 16.0 2.0 1.00 1.67 136.23 REACTIONS (kips): Left Right DL reaction 4.89 4.86 Max +LL reaction 11.02 15.26 Max +total reaction 15.91 20.11 DEFLECTIONS:Ratio Dead load (in) at 13.83 ft = -0.491 < -1.000 L/D = 676 0.49 Live load (in) at 14.11 ft = -1.249 L/D = 266 > 240 0.90 Net Total load (in) at 14.11 ft = -1.740 L/D = 191 > 180 0.94 Page 18/20 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof Beam Number = 192 SPAN INFORMATION (ft): I-End (103.87,88.29) J-End (133.50,88.29) Maximum Depth Limitation specified = 19.00 in Beam Size (User Selected) = W16X40 Fy = 50.0 ksi Total Beam Length (ft) = 29.63 Mp (kip-ft) = 304.17 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.333 0.43 0.00 0.0 0.00 0.00 0.0 0.76 Snow 0.00 2.000 0.77 0.00 0.0 0.00 0.00 0.0 1.35 Snow 0.00 4.000 0.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 6.000 0.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 8.000 0.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 10.000 0.81 0.00 0.0 0.00 0.00 0.0 1.42 Snow 0.00 12.000 0.81 0.00 0.0 0.00 0.00 0.0 1.41 Snow 0.00 14.000 0.81 0.00 0.0 0.00 0.00 0.0 1.49 Snow 0.00 16.000 0.81 0.00 0.0 0.00 0.00 0.0 1.74 Snow 0.00 18.000 0.81 0.00 0.0 0.00 0.00 0.0 2.09 Snow 0.00 20.000 0.81 0.00 0.0 0.00 0.00 0.0 2.45 Snow 0.00 22.000 0.81 0.00 0.0 0.00 0.00 0.0 2.82 Snow 0.00 24.000 0.81 0.00 0.0 0.00 0.00 0.0 3.19 Snow 0.00 26.000 0.77 0.00 0.0 0.00 0.00 0.0 3.38 Snow 0.00 28.000 0.33 0.00 0.0 0.00 0.00 0.0 1.54 Snow 0.00 SHEAR: Max Va (DL+LL) = 20.93 kips Vn/1.50 = 97.60 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 148.7 16.0 2.0 1.01 1.67 182.14 Controlling DL+LL 148.7 16.0 2.0 1.01 1.67 182.14 REACTIONS (kips): Left Right DL reaction 5.97 5.26 Max +LL reaction 12.22 15.67 Max +total reaction 18.19 20.93 DEFLECTIONS:Ratio Dead load (in) at 14.81 ft = -0.462 < -1.000 L/D = 770 0.46 Live load (in) at 15.11 ft = -1.101 L/D = 323 > 240 0.74 Net Total load (in) at 15.11 ft = -1.563 L/D = 227 > 180 0.79 Page 19/20 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof Beam Number = 206 SPAN INFORMATION (ft): I-End (111.54,70.33) J-End (133.50,70.33) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length (ft) = 21.96 Mp (kip-ft) = 138.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.333 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 2.333 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 4.333 0.59 0.00 0.0 0.00 0.00 0.0 1.21 Snow 0.00 6.333 0.59 0.00 0.0 0.00 0.00 0.0 1.20 Snow 0.00 8.333 0.59 0.00 0.0 0.00 0.00 0.0 1.26 Snow 0.00 10.333 0.59 0.00 0.0 0.00 0.00 0.0 1.44 Snow 0.00 12.333 0.59 0.00 0.0 0.00 0.00 0.0 1.67 Snow 0.00 14.333 0.59 0.00 0.0 0.00 0.00 0.0 1.93 Snow 0.00 16.333 0.59 0.00 0.0 0.00 0.00 0.0 2.20 Snow 0.00 18.333 0.59 0.00 0.0 0.00 0.00 0.0 2.48 Snow 0.00 20.333 0.53 0.00 0.0 0.00 0.00 0.0 2.50 Snow 0.00 SHEAR: Max Va (DL+LL) = 13.09 kips Vn/1.50 = 63.02 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 67.1 12.3 2.0 1.01 1.67 82.83 Controlling DL+LL 67.1 12.3 2.0 1.01 1.67 82.83 REACTIONS (kips): Left Right DL reaction 3.41 2.98 Max +LL reaction 8.20 10.10 Max +total reaction 11.61 13.09 DEFLECTIONS:Ratio Dead load (in) at 10.98 ft = -0.264 < -1.000 L/D = 996 0.26 Live load (in) at 11.20 ft = -0.742 L/D = 355 > 240 0.68 Net Total load (in) at 11.20 ft = -1.006 L/D = 262 > 180 0.69 Page 20/20 RAM Structural System V17.04.03.05. - Floor Plan: Roof_Canopy JSC DataBase: 23019 03/16/23 11:07:15 1 1 1.71.9 2 2 2.4 3 3 3.7 4 4 4.5 5 5 5.6 6 6 6.3 6.4 6.6 7 7 7.2 7.7 7.7 8 8 G G F F E.7 E E D D C C B B A A1 2 3 4 567 89 101112131415 16 171819 2021 2223242526272829303132333435363738 39 40 41 42 4 3 4 4 4 5 Steel Beam Numbers Roof Canopy Level Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof_Canopy Beam Number = 2 SPAN INFORMATION (ft): I-End (109.25,129.63) J-End (135.17,129.63) Beam Size (User Selected) =HSS12X2X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 25.92 Cantilever on left (ft) = 7.29 Cantilever on right (ft) = 7.29 Mp (kip-ft) = 64.58 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.000 0.03 0.00 0.0 0.00 0.00 0.0 0.17 Snow 0.00 1.994 0.07 0.00 0.0 0.00 0.00 0.0 0.29 Snow 0.00 3.987 0.04 0.00 0.0 0.00 0.00 0.0 0.15 Snow 0.00 5.981 0.03 0.00 0.0 0.00 0.00 0.0 0.13 Snow 0.00 7.974 0.02 0.00 0.0 0.00 0.00 0.0 0.10 Snow 0.00 9.968 0.04 0.00 0.0 0.00 0.00 0.0 0.15 Snow 0.00 11.962 0.04 0.00 0.0 0.00 0.00 0.0 0.15 Snow 0.00 13.955 0.04 0.00 0.0 0.00 0.00 0.0 0.15 Snow 0.00 15.949 0.04 0.00 0.0 0.00 0.00 0.0 0.15 Snow 0.00 17.942 0.02 0.00 0.0 0.00 0.00 0.0 0.10 Snow 0.00 19.936 0.03 0.00 0.0 0.00 0.00 0.0 0.13 Snow 0.00 21.930 0.02 0.00 0.0 0.00 0.00 0.0 0.09 Snow 0.00 22.250 0.02 0.00 0.0 0.00 0.00 0.0 0.08 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.000 0.007 --- Snow 0.000 7.291 0.000 0.007 0.000 2 7.975 0.000 0.007 --- Snow 0.000 17.942 0.000 0.007 0.000 3 18.625 0.000 0.007 --- Snow 0.000 21.929 0.000 0.007 0.000 4 22.250 0.000 0.007 --- Snow 0.000 25.916 0.000 0.007 0.000 5 22.250 0.010 0.000 --- Snow 0.000 25.916 0.010 0.000 0.000 6 22.250 0.000 0.044 --- Snow 0.000 25.916 0.000 0.044 0.000 SHEAR: Max Va (DL+LL) = 0.96 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Left Max - DL+LL -4.4 7.3 1.3 1.00 1.67 37.63 Center Max + DL+LL 1.1 14.0 2.0 1.03 1.67 37.63 Max - DL+LL -4.4 7.3 0.7 1.02 1.67 37.63 Right Max - DL+LL -2.2 18.6 1.3 1.00 1.67 37.63 Controlling DL+LL -4.4 7.3 1.3 1.00 1.67 37.63 REACTIONS (kips): Left Right DL reaction 0.30 0.16 Max +LL reaction 1.56 1.11 Max -LL reaction -0.16 -0.32 Max +total reaction 1.86 1.27 Max -total reaction 0.14 -0.16 DEFLECTIONS:Ratio Left cantilever: Dead load (in) = -0.027 < -0.750 L/D = 6603 0.04 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Left cantilever: Pos Live load (in) = -0.158 L/D = 1109 > 360 0.32 Neg Live load (in) = 0.032 L/D = 5455 > 360 0.07 Pos Total load (in) = -0.184 L/D = 949 > 240 0.25 Neg Total load (in) = 0.006 L/D = 31367 > 240 0.01 Center span: Dead load (in) at 12.62 ft = 0.005 < 0.750 L/D = 28190 0.01 Live load (in) at 12.62 ft = 0.039 L/D = 3500 > 360 0.10 Net Total load (in) at 12.62 ft = 0.044 L/D = 3113 > 240 0.08 Right cantilever: Dead load (in) = -0.016 < -0.750 L/D = 11210 0.02 Pos Live load (in) = -0.109 L/D = 1612 > 360 0.22 Neg Live load (in) = 0.032 L/D = 5455 > 360 0.07 Pos Total load (in) = -0.124 L/D = 1410 > 240 0.17 Neg Total load (in) = 0.016 L/D = 10625 > 240 0.02 Page 2/12 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof_Canopy Beam Number = 6 SPAN INFORMATION (ft): I-End (116.54,125.96) J-End (116.54,129.63) Beam Size (User Selected) = HSS8X3X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 3.67 Cantilever on right (ft) = 3.67 Mp (kip-ft) = 36.96 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 3.667 0.30 0.00 0.0 0.00 0.00 0.0 1.56 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.16 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.007 0.000 --- Snow 0.000 3.666 0.007 0.000 0.000 2 0.000 0.000 0.042 --- Snow 0.000 3.666 0.000 0.042 0.000 SHEAR: Max Va (DL+LL) = 2.04 kips Vn/1.67 = 46.75 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Right Max - DL+LL -7.1 0.0 3.7 1.00 1.67 22.13 Controlling DL+LL -7.1 0.0 3.7 1.00 1.67 22.13 REACTIONS (kips): Left Right DL reaction 0.32 --- Max +LL reaction 1.72 --- Max -LL reaction -0.16 --- Max +total reaction 2.04 --- DEFLECTIONS:Ratio Right cantilever: Dead load (in) = -0.011 < -0.750 L/D = 8141 0.01 Pos Live load (in) = -0.057 L/D = 1542 > 360 0.23 Neg Live load (in) = 0.006 L/D = 15651 > 360 0.02 Pos Total load (in) = -0.068 L/D = 1296 > 240 0.19 Page 3/12 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof_Canopy Beam Number = 13 SPAN INFORMATION (ft): I-End (127.88,125.96) J-End (127.88,129.63) Beam Size (User Selected) = HSS8X3X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 3.67 Cantilever on right (ft) = 3.67 Mp (kip-ft) = 36.96 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 3.667 0.16 0.00 0.0 0.00 0.00 0.0 1.11 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.32 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.000 0.042 --- Snow 0.000 3.666 0.000 0.042 0.000 2 0.000 0.007 0.000 --- Snow 0.000 3.666 0.007 0.000 0.000 SHEAR: Max Va (DL+LL) = 1.45 kips Vn/1.67 = 46.75 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Right Max + DL+LL 0.6 0.0 0.0 1.00 1.67 22.13 Max - DL+LL -5.0 0.0 3.7 1.00 1.67 22.13 Controlling DL+LL -5.0 0.0 3.7 1.00 1.67 22.13 REACTIONS (kips): Left Right DL reaction 0.18 --- Max +LL reaction 1.27 --- Max -LL reaction -0.32 --- Max +total reaction 1.45 --- Max -total reaction -0.14 --- DEFLECTIONS:Ratio Right cantilever: Dead load (in) = -0.006 < -0.750 L/D = 15009 0.01 Pos Live load (in) = -0.041 L/D = 2136 > 360 0.17 Neg Live load (in) = 0.011 L/D = 7760 > 360 0.05 Pos Total load (in) = -0.047 L/D = 1870 > 240 0.13 Neg Total load (in) = 0.005 L/D = 16066 > 240 0.01 Page 4/12 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof_Canopy Beam Number = 18 SPAN INFORMATION (ft): I-End (131.50,92.33) J-End (135.17,92.33) Beam Size (User Selected) = HSS8X3X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 3.67 Cantilever on right (ft) = 3.67 Mp (kip-ft) = 36.96 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 3.667 0.15 0.00 0.0 0.00 0.00 0.0 0.75 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.007 0.000 --- Snow 0.000 3.666 0.007 0.000 0.000 2 0.000 0.000 0.042 --- Snow 0.000 3.666 0.000 0.042 0.000 SHEAR: Max Va (DL+LL) = 1.08 kips Vn/1.67 = 46.75 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Right Max - DL+LL -3.6 0.0 3.7 1.00 1.67 22.13 Controlling DL+LL -3.6 0.0 3.7 1.00 1.67 22.13 REACTIONS (kips): Left Right DL reaction 0.18 --- Max +LL reaction 0.90 --- Max +total reaction 1.08 --- DEFLECTIONS:Ratio Right cantilever: Dead load (in) = -0.006 < -0.750 L/D = 15437 0.01 Pos Live load (in) = -0.028 L/D = 3110 > 360 0.12 Pos Total load (in) = -0.034 L/D = 2588 > 240 0.09 Page 5/12 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof_Canopy Beam Number = 24 SPAN INFORMATION (ft): I-End (131.50,103.67) J-End (135.17,103.67) Beam Size (User Selected) = HSS8X3X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 3.67 Cantilever on right (ft) = 3.67 Mp (kip-ft) = 36.96 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 3.667 0.13 0.00 0.0 0.00 0.00 0.0 0.64 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.05 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.019 0.000 --- Snow 0.000 3.666 0.019 0.000 0.000 2 0.000 0.000 0.080 --- Snow 0.000 3.666 0.000 0.080 0.000 SHEAR: Max Va (DL+LL) = 1.13 kips Vn/1.67 = 46.75 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Right Max - DL+LL -3.5 0.0 3.7 1.00 1.67 22.13 Controlling DL+LL -3.5 0.0 3.7 1.00 1.67 22.13 REACTIONS (kips): Left Right DL reaction 0.20 --- Max +LL reaction 0.93 --- Max -LL reaction -0.05 --- Max +total reaction 1.13 --- DEFLECTIONS:Ratio Right cantilever: Dead load (in) = -0.005 < -0.750 L/D = 16417 0.01 Pos Live load (in) = -0.026 L/D = 3345 > 360 0.11 Neg Live load (in) = 0.002 L/D = 52612 > 360 0.01 Pos Total load (in) = -0.032 L/D = 2779 > 240 0.09 Page 6/12 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof_Canopy Beam Number = 28 SPAN INFORMATION (ft): I-End (131.50,110.92) J-End (135.17,110.92) Beam Size (User Selected) = HSS8X3X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 3.67 Cantilever on right (ft) = 3.67 Mp (kip-ft) = 36.96 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 3.667 0.11 0.00 0.0 0.00 0.00 0.0 0.65 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.14 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.018 0.000 --- Snow 0.000 3.666 0.018 0.000 0.000 2 0.000 0.000 0.077 --- Snow 0.000 3.666 0.000 0.077 0.000 SHEAR: Max Va (DL+LL) = 1.10 kips Vn/1.67 = 46.75 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Right Max + DL+LL 0.0 0.0 0.0 1.00 1.67 22.13 Max - DL+LL -3.4 0.0 3.7 1.00 1.67 22.13 Controlling DL+LL -3.4 0.0 3.7 1.00 1.67 22.13 REACTIONS (kips): Left Right DL reaction 0.17 --- Max +LL reaction 0.93 --- Max -LL reaction -0.14 --- Max +total reaction 1.10 --- DEFLECTIONS:Ratio Right cantilever: Dead load (in) = -0.005 < -0.750 L/D = 18902 0.01 Pos Live load (in) = -0.026 L/D = 3323 > 360 0.11 Neg Live load (in) = 0.005 L/D = 17388 > 360 0.02 Pos Total load (in) = -0.031 L/D = 2826 > 240 0.08 Neg Total load (in) = 0.000 L/D = 217027 > 240 0.00 Page 7/12 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof_Canopy Beam Number = 35 SPAN INFORMATION (ft): I-End (131.50,122.33) J-End (135.17,122.33) Beam Size (User Selected) = HSS8X3X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 3.67 Cantilever on right (ft) = 3.67 Mp (kip-ft) = 36.96 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 3.667 0.23 0.00 0.0 0.00 0.00 0.0 1.08 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.008 0.000 --- Snow 0.000 3.666 0.008 0.000 0.000 2 0.000 0.000 0.039 --- Snow 0.000 3.666 0.000 0.039 0.000 SHEAR: Max Va (DL+LL) = 1.48 kips Vn/1.67 = 46.75 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Right Max - DL+LL -5.1 0.0 3.7 1.00 1.67 22.13 Controlling DL+LL -5.1 0.0 3.7 1.00 1.67 22.13 REACTIONS (kips): Left Right DL reaction 0.26 --- Max +LL reaction 1.23 --- Max +total reaction 1.48 --- DEFLECTIONS:Ratio Right cantilever: Dead load (in) = -0.008 < -0.750 L/D = 10416 0.01 Pos Live load (in) = -0.040 L/D = 2197 > 360 0.16 Pos Total load (in) = -0.049 L/D = 1814 > 240 0.13 Page 8/12 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof_Canopy Beam Number = 42 SPAN INFORMATION (ft): I-End (135.17,88.54) J-End (135.17,103.67) Beam Size (User Selected) =HSS12X2X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 15.13 Cantilever on left (ft) = 3.79 Mp (kip-ft) = 64.58 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.000 0.00 0.00 0.0 0.00 0.00 0.0 0.03 Snow 0.00 1.125 0.03 0.00 0.0 0.00 0.00 0.0 0.12 Snow 0.00 3.125 0.02 0.00 0.0 0.00 0.00 0.0 0.10 Snow 0.00 5.125 0.03 0.00 0.0 0.00 0.00 0.0 0.13 Snow 0.00 7.125 0.04 0.00 0.0 0.00 0.00 0.0 0.15 Snow 0.00 9.125 0.04 0.00 0.0 0.00 0.00 0.0 0.15 Snow 0.00 11.125 0.04 0.00 0.0 0.00 0.00 0.0 0.15 Snow 0.00 13.125 0.04 0.00 0.0 0.00 0.00 0.0 0.15 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 3.792 0.000 0.007 --- Snow 0.000 15.125 0.000 0.007 0.000 2 0.000 0.000 0.007 --- Snow 0.000 3.125 0.000 0.007 0.000 SHEAR: Max Va (DL+LL) = 0.58 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Left Max - DL+LL -0.6 3.8 0.7 1.00 1.67 37.63 Center Max + DL+LL 1.6 9.1 2.0 1.03 1.67 37.63 Max - DL+LL -0.6 3.8 1.3 1.14 1.67 37.63 Controlling DL+LL 1.6 9.1 2.0 1.03 1.67 37.63 REACTIONS (kips): Left Right DL reaction 0.15 0.08 Max +LL reaction 0.75 0.40 Max -LL reaction 0.00 -0.05 Max +total reaction 0.90 0.48 DEFLECTIONS:Ratio Left cantilever: Dead load (in) = 0.002 < 0.750 L/D = 47184 0.00 Pos Live load (in) = -0.009 L/D = 10623 > 360 0.03 Neg Live load (in) = 0.017 L/D = 5443 > 360 0.07 Pos Total load (in) = -0.007 L/D = 13710 > 240 0.02 Neg Total load (in) = 0.019 L/D = 4880 > 240 0.05 Center span: Dead load (in) at 9.46 ft = -0.003 < -0.750 L/D = 51504 0.00 Live load (in) at 9.46 ft = -0.016 L/D = 8687 > 360 0.04 Net Total load (in) at 9.46 ft = -0.018 L/D = 7433 > 240 0.03 Page 9/12 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof_Canopy Beam Number = 43 SPAN INFORMATION (ft): I-End (135.17,103.67) J-End (135.17,110.92) Beam Size (User Selected) =HSS12X2X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 7.25 Mp (kip-ft) = 64.58 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.812 0.03 0.00 0.0 0.00 0.00 0.0 0.14 Snow 0.00 3.625 0.03 0.00 0.0 0.00 0.00 0.0 0.14 Snow 0.00 5.438 0.03 0.00 0.0 0.00 0.00 0.0 0.14 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.000 0.007 --- Snow 0.000 7.250 0.000 0.007 0.000 SHEAR: Max Va (DL+LL) = 0.29 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 0.7 3.6 1.8 1.11 1.67 37.63 Controlling DL+LL 0.7 3.6 1.8 1.11 1.67 37.63 REACTIONS (kips): Left Right DL reaction 0.05 0.05 Max +LL reaction 0.24 0.24 Max +total reaction 0.29 0.29 DEFLECTIONS:Ratio Dead load (in) at 3.63 ft = -0.001 < -0.750 L/D = 15709 9 0.00 Live load (in) at 3.63 ft = -0.003 L/D = 33989 > 360 0.01 Net Total load (in) at 3.63 ft = -0.003 L/D = 27943 > 240 0.01 Page 10/12 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof_Canopy Beam Number = 44 SPAN INFORMATION (ft): I-End (135.17,110.92) J-End (135.17,129.38) Beam Size (User Selected) =HSS12X2X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 18.46 Cantilever on right (ft) = 7.04 Mp (kip-ft) = 64.58 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.846 0.03 0.00 0.0 0.00 0.00 0.0 0.14 Snow 0.00 3.692 0.03 0.00 0.0 0.00 0.00 0.0 0.14 Snow 0.00 5.538 0.03 0.00 0.0 0.00 0.00 0.0 0.14 Snow 0.00 7.383 0.03 0.00 0.0 0.00 0.00 0.0 0.14 Snow 0.00 9.229 0.03 0.00 0.0 0.00 0.00 0.0 0.14 Snow 0.00 11.075 0.02 0.00 0.0 0.00 0.00 0.0 0.08 Snow 0.00 12.921 0.03 0.00 0.0 0.00 0.00 0.0 0.13 Snow 0.00 14.767 0.03 0.00 0.0 0.00 0.00 0.0 0.14 Snow 0.00 16.613 0.04 0.00 0.0 0.00 0.00 0.0 0.15 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 11.417 0.000 0.007 --- Snow 0.000 18.458 0.000 0.007 0.000 2 0.000 0.000 0.007 --- Snow 0.000 11.075 0.000 0.007 0.000 SHEAR: Max Va (DL+LL) = 0.74 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 1.5 5.5 1.8 1.04 1.67 37.63 Max - DL+LL -2.0 11.4 0.3 1.02 1.67 37.63 Right Max - DL+LL -2.0 11.4 1.5 1.00 1.67 37.63 Controlling DL+LL -2.0 11.4 1.5 1.00 1.67 37.63 REACTIONS (kips): Left Right DL reaction 0.06 0.23 Max +LL reaction 0.41 1.08 Max -LL reaction -0.14 0.00 Max +total reaction 0.47 1.31 Max -total reaction -0.09 0.23 DEFLECTIONS:Ratio Center span: Dead load (in) at 5.59 ft = -0.001 < -0.750 L/D = 13466 0 0.00 Live load (in) at 5.59 ft = -0.016 L/D = 8474 > 360 0.04 Net Total load (in) at 5.59 ft = -0.017 L/D = 7972 > 240 0.03 Right cantilever: Dead load (in) = -0.005 < -0.750 L/D = 34961 0.01 Pos Live load (in) = -0.055 L/D = 3045 > 360 0.12 Neg Live load (in) = 0.032 L/D = 5313 > 360 0.07 Pos Total load (in) = -0.060 L/D = 2801 > 240 0.09 Neg Total load (in) = 0.027 L/D = 6265 > 240 0.04 Page 11/12 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Roof_Canopy Beam Number = 45 SPAN INFORMATION (ft): I-End (135.17,129.38) J-End (135.17,129.63) Beam Size (User Selected) =HSS12X2X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 0.25 Mp (kip-ft) = 64.58 No Loads SHEAR: Max Va (DL+LL) = 0.00 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Controlling DL 0.0 0.0 --- --- 1.67 37.63 REACTIONS (kips): Left Right DL reaction 0.00 0.00 DEFLECTIONS: Dead load (in) at 0.25 ft = -0.000 < 0.750 Live load (in) at 0.25 ft = -0.000 Net Total load (in) at 0.25 ft = 0.000 Page 12/12 RAM Structural System V17.04.03.05. - Floor Plan: 3rd Level JSC DataBase: 23019_test 03/22/23 09:07:44 1 1 1.71.9 2 2 2.4 3 3 3.7 4 4 4.5 5 5 5.6 6 6 6.3 6.4 6.6 7 7 7.2 7.7 7.7 8 8 G G F F E.7 E E D D C C B B A A 1 23456789101112 13 14151617181920212223242526272829 3031 32 333435363738394041 42 43444546474849 50 51 525354 55 56 57 58 5 9 6 0 61 62 63 6 4 6 5 66 67 6 8 6 9 70 71 72 7 3 7 4 75 76 7 7 7 8 79 80 81 8 2 8 3 84 85 8 6 8 7 88 89 90 91 9 2 9 3 94 95 9 6 9 7 98 99 10 0 1 0 1 1 0 2 10 3 10 4 1 0 5 1 0 6 10 7 10 8 10 9 1 1 0 1 1 1 112 113 11 4 11 5 11 6 1 1 7 1 1 8 11 9 12 0 1 2 1 1 2 2 1 2 3 12 4 125 12 6 1 2 7 1 2 8 12 9 130 13 1 1 3 2 1 3 3 13 4 13 5 1 3 6 1 3 7 1 3 8 13 9 14 0 1 4 1 1 4 2 1 4 3 14 4 1 4 5 1 4 6 1 4 7 14 8 14 9 150 15 1 1 5 2 1 5 3 1 5 4 155 15 6 15 7 158 15 9 1 6 0 1 6 1 1 6 2 16 3 1 6 4 1 6 5 1 6 6 167 16 8 169 17 0 17 1 1 7 2 1 7 3 1 7 4 175 17 6 17 7 1 7 8 1 7 9 1 8 0 181 182 183 18 4 18 5 1 8 6 1 8 7 1 8 8 189 19 0 19 1 19 2 1 9 3 1 9 4 1 9 5 196 19 7 19 8 199 20 0 2 0 1 2 0 2 2 0 3 204 20 5 2 0 6 2 0 7 2 0 8 2 0 9 210 21 1 212 21 3 2 1 4 2 1 5 2 1 6 217 21 8 21 9 2 2 0 2 2 1 2 2 2 223 22 4 22 5 22 6 2 2 7 2 2 8 2 2 9 230 23 1 23 2 2 3 3 2 3 4 2 3 5 236 23 7 238 239 240 24 1 2 4 2 2 4 3 2 4 4 245 24 6 247 24 8 24 9 2 5 0 2 5 1 2 5 2 253 25 4 2 5 5 2 5 6 2 5 7 2 5 8 259 26 0 2 6 1 2 6 2 2 6 3 264 26 5 2 6 6 2 6 7 26 8 2 6 9 2 7 0 271 27 2 2 7 3 2 7 4 275 27 6 27 7 2 7 8 2 7 9 280 28 1 2 8 2 2 8 3 284 285 28 6 2 8 7 2 8 8 289 290 29 1 2 9 2 2 9 3 294 29 5 2 9 6 2 9 7 298 29 9 3 0 0 3 0 1 3 0 2 303 30 4 305 306 30 7 3 0 8 3 0 9 310 31 1 312 313 31 4 3 1 5 3 1 6 317 31 8 319 320 32 1 322 32 3 324 32 5 326 32 7 328 329 33 0 331 33 2 333 33 4 3 3 5 336 33 7 33 8 339 340 34 1 3 4 2 3 4 3 3 4 4 3 4 5 34 6 347 348 34 9 3 5 0 3 5 1 3 5 2 3 5 3 35 4 355 356 35 7 3 5 8 3 5 9 3 6 0 3 6 1 36 2 363 364 36 5 3 6 6 3 6 7 3 6 8 3 6 9 37 0 371 372 37 3 3 7 4 3 7 5 3 7 6 37 7 378 379 38 0 3 8 1 3 8 2 3 8 3 384 38 5 386 387 38 8 3 8 9 3 9 0 3 9 1 39 2 393 394 39 5 3 9 6 3 9 7 3 9 8 39 9 40 0 4 0 1 4 0 2 4 0 3 40 4 4 0 5 4 0 6 4 0 7 40 8 4 0 9 4 1 0 4 1 1 41 2 4 1 3 4 1 4 4 1 5 41 6 4 1 7 4 1 8 4 1 9 42 0 4 2 1 42 2 Steel Beam Numbers 3rd Level Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 16 SPAN INFORMATION (ft): I-End (7.00,59.00) J-End (7.00,88.29) Beam Size (User Selected) = W18X40 Fy = 50.0 ksi Total Beam Length (ft) = 29.29 Mp (kip-ft) = 326.67 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.333 0.10 0.26 13.6 0.00 0.00 0.0 0.00 Snow 0.00 2.000 0.19 0.48 13.6 0.00 0.00 0.0 0.00 Snow 0.00 4.000 0.21 0.52 13.6 0.00 0.00 0.0 0.00 Snow 0.00 6.000 0.21 0.52 13.6 0.00 0.00 0.0 0.00 Snow 0.00 8.000 0.21 0.52 13.6 0.00 0.00 0.0 0.00 Snow 0.00 10.000 0.28 0.69 13.6 0.00 0.00 0.0 0.00 Snow 0.00 11.333 5.03 8.39 13.6 0.00 0.00 0.0 0.00 Snow 2.52 13.292 0.28 0.69 13.6 0.00 0.00 0.0 0.00 Snow 0.00 15.292 0.21 0.52 13.6 0.00 0.00 0.0 0.00 Snow 0.00 17.292 0.21 0.52 13.6 0.00 0.00 0.0 0.00 Snow 0.00 19.292 0.21 0.52 13.6 0.00 0.00 0.0 0.00 Snow 0.00 21.292 0.21 0.52 13.6 0.00 0.00 0.0 0.00 Snow 0.00 23.292 0.21 0.52 13.6 0.00 0.00 0.0 0.00 Snow 0.00 25.292 0.21 0.52 13.6 0.00 0.00 0.0 0.00 Snow 0.00 27.292 0.19 0.48 13.6 0.00 0.00 0.0 0.00 Snow 0.00 28.958 0.10 0.26 13.6 0.00 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.030 0.050 13.6% Red 0.015 29.291 0.030 0.050 0.015 SHEAR: Max Va (DL+LL) = 15.17 kips Vn/1.50 = 112.77 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 145.1 11.3 0.0 1.00 1.67 195.61 Controlling DL+LL 145.1 11.3 0.0 1.00 1.67 195.61 REACTIONS (kips): Left Right DL reaction 5.05 3.91 Max +LL reaction 10.12 7.91 Max +total reaction 15.17 11.82 DEFLECTIONS:Ratio Dead load (in) at 14.06 ft = -0.365 < -0.750 L/D = 964 0.49 Live load (in) at 14.06 ft = -0.729 L/D = 482 > 360 0.75 Net Total load (in) at 14.06 ft = -1.094 L/D = 321 > 240 0.75 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 17 SPAN INFORMATION (ft): I-End (7.00,70.33) J-End (31.88,70.33) Beam Size (User Selected) = W16X36 Fy = 50.0 ksi Total Beam Length (ft) = 24.88 Mp (kip-ft) = 266.67 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 2.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 4.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 6.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 8.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 10.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 12.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 14.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 16.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 18.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 20.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 22.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 24.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 SHEAR: Max Va (DL+LL) = 15.76 kips Vn/1.50 = 93.81 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 97.4 12.0 2.0 1.01 1.67 159.68 Controlling DL+LL 97.4 12.0 2.0 1.01 1.67 159.68 REACTIONS (kips): Left Right DL reaction 5.03 5.51 Max +LL reaction 9.36 10.25 Max +total reaction 14.39 15.76 DEFLECTIONS:Ratio Dead load (in) at 12.44 ft = -0.291 < -0.750 L/D = 1026 0.39 Live load (in) at 12.44 ft = -0.541 L/D = 552 > 360 0.65 Net Total load (in) at 12.44 ft = -0.832 L/D = 359 > 240 0.67 Page 2/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 18 SPAN INFORMATION (ft): I-End (7.00,88.29) J-End (31.88,88.29) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W16X36 Fy = 50.0 ksi Total Beam Length (ft) = 24.88 Mp (kip-ft) = 266.67 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 2.000 0.97 1.61 22.7 0.00 0.00 0.0 0.00 Snow 0.48 4.000 0.97 1.61 22.7 0.00 0.00 0.0 0.00 Snow 0.48 6.000 0.97 1.61 22.7 0.00 0.00 0.0 0.00 Snow 0.48 8.000 0.97 1.61 22.7 0.00 0.00 0.0 0.00 Snow 0.48 10.000 0.97 1.61 22.7 0.00 0.00 0.0 0.00 Snow 0.48 12.000 0.97 1.61 22.7 0.00 0.00 0.0 0.00 Snow 0.48 14.000 0.97 1.61 22.7 0.00 0.00 0.0 0.00 Snow 0.48 16.000 0.97 1.61 22.7 0.00 0.00 0.0 0.00 Snow 0.48 18.000 0.97 1.61 22.7 0.00 0.00 0.0 0.00 Snow 0.48 20.000 1.20 2.00 22.7 0.00 0.00 0.0 0.00 Snow 0.60 22.000 1.22 2.03 22.7 0.00 0.00 0.0 0.00 Snow 0.61 24.000 1.22 2.03 22.7 0.00 0.00 0.0 0.00 Snow 0.61 SHEAR: Max Va (DL+LL) = 18.72 kips Vn/1.50 = 93.81 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 107.3 12.0 2.0 1.00 1.67 159.68 Controlling DL+LL 107.3 12.0 2.0 1.00 1.67 159.68 REACTIONS (kips): Left Right DL reaction 5.62 6.71 Max +LL reaction 10.06 12.01 Max +total reaction 15.68 18.72 DEFLECTIONS:Ratio Dead load (in) at 12.44 ft = -0.331 < -0.750 L/D = 903 0.44 Live load (in) at 12.44 ft = -0.591 L/D = 505 > 360 0.71 Net Total load (in) at 12.44 ft = -0.922 L/D = 324 > 240 0.74 Page 3/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 67 SPAN INFORMATION (ft): I-End (31.88,70.33) J-End (55.29,70.33) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W14X34 Fy = 50.0 ksi Total Beam Length (ft) = 23.42 Mp (kip-ft) = 227.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 3.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 5.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 7.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 9.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 11.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 13.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 15.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 17.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 19.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 21.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 23.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 SHEAR: Max Va (DL+LL) = 15.61 kips Vn/1.50 = 79.80 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 86.4 11.1 2.0 1.02 1.67 136.23 Controlling DL+LL 86.4 11.1 2.0 1.02 1.67 136.23 REACTIONS (kips): Left Right DL reaction 5.08 5.46 Max +LL reaction 9.46 10.15 Max +total reaction 14.54 15.61 DEFLECTIONS:Ratio Dead load (in) at 11.71 ft = -0.302 < -0.750 L/D = 932 0.40 Live load (in) at 11.71 ft = -0.561 L/D = 501 > 360 0.72 Net Total load (in) at 11.71 ft = -0.863 L/D = 326 > 240 0.74 Page 4/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 68 SPAN INFORMATION (ft): I-End (31.88,88.29) J-End (55.29,88.29) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W14X34 Fy = 50.0 ksi Total Beam Length (ft) = 23.42 Mp (kip-ft) = 227.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 3.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 5.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 7.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 9.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 11.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 13.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 15.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 17.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 19.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 21.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 23.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 SHEAR: Max Va (DL+LL) = 20.56 kips Vn/1.50 = 79.80 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 113.7 11.1 2.0 1.02 1.67 136.23 Controlling DL+LL 113.7 11.1 2.0 1.02 1.67 136.23 REACTIONS (kips): Left Right DL reaction 7.04 7.56 Max +LL reaction 12.10 12.99 Max +total reaction 19.15 20.56 DEFLECTIONS:Ratio Dead load (in) at 11.71 ft = -0.418 < -0.750 L/D = 672 0.56 Live load (in) at 11.71 ft = -0.718 L/D = 391 > 360 0.92 Net Total load (in) at 11.71 ft = -1.136 L/D = 247 > 240 0.97 Page 5/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 69 SPAN INFORMATION (ft): I-End (31.88,110.92) J-End (31.88,121.00) Beam Size (User Selected) = HSS8X4X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 10.08 Mp (kip-ft) = 55.42 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 9.583 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 5.333 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.165 0.300 --- NonR 0.000 10.083 0.165 0.300 0.000 SHEAR: Max Va (DL+LL) = 5.54 kips Vn/1.67 = 61.12 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 11.9 5.3 10.1 1.22 1.67 33.18 Controlling DL+LL 11.9 5.3 10.1 1.22 1.67 33.18 REACTIONS (kips): Left Right DL reaction 1.23 1.96 Max +LL reaction 2.24 3.58 Max +total reaction 3.47 5.54 DEFLECTIONS:Ratio Dead load (in) at 5.14 ft = -0.057 < -0.750 L/D = 2116 0.08 Live load (in) at 5.14 ft = -0.105 L/D = 1157 > 360 0.31 Net Total load (in) at 5.14 ft = -0.162 L/D = 748 > 240 0.32 Page 6/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 90 SPAN INFORMATION (ft): I-End (41.42,40.83) J-End (59.08,40.83) Beam Size (User Selected) = HSS12X6X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 17.67 Mp (kip-ft) = 129.58 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.583 0.49 0.00 0.0 1.63 0.00 0.0 0.00 Snow 0.00 3.583 0.54 0.00 0.0 1.82 0.00 0.0 0.00 Snow 0.00 5.583 0.54 0.00 0.0 1.82 0.00 0.0 0.00 Snow 0.00 7.583 0.54 0.00 0.0 1.82 0.00 0.0 0.00 Snow 0.00 9.583 0.54 0.00 0.0 1.82 0.00 0.0 0.00 Snow 0.00 11.583 0.54 0.00 0.0 1.82 0.00 0.0 0.00 Snow 0.00 13.583 0.54 0.00 0.0 1.82 0.00 0.0 0.00 Snow 0.00 15.583 0.54 0.00 0.0 1.82 0.00 0.0 0.00 Snow 0.00 17.583 0.54 0.00 0.0 1.82 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.225 0.000 0.0% Red 0.000 17.666 0.225 0.000 0.000 2 0.000 0.005 0.017 --- NonR 0.000 17.583 0.005 0.017 0.000 SHEAR: Max Va (DL+LL) = 13.68 kips Vn/1.67 = 94.60 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 55.3 9.6 2.0 1.00 1.67 77.59 Controlling DL+LL 55.3 9.6 2.0 1.00 1.67 77.59 REACTIONS (kips): Left Right DL reaction 4.22 4.69 Max +LL reaction 7.46 9.00 Max +total reaction 11.68 13.68 DEFLECTIONS:Ratio Dead load (in) at 8.83 ft = -0.250 < -0.750 L/D = 847 0.33 Live load (in) at 8.83 ft = -0.459 L/D = 462 > 360 0.78 Net Total load (in) at 8.83 ft = -0.709 L/D = 299 > 240 0.80 Page 7/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 91 SPAN INFORMATION (ft): I-End (42.71,110.92) J-End (42.71,121.00) Beam Size (User Selected) = HSS8X4X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 10.08 Mp (kip-ft) = 55.42 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 9.583 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 5.333 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 4.750 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 0.500 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.165 0.300 --- NonR 0.000 10.083 0.165 0.300 0.000 SHEAR: Max Va (DL+LL) = 6.66 kips Vn/1.67 = 61.12 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 17.2 5.0 10.1 1.21 1.67 33.18 Controlling DL+LL 17.2 5.0 10.1 1.21 1.67 33.18 REACTIONS (kips): Left Right DL reaction 2.35 2.35 Max +LL reaction 4.31 4.31 Max +total reaction 6.66 6.66 DEFLECTIONS:Ratio Dead load (in) at 5.04 ft = -0.083 < -0.750 L/D = 1455 0.11 Live load (in) at 5.04 ft = -0.152 L/D = 794 > 360 0.45 Net Total load (in) at 5.04 ft = -0.236 L/D = 513 > 240 0.47 Page 8/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 104 SPAN INFORMATION (ft): I-End (47.21,110.92) J-End (72.54,110.92) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W16X36 Fy = 50.0 ksi Total Beam Length (ft) = 25.33 Mp (kip-ft) = 266.67 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.792 1.01 1.69 22.7 0.00 0.00 0.0 0.00 Snow 0.51 3.792 1.03 1.72 22.7 0.00 0.00 0.0 0.00 Snow 0.51 5.792 1.03 1.72 22.7 0.00 0.00 0.0 0.00 Snow 0.51 7.792 1.03 1.72 22.7 0.00 0.00 0.0 0.00 Snow 0.51 9.792 1.03 1.72 22.7 0.00 0.00 0.0 0.00 Snow 0.51 11.792 1.03 1.72 22.7 0.00 0.00 0.0 0.00 Snow 0.51 13.792 1.03 1.72 22.7 0.00 0.00 0.0 0.00 Snow 0.51 15.792 1.03 1.72 22.7 0.00 0.00 0.0 0.00 Snow 0.51 17.792 1.03 1.72 22.7 0.00 0.00 0.0 0.00 Snow 0.51 19.792 1.03 1.72 22.7 0.00 0.00 0.0 0.00 Snow 0.51 21.792 1.03 1.72 22.7 0.00 0.00 0.0 0.00 Snow 0.51 23.792 1.03 1.72 22.7 0.00 0.00 0.0 0.00 Snow 0.51 SHEAR: Max Va (DL+LL) = 17.40 kips Vn/1.50 = 93.81 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 115.0 11.8 2.0 1.02 1.67 159.68 Controlling DL+LL 115.0 11.8 2.0 1.02 1.67 159.68 REACTIONS (kips): Left Right DL reaction 6.10 6.24 Max +LL reaction 10.91 11.16 Max +total reaction 17.01 17.40 DEFLECTIONS:Ratio Dead load (in) at 12.67 ft = -0.367 < -0.750 L/D = 829 0.49 Live load (in) at 12.67 ft = -0.656 L/D = 463 > 360 0.78 Net Total load (in) at 12.67 ft = -1.023 L/D = 297 > 240 0.81 Page 9/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 125 SPAN INFORMATION (ft): I-End (55.29,70.33) J-End (72.54,70.33) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length (ft) = 17.25 Mp (kip-ft) = 138.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.708 0.88 1.46 5.7 0.00 0.00 0.0 0.00 Snow 0.44 3.708 0.88 1.46 5.7 0.00 0.00 0.0 0.00 Snow 0.44 5.708 0.88 1.46 5.7 0.00 0.00 0.0 0.00 Snow 0.44 7.708 0.88 1.46 5.7 0.00 0.00 0.0 0.00 Snow 0.44 9.708 0.88 1.46 5.7 0.00 0.00 0.0 0.00 Snow 0.44 11.708 0.88 1.46 5.7 0.00 0.00 0.0 0.00 Snow 0.44 13.708 0.88 1.46 5.7 0.00 0.00 0.0 0.00 Snow 0.44 15.708 0.88 1.46 5.7 0.00 0.00 0.0 0.00 Snow 0.44 SHEAR: Max Va (DL+LL) = 10.90 kips Vn/1.50 = 63.02 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 50.0 7.7 2.0 1.00 1.67 82.83 Controlling DL+LL 50.0 7.7 2.0 1.00 1.67 82.83 REACTIONS (kips): Left Right DL reaction 3.48 3.55 Max +LL reaction 7.21 7.35 Max +total reaction 10.69 10.90 DEFLECTIONS:Ratio Dead load (in) at 8.63 ft = -0.152 < -0.750 L/D = 1366 0.20 Live load (in) at 8.63 ft = -0.314 L/D = 660 > 360 0.55 Net Total load (in) at 8.63 ft = -0.465 L/D = 445 > 240 0.54 Page 10/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 126 SPAN INFORMATION (ft): I-End (55.29,88.29) J-End (72.54,88.29) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length (ft) = 17.25 Mp (kip-ft) = 138.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.708 1.22 2.03 16.1 0.00 0.00 0.0 0.00 Snow 0.61 3.708 1.22 2.03 16.1 0.00 0.00 0.0 0.00 Snow 0.61 5.708 1.22 2.03 16.1 0.00 0.00 0.0 0.00 Snow 0.61 7.708 1.22 2.03 16.1 0.00 0.00 0.0 0.00 Snow 0.61 9.708 1.22 2.03 16.1 0.00 0.00 0.0 0.00 Snow 0.61 11.708 1.22 2.03 16.1 0.00 0.00 0.0 0.00 Snow 0.61 13.708 1.22 2.03 16.1 0.00 0.00 0.0 0.00 Snow 0.61 15.708 1.22 2.03 16.1 0.00 0.00 0.0 0.00 Snow 0.61 SHEAR: Max Va (DL+LL) = 14.25 kips Vn/1.50 = 63.02 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 65.4 7.7 2.0 1.00 1.67 82.83 Controlling DL+LL 65.4 7.7 2.0 1.00 1.67 82.83 REACTIONS (kips): Left Right DL reaction 4.82 4.92 Max +LL reaction 9.15 9.33 Max +total reaction 13.98 14.25 DEFLECTIONS:Ratio Dead load (in) at 8.63 ft = -0.210 < -0.750 L/D = 986 0.28 Live load (in) at 8.63 ft = -0.398 L/D = 520 > 360 0.69 Net Total load (in) at 8.63 ft = -0.608 L/D = 340 > 240 0.71 Page 11/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 137 SPAN INFORMATION (ft): I-End (59.08,40.83) J-End (72.25,40.83) Beam Size (User Selected) = HSS12X6X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 13.17 Mp (kip-ft) = 129.58 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.917 0.54 0.00 0.0 1.82 0.00 0.0 0.00 Snow 0.00 3.917 0.54 0.00 0.0 1.82 0.00 0.0 0.00 Snow 0.00 5.917 0.54 0.00 0.0 1.82 0.00 0.0 0.00 Snow 0.00 7.917 0.54 0.00 0.0 1.82 0.00 0.0 0.00 Snow 0.00 9.917 0.54 0.00 0.0 1.82 0.00 0.0 0.00 Snow 0.00 11.917 0.54 0.00 0.0 1.82 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.225 0.000 0.0% Red 0.000 13.166 0.225 0.000 0.000 2 0.000 0.005 0.017 --- NonR 0.000 13.166 0.005 0.017 0.000 SHEAR: Max Va (DL+LL) = 9.07 kips Vn/1.67 = 94.60 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 30.9 5.9 2.0 1.06 1.67 77.59 Controlling DL+LL 30.9 5.9 2.0 1.06 1.67 77.59 REACTIONS (kips): Left Right DL reaction 3.07 3.23 Max +LL reaction 5.28 5.84 Max +total reaction 8.35 9.07 DEFLECTIONS:Ratio Dead load (in) at 6.58 ft = -0.077 < -0.750 L/D = 2040 0.10 Live load (in) at 6.58 ft = -0.142 L/D = 1110 > 360 0.32 Net Total load (in) at 6.58 ft = -0.220 L/D = 719 > 240 0.33 Page 12/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 168 SPAN INFORMATION (ft): I-End (72.54,70.33) J-End (79.87,70.33) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 7.33 Mp (kip-ft) = 102.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.458 0.88 1.46 0.0 0.00 0.00 0.0 0.00 Snow 0.44 2.458 0.88 1.46 0.0 0.00 0.00 0.0 0.00 Snow 0.44 4.458 0.88 1.46 0.0 0.00 0.00 0.0 0.00 Snow 0.44 6.458 0.63 1.05 0.0 0.00 0.00 0.0 0.00 Snow 0.32 SHEAR: Max Va (DL+LL) = 5.79 kips Vn/1.50 = 57.34 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 9.1 4.5 2.0 1.02 1.67 61.63 Controlling DL+LL 9.1 4.5 2.0 1.02 1.67 61.63 REACTIONS (kips): Left Right DL reaction 1.83 1.44 Max +LL reaction 3.96 3.12 Max +total reaction 5.79 4.56 DEFLECTIONS:Ratio Dead load (in) at 3.67 ft = -0.007 < -0.750 L/D = 11931 0.01 Live load (in) at 3.67 ft = -0.016 L/D = 5507 > 360 0.07 Net Total load (in) at 3.67 ft = -0.023 L/D = 3768 > 240 0.06 Page 13/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 169 SPAN INFORMATION (ft): I-End (72.54,88.29) J-End (90.54,88.29) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length (ft) = 18.00 Mp (kip-ft) = 138.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.458 1.22 2.03 20.8 0.00 0.00 0.0 0.00 Snow 0.61 2.458 1.22 2.03 20.8 0.00 0.00 0.0 0.00 Snow 0.61 4.458 1.22 2.03 20.8 0.00 0.00 0.0 0.00 Snow 0.61 6.458 0.88 1.46 20.8 0.00 0.00 0.0 0.00 Snow 0.44 7.333 0.88 1.46 20.8 0.00 0.00 0.0 0.00 Snow 0.44 9.333 1.22 2.03 20.8 0.00 0.00 0.0 0.00 Snow 0.61 11.333 1.22 2.03 20.8 0.00 0.00 0.0 0.00 Snow 0.61 13.333 1.22 2.03 20.8 0.00 0.00 0.0 0.00 Snow 0.61 15.333 1.22 2.03 20.8 0.00 0.00 0.0 0.00 Snow 0.61 17.333 1.22 2.03 20.8 0.00 0.00 0.0 0.00 Snow 0.61 SHEAR: Max Va (DL+LL) = 16.39 kips Vn/1.50 = 63.02 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 70.1 9.3 2.0 1.01 1.67 82.83 Controlling DL+LL 70.1 9.3 2.0 1.01 1.67 82.83 REACTIONS (kips): Left Right DL reaction 5.81 5.68 Max +LL reaction 10.58 10.33 Max +total reaction 16.39 16.01 DEFLECTIONS:Ratio Dead load (in) at 9.00 ft = -0.250 < -0.750 L/D = 865 0.33 Live load (in) at 9.00 ft = -0.455 L/D = 475 > 360 0.76 Net Total load (in) at 9.00 ft = -0.704 L/D = 307 > 240 0.78 Page 14/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 170 SPAN INFORMATION (ft): I-End (72.54,110.92) J-End (88.21,110.92) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 15.67 Mp (kip-ft) = 102.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.458 1.03 1.72 12.7 0.00 0.00 0.0 0.00 Snow 0.51 2.458 1.03 1.72 12.7 0.00 0.00 0.0 0.00 Snow 0.51 4.458 1.03 1.72 12.7 0.00 0.00 0.0 0.00 Snow 0.51 6.458 0.74 1.23 12.7 0.00 0.00 0.0 0.00 Snow 0.37 7.333 0.74 1.23 12.7 0.00 0.00 0.0 0.00 Snow 0.37 9.333 1.03 1.72 12.7 0.00 0.00 0.0 0.00 Snow 0.51 11.333 1.03 1.72 12.7 0.00 0.00 0.0 0.00 Snow 0.51 13.333 1.03 1.72 12.7 0.00 0.00 0.0 0.00 Snow 0.51 15.333 1.03 1.72 12.7 0.00 0.00 0.0 0.00 Snow 0.51 SHEAR: Max Va (DL+LL) = 12.94 kips Vn/1.50 = 57.34 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 47.0 7.3 2.0 1.01 1.67 61.63 Controlling DL+LL 47.0 7.3 2.0 1.01 1.67 61.63 REACTIONS (kips): Left Right DL reaction 4.31 4.38 Max +LL reaction 8.43 8.56 Max +total reaction 12.74 12.94 DEFLECTIONS:Ratio Dead load (in) at 7.83 ft = -0.185 < -0.750 L/D = 1015 0.25 Live load (in) at 7.83 ft = -0.362 L/D = 519 > 360 0.69 Net Total load (in) at 7.83 ft = -0.547 L/D = 343 > 240 0.70 Page 15/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 197 SPAN INFORMATION (ft): I-End (83.87,6.50) J-End (83.87,9.50) Beam Size (User Selected) = HSS10X2X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 3.00 Cantilever on left (ft) = 3.00 Mp (kip-ft) = 60.00 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.000 0.34 0.00 0.0 0.00 0.00 0.0 0.33 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 3.000 0.050 0.000 0.000 2 0.000 0.000 0.007 --- Snow 0.000 3.000 0.000 0.007 0.000 3 0.000 0.007 0.000 --- Snow 0.000 3.000 0.007 0.000 0.000 4 0.000 0.000 0.028 --- Snow 0.000 3.000 0.000 0.028 0.000 SHEAR: Max Va (DL+LL) = 0.94 kips Vn/1.67 = 77.86 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Left Max - DL+LL -2.4 3.0 3.0 1.00 1.67 35.91 Controlling DL+LL -2.4 3.0 3.0 1.00 1.67 35.91 REACTIONS (kips): Left Right DL reaction --- 0.51 Max +LL reaction --- 0.44 Max +total reaction --- 0.94 DEFLECTIONS:Ratio Left cantilever: Dead load (in) = -0.004 < -1.000 L/D = 17606 0.00 Pos Live load (in) = -0.004 L/D = 19019 > 240 0.01 Pos Total load (in) = -0.008 L/D = 9143 > 180 0.02 Page 16/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 198 SPAN INFORMATION (ft): I-End (83.87,6.50) J-End (94.54,6.50) Beam Size (User Selected) = HSS10X2X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 10.67 Mp (kip-ft) = 60.00 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.333 0.02 0.00 0.0 0.00 0.00 0.0 0.08 Snow 0.00 2.666 0.02 0.00 0.0 0.00 0.00 0.0 0.08 Snow 0.00 3.999 0.02 0.00 0.0 0.00 0.00 0.0 0.08 Snow 0.00 5.332 0.02 0.00 0.0 0.00 0.00 0.0 0.08 Snow 0.00 6.665 0.02 0.00 0.0 0.00 0.00 0.0 0.08 Snow 0.00 7.998 0.02 0.00 0.0 0.00 0.00 0.0 0.08 Snow 0.00 9.331 0.02 0.00 0.0 0.00 0.00 0.0 0.08 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 10.666 0.050 0.000 0.000 2 0.000 0.000 0.007 --- Snow 0.000 10.666 0.000 0.007 0.000 SHEAR: Max Va (DL+LL) = 0.67 kips Vn/1.67 = 77.86 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 1.9 5.3 1.3 1.02 1.67 35.93 Controlling DL+LL 1.9 5.3 1.3 1.02 1.67 35.93 REACTIONS (kips): Left Right DL reaction 0.34 0.34 Max +LL reaction 0.33 0.33 Max +total reaction 0.67 0.67 DEFLECTIONS:Ratio Dead load (in) at 5.33 ft = -0.012 < -1.000 L/D = 10324 0.01 Live load (in) at 5.33 ft = -0.013 L/D = 9669 > 240 0.02 Net Total load (in) at 5.33 ft = -0.026 L/D = 4993 > 180 0.04 Page 17/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 203 SPAN INFORMATION (ft): I-End (84.37,59.00) J-End (84.37,70.33) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = HSS8X4X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 11.33 Mp (kip-ft) = 55.42 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 10.818 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 6.182 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 4.808 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 0.333 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.165 0.300 --- NonR 0.000 11.333 0.165 0.300 0.000 SHEAR: Max Va (DL+LL) = 7.05 kips Vn/1.67 = 61.12 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 19.1 5.9 11.3 1.20 1.67 33.18 Controlling DL+LL 19.1 5.9 11.3 1.20 1.67 33.18 REACTIONS (kips): Left Right DL reaction 2.49 2.42 Max +LL reaction 4.56 4.43 Max +total reaction 7.05 6.85 DEFLECTIONS:Ratio Dead load (in) at 5.67 ft = -0.120 < -0.750 L/D = 1132 0.16 Live load (in) at 5.67 ft = -0.220 L/D = 618 > 360 0.58 Net Total load (in) at 5.67 ft = -0.340 L/D = 400 > 240 0.60 Page 18/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 213 SPAN INFORMATION (ft): I-End (88.21,110.92) J-End (103.83,110.92) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 15.62 Mp (kip-ft) = 102.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.667 1.03 1.72 2.4 0.00 0.00 0.0 0.00 Snow 0.51 3.667 1.03 1.72 2.4 0.00 0.00 0.0 0.00 Snow 0.51 5.667 1.14 1.91 2.4 0.00 0.00 0.0 0.00 Snow 0.57 7.667 0.35 0.59 2.4 0.00 0.00 0.0 0.00 Snow 0.18 8.333 1.32 2.63 2.4 0.00 0.00 0.0 0.00 Snow 0.79 -0.43 3.1 0.00 0.00 0.0 0.00 Snow -0.13 9.667 0.35 0.59 2.4 0.00 0.00 0.0 0.00 Snow 0.18 11.667 0.35 0.59 2.4 0.00 0.00 0.0 0.00 Snow 0.18 13.667 0.35 0.58 2.4 0.00 0.00 0.0 0.00 Snow 0.17 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 8.334 0.031 0.052 2.4% Red 0.016 15.625 0.031 0.052 0.016 SHEAR: Max Va (DL+LL) = 11.36 kips Vn/1.50 = 57.34 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 47.9 8.3 0.7 1.00 1.67 61.63 Controlling DL+LL 47.9 8.3 0.7 1.00 1.67 61.63 REACTIONS (kips): Left Right DL reaction 3.55 2.60 Max +LL reaction 7.80 5.82 Max -LL reaction -0.19 -0.22 Max +total reaction 11.36 8.42 DEFLECTIONS:Ratio Dead load (in) at 7.66 ft = -0.165 < -0.750 L/D = 1139 0.22 Live load (in) at 7.66 ft = -0.370 L/D = 507 > 360 0.71 Net Total load (in) at 7.66 ft = -0.534 L/D = 351 > 240 0.68 Page 19/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 219 SPAN INFORMATION (ft): I-End (90.54,88.29) J-End (96.54,88.29) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 6.00 Mp (kip-ft) = 102.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.333 1.22 2.03 0.0 0.00 0.00 0.0 0.00 Snow 0.61 3.333 1.33 2.22 0.0 0.00 0.00 0.0 0.00 Snow 0.67 5.333 0.41 0.68 0.0 0.00 0.00 0.0 0.00 Snow 0.21 SHEAR: Max Va (DL+LL) = 5.02 kips Vn/1.50 = 57.34 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 9.0 3.3 2.0 1.11 1.67 61.63 Controlling DL+LL 9.0 3.3 2.0 1.11 1.67 61.63 REACTIONS (kips): Left Right DL reaction 1.58 1.37 Max +LL reaction 3.43 2.98 Max +total reaction 5.02 4.35 DEFLECTIONS:Ratio Dead load (in) at 2.97 ft = -0.005 < -0.750 L/D = 15868 0.01 Live load (in) at 2.97 ft = -0.010 L/D = 7324 > 360 0.05 Net Total load (in) at 2.97 ft = -0.014 L/D = 5011 > 240 0.05 Page 20/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 228 SPAN INFORMATION (ft): I-End (94.54,6.50) J-End (94.54,9.50) Beam Size (User Selected) = HSS10X2X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 3.00 Cantilever on left (ft) = 3.00 Mp (kip-ft) = 60.00 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.000 0.34 0.00 0.0 0.00 0.00 0.0 0.33 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 3.000 0.050 0.000 0.000 2 0.000 0.007 0.000 --- Snow 0.000 3.000 0.007 0.000 0.000 3 0.000 0.000 0.028 --- Snow 0.000 3.000 0.000 0.028 0.000 4 0.000 0.000 0.007 --- Snow 0.000 3.000 0.000 0.007 0.000 SHEAR: Max Va (DL+LL) = 0.94 kips Vn/1.67 = 77.86 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Left Max - DL+LL -2.4 3.0 3.0 1.00 1.67 35.91 Controlling DL+LL -2.4 3.0 3.0 1.00 1.67 35.91 REACTIONS (kips): Left Right DL reaction --- 0.51 Max +LL reaction --- 0.44 Max +total reaction --- 0.94 DEFLECTIONS:Ratio Left cantilever: Dead load (in) = -0.004 < -1.000 L/D = 17606 0.00 Pos Live load (in) = -0.004 L/D = 19020 > 240 0.01 Pos Total load (in) = -0.008 L/D = 9143 > 180 0.02 Page 21/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 230 SPAN INFORMATION (ft): I-End (95.87,59.00) J-End (95.87,70.33) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = HSS8X4X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 11.33 Mp (kip-ft) = 55.42 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.333 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 4.808 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.165 0.300 --- NonR 0.000 11.333 0.165 0.300 0.000 SHEAR: Max Va (DL+LL) = 5.97 kips Vn/1.67 = 61.12 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 13.7 4.8 11.3 1.22 1.67 33.18 Controlling DL+LL 13.7 4.8 11.3 1.22 1.67 33.18 REACTIONS (kips): Left Right DL reaction 2.11 1.28 Max +LL reaction 3.86 2.33 Max +total reaction 5.97 3.61 DEFLECTIONS:Ratio Dead load (in) at 5.55 ft = -0.084 < -0.750 L/D = 1622 0.11 Live load (in) at 5.55 ft = -0.153 L/D = 887 > 360 0.41 Net Total load (in) at 5.55 ft = -0.237 L/D = 574 > 240 0.42 Page 22/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 251 SPAN INFORMATION (ft): I-End (101.87,70.33) J-End (116.04,70.33) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W14X26 Fy = 50.0 ksi Total Beam Length (ft) = 14.17 Mp (kip-ft) = 167.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 2.000 0.63 1.05 0.0 0.00 0.00 0.0 0.00 Snow 0.31 4.000 0.88 1.46 0.0 0.00 0.00 0.0 0.00 Snow 0.44 6.000 0.88 1.46 0.0 0.00 0.00 0.0 0.00 Snow 0.44 8.000 0.88 1.46 0.0 0.00 0.00 0.0 0.00 Snow 0.44 10.000 0.88 1.46 0.0 0.00 0.00 0.0 0.00 Snow 0.44 12.000 0.88 1.46 0.0 0.00 0.00 0.0 0.00 Snow 0.44 14.000 0.88 1.46 0.0 0.00 0.00 0.0 0.00 Snow 0.44 SHEAR: Max Va (DL+LL) = 10.89 kips Vn/1.50 = 70.89 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 33.7 8.0 2.0 1.01 1.67 100.30 Controlling DL+LL 33.7 8.0 2.0 1.01 1.67 100.30 REACTIONS (kips): Left Right DL reaction 2.46 3.44 Max +LL reaction 5.34 7.45 Max +total reaction 7.80 10.89 DEFLECTIONS:Ratio Dead load (in) at 7.08 ft = -0.054 < -0.750 L/D = 3156 0.07 Live load (in) at 7.08 ft = -0.117 L/D = 1457 > 360 0.25 Net Total load (in) at 7.08 ft = -0.171 L/D = 997 > 240 0.24 Page 23/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 253 SPAN INFORMATION (ft): I-End (103.83,88.29) J-End (103.83,104.83) Beam Size (User Selected) = W10X22 Fy = 50.0 ksi Total Beam Length (ft) = 16.54 Mp (kip-ft) = 108.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 2.000 0.57 0.95 0.0 0.00 0.00 0.0 0.00 Snow 0.29 4.000 0.57 0.95 0.0 0.00 0.00 0.0 0.00 Snow 0.29 6.000 0.57 0.95 0.0 0.00 0.00 0.0 0.00 Snow 0.29 8.000 0.57 0.95 0.0 0.00 0.00 0.0 0.00 Snow 0.29 10.000 0.57 0.95 0.0 0.00 0.00 0.0 0.00 Snow 0.29 12.000 0.57 0.95 0.0 0.00 0.00 0.0 0.00 Snow 0.29 14.000 0.57 0.95 0.0 0.00 0.00 0.0 0.00 Snow 0.29 16.000 0.36 0.60 0.0 0.00 0.00 0.0 0.00 Snow 0.18 SHEAR: Max Va (DL+LL) = 7.25 kips Vn/1.50 = 48.96 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 31.0 8.0 2.0 1.02 1.67 64.87 Controlling DL+LL 31.0 8.0 2.0 1.02 1.67 64.87 REACTIONS (kips): Left Right DL reaction 2.08 2.29 Max +LL reaction 4.51 4.96 Max +total reaction 6.59 7.25 DEFLECTIONS:Ratio Dead load (in) at 8.27 ft = -0.139 < -0.750 L/D = 1425 0.19 Live load (in) at 8.27 ft = -0.302 L/D = 658 > 360 0.55 Net Total load (in) at 8.27 ft = -0.441 L/D = 450 > 240 0.53 Page 24/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 254 SPAN INFORMATION (ft): I-End (103.83,104.83) J-End (103.83,122.63) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length (ft) = 17.79 Mp (kip-ft) = 138.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 2.000 0.22 0.36 0.0 0.00 0.00 0.0 0.00 Snow 0.11 4.000 0.22 0.37 0.0 0.00 0.00 0.0 0.00 Snow 0.11 6.083 2.60 4.56 0.0 0.00 0.00 0.0 0.00 Snow 1.37 -0.23 0.0 0.00 0.00 0.0 0.00 Snow -0.07 12.167 0.19 0.00 0.0 0.00 0.00 0.0 0.65 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.23 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 6.084 0.029 0.049 0.0% Red 0.015 17.791 0.029 0.049 0.015 2 0.175 0.005 0.009 0.0% Red 0.003 11.991 0.005 0.009 0.003 3 11.992 0.005 0.009 0.0% Red 0.003 12.166 0.000 0.000 0.000 4 0.000 0.000 0.000 0.0% Red 0.000 0.175 0.005 0.009 0.003 5 12.167 0.005 0.008 0.0% Red 0.002 17.791 0.000 0.000 0.000 6 12.167 0.010 0.000 --- Snow 0.000 17.791 0.013 0.000 0.000 7 12.167 0.000 0.022 --- Snow 0.000 17.791 0.000 0.028 0.000 SHEAR: Max Va (DL+LL) = 7.57 kips Vn/1.50 = 63.02 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 41.5 6.1 2.1 1.14 1.67 82.83 Controlling DL+LL 41.5 6.1 2.1 1.14 1.67 82.83 REACTIONS (kips): Left Right DL reaction 2.31 1.41 Max +LL reaction 5.26 3.32 Max -LL reaction -0.22 -0.24 Max +total reaction 7.57 4.73 DEFLECTIONS:Ratio Dead load (in) at 8.36 ft = -0.104 < -0.750 L/D = 2054 0.14 Live load (in) at 8.36 ft = -0.241 L/D = 886 > 360 0.41 Net Total load (in) at 8.36 ft = -0.345 L/D = 619 > 240 0.39 Page 25/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 261 SPAN INFORMATION (ft): I-End (103.87,88.29) J-End (133.50,88.29) Beam Size (User Selected) = W18X55 Fy = 50.0 ksi Total Beam Length (ft) = 29.63 Mp (kip-ft) = 466.67 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 2.000 0.54 0.90 9.0 0.00 0.00 0.0 0.00 Snow 0.27 4.000 0.54 0.90 9.0 0.00 0.00 0.0 0.00 Snow 0.27 4.292 0.00 0.01 9.0 0.00 0.00 0.0 0.00 Snow 0.00 6.000 0.54 0.90 9.0 0.00 0.00 0.0 0.00 Snow 0.27 8.000 0.54 0.90 9.0 0.00 0.00 0.0 0.00 Snow 0.27 10.000 0.54 0.90 9.0 0.00 0.00 0.0 0.00 Snow 0.27 12.000 0.54 0.90 9.0 0.00 0.00 0.0 0.00 Snow 0.27 14.000 0.54 0.90 9.0 0.00 0.00 0.0 0.00 Snow 0.27 16.000 0.54 0.90 9.0 0.00 0.00 0.0 0.00 Snow 0.27 18.000 0.54 0.90 9.0 0.00 0.00 0.0 0.00 Snow 0.27 20.000 0.54 0.90 9.0 0.00 0.00 0.0 0.00 Snow 0.27 22.000 0.54 0.90 9.0 0.00 0.00 0.0 0.00 Snow 0.27 24.000 0.54 0.90 9.0 0.00 0.00 0.0 0.00 Snow 0.27 26.000 0.54 0.90 9.0 0.00 0.00 0.0 0.00 Snow 0.27 28.000 0.49 0.81 9.0 0.00 0.00 0.0 0.00 Snow 0.24 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 1.667 0.100 0.000 --- NonR 0.000 20.666 0.100 0.000 0.000 2 4.292 0.000 0.000 9.0% Red 0.000 4.466 0.005 0.009 0.003 3 4.467 0.005 0.009 9.0% Red 0.003 29.625 0.005 0.008 0.003 4 0.000 0.030 0.050 9.0% Red 0.015 4.291 0.030 0.050 0.015 SHEAR: Max Va (DL+LL) = 12.95 kips Vn/1.50 = 141.18 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 99.9 14.0 2.0 1.00 1.67 279.44 Controlling DL+LL 99.9 14.0 2.0 1.00 1.67 279.44 REACTIONS (kips): Left Right DL reaction 5.08 4.57 Max +LL reaction 7.86 7.77 Max +total reaction 12.95 12.34 DEFLECTIONS:Ratio Dead load (in) at 14.66 ft = -0.237 < -0.750 L/D = 1498 0.32 Live load (in) at 14.81 ft = -0.372 L/D = 955 > 360 0.38 Net Total load (in) at 14.81 ft = -0.609 L/D = 583 > 240 0.41 Page 26/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 297 SPAN INFORMATION (ft): I-End (116.04,70.33) J-End (133.50,70.33) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 17.46 Mp (kip-ft) = 102.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.833 0.88 1.46 5.3 0.00 0.00 0.0 0.00 Snow 0.44 3.833 0.88 1.46 5.3 0.00 0.00 0.0 0.00 Snow 0.44 5.833 0.88 1.46 5.3 0.00 0.00 0.0 0.00 Snow 0.44 7.833 0.88 1.46 5.3 0.00 0.00 0.0 0.00 Snow 0.44 9.833 0.88 1.46 5.3 0.00 0.00 0.0 0.00 Snow 0.44 11.833 0.88 1.46 5.3 0.00 0.00 0.0 0.00 Snow 0.44 13.833 0.88 1.46 5.3 0.00 0.00 0.0 0.00 Snow 0.44 15.833 0.80 1.33 5.3 0.00 0.00 0.0 0.00 Snow 0.40 SHEAR: Max Va (DL+LL) = 10.72 kips Vn/1.50 = 57.34 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 51.1 7.8 2.0 1.00 1.67 61.63 Controlling DL+LL 51.1 7.8 2.0 1.00 1.67 61.63 REACTIONS (kips): Left Right DL reaction 3.47 3.48 Max +LL reaction 7.20 7.24 Max +total reaction 10.67 10.72 DEFLECTIONS:Ratio Dead load (in) at 8.73 ft = -0.242 < -0.750 L/D = 867 0.32 Live load (in) at 8.73 ft = -0.502 L/D = 417 > 360 0.86 Net Total load (in) at 8.73 ft = -0.744 L/D = 282 > 240 0.85 Page 27/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 306 SPAN INFORMATION (ft): I-End (124.17,6.50) J-End (124.17,9.50) Beam Size (User Selected) = HSS10X2X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 3.00 Cantilever on left (ft) = 3.00 Mp (kip-ft) = 60.00 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.000 0.34 0.00 0.0 0.00 0.00 0.0 0.33 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 3.000 0.050 0.000 0.000 2 0.000 0.000 0.007 --- Snow 0.000 3.000 0.000 0.007 0.000 3 0.000 0.007 0.000 --- Snow 0.000 3.000 0.007 0.000 0.000 4 0.000 0.000 0.028 --- Snow 0.000 3.000 0.000 0.028 0.000 SHEAR: Max Va (DL+LL) = 0.94 kips Vn/1.67 = 77.86 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Left Max - DL+LL -2.4 3.0 3.0 1.00 1.67 35.91 Controlling DL+LL -2.4 3.0 3.0 1.00 1.67 35.91 REACTIONS (kips): Left Right DL reaction --- 0.51 Max +LL reaction --- 0.44 Max +total reaction --- 0.94 DEFLECTIONS:Ratio Left cantilever: Dead load (in) = -0.004 < -1.000 L/D = 17606 0.00 Pos Live load (in) = -0.004 L/D = 19019 > 240 0.01 Pos Total load (in) = -0.008 L/D = 9143 > 180 0.02 Page 28/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 307 SPAN INFORMATION (ft): I-End (124.17,6.50) J-End (134.83,6.50) Beam Size (User Selected) = HSS10X2X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 10.67 Mp (kip-ft) = 60.00 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.333 0.02 0.00 0.0 0.00 0.00 0.0 0.08 Snow 0.00 2.666 0.02 0.00 0.0 0.00 0.00 0.0 0.08 Snow 0.00 3.999 0.02 0.00 0.0 0.00 0.00 0.0 0.08 Snow 0.00 5.332 0.02 0.00 0.0 0.00 0.00 0.0 0.08 Snow 0.00 6.665 0.02 0.00 0.0 0.00 0.00 0.0 0.08 Snow 0.00 7.998 0.02 0.00 0.0 0.00 0.00 0.0 0.08 Snow 0.00 9.331 0.02 0.00 0.0 0.00 0.00 0.0 0.08 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 10.666 0.050 0.000 0.000 2 0.000 0.000 0.007 --- Snow 0.000 10.666 0.000 0.007 0.000 SHEAR: Max Va (DL+LL) = 0.67 kips Vn/1.67 = 77.86 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 1.9 5.3 1.3 1.02 1.67 35.93 Controlling DL+LL 1.9 5.3 1.3 1.02 1.67 35.93 REACTIONS (kips): Left Right DL reaction 0.34 0.34 Max +LL reaction 0.33 0.33 Max +total reaction 0.67 0.67 DEFLECTIONS:Ratio Dead load (in) at 5.33 ft = -0.012 < -1.000 L/D = 10324 0.01 Live load (in) at 5.33 ft = -0.013 L/D = 9669 > 240 0.02 Net Total load (in) at 5.33 ft = -0.026 L/D = 4993 > 180 0.04 Page 29/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 324 SPAN INFORMATION (ft): I-End (133.50,62.58) J-End (158.07,62.58) Beam Size (User Selected) =HSS12X4X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 24.57 Cantilever on right (ft) = 2.00 Mp (kip-ft) = 81.67 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 22.572 0.050 0.000 0.000 2 22.573 0.050 0.000 --- Snow 0.000 24.572 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 0.57 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 3.1 11.3 22.6 1.14 1.67 47.86 Max - DL -0.1 22.6 22.6 1.14 1.67 47.86 Right Max - DL+LL -0.1 22.6 2.0 1.00 1.67 47.86 Controlling DL 3.1 11.3 22.6 1.14 1.67 47.86 REACTIONS (kips): Left Right DL reaction 0.56 0.67 Max +total reaction 0.56 0.67 DEFLECTIONS:Ratio Center span: Dead load (in) at 11.29 ft = -0.108 < -1.000 L/D = 2516 0.11 Live load (in) at 11.29 ft = -0.000 Net Total load (in) at 11.29 ft = -0.108 L/D = 2516 > 180 0.07 Right cantilever: Dead load (in) = 0.030 < 1.000 L/D = 1597 0.03 Neg Total load (in) = 0.030 L/D = 1597 > 180 0.11 Page 30/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 325 SPAN INFORMATION (ft): I-End (133.50,66.17) J-End (157.70,66.17) Beam Size (User Selected) =HSS12X4X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 24.20 Cantilever on right (ft) = 2.00 Mp (kip-ft) = 81.67 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 22.201 0.050 0.000 0.000 2 22.202 0.050 0.000 --- Snow 0.000 24.201 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 0.56 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 3.0 11.1 22.2 1.14 1.67 47.86 Max - DL -0.1 22.2 22.2 1.14 1.67 47.86 Right Max - DL+LL -0.1 22.2 2.0 1.00 1.67 47.86 Controlling DL 3.0 11.0 22.2 1.14 1.67 47.86 REACTIONS (kips): Left Right DL reaction 0.55 0.66 Max +total reaction 0.55 0.66 DEFLECTIONS:Ratio Center span: Dead load (in) at 11.10 ft = -0.101 < -1.000 L/D = 2647 0.10 Live load (in) at 11.10 ft = -0.000 Net Total load (in) at 11.10 ft = -0.101 L/D = 2647 > 180 0.07 Right cantilever: Dead load (in) = 0.029 < 1.000 L/D = 1680 0.03 Neg Total load (in) = 0.029 L/D = 1680 > 180 0.11 Page 31/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 326 SPAN INFORMATION (ft): I-End (133.50,69.75) J-End (157.33,69.75) Beam Size (User Selected) =HSS12X4X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 23.83 Cantilever on right (ft) = 2.00 Mp (kip-ft) = 81.67 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 21.829 0.050 0.000 0.000 2 21.830 0.050 0.000 --- Snow 0.000 23.829 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 0.55 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 2.9 10.9 21.8 1.14 1.67 47.86 Max - DL -0.1 21.8 21.8 1.14 1.67 47.86 Right Max - DL+LL -0.1 21.8 2.0 1.00 1.67 47.86 Controlling DL 2.9 10.9 21.8 1.14 1.67 47.86 REACTIONS (kips): Left Right DL reaction 0.54 0.65 Max +total reaction 0.54 0.65 DEFLECTIONS:Ratio Center span: Dead load (in) at 10.91 ft = -0.094 < -1.000 L/D = 2786 0.09 Live load (in) at 10.91 ft = -0.000 Net Total load (in) at 10.91 ft = -0.094 L/D = 2786 > 180 0.06 Right cantilever: Dead load (in) = 0.027 < 1.000 L/D = 1770 0.03 Neg Total load (in) = 0.027 L/D = 1770 > 180 0.10 Page 32/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 327 SPAN INFORMATION (ft): I-End (133.50,73.33) J-End (157.29,73.33) Beam Size (User Selected) = HSS12X4X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 23.79 Cantilever on right (ft) = 2.33 Mp (kip-ft) = 106.67 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 2.000 0.23 0.00 0.0 0.00 0.00 0.0 0.48 Snow 0.00 4.000 0.23 0.00 0.0 0.00 0.00 0.0 0.48 Snow 0.00 6.000 0.23 0.00 0.0 0.00 0.00 0.0 0.48 Snow 0.00 8.000 0.23 0.00 0.0 0.00 0.00 0.0 0.48 Snow 0.00 10.000 0.23 0.00 0.0 0.00 0.00 0.0 0.48 Snow 0.00 12.000 0.23 0.00 0.0 0.00 0.00 0.0 0.48 Snow 0.00 14.000 0.23 0.00 0.0 0.00 0.00 0.0 0.48 Snow 0.00 16.000 0.23 0.00 0.0 0.00 0.00 0.0 0.48 Snow 0.00 18.000 0.23 0.00 0.0 0.00 0.00 0.0 0.48 Snow 0.00 20.000 0.20 0.00 0.0 0.00 0.00 0.0 0.41 Snow 0.00 23.792 0.11 0.00 0.0 0.00 0.00 0.0 0.28 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 21.458 0.050 0.000 0.000 2 21.459 0.020 0.000 --- Snow 0.000 23.791 0.020 0.000 0.000 3 21.459 0.000 0.042 --- Snow 0.000 23.791 0.000 0.042 0.000 4 1.009 0.020 0.000 --- Snow 0.000 21.458 0.020 0.000 0.000 5 1.000 0.000 0.042 --- Snow 0.000 21.458 0.000 0.042 0.000 6 0.000 0.000 0.000 --- Snow 0.000 1.000 0.020 0.000 0.000 7 0.000 0.000 0.000 --- Snow 0.000 1.000 0.000 0.042 0.000 SHEAR: Max Va (DL+LL) = 4.79 kips Vn/1.67 = 94.60 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 26.5 10.0 2.0 1.00 1.67 63.87 Max - DL+LL -1.1 21.5 1.5 2.19 1.67 63.87 Right Max - DL+LL -1.1 21.5 2.3 1.00 1.67 63.87 Controlling DL+LL 26.5 10.0 2.0 1.00 1.67 63.87 REACTIONS (kips): Left Right DL reaction 1.84 2.07 Max +LL reaction 2.76 3.26 Max -LL reaction -0.04 0.00 Max +total reaction 4.60 5.33 DEFLECTIONS:Ratio Center span: Dead load (in) at 10.73 ft = -0.249 < -1.000 L/D = 1035 0.25 Live load (in) at 10.73 ft = -0.387 L/D = 665 > 240 0.36 Net Total load (in) at 10.73 ft = -0.636 L/D = 405 > 180 0.44 Page 33/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Right cantilever: Dead load (in) = 0.085 < 1.000 L/D = 658 0.09 Pos Live load (in) = -0.007 L/D = 7906 > 240 0.03 Neg Live load (in) = 0.135 L/D = 416 > 240 0.58 Neg Total load (in) = 0.220 L/D = 255 > 180 0.71 Page 34/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 328 SPAN INFORMATION (ft): I-End (133.50,84.75) J-End (156.29,84.75) Beam Size (User Selected) = HSS12X4X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 22.79 Cantilever on right (ft) = 1.33 Mp (kip-ft) = 106.67 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 2.000 0.23 0.00 0.0 0.00 0.00 0.0 0.48 Snow 0.00 4.000 0.23 0.00 0.0 0.00 0.00 0.0 0.48 Snow 0.00 6.000 0.23 0.00 0.0 0.00 0.00 0.0 0.48 Snow 0.00 8.000 0.23 0.00 0.0 0.00 0.00 0.0 0.48 Snow 0.00 10.000 0.23 0.00 0.0 0.00 0.00 0.0 0.48 Snow 0.00 12.000 0.23 0.00 0.0 0.00 0.00 0.0 0.48 Snow 0.00 14.000 0.23 0.00 0.0 0.00 0.00 0.0 0.48 Snow 0.00 16.000 0.23 0.00 0.0 0.00 0.00 0.0 0.48 Snow 0.00 18.000 0.23 0.00 0.0 0.00 0.00 0.0 0.48 Snow 0.00 20.000 0.20 0.00 0.0 0.00 0.00 0.0 0.41 Snow 0.00 22.792 0.10 0.00 0.0 0.00 0.00 0.0 0.24 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 21.458 0.050 0.000 0.000 2 0.000 0.000 0.000 --- Snow 0.000 1.000 0.020 0.000 0.000 3 1.009 0.020 0.000 --- Snow 0.000 21.458 0.020 0.000 0.000 4 0.000 0.000 0.000 --- Snow 0.000 1.000 0.000 0.042 0.000 5 1.000 0.000 0.042 --- Snow 0.000 21.458 0.000 0.042 0.000 6 21.459 0.020 0.000 --- Snow 0.000 22.791 0.020 0.000 0.000 7 21.459 0.000 0.042 --- Snow 0.000 22.791 0.000 0.042 0.000 SHEAR: Max Va (DL+LL) = 4.76 kips Vn/1.67 = 94.60 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 26.6 10.0 2.0 1.00 1.67 63.87 Max - DL+LL -0.5 21.5 1.5 1.94 1.67 63.87 Right Max - DL+LL -0.5 21.5 1.3 1.00 1.67 63.87 Controlling DL+LL 26.6 10.0 2.0 1.00 1.67 63.87 REACTIONS (kips): Left Right DL reaction 1.84 2.02 Max +LL reaction 2.76 3.16 Max -LL reaction -0.02 0.00 Max +total reaction 4.61 5.18 DEFLECTIONS:Ratio Center span: Dead load (in) at 10.73 ft = -0.251 < -1.000 L/D = 1025 0.25 Live load (in) at 10.73 ft = -0.387 L/D = 665 > 240 0.36 Net Total load (in) at 10.73 ft = -0.638 L/D = 403 > 180 0.45 Page 35/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Right cantilever: Dead load (in) = 0.050 < 1.000 L/D = 645 0.05 Pos Live load (in) = -0.002 L/D = 17692 > 240 0.01 Neg Live load (in) = 0.077 L/D = 416 > 240 0.58 Neg Total load (in) = 0.126 L/D = 253 > 180 0.71 Page 36/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 330 SPAN INFORMATION (ft): I-End (134.83,6.50) J-End (134.83,9.50) Beam Size (User Selected) = HSS10X2X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 3.00 Cantilever on left (ft) = 3.00 Mp (kip-ft) = 60.00 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.000 0.34 0.00 0.0 0.00 0.00 0.0 0.33 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 3.000 0.050 0.000 0.000 2 0.000 0.007 0.000 --- Snow 0.000 3.000 0.007 0.000 0.000 3 0.000 0.000 0.028 --- Snow 0.000 3.000 0.000 0.028 0.000 4 0.000 0.000 0.007 --- Snow 0.000 3.000 0.000 0.007 0.000 SHEAR: Max Va (DL+LL) = 0.94 kips Vn/1.67 = 77.86 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Left Max - DL+LL -2.4 3.0 3.0 1.00 1.67 35.91 Controlling DL+LL -2.4 3.0 3.0 1.00 1.67 35.91 REACTIONS (kips): Left Right DL reaction --- 0.51 Max +LL reaction --- 0.44 Max +total reaction --- 0.94 DEFLECTIONS:Ratio Left cantilever: Dead load (in) = -0.004 < -1.000 L/D = 17606 0.00 Pos Live load (in) = -0.004 L/D = 19020 > 240 0.01 Pos Total load (in) = -0.008 L/D = 9143 > 180 0.02 Page 37/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 333 SPAN INFORMATION (ft): I-End (138.58,9.83) J-End (162.54,9.83) Beam Size (User Selected) =HSS12X4X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 23.96 Cantilever on right (ft) = 1.00 Mp (kip-ft) = 81.67 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 22.958 0.050 0.000 0.000 2 22.959 0.050 0.000 --- Snow 0.000 23.958 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 0.58 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 3.3 11.5 23.0 1.14 1.67 47.86 Max - DL -0.0 23.0 23.0 1.14 1.67 47.86 Right Max - DL+LL -0.0 23.0 1.0 1.00 1.67 47.86 Controlling DL 3.3 11.5 23.0 1.14 1.67 47.86 REACTIONS (kips): Left Right DL reaction 0.57 0.62 Max +total reaction 0.57 0.62 DEFLECTIONS:Ratio Center span: Dead load (in) at 11.48 ft = -0.117 < -1.000 L/D = 2357 0.12 Live load (in) at 11.48 ft = -0.000 Net Total load (in) at 11.48 ft = -0.117 L/D = 2357 > 180 0.08 Right cantilever: Dead load (in) = 0.016 < 1.000 L/D = 1478 0.02 Neg Total load (in) = 0.016 L/D = 1478 > 180 0.12 Page 38/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 334 SPAN INFORMATION (ft): I-End (138.58,13.50) J-End (163.16,13.50) Beam Size (User Selected) =HSS12X4X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 24.58 Cantilever on right (ft) = 2.00 Mp (kip-ft) = 81.67 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 22.578 0.050 0.000 0.000 2 22.579 0.050 0.000 --- Snow 0.000 24.578 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 0.57 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 3.1 11.3 22.6 1.14 1.67 47.86 Max - DL -0.1 22.6 22.6 1.14 1.67 47.86 Right Max - DL+LL -0.1 22.6 2.0 1.00 1.67 47.86 Controlling DL 3.1 11.3 22.6 1.14 1.67 47.86 REACTIONS (kips): Left Right DL reaction 0.56 0.67 Max +total reaction 0.56 0.67 DEFLECTIONS:Ratio Center span: Dead load (in) at 11.29 ft = -0.108 < -1.000 L/D = 2514 0.11 Live load (in) at 11.29 ft = -0.000 Net Total load (in) at 11.29 ft = -0.108 L/D = 2514 > 180 0.07 Right cantilever: Dead load (in) = 0.030 < 1.000 L/D = 1595 0.03 Neg Total load (in) = 0.030 L/D = 1595 > 180 0.11 Page 39/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 335 SPAN INFORMATION (ft): I-End (138.58,16.75) J-End (162.82,16.75) Beam Size (User Selected) =HSS12X4X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 24.24 Cantilever on right (ft) = 2.00 Mp (kip-ft) = 81.67 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 22.241 0.050 0.000 0.000 2 22.242 0.050 0.000 --- Snow 0.000 24.241 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 0.56 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 3.0 11.1 22.2 1.14 1.67 47.86 Max - DL -0.1 22.2 22.2 1.14 1.67 47.86 Right Max - DL+LL -0.1 22.2 2.0 1.00 1.67 47.86 Controlling DL 3.0 11.0 22.2 1.14 1.67 47.86 REACTIONS (kips): Left Right DL reaction 0.55 0.66 Max +total reaction 0.55 0.66 DEFLECTIONS:Ratio Center span: Dead load (in) at 11.12 ft = -0.101 < -1.000 L/D = 2632 0.10 Live load (in) at 11.12 ft = -0.000 Net Total load (in) at 11.12 ft = -0.101 L/D = 2632 > 180 0.07 Right cantilever: Dead load (in) = 0.029 < 1.000 L/D = 1671 0.03 Neg Total load (in) = 0.029 L/D = 1671 > 180 0.11 Page 40/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 336 SPAN INFORMATION (ft): I-End (138.58,20.00) J-End (162.49,20.00) Beam Size (User Selected) =HSS12X4X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 23.90 Cantilever on right (ft) = 2.00 Mp (kip-ft) = 81.67 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 21.904 0.050 0.000 0.000 2 21.905 0.050 0.000 --- Snow 0.000 23.904 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 0.55 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 2.9 11.0 21.9 1.14 1.67 47.86 Max - DL -0.1 21.9 21.9 1.14 1.67 47.86 Right Max - DL+LL -0.1 21.9 2.0 1.00 1.67 47.86 Controlling DL 2.9 11.0 21.9 1.14 1.67 47.86 REACTIONS (kips): Left Right DL reaction 0.54 0.65 Max +total reaction 0.54 0.65 DEFLECTIONS:Ratio Center span: Dead load (in) at 10.95 ft = -0.095 < -1.000 L/D = 2757 0.10 Live load (in) at 10.95 ft = -0.000 Net Total load (in) at 10.95 ft = -0.095 L/D = 2757 > 180 0.07 Right cantilever: Dead load (in) = 0.027 < 1.000 L/D = 1751 0.03 Neg Total load (in) = 0.027 L/D = 1751 > 180 0.10 Page 41/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 337 SPAN INFORMATION (ft): I-End (138.58,23.25) J-End (162.15,23.25) Beam Size (User Selected) =HSS12X4X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 23.57 Cantilever on right (ft) = 2.00 Mp (kip-ft) = 81.67 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 21.567 0.050 0.000 0.000 2 21.568 0.050 0.000 --- Snow 0.000 23.567 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 0.54 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 2.9 10.8 21.6 1.14 1.67 47.86 Max - DL -0.1 21.6 21.6 1.14 1.67 47.86 Right Max - DL+LL -0.1 21.6 2.0 1.00 1.67 47.86 Controlling DL 2.9 10.7 21.6 1.14 1.67 47.86 REACTIONS (kips): Left Right DL reaction 0.53 0.64 Max +total reaction 0.53 0.64 DEFLECTIONS:Ratio Center span: Dead load (in) at 10.78 ft = -0.090 < -1.000 L/D = 2890 0.09 Live load (in) at 10.78 ft = -0.000 Net Total load (in) at 10.78 ft = -0.090 L/D = 2890 > 180 0.06 Right cantilever: Dead load (in) = 0.026 < 1.000 L/D = 1837 0.03 Neg Total load (in) = 0.026 L/D = 1837 > 180 0.10 Page 42/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 338 SPAN INFORMATION (ft): I-End (138.58,26.50) J-End (162.54,26.50) Beam Size (User Selected) =HSS12X4X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 23.96 Cantilever on right (ft) = 1.00 Mp (kip-ft) = 81.67 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 21.230 3.19 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 22.958 0.050 0.000 0.000 2 22.959 0.050 0.000 --- Snow 0.000 23.958 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 3.53 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 6.6 16.3 21.2 1.17 1.67 47.86 Max - DL -0.0 23.0 1.7 1.67 1.67 47.86 Right Max - DL+LL -0.0 23.0 1.0 1.00 1.67 47.86 Controlling DL 6.6 16.3 21.2 1.17 1.67 47.86 REACTIONS (kips): Left Right DL reaction 0.81 3.58 Max +total reaction 0.81 3.58 DEFLECTIONS:Ratio Center span: Dead load (in) at 12.28 ft = -0.235 < -1.000 L/D = 1171 0.24 Live load (in) at 12.28 ft = -0.000 Net Total load (in) at 12.28 ft = -0.235 L/D = 1171 > 180 0.15 Right cantilever: Dead load (in) = 0.041 < 1.000 L/D = 591 0.04 Neg Total load (in) = 0.041 L/D = 591 > 180 0.30 Page 43/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 339 SPAN INFORMATION (ft): I-End (138.58,29.75) J-End (161.48,29.75) Beam Size (User Selected) =HSS12X4X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 22.89 Cantilever on right (ft) = 2.00 Mp (kip-ft) = 81.67 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 20.893 0.050 0.000 0.000 2 20.894 0.050 0.000 --- Snow 0.000 22.893 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 0.53 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 2.7 10.4 20.9 1.14 1.67 47.86 Max - DL -0.1 20.9 20.9 1.14 1.67 47.86 Right Max - DL+LL -0.1 20.9 2.0 1.00 1.67 47.86 Controlling DL 2.7 10.3 20.9 1.14 1.67 47.86 REACTIONS (kips): Left Right DL reaction 0.52 0.63 Max +total reaction 0.52 0.63 DEFLECTIONS:Ratio Center span: Dead load (in) at 10.45 ft = -0.079 < -1.000 L/D = 3183 0.08 Live load (in) at 10.45 ft = -0.000 Net Total load (in) at 10.45 ft = -0.079 L/D = 3183 > 180 0.06 Right cantilever: Dead load (in) = 0.024 < 1.000 L/D = 2025 0.02 Neg Total load (in) = 0.024 L/D = 2025 > 180 0.09 Page 44/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 340 SPAN INFORMATION (ft): I-End (138.58,33.00) J-End (161.14,33.00) Beam Size (User Selected) =HSS12X4X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 22.56 Cantilever on right (ft) = 2.00 Mp (kip-ft) = 81.67 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 20.556 0.050 0.000 0.000 2 20.557 0.050 0.000 --- Snow 0.000 22.556 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 0.52 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 2.6 10.3 20.6 1.14 1.67 47.86 Max - DL -0.1 20.6 20.6 1.14 1.67 47.86 Right Max - DL+LL -0.1 20.6 2.0 1.00 1.67 47.86 Controlling DL 2.6 10.3 20.6 1.14 1.67 47.86 REACTIONS (kips): Left Right DL reaction 0.51 0.62 Max +total reaction 0.51 0.62 DEFLECTIONS:Ratio Center span: Dead load (in) at 10.28 ft = -0.074 < -1.000 L/D = 3345 0.07 Live load (in) at 10.28 ft = -0.000 Net Total load (in) at 10.28 ft = -0.074 L/D = 3345 > 180 0.05 Right cantilever: Dead load (in) = 0.023 < 1.000 L/D = 2130 0.02 Neg Total load (in) = 0.023 L/D = 2130 > 180 0.08 Page 45/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 348 SPAN INFORMATION (ft): I-End (153.33,36.33) J-End (160.79,36.33) Beam Size (User Selected) =HSS12X4X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 7.46 Cantilever on right (ft) = 2.00 Mp (kip-ft) = 81.67 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 5.461 0.050 0.000 0.000 2 5.461 0.050 0.000 --- Snow 0.000 7.461 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 0.15 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 0.1 2.4 5.5 1.22 1.67 47.86 Max - DL -0.1 5.5 5.5 1.22 1.67 47.86 Right Max - DL+LL -0.1 5.5 2.0 1.00 1.67 47.86 Controlling DL 0.1 2.4 5.5 1.22 1.67 47.86 REACTIONS (kips): Left Right DL reaction 0.12 0.25 Max +total reaction 0.12 0.25 DEFLECTIONS:Ratio Center span: Dead load (in) at 2.57 ft = -0.000 < -1.000 L/D = 25586 5 0.00 Live load (in) at 2.57 ft = -0.000 Net Total load (in) at 2.57 ft = -0.000 L/D = 25586 5 > 180 0.00 Right cantilever: Dead load (in) = 0.000 < 1.000 L/D = 344411 0.00 Neg Total load (in) = 0.000 L/D = 344411 > 180 0.00 Page 46/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 349 SPAN INFORMATION (ft): I-End (153.33,39.58) J-End (160.46,39.58) Beam Size (User Selected) =HSS12X4X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 7.12 Cantilever on right (ft) = 2.00 Mp (kip-ft) = 81.67 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 5.124 0.050 0.000 0.000 2 5.124 0.050 0.000 --- Snow 0.000 7.124 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 0.15 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 0.1 2.2 5.1 1.24 1.67 47.86 Max - DL -0.1 5.1 5.1 1.24 1.67 47.86 Right Max - DL+LL -0.1 5.1 2.0 1.00 1.67 47.86 Controlling DL 0.1 2.2 5.1 1.24 1.67 47.86 REACTIONS (kips): Left Right DL reaction 0.11 0.25 Max +total reaction 0.11 0.25 DEFLECTIONS:Ratio Center span: Dead load (in) at 2.38 ft = -0.000 < -1.000 L/D = 33036 5 0.00 Live load (in) at 2.38 ft = -0.000 Net Total load (in) at 2.38 ft = -0.000 L/D = 33036 5 > 180 0.00 Right cantilever: Page 47/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 350 SPAN INFORMATION (ft): I-End (153.33,42.83) J-End (162.54,42.83) Beam Size (User Selected) =HSS12X4X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 9.21 Cantilever on right (ft) = 1.00 Mp (kip-ft) = 81.67 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 4.787 1.99 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 8.208 0.050 0.000 0.000 2 8.209 0.050 0.000 --- Snow 0.000 9.208 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 1.37 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 4.4 4.8 4.8 1.61 1.67 47.86 Max - DL -0.0 8.2 3.4 1.64 1.67 47.86 Right Max - DL+LL -0.0 8.2 1.0 1.00 1.67 47.86 Controlling DL 4.4 4.8 4.8 1.61 1.67 47.86 REACTIONS (kips): Left Right DL reaction 1.03 1.42 Max +total reaction 1.03 1.42 DEFLECTIONS:Ratio Center span: Dead load (in) at 4.27 ft = -0.016 < -1.000 L/D = 6080 0.02 Live load (in) at 4.27 ft = -0.000 Net Total load (in) at 4.27 ft = -0.016 L/D = 6080 > 180 0.03 Right cantilever: Dead load (in) = 0.006 < 1.000 L/D = 3818 0.01 Neg Total load (in) = 0.006 L/D = 3818 > 180 0.05 Page 48/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 351 SPAN INFORMATION (ft): I-End (153.33,46.00) J-End (159.79,46.00) Beam Size (User Selected) =HSS12X4X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 6.46 Cantilever on right (ft) = 2.00 Mp (kip-ft) = 81.67 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 4.458 0.050 0.000 0.000 2 4.459 0.050 0.000 --- Snow 0.000 6.458 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 0.13 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 0.1 1.8 4.5 1.55 1.67 47.86 Max - DL -0.1 4.5 4.5 1.55 1.67 47.86 Right Max - DL+LL -0.1 4.5 2.0 1.00 1.67 47.86 Controlling DL -0.1 4.5 4.5 1.55 1.67 47.86 REACTIONS (kips): Left Right DL reaction 0.09 0.23 Max +total reaction 0.09 0.23 DEFLECTIONS:Ratio Center span: Dead load (in) at 1.98 ft = -0.000 < -1.000 0.00 Live load (in) at 1.98 ft = -0.000 Net Total load (in) at 1.98 ft = -0.000 Right cantilever: Page 49/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 352 SPAN INFORMATION (ft): I-End (153.33,49.21) J-End (159.46,49.21) Beam Size (User Selected) =HSS12X4X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 6.13 Cantilever on right (ft) = 2.00 Mp (kip-ft) = 81.67 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 4.126 0.050 0.000 0.000 2 4.127 0.050 0.000 --- Snow 0.000 6.126 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 0.13 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 0.1 1.5 4.1 1.91 1.67 47.86 Max - DL -0.1 4.1 4.1 1.91 1.67 47.86 Right Max - DL+LL -0.1 4.1 2.0 1.00 1.67 47.86 Controlling DL -0.1 4.1 4.1 1.91 1.67 47.86 REACTIONS (kips): Left Right DL reaction 0.08 0.23 Max +total reaction 0.08 0.23 DEFLECTIONS:Ratio Center span: Dead load (in) at 1.77 ft = -0.000 < -1.000 0.00 Live load (in) at 1.77 ft = -0.000 Net Total load (in) at 1.77 ft = -0.000 Right cantilever: Page 50/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 353 SPAN INFORMATION (ft): I-End (153.33,52.42) J-End (159.13,52.42) Beam Size (User Selected) =HSS12X4X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 5.79 Cantilever on right (ft) = 2.00 Mp (kip-ft) = 81.67 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 3.793 0.050 0.000 0.000 2 3.794 0.050 0.000 --- Snow 0.000 5.793 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 0.12 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 0.0 1.4 3.8 2.23 1.67 47.86 Max - DL -0.1 3.8 3.8 2.23 1.67 47.86 Right Max - DL+LL -0.1 3.8 2.0 1.00 1.67 47.86 Controlling DL -0.1 3.8 3.8 2.23 1.67 47.86 REACTIONS (kips): Left Right DL reaction 0.07 0.22 Max +total reaction 0.07 0.22 DEFLECTIONS:Ratio Center span: Dead load (in) at 1.54 ft = -0.000 < -1.000 0.00 Live load (in) at 1.54 ft = -0.000 Net Total load (in) at 1.54 ft = -0.000 Right cantilever: Page 51/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 354 SPAN INFORMATION (ft): I-End (153.33,55.63) J-End (158.79,55.63) Beam Size (User Selected) =HSS12X4X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 5.46 Cantilever on right (ft) = 2.00 Mp (kip-ft) = 81.67 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 3.460 0.050 0.000 0.000 2 3.461 0.050 0.000 --- Snow 0.000 5.460 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 0.12 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 0.0 1.1 3.5 2.50 1.67 47.86 Max - DL -0.1 3.5 3.5 2.50 1.67 47.86 Right Max - DL+LL -0.1 3.5 2.0 1.00 1.67 47.86 Controlling DL -0.1 3.5 3.5 2.50 1.67 47.86 REACTIONS (kips): Left Right DL reaction 0.06 0.22 Max +total reaction 0.06 0.22 DEFLECTIONS:Ratio Center span: Dead load (in) at 1.25 ft = -0.000 < -1.000 0.00 Live load (in) at 1.25 ft = -0.000 Net Total load (in) at 1.25 ft = -0.000 Right cantilever: Dead load (in) = -0.000 < -1.000 L/D = 468480 0.00 Pos Total load (in) = -0.000 L/D = 468480 > 180 0.00 Page 52/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 355 SPAN INFORMATION (ft): I-End (153.33,58.83) J-End (162.54,58.83) Beam Size (User Selected) =HSS12X4X3/16 Fy = 50.0 ksi Total Beam Length (ft) = 9.21 Cantilever on right (ft) = 1.00 Mp (kip-ft) = 81.67 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 3.128 2.19 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 8.208 0.050 0.000 0.000 2 8.209 0.050 0.000 --- Snow 0.000 9.208 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 1.56 kips Vn/1.67 = 64.44 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 4.6 3.1 5.1 1.61 1.67 47.86 Max - DL -0.0 8.2 5.1 1.61 1.67 47.86 Right Max - DL+LL -0.0 8.2 1.0 1.00 1.67 47.86 Controlling DL 4.6 3.1 5.1 1.61 1.67 47.86 REACTIONS (kips): Left Right DL reaction 1.56 1.09 Max +total reaction 1.56 1.09 DEFLECTIONS:Ratio Center span: Dead load (in) at 3.86 ft = -0.017 < -1.000 L/D = 5783 0.02 Live load (in) at 3.86 ft = -0.000 Net Total load (in) at 3.86 ft = -0.017 L/D = 5783 > 180 0.03 Right cantilever: Dead load (in) = 0.006 < 1.000 L/D = 4068 0.01 Neg Total load (in) = 0.006 L/D = 4068 > 180 0.04 Page 53/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 357 SPAN INFORMATION (ft): I-End (154.96,73.33) J-End (154.96,84.75) Beam Size (User Selected) = HSS12X4X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 11.42 Mp (kip-ft) = 106.67 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 11.416 0.050 0.000 0.000 2 0.000 0.038 0.000 --- Snow 0.000 11.416 0.028 0.000 0.000 3 0.000 0.000 0.080 --- Snow 0.000 11.416 0.000 0.059 0.000 SHEAR: Max Va (DL+LL) = 0.90 kips Vn/1.67 = 94.60 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 2.5 5.6 0.0 1.00 1.67 63.87 Controlling DL+LL 2.5 5.6 0.0 1.00 1.67 63.87 REACTIONS (kips): Left Right DL reaction 0.48 0.46 Max +LL reaction 0.41 0.37 Max +total reaction 0.90 0.84 DEFLECTIONS:Ratio Dead load (in) at 5.71 ft = -0.009 < -1.000 L/D = 14917 0.01 Live load (in) at 5.71 ft = -0.008 L/D = 17894 > 240 0.01 Net Total load (in) at 5.71 ft = -0.017 L/D = 8135 > 180 0.02 Page 54/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 358 SPAN INFORMATION (ft): I-End (154.96,73.33) J-End (156.46,58.83) Beam Size (User Selected) = HSS14X4X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 14.58 Mp (kip-ft) = 138.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 3.603 0.65 7.205 0.66 10.808 0.67 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 14.577 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 1.36 kips Vn/1.67 = 111.35 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 6.2 7.2 3.6 1.09 1.67 82.83 Controlling DL 6.2 7.2 3.6 1.09 1.67 82.83 REACTIONS (kips): Left Right DL reaction 1.36 1.35 Max +total reaction 1.36 1.35 DEFLECTIONS:Ratio Dead load (in) at 7.29 ft = -0.044 < -1.000 L/D = 3988 0.04 Live load (in) at 7.29 ft = -0.000 Net Total load (in) at 7.29 ft = -0.044 L/D = 3988 > 180 0.05 Page 55/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 360 SPAN INFORMATION (ft): I-End (156.46,58.83) J-End (158.12,42.83) Beam Size (User Selected) = HSS14X4X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 16.09 Mp (kip-ft) = 138.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 3.225 0.22 6.451 0.22 9.676 0.23 12.902 0.23 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 16.085 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 0.86 kips Vn/1.67 = 111.35 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 3.8 8.1 3.2 1.00 1.67 82.83 Controlling DL 3.8 8.1 3.2 1.00 1.67 82.83 REACTIONS (kips): Left Right DL reaction 0.84 0.86 Max +total reaction 0.84 0.86 DEFLECTIONS:Ratio Dead load (in) at 8.04 ft = -0.034 < -1.000 L/D = 5635 0.03 Live load (in) at 8.04 ft = -0.000 Net Total load (in) at 8.04 ft = -0.034 L/D = 5635 > 180 0.03 Page 56/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 361 SPAN INFORMATION (ft): I-End (158.12,42.83) J-End (159.81,26.50) Beam Size (User Selected) = HSS14X4X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 16.42 Mp (kip-ft) = 138.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 3.267 0.25 6.535 0.25 9.886 0.62 13.153 0.63 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 16.420 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 1.44 kips Vn/1.67 = 111.35 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 6.3 9.9 3.4 1.04 1.67 82.83 Controlling DL 6.3 9.9 3.4 1.04 1.67 82.83 REACTIONS (kips): Left Right DL reaction 1.13 1.44 Max +total reaction 1.13 1.44 DEFLECTIONS:Ratio Dead load (in) at 8.46 ft = -0.057 < -1.000 L/D = 3484 0.06 Live load (in) at 8.46 ft = -0.000 Net Total load (in) at 8.46 ft = -0.057 L/D = 3484 > 180 0.05 Page 57/58 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 2nd Level Beam Number = 362 SPAN INFORMATION (ft): I-End (159.81,26.50) J-End (161.54,9.83) Beam Size (User Selected) = HSS14X4X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 16.76 Mp (kip-ft) = 138.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 3.267 0.64 6.535 0.65 9.802 0.66 13.070 0.67 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 16.756 0.050 0.000 0.000 SHEAR: Max Va (DL+LL) = 1.76 kips Vn/1.67 = 111.35 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL 8.5 9.2 3.3 1.00 1.67 82.83 Controlling DL 8.5 9.2 3.3 1.00 1.67 82.83 REACTIONS (kips): Left Right DL reaction 1.76 1.71 Max +total reaction 1.76 1.71 DEFLECTIONS:Ratio Dead load (in) at 8.38 ft = -0.083 < -1.000 L/D = 2417 0.08 Live load (in) at 8.38 ft = -0.000 Net Total load (in) at 8.38 ft = -0.083 L/D = 2417 > 180 0.07 Page 58/58 RAM Structural System V17.04.03.05. - Floor Plan: EventCenter_Roof JSC DataBase: 23019 03/16/23 11:07:15 1 1 1.71.9 2 2 2.4 3 3 3.7 4 4 4.5 5 5 5.6 6 6 6.3 6.4 6.6 7 7 7.2 7.7 7.7 8 8 G G F F E.7 E E D D C C B B A A 1 2 3 4 567 891 0 11 12 1 3 14 15 16 17 18 19 20 21 Steel Beam Numbers Event Center Roof Level Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: EventCenter_Roof Beam Number = 4 SPAN INFORMATION (ft): I-End (97.33,9.50) J-End (121.08,9.50) Beam Size (User Selected) = W18X46 Fy = 50.0 ksi Total Beam Length (ft) = 23.75 Mp (kip-ft) = 377.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 5.938 6.68 0.00 0.0 0.00 0.00 0.0 10.56 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.36 Snow 0.00 11.875 6.08 0.00 0.0 0.00 0.00 0.0 9.15 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.22 Snow 0.00 17.812 6.08 0.00 0.0 0.00 0.00 0.0 9.15 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.22 Snow 0.00 SHEAR: Max Va (DL+LL) = 24.36 kips Vn/1.50 = 130.32 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 186.8 11.9 5.9 1.10 1.67 226.30 Controlling DL+LL 186.8 11.9 5.9 1.10 1.67 226.30 REACTIONS (kips): Left Right DL reaction 9.57 9.27 Max +LL reaction 14.79 14.08 Max -LL reaction -0.44 -0.36 Max +total reaction 24.36 23.34 DEFLECTIONS:Ratio Dead load (in) at 11.88 ft = -0.347 < -1.000 L/D = 822 0.35 Live load (in) at 11.88 ft = -0.530 L/D = 537 > 240 0.45 Net Total load (in) at 11.88 ft = -0.877 L/D = 325 > 180 0.55 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: EventCenter_Roof Beam Number = 5 SPAN INFORMATION (ft): I-End (97.33,13.83) J-End (103.27,13.83) Beam Size (User Selected) = W8X10 Fy = 50.0 ksi Total Beam Length (ft) = 5.94 Mp (kip-ft) = 36.96 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.333 0.18 0.00 0.0 0.00 0.00 0.0 0.46 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.06 Snow 0.00 2.000 0.30 0.00 0.0 0.00 0.00 0.0 0.70 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.07 Snow 0.00 4.000 0.33 0.00 0.0 0.00 0.00 0.0 0.77 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.08 Snow 0.00 6.000 0.33 0.00 0.0 0.00 0.00 0.0 0.77 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.08 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.120 0.000 --- Snow 0.000 5.937 0.120 0.000 0.000 2 0.000 0.120 0.000 --- Snow 0.000 5.937 0.120 0.000 0.000 3 0.000 0.007 0.000 --- Snow 0.000 0.333 0.000 0.000 0.000 4 0.000 0.000 0.014 --- Snow 0.000 0.111 0.000 0.009 0.000 5 0.112 0.000 0.009 --- Snow 0.000 0.222 0.000 0.000 0.000 6 0.000 0.133 0.000 --- NonR 0.000 5.937 0.133 0.000 0.000 SHEAR: Max Va (DL+LL) = 2.74 kips Vn/1.50 = 26.83 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 3.8 2.9 5.9 1.13 1.67 19.92 Controlling DL+LL 3.8 2.9 5.9 1.13 1.67 19.92 REACTIONS (kips): Left Right DL reaction 1.58 1.44 Max +LL reaction 1.16 0.78 Max -LL reaction -0.13 -0.08 Max +total reaction 2.74 2.22 DEFLECTIONS:Ratio Dead load (in) at 2.97 ft = -0.016 < -1.000 L/D = 4343 0.02 Live load (in) at 2.97 ft = -0.011 L/D = 6382 > 240 0.04 Net Total load (in) at 2.97 ft = -0.028 L/D = 2584 > 180 0.07 Page 2/8 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: EventCenter_Roof Beam Number = 6 SPAN INFORMATION (ft): I-End (103.27,5.50) J-End (103.27,9.50) Beam Size (User Selected) = W8X10 Fy = 50.0 ksi Total Beam Length (ft) = 4.00 Mp (kip-ft) = 36.96 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.119 0.000 --- Snow 0.000 4.000 0.119 0.000 0.000 2 0.000 0.000 0.208 --- Snow 0.000 4.000 0.000 0.208 0.000 SHEAR: Max Va (DL+LL) = 0.65 kips Vn/1.50 = 26.83 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 0.7 2.0 0.0 1.00 1.67 21.87 Controlling DL+LL 0.7 2.0 0.0 1.00 1.67 21.87 REACTIONS (kips): Left Right DL reaction 0.24 0.24 Max +LL reaction 0.42 0.42 Max +total reaction 0.65 0.65 DEFLECTIONS:Ratio Dead load (in) at 2.00 ft = -0.001 < -1.000 L/D = 62681 0.00 Live load (in) at 2.00 ft = -0.001 L/D = 35817 > 240 0.01 Net Total load (in) at 2.00 ft = -0.002 L/D = 22793 > 180 0.01 Page 3/8 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: EventCenter_Roof Beam Number = 8 SPAN INFORMATION (ft): I-End (103.27,13.83) J-End (109.21,13.83) Beam Size (User Selected) = W8X10 Fy = 50.0 ksi Total Beam Length (ft) = 5.94 Mp (kip-ft) = 36.96 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.063 0.33 0.00 0.0 0.00 0.00 0.0 0.77 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.08 Snow 0.00 2.063 0.33 0.00 0.0 0.00 0.00 0.0 0.77 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.08 Snow 0.00 4.063 0.33 0.00 0.0 0.00 0.00 0.0 0.77 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.08 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.120 0.000 --- Snow 0.000 5.937 0.120 0.000 0.000 2 0.000 0.120 0.000 --- Snow 0.000 5.937 0.120 0.000 0.000 3 0.000 0.133 0.000 --- NonR 0.000 5.937 0.133 0.000 0.000 SHEAR: Max Va (DL+LL) = 3.25 kips Vn/1.50 = 26.83 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 3.8 2.8 5.9 1.13 1.67 19.99 Controlling DL+LL 3.8 2.8 5.9 1.13 1.67 19.99 REACTIONS (kips): Left Right DL reaction 1.75 1.45 Max +LL reaction 1.50 0.80 Max -LL reaction -0.16 -0.08 Max +total reaction 3.25 2.25 DEFLECTIONS:Ratio Dead load (in) at 2.97 ft = -0.016 < -1.000 L/D = 4336 0.02 Live load (in) at 2.97 ft = -0.011 L/D = 6383 > 240 0.04 Net Total load (in) at 2.97 ft = -0.028 L/D = 2582 > 180 0.07 Page 4/8 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: EventCenter_Roof Beam Number = 9 SPAN INFORMATION (ft): I-End (109.21,5.50) J-End (109.21,9.50) Beam Size (User Selected) = W8X10 Fy = 50.0 ksi Total Beam Length (ft) = 4.00 Mp (kip-ft) = 36.96 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.119 0.000 --- Snow 0.000 4.000 0.119 0.000 0.000 2 0.000 0.000 0.208 --- Snow 0.000 4.000 0.000 0.208 0.000 SHEAR: Max Va (DL+LL) = 0.65 kips Vn/1.50 = 26.83 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 0.7 2.0 0.0 1.00 1.67 21.87 Controlling DL+LL 0.7 2.0 0.0 1.00 1.67 21.87 REACTIONS (kips): Left Right DL reaction 0.24 0.24 Max +LL reaction 0.42 0.42 Max +total reaction 0.65 0.65 DEFLECTIONS:Ratio Dead load (in) at 2.00 ft = -0.001 < -1.000 L/D = 62681 0.00 Live load (in) at 2.00 ft = -0.001 L/D = 35817 > 240 0.01 Net Total load (in) at 2.00 ft = -0.002 L/D = 22793 > 180 0.01 Page 5/8 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: EventCenter_Roof Beam Number = 11 SPAN INFORMATION (ft): I-End (109.21,13.83) J-End (115.15,13.83) Beam Size (User Selected) = W8X10 Fy = 50.0 ksi Total Beam Length (ft) = 5.94 Mp (kip-ft) = 36.96 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.125 0.33 0.00 0.0 0.00 0.00 0.0 0.77 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.08 Snow 0.00 2.125 0.33 0.00 0.0 0.00 0.00 0.0 0.77 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.08 Snow 0.00 4.125 0.33 0.00 0.0 0.00 0.00 0.0 0.77 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.08 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.120 0.000 --- Snow 0.000 5.937 0.120 0.000 0.000 2 0.000 0.120 0.000 --- Snow 0.000 5.937 0.120 0.000 0.000 3 0.000 0.133 0.000 --- NonR 0.000 5.937 0.133 0.000 0.000 SHEAR: Max Va (DL+LL) = 3.21 kips Vn/1.50 = 26.83 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 3.9 2.8 5.9 1.13 1.67 19.99 Controlling DL+LL 3.9 2.8 5.9 1.13 1.67 19.99 REACTIONS (kips): Left Right DL reaction 1.74 1.46 Max +LL reaction 1.48 0.82 Max -LL reaction -0.15 -0.09 Max +total reaction 3.21 2.28 DEFLECTIONS:Ratio Dead load (in) at 2.97 ft = -0.017 < -1.000 L/D = 4316 0.02 Live load (in) at 2.97 ft = -0.011 L/D = 6281 > 240 0.04 Net Total load (in) at 2.97 ft = -0.028 L/D = 2558 > 180 0.07 Page 6/8 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: EventCenter_Roof Beam Number = 12 SPAN INFORMATION (ft): I-End (115.15,5.50) J-End (115.15,9.50) Beam Size (User Selected) = W8X10 Fy = 50.0 ksi Total Beam Length (ft) = 4.00 Mp (kip-ft) = 36.96 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.119 0.000 --- Snow 0.000 4.000 0.119 0.000 0.000 2 0.000 0.000 0.208 --- Snow 0.000 4.000 0.000 0.208 0.000 SHEAR: Max Va (DL+LL) = 0.65 kips Vn/1.50 = 26.83 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 0.7 2.0 0.0 1.00 1.67 21.87 Controlling DL+LL 0.7 2.0 0.0 1.00 1.67 21.87 REACTIONS (kips): Left Right DL reaction 0.24 0.24 Max +LL reaction 0.42 0.42 Max +total reaction 0.65 0.65 DEFLECTIONS:Ratio Dead load (in) at 2.00 ft = -0.001 < -1.000 L/D = 62681 0.00 Live load (in) at 2.00 ft = -0.001 L/D = 35817 > 240 0.01 Net Total load (in) at 2.00 ft = -0.002 L/D = 22793 > 180 0.01 Page 7/8 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: EventCenter_Roof Beam Number = 14 SPAN INFORMATION (ft): I-End (115.15,13.83) J-End (121.08,13.83) Beam Size (User Selected) = W8X10 Fy = 50.0 ksi Total Beam Length (ft) = 5.94 Mp (kip-ft) = 36.96 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.188 0.33 0.00 0.0 0.00 0.00 0.0 0.77 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.08 Snow 0.00 2.188 0.33 0.00 0.0 0.00 0.00 0.0 0.77 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.08 Snow 0.00 4.188 0.28 0.00 0.0 0.00 0.00 0.0 0.65 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.07 Snow 0.00 5.604 0.16 0.00 0.0 0.00 0.00 0.0 0.42 Snow 0.00 0.00 0.0 0.00 0.00 0.0 -0.05 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.120 0.000 --- Snow 0.000 5.937 0.120 0.000 0.000 2 0.000 0.120 0.000 --- Snow 0.000 5.937 0.120 0.000 0.000 3 5.605 0.000 0.000 --- Snow 0.000 5.937 0.007 0.000 0.000 4 5.716 0.000 0.000 --- Snow 0.000 5.826 0.000 0.009 0.000 5 5.827 0.000 0.009 --- Snow 0.000 5.937 0.000 0.014 0.000 6 0.000 0.133 0.000 --- NonR 0.000 5.937 0.133 0.000 0.000 SHEAR: Max Va (DL+LL) = 3.16 kips Vn/1.50 = 26.83 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 3.9 2.6 5.9 1.13 1.67 19.99 Controlling DL+LL 3.9 2.6 5.9 1.13 1.67 19.99 REACTIONS (kips): Left Right DL reaction 1.72 1.59 Max +LL reaction 1.44 1.16 Max -LL reaction -0.15 -0.13 Max +total reaction 3.16 2.75 DEFLECTIONS:Ratio Dead load (in) at 2.97 ft = -0.016 < -1.000 L/D = 4320 0.02 Live load (in) at 2.97 ft = -0.011 L/D = 6269 > 240 0.04 Net Total load (in) at 2.97 ft = -0.028 L/D = 2558 > 180 0.07 Page 8/8 RAM Structural System V17.04.03.05. - Floor Plan: 2nd Level JSC DataBase: 23019_test 03/22/23 09:07:44 1 1 1.71.9 2 2 2.4 3 3 3.7 4 4 4.5 5 5 5.6 6 6 6.3 6.4 6.6 7 7 7.2 7.7 7.7 8 8 G G F F E.7 E E D D C C B B A A 123456 789101112131415 16 17 18 19 2 0 2 1 2 2 23 2 4 2 5 2 6 27 2 8 2 9 3 0 31 3 2 3 3 3 4 35 3 6 3 7 3 8 39 4 0 4 1 4 2 43 4 4 4 5 4 6 47 4 8 4 9 5 0 51 5 2 5 3 5 4 55 5 6 5 7 5 8 59 6 0 6 1 6 2 63 6 4 6 5 6 6 67 68 69 70 7 1 7 2 7 3 74 7 5 7 6 7 7 78 7 9 8 0 8 1 82 8 3 8 4 8 5 86 8 7 8 8 8 9 90 91 92 9 3 9 4 9 5 96 9 7 9 8 9 9 10 0 1 0 1 1 0 2 1 0 3 104 10 5 1 0 6 1 0 7 1 0 8 1 0 9 11 0 1 1 1 1 1 2 1 1 3 1 1 4 11 5 1 1 6 1 1 7 1 1 8 1 1 9 12 0 1 2 1 1 2 2 1 2 3 1 2 4 125 126 12 7 1 2 8 1 2 9 1 3 0 1 3 1 13 2 1 3 3 1 3 4 1 3 5 1 3 6 137 13 8 1 3 9 1 4 0 1 4 1 1 4 2 14 3 1 4 4 1 4 5 1 4 6 1 4 7 14 8 1 4 9 1 5 0 1 5 1 1 5 2 15 3 1 5 4 1 5 5 1 5 6 1 5 7 15 8 1 5 9 1 6 0 1 6 1 1 6 2 16 3 1 6 4 1 6 5 1 6 6 1 6 7 168 169 170 17 1 1 7 2 1 7 3 1 7 4 1 7 5 17 6 1 7 7 1 7 8 1 7 9 1 8 0 18 1 1 8 2 1 8 3 1 8 4 1 8 5 18 6 1 8 7 1 8 8 1 8 9 1 9 0 19 1 1 9 2 1 9 3 19 4 1 9 5 1 9 6 19 7 198 199 20 0 2 0 1 2 0 2 20 3 20 4 20 5 2 0 6 2 0 7 20 8 20 9 2 1 0 2 1 1 2 1 2 213 21 4 21 5 2 1 6 2 1 7 21 8 219 22 0 2 2 1 2 2 2 2 2 3 22 4 22 5 2 2 6 2 2 7 22 8 229 23 0 2 3 1 2 3 2 23 3 234235236237238239240241242243244 24 5 2 4 6 24 7 2 4 8 24 9 2 5 0 251 25 2 25 3 2 5 4 255 25 6 257 258 25 9 2 6 0 261 26 2 263 26 4 2 6 5 26 6 267 26 8 269 27 0 2 7 1 27 2 27 3 27 4 27 5 27 6 27 7 27 8 27 928 0 28 1 282 28 3 2 8 4 28 5 286 28 7 288 28 9 2 9 0 29 1 2 9 2 29 3 2 9 4 29 5 2 9 6 297 29 8 2 9 9 30 0 3 0 1 30 2 3 0 3 30 4 3 0 5 30 6 307 308 30 9 31 0 3 1 1 31 2 31 3 3 1 4 31 5 31 6 31 7 3 1 8 31 9 32 0 3 2 1 32 2 32 3 324 325 326 327 32832 9 33 0 33 1 33 2 333 334 335 336 337 338 339 340 34 1 34 2 34 3 34 4 34 5 34 6 34 7 348 349 350 351 352 353 354 355 35 6 35 7 3 5 8 3 5 9 3 6 0 3 6 1 3 6 2 Steel Beam Numbers 2nd Level Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 55 SPAN INFORMATION (ft): I-End (7.00,59.00) J-End (7.00,88.29) Beam Size (Optimum) =W24X55 Fy = 50.0 ksi Total Beam Length (ft) = 29.29 Mp (kip-ft) = 558.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.333 0.07 0.26 13.6 0.00 0.00 0.0 0.00 Snow 0.00 -0.08 15.2 0.00 0.00 0.0 0.00 Snow 0.00 2.000 0.13 0.48 13.6 0.00 0.00 0.0 0.00 Snow 0.00 -0.15 15.2 0.00 0.00 0.0 0.00 Snow 0.00 4.000 0.14 0.52 13.6 0.00 0.00 0.0 0.00 Snow 0.00 -0.16 15.2 0.00 0.00 0.0 0.00 Snow 0.00 6.000 0.14 0.52 13.6 0.00 0.00 0.0 0.00 Snow 0.00 -0.16 15.2 0.00 0.00 0.0 0.00 Snow 0.00 8.000 0.14 0.52 13.6 0.00 0.00 0.0 0.00 Snow 0.00 -0.16 15.2 0.00 0.00 0.0 0.00 Snow 0.00 10.000 0.19 0.69 13.6 0.00 0.00 0.0 0.00 Snow 0.00 -0.22 15.2 0.00 0.00 0.0 0.00 Snow 0.00 11.333 5.03 8.39 13.6 0.00 0.00 0.0 0.00 Snow 2.52 13.292 0.19 0.69 13.6 0.00 0.00 0.0 0.00 Snow 0.00 -0.22 15.2 0.00 0.00 0.0 0.00 Snow 0.00 15.292 0.14 0.52 13.6 0.00 0.00 0.0 0.00 Snow 0.00 -0.16 15.2 0.00 0.00 0.0 0.00 Snow 0.00 17.292 0.14 0.52 13.6 0.00 0.00 0.0 0.00 Snow 0.00 -0.16 15.2 0.00 0.00 0.0 0.00 Snow 0.00 19.292 0.14 0.52 13.6 0.00 0.00 0.0 0.00 Snow 0.00 -0.16 15.2 0.00 0.00 0.0 0.00 Snow 0.00 21.292 0.14 0.52 13.6 0.00 0.00 0.0 0.00 Snow 0.00 -0.16 15.2 0.00 0.00 0.0 0.00 Snow 0.00 23.292 0.14 0.52 13.6 0.00 0.00 0.0 0.00 Snow 0.00 -0.16 15.2 0.00 0.00 0.0 0.00 Snow 0.00 25.292 0.14 0.52 13.6 0.00 0.00 0.0 0.00 Snow 0.00 -0.16 15.2 0.00 0.00 0.0 0.00 Snow 0.00 27.292 0.13 0.48 13.6 0.00 0.00 0.0 0.00 Snow 0.00 -0.15 15.2 0.00 0.00 0.0 0.00 Snow 0.00 28.958 0.07 0.26 13.6 0.00 0.00 0.0 0.00 Snow 0.00 -0.08 15.2 0.00 0.00 0.0 0.00 Snow 0.00 11.333 3.36 0.00 0.0 0.00 0.00 0.0 10.90 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.030 0.050 13.6% Red 0.015 29.291 0.030 0.050 0.015 2 0.000 0.212 0.000 --- NonR 0.000 29.291 0.212 0.000 0.000 3 0.000 0.120 0.000 --- Snow 0.000 29.291 0.120 0.000 0.000 4 0.000 0.042 0.000 --- Snow 0.000 29.291 0.042 0.000 0.000 5 0.000 0.000 0.038 --- Snow 0.000 29.291 0.000 0.038 0.000 6 0.010 0.000 0.000 --- Snow 0.000 0.529 0.000 0.057 0.000 7 0.010 0.000 0.086 --- Snow 0.000 0.529 0.000 0.037 0.000 8 0.530 0.000 0.057 --- Snow 0.000 1.050 0.000 0.089 0.000 9 0.530 0.000 0.037 --- Snow 0.000 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Load Dist DL LL Red% Type PartL 1.050 0.000 0.009 0.000 10 1.051 0.000 0.089 --- Snow 0.000 1.571 0.000 0.100 0.000 11 1.051 0.000 0.009 --- Snow 0.000 1.571 0.000 0.000 0.000 12 1.572 0.000 0.100 --- Snow 0.000 29.291 0.000 0.100 0.000 SHEAR: Max Va (DL+LL) = 30.92 kips Vn/1.67 = 167.46 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 293.0 11.3 0.0 1.00 1.67 334.33 Controlling DL+LL 293.0 11.3 0.0 1.00 1.67 334.33 REACTIONS (kips): Left Right DL reaction 12.11 10.21 Max +LL reaction 18.82 14.15 Max -LL reaction -1.01 -1.01 Max +total reaction 30.92 24.36 DEFLECTIONS:Ratio Dead load (in) at 14.21 ft = -0.382 < -0.750 L/D = 920 0.51 Live load (in) at 14.06 ft = -0.624 L/D = 563 > 360 0.64 Net Total load (in) at 14.06 ft = -1.006 L/D = 349 > 240 0.69 Page 2/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 56 SPAN INFORMATION (ft): I-End (7.00,70.33) J-End (31.88,70.33) Beam Size (User Selected) = W16X36 Fy = 50.0 ksi Total Beam Length (ft) = 24.88 Mp (kip-ft) = 266.67 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 2.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 4.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 6.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 8.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 10.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 12.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 14.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 16.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 18.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 20.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 22.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 24.000 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 SHEAR: Max Va (DL+LL) = 15.76 kips Vn/1.50 = 93.81 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 97.4 12.0 2.0 1.01 1.67 159.68 Controlling DL+LL 97.4 12.0 2.0 1.01 1.67 159.68 REACTIONS (kips): Left Right DL reaction 5.03 5.51 Max +LL reaction 9.36 10.25 Max +total reaction 14.39 15.76 DEFLECTIONS:Ratio Dead load (in) at 12.44 ft = -0.291 < -0.750 L/D = 1026 0.39 Live load (in) at 12.44 ft = -0.541 L/D = 552 > 360 0.65 Net Total load (in) at 12.44 ft = -0.832 L/D = 359 > 240 0.67 Page 3/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 57 SPAN INFORMATION (ft): I-End (7.00,88.29) J-End (31.88,88.29) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W16X36 Fy = 50.0 ksi Total Beam Length (ft) = 24.88 Mp (kip-ft) = 266.67 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 2.000 0.97 1.61 22.7 0.00 0.00 0.0 0.00 Snow 0.48 4.000 0.97 1.61 22.7 0.00 0.00 0.0 0.00 Snow 0.48 6.000 0.97 1.61 22.7 0.00 0.00 0.0 0.00 Snow 0.48 8.000 0.97 1.61 22.7 0.00 0.00 0.0 0.00 Snow 0.48 10.000 0.97 1.61 22.7 0.00 0.00 0.0 0.00 Snow 0.48 12.000 0.97 1.61 22.7 0.00 0.00 0.0 0.00 Snow 0.48 14.000 0.97 1.61 22.7 0.00 0.00 0.0 0.00 Snow 0.48 16.000 0.97 1.61 22.7 0.00 0.00 0.0 0.00 Snow 0.48 18.000 0.97 1.61 22.7 0.00 0.00 0.0 0.00 Snow 0.48 20.000 1.20 2.00 22.7 0.00 0.00 0.0 0.00 Snow 0.60 22.000 1.22 2.03 22.7 0.00 0.00 0.0 0.00 Snow 0.61 24.000 1.22 2.03 22.7 0.00 0.00 0.0 0.00 Snow 0.61 SHEAR: Max Va (DL+LL) = 18.72 kips Vn/1.50 = 93.81 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 107.3 12.0 2.0 1.00 1.67 159.68 Controlling DL+LL 107.3 12.0 2.0 1.00 1.67 159.68 REACTIONS (kips): Left Right DL reaction 5.62 6.71 Max +LL reaction 10.06 12.01 Max +total reaction 15.68 18.72 DEFLECTIONS:Ratio Dead load (in) at 12.44 ft = -0.331 < -0.750 L/D = 903 0.44 Live load (in) at 12.44 ft = -0.591 L/D = 505 > 360 0.71 Net Total load (in) at 12.44 ft = -0.922 L/D = 324 > 240 0.74 Page 4/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 112 SPAN INFORMATION (ft): I-End (31.88,70.33) J-End (55.29,70.33) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W14X34 Fy = 50.0 ksi Total Beam Length (ft) = 23.42 Mp (kip-ft) = 227.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 3.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 5.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 7.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 9.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 11.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 13.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 15.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 17.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 19.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 21.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 23.125 0.88 1.46 18.4 0.00 0.00 0.0 0.00 Snow 0.44 SHEAR: Max Va (DL+LL) = 15.61 kips Vn/1.50 = 79.80 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 86.4 11.1 2.0 1.02 1.67 136.23 Controlling DL+LL 86.4 11.1 2.0 1.02 1.67 136.23 REACTIONS (kips): Left Right DL reaction 5.08 5.46 Max +LL reaction 9.46 10.15 Max +total reaction 14.54 15.61 DEFLECTIONS:Ratio Dead load (in) at 11.71 ft = -0.302 < -0.750 L/D = 932 0.40 Live load (in) at 11.71 ft = -0.561 L/D = 501 > 360 0.72 Net Total load (in) at 11.71 ft = -0.863 L/D = 326 > 240 0.74 Page 5/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 113 SPAN INFORMATION (ft): I-End (31.88,88.29) J-End (55.29,88.29) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W14X34 Fy = 50.0 ksi Total Beam Length (ft) = 23.42 Mp (kip-ft) = 227.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 3.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 5.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 7.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 9.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 11.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 13.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 15.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 17.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 19.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 21.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 23.125 1.22 2.03 26.9 0.00 0.00 0.0 0.00 Snow 0.61 SHEAR: Max Va (DL+LL) = 20.56 kips Vn/1.50 = 79.80 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 113.7 11.1 2.0 1.02 1.67 136.23 Controlling DL+LL 113.7 11.1 2.0 1.02 1.67 136.23 REACTIONS (kips): Left Right DL reaction 7.04 7.56 Max +LL reaction 12.10 12.99 Max +total reaction 19.15 20.56 DEFLECTIONS:Ratio Dead load (in) at 11.71 ft = -0.418 < -0.750 L/D = 672 0.56 Live load (in) at 11.71 ft = -0.718 L/D = 391 > 360 0.92 Net Total load (in) at 11.71 ft = -1.136 L/D = 247 > 240 0.97 Page 6/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 114 SPAN INFORMATION (ft): I-End (31.88,110.92) J-End (31.88,121.00) Beam Size (User Selected) = HSS8X4X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 10.08 Mp (kip-ft) = 55.42 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 9.583 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 5.333 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.165 0.300 --- NonR 0.000 10.083 0.165 0.300 0.000 SHEAR: Max Va (DL+LL) = 5.54 kips Vn/1.67 = 61.12 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 11.9 5.3 10.1 1.22 1.67 33.18 Controlling DL+LL 11.9 5.3 10.1 1.22 1.67 33.18 REACTIONS (kips): Left Right DL reaction 1.23 1.96 Max +LL reaction 2.24 3.58 Max +total reaction 3.47 5.54 DEFLECTIONS:Ratio Dead load (in) at 5.14 ft = -0.057 < -0.750 L/D = 2116 0.08 Live load (in) at 5.14 ft = -0.105 L/D = 1157 > 360 0.31 Net Total load (in) at 5.14 ft = -0.162 L/D = 748 > 240 0.32 Page 7/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 139 SPAN INFORMATION (ft): I-End (42.71,110.92) J-End (42.71,121.00) Beam Size (User Selected) = HSS8X4X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 10.08 Mp (kip-ft) = 55.42 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 9.583 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 5.333 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 4.750 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 0.500 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.165 0.300 --- NonR 0.000 10.083 0.165 0.300 0.000 SHEAR: Max Va (DL+LL) = 6.66 kips Vn/1.67 = 61.12 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 17.2 5.0 10.1 1.21 1.67 33.18 Controlling DL+LL 17.2 5.0 10.1 1.21 1.67 33.18 REACTIONS (kips): Left Right DL reaction 2.35 2.35 Max +LL reaction 4.31 4.31 Max +total reaction 6.66 6.66 DEFLECTIONS:Ratio Dead load (in) at 5.04 ft = -0.083 < -0.750 L/D = 1455 0.11 Live load (in) at 5.04 ft = -0.152 L/D = 794 > 360 0.45 Net Total load (in) at 5.04 ft = -0.236 L/D = 513 > 240 0.47 Page 8/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 155 SPAN INFORMATION (ft): I-End (47.21,110.92) J-End (72.54,110.92) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W16X36 Fy = 50.0 ksi Total Beam Length (ft) = 25.33 Mp (kip-ft) = 266.67 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.792 0.26 0.55 22.8 0.00 0.00 0.0 0.00 Snow 0.17 -0.13 23.1 0.00 0.00 0.0 0.00 Snow -0.04 1.792 0.68 1.13 22.8 0.00 0.00 0.0 0.00 Snow 0.34 3.792 0.35 0.63 22.8 0.00 0.00 0.0 0.00 Snow 0.19 -0.04 23.1 0.00 0.00 0.0 0.00 Snow -0.01 3.792 0.68 1.13 22.8 0.00 0.00 0.0 0.00 Snow 0.34 5.792 0.33 0.59 22.8 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 23.1 0.00 0.00 0.0 0.00 Snow -0.01 5.792 0.68 1.13 22.8 0.00 0.00 0.0 0.00 Snow 0.34 7.792 0.33 0.59 22.8 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 23.1 0.00 0.00 0.0 0.00 Snow -0.01 7.792 0.68 1.13 22.8 0.00 0.00 0.0 0.00 Snow 0.34 9.792 0.33 0.59 22.8 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 23.1 0.00 0.00 0.0 0.00 Snow -0.01 9.792 0.68 1.13 22.8 0.00 0.00 0.0 0.00 Snow 0.34 11.792 0.33 0.59 22.8 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 23.1 0.00 0.00 0.0 0.00 Snow -0.01 11.792 0.68 1.13 22.8 0.00 0.00 0.0 0.00 Snow 0.34 13.792 0.33 0.59 22.8 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 23.1 0.00 0.00 0.0 0.00 Snow -0.01 13.792 0.68 1.13 22.8 0.00 0.00 0.0 0.00 Snow 0.34 15.792 0.33 0.59 22.8 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 23.1 0.00 0.00 0.0 0.00 Snow -0.01 15.792 0.68 1.13 22.8 0.00 0.00 0.0 0.00 Snow 0.34 17.792 0.33 0.59 22.8 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 23.1 0.00 0.00 0.0 0.00 Snow -0.01 17.792 0.68 1.13 22.8 0.00 0.00 0.0 0.00 Snow 0.34 19.792 0.33 0.59 22.8 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 23.1 0.00 0.00 0.0 0.00 Snow -0.01 19.792 0.68 1.13 22.8 0.00 0.00 0.0 0.00 Snow 0.34 21.792 0.33 0.59 22.8 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 23.1 0.00 0.00 0.0 0.00 Snow -0.01 21.792 0.68 1.13 22.8 0.00 0.00 0.0 0.00 Snow 0.34 23.792 0.33 0.59 22.8 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 23.1 0.00 0.00 0.0 0.00 Snow -0.01 23.792 0.68 1.13 22.8 0.00 0.00 0.0 0.00 Snow 0.34 SHEAR: Max Va (DL+LL) = 17.24 kips Vn/1.50 = 93.81 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 114.0 11.8 2.0 1.02 1.67 159.68 Controlling DL+LL 114.0 11.8 2.0 1.02 1.67 159.68 REACTIONS (kips): Left Right DL reaction 5.92 6.08 Max +LL reaction 10.95 11.16 Max -LL reaction -0.26 -0.20 Max +total reaction 16.87 17.24 Page 9/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD DEFLECTIONS:Ratio Dead load (in) at 12.67 ft = -0.358 < -0.750 L/D = 850 0.48 Live load (in) at 12.67 ft = -0.657 L/D = 463 > 360 0.78 Net Total load (in) at 12.67 ft = -1.014 L/D = 300 > 240 0.80 Page 10/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 182 SPAN INFORMATION (ft): I-End (55.29,70.33) J-End (72.54,70.33) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length (ft) = 17.25 Mp (kip-ft) = 138.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.708 0.88 1.46 5.7 0.00 0.00 0.0 0.00 Snow 0.44 3.708 0.88 1.46 5.7 0.00 0.00 0.0 0.00 Snow 0.44 5.708 0.88 1.46 5.7 0.00 0.00 0.0 0.00 Snow 0.44 7.708 0.88 1.46 5.7 0.00 0.00 0.0 0.00 Snow 0.44 9.708 0.88 1.46 5.7 0.00 0.00 0.0 0.00 Snow 0.44 11.708 0.88 1.46 5.7 0.00 0.00 0.0 0.00 Snow 0.44 13.708 0.88 1.46 5.7 0.00 0.00 0.0 0.00 Snow 0.44 15.708 0.88 1.46 5.7 0.00 0.00 0.0 0.00 Snow 0.44 SHEAR: Max Va (DL+LL) = 10.90 kips Vn/1.50 = 63.02 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 50.0 7.7 2.0 1.00 1.67 82.83 Controlling DL+LL 50.0 7.7 2.0 1.00 1.67 82.83 REACTIONS (kips): Left Right DL reaction 3.48 3.55 Max +LL reaction 7.21 7.35 Max +total reaction 10.69 10.90 DEFLECTIONS:Ratio Dead load (in) at 8.63 ft = -0.152 < -0.750 L/D = 1366 0.20 Live load (in) at 8.63 ft = -0.314 L/D = 660 > 360 0.55 Net Total load (in) at 8.63 ft = -0.465 L/D = 445 > 240 0.54 Page 11/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 183 SPAN INFORMATION (ft): I-End (55.29,88.29) J-End (72.54,88.29) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length (ft) = 17.25 Mp (kip-ft) = 138.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.708 1.22 2.03 16.1 0.00 0.00 0.0 0.00 Snow 0.61 3.708 1.22 2.03 16.1 0.00 0.00 0.0 0.00 Snow 0.61 5.708 1.22 2.03 16.1 0.00 0.00 0.0 0.00 Snow 0.61 7.708 1.22 2.03 16.1 0.00 0.00 0.0 0.00 Snow 0.61 9.708 1.22 2.03 16.1 0.00 0.00 0.0 0.00 Snow 0.61 11.708 1.22 2.03 16.1 0.00 0.00 0.0 0.00 Snow 0.61 13.708 1.22 2.03 16.1 0.00 0.00 0.0 0.00 Snow 0.61 15.708 1.22 2.03 16.1 0.00 0.00 0.0 0.00 Snow 0.61 SHEAR: Max Va (DL+LL) = 14.25 kips Vn/1.50 = 63.02 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 65.4 7.7 2.0 1.00 1.67 82.83 Controlling DL+LL 65.4 7.7 2.0 1.00 1.67 82.83 REACTIONS (kips): Left Right DL reaction 4.82 4.92 Max +LL reaction 9.15 9.33 Max +total reaction 13.98 14.25 DEFLECTIONS:Ratio Dead load (in) at 8.63 ft = -0.210 < -0.750 L/D = 986 0.28 Live load (in) at 8.63 ft = -0.398 L/D = 520 > 360 0.69 Net Total load (in) at 8.63 ft = -0.608 L/D = 340 > 240 0.71 Page 12/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 238 SPAN INFORMATION (ft): I-End (72.54,70.33) J-End (79.87,70.33) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 7.33 Mp (kip-ft) = 102.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.458 0.88 1.46 0.0 0.00 0.00 0.0 0.00 Snow 0.44 2.458 0.88 1.46 0.0 0.00 0.00 0.0 0.00 Snow 0.44 4.458 0.88 1.46 0.0 0.00 0.00 0.0 0.00 Snow 0.44 6.458 0.63 1.05 0.0 0.00 0.00 0.0 0.00 Snow 0.32 SHEAR: Max Va (DL+LL) = 5.79 kips Vn/1.50 = 57.34 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 9.1 4.5 2.0 1.02 1.67 61.63 Controlling DL+LL 9.1 4.5 2.0 1.02 1.67 61.63 REACTIONS (kips): Left Right DL reaction 1.83 1.44 Max +LL reaction 3.96 3.12 Max +total reaction 5.79 4.56 DEFLECTIONS:Ratio Dead load (in) at 3.67 ft = -0.007 < -0.750 L/D = 11931 0.01 Live load (in) at 3.67 ft = -0.016 L/D = 5507 > 360 0.07 Net Total load (in) at 3.67 ft = -0.023 L/D = 3768 > 240 0.06 Page 13/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 239 SPAN INFORMATION (ft): I-End (72.54,88.29) J-End (90.54,88.29) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length (ft) = 18.00 Mp (kip-ft) = 138.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.458 1.22 2.03 20.8 0.00 0.00 0.0 0.00 Snow 0.61 2.458 1.22 2.03 20.8 0.00 0.00 0.0 0.00 Snow 0.61 4.458 1.22 2.03 20.8 0.00 0.00 0.0 0.00 Snow 0.61 6.458 0.88 1.46 20.8 0.00 0.00 0.0 0.00 Snow 0.44 7.333 0.88 1.46 20.8 0.00 0.00 0.0 0.00 Snow 0.44 9.333 1.22 2.03 20.8 0.00 0.00 0.0 0.00 Snow 0.61 11.333 1.22 2.03 20.8 0.00 0.00 0.0 0.00 Snow 0.61 13.333 1.22 2.03 20.8 0.00 0.00 0.0 0.00 Snow 0.61 15.333 1.22 2.03 20.8 0.00 0.00 0.0 0.00 Snow 0.61 17.333 1.22 2.03 20.8 0.00 0.00 0.0 0.00 Snow 0.61 SHEAR: Max Va (DL+LL) = 16.39 kips Vn/1.50 = 63.02 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 70.1 9.3 2.0 1.01 1.67 82.83 Controlling DL+LL 70.1 9.3 2.0 1.01 1.67 82.83 REACTIONS (kips): Left Right DL reaction 5.81 5.68 Max +LL reaction 10.58 10.33 Max +total reaction 16.39 16.01 DEFLECTIONS:Ratio Dead load (in) at 9.00 ft = -0.250 < -0.750 L/D = 865 0.33 Live load (in) at 9.00 ft = -0.455 L/D = 475 > 360 0.76 Net Total load (in) at 9.00 ft = -0.704 L/D = 307 > 240 0.78 Page 14/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 240 SPAN INFORMATION (ft): I-End (72.54,110.92) J-End (88.21,110.92) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 15.67 Mp (kip-ft) = 102.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.458 0.33 0.59 12.7 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 13.1 0.00 0.00 0.0 0.00 Snow -0.01 0.458 0.68 1.13 12.7 0.00 0.00 0.0 0.00 Snow 0.34 2.458 0.33 0.59 12.7 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 13.1 0.00 0.00 0.0 0.00 Snow -0.01 2.458 0.68 1.13 12.7 0.00 0.00 0.0 0.00 Snow 0.34 4.458 0.33 0.59 12.7 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 13.1 0.00 0.00 0.0 0.00 Snow -0.01 4.458 0.68 1.13 12.7 0.00 0.00 0.0 0.00 Snow 0.34 6.458 0.22 0.42 12.7 0.00 0.00 0.0 0.00 Snow 0.13 -0.05 13.1 0.00 0.00 0.0 0.00 Snow -0.02 6.458 0.49 0.81 12.7 0.00 0.00 0.0 0.00 Snow 0.24 7.333 0.74 1.23 12.7 0.00 0.00 0.0 0.00 Snow 0.37 9.333 0.32 0.59 12.7 0.00 0.00 0.0 0.00 Snow 0.18 -0.05 13.1 0.00 0.00 0.0 0.00 Snow -0.02 9.333 0.68 1.13 12.7 0.00 0.00 0.0 0.00 Snow 0.34 11.333 0.33 0.59 12.7 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 13.1 0.00 0.00 0.0 0.00 Snow -0.01 11.333 0.68 1.13 12.7 0.00 0.00 0.0 0.00 Snow 0.34 13.333 0.33 0.59 12.7 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 13.1 0.00 0.00 0.0 0.00 Snow -0.01 13.333 0.68 1.13 12.7 0.00 0.00 0.0 0.00 Snow 0.34 15.333 0.33 0.59 12.7 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 13.1 0.00 0.00 0.0 0.00 Snow -0.01 15.333 0.68 1.13 12.7 0.00 0.00 0.0 0.00 Snow 0.34 SHEAR: Max Va (DL+LL) = 12.83 kips Vn/1.50 = 57.34 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 46.6 7.3 2.0 1.01 1.67 61.63 Controlling DL+LL 46.6 7.3 2.0 1.01 1.67 61.63 REACTIONS (kips): Left Right DL reaction 4.20 4.27 Max +LL reaction 8.43 8.56 Max -LL reaction -0.16 -0.16 Max +total reaction 12.63 12.83 DEFLECTIONS:Ratio Dead load (in) at 7.83 ft = -0.181 < -0.750 L/D = 1041 0.24 Live load (in) at 7.83 ft = -0.362 L/D = 519 > 360 0.69 Net Total load (in) at 7.83 ft = -0.543 L/D = 346 > 240 0.69 Page 15/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 276 SPAN INFORMATION (ft): I-End (84.37,59.00) J-End (84.37,70.33) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = HSS8X4X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 11.33 Mp (kip-ft) = 55.42 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 10.818 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 6.182 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 4.808 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 0.333 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 SHEAR: Max Va (DL+LL) = 4.42 kips Vn/1.67 = 61.12 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 11.7 6.2 11.3 1.24 1.67 33.18 Controlling DL+LL 11.7 6.2 11.3 1.24 1.67 33.18 REACTIONS (kips): Left Right DL reaction 1.56 1.48 Max +LL reaction 2.86 2.74 Max +total reaction 4.42 4.22 DEFLECTIONS:Ratio Dead load (in) at 5.67 ft = -0.070 < -0.750 L/D = 1931 0.09 Live load (in) at 5.67 ft = -0.130 L/D = 1048 > 360 0.34 Net Total load (in) at 5.67 ft = -0.200 L/D = 679 > 240 0.35 Page 16/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 285 SPAN INFORMATION (ft): I-End (88.21,110.92) J-End (103.83,110.92) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 15.62 Mp (kip-ft) = 102.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.667 0.33 0.59 6.7 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 7.2 0.00 0.00 0.0 0.00 Snow -0.01 1.667 0.68 1.13 6.7 0.00 0.00 0.0 0.00 Snow 0.34 3.667 0.33 0.59 6.7 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 7.2 0.00 0.00 0.0 0.00 Snow -0.01 3.667 0.68 1.13 6.7 0.00 0.00 0.0 0.00 Snow 0.34 5.667 0.33 0.59 6.7 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 7.2 0.00 0.00 0.0 0.00 Snow -0.01 5.667 0.68 1.13 6.7 0.00 0.00 0.0 0.00 Snow 0.34 7.667 0.33 0.59 6.7 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 7.2 0.00 0.00 0.0 0.00 Snow -0.01 7.667 0.68 1.13 6.7 0.00 0.00 0.0 0.00 Snow 0.34 9.667 0.33 0.59 6.7 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 7.2 0.00 0.00 0.0 0.00 Snow -0.01 9.667 0.68 1.13 6.7 0.00 0.00 0.0 0.00 Snow 0.34 11.667 0.33 0.59 6.7 0.00 0.00 0.0 0.00 Snow 0.18 -0.04 7.2 0.00 0.00 0.0 0.00 Snow -0.01 11.667 0.68 1.13 6.7 0.00 0.00 0.0 0.00 Snow 0.34 13.667 0.26 0.58 6.7 0.00 0.00 0.0 0.00 Snow 0.17 -0.14 7.2 0.00 0.00 0.0 0.00 Snow -0.04 13.667 0.71 1.18 6.7 0.00 0.00 0.0 0.00 Snow 0.35 SHEAR: Max Va (DL+LL) = 11.13 kips Vn/1.50 = 57.34 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 47.9 7.7 2.0 1.02 1.67 61.63 Controlling DL+LL 47.9 7.7 2.0 1.02 1.67 61.63 REACTIONS (kips): Left Right DL reaction 3.58 3.42 Max +LL reaction 7.55 7.31 Max -LL reaction -0.15 -0.21 Max +total reaction 11.13 10.73 DEFLECTIONS:Ratio Dead load (in) at 7.81 ft = -0.177 < -0.750 L/D = 1060 0.24 Live load (in) at 7.81 ft = -0.375 L/D = 501 > 360 0.72 Net Total load (in) at 7.81 ft = -0.552 L/D = 340 > 240 0.71 Page 17/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 290 SPAN INFORMATION (ft): I-End (90.54,88.29) J-End (96.54,88.29) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 6.00 Mp (kip-ft) = 102.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.333 1.22 2.03 0.0 0.00 0.00 0.0 0.00 Snow 0.61 3.333 1.22 2.03 0.0 0.00 0.00 0.0 0.00 Snow 0.61 5.333 1.09 1.82 0.0 0.00 0.00 0.0 0.00 Snow 0.54 SHEAR: Max Va (DL+LL) = 6.07 kips Vn/1.50 = 57.34 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 9.3 3.3 2.0 1.12 1.67 61.63 Controlling DL+LL 9.3 3.3 2.0 1.12 1.67 61.63 REACTIONS (kips): Left Right DL reaction 1.61 1.92 Max +LL reaction 3.49 4.15 Max +total reaction 5.10 6.07 DEFLECTIONS:Ratio Dead load (in) at 3.00 ft = -0.005 < -0.750 L/D = 15104 0.01 Live load (in) at 3.00 ft = -0.010 L/D = 6971 > 360 0.05 Net Total load (in) at 3.00 ft = -0.015 L/D = 4770 > 240 0.05 Page 18/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 299 SPAN INFORMATION (ft): I-End (95.87,59.00) J-End (95.87,70.33) Maximum Depth Limitation specified = 15.00 in Beam Size (User Selected) = HSS8X4X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 11.33 Mp (kip-ft) = 55.42 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.333 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 4.808 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 SHEAR: Max Va (DL+LL) = 3.34 kips Vn/1.67 = 61.12 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 6.4 4.8 11.3 1.36 1.67 33.18 Controlling DL+LL 6.4 4.8 11.3 1.36 1.67 33.18 REACTIONS (kips): Left Right DL reaction 1.18 0.34 Max +LL reaction 2.16 0.64 Max +total reaction 3.34 0.98 DEFLECTIONS:Ratio Dead load (in) at 5.38 ft = -0.034 < -0.750 L/D = 3973 0.05 Live load (in) at 5.38 ft = -0.063 L/D = 2157 > 360 0.17 Net Total load (in) at 5.38 ft = -0.097 L/D = 1398 > 240 0.17 Page 19/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 322 SPAN INFORMATION (ft): I-End (101.87,70.33) J-End (116.04,70.33) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W14X26 Fy = 50.0 ksi Total Beam Length (ft) = 14.17 Mp (kip-ft) = 167.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 2.000 0.63 1.05 0.0 0.00 0.00 0.0 0.00 Snow 0.31 4.000 0.88 1.46 0.0 0.00 0.00 0.0 0.00 Snow 0.44 6.000 0.88 1.46 0.0 0.00 0.00 0.0 0.00 Snow 0.44 8.000 0.88 1.46 0.0 0.00 0.00 0.0 0.00 Snow 0.44 10.000 0.88 1.46 0.0 0.00 0.00 0.0 0.00 Snow 0.44 12.000 0.88 1.46 0.0 0.00 0.00 0.0 0.00 Snow 0.44 14.000 0.88 1.46 0.0 0.00 0.00 0.0 0.00 Snow 0.44 9.667 4.58 0.00 0.0 0.00 0.00 0.0 10.64 Snow 0.00 SHEAR: Max Va (DL+LL) = 21.28 kips Vn/1.50 = 70.89 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 76.3 9.7 2.0 1.02 1.67 100.30 Controlling DL+LL 76.3 9.7 2.0 1.02 1.67 100.30 REACTIONS (kips): Left Right DL reaction 3.92 6.57 Max +LL reaction 8.72 14.71 Max +total reaction 12.64 21.28 DEFLECTIONS:Ratio Dead load (in) at 7.44 ft = -0.109 < -0.750 L/D = 1564 0.14 Live load (in) at 7.44 ft = -0.244 L/D = 697 > 360 0.52 Net Total load (in) at 7.44 ft = -0.353 L/D = 482 > 240 0.50 Page 20/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 330 SPAN INFORMATION (ft): I-End (103.83,104.83) J-End (103.83,122.63) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W16X40 Fy = 50.0 ksi Total Beam Length (ft) = 17.79 Mp (kip-ft) = 304.17 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 6.083 7.37 12.28 21.6 0.00 0.00 0.0 0.00 Snow 3.68 6.083 3.42 5.93 21.6 0.00 0.00 0.0 0.00 Snow 1.78 -0.23 21.8 0.00 0.00 0.0 0.00 Snow -0.07 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.029 0.049 21.6% Red 0.015 17.791 0.029 0.049 0.015 2 0.000 0.006 0.009 21.6% Red 0.003 6.083 0.006 0.009 0.003 3 6.084 0.031 0.051 21.6% Red 0.015 17.791 0.031 0.051 0.015 SHEAR: Max Va (DL+LL) = 21.23 kips Vn/1.50 = 97.60 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 127.3 6.1 0.0 1.00 1.67 182.14 Controlling DL+LL 127.3 6.1 0.0 1.00 1.67 182.14 REACTIONS (kips): Left Right DL reaction 7.50 4.20 Max +LL reaction 13.72 7.66 Max -LL reaction -0.12 -0.06 Max +total reaction 21.23 11.86 DEFLECTIONS:Ratio Dead load (in) at 8.18 ft = -0.135 < -0.750 L/D = 1580 0.18 Live load (in) at 8.18 ft = -0.247 L/D = 864 > 360 0.42 Net Total load (in) at 8.18 ft = -0.382 L/D = 559 > 240 0.43 Page 21/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 331 SPAN INFORMATION (ft): I-End (103.83,110.92) J-End (131.50,110.92) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W16X57 Fy = 50.0 ksi Total Beam Length (ft) = 27.67 Mp (kip-ft) = 437.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.375 0.52 0.87 27.0 0.00 0.00 0.0 0.00 Snow 0.26 2.042 0.98 1.63 27.0 0.00 0.00 0.0 0.00 Snow 0.49 4.042 1.03 1.72 27.0 0.00 0.00 0.0 0.00 Snow 0.51 6.042 1.03 1.72 27.0 0.00 0.00 0.0 0.00 Snow 0.51 8.042 1.03 1.72 27.0 0.00 0.00 0.0 0.00 Snow 0.51 10.042 1.12 1.87 27.0 0.00 0.00 0.0 0.00 Snow 0.56 12.042 1.13 1.88 27.0 0.00 0.00 0.0 0.00 Snow 0.56 14.042 1.13 1.88 27.0 0.00 0.00 0.0 0.00 Snow 0.56 16.042 1.13 1.88 27.0 0.00 0.00 0.0 0.00 Snow 0.56 18.042 1.13 1.88 27.0 0.00 0.00 0.0 0.00 Snow 0.56 20.042 1.13 1.88 27.0 0.00 0.00 0.0 0.00 Snow 0.56 22.042 1.13 1.88 27.0 0.00 0.00 0.0 0.00 Snow 0.56 24.042 1.13 1.88 27.0 0.00 0.00 0.0 0.00 Snow 0.56 26.042 1.02 1.71 27.0 0.00 0.00 0.0 0.00 Snow 0.51 SHEAR: Max Va (DL+LL) = 20.01 kips Vn/1.50 = 141.04 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 144.1 14.0 2.0 1.01 1.67 261.98 Controlling DL+LL 144.1 14.0 2.0 1.01 1.67 261.98 REACTIONS (kips): Left Right DL reaction 7.37 7.28 Max +LL reaction 12.64 12.50 Max +total reaction 20.01 19.79 DEFLECTIONS:Ratio Dead load (in) at 13.83 ft = -0.330 < -0.750 L/D = 1005 0.44 Live load (in) at 13.83 ft = -0.567 L/D = 585 > 360 0.62 Net Total load (in) at 13.83 ft = -0.898 L/D = 370 > 240 0.65 Page 22/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 336 SPAN INFORMATION (ft): I-End (103.87,88.29) J-End (133.50,88.29) Maximum Depth Limitation specified = 19.00 in Beam Size (User Selected) = W18X50 Fy = 50.0 ksi Total Beam Length (ft) = 29.63 Mp (kip-ft) = 420.83 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 0.333 0.65 1.09 30.3 0.00 0.00 0.0 0.00 Snow 0.33 2.000 1.16 1.93 30.3 0.00 0.00 0.0 0.00 Snow 0.58 4.000 1.22 2.03 30.3 0.00 0.00 0.0 0.00 Snow 0.61 6.000 1.22 2.03 30.3 0.00 0.00 0.0 0.00 Snow 0.61 8.000 1.22 2.03 30.3 0.00 0.00 0.0 0.00 Snow 0.61 10.000 1.22 2.03 30.3 0.00 0.00 0.0 0.00 Snow 0.61 12.000 1.22 2.03 30.3 0.00 0.00 0.0 0.00 Snow 0.61 14.000 1.22 2.03 30.3 0.00 0.00 0.0 0.00 Snow 0.61 16.000 1.22 2.03 30.3 0.00 0.00 0.0 0.00 Snow 0.61 18.000 1.22 2.03 30.3 0.00 0.00 0.0 0.00 Snow 0.61 20.000 1.22 2.03 30.3 0.00 0.00 0.0 0.00 Snow 0.61 22.000 1.22 2.03 30.3 0.00 0.00 0.0 0.00 Snow 0.61 24.000 1.22 2.03 30.3 0.00 0.00 0.0 0.00 Snow 0.61 26.000 1.16 1.94 30.3 0.00 0.00 0.0 0.00 Snow 0.58 28.000 0.49 0.81 30.3 0.00 0.00 0.0 0.00 Snow 0.24 SHEAR: Max Va (DL+LL) = 23.86 kips Vn/1.50 = 127.80 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 175.9 14.0 2.0 1.00 1.67 252.00 Controlling DL+LL 175.9 14.0 2.0 1.00 1.67 252.00 REACTIONS (kips): Left Right DL reaction 8.96 7.90 Max +LL reaction 14.90 13.12 Max +total reaction 23.86 21.02 DEFLECTIONS:Ratio Dead load (in) at 14.81 ft = -0.449 < -0.750 L/D = 792 0.60 Live load (in) at 14.81 ft = -0.746 L/D = 477 > 360 0.76 Net Total load (in) at 14.81 ft = -1.194 L/D = 298 > 240 0.81 Page 23/24 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019_test 03/22/23 09:20:44 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: 3rd Level Beam Number = 384 SPAN INFORMATION (ft): I-End (116.04,70.33) J-End (133.50,70.33) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 17.46 Mp (kip-ft) = 102.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.833 0.88 1.46 5.3 0.00 0.00 0.0 0.00 Snow 0.44 3.833 0.88 1.46 5.3 0.00 0.00 0.0 0.00 Snow 0.44 5.833 0.88 1.46 5.3 0.00 0.00 0.0 0.00 Snow 0.44 7.833 0.88 1.46 5.3 0.00 0.00 0.0 0.00 Snow 0.44 9.833 0.88 1.46 5.3 0.00 0.00 0.0 0.00 Snow 0.44 11.833 0.88 1.46 5.3 0.00 0.00 0.0 0.00 Snow 0.44 13.833 0.88 1.46 5.3 0.00 0.00 0.0 0.00 Snow 0.44 15.833 0.80 1.33 5.3 0.00 0.00 0.0 0.00 Snow 0.40 SHEAR: Max Va (DL+LL) = 10.72 kips Vn/1.50 = 57.34 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 51.1 7.8 2.0 1.00 1.67 61.63 Controlling DL+LL 51.1 7.8 2.0 1.00 1.67 61.63 REACTIONS (kips): Left Right DL reaction 3.47 3.48 Max +LL reaction 7.20 7.24 Max +total reaction 10.67 10.72 DEFLECTIONS:Ratio Dead load (in) at 8.73 ft = -0.242 < -0.750 L/D = 867 0.32 Live load (in) at 8.73 ft = -0.502 L/D = 417 > 360 0.86 Net Total load (in) at 8.73 ft = -0.744 L/D = 282 > 240 0.85 Page 24/24 RAM Structural System V17.04.03.05. - Floor Plan: Landing JSC DataBase: 23019 03/16/23 11:07:15 1 1 1.71.9 2 2 2.4 3 3 3.7 4 4 4.5 5 5 5.6 6 6 6.3 6.4 6.6 7 7 7.2 7.7 7.7 8 8 G G F F E.7 E E D D C C B B A A 1 2 3 4 5 Steel Beam Numbers Landing Level Added check for stringer members Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Landing Beam Number = 1 SPAN INFORMATION (ft): I-End (22.63,36.50) J-End (22.63,46.17) Beam Size (User Selected) = HSS6X4X3/8 Fy = 50.0 ksi Total Beam Length (ft) = 9.67 Mp (kip-ft) = 49.58 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 4.667 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 9.333 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.165 0.300 --- NonR 0.000 9.666 0.165 0.300 0.000 SHEAR: Max Va (DL+LL) = 5.38 kips Vn/1.67 = 62.11 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 11.0 4.7 9.7 1.21 1.67 29.69 Controlling DL+LL 11.0 4.7 9.7 1.21 1.67 29.69 REACTIONS (kips): Left Right DL reaction 1.22 1.90 Max +LL reaction 2.22 3.48 Max +total reaction 3.44 5.38 DEFLECTIONS:Ratio Dead load (in) at 4.83 ft = -0.073 < -0.750 L/D = 1596 0.10 Live load (in) at 4.83 ft = -0.133 L/D = 873 > 360 0.41 Net Total load (in) at 4.83 ft = -0.206 L/D = 564 > 240 0.43 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Landing Beam Number = 2 SPAN INFORMATION (ft): I-End (22.63,36.50) J-End (28.04,36.50) Beam Size (User Selected) = HSS6X4X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 5.42 Mp (kip-ft) = 35.54 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.165 0.300 --- NonR 0.000 5.416 0.165 0.300 0.000 SHEAR: Max Va (DL+LL) = 1.26 kips Vn/1.67 = 44.38 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 1.7 2.7 5.4 1.14 1.67 21.28 Controlling DL+LL 1.7 2.7 5.4 1.14 1.67 21.28 REACTIONS (kips): Left Right DL reaction 0.45 0.45 Max +LL reaction 0.81 0.81 Max +total reaction 1.26 1.26 DEFLECTIONS:Ratio Dead load (in) at 2.71 ft = -0.005 < -0.750 L/D = 12327 0.01 Live load (in) at 2.71 ft = -0.010 L/D = 6780 > 360 0.05 Net Total load (in) at 2.71 ft = -0.015 L/D = 4374 > 240 0.05 Page 2/4 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Landing Beam Number = 3 SPAN INFORMATION (ft): I-End (22.63,46.17) J-End (28.04,46.17) Beam Size (User Selected) = HSS6X4X1/4 Fy = 50.0 ksi Total Beam Length (ft) = 5.42 Mp (kip-ft) = 35.54 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.165 0.300 --- NonR 0.000 5.416 0.165 0.300 0.000 SHEAR: Max Va (DL+LL) = 1.26 kips Vn/1.67 = 44.38 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 1.7 2.7 5.4 1.14 1.67 21.28 Controlling DL+LL 1.7 2.7 5.4 1.14 1.67 21.28 REACTIONS (kips): Left Right DL reaction 0.45 0.45 Max +LL reaction 0.81 0.81 Max +total reaction 1.26 1.26 DEFLECTIONS:Ratio Dead load (in) at 2.71 ft = -0.005 < -0.750 L/D = 12327 0.01 Live load (in) at 2.71 ft = -0.010 L/D = 6780 > 360 0.05 Net Total load (in) at 2.71 ft = -0.015 L/D = 4374 > 240 0.05 Page 3/4 Gravity Beam Design RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:07:15 Building Code: IBC Steel Code: AISC 360-16 ASD Floor Type: Landing Beam Number = 4 SPAN INFORMATION (ft): I-End (28.04,36.50) J-End (28.04,46.17) Beam Size (User Selected) = HSS6X4X3/8 Fy = 50.0 ksi Total Beam Length (ft) = 9.67 Mp (kip-ft) = 49.58 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 4.667 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 9.333 0.76 0.00 0.0 1.40 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.165 0.300 --- NonR 0.000 9.666 0.165 0.300 0.000 SHEAR: Max Va (DL+LL) = 5.38 kips Vn/1.67 = 62.11 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Mn /  kip-ft ft ft kip-ft Center Max + DL+LL 11.0 4.7 9.7 1.21 1.67 29.69 Controlling DL+LL 11.0 4.7 9.7 1.21 1.67 29.69 REACTIONS (kips): Left Right DL reaction 1.22 1.90 Max +LL reaction 2.22 3.48 Max +total reaction 3.44 5.38 DEFLECTIONS:Ratio Dead load (in) at 4.83 ft = -0.073 < -0.750 L/D = 1596 0.10 Live load (in) at 4.83 ft = -0.133 L/D = 873 > 360 0.41 Net Total load (in) at 4.83 ft = -0.206 L/D = 564 > 240 0.43 Page 4/4 Steel Beam Design - Simple span w/ uniform and point loads - HSS shapes AISC 360-16 Specification for Structural Steel Building and Steel Construction Manual, 15th Edition (Load calculation for ASD and LRFD are pre-design) Member: Stair stringers ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 2R 1R L w a PLoading criteria: Span:L 12ft:= Uniform load (x-axis):wx 55 100+( )psf 2.5ft:= Uniform load (y-axis):wy 0.6 0 plf( ):= Point loads & Point load locations: (x-axis): (y-axis): Px1 0kip:=ax1 0 ft:=Py1 0kip:=ay1 0 ft:= Px2 0kip:=ax2 0 ft:=Py2 0kip:=ay2 0 ft:= Px3 0kip:=ax3 0 ft:=Py3 0kip:=ay3 0 ft:= Deflection limits (x-axis):Δx 360:=Permit deflection reduction for wind forces: (y-axis):Δy 240:= Material and beam shape: Steel Grade: Design methodology: Yield Stress:Fy 50 ksi=E 29000 ksi=Beam shape: Design bending moment and shear: Member reactions: Maximum shears: Maximum bending moment: (x-axis): (y-axis): (x-axis): (y-axis): (x-axis): (y-axis): Rx.1 2.33 kip=Ry.1 0 kip=Vx 2.33 kip=Vy 0 kip=Mx 6.97 kip ft=My 0 kip ft= Rx.2 2.33 kip=Ry.2 0 kip= ASD/LRFD capacity: (x-axis) Mx.capacity 50 kip ft=Mx Mx.capacity 0.14= (y-axis) My.capacity 9 kip ft=My My.capacity 0=Y_FlexureCheck "Y-axis Flexure N.A."= CF_Check "Combine Forces Calculations N.A."= ASD/LRFD capacity: (x-axis) Vx.capacity 94.6 kip= (y-axis) Vy.capacity 10.9 kip=Vy Vy.capacity 0=Y_ShearCheck "V.y < Vn.y (ASD), Shear OK" "Unstiffened webs OK" "ASD Shear ratio = 0"   = Service Deflection Design: (x-axis) δx 0.072 in= < Δallow.x 0.4 in=δx Δallow.x 0.18=X_DeflectionCheck "Service deflection OK" "Service deflection ratio = 0.18"  = (y-axis) δy 0 in= < Δallow.y 0.6 in=δy Δallow.y 0=Y_DeflectionCheck "Service deflection OK" "Service deflection ratio = 0"  = X_FlexureCheck "Mx < Mn.x (ASD), Flexure OK" "ASD X-axis Flexure ratio = 0.14"  = X_ShearCheck "V.x < Vn.x (ASD), Shear OK" "Unstiffened webs OK" "ASD Shear ratio = 0.025"   =Vx Vx.capacity 0.025= Combined Flexure design (AISC 360-16, Chapter H): Flexure Design (AISC 360-16 Chapter F): Shear Design (AISC 360-16 Chapter G): 1 of 1 F.F. Level 1 100'-0"F.F. Level 1100'-0" F.F. Level 2 113'-5" F.F. Level 2113'-5" ROOF PLAN 140'-3" ROOF PLAN140'-3" B.O. FOOTING 97'-0"B.O. FOOTING97'-0" F.F. LEVEL 3 126'-10" F.F. LEVEL 3126'-10" DECK BEARING 140'-10" DECK BEARING140'-10" Steel Columns RAM Structural System V17.04.03.05. - Floor Plan: Landing JSC DataBase: 23019_test 03/22/23 09:07:44 1 1 1.71.9 2 2 2.4 3 3 3.7 4 4 4.5 5 5 5.6 6 6 6.3 6.4 6.6 7 7 7.2 7.7 7.7 8 8 G G F F E.7 E E D D C C B B A A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39 40 41 Steel Column Numbers Gravity Column Design Criteria RAM Steel 17.04.03.05 JSC DataBase: 23019 03/16/23 11:06:10 Building Code: IBC Steel Code: AISC360-16 ASD DEFAULT SPLICE LEVELS: Level Splice TopOfStairs_URoof N TopOfStairs_Roof N Roof N RoofCanopy N 3rd Level Y EventCenter_Roof N 2nd Level N Landing N DEMAND/CAPACITY LIMIT FOR STRENGTH: Columns: 1.000 Baseplates: 1.000 DESIGN DEFAULTS: Maximum Angle from column axis at which beam reaction is not split between column sides for calculating unbalanced moments: 30.0 deg. Skip-load the Live Load around Column STANDARD COLUMN TRIAL GROUPS: Trial Group 1 Trial Group 2 Trial Group 3 I Section W12 W10 W8 Rect. HSS HSS8X8 HSS6X6 HSS5X5 Round HSS HSS10 HSS7.5 HSS6 HANGING COLUMN TRIAL GROUPS: Trial Group 1 Trial Group 2 Trial Group 3 I Section W14 W12 W10 Rect. HSS HSS16X16 HSS14X14 HSS12X12 Round HSS HSS20 HSS18 HSS16 Channel C15 C15 C15 Tee WT22 WT20X16 WT20X12 Flat Bar FlatBar FlatBar FlatBar Round Bar RoundBar RoundBar RoundBar Single Angle L8X8 L8X6 L8X4 Double Angle 2L8X8 2L8X6 2L8X4 COLUMN BRACING: Deck Braces Column Maximum Angle from column axis for which beam braces column: 60.0 deg. BASE PLATES: Design Code: AISC360-16 ASD Plate Fy (ksi)36.000 Minimum Dimension From Face of Column to Edge of Plate (in)3.000 Minimum Dimension From Side of Column to Edge of Plate (in)3.000 Increment of Plate Dimensions (in)0.250 Increment of Plate Thickness (in)0.125 Minimum Footing Dimension Parallel to Web (ft)2.00 Minimum Footing Dimension Perpendicular to Web (ft)2.00 Keep Base Plate Square:Y Gravity Column Design Summary RAM Steel 17.04.03.05 JSC DataBase: 23019 03/22/23 09:32:12 Building Code: IBC Steel Code: AISC360-16 ASD DEMAND/CAPACITY LIMIT FOR STRENGTH : 1.000 Column Line 7.00ft-70.33ft Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 14.3 3.0 0.0 1 0.43 Eq H1-1a 0.0 50 HSS5X5X3/16 RoofCanopy 14.4 2.8 0.0 1 0.42 Eq H1-1a 0.0 50 HSS5X5X3/16 Column Line 7.00ft-88.29ft Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 15.8 3.3 0.0 1 0.37 Eq H1-1a 0.0 50 HSS5X5X1/4 RoofCanopy 16.0 3.1 2.0 1 0.45 Eq H1-1a 0.0 50 HSS5X5X1/4 3rd Level 45.3 2.3 3.6 1 0.86 Eq H1-1a 0.0 50 HSS5X5X1/4 EventCenter_Roof 45.3 2.2 1.6 1 0.77 Eq H1-1a 0.0 50 HSS5X5X1/4 2nd Level 63.4 2.9 2.0 1 1.05 Eq H1-1a 0.0 50 HSS5X5X1/4 Landing 63.5 0.0 0.0 1 0.83 Eq Axial 0.0 50 HSS5X5X1/4 Column Line 22.63ft-36.50ft Level Pa Max May LC Interaction Eq. Angle Fy Size Landing 4.7 0.6 0.2 1 0.12 Eq H1-1b 90.0 50 HSS4X4X3/16 Column Line 1.7-E.7 Level Pa Max May LC Interaction Eq. Angle Fy Size Landing 6.7 -0.9 0.2 1 0.17 Eq H1-1b 90.0 50 HSS4X4X3/16 Column Line 28.04ft-36.50ft Level Pa Max May LC Interaction Eq. Angle Fy Size Landing 4.7 0.6 -0.2 1 0.12 Eq H1-1b 90.0 50 HSS4X4X3/16 Column Line 1.9-E.7 Level Pa Max May LC Interaction Eq. Angle Fy Size Landing 6.7 -0.9 -0.2 1 0.17 Eq H1-1b 90.0 50 HSS4X4X3/16 Column Line 2-D Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 22.7 -0.4 0.0 1 0.27 Eq H1-1a 0.0 50 HSS5X5X5/16 RoofCanopy 22.9 -0.4 0.0 1 0.27 Eq H1-1a 0.0 50 HSS5X5X5/16 3rd Level 42.4 -0.6 0.0 3 0.48 Eq H1-1a 0.0 50 HSS5X5X5/16 EventCenter_Roof 42.4 -0.7 0.0 3 0.49 Eq H1-1a 0.0 50 HSS5X5X5/16 2nd Level 62.6 -0.1 0.0 1 0.68 Eq H1-1a 0.0 50 HSS5X5X5/16 Landing 62.7 -0.0 0.0 1 0.68 Eq H1-1a 0.0 50 HSS5X5X5/16 Column Line 2-C Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 27.6 -0.3 0.0 1 0.32 Eq H1-1a 0.0 50 HSS5X5X5/16 RoofCanopy 27.8 -0.3 0.0 1 0.32 Eq H1-1a 0.0 50 HSS5X5X5/16 3rd Level 52.7 0.7 0.0 2 0.60 Eq H1-1a 0.0 50 HSS5X5X5/16 EventCenter_Roof 52.7 0.9 0.0 2 0.60 Eq H1-1a 0.0 50 HSS5X5X5/16 2nd Level 78.6 0.1 0.0 1 0.85 Eq H1-1a 0.0 50 HSS5X5X5/16 Landing 78.7 0.0 0.0 1 0.85 Eq H1-1a 0.0 50 HSS5X5X5/16 Column Line 2.4-F Level Pa Max May LC Interaction Eq. Angle Fy Size 2nd Level 13.9 1.9 0.0 1 0.46 Eq H1-1a 0.0 50 HSS4X4X1/4 Landing 14.0 0.8 0.0 1 0.38 Eq H1-1a 0.0 50 HSS4X4X1/4 Gravity Column Design Summary RAM Steel 17.04.03.05 JSC DataBase: 23019 03/22/23 09:32:12 Building Code: IBC Steel Code: AISC360-16 ASD Column Line 3-D Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 18.3 -0.8 0.0 1 0.24 Eq H1-1a 0.0 50 HSS5X5X5/16 RoofCanopy 18.5 -0.8 0.0 1 0.24 Eq H1-1a 0.0 50 HSS5X5X5/16 3rd Level 35.6 -0.8 0.0 3 0.42 Eq H1-1a 0.0 50 HSS5X5X5/16 EventCenter_Roof 35.6 -0.9 0.0 3 0.42 Eq H1-1a 0.0 50 HSS5X5X5/16 2nd Level 52.9 -0.4 0.0 1 0.59 Eq H1-1a 0.0 50 HSS5X5X5/16 Landing 53.0 -0.2 0.0 1 0.58 Eq H1-1a 0.0 50 HSS5X5X5/16 Column Line 3-C Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 24.1 -0.8 0.0 1 0.30 Eq H1-1a 0.0 50 HSS5X5X5/16 RoofCanopy 24.3 -0.7 0.0 1 0.30 Eq H1-1a 0.0 50 HSS5X5X5/16 3rd Level 47.5 -1.1 0.0 3 0.56 Eq H1-1a 0.0 50 HSS5X5X5/16 EventCenter_Roof 47.5 -1.2 0.0 3 0.56 Eq H1-1a 0.0 50 HSS5X5X5/16 2nd Level 71.0 -0.8 0.0 1 0.80 Eq H1-1a 0.0 50 HSS5X5X5/16 Landing 71.1 -0.3 0.0 1 0.78 Eq H1-1a 0.0 50 HSS5X5X5/16 Column Line 59.08ft-40.83ft Level Pa Max May LC Interaction Eq. Angle Fy Size 2nd Level 22.1 -0.9 0.0 1 0.57 Eq H1-1a 0.0 50 HSS4X4X1/4 Landing 22.2 -0.4 0.0 1 0.53 Eq H1-1a 0.0 50 HSS4X4X1/4 Column Line 72.25ft-40.83ft Level Pa Max May LC Interaction Eq. Angle Fy Size 2nd Level 9.2 -1.8 0.0 1 0.35 Eq H1-1a 0.0 50 HSS4X4X1/4 Landing 9.2 0.0 0.0 1 0.21 Eq Axial 0.0 50 HSS4X4X1/4 Column Line 4-D Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 8.5 0.0 0.0 1 0.15 Eq Axial 0.0 50 HSS5X5X1/4 RoofCanopy 8.7 0.0 0.0 1 0.15 Eq Axial 0.0 50 HSS5X5X1/4 3rd Level 22.4 -0.6 0.0 3 0.32 Eq H1-1a 0.0 50 HSS5X5X1/4 EventCenter_Roof 22.4 -0.7 0.0 3 0.32 Eq H1-1a 0.0 50 HSS5X5X1/4 2nd Level 33.1 -0.4 0.0 1 0.45 Eq H1-1a 0.0 50 HSS5X5X1/4 Landing 33.2 -0.2 0.0 1 0.44 Eq H1-1a 0.0 50 HSS5X5X1/4 Column Line 4-C Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 25.3 0.8 0.0 1 0.32 Eq H1-1a 0.0 50 HSS5X5X5/16 RoofCanopy 25.5 0.7 0.0 1 0.32 Eq H1-1a 0.0 50 HSS5X5X5/16 3rd Level 45.9 0.7 0.0 2 0.52 Eq H1-1a 0.0 50 HSS5X5X5/16 EventCenter_Roof 46.0 0.8 0.0 2 0.53 Eq H1-1a 0.0 50 HSS5X5X5/16 2nd Level 66.4 0.2 0.0 1 0.73 Eq H1-1a 0.0 50 HSS5X5X5/16 Landing 66.5 0.1 0.0 1 0.72 Eq H1-1a 0.0 50 HSS5X5X5/16 Column Line 4-B Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 26.7 -0.5 0.0 1 0.32 Eq H1-1a 0.0 50 HSS5X5X5/16 RoofCanopy 26.9 -0.5 0.0 1 0.32 Eq H1-1a 0.0 50 HSS5X5X5/16 3rd Level 46.4 -0.9 0.0 3 0.53 Eq H1-1a 0.0 50 HSS5X5X5/16 EventCenter_Roof 46.4 -1.0 0.0 3 0.54 Eq H1-1a 0.0 50 HSS5X5X5/16 2nd Level 66.5 -0.5 0.0 1 0.74 Eq H1-1a 0.0 50 HSS5X5X5/16 Landing 66.6 -0.2 0.0 1 0.73 Eq H1-1a 0.0 50 HSS5X5X5/16 Page 2/5 Gravity Column Design Summary RAM Steel 17.04.03.05 JSC DataBase: 23019 03/22/23 09:32:12 Building Code: IBC Steel Code: AISC360-16 ASD Column Line 5-B Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 18.8 -0.8 0.0 1 0.24 Eq H1-1a 0.0 50 HSS5X5X5/16 RoofCanopy 19.1 -0.8 0.0 1 0.24 Eq H1-1a 0.0 50 HSS5X5X5/16 3rd Level 34.5 -0.6 0.0 3 0.40 Eq H1-1a 0.0 50 HSS5X5X5/16 EventCenter_Roof 34.6 -0.7 0.0 3 0.40 Eq H1-1a 0.0 50 HSS5X5X5/16 2nd Level 50.1 -0.2 0.0 1 0.55 Eq H1-1a 0.0 50 HSS5X5X5/16 Landing 50.2 -0.1 0.0 1 0.54 Eq H1-1a 0.0 50 HSS5X5X5/16 Column Line 90.54ft-88.29ft Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 16.3 -2.1 0.0 1 0.32 Eq H1-1a 0.0 50 HSS5X5X1/4 RoofCanopy 16.5 -2.0 0.0 1 0.32 Eq H1-1a 0.0 50 HSS5X5X1/4 3rd Level 31.0 -1.2 0.0 3 0.46 Eq H1-1a 0.0 50 HSS5X5X1/4 EventCenter_Roof 31.1 -1.2 0.0 3 0.46 Eq H1-1a 0.0 50 HSS5X5X1/4 2nd Level 45.3 -0.9 0.0 1 0.63 Eq H1-1a 0.0 50 HSS5X5X1/4 Landing 45.3 -0.4 0.0 1 0.61 Eq H1-1a 0.0 50 HSS5X5X1/4 Column Line 101.87ft-70.33ft Level Pa Max May LC Interaction Eq. Angle Fy Size 2nd Level 47.8 -2.3 -2.4 1 0.84 Eq H1-1a 90.0 50 HSS5X5X1/4 Landing 47.8 -0.9 -1.0 1 0.71 Eq H1-1a 90.0 50 HSS5X5X1/4 Column Line 103.83ft-104.83ft Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 16.0 5.3 0.0 1 0.18 Eq H1-1b 90.0 50 W8X24 RoofCanopy 16.3 5.0 0.0 1 0.17 Eq H1-1b 90.0 50 W8X24 3rd Level 31.1 2.9 0.0 1 0.35 Eq H1-1a 90.0 50 W8X24 EventCenter_Roof 31.1 0.5 0.0 1 0.32 Eq H1-1a 90.0 50 W8X24 2nd Level 41.8 0.0 0.0 1 0.41 Eq Axial 90.0 50 W8X24 Landing 42.0 0.0 0.0 1 0.42 Eq Axial 90.0 50 W8X24 Column Line 103.83ft-122.63ft Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 9.3 -1.9 0.0 1 0.16 Eq H1-1b 90.0 50 HSS5X5X1/4 RoofCanopy 9.5 -1.8 0.5 1 0.19 Eq H1-1b 90.0 50 HSS5X5X1/4 3rd Level 23.6 -1.1 0.7 1 0.39 Eq H1-1a 90.0 50 HSS5X5X1/4 EventCenter_Roof 23.7 -0.5 0.0 1 0.33 Eq H1-1a 90.0 50 HSS5X5X1/4 2nd Level 26.9 -0.5 0.0 1 0.37 Eq H1-1a 90.0 50 HSS5X5X1/4 Landing 27.0 0.0 0.0 1 0.35 Eq Axial 90.0 50 HSS5X5X1/4 Column Line 111.54ft-70.33ft Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 15.2 1.7 0.0 1 0.37 Eq H1-1a 0.0 50 HSS5X5X3/16 RoofCanopy 15.4 1.5 0.0 1 0.36 Eq H1-1a 0.0 50 HSS5X5X3/16 Column Line 112.92ft-117.00ft Level Pa Max May LC Interaction Eq. Angle Fy Size 2nd Level 2.8 0.3 -0.1 1 0.07 Eq H1-1b 90.0 50 HSS4X4X1/4 Landing 2.8 0.0 0.0 1 0.06 Eq Axial 90.0 50 HSS4X4X1/4 Column Line 6.4-D Level Pa Max May LC Interaction Eq. Angle Fy Size 3rd Level 24.7 -1.8 0.0 1 0.34 Eq H1-1a 0.0 50 HSS5X5X5/16 EventCenter_Roof 24.7 -0.7 0.0 3 0.29 Eq H1-1a 0.0 50 HSS5X5X5/16 2nd Level 38.3 0.0 0.0 1 0.41 Eq H1-1a 0.0 50 HSS5X5X5/16 Page 3/5 Gravity Column Design Summary RAM Steel 17.04.03.05 JSC DataBase: 23019 03/22/23 09:32:12 Building Code: IBC Steel Code: AISC360-16 ASD Landing 38.4 0.0 0.0 1 0.41 Eq H1-1a 0.0 50 HSS5X5X5/16 Column Line 116.54ft-125.96ft Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 0.0 0.5 0.0 1 0.04 Eq H1-1b 90.0 50 HSS4X4X1/4 RoofCanopy 2.2 6.9 0.0 1 0.62 Eq H1-1b 90.0 50 HSS4X4X1/4 Column Line 127.88ft-125.96ft Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 1.6 0.4 0.0 1 0.05 Eq H1-1b 90.0 50 HSS4X4X1/4 RoofCanopy 3.2 4.9 0.0 1 0.46 Eq H1-1b 90.0 50 HSS4X4X1/4 Column Line 131.50ft-92.33ft Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 0.0 0.3 0.0 1 0.02 Eq H1-1b 0.0 50 HSS4X4X1/4 RoofCanopy 1.2 3.4 0.0 1 0.31 Eq H1-1b 0.0 50 HSS4X4X1/4 Column Line 131.50ft-103.67ft Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 0.0 0.2 0.0 1 0.02 Eq H1-1b 0.0 50 HSS4X4X1/4 RoofCanopy 1.3 3.3 0.0 1 0.30 Eq H1-1b 0.0 50 HSS4X4X1/4 Column Line 131.50ft-110.92ft Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 20.1 -5.6 0.0 1 0.69 Eq H1-1a 0.0 50 HSS5X5X3/16 RoofCanopy 21.4 4.3 0.0 1 0.63 Eq H1-1a 0.0 50 HSS5X5X3/16 3rd Level 34.2 -2.1 0.0 1 0.75 Eq H1-1a 0.0 50 HSS6X6X5/16 EventCenter_Roof 34.3 -1.2 0.0 1 0.73 Eq H1-1a 0.0 50 HSS6X6X5/16 2nd Level 34.5 -1.0 0.0 1 0.73 Eq H1-1a 0.0 50 HSS6X6X5/16 Landing 34.6 -0.4 0.0 1 0.72 Eq H1-1a 0.0 50 HSS6X6X5/16 Column Line 131.50ft-122.33ft Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 0.0 0.4 0.0 1 0.03 Eq H1-1b 0.0 50 HSS4X4X1/4 RoofCanopy 1.6 4.9 0.0 1 0.44 Eq H1-1b 0.0 50 HSS4X4X1/4 Column Line 133.50ft-70.33ft Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 13.1 -2.7 0.0 1 0.39 Eq H1-1a 0.0 50 HSS5X5X3/16 RoofCanopy 13.2 0.0 0.0 1 0.23 Eq Axial 0.0 50 HSS5X5X3/16 3rd Level Other EventCenter_Roof Other 2nd Level Other Landing Other Column Line 133.50ft-88.29ft Level Pa Max May LC Interaction Eq. Angle Fy Size Roof 21.0 -4.4 -0.0 1 0.49 Eq H1-1a 0.0 50 HSS5X5X1/4 RoofCanopy 21.2 -4.1 -0.0 1 0.48 Eq H1-1a 0.0 50 HSS5X5X1/4 3rd Level 35.3 -1.9 -0.0 1 0.55 Eq H1-1a 0.0 50 HSS5X5X1/4 EventCenter_Roof 35.4 -1.2 0.0 1 0.51 Eq H1-1a 0.0 50 HSS5X5X1/4 2nd Level 43.7 -0.9 0.0 1 0.61 Eq H1-1a 0.0 50 HSS5X5X1/4 Landing 43.8 -0.4 0.0 1 0.59 Eq H1-1a 0.0 50 HSS5X5X1/4 Page 4/5 Gravity Column Design Summary RAM Steel 17.04.03.05 JSC DataBase: 23019 03/22/23 09:32:12 Building Code: IBC Steel Code: AISC360-16 ASD Column Line 154.96ft-73.33ft Level Pa Max May LC Interaction Eq. Angle Fy Size 2nd Level 7.8 0.0 0.0 1 0.05 Eq Axial 0.0 50 W8X31 Landing 8.0 0.0 0.0 1 0.05 Eq Axial 0.0 50 W8X31 Column Line 154.96ft-84.75ft Level Pa Max May LC Interaction Eq. Angle Fy Size 2nd Level 6.3 0.0 0.0 1 0.04 Eq Axial 0.0 50 W8X31 Landing 6.4 0.0 0.0 1 0.04 Eq Axial 0.0 50 W8X31 Column Line 161.54ft-9.83ft Level Pa Max May LC Interaction Eq. Angle Fy Size 2nd Level 2.6 0.0 0.0 1 0.02 Eq Axial 90.0 50 W8X31 Landing 2.8 0.0 0.0 1 0.02 Eq Axial 90.0 50 W8X31 Column Line 161.54ft-26.50ft Level Pa Max May LC Interaction Eq. Angle Fy Size 2nd Level 3.8 0.0 0.0 1 0.03 Eq Axial 90.0 50 W8X31 Landing 4.0 0.0 0.0 1 0.03 Eq Axial 90.0 50 W8X31 Column Line 161.54ft-42.83ft Level Pa Max May LC Interaction Eq. Angle Fy Size 2nd Level 1.7 0.0 0.0 1 0.01 Eq Axial 90.0 50 W8X31 Landing 1.8 0.0 0.0 1 0.01 Eq Axial 90.0 50 W8X31 Column Line 161.54ft-58.83ft Level Pa Max May LC Interaction Eq. Angle Fy Size 2nd Level 1.3 0.0 0.0 1 0.01 Eq Axial 90.0 50 W8X31 Landing 1.5 0.0 0.0 1 0.01 Eq Axial 90.0 50 W8X31 Page 5/5 Base Plate Design Summary RAM Steel 17.04.03.05 JSC DataBase: 23019 03/22/23 09:33:03 Building Code: IBC Steel Code: AISC360-16 ASD BASE PLATES: Design Code: AISC360-16 ASD Plate Fy (ksi)36.000 Minimum Dimension From Face of Column to Edge of Plate (in)3.000 Minimum Dimension From Side of Column to Edge of Plate (in)3.000 Increment of Plate Dimensions (in)0.250 Increment of Plate Thickness (in)0.125 Minimum Footing Dimension Parallel to Web (ft)2.00 Minimum Footing Dimension Perpendicular to Web (ft)2.00 Keep Base Plate Square:Y Column Line Column Size Fy N B tp (ksi)(in)(in)(in) 7.00ft-88.29ft HSS5X5X1/4 36 11.00 11.00 0.750 22.63ft-36.50ft HSS4X4X3/16 36 10.00 10.00 0.250 1.7-E.7 HSS4X4X3/16 36 10.00 10.00 0.250 28.04ft-36.50ft HSS4X4X3/16 36 10.00 10.00 0.250 1.9-E.7 HSS4X4X3/16 36 10.00 10.00 0.250 2-D HSS5X5X5/16 36 11.00 11.00 0.750 2-C HSS5X5X5/16 36 11.00 11.00 0.875 2.4-F HSS4X4X1/4 36 10.00 10.00 0.375 3-D HSS5X5X5/16 36 11.00 11.00 0.750 3-C HSS5X5X5/16 36 11.00 11.00 0.750 59.08ft-40.83ft HSS4X4X1/4 36 10.00 10.00 0.500 72.25ft-40.83ft HSS4X4X1/4 36 10.00 10.00 0.375 4-D HSS5X5X1/4 36 11.00 11.00 0.500 4-C HSS5X5X5/16 36 11.00 11.00 0.750 4-B HSS5X5X5/16 36 11.00 11.00 0.750 5-B HSS5X5X5/16 36 11.00 11.00 0.625 90.54ft-88.29ft HSS5X5X1/4 36 11.00 11.00 0.625 101.87ft-70.33ft HSS5X5X1/4 36 11.00 11.00 0.625 103.83ft-104.83ft W8X24 36 14.00 14.00 0.625 103.83ft-122.63ft HSS5X5X1/4 36 11.00 11.00 0.500 112.92ft-117.00ft HSS4X4X1/4 36 10.00 10.00 0.250 6.4-D HSS5X5X5/16 36 11.00 11.00 0.625 131.50ft-110.92ft HSS6X6X5/16 36 12.00 12.00 0.500 133.50ft-88.29ft HSS5X5X1/4 36 11.00 11.00 0.625 154.96ft-73.33ft W8X31 36 14.00 14.00 0.250 154.96ft-84.75ft W8X31 36 14.00 14.00 0.250 161.54ft-9.83ft W8X31 36 14.00 14.00 0.250 161.54ft-26.50ft W8X31 36 14.00 14.00 0.250 161.54ft-42.83ft W8X31 36 14.00 14.00 0.125 161.54ft-58.83ft W8X31 36 14.00 14.00 0.125 F.F. Level 1 100'-0"F.F. Level 1100'-0" F.F. Level 2 113'-5" F.F. Level 2113'-5" ROOF PLAN 140'-3" ROOF PLAN140'-3" B.O. FOOTING 97'-0"B.O. FOOTING97'-0" F.F. LEVEL 3 126'-10" F.F. LEVEL 3126'-10" DECK BEARING 140'-10" DECK BEARING140'-10" Masonry Beams ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry Beam Design - Simple span w/ uniform and point loads TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (2018 IBC) Member: MB-1 Beam Criteria: aR bR L w a PSpan:L 8 ft 0 in+:= Beam width: Beam depth:h 24in:= Flexural depth:d h 4in-:=d 20 in= Masonry strength: Block type: Masonry Elastic modulus:Em 1800 ksi= Modulus of Rupture (See Table 9.1.9.2): fr 267psi:= Steel grade: Steel Elastic modulus:Es 29000ksi= Reinforcing bar size & number of bars: Shear reinforcing bar size, num. of stirrup legs & spacing: s 8in:= Dead loads: Live loads: Snow loads: Uniform loadings:wD 20psf 5ft:=wL 0 klf:=wS 35psf 5ft:= wD_beam 60psf h:= Live load type: wD_wall 75psf 13.5ft h-( ):= Point loads: (Program accounts for downward loads only) PD0 0lbf:=PL0 0lbf:=PS0 0lbf:=Point load locations: a0 0ft:= PD1 0kip:=PL1 0kip:=PS1 0kip:=a1 0ft:= PD2 0kip:=PL2 0kip:=PS2 0kip:=a2 0ft:= Allow shear design at d/2: (see TMS 402-16, Sec. 8.3.5.4) Load combinations: (Basic ASD: IBC 1605.3.1, LRFD: IBC 1605.2) Reaction_Ra "IBC LRFD Equation 16-3 w/ Ra = 6.8 kip"=Design_V "IBC LRFD Equation 16-3 w/ Vu = 5.5 kip"= Reaction_Rb "IBC LRFD Equation 16-3 w/ Rb = 6.8 kip"=Design_M "IBC LRFD Equation 16-3 w/ Mu = 14.8 kip-ft"= Member shear capacity calculations: (TMS 402-16 & International Building Code) ShearCheck "Vu < ϕVn (LRFD), Shear design OK" "LRFD Shear ratio Vu / ϕVn = 0.45" "No shear stirrups required"   = Member flexural capacity calculations: (TMS 402-16 & International Building Code) FlexureCheck "Mu < ϕMn (LRFD), Flexure OK" "LRFD Flexure ratio Mu / ϕMn = 0.411"  = 1 of 1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry Beam Design - Simple span w/ uniform and point loads TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (2018 IBC) Member: MB-2 Beam Criteria: aR bR L w a PSpan:L 4 ft 8 in+:= Beam width: Beam depth:h 24in:= Flexural depth:d h 4in-:=d 20 in= Masonry strength: Block type: Masonry Elastic modulus:Em 1800 ksi= Modulus of Rupture (See Table 9.1.9.2): fr 267psi:= Steel grade: Steel Elastic modulus:Es 29000ksi= Reinforcing bar size & number of bars: Shear reinforcing bar size, num. of stirrup legs & spacing: s 8in:= Dead loads: Live loads: Snow loads: Uniform loadings:wD 20psf 10ft 20psf 5ft+:=wL 0 klf:=wS 35psf 10ft 0.5 52psf 11ft+:= wD_beam 60psf h:= Live load type: wD_wall 75psf 13.5ft h-( ):= Point loads: (Program accounts for downward loads only) PD0 0lbf:=PL0 0lbf:=PS0 0lbf:=Point load locations: a0 0ft:= PD1 0kip:=PL1 0kip:=PS1 0kip:=a1 0ft:= PD2 0kip:=PL2 0kip:=PS2 0kip:=a2 0ft:= Allow shear design at d/2: (see TMS 402-16, Sec. 8.3.5.4) Load combinations: (Basic ASD: IBC 1605.3.1, LRFD: IBC 1605.2) Reaction_Ra "IBC LRFD Equation 16-3 w/ Ra = 6.8 kip"=Design_V "IBC LRFD Equation 16-3 w/ Vu = 4.7 kip"= Reaction_Rb "IBC LRFD Equation 16-3 w/ Rb = 6.8 kip"=Design_M "IBC LRFD Equation 16-3 w/ Mu = 9.1 kip-ft"= Member shear capacity calculations: (TMS 402-16 & International Building Code) ShearCheck "Vu < ϕVn (LRFD), Shear design OK" "LRFD Shear ratio Vu / ϕVn = 0.37" "No shear stirrups required"   = Member flexural capacity calculations: (TMS 402-16 & International Building Code) FlexureCheck "Mu < ϕMn (LRFD), Flexure OK" "LRFD Flexure ratio Mu / ϕMn = 0.411"  = 1 of 1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry Beam Design - Simple span w/ uniform and point loads TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (2018 IBC) Member: MB-3 Beam Criteria: aR bR L w a PSpan:L 4 ft 0 in+:= Beam width: Beam depth:h 24in:= Flexural depth:d h 4in-:=d 20 in= Masonry strength: Block type: Masonry Elastic modulus:Em 1800 ksi= Modulus of Rupture (See Table 9.1.9.2): fr 267psi:= Steel grade: Steel Elastic modulus:Es 29000ksi= Reinforcing bar size & number of bars: Shear reinforcing bar size, num. of stirrup legs & spacing: s 8in:= Dead loads: Live loads: Snow loads: Uniform loadings:wD 20psf 10ft 20psf 5ft+:=wL 0 klf:=wS 35psf 10ft:= wD_beam 60psf h:= Live load type: wD_wall 75psf 13.5ft h-( ):= Point loads: (Program accounts for downward loads only) PD0 0lbf:=PL0 0lbf:=PS0 0lbf:=Point load locations: a0 0ft:= PD1 0kip:=PL1 0kip:=PS1 0kip:=a1 0ft:= PD2 0kip:=PL2 0kip:=PS2 0kip:=a2 0ft:= Allow shear design at d/2: (see TMS 402-16, Sec. 8.3.5.4) Load combinations: (Basic ASD: IBC 1605.3.1, LRFD: IBC 1605.2) Reaction_Ra "IBC LRFD Equation 16-3 w/ Ra = 4.9 kip"=Design_V "IBC LRFD Equation 16-3 w/ Vu = 3.2 kip"= Reaction_Rb "IBC LRFD Equation 16-3 w/ Rb = 4.9 kip"=Design_M "IBC LRFD Equation 16-3 w/ Mu = 5.7 kip-ft"= Member shear capacity calculations: (TMS 402-16 & International Building Code) ShearCheck "Vu < ϕVn (LRFD), Shear design OK" "LRFD Shear ratio Vu / ϕVn = 0.24" "No shear stirrups required"   = Member flexural capacity calculations: (TMS 402-16 & International Building Code) FlexureCheck "Mu < ϕMn (LRFD), Flexure OK" "LRFD Flexure ratio Mu / ϕMn = 0.411"  = 1 of 1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry Beam Design - Simple span w/ uniform and point loads TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (2018 IBC) Member: MB-4 Beam Criteria: aR bR L w a PSpan:L 8 ft 0 in+:= Beam width: Beam depth:h 24in:= Flexural depth:d h 4in-:=d 20 in= Masonry strength: Block type: Masonry Elastic modulus:Em 1800 ksi= Modulus of Rupture (See Table 9.1.9.2): fr 267psi:= Steel grade: Steel Elastic modulus:Es 29000ksi= Reinforcing bar size & number of bars: Shear reinforcing bar size, num. of stirrup legs & spacing: s 8in:= Dead loads: Live loads: Snow loads: Uniform loadings:wD 20psf 5ft 30psf 2ft+:=wL 50 15+( )psf 2ft:=wS 35psf 5ft:= wD_beam 60psf h:= Live load type: wD_wall 75psf 13.5ft h-( ):= Point loads: (Program accounts for downward loads only) PD0 0lbf:=PL0 0lbf:=PS0 0lbf:=Point load locations: a0 0ft:= PD1 0kip:=PL1 0kip:=PS1 0kip:=a1 0ft:= PD2 0kip:=PL2 0kip:=PS2 0kip:=a2 0ft:= Allow shear design at d/2: (see TMS 402-16, Sec. 8.3.5.4) Load combinations: (Basic ASD: IBC 1605.3.1, LRFD: IBC 1605.2) Reaction_Ra "IBC LRFD Equation 16-3 w/ Ra = 7.4 kip"=Design_V "IBC LRFD Equation 16-3 w/ Vu = 6 kip"= Reaction_Rb "IBC LRFD Equation 16-3 w/ Rb = 7.4 kip"=Design_M "IBC LRFD Equation 16-3 w/ Mu = 16.1 kip-ft"= Member shear capacity calculations: (TMS 402-16 & International Building Code) ShearCheck "Vu < ϕVn (LRFD), Shear design OK" "LRFD Shear ratio Vu / ϕVn = 0.49" "No shear stirrups required"   = Member flexural capacity calculations: (TMS 402-16 & International Building Code) FlexureCheck "Mu < ϕMn (LRFD), Flexure OK" "LRFD Flexure ratio Mu / ϕMn = 0.411"  = 1 of 1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry Beam Design - Simple span w/ uniform and point loads TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (2018 IBC) Member: MB-5 Beam Criteria: aR bR L w a PSpan:L 4 ft 8 in+:= Beam width: Beam depth:h 24in:= Flexural depth:d h 4in-:=d 20 in= Masonry strength: Block type: Masonry Elastic modulus:Em 1800 ksi= Modulus of Rupture (See Table 9.1.9.2): fr 267psi:= Steel grade: Steel Elastic modulus:Es 29000ksi= Reinforcing bar size & number of bars: Shear reinforcing bar size, num. of stirrup legs & spacing: s 8in:= Dead loads: Live loads: Snow loads: Uniform loadings:wD 30psf 11ft 55psf 1ft+:=wL 50 15+( )psf 11ft 100psf 1ft+:=wS 0 psf 0ft:= wD_beam 60psf h:= Live load type: wD_wall 75psf 13.5ft h-( ):= Point loads: (Program accounts for downward loads only) PD0 0lbf:=PL0 0lbf:=PS0 0lbf:=Point load locations: a0 0ft:= PD1 0kip:=PL1 0kip:=PS1 0kip:=a1 0ft:= PD2 0kip:=PL2 0kip:=PS2 0kip:=a2 0ft:= Allow shear design at d/2: (see TMS 402-16, Sec. 8.3.5.4) Load combinations: (Basic ASD: IBC 1605.3.1, LRFD: IBC 1605.2) Reaction_Ra "IBC LRFD Equation 16-2 w/ Ra = 7.9 kip"=Design_V "IBC LRFD Equation 16-3 w/ Vu = 3.8 kip"= Reaction_Rb "IBC LRFD Equation 16-2 w/ Rb = 7.9 kip"=Design_M "IBC LRFD Equation 16-2 w/ Mu = 10.5 kip-ft"= Member shear capacity calculations: (TMS 402-16 & International Building Code) ShearCheck "Vu < ϕVn (LRFD), Shear design OK" "LRFD Shear ratio Vu / ϕVn = 0.31" "No shear stirrups required"   = Member flexural capacity calculations: (TMS 402-16 & International Building Code) FlexureCheck "Mu < ϕMn (LRFD), Flexure OK" "LRFD Flexure ratio Mu / ϕMn = 0.411"  = 1 of 1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry Beam Design - Simple span w/ uniform and point loads TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (2018 IBC) Member: MB-6 Beam Criteria: aR bR L w a PSpan:L 4 ft 0 in+:= Beam width: Beam depth:h 24in:= Flexural depth:d h 4in-:=d 20 in= Masonry strength: Block type: Masonry Elastic modulus:Em 1800 ksi= Modulus of Rupture (See Table 9.1.9.2): fr 267psi:= Steel grade: Steel Elastic modulus:Es 29000ksi= Reinforcing bar size & number of bars: Shear reinforcing bar size, num. of stirrup legs & spacing: s 8in:= Dead loads: Live loads: Snow loads: Uniform loadings:wD 55psf 1ft:=wL 100psf 1ft:=wS 0 psf 0ft:= wD_beam 60psf h:= Live load type: wD_wall 75psf 13.5ft h-( ):= Point loads: (Program accounts for downward loads only) PD0 0lbf:=PL0 0lbf:=PS0 0lbf:=Point load locations: a0 0ft:= PD1 0kip:=PL1 0kip:=PS1 0kip:=a1 0ft:= PD2 0kip:=PL2 0kip:=PS2 0kip:=a2 0ft:= Allow shear design at d/2: (see TMS 402-16, Sec. 8.3.5.4) Load combinations: (Basic ASD: IBC 1605.3.1, LRFD: IBC 1605.2) Reaction_Ra "IBC LRFD Equation 16-1 w/ Ra = 3.4 kip"=Design_V "IBC LRFD Equation 16-1 w/ Vu = 2.2 kip"= Reaction_Rb "IBC LRFD Equation 16-1 w/ Rb = 3.4 kip"=Design_M "IBC LRFD Equation 16-1 w/ Mu = 4 kip-ft"= Member shear capacity calculations: (TMS 402-16 & International Building Code) ShearCheck "Vu < ϕVn (LRFD), Shear design OK" "LRFD Shear ratio Vu / ϕVn = 0.17" "No shear stirrups required"   = Member flexural capacity calculations: (TMS 402-16 & International Building Code) FlexureCheck "Mu < ϕMn (LRFD), Flexure OK" "LRFD Flexure ratio Mu / ϕMn = 0.411"  = 1 of 1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry Beam Design - Simple span w/ uniform and point loads TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (2018 IBC) Member: MB-7 Beam Criteria: aR bR L w a PSpan:L 4 ft 0 in+:= Beam width: Beam depth:h 24in:= Flexural depth:d h 4in-:=d 20 in= Masonry strength: Block type: Masonry Elastic modulus:Em 1800 ksi= Modulus of Rupture (See Table 9.1.9.2): fr 267psi:= Steel grade: Steel Elastic modulus:Es 29000ksi= Reinforcing bar size & number of bars: Shear reinforcing bar size, num. of stirrup legs & spacing: s 8in:= Dead loads: Live loads: Snow loads: Uniform loadings:wD 20psf 30ft:=wL 0 psf 0ft:=wS 35psf 30ft 0.5 50psf 10ft+:= wD_beam 60psf h:= Live load type: wD_wall 75psf 7 ft h-( ):= Point loads: (Program accounts for downward loads only) PD0 0lbf:=PL0 0lbf:=PS0 0lbf:=Point load locations: a0 0ft:= PD1 0kip:=PL1 0kip:=PS1 0kip:=a1 0ft:= PD2 0kip:=PL2 0kip:=PS2 0kip:=a2 0ft:= Allow shear design at d/2: (see TMS 402-16, Sec. 8.3.5.4) Load combinations: (Basic ASD: IBC 1605.3.1, LRFD: IBC 1605.2) Reaction_Ra "IBC LRFD Equation 16-3 w/ Ra = 7.9 kip"=Design_V "IBC LRFD Equation 16-3 w/ Vu = 5.1 kip"= Reaction_Rb "IBC LRFD Equation 16-3 w/ Rb = 7.9 kip"=Design_M "IBC LRFD Equation 16-3 w/ Mu = 9.2 kip-ft"= Member shear capacity calculations: (TMS 402-16 & International Building Code) ShearCheck "Vu < ϕVn (LRFD), Shear design OK" "LRFD Shear ratio Vu / ϕVn = 0.39" "No shear stirrups required"   = Member flexural capacity calculations: (TMS 402-16 & International Building Code) FlexureCheck "Mu < ϕMn (LRFD), Flexure OK" "LRFD Flexure ratio Mu / ϕMn = 0.411"  = 1 of 1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry Beam Design - Simple span w/ uniform and point loads TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (2018 IBC) Member: MB-8 Beam Criteria: aR bR L w a PSpan:L 7 ft 4 in+:= Beam width: Beam depth:h 32in:= Flexural depth:d h 4in-:=d 28 in= Masonry strength: Block type: Masonry Elastic modulus:Em 1800 ksi= Modulus of Rupture (See Table 9.1.9.2): fr 267psi:= Steel grade: Steel Elastic modulus:Es 29000ksi= Reinforcing bar size & number of bars: Shear reinforcing bar size, num. of stirrup legs & spacing: s 8in:= Dead loads: Live loads: Snow loads: Uniform loadings:wD 20psf 30ft 30psf 6ft+:=wL 50 15+( )psf 6ft:=wS 35psf 30 6+( )ft 0.5 68psf 14ft+:= wD_beam 60psf h:= Live load type: wD_wall 75psf 23ft h-( ):= Point loads: (Program accounts for downward loads only) PD0 0lbf:=PL0 0lbf:=PS0 0lbf:=Point load locations: a0 0ft:= PD1 0kip:=PL1 0kip:=PS1 0kip:=a1 0ft:= PD2 0kip:=PL2 0kip:=PS2 0kip:=a2 0ft:= Allow shear design at d/2: (see TMS 402-16, Sec. 8.3.5.4) Load combinations: (Basic ASD: IBC 1605.3.1, LRFD: IBC 1605.2) Reaction_Ra "IBC LRFD Equation 16-3 w/ Ra = 23.7 kip"=Design_V "IBC LRFD Equation 16-3 w/ Vu = 16.8 kip"= Reaction_Rb "IBC LRFD Equation 16-3 w/ Rb = 23.7 kip"=Design_M "IBC LRFD Equation 16-3 w/ Mu = 47.4 kip-ft"= Member shear capacity calculations: (TMS 402-16 & International Building Code) ShearCheck "Vu < ϕVn (LRFD), Shear design OK" "LRFD Shear ratio Vu / ϕVn = 0.98" "No shear stirrups required"   = Member flexural capacity calculations: (TMS 402-16 & International Building Code) FlexureCheck "Mu < ϕMn (LRFD), Flexure OK" "LRFD Flexure ratio Mu / ϕMn = 0.642"  = 1 of 1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry Beam Design - Simple span w/ uniform and point loads TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (2018 IBC) Member: MB-9 Beam Criteria: aR bR L w a PSpan:L 8 ft 8 in+:= Beam width: Beam depth:h 24in:= Flexural depth:d h 4in-:=d 20 in= Masonry strength: Block type: Masonry Elastic modulus:Em 1800 ksi= Modulus of Rupture (See Table 9.1.9.2): fr 267psi:= Steel grade: Steel Elastic modulus:Es 29000ksi= Reinforcing bar size & number of bars: Shear reinforcing bar size, num. of stirrup legs & spacing: s 8in:= Dead loads: Live loads: Snow loads: Uniform loadings:wD 20psf 6ft:=wL 0 psf 0ft:=wS 35psf 6ft 0.5 50psf 10ft+:= wD_beam 60psf h:= Live load type: wD_wall 75psf 7 ft h-( ):= Point loads: (Program accounts for downward loads only) PD0 0lbf:=PL0 0lbf:=PS0 0lbf:=Point load locations: a0 0ft:= PD1 0kip:=PL1 0kip:=PS1 0kip:=a1 0ft:= PD2 0kip:=PL2 0kip:=PS2 0kip:=a2 0ft:= Allow shear design at d/2: (see TMS 402-16, Sec. 8.3.5.4) Load combinations: (Basic ASD: IBC 1605.3.1, LRFD: IBC 1605.2) Reaction_Ra "IBC LRFD Equation 16-3 w/ Ra = 6.9 kip"=Design_V "IBC LRFD Equation 16-3 w/ Vu = 5.7 kip"= Reaction_Rb "IBC LRFD Equation 16-3 w/ Rb = 6.9 kip"=Design_M "IBC LRFD Equation 16-3 w/ Mu = 16.1 kip-ft"= Member shear capacity calculations: (TMS 402-16 & International Building Code) ShearCheck "Vu < ϕVn (LRFD), Shear design OK" "LRFD Shear ratio Vu / ϕVn = 0.47" "No shear stirrups required"   = Member flexural capacity calculations: (TMS 402-16 & International Building Code) FlexureCheck "Mu < ϕMn (LRFD), Flexure OK" "LRFD Flexure ratio Mu / ϕMn = 0.411"  = 1 of 1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry Beam Design - Simple span w/ uniform and point loads TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (2018 IBC) Member: MB-10 Beam Criteria: aR bR L w a PSpan:L 12ft 0in+:= Beam width: Beam depth:h 32in:= Flexural depth:d h 4in-:=d 28 in= Masonry strength: Block type: Masonry Elastic modulus:Em 1800 ksi= Modulus of Rupture (See Table 9.1.9.2): fr 267psi:= Steel grade: Steel Elastic modulus:Es 29000ksi= Reinforcing bar size & number of bars: Shear reinforcing bar size, num. of stirrup legs & spacing: s 8in:= Dead loads: Live loads: Snow loads: Uniform loadings:wD 20psf 6ft:=wL 0 psf 0ft:=wS 35psf 6ft 0.5 50psf 10ft+:= wD_beam 60psf h:= Live load type: wD_wall 75psf 20ft h-( ):= Point loads: (Program accounts for downward loads only) PD0 0lbf:=PL0 0lbf:=PS0 0lbf:=Point load locations: a0 0ft:= PD1 0kip:=PL1 0kip:=PS1 0kip:=a1 0ft:= PD2 0kip:=PL2 0kip:=PS2 0kip:=a2 0ft:= Allow shear design at d/2: (see TMS 402-16, Sec. 8.3.5.4) Load combinations: (Basic ASD: IBC 1605.3.1, LRFD: IBC 1605.2) Reaction_Ra "IBC LRFD Equation 16-3 w/ Ra = 16.7 kip"=Design_V "IBC LRFD Equation 16-3 w/ Vu = 13.7 kip"= Reaction_Rb "IBC LRFD Equation 16-3 w/ Rb = 16.7 kip"=Design_M "IBC LRFD Equation 16-3 w/ Mu = 52.8 kip-ft"= Member shear capacity calculations: (TMS 402-16 & International Building Code) ShearCheck "Vu < ϕVn (LRFD), Shear design OK" "LRFD Shear ratio Vu / ϕVn = 0.8" "No shear stirrups required"   = Member flexural capacity calculations: (TMS 402-16 & International Building Code) FlexureCheck "Mu < ϕMn (LRFD), Flexure OK" "LRFD Flexure ratio Mu / ϕMn = 0.715"  = 1 of 1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry Beam Design - Simple span w/ uniform and point loads TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (2018 IBC) Member: MB-11 Beam Criteria: aR bR L w a PSpan:L 10ft 0in+:= Beam width: Beam depth:h 32in:= Flexural depth:d h 4in-:=d 28 in= Masonry strength: Block type: Masonry Elastic modulus:Em 1800 ksi= Modulus of Rupture (See Table 9.1.9.2): fr 267psi:= Steel grade: Steel Elastic modulus:Es 29000ksi= Reinforcing bar size & number of bars: Shear reinforcing bar size, num. of stirrup legs & spacing: s 8in:= Dead loads: Live loads: Snow loads: Uniform loadings:wD 20psf 26ft:=wL 0 psf 0ft:=wS 35psf 26ft 0.5 50psf 10ft+:= wD_beam 60psf h:= Live load type: wD_wall 75psf 10ft h-( ):= Point loads: (Program accounts for downward loads only) PD0 0lbf:=PL0 0lbf:=PS0 0lbf:=Point load locations: a0 0ft:= PD1 0kip:=PL1 0kip:=PS1 0kip:=a1 0ft:= PD2 0kip:=PL2 0kip:=PS2 0kip:=a2 0ft:= Allow shear design at d/2: (see TMS 402-16, Sec. 8.3.5.4) Load combinations: (Basic ASD: IBC 1605.3.1, LRFD: IBC 1605.2) Reaction_Ra "IBC LRFD Equation 16-3 w/ Ra = 17.8 kip"=Design_V "IBC LRFD Equation 16-3 w/ Vu = 14 kip"= Reaction_Rb "IBC LRFD Equation 16-3 w/ Rb = 17.8 kip"=Design_M "IBC LRFD Equation 16-3 w/ Mu = 47.4 kip-ft"= Member shear capacity calculations: (TMS 402-16 & International Building Code) ShearCheck "Vu < ϕVn (LRFD), Shear design OK" "LRFD Shear ratio Vu / ϕVn = 0.82" "No shear stirrups required"   = Member flexural capacity calculations: (TMS 402-16 & International Building Code) FlexureCheck "Mu < ϕMn (LRFD), Flexure OK" "LRFD Flexure ratio Mu / ϕMn = 0.642"  = 1 of 1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry Beam Design - Simple span w/ uniform and point loads TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (2018 IBC) Member: MB-12 Beam Criteria: aR bR L w a PSpan:L 6 ft 0 in+:= Beam width: Beam depth:h 24in:= Flexural depth:d h 4in-:=d 20 in= Masonry strength: Block type: Masonry Elastic modulus:Em 1800 ksi= Modulus of Rupture (See Table 9.1.9.2): fr 267psi:= Steel grade: Steel Elastic modulus:Es 29000ksi= Reinforcing bar size & number of bars: Shear reinforcing bar size, num. of stirrup legs & spacing: s 8in:= Dead loads: Live loads: Snow loads: Uniform loadings:wD 20psf 13ft:=wL 0 psf 0ft:=wS 35psf 13ft 0.5 50psf 10ft+:= wD_beam 60psf h:= Live load type: wD_wall 75psf 12ft h-( ):= Point loads: (Program accounts for downward loads only) PD0 0lbf:=PL0 0lbf:=PS0 0lbf:=Point load locations: a0 0ft:= PD1 0kip:=PL1 0kip:=PS1 0kip:=a1 0ft:= PD2 0kip:=PL2 0kip:=PS2 0kip:=a2 0ft:= Allow shear design at d/2: (see TMS 402-16, Sec. 8.3.5.4) Load combinations: (Basic ASD: IBC 1605.3.1, LRFD: IBC 1605.2) Reaction_Ra "IBC LRFD Equation 16-3 w/ Ra = 8.3 kip"=Design_V "IBC LRFD Equation 16-3 w/ Vu = 6.2 kip"= Reaction_Rb "IBC LRFD Equation 16-3 w/ Rb = 8.3 kip"=Design_M "IBC LRFD Equation 16-3 w/ Mu = 13.8 kip-ft"= Member shear capacity calculations: (TMS 402-16 & International Building Code) ShearCheck "Vu < ϕVn (LRFD), Shear design OK" "LRFD Shear ratio Vu / ϕVn = 0.51" "No shear stirrups required"   = Member flexural capacity calculations: (TMS 402-16 & International Building Code) FlexureCheck "Mu < ϕMn (LRFD), Flexure OK" "LRFD Flexure ratio Mu / ϕMn = 0.411"  = 1 of 1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry Beam Design - Simple span w/ uniform and point loads TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (2018 IBC) Member: MB-13 Beam Criteria: aR bR L w a PSpan:L 16ft 0in+:= Beam width: Beam depth:h 32in:= Flexural depth:d h 4in-:=d 28 in= Masonry strength: Block type: Masonry Elastic modulus:Em 1800 ksi= Modulus of Rupture (See Table 9.1.9.2): fr 267psi:= Steel grade: Steel Elastic modulus:Es 29000ksi= Reinforcing bar size & number of bars: Shear reinforcing bar size, num. of stirrup legs & spacing: s 8in:= Dead loads: Live loads: Snow loads: Uniform loadings:wD 20psf 6ft:=wL 0 psf 0ft:=wS 35psf 6ft 0.5 50psf 10ft+:= wD_beam 60psf h:= Live load type: wD_wall 75psf 12ft h-( ):= Point loads: (Program accounts for downward loads only) PD0 0lbf:=PL0 0lbf:=PS0 0lbf:=Point load locations: a0 0ft:= PD1 0kip:=PL1 0kip:=PS1 0kip:=a1 0ft:= PD2 0kip:=PL2 0kip:=PS2 0kip:=a2 0ft:= Allow shear design at d/2: (see TMS 402-16, Sec. 8.3.5.4) Load combinations: (Basic ASD: IBC 1605.3.1, LRFD: IBC 1605.2) Reaction_Ra "IBC LRFD Equation 16-3 w/ Ra = 15.9 kip"=Design_V "IBC LRFD Equation 16-3 w/ Vu = 13.7 kip"= Reaction_Rb "IBC LRFD Equation 16-3 w/ Rb = 15.9 kip"=Design_M "IBC LRFD Equation 16-3 w/ Mu = 66.4 kip-ft"= Member shear capacity calculations: (TMS 402-16 & International Building Code) ShearCheck "Vu < ϕVn (LRFD), Shear design OK" "LRFD Shear ratio Vu / ϕVn = 0.8" "No shear stirrups required"   = Member flexural capacity calculations: (TMS 402-16 & International Building Code) FlexureCheck "Mu < ϕMn (LRFD), Flexure OK" "LRFD Flexure ratio Mu / ϕMn = 0.899"  = 1 of 1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry Beam Design - Simple span w/ uniform and point loads TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (2018 IBC) Member: MB-14 Beam Criteria: aR bR L w a PSpan:L 6 ft 8 in+:= Beam width: Beam depth:h 40in:= Flexural depth:d h 4in-:=d 36 in= Masonry strength: Block type: Masonry Elastic modulus:Em 1800 ksi= Modulus of Rupture (See Table 9.1.9.2): fr 267psi:= Steel grade: Steel Elastic modulus:Es 29000ksi= Reinforcing bar size & number of bars: Shear reinforcing bar size, num. of stirrup legs & spacing: s 8in:= Dead loads: Live loads: Snow loads: Uniform loadings:wD 20psf 25ft 30psf 6ft 2+:=wL 50 15+( )psf 6ft 2:=wS 35psf 25 6+( )ft 0.5 68psf 14ft+:= wD_beam 60psf h:= Live load type: wD_wall 75psf 36ft h-( ):= Point loads: (Program accounts for downward loads only) PD0 0lbf:=PL0 0lbf:=PS0 0lbf:=Point load locations: a0 0ft:= PD1 0kip:=PL1 0kip:=PS1 0kip:=a1 0ft:= PD2 0kip:=PL2 0kip:=PS2 0kip:=a2 0ft:= Allow shear design at d/2: (see TMS 402-16, Sec. 8.3.5.4) Load combinations: (Basic ASD: IBC 1605.3.1, LRFD: IBC 1605.2) Reaction_Ra "IBC LRFD Equation 16-3 w/ Ra = 26 kip"=Design_V "IBC LRFD Equation 16-3 w/ Vu = 15.6 kip"= Reaction_Rb "IBC LRFD Equation 16-3 w/ Rb = 26 kip"=Design_M "IBC LRFD Equation 16-3 w/ Mu = 47.7 kip-ft"= Member shear capacity calculations: (TMS 402-16 & International Building Code) ShearCheck "Vu < ϕVn (LRFD), Shear design OK" "LRFD Shear ratio Vu / ϕVn = 0.38" "Provide (2) #3 Stirrups @ 8 O.C."   = Member flexural capacity calculations: (TMS 402-16 & International Building Code) FlexureCheck "Mu < ϕMn (LRFD), Flexure OK" "LRFD Flexure ratio Mu / ϕMn = 0.611"  = 1 of 1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry Beam Design - Simple span w/ uniform and point loads TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (2018 IBC) Member: MB-15 Beam Criteria: aR bR L w a PSpan:L 7 ft 4 in+:= Beam width: Beam depth:h 40in:= Flexural depth:d h 4in-:=d 36 in= Masonry strength: Block type: Masonry Elastic modulus:Em 1800 ksi= Modulus of Rupture (See Table 9.1.9.2): fr 267psi:= Steel grade: Steel Elastic modulus:Es 29000ksi= Reinforcing bar size & number of bars: Shear reinforcing bar size, num. of stirrup legs & spacing: s 8in:= Uniform loadings: Dead loads: Live loads: Snow loads: wD 20psf 28ft 30psf 6ft 2+30psf 9ft+:=wL 50 15+( )psf 6ft 2100psf 9ft+:=wS 35psf 25 6+( )ft 0.5 68psf 14ft+:= wD_beam 60psf h:= Live load type: wD_wall 75psf 36ft h-( ):= Point loads: (Program accounts for downward loads only) PD0 0lbf:=PL0 0lbf:=PS0 0lbf:=Point load locations: a0 0ft:= PD1 0kip:=PL1 0kip:=PS1 0kip:=a1 0ft:= PD2 0kip:=PL2 0kip:=PS2 0kip:=a2 0ft:= Allow shear design at d/2: (see TMS 402-16, Sec. 8.3.5.4) Load combinations: (Basic ASD: IBC 1605.3.1, LRFD: IBC 1605.2) Reaction_Ra "IBC LRFD Equation 16-2 w/ Ra = 32.3 kip"=Design_V "IBC LRFD Equation 16-3 w/ Vu = 20 kip"= Reaction_Rb "IBC LRFD Equation 16-2 w/ Rb = 32.3 kip"=Design_M "IBC LRFD Equation 16-2 w/ Mu = 64.6 kip-ft"= Member shear capacity calculations: (TMS 402-16 & International Building Code) ShearCheck "Vu < ϕVn (LRFD), Shear design OK" "LRFD Shear ratio Vu / ϕVn = 0.5" "Provide (2) #3 Stirrups @ 8 O.C."   = Member flexural capacity calculations: (TMS 402-16 & International Building Code) FlexureCheck "Mu < ϕMn (LRFD), Flexure OK" "LRFD Flexure ratio Mu / ϕMn = 0.672"  = 1 of 1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry Beam Design - Simple span w/ uniform and point loads TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (2018 IBC) Member: MB-16 Beam Criteria: aR bR L w a PSpan:L 14ft 4in+:= Beam width: Beam depth:h 56in:= Flexural depth:d h 8in-:=d 48 in= Masonry strength: Block type: Masonry Elastic modulus:Em 1800 ksi= Modulus of Rupture (See Table 9.1.9.2): fr 267psi:= Steel grade: Steel Elastic modulus:Es 29000ksi= Reinforcing bar size & number of bars: Shear reinforcing bar size, num. of stirrup legs & spacing: s 8in:= Uniform loadings: Dead loads: Live loads: Snow loads: wD 20psf 28ft 30psf 6ft 2+30psf 9ft+:=wL 50 15+( )psf 6ft 2100psf 9ft+:=wS 35psf 25 6+( )ft 0.5 68psf 14ft+:= wD_beam 60psf h:= Live load type: wD_wall 75psf 36ft h-( ):= Point loads: (Program accounts for downward loads only) PD0 0lbf:=PL0 0lbf:=PS0 0lbf:=Point load locations: a0 0ft:= PD1 0kip:=PL1 0kip:=PS1 0kip:=a1 0ft:= PD2 0kip:=PL2 0kip:=PS2 0kip:=a2 0ft:= Allow shear design at d/2: (see TMS 402-16, Sec. 8.3.5.4) Load combinations: (Basic ASD: IBC 1605.3.1, LRFD: IBC 1605.2) Reaction_Ra "IBC LRFD Equation 16-2 w/ Ra = 60.4 kip"=Design_V "IBC LRFD Equation 16-3 w/ Vu = 44 kip"= Reaction_Rb "IBC LRFD Equation 16-2 w/ Rb = 60.4 kip"=Design_M "IBC LRFD Equation 16-2 w/ Mu = 226.5 kip-ft"= Member shear capacity calculations: (TMS 402-16 & International Building Code) ShearCheck "Vu < ϕVn (LRFD), Shear design OK" "LRFD Shear ratio Vu / ϕVn = 0.84" "Provide (2) #3 Stirrups @ 8 O.C."   = Member flexural capacity calculations: (TMS 402-16 & International Building Code) FlexureCheck "Mu < ϕMn (LRFD), Flexure OK" "LRFD Flexure ratio Mu / ϕMn = 0.655"  = 1 of 1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Masonry Beam Design - Simple span w/ uniform and point loads TMS 402-16 Building Code Requirements for Masonry Structures & International Building Code (2018 IBC) Member: MB-17 Beam Criteria: aR bR L w a PSpan:L 7 ft 4 in+:= Beam width: Beam depth:h 32in:= Flexural depth:d h 4in-:=d 28 in= Masonry strength: Block type: Masonry Elastic modulus:Em 1800 ksi= Modulus of Rupture (See Table 9.1.9.2): fr 267psi:= Steel grade: Steel Elastic modulus:Es 29000ksi= Reinforcing bar size & number of bars: Shear reinforcing bar size, num. of stirrup legs & spacing: s 8in:= Uniform loadings: Dead loads: Live loads: Snow loads: wD 20psf 10ft 30psf 5ft 2+55psf 2ft 2+:=wL 50 15+( )psf 5ft 2100psf 2ft 2+:=wS 35psf 10ft:= wD_beam 60psf h:= Live load type: wD_wall 75psf 13.5ft h-( ):= Point loads: (Program accounts for downward loads only) PD0 0lbf:=PL0 0lbf:=PS0 0lbf:=Point load locations: a0 0ft:= PD1 0kip:=PL1 0kip:=PS1 0kip:=a1 0ft:= PD2 0kip:=PL2 0kip:=PS2 0kip:=a2 0ft:= Allow shear design at d/2: (see TMS 402-16, Sec. 8.3.5.4) Load combinations: (Basic ASD: IBC 1605.3.1, LRFD: IBC 1605.2) Reaction_Ra "IBC LRFD Equation 16-2 w/ Ra = 15.5 kip"=Design_V "IBC LRFD Equation 16-3 w/ Vu = 8.8 kip"= Reaction_Rb "IBC LRFD Equation 16-2 w/ Rb = 15.5 kip"=Design_M "IBC LRFD Equation 16-2 w/ Mu = 31.1 kip-ft"= Member shear capacity calculations: (TMS 402-16 & International Building Code) ShearCheck "Vu < ϕVn (LRFD), Shear design OK" "LRFD Shear ratio Vu / ϕVn = 0.51" "No shear stirrups required"   = Member flexural capacity calculations: (TMS 402-16 & International Building Code) FlexureCheck "Mu < ϕMn (LRFD), Flexure OK" "LRFD Flexure ratio Mu / ϕMn = 0.51"  = 1 of 1 F.F. Level 1 100'-0"F.F. Level 1100'-0" F.F. Level 2 113'-5" F.F. Level 2113'-5" ROOF PLAN 140'-3" ROOF PLAN140'-3" B.O. FOOTING 97'-0"B.O. FOOTING97'-0" F.F. LEVEL 3 126'-10" F.F. LEVEL 3126'-10" DECK BEARING 140'-10" DECK BEARING140'-10" Wood Framing Members Joist and beams Top of Stairs Member Name Results Current Solution Comments Upper roof joist Passed 1 piece(s) 9 1/2" TJI® 210 @ 24" OC Lower roof joist Passed 1 piece(s) 9 1/2" TJI® 110 @ 24" OC Roof Member Name Results Current Solution Comments Roof drag joist Passed 1 piece(s) 3 1/8" x 13 1/2" 24F-V4 DF Glulam Eyebrow joist Passed 1 piece(s) 2 x 8 DF No.2 @ 24" OC RB-1 Passed 2 piece(s) 1 3/4" x 9 1/2" 2.0E Microllam® LVL RB-2 Passed 2 piece(s) 2 x 8 DF No.2 RB-3 Passed 2 piece(s) 2 x 8 DF No.2 RB-4 Passed 3 piece(s) 2 x 10 DF No.2 RB-5 Passed 2 piece(s) 1 3/4" x 9 1/2" 2.0E Microllam® LVL RB-6 Passed 2 piece(s) 1 3/4" x 9 1/2" 2.0E Microllam® LVL 3rd Level Member Name Results Current Solution Comments Event center joist Passed 1 piece(s) 9 1/2" TJI® 210 @ 24" OC Floor drag joist Passed 1 piece(s) 3 1/8" x 15" 24F-V4 DF Glulam Balcony joist Passed 1 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL @ 16" OC Eyebrow joist Passed 1 piece(s) 2 x 8 DF No.2 @ 24" OC 3B-1 Passed 2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL 3B-2 Passed 2 piece(s) 2 x 8 DF No.2 3B-3 Passed 3 piece(s) 2 x 8 DF No.2 3B-4 Passed 2 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL 3B-5 Passed 2 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL 3B-6 Passed 1 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL 3B-7 Passed 3 piece(s) 2 x 8 DF No.2 3B-8 Passed 1 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL 3B-9 Passed 2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL 2nd Level Member Name Results Current Solution Comments Floor drag joist Passed 1 piece(s) 3 1/8" x 15" 24F-V4 DF Glulam Kitchen joist Passed 1 piece(s) 9 1/2" TJI® 210 @ 24" OC Mezzanine joist long span Passed 1 piece(s) 14" TJI® 560 @ 16" OC Web Stiffeners Required Mezzanine joist short span Passed 1 piece(s) 14" TJI® 210 @ 16" OC Reception joist Passed 1 piece(s) 11 7/8" TJI® 210 @ 16" OC Entry joist Passed 1 piece(s) 9 1/2" TJI® 210 @ 16" OC Entry canopy joist Passed 1 piece(s) 11 7/8" TJI® 210 @ 24" OC 2B-1 Passed 1 piece(s) 5 1/8" x 15" 24F-V4 DF Glulam 2B-2 Floor drag Beam Passed 1 piece(s) 5 1/8" x 16 1/2" 24F-V4 DF Glulam 2B-3 Passed 2 piece(s) 2 x 8 DF No.2 2B-4 Passed 2 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL 2B-5 Passed 3 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL 2B-6 Passed 3 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL 2B-7 Passed 3 piece(s) 2 x 8 DF No.2 23019 JOB SUMMARY REPORT ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5 File Name: 23019 Page 1 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)1252 @ 10' 5 1/4"2952 (5.25")Passed (42%)1.15 1.0 D + 1.0 S (All Spans) Shear (lbs)634 @ 10' 2 1/2"1530 Passed (41%)1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs)1231 @ 4' 9 15/16"3450 Passed (36%)1.15 1.0 D + 1.0 S (Alt Spans) Live Load Defl. (in)0.107 @ 5' 2 3/4"0.504 Passed (L/999+)--1.0 D + 1.0 S (Alt Spans) Total Load Defl. (in)0.147 @ 5' 1 7/8"0.671 Passed (L/821)--1.0 D + 1.0 S (Alt Spans) System : Roof Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0.5/12 •Deflection criteria: LL (L/240) and TL (L/180). •Overhang deflection criteria: LL (2L/240) and TL (2L/180). •Allowed moment does not reflect the adjustment for the beam stability factor. • Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed. • Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Roof Live Snow Factored Accessories 1 - Beveled Plate - DF 5.50"4.25"1.75"182 199 418 599 1 1/4" Rim Board 2 - Beveled Plate - DF 5.50"5.50"3.50"404 404 848 1252 Blocking •TJI joists are only analyzed using Maximum Allowable bracing solutions. •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)5' 10" o/c Bottom Edge (Lu)6' 3" o/c Dead Roof Live Snow Vertical Load Location Spacing (0.90)(non-snow: 1.25)(1.15)Comments 1 - Uniform (PSF)0 to 14' 7 1/2"24"20.0 20.0 42.0 Unheated snow Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.Member Length : 14' 6 13/16" MEMBER REPORT PASSED Top of Stairs, Upper roof joist 1 piece(s) 9 1/2" TJI® 210 @ 24" OC ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 2 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)559 @ 3"1047 (1.75")Passed (53%)1.15 1.0 D + 1.0 S (All Spans) Shear (lbs)559 @ 3"1403 Passed (40%)1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs)1421 @ 5' 4"2875 Passed (49%)1.15 1.0 D + 1.0 S (All Spans) Live Load Defl. (in)0.127 @ 5' 4"0.508 Passed (L/957)--1.0 D + 1.0 S (All Spans) Total Load Defl. (in)0.200 @ 5' 4"0.678 Passed (L/609)--1.0 D + 1.0 S (All Spans) System : Roof Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12 •Deflection criteria: LL (L/240) and TL (L/180). •Allowed moment does not reflect the adjustment for the beam stability factor. • At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger • ¹ See Connector grid below for additional information and/or requirements. • ² Required Bearing Length / Required Bearing Length with Web Stiffeners Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Roof Live Snow Factored Accessories 1 - Hanger on 9 1/2" DF Ledger 3.00"Hanger¹1.75" / - ²213 213 373 587 See note ¹ 2 - Hanger on 9 1/2" DF Ledger 3.00"Hanger¹1.75" / - ²213 213 373 587 See note ¹ •TJI joists are only analyzed using Maximum Allowable bracing solutions. •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)4' 2" o/c Bottom Edge (Lu)10' 2" o/c Connector: Simpson Strong-Tie Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 - Top Mount Hanger ITS1.81/9.5 2.00"4-10dx1.5 2-10dx1.5 2-Strong-Grip 2 - Top Mount Hanger ITS1.81/9.5 2.00"4-10dx1.5 2-10dx1.5 2-Strong-Grip •Refer to manufacturer notes and instructions for proper installation and use of all connectors. Dead Roof Live Snow Vertical Load Location Spacing (0.90)(non-snow: 1.25)(1.15)Comments 1 - Uniform (PSF)0 to 10' 8"24"20.0 20.0 35.0 Roof snow Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED Top of Stairs, Lower roof joist 1 piece(s) 9 1/2" TJI® 110 @ 24" OC ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 3 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)2052 @ 3 1/2"3047 (1.50")Passed (67%)--1.0 D + 1.0 S (All Spans) Shear (lbs)1809 @ 1' 5"8571 Passed (21%)1.15 1.0 D + 1.0 S (All Spans) Pos Moment (Ft-lbs)11212 @ 11'21832 Passed (51%)1.15 1.0 D + 1.0 S (All Spans) Live Load Defl. (in)0.416 @ 11' 2 1/8"1.112 Passed (L/641)--1.0 D + 1.0 S (All Spans) Total Load Defl. (in)0.828 @ 11' 3 1/4"1.483 Passed (L/322)--1.0 D + 1.0 S (All Spans) System : Roof Member Type : Flush Beam Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12 •Deflection criteria: LL (L/240) and TL (L/180). •Allowed moment does not reflect the adjustment for the beam stability factor. •Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 22' 3". •The effects of positive or negative camber have not been accounted for when calculating deflection. •The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer. •Applicable calculations are based on NDS. • At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger • ¹ See Connector grid below for additional information and/or requirements. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Roof Live Snow Factored Accessories 1 - Hanger on Single 2X DF plate 3.50"Hanger¹1.50"830 457 1285 2115 See note ¹ 2 - Hanger on Single 2X DF plate 3.50"Hanger¹1.50"811 457 886 1698 See note ¹ •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)22' 3" o/c Bottom Edge (Lu)22' 3" o/c Connector: Simpson Strong-Tie Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 - Top Mount Hanger WP3.12X H=13.5 2.50"4-10dx1.5 N/A 2-10dx1.5 2 - Top Mount Hanger BA3.12X H=13.5 3.00"6-10dx1.5 4-10dx1.5 2-10dx1.5 •Refer to manufacturer notes and instructions for proper installation and use of all connectors. Dead Roof Live Snow Vertical Loads Location (Side)Tributary Width (0.90)(non-snow: 1.25)(1.15)Comments 0 - Self Weight (PLF)3 1/2" to 22' 6 1/2"N/A 10.3 ---- 1 - Uniform (PSF)0 to 22' 10"2'20.0 20.0 35.0 Snow load 2 - Tapered (PSF)0 to 11'2' to 0 --52.0 Snow drifting 3 - Point (lb)11'N/A 500 --HVAC All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED Roof, Roof drag joist 1 piece(s) 3 1/8" x 13 1/2" 24F-V4 DF Glulam ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 4 / 50 Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 5 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)351 @ 1 1/2"1406 (1.50")Passed (25%)--1.0 D + 1.0 S (All Spans) Shear (lbs)288 @ 8 3/4"1501 Passed (19%)1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs)592 @ 3' 6"1564 Passed (38%)1.15 1.0 D + 1.0 S (All Spans) Live Load Defl. (in)0.052 @ 3' 6"0.338 Passed (L/999+)--1.0 D + 1.0 S (All Spans) Total Load Defl. (in)0.064 @ 3' 6"0.450 Passed (L/999+)--1.0 D + 1.0 S (All Spans) System : Roof Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0.25/12 •Deflection criteria: LL (L/240) and TL (L/180). •Allowed moment does not reflect the adjustment for the beam stability factor. •A 15% increase in the moment capacity has been added to account for repetitive member usage. •Applicable calculations are based on NDS. • At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger • ¹ See Connector grid below for additional information and/or requirements. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Roof Live Snow Factored Accessories 1 - Hanger on 7 1/4" DF beam 1.50"Hanger¹1.50"70 140 294 364 See note ¹ 2 - Hanger on 7 1/4" DF beam 1.50"Hanger¹1.50"70 140 294 364 See note ¹ •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)6' 9" o/c Bottom Edge (Lu)6' 9" o/c Connector: Simpson Strong-Tie Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 - Face Mount Hanger LRU26Z 1.94"N/A 4-10dx1.5 5-10d 2 - Face Mount Hanger LRU26Z 1.94"N/A 4-10dx1.5 5-10d •Refer to manufacturer notes and instructions for proper installation and use of all connectors. Dead Roof Live Snow Vertical Load Location (Side)Spacing (0.90)(non-snow: 1.25)(1.15)Comments 1 - Uniform (PSF)0 to 7'24"10.0 20.0 42.0 Unheated snow Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED Roof, Eyebrow joist 1 piece(s) 2 x 8 DF No.2 @ 24" OC ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 6 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)4072 @ 1 1/2"7875 (3.00")Passed (52%)--1.0 D + 1.0 S (All Spans) Shear (lbs)3264 @ 1' 1/2"7265 Passed (45%)1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs)10187 @ 5' 3"13541 Passed (75%)1.15 1.0 D + 1.0 S (All Spans) Live Load Defl. (in)0.269 @ 5' 3"0.342 Passed (L/457)--1.0 D + 1.0 S (All Spans) Total Load Defl. (in)0.420 @ 5' 3"0.512 Passed (L/293)--1.0 D + 1.0 S (All Spans) System : Wall Member Type : Header Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/360) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Roof Live Snow Factored Accessories 1 - Trimmer - DF 3.00"3.00"1.55"1468 630 2604 4072 None 2 - Trimmer - DF 3.00"3.00"1.55"1468 630 2604 4072 None •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)10' 6" o/c Bottom Edge (Lu)10' 6" o/c Dead Roof Live Snow Vertical Loads Location Tributary Width (0.90)(non-snow: 1.25)(1.15)Comments 0 - Self Weight (PLF)0 to 10' 6"N/A 9.7 ---- 1 - Uniform (PSF)0 to 10' 6"6'20.0 20.0 35.0 Snow load 2 - Uniform (PLF)0 to 10' 6"N/A 150.0 --Wall load 3 - Uniform (PLF)0 to 10' 6"N/A --286.0 Snow drifting Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED Roof, RB-1 2 piece(s) 1 3/4" x 9 1/2" 2.0E Microllam® LVL ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 7 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)2206 @ 1 1/2"5625 (3.00")Passed (39%)--1.0 D + 1.0 S (All Spans) Shear (lbs)1477 @ 10 1/4"3002 Passed (49%)1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs)2581 @ 2' 7"2720 Passed (95%)1.15 1.0 D + 1.0 S (All Spans) Live Load Defl. (in)0.047 @ 2' 7"0.164 Passed (L/999+)--1.0 D + 1.0 S (All Spans) Total Load Defl. (in)0.074 @ 2' 7"0.246 Passed (L/801)--1.0 D + 1.0 S (All Spans) System : Wall Member Type : Header Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/360) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. •Applicable calculations are based on NDS. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Roof Live Snow Factored Accessories 1 - Trimmer - DF 3.00"3.00"1.50"789 388 1417 2206 None 2 - Trimmer - DF 3.00"3.00"1.50"789 388 1417 2206 None •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)5' 2" o/c Bottom Edge (Lu)5' 2" o/c Dead Roof Live Snow Vertical Loads Location Tributary Width (0.90)(non-snow: 1.25)(1.15)Comments 0 - Self Weight (PLF)0 to 5' 2"N/A 5.5 ---- 1 - Uniform (PSF)0 to 5' 2"7' 6"20.0 20.0 35.0 Snow load 2 - Uniform (PLF)0 to 5' 2"N/A 150.0 --Wall load 3 - Uniform (PLF)0 to 5' 2"N/A --286.0 Snow drifting Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED Roof, RB-2 2 piece(s) 2 x 8 DF No.2 ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 8 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)917 @ 1 1/2"5625 (3.00")Passed (16%)--1.0 D + 1.0 S (All Spans) Shear (lbs)632 @ 10 1/4"3002 Passed (21%)1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs)1149 @ 2' 9"2720 Passed (42%)1.15 1.0 D + 1.0 S (All Spans) Live Load Defl. (in)0.015 @ 2' 9"0.175 Passed (L/999+)--1.0 D + 1.0 S (All Spans) Total Load Defl. (in)0.037 @ 2' 9"0.262 Passed (L/999+)--1.0 D + 1.0 S (All Spans) System : Wall Member Type : Header Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/360) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. •Applicable calculations are based on NDS. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Roof Live Snow Factored Accessories 1 - Trimmer - DF 3.00"3.00"1.50"538 110 380 917 None 2 - Trimmer - DF 3.00"3.00"1.50"538 110 380 917 None •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)5' 6" o/c Bottom Edge (Lu)5' 6" o/c Dead Roof Live Snow Vertical Loads Location Tributary Width (0.90)(non-snow: 1.25)(1.15)Comments 0 - Self Weight (PLF)0 to 5' 6"N/A 5.5 ---- 1 - Uniform (PSF)0 to 5' 6"2'20.0 20.0 35.0 Snow load 2 - Uniform (PLF)0 to 5' 6"N/A 150.0 --Wall load 3 - Uniform (PLF)0 to 5' 6"N/A --68.0 Snow drifting Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED Roof, RB-3 2 piece(s) 2 x 8 DF No.2 ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 9 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)1881 @ 1 1/2"8438 (3.00")Passed (22%)--1.0 D + 1.0 S (All Spans) Shear (lbs)1429 @ 1' 1/4"5744 Passed (25%)1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs)3765 @ 4' 3"6088 Passed (62%)1.15 1.0 D + 1.0 S (All Spans) Live Load Defl. (in)0.049 @ 4' 3"0.275 Passed (L/999+)--1.0 D + 1.0 S (All Spans) Total Load Defl. (in)0.097 @ 4' 3"0.412 Passed (L/999+)--1.0 D + 1.0 S (All Spans) System : Wall Member Type : Header Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/360) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. •Applicable calculations are based on NDS. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Roof Live Snow Factored Accessories 1 - Trimmer - DF 3.00"3.00"1.50"937 340 944 1881 None 2 - Trimmer - DF 3.00"3.00"1.50"937 340 944 1881 None •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)8' 6" o/c Bottom Edge (Lu)8' 6" o/c Dead Roof Live Snow Vertical Loads Location Tributary Width (0.90)(non-snow: 1.25)(1.15)Comments 0 - Self Weight (PLF)0 to 8' 6"N/A 10.6 ---- 1 - Uniform (PSF)0 to 8' 6"2'20.0 20.0 35.0 Snow load 2 - Uniform (PLF)0 to 8' 6"N/A 150.0 --Wall load 3 - Uniform (PLF)0 to 8' 6"N/A --68.0 Snow drifting 4 - Uniform (PLF)0 to 8' 6"N/A 20.0 40.0 84.0 Canopy Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED Roof, RB-4 3 piece(s) 2 x 10 DF No.2 ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 10 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)4198 @ 1 1/2"7875 (3.00")Passed (53%)--1.0 D + 1.0 S (All Spans) Shear (lbs)3169 @ 1' 1/2"7265 Passed (44%)1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs)8403 @ 4' 3"13541 Passed (62%)1.15 1.0 D + 1.0 S (All Spans) Live Load Defl. (in)0.154 @ 4' 3"0.275 Passed (L/642)--1.0 D + 1.0 S (All Spans) Total Load Defl. (in)0.235 @ 4' 3"0.412 Passed (L/421)--1.0 D + 1.0 S (All Spans) System : Wall Member Type : Header Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/360) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Roof Live Snow Factored Accessories 1 - Trimmer - DF 3.00"3.00"1.60"1444 850 2754 4198 None 2 - Trimmer - DF 3.00"3.00"1.60"1444 850 2754 4198 None •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)8' 6" o/c Bottom Edge (Lu)8' 6" o/c Dead Roof Live Snow Vertical Loads Location Tributary Width (0.90)(non-snow: 1.25)(1.15)Comments 0 - Self Weight (PLF)0 to 8' 6"N/A 9.7 ---- 1 - Uniform (PSF)0 to 8' 6"8'20.0 20.0 35.0 Snow load 2 - Uniform (PLF)0 to 8' 6"N/A 150.0 --Wall load 3 - Uniform (PLF)0 to 8' 6"N/A --284.0 Snow drifting 4 - Uniform (PLF)0 to 8' 6"N/A 20.0 40.0 84.0 Canopy Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED Roof, RB-5 2 piece(s) 1 3/4" x 9 1/2" 2.0E Microllam® LVL ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 11 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)1773 @ 1 1/2"7875 (3.00")Passed (23%)--1.0 D + 1.0 S (All Spans) Shear (lbs)1421 @ 1' 1/2"7265 Passed (20%)1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs)4435 @ 5' 3"13541 Passed (33%)1.15 1.0 D + 1.0 S (All Spans) Live Load Defl. (in)0.075 @ 5' 3"0.342 Passed (L/999+)--1.0 D + 1.0 S (All Spans) Total Load Defl. (in)0.183 @ 5' 3"0.512 Passed (L/672)--1.0 D + 1.0 S (All Spans) System : Wall Member Type : Header Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/360) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Roof Live Snow Factored Accessories 1 - Trimmer - DF 3.00"3.00"1.50"1048 210 725 1773 None 2 - Trimmer - DF 3.00"3.00"1.50"1048 210 725 1773 None •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)10' 6" o/c Bottom Edge (Lu)10' 6" o/c Dead Roof Live Snow Vertical Loads Location Tributary Width (0.90)(non-snow: 1.25)(1.15)Comments 0 - Self Weight (PLF)0 to 10' 6"N/A 9.7 ---- 1 - Uniform (PSF)0 to 10' 6"2'20.0 20.0 35.0 Snow load 2 - Uniform (PLF)0 to 10' 6"N/A 150.0 --Wall load 3 - Uniform (PLF)0 to 10' 6"N/A --68.0 Snow drifting Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED Roof, RB-6 2 piece(s) 1 3/4" x 9 1/2" 2.0E Microllam® LVL ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 12 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)1010 @ 3' 9 3/4"2469 (3.50")Passed (41%)1.15 1.0 D + 1.0 S (Adj Spans) Shear (lbs)467 @ 3' 11 1/2"1530 Passed (31%)1.15 1.0 D + 1.0 S (Adj Spans) Moment (Ft-lbs)-901 @ 3' 9 3/4"3450 Passed (26%)1.15 1.0 D + 1.0 S (All Spans) Live Load Defl. (in)0.089 @ 0 0.382 Passed (2L/999+)--1.0 D + 1.0 S (Alt Spans) Total Load Defl. (in)0.116 @ 0 0.509 Passed (2L/788)--1.0 D + 1.0 S (Alt Spans) System : Roof Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0.5/12 •Deflection criteria: LL (L/240) and TL (L/180). •Overhang deflection criteria: LL (2L/240) and TL (2L/180). •Allowed moment does not reflect the adjustment for the beam stability factor. • Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Roof Live Snow Factored Accessories 1 - Beveled Plate - DF 3.50"3.50"3.50"314 331 696 1010 Blocking 2 - Beveled Plate - DF 3.50"3.50"3.50"314 331 696 1010 Blocking •TJI joists are only analyzed using Maximum Allowable bracing solutions. •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)8' 8" o/c Bottom Edge (Lu)6' 11" o/c Dead Roof Live Snow Vertical Load Location Spacing (0.90)(non-snow: 1.25)(1.15)Comments 1 - Uniform (PSF)0 to 15' 8"24"20.0 20.0 42.0 Unheated snow Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.Member Length : 15' 8 9/16" MEMBER REPORT PASSED 3rd Level, Event center joist 1 piece(s) 9 1/2" TJI® 210 @ 24" OC ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 13 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)2241 @ 3 1/2"3047 (1.50")Passed (74%)--1.0 D + 1.0 L (All Spans) Shear (lbs)1989 @ 1' 6 1/2"8281 Passed (24%)1.00 1.0 D + 1.0 L (All Spans) Pos Moment (Ft-lbs)12463 @ 11' 5"23438 Passed (53%)1.00 1.0 D + 1.0 L (All Spans) Live Load Defl. (in)0.453 @ 11' 5"0.556 Passed (L/589)--1.0 D + 1.0 L (All Spans) Total Load Defl. (in)0.702 @ 11' 5"1.112 Passed (L/380)--1.0 D + 1.0 L (All Spans) System : Floor Member Type : Flush Beam Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/480) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. •Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 22' 3". •The effects of positive or negative camber have not been accounted for when calculating deflection. •The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer. •Applicable calculations are based on NDS. •A concentrated floor live load has been applied to this member per IBC section 1607.4. • At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger • ¹ See Connector grid below for additional information and/or requirements. • ³ Includes the effects of the Concentrated Live Load • ⁴ Without the Concentrated Live Load Bearing Length ³Loads to Supports (lbs) ⁴ Supports Total Available Required Dead Floor Live Factored Accessories 1 - Hanger on Single 2X DF plate 3.50"Hanger¹1.50"812 1484 2296 See note ¹ 2 - Hanger on Single 2X DF plate 3.50"Hanger¹1.50"812 1484 2296 See note ¹ •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)22' 3" o/c Bottom Edge (Lu)22' 3" o/c Connector: Simpson Strong-Tie (Includes the effects of the Concentrated Live Load) Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 - Top Mount Hanger WP3.12X H=15 2.50"4-10dx1.5 N/A 2-10dx1.5 2 - Top Mount Hanger WP3.12X H=15 2.50"4-10dx1.5 N/A 2-10dx1.5 •Refer to manufacturer notes and instructions for proper installation and use of all connectors. • ¹ Combine floor live load in the column above with the concentrated live load check • ² Uniformly distributed over an area of 2½ feet by 2½ feet Dead Floor Live Vertical Loads Location (Side)Tributary Width Combine¹(0.90)(1.00)Comments 0 - Self Weight (PLF)3 1/2" to 22' 6 1/2"N/A 11.4 -- 1 - Uniform (PSF)0 to 22' 10"2'No 30.0 65.0 Floor load 2 - Concentrated Live Load (lbs)²Varies 2'-2000 All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 3rd Level, Floor drag joist 1 piece(s) 3 1/8" x 15" 24F-V4 DF Glulam ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 14 / 50 Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 15 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)1161 @ 6' 3 1/4"4091 (5.50")Passed (28%)--1.0 D + 1.0 L (All Spans) Shear (lbs)487 @ 5' 5 1/4"2411 Passed (20%)1.00 1.0 D + 1.0 L (All Spans) Moment (Ft-lbs)-1108 @ 6' 3 1/4"3700 Passed (30%)1.00 1.0 D + 1.0 L (All Spans) Live Load Defl. (in)0.132 @ 10' 3"0.200 Passed (2L/724)--1.0 D + 1.0 L (Alt Spans) Total Load Defl. (in)0.166 @ 10' 3"0.398 Passed (2L/576)--1.0 D + 1.0 L (Alt Spans) TJ-Pro™ Rating 67 40 Passed ---- System : Floor Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/480) and TL (L/240). •Overhang deflection criteria: LL (0.2") and TL (2L/240). •Right cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered. •Allowed moment does not reflect the adjustment for the beam stability factor. •A 4% increase in the moment capacity has been added to account for repetitive member usage. •A structural analysis of the deck has not been performed. •Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down. •Additional considerations for the TJ-Pro™ Rating include: None. • Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. • At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger • ¹ See Connector grid below for additional information and/or requirements. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Floor Live Factored Accessories 1 - Hanger on Single 2X SPF plate 3.50"Hanger¹1.50"78 328/-103 406/-25 See note ¹ 2 - Stud wall - SPF 5.50"5.50"1.56"332 829 1161 Blocking •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)10' o/c Bottom Edge (Lu)10' o/c Connector: Simpson Strong-Tie Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 - Top Mount Hanger BA1.81/7.25 3.00"6-10dx1.5 4-10dx1.5 2-10dx1.5 •Refer to manufacturer notes and instructions for proper installation and use of all connectors. Dead Floor Live Vertical Load Location (Side)Spacing (0.90)(1.00)Comments 1 - Uniform (PSF)0 to 10' 3"16"30.0 75.0 Balcony load All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 3rd Level, Balcony joist 1 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL @ 16" OC ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 16 / 50 Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 17 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)243 @ 1 1/2"1406 (1.50")Passed (17%)--1.0 D + 1.0 S (All Spans) Shear (lbs)180 @ 8 3/4"1501 Passed (12%)1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs)283 @ 2' 5 1/2"1564 Passed (18%)1.15 1.0 D + 1.0 S (All Spans) Live Load Defl. (in)0.012 @ 2' 5 1/2"0.233 Passed (L/999+)--1.0 D + 1.0 S (All Spans) Total Load Defl. (in)0.015 @ 2' 5 1/2"0.311 Passed (L/999+)--1.0 D + 1.0 S (All Spans) System : Roof Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0.25/12 •Deflection criteria: LL (L/240) and TL (L/180). •Allowed moment does not reflect the adjustment for the beam stability factor. •A 15% increase in the moment capacity has been added to account for repetitive member usage. •Applicable calculations are based on NDS. • At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger • ¹ See Connector grid below for additional information and/or requirements. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Roof Live Snow Factored Accessories 1 - Hanger on 7 1/4" DF beam 1.50"Hanger¹1.50"49 98 207 256 See note ¹ 2 - Hanger on 7 1/4" DF beam 1.50"Hanger¹1.50"49 98 207 256 See note ¹ •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)4' 8" o/c Bottom Edge (Lu)4' 8" o/c Connector: Simpson Strong-Tie Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 - Face Mount Hanger LRU26Z 1.94"N/A 4-10dx1.5 5-10d 2 - Face Mount Hanger LRU26Z 1.94"N/A 4-10dx1.5 5-10d •Refer to manufacturer notes and instructions for proper installation and use of all connectors. Dead Roof Live Snow Vertical Load Location (Side)Spacing (0.90)(non-snow: 1.25)(1.15)Comments 1 - Uniform (PSF)0 to 4' 11"24"10.0 20.0 42.0 Unheated snow Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 3rd Level, Eyebrow joist 1 piece(s) 2 x 8 DF No.2 @ 24" OC ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 18 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)4822 @ 1 1/2"7875 (3.00")Passed (61%)--1.0 D + 0.75 L + 0.75 S (All Spans) Shear (lbs)3132 @ 1' 2 7/8"7897 Passed (40%)1.00 1.0 D + 1.0 L (All Spans) Moment (Ft-lbs)9542 @ 4' 9"17848 Passed (53%)1.00 1.0 D + 1.0 L (All Spans) Live Load Defl. (in)0.102 @ 4' 9"0.308 Passed (L/999+)--1.0 D + 0.75 L + 0.75 S (All Spans) Total Load Defl. (in)0.201 @ 4' 9"0.463 Passed (L/551)--1.0 D + 0.75 L + 0.75 S (All Spans) System : Wall Member Type : Header Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/360) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Floor Live Roof Live Snow Factored Accessories 1 - Trimmer - DF 3.00"3.00"1.84"2385 1853 760 1397 4822 None 2 - Trimmer - DF 3.00"3.00"1.84"2385 1853 760 1397 4822 None •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)9' 6" o/c Bottom Edge (Lu)9' 6" o/c Dead Floor Live Roof Live Snow Vertical Loads Location Tributary Width (0.90)(1.00)(non-snow: 1.25)(1.15)Comments 0 - Self Weight (PLF)0 to 9' 6"N/A 12.1 ------ 1 - Uniform (PSF)0 to 9' 6"6'30.0 65.0 --Floor load 2 - Uniform (PSF)0 to 9' 6"2'20.0 -20.0 42.0 Eyebrow load 3 - Uniform (PLF)0 to 9' 6"N/A 150.0 ---Wall load 4 - Uniform (PSF)0 to 9' 6"6'20.0 -20.0 35.0 Roof load Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 3rd Level, 3B-1 2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 19 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)1788 @ 1 1/2"5625 (3.00")Passed (32%)--1.0 D + 1.0 S (All Spans) Shear (lbs)1197 @ 10 1/4"3002 Passed (40%)1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs)2091 @ 2' 7"2720 Passed (77%)1.15 1.0 D + 1.0 S (All Spans) Live Load Defl. (in)0.030 @ 2' 7"0.164 Passed (L/999+)--1.0 D + 1.0 S (All Spans) Total Load Defl. (in)0.060 @ 2' 7"0.246 Passed (L/988)--1.0 D + 1.0 S (All Spans) System : Wall Member Type : Header Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/360) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. •Applicable calculations are based on NDS. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Roof Live Snow Factored Accessories 1 - Trimmer - DF 3.00"3.00"1.50"893 491 895 1788 None 2 - Trimmer - DF 3.00"3.00"1.50"893 491 895 1788 None •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)5' 2" o/c Bottom Edge (Lu)5' 2" o/c Dead Roof Live Snow Vertical Loads Location Tributary Width (0.90)(non-snow: 1.25)(1.15)Comments 0 - Self Weight (PLF)0 to 5' 2"N/A 5.5 ---- 1 - Uniform (PSF)0 to 5' 2"7' 6"20.0 20.0 35.0 Snow load 2 - Uniform (PLF)0 to 5' 2"N/A 150.0 --Wall load 3 - Uniform (PSF)0 to 5' 2"2'20.0 20.0 42.0 Eyebrow load Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 3rd Level, 3B-2 2 piece(s) 2 x 8 DF No.2 ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 20 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)1480 @ 1 1/2"8438 (3.00")Passed (18%)--1.0 D + 1.0 L (All Spans) Shear (lbs)1183 @ 10 1/4"3915 Passed (30%)1.00 1.0 D + 1.0 L (All Spans) Moment (Ft-lbs)2963 @ 4' 3"3548 Passed (84%)1.00 1.0 D + 1.0 L (All Spans) Live Load Defl. (in)0.059 @ 4' 3"0.275 Passed (L/999+)--1.0 D + 1.0 L (All Spans) Total Load Defl. (in)0.159 @ 4' 3"0.313 Passed (L/624)--1.0 D + 1.0 L (All Spans) System : Wall Member Type : Header Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/360) and TL (5/16"). •Allowed moment does not reflect the adjustment for the beam stability factor. •Applicable calculations are based on NDS. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Floor Live Factored Accessories 1 - Trimmer - DF 3.00"3.00"1.50"928 553 1480 None 2 - Trimmer - DF 3.00"3.00"1.50"928 553 1480 None •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)8' 6" o/c Bottom Edge (Lu)8' 6" o/c Dead Floor Live Vertical Loads Location Tributary Width (0.90)(1.00)Comments 0 - Self Weight (PLF)0 to 8' 6"N/A 8.3 -- 1 - Uniform (PSF)0 to 8' 6"2'30.0 65.0 Office load 2 - Uniform (PLF)0 to 8' 6"N/A 150.0 -Wall load Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 3rd Level, 3B-3 3 piece(s) 2 x 8 DF No.2 ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 21 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)1835 @ 1 1/2"7875 (3.00")Passed (23%)--1.0 D + 1.0 L (All Spans) Shear (lbs)1478 @ 1' 1/4"6151 Passed (24%)1.00 1.0 D + 1.0 L (All Spans) Moment (Ft-lbs)4589 @ 5' 3"11204 Passed (41%)1.00 1.0 D + 1.0 L (All Spans) Live Load Defl. (in)0.076 @ 5' 3"0.342 Passed (L/999+)--1.0 D + 1.0 L (All Spans) Total Load Defl. (in)0.204 @ 5' 3"0.512 Passed (L/602)--1.0 D + 1.0 L (All Spans) System : Wall Member Type : Header Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/360) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Floor Live Factored Accessories 1 - Trimmer - DF 3.00"3.00"1.50"1152 683 1835 None 2 - Trimmer - DF 3.00"3.00"1.50"1152 683 1835 None •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)10' 6" o/c Bottom Edge (Lu)10' 6" o/c Dead Floor Live Vertical Loads Location Tributary Width (0.90)(1.00)Comments 0 - Self Weight (PLF)0 to 10' 6"N/A 9.4 -- 1 - Uniform (PSF)0 to 10' 6"2'30.0 65.0 Office load 2 - Uniform (PLF)0 to 10' 6"N/A 150.0 -Wall load Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 3rd Level, 3B-4 2 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 22 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)3908 @ 1 1/2"7875 (3.00")Passed (50%)--1.0 D + 1.0 L (All Spans) Shear (lbs)2969 @ 1' 1/4"6151 Passed (48%)1.00 1.0 D + 1.0 L (All Spans) Moment (Ft-lbs)7822 @ 4' 3"11204 Passed (70%)1.00 1.0 D + 1.0 L (All Spans) Live Load Defl. (in)0.133 @ 4' 3"0.275 Passed (L/744)--1.0 D + 1.0 L (All Spans) Total Load Defl. (in)0.235 @ 4' 3"0.412 Passed (L/421)--1.0 D + 1.0 L (All Spans) System : Wall Member Type : Header Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/360) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Floor Live Factored Accessories 1 - Trimmer - DF 3.00"3.00"1.50"1698 2210 3908 None 2 - Trimmer - DF 3.00"3.00"1.50"1698 2210 3908 None •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)8' 6" o/c Bottom Edge (Lu)8' 6" o/c Dead Floor Live Vertical Loads Location Tributary Width (0.90)(1.00)Comments 0 - Self Weight (PLF)0 to 8' 6"N/A 9.4 -- 1 - Uniform (PSF)0 to 8' 6"8'30.0 65.0 Office load 2 - Uniform (PLF)0 to 8' 6"N/A 150.0 -Wall load Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 3rd Level, 3B-5 2 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 23 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)846 @ 3 1/2"1969 (1.50")Passed (43%)--1.0 D + 1.0 S (All Spans) Shear (lbs)686 @ 1' 3 3/8"4541 Passed (15%)1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs)2220 @ 5' 6 1/2"10263 Passed (22%)1.15 1.0 D + 1.0 S (All Spans) Live Load Defl. (in)0.067 @ 5' 6 1/2"0.525 Passed (L/999+)--1.0 D + 1.0 S (All Spans) Total Load Defl. (in)0.102 @ 5' 6 1/2"0.700 Passed (L/999+)--1.0 D + 1.0 S (All Spans) System : Roof Member Type : Flush Beam Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12 •Deflection criteria: LL (L/240) and TL (L/180). •Allowed moment does not reflect the adjustment for the beam stability factor. • At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger • ¹ See Connector grid below for additional information and/or requirements. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Roof Live Snow Factored Accessories 1 - Hanger on 11 7/8" DF beam 3.50"Hanger¹1.50"309 277 582 891 See note ¹ 2 - Hanger on 11 7/8" DF beam 3.50"Hanger¹1.50"309 277 582 891 See note ¹ •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)10' 6" o/c Bottom Edge (Lu)10' 6" o/c Connector: Simpson Strong-Tie Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 - Face Mount Hanger IUS1.81/9.5 2.00"N/A 8-10dx1.5 2-10dx1.5 2 - Face Mount Hanger IUS1.81/9.5 2.00"N/A 8-10dx1.5 2-10dx1.5 •Refer to manufacturer notes and instructions for proper installation and use of all connectors. Dead Roof Live Snow Vertical Loads Location (Side)Tributary Width (0.90)(non-snow: 1.25)(1.15)Comments 0 - Self Weight (PLF)3 1/2" to 10' 9 1/2"N/A 6.1 ---- 1 - Uniform (PSF)0 to 11' 1"2' 6"20.0 20.0 42.0 Unheated snow Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 3rd Level, 3B-6 1 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 24 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)2579 @ 1 1/2"8438 (3.00")Passed (31%)--1.0 D + 1.0 L (All Spans) Shear (lbs)1726 @ 10 1/4"3915 Passed (44%)1.00 1.0 D + 1.0 L (All Spans) Moment (Ft-lbs)3016 @ 2' 7"3548 Passed (85%)1.00 1.0 D + 1.0 L (All Spans) Live Load Defl. (in)0.035 @ 2' 7"0.164 Passed (L/999+)--1.0 D + 1.0 L (All Spans) Total Load Defl. (in)0.057 @ 2' 7"0.246 Passed (L/999+)--1.0 D + 1.0 L (All Spans) System : Wall Member Type : Header Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/360) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. •Applicable calculations are based on NDS. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Floor Live Factored Accessories 1 - Trimmer - DF 3.00"3.00"1.50"1029 1550 2579 None 2 - Trimmer - DF 3.00"3.00"1.50"1029 1550 2579 None •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)5' 2" o/c Bottom Edge (Lu)5' 2" o/c Dead Floor Live Vertical Loads Location Tributary Width (0.90)(1.00)Comments 0 - Self Weight (PLF)0 to 5' 2"N/A 8.3 -- 1 - Uniform (PSF)0 to 5' 2"8'30.0 75.0 Balcony 2 - Uniform (PLF)0 to 5' 2"N/A 150.0 -Wall load Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 3rd Level, 3B-7 3 piece(s) 2 x 8 DF No.2 ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 25 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)986 @ 3 1/2"1969 (1.50")Passed (50%)--1.0 D + 1.0 S (All Spans) Shear (lbs)827 @ 1' 3 3/8"4541 Passed (18%)1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs)3021 @ 6' 5"10263 Passed (29%)1.15 1.0 D + 1.0 S (All Spans) Live Load Defl. (in)0.120 @ 6' 5"0.613 Passed (L/999+)--1.0 D + 1.0 S (All Spans) Total Load Defl. (in)0.184 @ 6' 5"0.817 Passed (L/800)--1.0 D + 1.0 S (All Spans) System : Roof Member Type : Flush Beam Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12 •Deflection criteria: LL (L/240) and TL (L/180). •Allowed moment does not reflect the adjustment for the beam stability factor. • At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger • ¹ See Connector grid below for additional information and/or requirements. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Roof Live Snow Factored Accessories 1 - Hanger on 11 7/8" DF beam 3.50"Hanger¹1.50"358 321 674 1032 See note ¹ 2 - Hanger on 11 7/8" DF beam 3.50"Hanger¹1.50"358 321 674 1032 See note ¹ •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)12' 3" o/c Bottom Edge (Lu)12' 3" o/c Connector: Simpson Strong-Tie Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 - Face Mount Hanger IUS1.81/9.5 2.00"N/A 8-10d 2-10dx1.5 2 - Face Mount Hanger IUS1.81/9.5 2.00"N/A 8-10d 2-10dx1.5 •Refer to manufacturer notes and instructions for proper installation and use of all connectors. Dead Roof Live Snow Vertical Loads Location (Side)Tributary Width (0.90)(non-snow: 1.25)(1.15)Comments 0 - Self Weight (PLF)3 1/2" to 12' 6 1/2"N/A 6.1 ---- 1 - Uniform (PSF)0 to 12' 10"2' 6"20.0 20.0 42.0 Unheated snow Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 3rd Level, 3B-8 1 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 26 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)2764 @ 3' 5 1/4"7656 (3.50")Passed (36%)--1.0 D + 1.0 S (All Spans) Shear (lbs)1284 @ 4' 6 7/8"9081 Passed (14%)1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs)-3229 @ 3' 5 1/4"20525 Passed (16%)1.15 1.0 D + 1.0 S (All Spans) Live Load Defl. (in)0.024 @ 6' 1"0.265 Passed (2L/999+)--1.0 D + 1.0 S (Alt Spans) Total Load Defl. (in)0.037 @ 6' 1"0.353 Passed (2L/999+)--1.0 D + 1.0 S (Alt Spans) System : Roof Member Type : Flush Beam Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12 •Deflection criteria: LL (L/240) and TL (L/180). •Overhang deflection criteria: LL (2L/240) and TL (2L/180). •Right cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered. •Allowed moment does not reflect the adjustment for the beam stability factor. •-801 lbs uplift at support located at 3 1/2". Strapping or other restraint may be required. • Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. • At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger • ¹ See Connector grid below for additional information and/or requirements. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Roof Live Snow Factored Accessories 1 - Hanger on 11 7/8" DF beam 3.50"Hanger¹1.50"-248 -263 -553 -801 See note ¹ 2 - Beam - DF 3.50"3.50"1.50"981 849 1783 2764 Blocking •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)5' 10" o/c Bottom Edge (Lu)5' 10" o/c Connector: Simpson Strong-Tie Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 - Face Mount Hanger LUS410 2.00"N/A 8-10dx1.5 6-10d •Refer to manufacturer notes and instructions for proper installation and use of all connectors. Dead Roof Live Snow Vertical Loads Location (Side)Tributary Width (0.90)(non-snow: 1.25)(1.15)Comments 0 - Self Weight (PLF)3 1/2" to 6' 1"N/A 12.1 ---- 1 - Uniform (PSF)0 to 6' 1"2' 6"20.0 20.0 42.0 Unheated snow 2 - Point (lb)6'N/A 358 321 674 Linked from: 3B-8, Support 1 Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 3rd Level, 3B-9 2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 27 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)2241 @ 3 1/2"3047 (1.50")Passed (74%)--1.0 D + 1.0 L (All Spans) Shear (lbs)1989 @ 1' 6 1/2"8281 Passed (24%)1.00 1.0 D + 1.0 L (All Spans) Pos Moment (Ft-lbs)12463 @ 11' 5"23438 Passed (53%)1.00 1.0 D + 1.0 L (All Spans) Live Load Defl. (in)0.453 @ 11' 5"0.556 Passed (L/589)--1.0 D + 1.0 L (All Spans) Total Load Defl. (in)0.702 @ 11' 5"1.112 Passed (L/380)--1.0 D + 1.0 L (All Spans) System : Floor Member Type : Flush Beam Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/480) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. •Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 22' 3". •The effects of positive or negative camber have not been accounted for when calculating deflection. •The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer. •Applicable calculations are based on NDS. •A concentrated floor live load has been applied to this member per IBC section 1607.4. • At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger • ¹ See Connector grid below for additional information and/or requirements. • ³ Includes the effects of the Concentrated Live Load • ⁴ Without the Concentrated Live Load Bearing Length ³Loads to Supports (lbs) ⁴ Supports Total Available Required Dead Floor Live Factored Accessories 1 - Hanger on Single 2X DF plate 3.50"Hanger¹1.50"812 1484 2296 See note ¹ 2 - Hanger on Single 2X DF plate 3.50"Hanger¹1.50"812 1484 2296 See note ¹ •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)22' 3" o/c Bottom Edge (Lu)22' 3" o/c Connector: Simpson Strong-Tie (Includes the effects of the Concentrated Live Load) Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 - Top Mount Hanger WP3.12X H=15 2.50"4-10dx1.5 N/A 2-10dx1.5 2 - Top Mount Hanger WP3.12X H=15 2.50"4-10dx1.5 N/A 2-10dx1.5 •Refer to manufacturer notes and instructions for proper installation and use of all connectors. • ¹ Combine floor live load in the column above with the concentrated live load check • ² Uniformly distributed over an area of 2½ feet by 2½ feet Dead Floor Live Vertical Loads Location (Side)Tributary Width Combine¹(0.90)(1.00)Comments 0 - Self Weight (PLF)3 1/2" to 22' 6 1/2"N/A 11.4 -- 1 - Uniform (PSF)0 to 22' 10"2'No 30.0 65.0 Floor load 2 - Concentrated Live Load (lbs)²Varies 2'-2000 All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 2nd Level, Floor drag joist 1 piece(s) 3 1/8" x 15" 24F-V4 DF Glulam ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 28 / 50 Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 29 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) [Group] Member Reaction (lbs)1255 @ 3 1/2"1255 (2.72")Passed (100%)1.00 1.0 D + 1.0 L (Conc. LL @ 15") (All Spans) [11] Shear (lbs)1255 @ 3 1/2"1330 Passed (94%)1.00 1.0 D + 1.0 L (Conc. LL @ 15") (All Spans) [11] Moment (Ft-lbs)1809 @ 3' 4 9/16"3000 Passed (60%)1.00 1.0 D + 1.0 L (Conc. LL @ 39") (All Spans) [13] Live Load Defl. (in)0.071 @ 3' 3 1/2"0.146 Passed (L/987)--1.0 D + 1.0 L (Conc. LL @ 39") (All Spans) [13] Total Load Defl. (in)0.083 @ 3' 3 1/2"0.292 Passed (L/843)--1.0 D + 1.0 L (Conc. LL @ 39") (All Spans) [13] TJ-Pro™ Rating 63 40 Passed ---- System : Floor Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/480) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. •A structural analysis of the deck has not been performed. •Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down. •Additional considerations for the TJ-Pro™ Rating include: None. •A concentrated floor live load has been applied to this member per IBC section 1607.4. • Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. • At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger • ¹ See Connector grid below for additional information and/or requirements. • ² Required Bearing Length / Required Bearing Length with Web Stiffeners • ³ Includes the effects of the Concentrated Live Load • ⁴ Without the Concentrated Live Load Bearing Length ³Loads to Supports (lbs) ⁴ Supports Total Available Required Dead Floor Live Factored Accessories 1 - Hanger on Single 2X DF plate 3.50"Hanger¹2.72" / - ²193 417 1311 See note ¹ 2 - Stud wall - DF 5.50"5.50"3.12"198 428 1360 Blocking •TJI joists are only analyzed using Maximum Allowable bracing solutions. •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)4' 9" o/c Bottom Edge (Lu)6' 3" o/c Connector: Simpson Strong-Tie (Includes the effects of the Concentrated Live Load) Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 - Top Mount Hanger BA2.1/9.5 3.00"6-10dx1.5 4-10dx1.5 2-10dx1.5 •Refer to manufacturer notes and instructions for proper installation and use of all connectors. • ¹ Combine floor live load in the column above with the concentrated live load check Dead Floor Live Vertical Loads Location Spacing Combine¹(0.90)(1.00)Comments 1 - Uniform (PSF)0 to 6' 6"24"No 30.0 65.0 Office load 2 - Concentrated Live Load (lbs)²Varies 24"-2000 All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 2nd Level, Kitchen joist 1 piece(s) 9 1/2" TJI® 210 @ 24" OC ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 30 / 50 • ² Uniformly distributed over an area of 2½ feet by 2½ feet Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 31 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)1502 @ 3 1/2"1502 (2.65")Passed (100%)1.00 1.0 D + 1.0 L (All Spans) Shear (lbs)1502 @ 3 1/2"2390 Passed (63%)1.00 1.0 D + 1.0 L (All Spans) Moment (Ft-lbs)6510 @ 8' 11 1/2"11275 Passed (58%)1.00 1.0 D + 1.0 L (All Spans) Live Load Defl. (in)0.325 @ 8' 11 1/2"0.433 Passed (L/640)--1.0 D + 1.0 L (All Spans) Total Load Defl. (in)0.422 @ 8' 11 1/2"0.867 Passed (L/492)--1.0 D + 1.0 L (All Spans) TJ-Pro™ Rating 55 40 Passed ---- System : Floor Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/480) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. •A structural analysis of the deck has not been performed. •Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down. •Additional considerations for the TJ-Pro™ Rating include: None. •A concentrated floor live load has been applied to this member per IBC section 1607.4. • Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. • At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger • ¹ See Connector grid below for additional information and/or requirements. • ² Required Bearing Length / Required Bearing Length with Web Stiffeners • ³ Includes the effects of the Concentrated Live Load • ⁴ Without the Concentrated Live Load Bearing Length ³Loads to Supports (lbs) ⁴ Supports Total Available Required Dead Floor Live Factored Accessories 1 - Hanger on Single 2X DF plate 3.50"Hanger¹2.65" / - ²358 1194 1553 See note ¹ 2 - Stud wall - DF 5.50"5.50"2.90"362 1206 1567 Blocking •TJI joists are only analyzed using Maximum Allowable bracing solutions. •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)7' 6" o/c Bottom Edge (Lu)17' 9" o/c Connector: Simpson Strong-Tie (Includes the effects of the Concentrated Live Load) Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 - Top Mount Hanger BA3.56/14 3.00"6-10dx1.5 4-10dx1.5 2-10dx1.5 Web Stiffeners •Refer to manufacturer notes and instructions for proper installation and use of all connectors. • ¹ Combine floor live load in the column above with the concentrated live load check • ² Uniformly distributed over an area of 2½ feet by 2½ feet Dead Floor Live Vertical Loads Location Spacing Combine¹(0.90)(1.00)Comments 1 - Uniform (PSF)0 to 18'16"No 30.0 100.0 Gym mezz 2 - Concentrated Live Load (lbs)²Varies 16"-2000 All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 2nd Level, Mezzanine joist long span 1 piece(s) 14" TJI® 560 @ 16" OC ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 32 / 50 Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 33 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) [Group] Member Reaction (lbs)1172 @ 3 1/2"1172 (2.40")Passed (100%)1.00 1.0 D + 1.0 L (Conc. LL @ 15") (All Spans) [11] Shear (lbs)1172 @ 3 1/2"1945 Passed (60%)1.00 1.0 D + 1.0 L (Conc. LL @ 15") (All Spans) [11] Moment (Ft-lbs)3304 @ 5' 7 15/16"4490 Passed (74%)1.00 1.0 D + 1.0 L (Conc. LL @ 63") (All Spans) [15] Live Load Defl. (in)0.137 @ 5' 9 1/2"0.283 Passed (L/995)--1.0 D + 1.0 L (Conc. LL @ 63") (All Spans) [15] Total Load Defl. (in)0.173 @ 5' 9 1/2"0.567 Passed (L/787)--1.0 D + 1.0 L (Conc. LL @ 63") (All Spans) [15] TJ-Pro™ Rating 61 40 Passed ---- System : Floor Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/480) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. •A structural analysis of the deck has not been performed. •Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down. •Additional considerations for the TJ-Pro™ Rating include: None. •A concentrated floor live load has been applied to this member per IBC section 1607.4. • Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. • At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger • ¹ See Connector grid below for additional information and/or requirements. • ² Required Bearing Length / Required Bearing Length with Web Stiffeners • ³ Includes the effects of the Concentrated Live Load • ⁴ Without the Concentrated Live Load Bearing Length ³Loads to Supports (lbs) ⁴ Supports Total Available Required Dead Floor Live Factored Accessories 1 - Hanger on Single 2X DF plate 3.50"Hanger¹2.40" / - ²238 794 1223 See note ¹ 2 - Stud wall - DF 5.50"5.50"2.58"242 806 1219 Blocking •TJI joists are only analyzed using Maximum Allowable bracing solutions. •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)4' 4" o/c Bottom Edge (Lu)11' 9" o/c Connector: Simpson Strong-Tie (Includes the effects of the Concentrated Live Load) Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 - Top Mount Hanger BA2.1/14 3.00"6-10dx1.5 4-10dx1.5 2-10dx1.5 •Refer to manufacturer notes and instructions for proper installation and use of all connectors. • ¹ Combine floor live load in the column above with the concentrated live load check Dead Floor Live Vertical Loads Location Spacing Combine¹(0.90)(1.00)Comments 1 - Uniform (PSF)0 to 12'16"No 30.0 100.0 Gym mezz 2 - Concentrated Live Load (lbs)²Varies 16"-2000 All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 2nd Level, Mezzanine joist short span 1 piece(s) 14" TJI® 210 @ 16" OC ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 34 / 50 • ² Uniformly distributed over an area of 2½ feet by 2½ feet Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 35 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)1244 @ 7' 3 1/4"2565 (5.25")Passed (48%)1.00 1.0 D + 1.0 L (All Spans) Shear (lbs)570 @ 7' 6"1655 Passed (34%)1.00 1.0 D + 1.0 L (All Spans) Moment (Ft-lbs)-1416 @ 7' 3 1/4"3795 Passed (37%)1.00 1.0 D + 1.0 L (All Spans) Live Load Defl. (in)0.089 @ 12'0.236 Passed (2L/999+)--1.0 D + 1.0 L (Alt Spans) Total Load Defl. (in)0.118 @ 12'0.473 Passed (2L/958)--1.0 D + 1.0 L (Alt Spans) TJ-Pro™ Rating 66 40 Passed ---- System : Floor Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/480) and TL (L/240). •Overhang deflection criteria: LL (2L/480) and TL (2L/240). •Right cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered. •Allowed moment does not reflect the adjustment for the beam stability factor. •A structural analysis of the deck has not been performed. •Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down. •Additional considerations for the TJ-Pro™ Rating include: None. • Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. • At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger • ¹ See Connector grid below for additional information and/or requirements. • ² Required Bearing Length / Required Bearing Length with Web Stiffeners Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Floor Live Factored Accessories 1 - Hanger on Single 2X DF plate 3.50"Hanger¹1.75" / - ²87 328/-114 415/-26 See note ¹ 2 - Stud wall - DF 5.50"5.50"3.50"393 851 1244 Blocking •TJI joists are only analyzed using Maximum Allowable bracing solutions. •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)8' 8" o/c Bottom Edge (Lu)6' 3" o/c Connector: Simpson Strong-Tie Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 - Top Mount Hanger ITS2.06/11.88 2.00"4-10dx1.5 2-10dx1.5 2-Strong-Grip •Refer to manufacturer notes and instructions for proper installation and use of all connectors. Dead Floor Live Vertical Load Location Spacing (0.90)(1.00)Comments 1 - Uniform (PSF)0 to 12'16"30.0 65.0 Office load All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 2nd Level, Reception joist 1 piece(s) 11 7/8" TJI® 210 @ 16" OC ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 36 / 50 Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 37 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)957 @ 7' 9 1/4"2950 (5.25")Passed (32%)1.15 1.0 D + 1.0 S (All Spans) Shear (lbs)445 @ 7' 6 1/2"1530 Passed (29%)1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs)-1074 @ 7' 9 1/4"3450 Passed (31%)1.15 1.0 D + 1.0 S (All Spans) Live Load Defl. (in)0.078 @ 12' 6"0.236 Passed (2L/999+)--1.0 D + 1.0 S (Alt Spans) Total Load Defl. (in)0.121 @ 12' 6"0.473 Passed (2L/938)--1.0 D + 1.0 S (Alt Spans) TJ-Pro™ Rating 63 40 Passed ---- System : Floor Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/480) and TL (L/240). •Overhang deflection criteria: LL (2L/480) and TL (2L/240). •Right cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered. •Allowed moment does not reflect the adjustment for the beam stability factor. •A structural analysis of the deck has not been performed. •Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down. •Additional considerations for the TJ-Pro™ Rating include: None. • Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. • At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger • ¹ See Connector grid below for additional information and/or requirements. • ² Required Bearing Length / Required Bearing Length with Web Stiffeners Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Roof Live Snow Factored Accessories 1 - Hanger on Single 2X DF plate 3.50"Hanger¹1.75" / - ²101 88 184 285 See note ¹ 2 - Stud wall - DF 5.50"5.50"3.50"399 266 558 957 Blocking •TJI joists are only analyzed using Maximum Allowable bracing solutions. •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)8' 8" o/c Bottom Edge (Lu)6' 4" o/c Connector: Simpson Strong-Tie Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 - Top Mount Hanger ITS2.06/9.5 2.00"4-10dx1.5 2-10dx1.5 2-Strong-Grip •Refer to manufacturer notes and instructions for proper installation and use of all connectors. Dead Roof Live Snow Vertical Load Location Spacing (0.90)(non-snow: 1.25)(1.15)Comments 1 - Uniform (PSF)0 to 12' 6"16"30.0 20.0 42.0 Unheated snow All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 2nd Level, Entry joist 1 piece(s) 9 1/2" TJI® 210 @ 16" OC ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 38 / 50 Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 39 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)1401 @ 3 1/2"1401 (2.58")Passed (100%)1.15 1.0 D + 1.0 S (All Spans) Shear (lbs)1401 @ 3 1/2"1903 Passed (74%)1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs)3507 @ 5' 3 9/16"4364 Passed (80%)1.15 1.0 D + 1.0 S (All Spans) Live Load Defl. (in)0.174 @ 5' 4 13/16"0.258 Passed (L/712)--1.0 D + 1.0 S (All Spans) Total Load Defl. (in)0.226 @ 5' 5"0.517 Passed (L/548)--1.0 D + 1.0 S (All Spans) TJ-Pro™ Rating 51 40 Passed ---- System : Floor Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/480) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. •A structural analysis of the deck has not been performed. •Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down. •Additional considerations for the TJ-Pro™ Rating include: None. • Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. • At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger • ¹ See Connector grid below for additional information and/or requirements. • ² Required Bearing Length / Required Bearing Length with Web Stiffeners Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Roof Live Snow Factored Accessories 1 - Hanger on Single 2X DF plate 3.50"Hanger¹2.58" / - ²328 218 1155 1483 See note ¹ 2 - Stud wall - DF 5.50"5.50"1.86"333 222 857 1189 Blocking •TJI joists are only analyzed using Maximum Allowable bracing solutions. •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)3' 10" o/c Bottom Edge (Lu)10' 9" o/c Connector: Simpson Strong-Tie Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 - Top Mount Hanger BA2.1/11.88 3.00"6-10dx1.5 4-10dx1.5 2-10dx1.5 •Refer to manufacturer notes and instructions for proper installation and use of all connectors. Dead Roof Live Snow Vertical Loads Location Spacing (0.90)(non-snow: 1.25)(1.15)Comments 1 - Uniform (PSF)0 to 11'24"30.0 20.0 42.0 Unheated snow 2 - Uniform (PSF)0 to 8'24"--68.0 Drifting All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 2nd Level, Entry canopy joist 1 piece(s) 11 7/8" TJI® 210 @ 24" OC ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 40 / 50 Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 41 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)6989 @ 3 1/2"6989 (2.10")Passed (100%)--1.0 D + 1.0 L (All Spans) Shear (lbs)5897 @ 1' 6 1/2"13581 Passed (43%)1.00 1.0 D + 1.0 L (All Spans) Pos Moment (Ft-lbs)27958 @ 8' 3 1/2"38438 Passed (73%)1.00 1.0 D + 1.0 L (All Spans) Live Load Defl. (in)0.332 @ 8' 3 1/2"0.400 Passed (L/577)--1.0 D + 1.0 L (All Spans) Total Load Defl. (in)0.497 @ 8' 3 1/2"0.800 Passed (L/387)--1.0 D + 1.0 L (All Spans) System : Floor Member Type : Flush Beam Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/480) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. •Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 16'. •The effects of positive or negative camber have not been accounted for when calculating deflection. •The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer. •Applicable calculations are based on NDS. •A concentrated floor live load has been applied to this member per IBC section 1607.4. • At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger • ¹ See Connector grid below for additional information and/or requirements. • ³ Includes the effects of the Concentrated Live Load • ⁴ Without the Concentrated Live Load Bearing Length ³Loads to Supports (lbs) ⁴ Supports Total Available Required Dead Floor Live Factored Accessories 1 - Hanger on Single 2X DF plate 3.50"Hanger¹2.10"2388 4851 7239 See note ¹ 2 - Hanger on Single 2X DF plate 3.50"Hanger¹2.10"2388 4851 7239 See note ¹ •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)16' o/c Bottom Edge (Lu)16' o/c Connector: Simpson Strong-Tie (Includes the effects of the Concentrated Live Load) Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 - Top Mount Hanger Connector not found N/A N/A N/A N/A 2 - Top Mount Hanger Connector not found N/A N/A N/A N/A •Refer to manufacturer notes and instructions for proper installation and use of all connectors. • ¹ Combine floor live load in the column above with the concentrated live load check • ² Uniformly distributed over an area of 2½ feet by 2½ feet Dead Floor Live Vertical Loads Location (Side)Tributary Width Combine¹(0.90)(1.00)Comments 0 - Self Weight (PLF)3 1/2" to 16' 3 1/2"N/A 18.7 -- 1 - Uniform (PSF)0 to 16' 7"9'No 30.0 65.0 Floor load 2 - Concentrated Live Load (lbs)²Varies 2'-2000 All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 2nd Level, 2B-1 1 piece(s) 5 1/8" x 15" 24F-V4 DF Glulam ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 42 / 50 Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 43 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)5513 @ 3 1/2"5513 (1.65")Passed (100%)--1.0 D + 1.0 L (All Spans) Shear (lbs)4832 @ 1' 8"14939 Passed (32%)1.00 1.0 D + 1.0 L (All Spans) Pos Moment (Ft-lbs)30666 @ 11' 5"44792 Passed (68%)1.00 1.0 D + 1.0 L (All Spans) Live Load Defl. (in)0.519 @ 11' 5"0.556 Passed (L/514)--1.0 D + 1.0 L (All Spans) Total Load Defl. (in)0.791 @ 11' 5"1.112 Passed (L/337)--1.0 D + 1.0 L (All Spans) System : Floor Member Type : Flush Beam Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/480) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. •Critical positive moment adjusted by a volume factor of 0.96 that was calculated using length L = 22' 3". •The effects of positive or negative camber have not been accounted for when calculating deflection. •The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer. •Applicable calculations are based on NDS. •A concentrated floor live load has been applied to this member per IBC section 1607.4. • At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger • ¹ See Connector grid below for additional information and/or requirements. • ³ Includes the effects of the Concentrated Live Load • ⁴ Without the Concentrated Live Load Bearing Length ³Loads to Supports (lbs) ⁴ Supports Total Available Required Dead Floor Live Factored Accessories 1 - Hanger on Single 2X DF plate 3.50"Hanger¹1.65"1941 3710 5652 See note ¹ 2 - Hanger on Single 2X DF plate 3.50"Hanger¹1.65"1941 3710 5652 See note ¹ •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)22' 3" o/c Bottom Edge (Lu)22' 3" o/c Connector: Simpson Strong-Tie (Includes the effects of the Concentrated Live Load) Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 - Top Mount Hanger Connector not found N/A N/A N/A N/A 2 - Top Mount Hanger Connector not found N/A N/A N/A N/A •Refer to manufacturer notes and instructions for proper installation and use of all connectors. • ¹ Combine floor live load in the column above with the concentrated live load check • ² Uniformly distributed over an area of 2½ feet by 2½ feet Dead Floor Live Vertical Loads Location (Side)Tributary Width Combine¹(0.90)(1.00)Comments 0 - Self Weight (PLF)3 1/2" to 22' 6 1/2"N/A 20.5 -- 1 - Uniform (PSF)0 to 22' 10"5'No 30.0 65.0 Floor load 2 - Concentrated Live Load (lbs)²Varies 2'-2000 All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 2nd Level, 2B-2 Floor drag Beam 1 piece(s) 5 1/8" x 16 1/2" 24F-V4 DF Glulam ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 44 / 50 Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 45 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)1383 @ 1 1/2"5625 (3.00")Passed (25%)--1.0 D + 1.0 L (All Spans) Shear (lbs)926 @ 10 1/4"2610 Passed (35%)1.00 1.0 D + 1.0 L (All Spans) Moment (Ft-lbs)1618 @ 2' 7"2365 Passed (68%)1.00 1.0 D + 1.0 L (All Spans) Live Load Defl. (in)0.022 @ 2' 7"0.164 Passed (L/999+)--1.0 D + 1.0 L (All Spans) Total Load Defl. (in)0.046 @ 2' 7"0.246 Passed (L/999+)--1.0 D + 1.0 L (All Spans) System : Wall Member Type : Header Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/360) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. •Applicable calculations are based on NDS. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Floor Live Factored Accessories 1 - Trimmer - DF 3.00"3.00"1.50"712 672 1383 None 2 - Trimmer - DF 3.00"3.00"1.50"712 672 1383 None •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)5' 2" o/c Bottom Edge (Lu)5' 2" o/c Dead Floor Live Vertical Loads Location Tributary Width (0.90)(1.00)Comments 0 - Self Weight (PLF)0 to 5' 2"N/A 5.5 -- 1 - Uniform (PSF)0 to 5' 2"4'30.0 65.0 Floor load 2 - Uniform (PLF)0 to 5' 2"N/A 150.0 -Wall load Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 2nd Level, 2B-3 2 piece(s) 2 x 8 DF No.2 ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 46 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)2338 @ 1 1/2"7875 (3.00")Passed (30%)--1.0 D + 1.0 S (All Spans) Shear (lbs)1822 @ 1' 1/4"7074 Passed (26%)1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs)5118 @ 4' 7 1/2"12884 Passed (40%)1.15 1.0 D + 1.0 S (All Spans) Live Load Defl. (in)0.120 @ 4' 7 1/2"0.300 Passed (L/903)--1.0 D + 1.0 S (All Spans) Total Load Defl. (in)0.180 @ 4' 7 1/2"0.450 Passed (L/601)--1.0 D + 1.0 S (All Spans) System : Wall Member Type : Header Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/360) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Roof Live Snow Factored Accessories 1 - Trimmer - DF 3.00"3.00"1.50"784 740 1554 2338 None 2 - Trimmer - DF 3.00"3.00"1.50"784 740 1554 2338 None •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)9' 3" o/c Bottom Edge (Lu)9' 3" o/c Dead Roof Live Snow Vertical Loads Location Tributary Width (0.90)(non-snow: 1.25)(1.15)Comments 0 - Self Weight (PLF)0 to 9' 3"N/A 9.4 ---- 1 - Uniform (PSF)0 to 9' 3"8'20.0 20.0 42.0 Unheated snow Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 2nd Level, 2B-4 2 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 47 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)10114 @ 1 1/2"11813 (3.00")Passed (86%)--1.0 D + 0.75 L + 0.75 S (All Spans) Shear (lbs)7110 @ 11' 10"16060 Passed (44%)1.15 1.0 D + 0.75 L + 0.75 S (All Spans) Moment (Ft-lbs)20868 @ 6' 9 1/8"41846 Passed (50%)1.15 1.0 D + 0.75 L + 0.75 S (All Spans) Live Load Defl. (in)0.145 @ 6' 8"0.433 Passed (L/999+)--1.0 D + 0.75 L + 0.75 S (All Spans) Total Load Defl. (in)0.305 @ 6' 7 15/16"0.650 Passed (L/512)--1.0 D + 0.75 L + 0.75 S (All Spans) System : Wall Member Type : Header Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/360) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Floor Live Roof Live Snow Factored Accessories 1 - Trimmer - DF 3.00"3.00"2.57"5042 1723 397 5040 10114 None 2 - Trimmer - DF 3.00"3.00"2.51"4939 1723 398 4872 9886 None •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)13' 3" o/c Bottom Edge (Lu)13' 3" o/c Dead Floor Live Roof Live Snow Vertical Loads Location Tributary Width (0.90)(1.00)(non-snow: 1.25)(1.15)Comments 0 - Self Weight (PLF)0 to 13' 3"N/A 21.5 ------ 1 - Uniform (PSF)0 to 13' 3"3'20.0 -20.0 42.0 Snow load 2 - Uniform (PSF)0 to 13' 3"2'---65.0 Snow drift 3 - Uniform (PSF)0 to 13' 3"2'30.0 65.0 --3rd level 4 - Uniform (PSF)0 to 13' 3"2'30.0 65.0 --2nd level 5 - Uniform (PLF)0 to 13' 3"N/A 250.0 ---Wall 6 - Point (lb)8"N/A 2000 --3260 Canopy 7 - Point (lb)12' 3"N/A 2000 --3260 Canopy Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 2nd Level, 2B-5 3 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 48 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)3647 @ 1 1/2"11813 (3.00")Passed (31%)--1.0 D + 1.0 L (All Spans) Shear (lbs)2843 @ 10 1/4"7232 Passed (39%)1.00 1.0 D + 1.0 L (All Spans) Moment (Ft-lbs)6617 @ 3' 10 1/2"10672 Passed (62%)1.00 1.0 D + 1.0 L (All Spans) Live Load Defl. (in)0.141 @ 3' 10 1/2"0.250 Passed (L/639)--1.0 D + 1.0 L (All Spans) Total Load Defl. (in)0.221 @ 3' 10 1/2"0.313 Passed (L/407)--1.0 D + 1.0 L (All Spans) System : Wall Member Type : Header Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/360) and TL (5/16"). •Allowed moment does not reflect the adjustment for the beam stability factor. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Floor Live Factored Accessories 1 - Trimmer - DF 3.00"3.00"1.50"1322 2325 3647 None 2 - Trimmer - DF 3.00"3.00"1.50"1322 2325 3647 None •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)7' 9" o/c Bottom Edge (Lu)7' 9" o/c Dead Floor Live Vertical Loads Location Tributary Width (0.90)(1.00)Comments 0 - Self Weight (PLF)0 to 7' 9"N/A 11.1 -- 1 - Uniform (PSF)0 to 7' 9"6'30.0 100.0 GYM mezz 2 - Uniform (PLF)0 to 7' 9"N/A 150.0 -Wall load Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 2nd Level, 2B-6 3 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 49 / 50 Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs)2698 @ 1 1/2"8438 (3.00")Passed (32%)--1.0 D + 1.0 L (All Spans) Shear (lbs)1896 @ 10 1/4"3915 Passed (48%)1.00 1.0 D + 1.0 L (All Spans) Moment (Ft-lbs)3548 @ 2' 10 1/2"3548 Passed (100%)1.00 1.0 D + 1.0 L (All Spans) Live Load Defl. (in)0.054 @ 2' 10 1/2"0.183 Passed (L/999+)--1.0 D + 1.0 L (All Spans) Total Load Defl. (in)0.084 @ 2' 10 1/2"0.275 Passed (L/781)--1.0 D + 1.0 L (All Spans) System : Wall Member Type : Header Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD •Deflection criteria: LL (L/360) and TL (L/240). •Allowed moment does not reflect the adjustment for the beam stability factor. •Applicable calculations are based on NDS. Bearing Length Loads to Supports (lbs) Supports Total Available Required Dead Floor Live Factored Accessories 1 - Trimmer - DF 3.00"3.00"1.50"973 1725 2698 None 2 - Trimmer - DF 3.00"3.00"1.50"973 1725 2698 None •Maximum allowable bracing intervals based on applied load. Lateral Bracing Bracing Intervals Comments Top Edge (Lu)6" o/c Bottom Edge (Lu)5' 9" o/c Dead Floor Live Vertical Loads Location Tributary Width (0.90)(1.00)Comments 0 - Self Weight (PLF)0 to 5' 9"N/A 8.3 -- 1 - Uniform (PSF)0 to 5' 9"6'30.0 100.0 GYM mezz 2 - Uniform (PLF)0 to 5' 9"N/A 150.0 -Wall load Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library. The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator Weyerhaeuser Notes All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal. MEMBER REPORT PASSED 2nd Level, 2B-7 3 piece(s) 2 x 8 DF No.2 ForteWEB Software Operator Job Notes 3/22/2023 2:48:22 PM UTCJason Christensen WCA Structural Engineering, Inc. (801) 298-1118 jason@wcaeng.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23019 Page 50 / 50 F.F. Level 1 100'-0"F.F. Level 1100'-0" F.F. Level 2 113'-5" F.F. Level 2113'-5" ROOF PLAN 140'-3" ROOF PLAN140'-3" B.O. FOOTING 97'-0"B.O. FOOTING97'-0" F.F. LEVEL 3 126'-10" F.F. LEVEL 3126'-10" DECK BEARING 140'-10" DECK BEARING140'-10" Foundations 30 0 0   p s f 12 . 0   i n De a d L i v e / S n o w T r i b . D r i f t i n g D e a d L i v e T r i b . #   l e v e l s M i s c .   F L D e a d H e i g ht D e a d H e i g h t W i d t h D D + L D + S D + 0 . 7 5 ( L + S ) D D + L D + S D + 0 . 7 5 ( L + S ) W‐ 1 20 . 0   p s f 3 5 . 0   p s f 7 . 5   f t 2 5 0   p l f 3 0 . 0   p s f 6 5 . 0   p s f 7 . 5   f t 2 0   p l f 1 5 . 0   p sf 4 5 . 0   f t 1 5 0 . 0   p c f 3 . 0   f t 1 2   i n 17 2 5   p l f 2 7 0 0   p l f 1 9 8 8   p l f 2 6 5 3   p l f 2 7 0 0   p l f 2 . 0   f t 3 0 0   p l f 2 0 2 5   p l f 3 0 00   p l f 2 2 8 8   p l f 2 9 5 3   p l f 3 0 0 0   p l f 2 . 0   f t F C 2 . 0 W‐ 2 20 . 0   p s f 3 5 . 0   p s f 1 6 . 0   f t 2 5 0   p l f 3 0 . 0   p s f 6 5 . 0   p s f 1 2 . 0   f t 2 3 1 0   p l f 6 0 .0   p s f 4 0 . 0   f t 1 5 0 . 0   p c f 1 . 0   f t 1 2   i n 35 9 0   p l f 5 4 6 0   p l f 4 1 5 0   p l f 5 4 1 3   p l f 5 4 6 0   p l f 2 . 0   f t 3 0 0   p l f 3 8 9 0   p l f 5 7 60   p l f 4 4 5 0   p l f 5 7 1 3   p l f 5 7 6 0   p l f 2 . 0   f t F C 2 . 0 W‐ 3 20 . 0   p s f 3 5 . 0   p s f 3 0 . 0   f t 4 7 6   p l f 3 0 . 0   p s f 6 5 . 0   p s f 6 . 0   f t 2 0   p l f 6 0 . 0   ps f 4 5 . 0   f t 1 5 0 . 0   p c f 1 . 0   f t 1 2   i n 38 1 0   p l f 4 5 9 0   p l f 4 8 6 0   p l f 5 1 8 3   p l f 5 1 8 3   p l f 2 . 0   f t 3 0 0   p l f 4 1 1 0   p l f 4 8 90   p l f 5 1 6 0   p l f 5 4 8 3   p l f 5 4 8 3   p l f 2 . 0   f t F C 2 . 0 W‐ 4 20 . 0   p s f 3 5 . 0   p s f 3 0 . 0   f t 4 7 6   p l f 3 0 . 0   p s f 6 5 . 0   p s f 6 . 0   f t 2 2 2 1 0   p l f 6 0 .0   p s f 4 5 . 0   f t 1 5 0 . 0   p c f 1 . 0   f t 1 2   i n 38 1 0   p l f 6 8 0 0   p l f 4 8 6 0   p l f 6 8 4 0   p l f 6 8 4 0   p l f 2 . 5   f t 3 7 5   p l f 4 1 8 5   p l f 7 1 75   p l f 5 2 3 5   p l f 7 2 1 5   p l f 7 2 1 5   p l f 2 . 5   f t F C 2 . 5 W‐ 5 20 . 0   p s f 3 5 . 0   p s f 1 3 . 0   f t 2 5 0   p l f 0 . 0   p s f 0 . 0   p s f 0 . 0   f t 0 0   p l f 6 0 . 0   p s f 2 0 . 0   f t 1 5 0 . 0   p c f 3 . 0   f t 1 2   i n 19 1 0   p l f 1 9 1 0   p l f 2 3 6 5   p l f 2 2 5 1   p l f 2 3 6 5   p l f 2 . 0   f t 3 0 0   p l f 2 2 1 0   p l f 2 2 10   p l f 2 6 6 5   p l f 2 5 5 1   p l f 2 6 6 5   p l f 2 . 0   f t F C 2 . 0 W‐ 6 20 . 0   p s f 3 5 . 0   p s f 2 7 . 0   f t 2 5 0   p l f 0 . 0   p s f 0 . 0   p s f 0 . 0   f t 0 0   p l f 6 0 . 0   p s f 3 1 . 0   f t 1 5 0 . 0   p c f 3 . 0   f t 1 2   i n 28 5 0   p l f 2 8 5 0   p l f 3 7 9 5   p l f 3 5 5 9   p l f 3 7 9 5   p l f 2 . 0   f t 3 0 0   p l f 3 1 5 0   p l f 3 1 50   p l f 4 0 9 5   p l f 3 8 5 9   p l f 4 0 9 5   p l f 2 . 0   f t F C 2 . 0 qb   = In t .   F T G   D e p t h : Gr a v i t y   w a l l   l o a d s Ro o f   l o a d s Lo a d   c o m b i n a t i o n   r e a c t i o n s Wa l l   s e l f   w e i g h t F o u n d a t i o n   w a l l   w e i g h t Fl o o r   l o a d s Co n t r o l l i n g   co m b o Wa l l   m a r k Fo o t i n g   ca l c   # In i t i a l   F t g   wi d t h Fo o t i n g   we i g h t Rv i s e d   l o a d   c o m b i n a t i o n   r e a c t i o n s Co n t r o l l i n g   co m b o Ft g   wi d t h RAM Structural System V17.04.03.05. - Floor Plan: Landing JSC DataBase: 23019_test 03/22/23 09:07:44 1 1 1.71.9 2 2 2.4 3 3 3.7 4 4 4.5 5 5 5.6 6 6 6.3 6.4 6.6 7 7 7.2 7.7 7.7 8 8 G G F F E.7 E E D D C C B B A A 10 17 18 24 25 26 2 8 12 16 19 31 71115 2730 32 33 3 4 5 6 9 23 21 28 13 14 20 22 29 1 Spot Footing Numbers RAM Structural System V17.04.03.05. JSC DataBase: 23019 03/22/23 09:34:56 1 1 1.71.9 2 2 2.4 3 3 3.7 4 4 4.5 5 5 5.6 6 6 6.3 6.4 6.6 7 7 7.2 7.7 7.7 8 8 G G F F E.7 E E D D C C B B A A L: 5 . 5 0 W: 5.50 L: 5.00W: 5 . 0 0 L: 4.50W: 4 . 5 0 L: 4 . 0 0 W: 4.00 L: 4 . 0 0 W: 4.00 L: 2 . 0 0 W: 2.00 L: 5.00W: 5 . 0 0 L: 5.50W: 5 . 5 0 L: 6.00W: 6 . 0 0 L: 5.00W: 5 . 0 0 L: 4.00W: 4 . 0 0 L: 4.00W: 4 . 0 0 L: 5.00W: 5 . 0 0 L: 5.00W: 5 . 0 0 L: 4.00W: 4 . 0 0 L: 4.00W: 4 . 0 0 L: 4 . 0 0 W: 4.00 L: 4.00W: 4 . 0 0 L: 4.00W: 4 . 0 0 L: 2 . 0 0 W: 2.00 L: 2 . 0 0 W: 2.00 L: 2 . 0 0 W: 2.00 L: 2 . 0 0 W: 2.00 L: 2.50W: 2 . 5 0 L: 4 . 5 0 W: 4.50 L: 4.00W: 4 . 0 0 L: 4.00W: 4 . 0 0 L: 3.00W: 3 . 0 0 L: 2.50W: 2 . 5 0 L: 5.00W: 5 . 0 0 L: 3 . 5 0 W: 3.50 L: 3.50W: 3 . 5 0 L: 5 . 0 0 W: 5.00 Spot Footing Geometry See moment ftg calcs Foundation Design Criteria RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/16/23 10:30:36 REINFORCEMENT PROPERTIES TABLE: ramastm CODE ACI318-14 FORCES Forces in Gravity Members from RAM Steel. DESIGN METHOD Footings designed based on soil capacity. Design Pile Caps Based on Pile Load. DESIGN OPTIONS Include Moment Due to Shear in Column for Spread Footings True Include Moment Due to Shear in Column for Continuous Footings True Include Moment Due to Shear in Column for Pile Caps True Include Spread Footing Self-Weight When Checking Soil Stress True Keep Spread Footing Square During Optimization True Increase Spread Footing Size to Prevent Uplift in Concrete Load Combinations False Max Width to Depth Ratio for Design of Continuous Footing as Beam Not Defined REINFORCEMENT Clear Bar Spacing-Shear (in) Max: CODE Min: CODE Clear Bar Spacing-Flexure (in) Max: CODE Min: CODE Reinforcement Ratio Max: CODE Min: CODE Clear Bar Cover (in) Top: CODE Bottom: CODE Side: CODE Bar Sizes Considered - Shear: #5 Bar Sizes Considered - Flexure: #5 REINFORCEMENT SELECTION Min. number of bars in footing 2 Keep all bars in spread footing layer the same True Adjacent bars in continuous footing may differ in size by 1 Segment Spacing Increment (in)12.00 Shear Bar Spacing Increment (in)3.00 Selection Method Min reinf area For Square Spread Footings Keep Same Quantity and Size Bars for Layer True OPTIMIZATION CRITERIA - SPREAD/CONTINUOUS Min. Dimensions Edge of Base Plate to Edge of Footing (in)2.00 Min. Plan Dimensions (in)12.00 Pan Dimension Increment (in)3.00 Min. Thickness (in)12.00 Thickness Increment (in)2.00 Uplift Safety Factor Minimum Ratio 1.50 OPTIMIZATION CRITERIA - PILE/PILE CAP Edge to Center of Pile Spacing is Maximum of: Multiple of Pile Dimension 0.00 Edge to Center Distance (in)21.00 Clear from Face of Pile (in)9.00 Center to Center Spacing of Piles is Maximum of: Multiple of Pile Dimension 3.00 Center to Center Distance (in)36.00 Clear from Face of Pile (in)24.00 Foundation Design Criteria RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/16/23 10:30:36 Min. Thickness (in)24.00 Thickness Increment (in)6.00 PILE DEFINITIONS Capacity Label Diameter (in) Compression (kip) Tension (kip) Shear (kip) PILE CONFIGURATION Rows Parallel to Label Major Minor 3 Pile Group 3 0 5 Pile Group 5 0 7 Pile Group 7 0 8 Pile Group 8 0 2 Pile Group 2 1 5 Pile Group Sqr. Cap 5 0 SOIL DEFINITIONS Fixed Capacities (ksf) : 3.00 Page 2/2 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 10 Footing Column Location:(47.21 - 110.92) Footing Orientation (deg):90.00 Column Orientation (deg):0.00 Length (ft):5.50 Width (ft):5.50 Thickness (ft):1.33 Bottom Reinf. Parallel to Length:7 - #5 Width: 7 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: 8x24 Base Plate Dimensions (in) 0.00 x 0.00 Percent of overhang to assume Rigid: 0.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 24.64 Pos. Live: 18.78 Neg. Live: -0.31 Pos. Roof: 8.17 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 14.98 1 30.51 1 Provided Shear: (kip) 68.78 Sec. 22.5.5.1 Eq (22.5.5.1) 65.39 Required Moment: (kip-ft) 33.09 1 63.11 1 Provided Moment: (kip-ft) 120.08 113.97 Required Punching Shear: (kip) 45.89 2 Provided Punching Shear: (kip)192.24 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (b) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 7-#5 7-#5 None None Required Steel/Provided Steel (in²) 1.90/ 2.17 1.90/ 2.17 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 9.90 9.90 None None Bar Depth (in) 12.68 12.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)1.68 15 Max Average Unfactored Soil Bearing (ksf)1.68 15 Max Soil Bearing for Factored Design (ksf)2.11 2 Max Average Soil Bearing for Factored Design (ksf)2.11 2 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 17 Footing Column Location:(4 - B) Footing Orientation (deg):0.00 Column Orientation (deg):0.00 Length (ft):5.00 Width (ft):5.00 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:5 - #5 Width: 5 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS5X5X5/16 Base Plate Dimensions (in) 11.00 x 11.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 34.07 Pos. Live: 29.29 Neg. Live: -0.37 Pos. Roof: 14.14 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 28.83 1 29.87 1 Provided Shear: (kip) 42.83 Sec. 22.5.5.1 Eq (22.5.5.1) 39.74 Required Moment: (kip-ft) 46.91 1 46.91 1 Provided Moment: (kip-ft) 58.48 54.12 Required Punching Shear: (kip) 88.32 2 Provided Punching Shear: (kip)90.14 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 5-#5 5-#5 None None Required Steel/Provided Steel (in²) 1.30/ 1.55 1.34/ 1.55 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 13.35 13.35 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)2.81 15 Max Average Unfactored Soil Bearing (ksf)2.81 15 Max Soil Bearing for Factored Design (ksf)3.79 2 Max Average Soil Bearing for Factored Design (ksf)3.79 2 Page 2/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 18 Footing Column Location:(5 - B) Footing Orientation (deg):0.00 Column Orientation (deg):0.00 Length (ft):4.50 Width (ft):4.50 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:4 - #5 Width: 4 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS5X5X5/16 Base Plate Dimensions (in) 11.00 x 11.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 24.52 Pos. Live: 23.45 Neg. Live: -0.48 Pos. Roof: 10.80 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 21.45 1 22.39 1 Provided Shear: (kip) 38.54 Sec. 22.5.5.1 Eq (22.5.5.1) 35.77 Required Moment: (kip-ft) 33.04 1 33.04 1 Provided Moment: (kip-ft) 46.97 43.48 Required Punching Shear: (kip) 65.80 2 Provided Punching Shear: (kip)90.14 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 4-#5 4-#5 None None Required Steel/Provided Steel (in²) 1.17/ 1.24 1.17/ 1.24 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 15.79 15.79 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)2.62 15 Max Average Unfactored Soil Bearing (ksf)2.62 15 Max Soil Bearing for Factored Design (ksf)3.57 2 Max Average Soil Bearing for Factored Design (ksf)3.57 2 Page 3/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 24 Footing Column Location:(103.83 - 104.83) Footing Orientation (deg):90.00 Column Orientation (deg):0.00 Length (ft):4.00 Width (ft):4.00 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:4 - #5 Width: 4 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: W8X24 Base Plate Dimensions (in) 12.00 x 12.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 18.33 Pos. Live: 20.33 Neg. Live: -0.30 Pos. Roof: 11.20 Neg. Roof: -0.07 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 13.85 4 15.16 4 Provided Shear: (kip) 34.26 Sec. 22.5.5.1 Eq (22.5.5.1) 31.80 Required Moment: (kip-ft) 20.20 4 20.97 4 Provided Moment: (kip-ft) 46.78 43.29 Required Punching Shear: (kip) 52.39 2 Provided Punching Shear: (kip)98.99 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 4-#5 4-#5 None None Required Steel/Provided Steel (in²) 1.03/ 1.24 1.03/ 1.24 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 13.79 13.79 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)2.77 15 Max Average Unfactored Soil Bearing (ksf)2.77 15 Max Soil Bearing for Factored Design (ksf)3.76 2 Max Average Soil Bearing for Factored Design (ksf)3.76 2 Page 4/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 26 Footing Column Location:(112.92 - 117.00) Footing Orientation (deg):90.00 Column Orientation (deg):0.00 Length (ft):2.00 Width (ft):2.00 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:2 - #5 Width: 2 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS4X4X1/4 Base Plate Dimensions (in) 6.00 x 11.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 1.36 Pos. Live: 0.55 Neg. Live: 0.00 Pos. Roof: 1.39 Neg. Roof: -0.24 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 0.54 1 0.12 1 Provided Shear: (kip) 17.13 Sec. 22.5.5.1 Eq (22.5.5.1) 15.90 Required Moment: (kip-ft) 2.51 1 1.89 1 Provided Moment: (kip-ft) 23.39 21.65 Required Punching Shear: (kip) 3.99 1 Provided Punching Shear: (kip)80.50 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 2-#5 2-#5 None None Required Steel/Provided Steel (in²) 0.52/ 0.62 0.52/ 0.62 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 17.38 17.38 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)0.85 15 Max Average Unfactored Soil Bearing (ksf)0.85 15 Max Soil Bearing for Factored Design (ksf)1.03 6 Max Average Soil Bearing for Factored Design (ksf)1.03 6 Page 5/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 2 Footing Column Location:(7.00 - 88.29) Footing Orientation (deg):0.00 Column Orientation (deg):0.00 Length (ft):5.00 Width (ft):5.00 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:5 - #5 Width: 5 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS5X5X1/4 Base Plate Dimensions (in) 6.00 x 11.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 29.72 Pos. Live: 26.80 Neg. Live: -0.65 Pos. Roof: 18.26 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 30.91 1 29.87 1 Provided Shear: (kip) 42.83 Sec. 22.5.5.1 Eq (22.5.5.1) 39.74 Required Moment: (kip-ft) 51.53 1 46.91 1 Provided Moment: (kip-ft) 58.48 54.12 Required Punching Shear: (kip) 82.38 2 Provided Punching Shear: (kip)83.26 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 5-#5 5-#5 None None Required Steel/Provided Steel (in²) 1.36/ 1.55 1.34/ 1.55 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 13.35 13.35 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)2.69 15 Max Average Unfactored Soil Bearing (ksf)2.69 15 Max Soil Bearing for Factored Design (ksf)3.51 2 Max Average Soil Bearing for Factored Design (ksf)3.51 2 Page 6/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 8 Footing Column Location:(2 - C) Footing Orientation (deg):0.00 Column Orientation (deg):0.00 Length (ft):5.50 Width (ft):5.50 Thickness (ft):1.17 Bottom Reinf. Parallel to Length:6 - #5 Width: 6 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS5X5X5/16 Base Plate Dimensions (in) 11.00 x 11.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 37.42 Pos. Live: 36.58 Neg. Live: 0.00 Pos. Roof: 18.42 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 33.26 1 34.40 1 Provided Shear: (kip) 57.95 Sec. 22.5.5.1 Eq (22.5.5.1) 54.56 Required Moment: (kip-ft) 63.65 1 63.65 1 Provided Moment: (kip-ft) 86.68 81.45 Required Punching Shear: (kip) 104.56 2 Provided Punching Shear: (kip)125.30 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 6-#5 6-#5 None None Required Steel/Provided Steel (in²) 1.66/ 1.86 1.66/ 1.86 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 11.87 11.87 None None Bar Depth (in) 10.69 10.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)2.77 15 Max Average Unfactored Soil Bearing (ksf)2.77 15 Max Soil Bearing for Factored Design (ksf)3.72 2 Max Average Soil Bearing for Factored Design (ksf)3.72 2 Page 7/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 12 Footing Column Location:(3 - C) Footing Orientation (deg):0.00 Column Orientation (deg):0.00 Length (ft):6.00 Width (ft):6.00 Thickness (ft):1.17 Bottom Reinf. Parallel to Length:7 - #5 Width: 7 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS5X5X5/16 Base Plate Dimensions (in) 11.00 x 11.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 35.08 Pos. Live: 33.49 Neg. Live: 0.00 Pos. Roof: 14.48 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 42.23 1 43.47 1 Provided Shear: (kip) 63.22 Sec. 22.5.5.1 Eq (22.5.5.1) 59.52 Required Moment: (kip-ft) 84.55 1 84.55 1 Provided Moment: (kip-ft) 100.90 94.80 Required Punching Shear: (kip) 94.69 2 Provided Punching Shear: (kip)125.30 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 7-#5 7-#5 None None Required Steel/Provided Steel (in²) 1.82/ 2.17 1.93/ 2.17 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 10.90 10.90 None None Bar Depth (in) 10.69 10.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)2.14 15 Max Average Unfactored Soil Bearing (ksf)2.14 15 Max Soil Bearing for Factored Design (ksf)2.86 2 Max Average Soil Bearing for Factored Design (ksf)2.86 2 Page 8/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 16 Footing Column Location:(4 - C) Footing Orientation (deg):0.00 Column Orientation (deg):0.00 Length (ft):5.00 Width (ft):5.00 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:5 - #5 Width: 5 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS5X5X5/16 Base Plate Dimensions (in) 11.00 x 11.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 34.73 Pos. Live: 29.70 Neg. Live: 0.00 Pos. Roof: 12.70 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 28.83 1 29.87 1 Provided Shear: (kip) 42.83 Sec. 22.5.5.1 Eq (22.5.5.1) 39.74 Required Moment: (kip-ft) 46.91 1 46.91 1 Provided Moment: (kip-ft) 58.48 54.12 Required Punching Shear: (kip) 88.96 2 Provided Punching Shear: (kip)90.14 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 5-#5 5-#5 None None Required Steel/Provided Steel (in²) 1.30/ 1.55 1.34/ 1.55 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 13.35 13.35 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)2.81 15 Max Average Unfactored Soil Bearing (ksf)2.81 15 Max Soil Bearing for Factored Design (ksf)3.82 2 Max Average Soil Bearing for Factored Design (ksf)3.82 2 Page 9/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 19 Footing Column Location:(90.54 - 88.29) Footing Orientation (deg):0.00 Column Orientation (deg):0.00 Length (ft):4.00 Width (ft):4.00 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:4 - #5 Width: 4 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS5X5X1/4 Base Plate Dimensions (in) 11.00 x 11.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 22.31 Pos. Live: 21.60 Neg. Live: 0.00 Pos. Roof: 9.11 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 15.07 1 15.90 1 Provided Shear: (kip) 34.26 Sec. 22.5.5.1 Eq (22.5.5.1) 31.80 Required Moment: (kip-ft) 22.21 1 22.21 1 Provided Moment: (kip-ft) 46.78 43.29 Required Punching Shear: (kip) 59.27 2 Provided Punching Shear: (kip)90.14 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 4-#5 4-#5 None None Required Steel/Provided Steel (in²) 1.03/ 1.24 1.03/ 1.24 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 13.79 13.79 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)2.98 15 Max Average Unfactored Soil Bearing (ksf)2.98 15 Max Soil Bearing for Factored Design (ksf)4.12 2 Max Average Soil Bearing for Factored Design (ksf)4.12 2 Page 10/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 31 Footing Column Location:(133.50 - 88.29) Footing Orientation (deg):0.00 Column Orientation (deg):0.00 Length (ft):4.00 Width (ft):4.00 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:4 - #5 Width: 4 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS5X5X1/4 Base Plate Dimensions (in) 11.00 x 6.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 18.36 Pos. Live: 18.20 Neg. Live: 0.00 Pos. Roof: 15.70 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 15.07 1 17.57 1 Provided Shear: (kip) 34.26 Sec. 22.5.5.1 Eq (22.5.5.1) 31.80 Required Moment: (kip-ft) 22.21 1 25.07 1 Provided Moment: (kip-ft) 46.78 43.29 Required Punching Shear: (kip) 53.91 2 Provided Punching Shear: (kip)83.26 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 4-#5 4-#5 None None Required Steel/Provided Steel (in²) 1.03/ 1.24 1.03/ 1.24 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 13.79 13.79 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)2.88 15 Max Average Unfactored Soil Bearing (ksf)2.88 15 Max Soil Bearing for Factored Design (ksf)3.69 2 Max Average Soil Bearing for Factored Design (ksf)3.69 2 Page 11/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 7 Footing Column Location:(2 - D) Footing Orientation (deg):0.00 Column Orientation (deg):0.00 Length (ft):5.00 Width (ft):5.00 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:5 - #5 Width: 5 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS5X5X5/16 Base Plate Dimensions (in) 11.00 x 11.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 28.99 Pos. Live: 29.39 Neg. Live: 0.00 Pos. Roof: 15.59 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 28.83 1 29.87 1 Provided Shear: (kip) 42.83 Sec. 22.5.5.1 Eq (22.5.5.1) 39.74 Required Moment: (kip-ft) 46.91 1 46.91 1 Provided Moment: (kip-ft) 58.48 54.12 Required Punching Shear: (kip) 83.16 2 Provided Punching Shear: (kip)90.14 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 5-#5 5-#5 None None Required Steel/Provided Steel (in²) 1.30/ 1.55 1.34/ 1.55 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 13.35 13.35 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)2.65 15 Max Average Unfactored Soil Bearing (ksf)2.65 15 Max Soil Bearing for Factored Design (ksf)3.58 2 Max Average Soil Bearing for Factored Design (ksf)3.58 2 Page 12/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 11 Footing Column Location:(3 - D) Footing Orientation (deg):0.00 Column Orientation (deg):0.00 Length (ft):5.00 Width (ft):5.00 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:5 - #5 Width: 5 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS5X5X5/16 Base Plate Dimensions (in) 11.00 x 11.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 24.58 Pos. Live: 25.55 Neg. Live: 0.00 Pos. Roof: 12.30 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 28.83 1 29.87 1 Provided Shear: (kip) 42.83 Sec. 22.5.5.1 Eq (22.5.5.1) 39.74 Required Moment: (kip-ft) 46.91 1 46.91 1 Provided Moment: (kip-ft) 58.48 54.12 Required Punching Shear: (kip) 70.00 2 Provided Punching Shear: (kip)90.14 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 5-#5 5-#5 None None Required Steel/Provided Steel (in²) 1.30/ 1.55 1.34/ 1.55 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 13.35 13.35 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)2.26 15 Max Average Unfactored Soil Bearing (ksf)2.26 15 Max Soil Bearing for Factored Design (ksf)3.06 2 Max Average Soil Bearing for Factored Design (ksf)3.06 2 Page 13/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 15 Footing Column Location:(4 - D) Footing Orientation (deg):0.00 Column Orientation (deg):0.00 Length (ft):4.00 Width (ft):4.00 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:4 - #5 Width: 4 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS5X5X1/4 Base Plate Dimensions (in) 11.00 x 11.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 14.94 Pos. Live: 16.96 Neg. Live: 0.00 Pos. Roof: 7.42 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 15.16 4 16.00 4 Provided Shear: (kip) 34.26 Sec. 22.5.5.1 Eq (22.5.5.1) 31.80 Required Moment: (kip-ft) 22.34 4 22.34 4 Provided Moment: (kip-ft) 46.78 43.29 Required Punching Shear: (kip) 42.17 2 Provided Punching Shear: (kip)90.14 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 4-#5 4-#5 None None Required Steel/Provided Steel (in²) 1.03/ 1.24 1.03/ 1.24 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 13.79 13.79 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)2.22 15 Max Average Unfactored Soil Bearing (ksf)2.22 15 Max Soil Bearing for Factored Design (ksf)3.05 2 Max Average Soil Bearing for Factored Design (ksf)3.05 2 Page 14/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 27 Footing Column Location:(6.4 - D) Footing Orientation (deg):0.00 Column Orientation (deg):0.00 Length (ft):4.00 Width (ft):4.00 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:4 - #5 Width: 4 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS5X5X5/16 Base Plate Dimensions (in) 11.00 x 11.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 17.42 Pos. Live: 20.70 Neg. Live: 0.00 Pos. Roof: 7.26 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 15.24 4 16.08 4 Provided Shear: (kip) 34.26 Sec. 22.5.5.1 Eq (22.5.5.1) 31.80 Required Moment: (kip-ft) 22.45 4 22.45 4 Provided Moment: (kip-ft) 46.78 43.29 Required Punching Shear: (kip) 50.90 2 Provided Punching Shear: (kip)90.14 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 4-#5 4-#5 None None Required Steel/Provided Steel (in²) 1.03/ 1.24 1.03/ 1.24 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 13.79 13.79 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)2.54 15 Max Average Unfactored Soil Bearing (ksf)2.54 15 Max Soil Bearing for Factored Design (ksf)3.60 2 Max Average Soil Bearing for Factored Design (ksf)3.60 2 Page 15/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 32 Footing Column Location:(154.96 - 73.33) Footing Orientation (deg):0.00 Column Orientation (deg):0.00 Length (ft):4.00 Width (ft):4.00 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:4 - #5 Width: 4 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: W8X31 Base Plate Dimensions (in) 12.00 x 12.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 4.33 Pos. Live: 0.00 Neg. Live: 0.00 Pos. Roof: 3.68 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 13.74 1 14.57 1 Provided Shear: (kip) 34.26 Sec. 22.5.5.1 Eq (22.5.5.1) 31.80 Required Moment: (kip-ft) 20.04 1 20.04 1 Provided Moment: (kip-ft) 46.78 43.29 Required Punching Shear: (kip) 3.31 1 Provided Punching Shear: (kip)101.15 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 4-#5 4-#5 None None Required Steel/Provided Steel (in²) 1.03/ 1.24 1.03/ 1.24 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 13.79 13.79 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)0.65 13 Max Average Unfactored Soil Bearing (ksf)0.65 13 Max Soil Bearing for Factored Design (ksf)0.69 6 Max Average Soil Bearing for Factored Design (ksf)0.69 6 Page 16/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 33 Footing Column Location:(154.96 - 84.75) Footing Orientation (deg):0.00 Column Orientation (deg):0.00 Length (ft):4.00 Width (ft):4.00 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:4 - #5 Width: 4 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: W8X31 Base Plate Dimensions (in) 12.00 x 12.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 2.90 Pos. Live: 0.00 Neg. Live: 0.00 Pos. Roof: 3.53 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 13.74 1 14.57 1 Provided Shear: (kip) 34.26 Sec. 22.5.5.1 Eq (22.5.5.1) 31.80 Required Moment: (kip-ft) 20.04 1 20.04 1 Provided Moment: (kip-ft) 46.78 43.29 Required Punching Shear: (kip) 5.31 1 Provided Punching Shear: (kip)101.15 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 4-#5 4-#5 None None Required Steel/Provided Steel (in²) 1.03/ 1.24 1.03/ 1.24 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 13.79 13.79 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)0.55 13 Max Average Unfactored Soil Bearing (ksf)0.55 13 Max Soil Bearing for Factored Design (ksf)0.57 6 Max Average Soil Bearing for Factored Design (ksf)0.57 6 Page 17/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 3 Footing Column Location:(22.63 - 36.50) Footing Orientation (deg):90.00 Column Orientation (deg):0.00 Length (ft):2.00 Width (ft):2.00 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:2 - #5 Width: 2 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS4X4X3/16 Base Plate Dimensions (in) 10.00 x 10.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 1.71 Pos. Live: 3.03 Neg. Live: 0.00 Pos. Roof: 0.00 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) NA 0.30 2 Provided Shear: (kip) 0.00 Sec. 25.2.3 15.90 Sec. 22.5.5.1 Required Moment: (kip-ft) 2.06 2 2.06 2 Provided Moment: (kip-ft) 23.39 21.65 Required Punching Shear: (kip) 4.16 1 Provided Punching Shear: (kip)84.63 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 2-#5 2-#5 None None Required Steel/Provided Steel (in²) 0.52/ 0.62 0.52/ 0.62 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 17.38 17.38 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)1.33 11 Max Average Unfactored Soil Bearing (ksf)1.33 11 Max Soil Bearing for Factored Design (ksf)1.73 2 Max Average Soil Bearing for Factored Design (ksf)1.73 2 Page 18/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 4 Footing Column Location:(1.7 - E.7) Footing Orientation (deg):90.00 Column Orientation (deg):0.00 Length (ft):2.00 Width (ft):2.00 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:2 - #5 Width: 2 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS4X4X3/16 Base Plate Dimensions (in) 10.00 x 10.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 2.39 Pos. Live: 4.29 Neg. Live: 0.00 Pos. Roof: 0.00 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) NA 0.30 2 Provided Shear: (kip) 0.00 Sec. 25.2.3 15.90 Sec. 22.5.5.1 Required Moment: (kip-ft) 2.07 2 2.07 2 Provided Moment: (kip-ft) 23.39 21.65 Required Punching Shear: (kip) 3.21 1 Provided Punching Shear: (kip)84.63 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 2-#5 2-#5 None None Required Steel/Provided Steel (in²) 0.52/ 0.62 0.52/ 0.62 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 17.38 17.38 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)1.82 11 Max Average Unfactored Soil Bearing (ksf)1.82 11 Max Soil Bearing for Factored Design (ksf)2.43 2 Max Average Soil Bearing for Factored Design (ksf)2.43 2 Page 19/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 5 Footing Column Location:(28.04 - 36.50) Footing Orientation (deg):90.00 Column Orientation (deg):0.00 Length (ft):2.00 Width (ft):2.00 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:2 - #5 Width: 2 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS4X4X3/16 Base Plate Dimensions (in) 10.00 x 10.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 1.71 Pos. Live: 3.03 Neg. Live: 0.00 Pos. Roof: 0.00 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) NA 0.30 2 Provided Shear: (kip) 0.00 Sec. 25.2.3 15.90 Sec. 22.5.5.1 Required Moment: (kip-ft) 2.06 2 2.06 2 Provided Moment: (kip-ft) 23.39 21.65 Required Punching Shear: (kip) 4.16 1 Provided Punching Shear: (kip)84.63 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 2-#5 2-#5 None None Required Steel/Provided Steel (in²) 0.52/ 0.62 0.52/ 0.62 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 17.38 17.38 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)1.33 11 Max Average Unfactored Soil Bearing (ksf)1.33 11 Max Soil Bearing for Factored Design (ksf)1.73 2 Max Average Soil Bearing for Factored Design (ksf)1.73 2 Page 20/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 6 Footing Column Location:(1.9 - E.7) Footing Orientation (deg):90.00 Column Orientation (deg):0.00 Length (ft):2.00 Width (ft):2.00 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:2 - #5 Width: 2 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS4X4X3/16 Base Plate Dimensions (in) 10.00 x 10.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 2.39 Pos. Live: 4.29 Neg. Live: 0.00 Pos. Roof: 0.00 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) NA 0.30 2 Provided Shear: (kip) 0.00 Sec. 25.2.3 15.90 Sec. 22.5.5.1 Required Moment: (kip-ft) 2.07 2 2.07 2 Provided Moment: (kip-ft) 23.39 21.65 Required Punching Shear: (kip) 3.21 1 Provided Punching Shear: (kip)84.63 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 2-#5 2-#5 None None Required Steel/Provided Steel (in²) 0.52/ 0.62 0.52/ 0.62 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 17.38 17.38 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)1.82 11 Max Average Unfactored Soil Bearing (ksf)1.82 11 Max Soil Bearing for Factored Design (ksf)2.43 2 Max Average Soil Bearing for Factored Design (ksf)2.43 2 Page 21/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 9 Footing Column Location:(2.4 - F) Footing Orientation (deg):0.00 Column Orientation (deg):0.00 Length (ft):2.50 Width (ft):2.50 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:3 - #5 Width: 3 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS4X4X1/4 Base Plate Dimensions (in) 10.00 x 10.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 5.14 Pos. Live: 8.86 Neg. Live: 0.00 Pos. Roof: 0.00 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 2.43 2 2.96 2 Provided Shear: (kip) 21.41 Sec. 22.5.5.1 Eq (22.5.5.1) 19.87 Required Moment: (kip-ft) 4.75 2 4.75 2 Provided Moment: (kip-ft) 34.83 32.22 Required Punching Shear: (kip) 13.54 2 Provided Punching Shear: (kip)84.63 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 3-#5 3-#5 None None Required Steel/Provided Steel (in²) 0.65/ 0.93 0.65/ 0.93 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 11.69 11.69 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)2.38 11 Max Average Unfactored Soil Bearing (ksf)2.38 11 Max Soil Bearing for Factored Design (ksf)3.25 2 Max Average Soil Bearing for Factored Design (ksf)3.25 2 Page 22/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 23 Footing Column Location:(101.87 - 70.33) Footing Orientation (deg):90.00 Column Orientation (deg):0.00 Length (ft):4.50 Width (ft):4.50 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:4 - #5 Width: 4 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS5X5X1/4 Base Plate Dimensions (in) 11.00 x 11.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 32.85 Pos. Live: 11.98 Neg. Live: 0.00 Pos. Roof: 8.02 Neg. Roof: -0.15 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 21.45 1 22.39 1 Provided Shear: (kip) 38.54 Sec. 22.5.5.1 Eq (22.5.5.1) 35.77 Required Moment: (kip-ft) 33.04 1 33.04 1 Provided Moment: (kip-ft) 46.97 43.48 Required Punching Shear: (kip) 56.29 2 Provided Punching Shear: (kip)90.14 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 4-#5 4-#5 None None Required Steel/Provided Steel (in²) 1.17/ 1.24 1.17/ 1.24 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 15.79 15.79 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)2.51 15 Max Average Unfactored Soil Bearing (ksf)2.51 15 Max Soil Bearing for Factored Design (ksf)3.09 2 Max Average Soil Bearing for Factored Design (ksf)3.09 2 Page 23/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 21 Footing Column Location:(97.33 - 9.50) Footing Orientation (deg):0.00 Column Orientation (deg):0.00 Length (ft):4.00 Width (ft):4.00 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:4 - #5 Width: 4 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: 8x24 Base Plate Dimensions (in) 0.00 x 0.00 Percent of overhang to assume Rigid: 0.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 18.77 Pos. Live: 0.00 Neg. Live: 0.00 Pos. Roof: 22.72 Neg. Roof: -0.56 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 4.47 6 16.11 6 Provided Shear: (kip) 34.26 Sec. 22.5.5.1 Eq (22.5.5.1) 31.80 Required Moment: (kip-ft) 8.10 6 22.49 6 Provided Moment: (kip-ft) 46.78 43.29 Required Punching Shear: (kip) 43.97 6 Provided Punching Shear: (kip)111.81 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (b) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 4-#5 4-#5 None None Required Steel/Provided Steel (in²) 1.03/ 1.24 1.03/ 1.24 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 13.79 13.79 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)2.74 13 Max Average Unfactored Soil Bearing (ksf)2.74 13 Max Soil Bearing for Factored Design (ksf)3.68 6 Max Average Soil Bearing for Factored Design (ksf)3.68 6 Page 24/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 28 Footing Column Location:(121.08 - 9.50) Footing Orientation (deg):0.00 Column Orientation (deg):0.00 Length (ft):4.00 Width (ft):4.00 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:4 - #5 Width: 4 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: 8x24 Base Plate Dimensions (in) 0.00 x 0.00 Percent of overhang to assume Rigid: 0.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 18.47 Pos. Live: 0.00 Neg. Live: 0.00 Pos. Roof: 21.99 Neg. Roof: -0.48 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 4.46 6 16.09 6 Provided Shear: (kip) 34.26 Sec. 22.5.5.1 Eq (22.5.5.1) 31.80 Required Moment: (kip-ft) 8.09 6 22.46 6 Provided Moment: (kip-ft) 46.78 43.29 Required Punching Shear: (kip) 42.46 6 Provided Punching Shear: (kip)111.81 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (b) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 4-#5 4-#5 None None Required Steel/Provided Steel (in²) 1.03/ 1.24 1.03/ 1.24 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 13.79 13.79 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)2.67 13 Max Average Unfactored Soil Bearing (ksf)2.67 13 Max Soil Bearing for Factored Design (ksf)3.58 6 Max Average Soil Bearing for Factored Design (ksf)3.58 6 Page 25/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 13 Footing Column Location:(59.08 - 40.83) Footing Orientation (deg):0.00 Column Orientation (deg):0.00 Length (ft):3.00 Width (ft):3.00 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:3 - #5 Width: 3 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS4X4X1/4 Base Plate Dimensions (in) 10.00 x 10.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 7.91 Pos. Live: 14.28 Neg. Live: 0.00 Pos. Roof: 0.00 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 6.04 2 6.69 2 Provided Shear: (kip) 25.70 Sec. 22.5.5.1 Eq (22.5.5.1) 23.85 Required Moment: (kip-ft) 9.10 2 9.10 2 Provided Moment: (kip-ft) 35.09 32.47 Required Punching Shear: (kip) 25.52 2 Provided Punching Shear: (kip)84.63 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 3-#5 3-#5 None None Required Steel/Provided Steel (in²) 0.77/ 0.93 0.77/ 0.93 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 14.69 14.69 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)2.61 11 Max Average Unfactored Soil Bearing (ksf)2.61 11 Max Soil Bearing for Factored Design (ksf)3.59 2 Max Average Soil Bearing for Factored Design (ksf)3.59 2 Page 26/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 14 Footing Column Location:(72.25 - 40.83) Footing Orientation (deg):0.00 Column Orientation (deg):0.00 Length (ft):2.50 Width (ft):2.50 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:3 - #5 Width: 3 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS4X4X1/4 Base Plate Dimensions (in) 10.00 x 10.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 3.39 Pos. Live: 5.84 Neg. Live: 0.00 Pos. Roof: 0.00 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 2.41 2 2.95 2 Provided Shear: (kip) 21.41 Sec. 22.5.5.1 Eq (22.5.5.1) 19.87 Required Moment: (kip-ft) 4.73 2 4.73 2 Provided Moment: (kip-ft) 34.83 32.22 Required Punching Shear: (kip) 6.64 2 Provided Punching Shear: (kip)84.63 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 3-#5 3-#5 None None Required Steel/Provided Steel (in²) 0.65/ 0.93 0.65/ 0.93 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 11.69 11.69 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)1.62 11 Max Average Unfactored Soil Bearing (ksf)1.62 11 Max Soil Bearing for Factored Design (ksf)2.14 2 Max Average Soil Bearing for Factored Design (ksf)2.14 2 Page 27/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 20 Footing Column Location:(95.21 - 70.33) Footing Orientation (deg):0.00 Column Orientation (deg):0.00 Length (ft):5.00 Width (ft):5.00 Thickness (ft):1.33 Bottom Reinf. Parallel to Length:6 - #5 Width: 6 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: 8x24 Base Plate Dimensions (in) 0.00 x 0.00 Percent of overhang to assume Rigid: 0.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 19.50 Pos. Live: 7.90 Neg. Live: 0.00 Pos. Roof: 2.53 Neg. Roof: -0.13 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 8.70 1 22.82 1 Provided Shear: (kip) 62.54 Sec. 22.5.5.1 Eq (22.5.5.1) 59.46 Required Moment: (kip-ft) 22.10 1 46.12 1 Provided Moment: (kip-ft) 103.14 97.91 Required Punching Shear: (kip) 19.35 2 Provided Punching Shear: (kip)192.33 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (b) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 6-#5 6-#5 None None Required Steel/Provided Steel (in²) 1.73/ 1.86 1.73/ 1.86 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 10.67 10.67 None None Bar Depth (in) 12.69 12.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)1.29 11 Max Average Unfactored Soil Bearing (ksf)1.29 11 Max Soil Bearing for Factored Design (ksf)1.49 2 Max Average Soil Bearing for Factored Design (ksf)1.49 2 Page 28/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 22 Footing Column Location:(101.87 - 64.33) Footing Orientation (deg):90.00 Column Orientation (deg):0.00 Length (ft):3.50 Width (ft):3.50 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:3 - #5 Width: 3 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: 8x24 Base Plate Dimensions (in) 0.00 x 0.00 Percent of overhang to assume Rigid: 0.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 13.12 Pos. Live: 0.45 Neg. Live: 0.00 Pos. Roof: 0.16 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 0.36 1 10.42 1 Provided Shear: (kip) 29.98 Sec. 22.5.5.1 Eq (22.5.5.1) 27.82 Required Moment: (kip-ft) 3.93 1 14.04 1 Provided Moment: (kip-ft) 35.27 32.65 Required Punching Shear: (kip) 3.89 2 Provided Punching Shear: (kip)111.81 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (b) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 3-#5 3-#5 None None Required Steel/Provided Steel (in²) 0.91/ 0.93 0.91/ 0.93 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 17.68 17.68 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)1.25 15 Max Average Unfactored Soil Bearing (ksf)1.25 15 Max Soil Bearing for Factored Design (ksf)1.50 1 Max Average Soil Bearing for Factored Design (ksf)1.50 1 Page 29/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 29 Footing Column Location:(131.50 - 110.92) Footing Orientation (deg):0.00 Column Orientation (deg):0.00 Length (ft):3.50 Width (ft):3.50 Thickness (ft):1.00 Bottom Reinf. Parallel to Length:3 - #5 Width: 3 - #5 - All Bars Hooked Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS6X6X5/16 Base Plate Dimensions (in) 6.50 x 12.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 13.06 Pos. Live: 12.52 Neg. Live: 0.00 Pos. Roof: 16.19 Neg. Roof: -0.14 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 10.86 8 9.97 8 Provided Shear: (kip) 29.98 Sec. 22.5.5.1 Eq (22.5.5.1) 27.82 Required Moment: (kip-ft) 15.73 8 13.41 8 Provided Moment: (kip-ft) 35.27 32.65 Required Punching Shear: (kip) 42.06 6 Provided Punching Shear: (kip)88.07 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (a) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 3-#5 3-#5 None None Required Steel/Provided Steel (in²) 0.91/ 0.93 0.91/ 0.93 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 17.68 17.68 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)2.97 15 Max Average Unfactored Soil Bearing (ksf)2.97 15 Max Soil Bearing for Factored Design (ksf)3.90 6 Max Average Soil Bearing for Factored Design (ksf)3.90 6 Page 30/31 Spread Footing Design RAM Foundation v17.04.03.05 JSC DataBase: 23019 Date: 03/22/23 09:34:19 Building Code: IBC Design Code: ACI318-14 FOOTING DESIGN Footing # 1 Footing Column Location:(7.00 - 59.00) Footing Orientation (deg):90.00 Column Orientation (deg):0.00 Length (ft):5.00 Width (ft):5.00 Thickness (ft):1.00 Bottom Reinf. Parallel to Length: 8 - #5 Width: 8 - #5 Concrete f'c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: 8x24 Base Plate Dimensions (in) 0.00 x 0.00 Percent of overhang to assume Rigid: 0.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 22.19 Pos. Live: 16.28 Neg. Live: -0.78 Pos. Roof: 8.70 Neg. Roof: 0.00 CONCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 15.51 1 29.87 1 Provided Shear: (kip) 42.83 Sec. 22.5.5.1 Eq (22.5.5.1) 39.74 Required Moment: (kip-ft) 22.48 1 46.91 1 Provided Moment: (kip-ft) 50.13 71.01 Required Punching Shear: (kip) 44.32 2 Provided Punching Shear: (kip)111.81 Sec. 22.6.5.1(a) Table 22.6.5.2 Eq (b) REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 8-#5 8-#5 None None Required Steel/Provided Steel (in²) 2.37/ 2.48 1.59/ 2.48 None None Required Steel Code Ref. Sec. 24.4.3.2 Sec. 24.4.3.2 None None Bar Spacing (in) 7.62 7.62 None None Bar Depth (in) 8.69 8.06 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf)3.00 Max Unfactored Soil Bearing (ksf)1.78 15 Max Average Unfactored Soil Bearing (ksf)1.78 15 Max Soil Bearing for Factored Design (ksf)2.28 2 Max Average Soil Bearing for Factored Design (ksf)2.28 2 Page 31/31 Spread Footing Design With Base Moment:Entry canopy footings 5.5ftx5.5ftx16in Soil bearing pressure:qa 3000 psf:= Unfactored Column Dead Load:Pd 2.1 k:= Unfactored Column Total Load:P 2.1 3.3+( ) k:= Factored Column Load (Re: UBC 1612.2.1 & 1909.2):Pu 1.2 2.1( )1.6 3.3( )+[ ] k:= Unfactored Base Moment M 0.6 3k 13.5ft:= Factored Base Moment (Re: UBC 1612.2.1 & 1909.2):Mu 3k 13.5ft:= Pedistal Width:c 24 in:= Pedistal Length:b 24 in:= Pedistal Height:Ph 24 in:= Estimated Ftg Depth:h 16 in:= Estimated Ftg Width:B 5.5 ft:= Estimated Ftg Length (direction of moment):L 5.5 ft:= Concrete Weight:wc 150 pcf:= Soil Height Above Footing:s Ph:= Soil Weight:ws 110 pcf:= Compressive Strength of Concrete:fc 3000 psi:= Yeild Stress of Reinforcing Steel:fy 60 ksi:= Workmanship Factor:θ 0.85:= Flexure Factor:θ1 0.90:= Check Stbility Resisting Moment: Rm Pd L 2c bPhwcL 2+h BL2 2wc+s B3 8L2 ws+:=Rm 39.4k ft= Over Turning Moment: M 24.3k ft=Om M:= Saftey Factor: FS Rm Om:=FS 1.6=> 1.5 OK Ultimate Bearing Pressure: qu Pu P qa:=qu 4333.3psf= Proportion Footing For Non-uniform Pressure Distribution: Load eccentricity e Mu c bPhwcL 2h BL2 2wc+s L Bc b-( )L 2ws+  - Pu h BLwc+:= e 0.338ft=(where e < Length/6 to be in middle third) Estimate Footing Width and Length:where: 1) qu max less than qu 2) e less than L/6 Try:B Pu qu:= Width B 1.342ft= Length L 1 in:=(Guess to start) Given qu Pu B L1 6 e L+ = L Find L( ):=L 2.451ft= Use Footing Size:B 5.5 ft:=L 5.5 ft:= Calculate Footing Pressure Distribution: Max pressure qumax Pu B L1 6 e L+ :=qumax 352.9psf=<qu 4333.333psf= Min pressure qumin Pu B L1 6 e L- :=qumin 162.8psf=> 0 psf (OK e < L/3) e 0.338ft=<L 3 1.833ft=Check e < L/3: Check Punching Shear average qu: quavg qumax qumin+ 2:= β c b:= Vc 4 θfc psi:= Vc if β 2.0Vc, 2 4 β+ θfc psi,  psi:=Vc 186.2psi= d 1 in:=(Guess to start) Given L Bb c-( ) quavg 4d2 Vc quavg 4+ d Vc quavg 2+ c+= dp Find d( ):=dp 0.371in= Check Wide Beam Shear: Vc 2 θfc psipsi:=Vc 93.1psi= d 1 in:=Input trial Guess Vc1 quavg qumax qumin- 2 L L 2 c 2+d+ +  L 2 c 2-d-  d:= Verify: Vc1 45.016psi=<Vc 93.113psi=(Change d as needed) Required Footing Depth: d if d dpdp, d, ( ):=d 1in= Use footing thickness of:h 16 in:= Depth to reinforcing:d 13 in:= Required Steel Reinforcing In The Long Direction :(Direction of moment) (Pressure adjacent to column face) qf qumin qumax qumin- L L 2 c 2+ +:=qf 292.4psf= Required Moment/foot strip: Mu qf 2 L 2 c 2-  2   ftqumax qf-( ) L 2 c 2-  2    ft 3+:= Mu 509.5ft lb= b 12 in:=(Use 12" wide strip) As 1 in 2:=(Guess to start) Given Mu θ1 Asfyd As fy 1.7 fcb- =As Find As( ):=As 0.009in 2= Check reinforcement ratio: ρ As b d:=ρ 0.00006= ρmin .0018:=(Spread footings and slabs/ 60 Grade - ACI 7.12.2) Factor b1:β1 if fc 4000 psi.85, .85 0.05 fc 4000 psi- 1000 psi- ,  := β1 if β1 .65β1, 0.65, ( ):=β1 0.85= Balanced Steel Ratio: ρb .85 β1fc fy 87000 psi 87000 psify+:=ρb 0.021= ρmax .75 ρb:=ρmax 0.01604= Verify rmin < r < rmax ρ if ρ ρmin1.33 ρ, ρ, ( ):=ρ 0.00007= ρ if ρ ρmaxρ, 1000, ( ):=ρ 0.00007= Area of steel in long direction/foot: As ρ bh:=As 0.014in 2= Footing Size: Depth:h 16in= Depth to steel:d 13in= Width:B 5.5ft= Length:L 5.5ft= Use: #5 spaced @ 6" o.c. Ea. Way top and bottom of footing F.F. Level 1 100'-0"F.F. Level 1100'-0" F.F. Level 2 113'-5" F.F. Level 2113'-5" ROOF PLAN 140'-3" ROOF PLAN140'-3" B.O. FOOTING 97'-0"B.O. FOOTING97'-0" F.F. LEVEL 3 126'-10" F.F. LEVEL 3126'-10" DECK BEARING 140'-10" DECK BEARING140'-10" Misc Items WCA Structural Engineering, Inc. 442 North Main Street, STE 200 Bountiful, UT 84010 Title :Page : 1 Dsgnr:JC Date: 17 MAR 2023 Description.... This Wall in File: i:\2023\23019 - clarity - connections therapy rexburg id\calculations\23019.RPX RetainPro (c) 1987-2019, Build 11.20.03.31 Cantilevered Retaining Wall Code: IBC 2018,ACI 318-14,TMS 402-16License : KW-06056230License To : WCA STRUCTURAL ENGINEERING INC. Project Name/Number : 23019 2.00 8.33 0.00 24.00 0.0 Criteria Retained Height = ft Wall height above soil = ft Slope Behind Wall Height of Soil over Toe in Water height over heel = ft = = Load Factors Building Code IBC 2018,ACI Dead Load 1.200 Live Load 1.600 Earth, H 1.600 Wind, W 1.000 Seismic, E 1.000 Soil Data and Lateral Earth Pressure 3,000.0 45.0 250.0 Active Heel Pressure = psf/ft = 110.00=pcfSoil Density, Heel = Passive Pressure = psf/ft Allow Soil Bearing = psf Soil Density, Toe 0.00 pcf Footing||Soil Friction = 0.400 Soil height to ignore for passive pressure = 12.00 in Equivalent Fluid Pressure Method Surcharge Loads 0.0 0.0Surcharge Over Heel = psf Surcharge Over Toe psf Used To Resist Sliding & Overturning Used for Sliding & Overturning = 0.0 0.0 0.0 Axial Load Applied to Stem Axial Dead Load = lbs Axial Live Load = lbs Axial Load Eccentricity = in Lateral Load = 0.0 #/ft Wind on Exposed Stem psf38.0= Lateral Load Applied to Stem ...Height to Top = 0.00 ft ...Height to Bottom = 0.00 ft (Strength Level) Load Type (Strength Level) Wind (W)= Wind on Exposed Stem Adjacent Footing Load Wall to Ftg CL Dist = 0.00 ft Adjacent Footing Load =0.0 lbs Footing Type Line Load Footing Width = 0.00 ft Eccentricity = 0.00 in = 0.0 ft Base Above/Below Soil =Poisson's Ratio 0.300 at Back of Wall WCA Structural Engineering, Inc. 442 North Main Street, STE 200 Bountiful, UT 84010 Title :Page : 2 Dsgnr:JC Date: 17 MAR 2023 Description.... This Wall in File: i:\2023\23019 - clarity - connections therapy rexburg id\calculations\23019.RPX RetainPro (c) 1987-2019, Build 11.20.03.31 Cantilevered Retaining Wall Code: IBC 2018,ACI 318-14,TMS 402-16License : KW-06056230License To : WCA STRUCTURAL ENGINEERING INC. Project Name/Number : 23019 Wall Design Summary Stability Ratios Overturning = 1.64 OK Sliding = 4.06 OK Soil Bearing Total Bearing Load = 1,479 lbs ...resultant ecc. = 9.42 in Soil Pressure @ Toe = 1,309 psf OK Soil Pressure @ Heel = 0 psf OK Allowable = 3,000 psf Soil Pressure Less Than Allowable ACI Factored @ Toe = 1,833 psf ACI Factored @ Heel = 0 psf Footing Shear @ Toe = 5.0 psi OK Footing Shear @ Heel = 5.2 psi OK Allowable = 82.2 psi * Vertical component of active lateral soil pressure IS considered in the calculation of soil bearing pressures. lbs *Includes water table effect lbs 0.0 1,478.9 Totals = 0.0 75.2 Seismic-Self-weight 0.0 Sliding Seismic Load 0.0 450.0 0.0 0.0 Added Lateral Load 697.0 189.9 0.0 Load @ Stem Above Soil 0.0 0.0 0.0 Surcharge Over Toe 0.0 0.0 0.0 Adjacent Footing 0.0 0.0 lbs Surcharge over Heel lbs 202.5 Force Omit Heel Active Pressure Vertical Forces Force ** Lateral Forces Lateral on Key Total Vertical Loads 392.4 Vert. Component Sliding Calcs Sloped Soil Over Heel Lateral Sliding Force Surcharge Over Heel = 392.4 Axial Dead Load on Stem Adjacent Footing Load lbs Soil Over Toe less 100% Passive Force less 100% Friction Force Added Force Req'd ....for 1.5 Stability = 0.0= 591.6 1,000.0 = = 0.0 - lbs lbs lbs OK lbs OK - Axial Live Load on Stem * Surcharge Over Toe Earth @ Stem Transitions Stem Weight(s) Key Weight Footing Weight * Axial live load NOT included in total displayed , or used for overturning Resisting Forces Sliding Forces or sliding resistance, but is included for soil pressure calculations. Buoyant Force 0.0 0.0Water Over Heel 0.0Soil Over Heel (below water table, if any) Soil Over Heel (above water table, if any) 256.7 Hydrostatic Force 0.0 0.0Heel Active Pressure (below water table, if any) Heel Active Pressure (above water table, if any) 202.5 WCA Structural Engineering, Inc. 442 North Main Street, STE 200 Bountiful, UT 84010 Title :Page : 3 Dsgnr:JC Date: 17 MAR 2023 Description.... This Wall in File: i:\2023\23019 - clarity - connections therapy rexburg id\calculations\23019.RPX RetainPro (c) 1987-2019, Build 11.20.03.31 Cantilevered Retaining Wall Code: IBC 2018,ACI 318-14,TMS 402-16License : KW-06056230License To : WCA STRUCTURAL ENGINEERING INC. Project Name/Number : 23019 Resisting Moments Force Distance Moment Soil Over Heel 256.7 lbs 2.42 ft 620.3 ft-# Sloped Soil Over Heel 0.0 Surcharge Over Heel 0.0 Adjacent Footing Load 0.0 Axial Dead Load on Stem 0.0 Axial Live Load on Stem * 0.0 Soil Over Toe 0.0 0.58 Surcharge Over Toe 0.0 Stem Weight(s) 697.0 1.50 1,045.5 Earth @ Stem Transitions 0.0 Footing Weight 450.0 1.50 675.0 Key Weight 0.0 1.08 Vert. Component 75.2 3.00 225.6 Total Vertical Loads 1,478.9 lbs 2,566.4 ft-# Eccentricity -9.9 Overturning in * Axial live load NOT included in total displayed, or used for overturning or sliding resistance, but is included for soil pressure calculations. Resisting Moment Resisting Moments 0.0Water Table Soil Over Heel (below water table, if any) 0.0 620.32.42256.7Soil Over Heel (above water table, if any) Overturning Moments Force Distance Moment lbs ft ft-# Surcharge over Heel 0.0 Adjacent Footing 0.0 Surcharge Over Toe 0.0 Load @ Stem Above Soil 189.9 7.17 1,360.8 Added Lateral Load 0.0 Seismic Load 0.0 Seismic-Self-weight 0.0 Totals =392.4 lbs Overturning Moment 1,563.3 ft-# Overturning Overturning Moments Buoyant Force 0.0 0.0Hydrostatic Force Heel Active Pressure (below water table, if any) 0.0 202.51.00202.5Heel Active Pressure (above water table, if any) WCA Structural Engineering, Inc. 442 North Main Street, STE 200 Bountiful, UT 84010 Title :Page : 4 Dsgnr:JC Date: 17 MAR 2023 Description.... This Wall in File: i:\2023\23019 - clarity - connections therapy rexburg id\calculations\23019.RPX RetainPro (c) 1987-2019, Build 11.20.03.31 Cantilevered Retaining Wall Code: IBC 2018,ACI 318-14,TMS 402-16License : KW-06056230License To : WCA STRUCTURAL ENGINEERING INC. Project Name/Number : 23019 Stem Design Summary Masonry Block Type = Medium Weight 2nd Bottom Stem OK Stem OK Design Height Above Ftg = 2.33ft 0.00 Wall Material Above "Ht" = Masonry Concrete Thickness = 8.00 8.00 Rebar Size = ##5 4 Rebar Spacing = 24.00 12.00 Rebar Placed at = Center Center Design Data fb/FB + fa/Fa = 0.692 0.598 Total Force @ Section = 182.4lbs Moment....Actual = 729.6ft-# Moment.....Allowable = 1,053.1 3,423.0ft-# Shear.....Actual = 5.8psi Shear.....Allowable = 52.5 82.2psi Wall Weight = 58.0 100.0psf Rebar Depth 'd' = 3.75in 4.00 Masonry Data f'm = 2,000psi Fs =psi 24,000 Solid Grouting = No Modular Ratio 'n'= 16.11 Short Term Factor = 1.000 Equiv. Solid Thick.=5.20in Concrete Data f'c = 3,000.0psi Fy = 60,000.0 Masonry Design Method ASD= psi Service Level = 460.5lbsStrength Level Service Level Strength Level = 2,047.5ft-# Service Level Strength Level = 9.6psi Design Method = ASD LRFD Anet = 31.69in2 WCA Structural Engineering, Inc. 442 North Main Street, STE 200 Bountiful, UT 84010 Title :Page : 5 Dsgnr:JC Date: 17 MAR 2023 Description.... This Wall in File: i:\2023\23019 - clarity - connections therapy rexburg id\calculations\23019.RPX RetainPro (c) 1987-2019, Build 11.20.03.31 Cantilevered Retaining Wall Code: IBC 2018,ACI 318-14,TMS 402-16License : KW-06056230License To : WCA STRUCTURAL ENGINEERING INC. Project Name/Number : 23019 Concrete Stem Rebar Area Details Bottom Stem Vertical Reinforcing Horizontal Reinforcing As (based on applied moment) : 0.1236 in2/ft (4/3) * As : 0.1648 in2/ft Min Stem T&S Reinf Area 0.447 in2 200bd/fy : 200(12)(4)/60000 : 0.16 in2/ft Min Stem T&S Reinf Area per ft of stem Height : 0.192 in2/ft 0.0018bh : 0.0018(12)(8) : 0.1728 in2/ft Horizontal Reinforcing Options : ============ One layer of : Two layers of : Required Area : 0.16 in2/ft #4@ 12.50 in #4@ 25.00 in Provided Area : 0.2 in2/ft #5@ 19.38 in #5@ 38.75 in Maximum Area : 0.6503 in2/ft #6@ 27.50 in #6@ 55.00 in 1.17 1.83 12.00 =Min. As % 0.0018 f'c = 3,000 psiToe Width = ft Heel Width = Key Distance from Toe Key Depth Key Width 0.00 0.00 1.08 =in =in =ft @ Top = Footing Thickness = in 3.00 ft = Rebar Cover = 2.00 in@ Bottom 3.00 in Total Footing Width = 150.00 pcfFooting Concrete Density Fy = 60,000 psi Footing Data Footing Torsion, Tu = Toe Heel ft-lbs Footing Design Results 0.00 Key: Footing Allow. Torsion, phi Tu = = No key defined ft-lbs Factored Pressure If torsion exceeds allowable, provide supplemental design for footing torsion. Mu' : Upward 0.00 Mu' : Downward Mu: Design Actual 1-Way Shear Allow 1-Way Shear Toe: #4@ 9.25 in, #5@ 14.35 in, #6@ 20.37 in, #7@ 27.77 in, #8@ 36.57 in, #9@ 46 #4@ 9.25 in, #5@ 14.35 in, #6@ 20.37 in, #7@ 27.77 in, #8@ 36.57 in, #9@ 46 = None Spec'd = = = = = 1,833 12,256 3,626 719 4.97 82.16 Heel: 0 4 443 3 5.24 82.16 psf ft-# ft-# ft-# psi psi Heel Reinforcing = # 6 @ 16.00 in Other Acceptable Sizes & Spacings Key Reinforcing Toe Reinforcing = # 7 @ 16.00 in Min footing T&S reinf Area Min footing T&S reinf Area per foo If two layers of horizontal bars: 0.78 0.26 #4@ 18.52 in #5@ 28.70 in #6@ 40.74 in in2 in2 /ft If one layer of horizontal bars: #4@ 9.26 in #5@ 14.35 in #6@ 20.37 in WCA Structural Engineering, Inc. 442 North Main Street, STE 200 Bountiful, UT 84010 Title :Page : 6 Dsgnr:JC Date: 17 MAR 2023 Description.... This Wall in File: i:\2023\23019 - clarity - connections therapy rexburg id\calculations\23019.RPX RetainPro (c) 1987-2019, Build 11.20.03.31 Cantilevered Retaining Wall Code: IBC 2018,ACI 318-14,TMS 402-16License : KW-06056230License To : WCA STRUCTURAL ENGINEERING INC. Project Name/Number : 23019 Tilt Horizontal Deflection at Top of Wall due to settlement of soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 250.0 pci Horizontal Defl @ Top of Wall (approximate only) 0.125 in The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.