Loading...
HomeMy WebLinkAboutSTRUCTURAL CALCS - 22-00130 - Valley Wide Coop - Fuel Canopy AdditionCanopy Supplied by: JIMCO SALES, INC. 3113 St. Louis Ave. Fort Worth, TX 76110 Structural Design by: #22-1071R0 25 pages of Calculations STRUCTURAL CALCULATIONS 24'x108' FUELING CANOPY MVE #22-0152 VALLEY WIDE CO-OP ADDITION 1175 West Main Street, Rexburg, Idaho MAR 03 2022 Page: Job: Date: Subject: By: CANOPY SPECIFICATIONS: Length ft Total Height of Canopy ft max. Width ft Number of Column Rows Fascia Height ft Number of Columns/Row Canopy Clear Height ft max. Site Elevation ft CODE: Dead and Live Loads: Total Canopy Dead Load psf Canopy Area ft^2 Dead Load on Purlins psf Mansard Roof Area ft^2 Mansard Dead Load psf Total Canopy Dead Load kips Ground Snow Load psf Max. Column Trib. Width ft Roof Snow Load psf ft Thermal Factor Max. Column Trib. Area ft^2 Importance Factor Exposure Factor Roof Live Load psf Live Load Reduction per IBC 1607.13.2.1 At = ft^2 F = R1 = R2 = psf (for columns & footings) Earthquake Design Data: Wind Design Data: Site Class (default) Basic Wind Speed (V) mph Seismic Design Category ASD Wind Speed (Vasd)mph SS gSDS g Exposure S1 gSD1 g Risk Category Importance Factor Rainfall Intensity:in/hr From ASCE 7-16 Section 12.8 T = Ct Hn^x =TL =from ASCE 7-16 Fig 22-14 R = Ct = x = for T<TL Cs max = Cs min = Hn =for T>TL Cs max =Cs min =for S1>0.6 Ts = SD1/SDS = (Eqn. 12.8-2) Cs for design =OK For SDC = D, E, or F Ω and ρ need not be used in the same load combinations (ASCE 12.4). ρ = 1.3 Therefore, the canopy has been designed for Ω = ρ = T<1.5Ts, Therefore, site specific ground motion analysis not required. 1.25 5 VALLEY WIDE CO-OP ADDITION CANOPY DESIGN CRITERIA 4 108 24 3 10 42 50 Max. Column Trib. Length 486017 20 2 0 0 1.2 1.0 The canopy is classified as cantilevered column system detailed to conform to the requirements for Steel Ordinary Cantilever Column Systems as per ASCE 7-16 Table 12.2-1 and has been designed using the Equivalent Lateral Force Procedure as per Section 12.8. 0.141 1 IBC 2018 12 105 C 1.0 20 0.218 2592 25.92 28 MVE #22-0152 JIMCO SALES, INC. #22-1071R0 02/26/22 CRH D 0.359 336 0.362 Reduced Live Load (Lr) 1.5 81 1.0 D II 336 0.86 1.00 0 17.3 1.3 0.29 0.6 0.18 6 0.02 0.75 0.971 18.67 32.44 0.159 0.056 Page: Job: Date: Subject: By: Basic Wind Speed (V) = mph Exposure (Section 26.7) = The canopy's fundamental natural frequency Risk Category = is greater than 1 Hz, and is therefore rigid as Canopy Clear Height = ft defined in Section 26.2. Therfore, as per Fascia Height = ft Section 26.11.1, G = Mean Roof Height = ft Kd (Table 26.6-1) = Wind Profile Area (As) = ft^2 Ke (Table 26.9-1) = Site Elevation = ft Note:Topographic effects need not be applied, therefore Kht = Kpt = 1.0. α (Table 26.11-1) = zg (Table 26.11-1) = ft For Open Buildings: For Parapets (Fascia Panels): h = ft p = ft Kh = 2.01 (h/zg)^2/α = Kp = 2.01 (p/zg)^2/α = qh = 0.00256 (Kh) (Kht) (Kd) (Ke) (V^2)qp = 0.00256 (Kp) (Kpt) (Kd) (Ke) (V^2) Therefore, qh = psf Therefore, qp = psf Top of Windward Fascia p1 = ft Top of Leeward Fascia p2 =ft Bottom of Windward Fascia z1 = ft Bottom of Leeward Fascia z2 =ft Windward Fascia Height = ft Leeward Fascia Height = ft Parapet Wind Pressure for MWFRS pp = qpGCpn From Section 27.3.4, Windward GCpn = Leeward GCpn = Windward Parapet Pressure =psf (i.e. towards fascia) Leeward Parapet Pressure =psf (i.e. away from fascia) Canopy Length =ft THEREFORE: Total Horizontal Force (F) = lbs = kips B = ft L = ft Θ = degrees From Figure 27.3-4, Worst Case CN =Therefore, Design Uplift Pressure = psf From Figure 27.3-4, Worst Case CN =Therefore, Design Down Pressure =psf 9.5 0.85 Velocity Pressure (Section 26.10.2, Table 26.11-1) 324 900 -16.5 0 13881.7 13.88 0.85 0.876 MWFRS Horizontal Forces (Section 27.3.4) 17.6 Clear Leeward or Windward Flow will control design (obstructions always < 50%). -18.1 17 17.42 3 2.583 1.5 -1.0 4860 Ground Elevation Factor (Section 26.9) 0.84 2 CRH MVE #22-0152 JIMCO SALES, INC. #22-1071R0 02/26/22 VALLEY WIDE CO-OP ADDITION 3 ASCE 7-16 WIND FORCES (CHAPTER 27 DIRECTIONAL PROCEDURE) 105 II 17 C Open Building with Monoslope Roof (Section 27.3.2) with fascia panels as Parapets (Section 27.3.4) Gust Effect Factor (Section 26.11) 108 17.417 17.417 20 0.902 18.1 20 20 27.2 See the Unbalanced Loads page for MWFRS unbalanced wind loads on single row canopies (if applicable) 108 24 MWFRS Vertical Forces (Figure 27.3-4) 1.2 18.0 -1.1 Page: Job: Date: Subject: By: B = ft L = ft Θ = ° ° γ = °Load Case A, Clear Wind Flow CNW =p = psf CNL =p = psf γ = °Load Case B, Clear Wind Flow CNW =p = psf CNL =p = psf γ = °Load Case A, Clear Wind Flow CNW =p = psf CNL =p = psf γ = °Load Case B, Clear Wind Flow CNW =p = psf CNL =p = psf B = ft L = ft Θ = ° γ = ° Load Case A, Clear Wind Flow For ≤ h CN =p = psf For > h, ≤ 2h CN =p = psf For > 2h CN =p = psf Load Case B, Clear Wind Flow For ≤ h CN =p = psf For > h, ≤ 2h CN =p = psf For > 2h CN =p = psf -0.3 -4.5 0.8 12.0 0.5 7.5 0.3 4.5 MWFRS Wind, Longitudinal (Figure 27.3-7) 108 24 090 -0.8 -12.0 -0.6 -9.0 180 1.2 18.0 0.3 4.5 180 -1.1 -16.5 -0.1 -1.5 0 1.2 18.0 0.3 4.5 0 -1.1 -16.5 -0.1 -1.5 MWFRS Vertical Forces (Figure 27.3-4) continued MWFRS Wind, Transverse (Figure 27.3-4) 108 24 0 Open Building with Monoslope Roof (Section 27.3.2) with fascia panels as Parapets (Section 27.3.4) 3 MVE #22-0152 JIMCO SALES, INC. #22-1071R0 02/26/22 VALLEY WIDE CO-OP ADDITION CRH ASCE 7-16 WIND FORCES (CHAPTER 27 DIRECTIONAL PROCEDURE) continued 0, 180 Page: Job: Date: Subject: By: G =(from page 2) h =ft qh = psf (from page 2) B = ft qp = psf (from page 2) L = ft Component Wind Pressure for Open Buildings p = qhGCN Θ = degrees a = 10% of least horizontal dimension =ft Therefore: 0.4h =ft a =ft 4% of least horizontal dimension =ft a2 =ft 3 ft =ft 4.0a2 =ft <a2 a2 to 4.0a2 > 4.0a2 Area of Single Deck Pan =ft^2 >a^2 and <4.0a^2 Max. Downward Component Pressure =psf ULT Max. Uplift Component Pressure =psf ULT 32.00 27 -25.5 18.0 -1.1 -16.5 1.2 18.0 -1.1 -16.5 1.2 18.0 -1.1 -16.5 1.2 18.0 -1.1 -16.5 1.8 27.0 -1.7 -25.5 1.8 27.0 -1.7 -25.5 1.2 pCN p 2.4 36.0 -3.3 -49.4 1.8 27.0 -1.7 -25.5 1.2 18.0 -1.1 -16.5 CN pCN pCN pCN pCN minimum:{0.96 9.0 3 36.0 Zone 3 Zone 2 Zone 1 18.1 24 Roof Component Pressure Clear Wind Flow will control design (obstructions always < 50%). 0 lesser of:{2.4 6.97 3.00 MVE #22-0152 JIMCO SALES, INC. #22-1071R0 02/26/22 VALLEY WIDE CO-OP ADDITION CRH ASCE 7-16 WIND FORCES (CHAPTER 30 - COMPONENTS & CLADDING) Part 5 - Open Buildings (Section 30.7) 0.85 17.42 17.6 108 4 Page: Job: Date: Subject: By: Component Wind Pressure for Parapets: p = qp ((GCp) - (GCpi)) GCpi = (Table 26.13-1) Therefore, p = qp GCp Fascia Height =ft Fascia Frame Spacing =ft Effective Wind Area =ft2 Load Case A Load Case B Load Case A Load Case B P1 = P3 = P1 = P3 = P2 = P4 = P2 = P4 = psf psf psf psf 15.3 15.3 15.3 15.3 -27.1 -16.8 -27.1 -16.8 42.4 32.1 42.4 32.1 15.3 Z4 1.0 0.95 0.99 15.3 Z4 1.0 0.95 0.99 15.3 Z5 1.0 0.95 0.99 15.3 Z5 1.0 0.95 0.99 p (psf) Area 10 20 12 Area 10 20 12 positive LOWER UPPER ACTUAL p (psf)positive LOWER UPPER ACTUAL -27.1 Z2 -1.8 -1.6 -1.76 -27.1 Z2 -1.8 -1.6 -1.76 -27.1 Z3 -2.8 -2.3 -2.70 -41.6 Z3 -1.8 -1.6 -1.76 -21.3 Z4 -1.1 -1.05 -1.09 -16.8 Z4 -1.1 -1.05 -1.09 -16.8 Z5 -1.4 -1.3 -1.38 -21.3 Z5 -1.4 -1.3 -1.38 3-1.81.0 p (psf) Area 10 20 12 Area 10 20 12 negative LOWER UPPER ACTUAL p (psf)negative LOWER UPPER ACTUAL 5-1.41.0 3-1.60.95 2-1.80.3 2-1.60.3 2-1.81.0 2-1.60.95 3-2.80.3 3-2.30.3 Zone GCp GCp 5-1.30.95 4 -1.1 1.0 4 -1.05 0.95 4 -1.1 1.0 4 -1.05 0.95 5-1.41.0 5-1.30.95 Zone GCp GCp Zone GCp GCp Zone GCp GCp Part 6 - Parapets (Section 30.8) Parapet Component Pressure 0 3 4 12 For Fascia Height < 3 ft For Fascia Height > 3 ft A = 10 ft2 A = 20 ft2 A = 10 ft2 A = 20 ft2 **See Fig. 30.3-2A Footnote 5 and 30.5-1 Footnote 7. 5 MVE #22-0152 JIMCO SALES, INC. #22-1071R0 02/26/22 VALLEY WIDE CO-OP ADDITION CRH ASCE 7-16 WIND FORCES (CHAPTER 30 - COMPONENTS & CLADDING) continued Page: Job: Date: Subject: By: COLUMNS QTY.: WIND (from page 2)Column Specification: qp = psf t = in Fy = ksi Total Base Shear (V) =kip A = in2 Length = ft SEISMIC W = plf Z =in3 SDS = SDC = Reduced Z for 4.75" Dia. Hole = in3 R = Max. Allowable Stress Ratio = Cs = Max. D Reaction from Beam = kip Seismic W = kip Max. Lr Reaction from Beam = kip Total Base Shear (V) =kip Reduced Lr Reaction = kip W at top of Column = kip Max. S Reaction from Beam = kip Qe at top of Column (Ω not incl.) = kip Max. Wd Reaction from Beam = kip Distance From Base = ft Max. Wu Reaction from Beam = kip Max. Ev from Beam = kip PURLINS QTY.:Column Weight = kip Max. Purlin Trib. Width = ft Purlin Trib. Width # 2 = ft Purlin Trib. Width # 3 = ft Purlin Trib. Width # 4 = ft Left Cantilever = ft Bay(s) @ ft Right Cantilever = ft Strong Axis Loads: D = ksf S = ksf Lr = ksf Wd =ksf 8. 1.0D + 0.7Ev + 0.7ΩQe Ev = klf Wu = ksf 9. 1.0D + 0.525Ev + 0.525ΩQe + 0.75S Weak Axis Loads: 10. 0.6D - 0.7Ev + 0.7ΩQe Ω = Eh = klf Wh =klf x 8.=kkkk =kkkk BEAMS QTY.: 10.=kkkk Left Cantilever = ft Bay(s) @ ft Right Cantilever = ft Maximum Tributary Width = ft Strong Axis Loads: (k) P1 P2 Max. Allowable Stress Ratio = P3 P4 Ev = klf Weak Axis Loads: Eh = klf Wh =klf x 12 Load Combinations (ASCE 7-16 2.4.5) Ehoriz. • Seismic Load Combinations with overstrength are required as per AISC 341- -0.0165 0.042 4 NA NA NA 6.18 46 LATERAL ANALYSIS 18.67 6 1.80 5.93 14.4 0.233 11.5 18.67 57.9 2.84 -5.7 0.3 6 CRH 1.25 47.69 0.834 MVE #22-0152 JIMCO SALES, INC. #22-1071R0 D 18.1 HSS 16x0.25 VALLEY WIDE CO-OP ADDITION 48.3 13.88 02/26/22 6.86 42.09 0.29 13.81 8 0.005 0.02 0.0180 1.79 0.79 0.362 W12 16From Pages 9-13, Use 1 0.028 0.032 4 3.63 1.630 6 12 3.63 10.8 -2.83 0.10 0.0070 1.22 2.18 0 1.63 1.3 EvLr S Wd Wu ##### 0.14 1.00 • An increase in allowable stress of 1.2 is allowed for members designed using overstrength as per ASCE 7-16 2.4.5. From Page 17, the Column is OK. -0.18 From Page 16, Prc < 0.15Pc as required by ASCE 7-16 12.2.5.2. ##### ##### ##### 3.09 6 28 7.203.43 Note: Full roof live loads are used for the design of the purlins and beams and reduced live loads are used for the design of all other members. 18W ##### ##### ##### 0.135 0.032 ##### ##### 328 12 0.0013 8 1.31 ##### ##### ##### ##### Evert.DS ##### ##### ##### 0.18 ##### ##### D From Pages 14-15, Use Page: Job: Date: Subject: By: Vertical Bearing Pressure = psf Lateral Bearing Pressure = pcf Max. Vertical Column Load = kip Uplift at Column = kip Square Footing Length = ft Width = ft Sweld = in^2 Req. Depth (see page 18) =ft Max. Moment at Base = kft Actual Depth = ft Max. Moment at Base = kin q actual = psf Weld Strength Required = kin q (allowable) = psf in^2 Footing/Slab Weight = kip Weld Strength Req'd (M only) = k/in FS Uplift =>1.5 OK Shear at Base (for max. M) = kips Optional Round Footing Weld Length = in^2 Diameter = ft Total Weld Strength Required = k/in Req. Depth (see page 19) =ft Base Plate Thickness = in Actual Depth = ft Min. Weld Size (per AISC Table J2.4) = q actual = psf Use /16 in fillet weld all around column q (allowable) = psf G.F. = k/in > k/in OK Footing/Slab Weight = kip FS Uplift =>1.5 OK Fy =ksi No. Rods per Connection = Wind Shear at Base =kip Mean Anchor Rod Spacing = in Seismic Shear (ΩQe) = kip Number of Rods in Tension = in Wind Moment at Base =kft Seismic Moment =kft LRFD FACTORED LOADS (see Column Base Plate calculations) 1. 2. 3. 4. 5. ANCHOR DESIGN LOADS (Factored) Nu (on 2 anchors) = kip Vu (on 4 anchors) = kip 43.45 V (kips) 33.59 33.59 43.45 0.90 **See Column section for axial loads. CONTROLS 17.73 4 43.45 M (kft) 50 From Page 20, Use 1''x22''x22'' Base Plate 2.33 7.49 1.80 2 43.45 1/87 16.02 2500 3.33 OK 19.20 201 2.64 50.3 4 1435 5.5 3 200 7 FOOTINGS (per IBC 1807.3.2.2) 2500 VALLEY WIDE CO-OP ADDITION CRH COLUMN BASE PLATE WELD 201 MVE #22-0152 JIMCO SALES, INC. #22-1071R0 03/03/22 -5.67 4 1127 4 18.03 2.33 2.64 1 ANCHOR RODS (ASTM F1554) 2.594 3.89 2500 4.875 521.4 6.5 521.4 COLUMN BASE PLATE 4.176OK 32.59 2.33 3.00 9.44 16 2.33 2.33 P (kips) 30.48 1.80 16.80 1.80 33.59 See Anchor Rod Design on Pages 21-22. Steel Beam MOUNTAIN VIEW ENGINEERING, INC.Lic. # : KW-06005072 DESCRIPTION:Middle Purlins (Strong Axis) Mountain View Engineering, Inc. 345 N. Main St. Ste. A Brigham City, Utah Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 File: 22-0152 IBC 2018 multiple row 2-12-19.ec6 CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16 Material Properties Analysis Method : ksi Bending Axis :Major Axis Bending Beam bracing is defined Beam-by-Beam Allowable Strength Design Fy : Steel Yield :50.0 ksi Beam Bracing : E: Modulus :29,000.0 Unbraced Lengths Span # 1, Braced @ 1/5 Points Service loads entered. Load Factors will be applied for calculations.Applied Loads Beam self weight calculated and added to loading Loads on all spans... Uniform Load on ALL spans : D = 0.0050, Lr = 0.020, S = 0.0420, W = 0.0180 ksf, Tributary Width = 6.0 ft Partial Length Uniform Load : E = 0.0070 k/ft, Extent = 0.0 -->> 28.0 ft Design OKDESIGN SUMMARY Maximum Bending Stress Ratio =0.741 : 1 Load Combination +D+S+H Span # where maximum occurs Span # 1 Location of maximum on span 14.000 ft 4.172 k Mn / Omega : Allowable 39.393 k-ft Vn/Omega : Allowable W12x16Section used for this span Span # where maximum occurs Location of maximum on span Span # 1 Load Combination +D+S+H 52.80 k Section used for this span W12x16 Ma : Applied Maximum Shear Stress Ratio =0.079 : 1 0.000 ft 29.204 k-ft Va : Applied 0 <240.0 242 Ratio =0 <180 Maximum Deflection Max Downward Transient Deflection 0.000 in 0Ratio =<240.0 Max Upward Transient Deflection 0.000 in Ratio = Max Downward Total Deflection 1.386 in Ratio =>=180 Max Upward Total Deflection 0.000 in Load Combination Support 1 Support 2 Vertical Reactions Support notation : Far left is #1 Values in KIPS Overall MAXimum 3.528 3.528 Overall MINimum 0.098 0.098 D Only 0.644 0.644 Lr Only 1.680 1.680 S Only 3.528 3.528 W Only 1.512 1.512 E Only 0.098 0.098 Steel Beam MOUNTAIN VIEW ENGINEERING, INC.Lic. # : KW-06005072 DESCRIPTION:Middle Purlins (Weak Axis) Mountain View Engineering, Inc. 345 N. Main St. Ste. A Brigham City, Utah Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 File: 22-0152 IBC 2018 multiple row 2-12-19.ec6 CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16 Material Properties Analysis Method : ksi Bending Axis :Minor Axis Bending Beam is Fully Braced against lateral-torsional buckling Allowable Strength Design Fy : Steel Yield :50.0 ksi Beam Bracing : E: Modulus :29,000.0 Service loads entered. Load Factors will be applied for calculations.Applied Loads Beam self weight NOT internally calculated and added Loads on all spans... Uniform Load on ALL spans : W = 0.0320, E = 0.0280 k/ft Design OKDESIGN SUMMARY Maximum Bending Stress Ratio =0.341 : 1 Load Combination +D+0.70E+0.60H Span # where maximum occurs Span # 1 Location of maximum on span 14.000 ft 0.2744 k Mn / Omega : Allowable 5.629 k-ft Vn/Omega : Allowable W12x16Section used for this span Span # where maximum occurs Location of maximum on span Span # 1 Load Combination +D+0.70E+0.60H 42.294 k Section used for this span W12x16 Ma : Applied Maximum Shear Stress Ratio =0.006 : 1 0.000 ft 1.921 k-ft Va : Applied 0 <50.0 103 Ratio =0 <25.0 Maximum Deflection Max Downward Transient Deflection 0.000 in 0Ratio =<50.0 Max Upward Transient Deflection 0.000 in Ratio = Max Downward Total Deflection 3.262 in Ratio =>=25.0 Max Upward Total Deflection 0.000 in Load Combination Support 1 Support 2 Vertical Reactions Support notation : Far left is #1 Values in KIPS Overall MAXimum 0.448 0.448 Overall MINimum 0.392 0.392 W Only 0.448 0.448 E Only 0.392 0.392 Page: Job: Date: Subject: By: Dead Load (D) Roof Live Load (Lr) Floor Live Load (L) Snow Load (S) Wind Load (0.6W)These ratios already have 0.6 factor applied. Seismic Load (0.7E)These ratios already have 0.7 factor applied. ASCE 7-16 LOAD COMBINATIONS (ASD) 1. D 7. 0.6D + 0.6W 2. D + L 8. D + 0.7Ev + 0.7Eh 3. D + (Lr or S) 9. D + 0.75L+ 0.75(0.7E) + 0.75S 4. D + 0.75L + 0.75(Lr or S) 10. 0.6D - 0.7Ev + 0.7Eh 5. D + 0.6W 6. D + 0.75L+ 0.75(0.6W) + 0.75(Lr or S) 1. 2. 3. 4. 5. 6.CONTROLS <1.0 OK 7. 8. 9. 10. ASCE 7-16 CH. 2.4.5 SEISMIC LOAD COMBINATIONS WITH OVERSTRENGTH (ASD) 8. 1.0D + 0.7Ev + 0.7ΩQe Ω = 9 1.0D + 0.525Ev + 0.525ΩQe + 0.75S 10. 0.6D - 0.7Ev + 0.7ΩQe 8. 9 CONTROLS <1.2 OK 10. MIDDLE PURLIN LOAD COMBINATIONS FOR BIAXIAL BENDING (ASD) Stress Ratio Strong Axis Weak Axis 0.114 11 MVE #22-0152 JIMCO SALES, INC. #22-1071R0 02/26/22 VALLEY WIDE CO-OP ADDITION CRH • An increase in allowable stress of 1.2 is allowed for members designed using overstrength as per ASCE 7-16 2.4.5. 0.299 0.000 0.627 0.162 0.334 0.334 0.564 1.3 0.741 0.000 STRONG WEAK COMBINED 0.276 0.334 0.610 0.594 0.256 0.850 0.055 0.341 0.396 0.127 0.341 0.468 0.230 0.055 0.443 0.499 0.123 0.443 0.566 0.591 0.233 0.824 0.706 0.251 0.956 0.584 STRONG WEAK COMBINED 0.114 0.000 0.114 0.1140.114 0.741 0.000 0.584 0.013 0.341 Steel Beam MOUNTAIN VIEW ENGINEERING, INC.Lic. # : KW-06005072 DESCRIPTION:End Purlins (Strong Axis) Mountain View Engineering, Inc. 345 N. Main St. Ste. A Brigham City, Utah Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 File: 22-0152 IBC 2018 multiple row 2-12-19.ec6 CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16 Material Properties Analysis Method : ksi Bending Axis :Major Axis Bending Beam bracing is defined Beam-by-Beam Allowable Strength Design Fy : Steel Yield :50.0 ksi Beam Bracing : E: Modulus :29,000.0 Unbraced Lengths Span # 1, Braced @ 1/4 Points Span # 2, Braced @ Mid Span Service loads entered. Load Factors will be applied for calculations.Applied Loads Beam self weight calculated and added to loading Loads on all spans... Uniform Load on ALL spans : D = 0.0050, Lr = 0.020, S = 0.0420, W = 0.0180 ksf, Tributary Width = 6.0 ft Partial Length Uniform Load : E = 0.0070 k/ft, Extent = 0.0 -->> 28.0 ft Design OKDESIGN SUMMARY Maximum Bending Stress Ratio =0.569 : 1 Load Combination +D+S+H Span # where maximum occurs Span # 2 Location of maximum on span 0.000 ft 4.938 k Mn / Omega : Allowable 37.679 k-ft Vn/Omega : Allowable W12x16Section used for this span Span # where maximum occurs Location of maximum on span Span # 1 Load Combination +D+S+H 52.80 k Section used for this span W12x16 Ma : Applied Maximum Shear Stress Ratio =0.094 : 1 28.000 ft 21.456 k-ft Va : Applied 0 <240.0 427 Ratio =3059 >=180 Maximum Deflection Max Downward Transient Deflection 0.000 in 0Ratio =<240.0 Max Upward Transient Deflection 0.000 in Ratio = Max Downward Total Deflection 0.787 in Ratio =>=180 Max Upward Total Deflection -0.094 in Load Combination Support 1 Support 2 Support 3 Vertical Reactions Support notation : Far left is #1 Values in KIPS Overall MAXimum 2.880 7.200 Overall MINimum 0.098 0.098 D Only 0.526 1.314 Lr Only 1.371 3.429 S Only 2.880 7.200 W Only 1.234 3.086 E Only 0.098 0.098 Steel Beam MOUNTAIN VIEW ENGINEERING, INC.Lic. # : KW-06005072 DESCRIPTION:End Purlins (Weak Axis) Mountain View Engineering, Inc. 345 N. Main St. Ste. A Brigham City, Utah Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 File: 22-0152 IBC 2018 multiple row 2-12-19.ec6 CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16 Material Properties Analysis Method : ksi Bending Axis :Minor Axis Bending Beam is Fully Braced against lateral-torsional buckling Allowable Strength Design Fy : Steel Yield :50.0 ksi Beam Bracing : E: Modulus :29,000.0 Service loads entered. Load Factors will be applied for calculations.Applied Loads Beam self weight NOT internally calculated and added Loads on all spans... Uniform Load on ALL spans : W = 0.0320, E = 0.0280 k/ft Design OKDESIGN SUMMARY Maximum Bending Stress Ratio =0.251 : 1 Load Combination +D+0.70E+0.60H Span # where maximum occurs Span # 1 Location of maximum on span 28.000 ft 0.3248 k Mn / Omega : Allowable 5.629 k-ft Vn/Omega : Allowable W12x16Section used for this span Span # where maximum occurs Location of maximum on span Span # 1 Load Combination +D+0.70E+0.60H 42.294 k Section used for this span W12x16 Ma : Applied Maximum Shear Stress Ratio =0.008 : 1 28.000 ft 1.411 k-ft Va : Applied 0 <50.0 181 Ratio =1300 >=25.0 Maximum Deflection Max Downward Transient Deflection 0.000 in 0Ratio =<50.0 Max Upward Transient Deflection 0.000 in Ratio = Max Downward Total Deflection 1.852 in Ratio =>=25.0 Max Upward Total Deflection -0.222 in Load Combination Support 1 Support 2 Support 3 Vertical Reactions Support notation : Far left is #1 Values in KIPS Overall MAXimum 0.366 0.914 Overall MINimum 0.320 0.800 W Only 0.366 0.914 E Only 0.320 0.800 Steel Beam MOUNTAIN VIEW ENGINEERING, INC.Lic. # : KW-06005072 DESCRIPTION:Beams (Strong Axis) Mountain View Engineering, Inc. 345 N. Main St. Ste. A Brigham City, Utah Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 File: 22-0152 IBC 2018 multiple row 2-12-19.ec6 CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16 Material Properties Analysis Method : ksi Bending Axis :Major Axis Bending Completely Unbraced Allowable Strength Design Fy : Steel Yield :50.0 ksi Beam Bracing : E: Modulus :29,000.0 Service loads entered. Load Factors will be applied for calculations.Applied Loads Beam self weight calculated and added to loading Loads on all spans... Uniform Load on ALL spans : E = 0.00130 k/ft Load(s) for Span Number 1 Point Load : D = 1.310, Lr = 3.430, S = 7.20, W = 3.090, E = 0.10 k @ 3.0 ft Load(s) for Span Number 2 Point Load : D = 1.310, Lr = 3.430, S = 7.20, W = 3.090, E = 0.10 k @ 3.0 ft Point Load : D = 1.310, Lr = 3.430, S = 7.20, W = 3.090, E = 0.10 k @ 9.0 ft Load(s) for Span Number 3 Point Load : D = 1.310, Lr = 3.430, S = 7.20, W = 3.090, E = 0.10 k @ 3.0 ft Design OKDESIGN SUMMARY Maximum Bending Stress Ratio =0.654 : 1 Load Combination +D+S+H Span # where maximum occurs Span # 3 Location of maximum on span 0.000 ft 8.618 k Mn / Omega : Allowable 39.548 k-ft Vn/Omega : Allowable W8x18Section used for this span Span # where maximum occurs Location of maximum on span Span # 1 Load Combination +D+S+H 37.444 k Section used for this span W8x18 Ma : Applied Maximum Shear Stress Ratio =0.230 : 1 6.000 ft 25.854 k-ft Va : Applied 0 <240.0 349 Ratio =3721 >=180 Maximum Deflection Max Downward Transient Deflection 0.000 in 0Ratio =<240.0 Max Upward Transient Deflection 0.000 in Ratio = Max Downward Total Deflection 0.412 in Ratio =>=180 Max Upward Total Deflection -0.039 in Load Combination Support 1 Support 2 Support 3 Support 4 Vertical Reactions Support notation : Far left is #1 Values in KIPS Overall MAXimum 14.40014.400 Overall MINimum 0.2160.216 D Only 2.8362.836 Lr Only 6.8606.860 S Only 14.40014.400 W Only 6.1806.180 E Only 0.2160.216 Steel Beam MOUNTAIN VIEW ENGINEERING, INC.Lic. # : KW-06005072 DESCRIPTION:Beams (Weak Axis) Mountain View Engineering, Inc. 345 N. Main St. Ste. A Brigham City, Utah Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 File: 22-0152 IBC 2018 multiple row 2-12-19.ec6 CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16 Material Properties Analysis Method : ksi Bending Axis :Minor Axis Bending Completely Unbraced Allowable Strength Design Fy : Steel Yield :50.0 ksi Beam Bracing : E: Modulus :29,000.0 Service loads entered. Load Factors will be applied for calculations.Applied Loads Beam self weight NOT internally calculated and added Loads on all spans... Uniform Load on ALL spans : W = 0.0320, E = 0.1350 k/ft Design OKDESIGN SUMMARY Maximum Bending Stress Ratio =0.146 : 1 Load Combination +D+0.70E+0.60H Span # where maximum occurs Span # 1 Location of maximum on span 6.000 ft 0.5670 k Mn / Omega : Allowable 11.627 k-ft Vn/Omega : Allowable W8x18Section used for this span Span # where maximum occurs Location of maximum on span Span # 2 Load Combination +D+0.70E+0.60H 69.30 k Section used for this span W8x18 Ma : Applied Maximum Shear Stress Ratio =0.008 : 1 12.000 ft 1.701 k-ft Va : Applied 0 <240.0 539 Ratio =3715 >=120 Maximum Deflection Max Downward Transient Deflection 0.000 in 0Ratio =<240.0 Max Upward Transient Deflection 0.000 in Ratio = Max Downward Total Deflection 0.267 in Ratio =>=120 Max Upward Total Deflection -0.039 in Load Combination Support 1 Support 2 Support 3 Support 4 Vertical Reactions Support notation : Far left is #1 Values in KIPS Overall MAXimum 1.6201.620 Overall MINimum 0.3840.384 W Only 0.3840.384 E Only 1.6201.620 Steel Column MOUNTAIN VIEW ENGINEERING, INC.Lic. # : KW-06005072 DESCRIPTION:Columns (Verify Axial Stress < 15%, all loads input as DL since load combinations already done on page 6) Mountain View Engineering, Inc. 345 N. Main St. Ste. A Brigham City, Utah Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 File: 22-0152 IBC 2018 multiple row 2-12-19.ec6 Code References Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16 General Information Steel Stress Grade Top Free, Bottom FixedAnalysis Method : 18.667Overall Column Height Top & Bottom FixityAllowable Strength Fy : Steel Yield ksi29,000.0 ksi Steel Section Name :HSS 16x0.250 46.0 ft E : Elastic Bending Modulus Y-Y (depth) axis : X-X (width) axis : Unbraced Length for buckling ABOUT Y-Y Axis = 18.667 ft, K = 2.1 Unbraced Length for buckling ABOUT X-X Axis = 18.667 ft, K = 2.1 Brace condition for deflection (buckling) along columns : Applied Loads Service loads entered. Load Factors will be applied for calculations. AXIAL LOADS . . . Axial Load at 18.667 ft, D = 14.560 k DESIGN SUMMARY PASS Max. Axial+Bending Stress Ratio =0.07401 Location of max.above base 0.0 ft 14.560 k 196.730 k 0.0 k-ft Load Combination +D+H Load Combination 0.0 122.660 k-ft Bending & Shear Check Results PASS Maximum Shear Stress Ratio = 0.0 k 0.0 : 1 Location of max.above base 0.0 ft At maximum location values are . . . : 1 At maximum location values are . . . k 122.660 k-ft 0.0 k-ft Pa : Axial Pn / Omega : Allowable Ma-x : Applied Mn-x / Omega : Allowable Ma-y : Applied Mn-y / Omega : Allowable Va : Applied Vn / Omega : Allowable Maximum Load Reactions . . Top along X-X 0.0 k Bottom along X-X 0.0 k Top along Y-Y 0.0 k Bottom along Y-Y 2.330 k Maximum Load Deflections . . . Along Y-Y 0.5445 in at 18.667 ft above base for load combination :+D+0.70E+0.60H Along X-X 0.04127 in at 18.667 ft above base for load combination :+D+S+H 0.0 Maximum Axial + Bending Stress Ratios Maximum Shear Ratios Load Combination Stress Ratio Location Stress Ratio Status LocationStatus Load Combination Results Cbx Cby KxLx/Rx KyLy/Ry Steel Column MOUNTAIN VIEW ENGINEERING, INC.Lic. # : KW-06005072 DESCRIPTION:Columns Mountain View Engineering, Inc. 345 N. Main St. Ste. A Brigham City, Utah Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 File: 22-0152 IBC 2018 multiple row 2-12-19.ec6 Code References Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16 General Information Steel Stress Grade Top Free, Bottom FixedAnalysis Method : 18.667Overall Column Height Top & Bottom FixityAllowable Strength Fy : Steel Yield ksi29,000.0 ksi Steel Section Name :HSS 16x0.250 46.0 ft E : Elastic Bending Modulus Y-Y (depth) axis : X-X (width) axis : Unbraced Length for buckling ABOUT Y-Y Axis = 18.667 ft, K = 2.1 Unbraced Length for buckling ABOUT X-X Axis = 18.667 ft, K = 2.1 Brace condition for deflection (buckling) along columns : Applied Loads Service loads entered. Load Factors will be applied for calculations. Column self weight included : 785.69 lbs * Dead Load Factor AXIAL LOADS . . . Axial Load at 18.667 ft, Xecc = 1.0 in, Yecc = 1.0 in, D = 2.840, LR = 5.930, S = 14.40, W = 6.180, E = 0.30 k BENDING LOADS . . . Lat. Point Load at 17.667 ft creating Mx-x, W = 1.80, E = 2.330 k DESIGN SUMMARY PASS Max. Axial+Bending Stress Ratio =0.2488 Location of max.above base 0.0 ft 3.836 k 196.730 k -29.069 k-ft Load Combination +D+0.70E+0.60H Load Combination +D+0.70E+0.60H 122.660 k-ft Bending & Shear Check Results PASS Maximum Shear Stress Ratio = 1.631 k 0.01716 : 1 Location of max.above base 0.0 ft At maximum location values are . . . : 1 At maximum location values are . . . k 122.660 k-ft -0.2542 k-ft Pa : Axial Pn / Omega : Allowable Ma-x : Applied Mn-x / Omega : Allowable Ma-y : Applied Mn-y / Omega : Allowable Va : Applied Vn / Omega : Allowable Maximum Load Reactions . . Top along X-X 0.0 k Bottom along X-X 0.0 k Top along Y-Y 0.0 k Bottom along Y-Y 2.330 k Maximum Load Deflections . . . Along Y-Y 0.5445 in at 18.667 ft above base for load combination :+D+0.70E+0.60H Along X-X 0.04127 in at 18.667 ft above base for load combination :+D+S+H 95.030 Maximum Axial + Bending Stress Ratios Maximum Shear Ratios Load Combination Stress Ratio Location Stress Ratio Status LocationStatus Load Combination Results Cbx Cby KxLx/Rx KyLy/Ry Pole Footing Embedded in Soil MOUNTAIN VIEW ENGINEERING, INC.Lic. # : KW-06005072 DESCRIPTION:Embedded Concrete Footing - Square Mountain View Engineering, Inc. 345 N. Main St. Ste. A Brigham City, Utah Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 File: 22-0152 IBC 2018 multiple row 2-12-19.ec6 Code References Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16 General Information Rectangular 48.0 200.0 1,500.0 Lateral Restraint at Ground Surface Pole Footing Shape Pole Footing Diameter . . . . . . . . . . .in Allow Passive . . . . . . . . . . . . . . . . . . pcf Max Passive . . . . . . . . . . . . . . . . . . . psf Calculate Min. Depth for Allowable Pressures +D+0.70E+0.60HGoverning Load Combination : Lateral Load 1.631 Moment 30.446 k-ft Minimum Required Depth 4.875 ft k Restraint @ Ground Surface Pressure at Depth Actual 965.36 psf Allowable 975.0 psf Surface Retraint Force 14,902.3 lbs Controlling Values ft^2Footing Base Area 16.0 Maximum Soil Pressure 1.127 ksf k k k 3.630 k 5.930 14.40 k Applied Loads k 6.180 Lateral Concentrated Load (k) D : Dead Load L : Live Lr : Roof Live S : Snow W : Wind E : Earthquake H : Lateral Earth Load distance above 1.80 2.330 18.667 k k k k k k k ft Lateral Distributed Loads (klf) TOP of Load above ground surface BOTTOM of Load above ground surface k/ft k/ft k/ft k/ft k/ft k/ft k/ft ft Applied Moment (kft) k-ft k-ft k-ft k-ft k-ft k-ft k-ft ground surface ft Vertical Load (k) k0.30 Load Combination Results Factor Soil IncreaseForces @ Ground Surface Load Combination Required Loads - (k) Moments - (ft-k) Depth - (ft) Pressure at Depth Allow - (psf)Actual - (psf) 0.00.000 0.000+D+H 0.13 1.00025.0 0.00.000 0.000+D+Lr+H 0.13 1.00025.0 0.00.000 0.000+D+S+H 0.13 1.00025.0 841.11.080 20.160+D+0.60W+H 4.25 1.000850.0 758.80.810 15.120+D+0.750Lr+0.450W+H 3.88 1.000775.0 758.80.810 15.120+D+0.750S+0.450W+H 3.88 1.000775.0 841.11.080 20.160+0.60D+0.60W+0.60H 4.25 1.000850.0 965.41.631 30.446+D+0.70E+0.60H 4.88 1.000975.0 Pole Footing Embedded in Soil MOUNTAIN VIEW ENGINEERING, INC.Lic. # : KW-06005072 DESCRIPTION:Embedded Concrete Footing - Round Mountain View Engineering, Inc. 345 N. Main St. Ste. A Brigham City, Utah Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 File: 22-0152 IBC 2018 multiple row 2-12-19.ec6 Code References Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16 General Information Circular 48.0 200.0 1,500.0 Lateral Restraint at Ground Surface Pole Footing Shape Pole Footing Diameter . . . . . . . . . . .in Allow Passive . . . . . . . . . . . . . . . . . . pcf Max Passive . . . . . . . . . . . . . . . . . . . psf Calculate Min. Depth for Allowable Pressures +D+0.70E+0.60HGoverning Load Combination : Lateral Load 1.631 Moment 30.446 k-ft Minimum Required Depth 5.50 ft k Restraint @ Ground Surface Pressure at Depth Actual 1,069.38 psf Allowable 1,100.0 psf Surface Retraint Force 13,394.2 lbs Controlling Values ft^2Footing Base Area 12.566 Maximum Soil Pressure 1.435 ksf k k k 3.630 k 5.930 14.40 k Applied Loads k 6.180 Lateral Concentrated Load (k) D : Dead Load L : Live Lr : Roof Live S : Snow W : Wind E : Earthquake H : Lateral Earth Load distance above 1.80 2.330 18.667 k k k k k k k ft Lateral Distributed Loads (klf) TOP of Load above ground surface BOTTOM of Load above ground surface k/ft k/ft k/ft k/ft k/ft k/ft k/ft ft Applied Moment (kft) k-ft k-ft k-ft k-ft k-ft k-ft k-ft ground surface ft Vertical Load (k) k0.30 Load Combination Results Factor Soil IncreaseForces @ Ground Surface Load Combination Required Loads - (k) Moments - (ft-k) Depth - (ft) Pressure at Depth Allow - (psf)Actual - (psf) 0.00.000 0.000+D+H 0.13 1.00025.0 0.00.000 0.000+D+Lr+H 0.13 1.00025.0 0.00.000 0.000+D+S+H 0.13 1.00025.0 949.41.080 20.160+D+0.60W+H 4.75 1.000950.0 839.30.810 15.120+D+0.750Lr+0.450W+H 4.38 1.000875.0 839.30.810 15.120+D+0.750S+0.450W+H 4.38 1.000875.0 949.41.080 20.160+0.60D+0.60W+0.60H 4.75 1.000950.0 1,069.41.631 30.446+D+0.70E+0.60H 5.50 1.0001,100.0 Page: Job: Date: Subject: By: BASEPLATE CALCULATIONS **Overstrength included in E. COLUMN BASE REACTIONS Dead Load (D) Roof Live Load (Lr) Snow Load (S) Wind Load (W, ult) Seismic Load (Ev, Emh, ult) ASCE 7-16 LOAD COMBINATIONS (LRFD) 3. 1.2D + 1.6(Lr or S) + 0.5W 3. 4. 1.2D + 1.0W + 0.5(Lr or S) 4. 5. 0.9D + 1.0W 6. 6. 1.2D + 1.0Ev + 1.0Emh + 0.2S 5. 7. 0.9D - 1.0Ev + 1.0Emh 7. CONTROLLING LOADS P = kips V = kips M = kipft Total Number of Anchor Rods = SDC = Number of Anchor Rods in Tension = f'c = psi (for grout) Number of Anchor Rods in Shear = For Baseplate, Fy = ksi For F1554 Anchors, Futa = ksi Baseplate Dimensions: N = in B = in Anchor Rows: anchors @ d = in d' = in anchors @ d = in anchors @ d = in Distance of Anchors from Plate Edge =in Tension on Each Anchor = kips From AISC 360: ΦB = Shear on Each Anchor = kips Column Outisde Dimension = in Round or Square? Side Bending Moment Arm = in Corner Bending Moment Arm = in Side Bending Moment in Plate = kip*in Corner Bending Moment in Pl ate = kip*in Bending Plane (W plate) =in Bending Plane (W plate) =in Plate Thickness Required ==inches Use inch thick plate 17.73 4 * M Fy * W plate * ΦB() 0 0.00 16 20 CRH MVE #22-0152 JIMCO SALES, INC. #22-1071R0 02/26/22 VALLEY WIDE CO-OP ADDITION 16 Moment (M, kip*ft) 3.63 0.00 0.00 Axial (P, kips)Shear (V, kips) 5.93 0.00 0.00 P (kips) V (kips) 14.40 0.00 0.00 M (kip*ft) 30.48 0.90 16.80 6.18 3.00 43.45 2.33 43.45 1.80 33.59 0.26 2.33 43.45 1.80 3.00 2.33 216 00 00 75 50 5000 4 7.49 2.33 43.45 D 9.44 1.80 33.59 4 2 THEREFORE, 1 in. x 22 in. x 22 in. BASEPLATE IS OK 22 15.113 53.99 0.5 0.564 1 3.31 CONTROLS round 22 33.59 0.58 0.916.29 3 22 Page: Job: Date: Subject: By: Mmax @ Column Base = k*ft (LRFD) Vmax @ Column Base = kips (LRFD) Tensile Force on Anchors (NU) =kips Side-face Blowout of Anchors in Tension (17.4.4) Shear Force on Anchors (VU) =kips hEF > 2.5 ca1 Seismic Design Category =s1 < 6ca1 ? Number of Anchors (n) =ca2 < 3ca1 ?R = Number of Anchors in Tension (n) =Nsb = 160ca1ABRG 0.5λaf'C 0.5R =kips Anchor Diameter (da) = in ASE =in^2 Therefore, Nsbg = (1+s0/6ca1)Nsb =kips Anchor Spacing Perpendicular to Load (s1) =in φ =φNsbg =kips Anchor Spacing Parallel to Load (s2) =in Spacing of outer Anchors (s0) =in Steel Strength of Anchors in Shear (17.5.1) Embedment Depth (hEF) =in Built-up grout pads used? Yield Strength of Anchors (Fy) = ksi VS =0.6nASEFuta =kips Tensile Strength of Anchors (Futa) =ksi φ =φVS =kips Edge Distance in Load Direction (ca1) =in Edge Distance Perpendicular to Load (ca2) =in Concrete Breakout Strength of Anchors in Shear (17.5.2) Concrete Strength (f'C) =psi AVc =in^2 AVco = 4.5(ca1)2 =in^2 Axial Eccentricity (e'N) =in Ψec,V =1/(1+2e'V/3ca1) <= 1.0 Ψec,V = Shear Eccentricity (e'V) =in ca2 >= 1.5ca1 ?Ψed,V = Cracking at Service Loads ?Ψc,V = Steel Strength of Anchors in Tension (17.4.1)Thickness:ha =in Ψh,V = Nsa =nASEFuta =kips Vb =7 (Le/da)0.2da 0.5λaf'c0.5ca1 1.5 =kips φ =φNsa =kips Vb =9λaf'c0.5ca1 1.5 =kips Concrete Breakout Strength of Anchors in Tension (17.4.2.1) ANc =in^2 ANco = 9hef 2 =in^2 Concrete breakout in shear will be resisted by rebar ties at the Ψec,N =1/(1+2e'N/3hEF) <= 1.0 Ψec,N =top of the footing, tensile capacity of the bars will control. ca (min.) < 1.5hEF ?Ψed,N =Tie Size =2 #4bar Bar Area = in^2 Cracking at Service Loads ?Ψc,N =Number of Ties at top = Fy = ksi Headed anchors used, therefore Ψcp,N =Tensile Capacity of Ties = kips hEF >= 11 in. ?kC =Therefore, Vcbg =kips φ =φVcbg =kips Nb =kCλa f'C 0.5hEF 5/3 =kips Concrete Pryout Strength of Anchors in Shear (17.5.3) hEF =in So, kcp = Therefore, Vcpg =kcpNcbg =kips Anchor bolts are tied into the footings with rebar cages,φ =φVcpg =kips so concrete breakout will be limited by the tensile strength of the rebar verticals in the cage. Number of Verticals =Size of rebar = # 6 Tensile strength of the reinforcement = kips (ULT) φ =φNcbg =kips ALLOW. TENSION (ФNN) =kips ALLOW. SHEAR (ФVN) =kips Pullout Strength of Anchors in Tension (17.4.3) ABRG =in^2 NP = 8ABRGf'C =kips NUA > 0.2ФNN ?YES Cracking at Service Loads?Ψc,P =VUA > 0.2ФVN ?NO NPN (group) = nΨc,PNP =kips φ =φNPN (group)=kips 54.00 kips > 21 MVE #22-0152 JIMCO SALES, INC. #22-1071R0 02/26/22 VALLEY WIDE CO-OP ADDITION CRH ANCHOR ROD GROUP CHECK (per ACI 318-14 Chapter 17, headed anchors) 32.59 λa = 1.0 for cast-in-place anchors in normal weight concrete (see ACI 318-14 Section 19.2.4) 43.45 2.33 D YES 2.33 NO SIDE-FACE BLOWOUT WILL NOT CONTROL 4YES0.5 1 0.606 113.70 2 96.17 16 25 YES 16 16 0.75 85.28 55 0.65 56.7275 87.26 14.627 YES 1.200 39.82 14.627 962.77 962.774500 8 1.000 0 NO 0.900 0.75 68.18 AVco 1809.6 5625 0.2 90.90 Vcbg =AVc = 33.77 54.00 25 2 360 72 72.00 36.48 kips 56.74 kips >32.6 OK **SDC = C, D, E, & F REDUCE TENSION ALLOWABLES BY 0.75 99.40 CONTROLS =0.62< 2.33 OK 1.501 CHECK SHEAR/TENSION INTERACTION 54.04 1.20 OK YES 1 UNITY CHECK NOT NECESSARY 108.07 0.7 75.65 NUA + 0.7 0.75 0.75 VUA ФNN ФVN ANco 69.58 ANCHOR ROD GROUP CAPACITY =ANcNcbg 1.000 Ψec,VΨed,VΨc,VΨh,VVb 48 1.000 1.000YES 0.817YES 0.824 16YES 229.42 237.60 316.8 12 kips49.70=Ψec,NΨed,NΨc,NΨcp,NNb Page: Job: Date: Subject: By: ANCHOR REINFORCEMENT ‐ TENSION (ACI 318 17.5.2.9) Cage Width  =in N =kips (ΩoE) hef = in Cover @ Top = in Fy =ksi Ft = φFy =ksi S =in ca1 =in φ =As (required) =in2 z  =in ca2 =in Options: #4 bars Available length for ℓd =in #5 bars #6 bars #6's USED, SEE PREVIOUS PAGE #7 bars #8 bars DEVELOPMENT LENGTH FOR STRAIGHT BARS (ACI 318 25.4.2.3) ℓd = (but not less than 12") λ  = Ψt,Ψe = f'c = psi ℓd =db = in. for #4 bars OK Ψs =in. for #5 bars OK in. for #6 bars OK ℓd =db = in. for #7 bars NO GOOD Ψs =in. for #8 bars NO GOOD FOR 180° HOOKED BARS (ACI 318 25.4.3.1)DESIGN RESULTS Ψc =BAR SIZE USED:# Ψr =STRAIGHT BARS OK?OK HOOKED BARS OK?OK ℓdh =db = in. for #4 bars OK USE HOOKS? in. for #5 bars OK in. for #6 bars OK in. for #7 bars OK in. for #8 bars OK 1.0 11.0 12.5 ΨeΨcΨr Fy 50λ (f'c)0.5 25 2 16.6 6.39 14.627 14.627 16 NO 6 )db 0.7 1.0 7.8 1 16.1 9.4 MIN. STRAIGHT BARS REQUIRED 13.4 ( 1 ) # 6 4500 12.0 6.3 db ΨtΨeΨs  12.522 23.5 26.8 26.833 ℓdh =( 1.0 cb + Ktr =2.5 40 (cb + Ktr λ(f'c)0.5 )db ≥8db or 6" 0.8 21.466 1.0 db 32.59 ) 60 45.0 0.75 0.72 2 1 1 Fy 22 MVE #22-0152 JIMCO SALES, INC. #22-1071R0 02/26/22 VALLEY WIDE CO-OP ADDITION CRH ANCHOR ROD REINFORCEMENT (ACI 318‐14) 36 2 (3 ** Page: Job: Date: Subject: By: DIMENSIONS Clear Height = ft Edge Distance  = ft Fascia Height =in Gutter Width =in Frame Spacing =in o.c. A =in D=in B=in E=in @ sides C=in E=in @ ends FORCES Fascia Weight (incl. frames) =psf =plf Wind Force (from page 5) =psf ULT =psf ASD =plf ASD FRAME MEMBERS Try: #4 ASTM A653 SS Fy = ksi A= in2 r = in2 S= in2 Z= in2 BENDING ON MEMBER XY COMPRESSION ON MEMBER XZ in MC =kin Length of XZ = in X Rxn @ X = lbs Rxn @ Y = lbs From CFS: in MB =kin P = lbs P allow = lb Y in MA =kin SCREW CAPACITIES Mmax = kin #8 TEK G.F. =  LB Shear (20 GA. base) From CFS: #12 TEK G.F. =  LB Pullout (2 layers of 20 GA. base) M allow = k*in #12 TEK G.F. =  LB Shear (2 layers of 20 GA. base) #12 TEK G.F. =  LB Shear (16 GA. min. base) CHECK SCREWS #1/4 TEK G.F. =LB Pullout (1/8" base) 1 #1/4‐14 TEK 1 @ IN O.C. Trib. Area = sq.ft. Shear F = lb < lb 2 #1/4 TEK @ EACH FRAME (T&B) Trib. Area = sq.ft. Tensile F = lb < lb (Check Fasica Weight)Trib. Area = sq.ft. Shear F = lb < lb 3 #12 TEK @ EACH FRAME Trib. Area = sq.ft. Shear F = lb < lb (Check Tension from Member XY wind from right)Tensile F = lb < lb 4 #8 TEK @ IN O.C. Trib. Area = sq.ft. Shear F = lb < lb NOTE: 12 16 Fascia frame connections at X, Y, and Z are pinned, therefore, there will be no moment on the connection of the frames to  the deck pans (screw mark #3)  Forces will transfer to screws as direct tension and shear. There is no tension due to  32 4 102 123 OK 3 12 305 1200 OK 128 594 OK 6 153 344 OK 6 24 430 OK 32 4 102 430 OK 198 0.886 OK 400 430 344 7.5 0.239 0.711 123 10 2 23 0.711 pl f 139 189 951 OK 5.5 0.128 34.0 166 0.0448 ? 1.625"x1.75"x20 GA. C 33 0.168 0.5357 Due to the fascia's light weight, wind  force will always control over seismic. 101.8 42.4 25.4 4 12.0 5.5 23 7.5 25 48 17 3 36 8 23 MVE #22-0152 JIMCO SALES, INC. #22-1071R0 02/26/22 VALLEY WIDE CO-OP ADDITION CRH FASCIA FRAME DESIGN Page: Job: Date: Subject: By: DIMENSIONS Clear Height = ft Edge Distance  = ft Fascia Height =in Gutter Width =in Frame Spacing =in o.c. A =in D=in B=in E=in @ sides C=in E=in @ ends FORCES Fascia Weight (incl. frames) =psf =plf Wind Force (from page 5) =psf ULT =psf ASD =plf ASD FRAME MEMBERS Try: #4 ASTM A653 SS Fy = ksi A= in2 r = in2 S= in2 Z= in2 BENDING ON MEMBER XY COMPRESSION ON MEMBER XZ in MC = kin Length of XZ = in X Rxn @ X = lbs Rxn @ Y = lbs From CFS: in MB =kin P = lbs P allow = lb Y in MA = kin SCREW CAPACITIES Mmax = kin #8 TEK G.F. =  LB Shear (20 GA. base) From CFS: #12 TEK G.F. =  LB Pullout (2 layers of 20 GA. base) M allow = k*in #12 TEK G.F. =  LB Shear (2 layers of 20 GA. base) #12 TEK G.F. =  LB Shear (16 GA. min. base) CHECK SCREWS #1/4 TEK G.F. =  LB Pullout (1/8" base) 1 #1/4‐14 TEK 1 @ IN O.C. Trib. Area = sq.ft. Shear F = lb < lb 2 #1/4 TEK @ EACH FRAME (T&B) Trib. Area = sq.ft. Tensile F = lb < lb (Check Fasica Weight)Trib. Area = sq.ft. Shear F = lb < lb 3 #12 TEK @ EACH FRAME Trib. Area = sq.ft. Shear F = lb < lb (Check Tension from Member XY wind from right)Tensile F = lb < lb 4 #8 TEK @ IN O.C. Trib. Area = sq.ft. Shear F = lb < lb NOTE: 12 16 Fascia frame connections at X, Y, and Z are pinned, therefore, there will be no moment on the connection of the frames to  the deck pans (screw mark #3)  Forces will transfer to screws as direct tension and shear. There is no tension due to moment. 32 4 102 123 OK 3 12 305 1200 OK 128 594 OK 6 153 344 OK 6 24 430 OK 32 4 102 430 OK 198 0.886 OK 400 430 344 7.5 0.239 0.586 123 10 2 22.5 0.586 pl f 143 192 962 OK 6 0.153 33.6 163 0.0448 ? 1.625"x1.75"x20 GA. C 33 0.168 0.5357 Due to the fascia's light weight, wind  force will always control over seismic. 101.8 42.4 25.4 4 12.0 6 22.5 7.5 25 48 17 3 36 8 23 MVE #22-0152 JIMCO SALES, INC. #22-1071R0 02/28/22 VALLEY WIDE CO-OP ADDITION CRH FASCIA FRAME DESIGN Page: Job: Date: Subject: By: COLUMN CAP PLATE DESIGN Wind Uplift @ Top of Column = k (ASD) Wind Shear @ Top of Column = k (ASD) Seismic Shear @ Top of Column = k (ASD) Applied Factor of Safety = DEAD LOADS HAVE BEEN NEGLECTED (CONSERVATIVE) WELD DESIGN Column Type = Column Width (c) = in L weld =in Weld Strength Required = k k =k/in in in USE /16" E‐70XX FILLET WELD ALL AROUND G.F. = k/in BOLT DESIGN Distance From Column (d) = in Bolt Gage = in Try G.F. =kips tension db =inG.F. =kips shear Tension / Bolt =k (ASD)Unity Check: Shear / Bolt =k (ASD)Unity Check: PLATE DESIGN (FLEXURE FROM BOLT TENSION) Plate Width (w) = in Fy = Moment in Plate =k*in t required = (6.68) ( k*in) =in (50 ksi) (in)USE  PLATE 50.27 25 MVE #22-0152 JIMCO SALES, INC. #22-1071R0 02/26/22 VALLEY WIDE CO-OP ADDITION CRH ‐3.40 1.08 1.63 1.5 ROUND 16 5.10 +1.62 0.13 50.265 50.265 2.78 2 20 (4) 3/4" ø A325 19.9 OK 0.61 0.051 OK 3 5.1 0.75 11.9 1.27 0.064 USE ( 4 )  3/4" ø A325 BOLTS0.115 OK 17 50 0.75" x 17" x 23"(5.1 )0.5 0.200 17