Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
STRUCTURAL CALCULATIONS - 21-00725 - Iron Horse RV - Interior Finish
Structural Calculations WCA Project #21172 IRON HORSE R.V. 12th W. University Blvd. Rexburg, ID 83440 CLIENT INFORMATION: Clarity Design Group 5525 South 900 East, Ste 340 Murray, Utah 84117 442 North Main Street, Suite 200 Bountiful UT 84010 801.298.1118 Fax 801.298.1122 Structural Calculations WCA Project #21172 Mezzanine Structural Calculations WCA Project #21172 Entry Canopy Structural Calculations WCA Project #21172 Sales Floor Structural Calculations WCA Project #21172 IRON HORSE R.V. 12th W. University Blvd. Rexburg, ID 83440 CLIENT INFORMATION: Clarity Design Group 5525 South 900 East, Ste 340 Murray, Utah 84117 442 North Main Street, Suite 200 Bountiful UT 84010 801.298.1118 Fax 801.298.1122 8/19/2021 Page 1 of 97 WCA Structural Engineering, Inc.JOB TITLE Iron Horse RV 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.21172 SHEET NO. Phone: (801) 298-1118 CALCULATED BY JC DATE 6/30/21 CHECKED BY JC DATE CS2018 Ver 2020.11.11 www.struware.com STRUCTURAL CALCULATIONS FOR Iron Horse RV Page 2 of 97 WCA Structural Engineering, Inc.JOB TITLE Iron Horse RV 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.21172 SHEET NO. Phone: (801) 298-1118 CALCULATED BY JC DATE 6/30/21 CHECKED BY JC DATE www.struware.com Code Search Code: Occupancy: Occupancy Group =See Architectural Risk Category & Importance Factors: Risk Category =II Wind factor =1.00 Snow factor =1.00 Seismic factor =1.00 Type of Construction: Fire Rating: Roof =0.0 hr Floor =0.0 hr Building Geometry: Roof angle (θ)2.00 / 12 9.5 deg Building length 185.0 ft Least width 100.0 ft Mean Roof Ht (h)26.0 ft Parapet ht above grd 0.0 ft Minimum parapet ht 0.0 ft Live Loads: Roof 0 to 200 sf: 20 psf 200 to 600 sf: 24 - 0.02Area, but not less than 12 psf over 600 sf: 12 psf Floor: Typical Floor 50 psf Partitions 15 psf Stairs and exit ways 100 psf International Building Code 2018 Page 3 of 97 WCA Structural Engineering, Inc.JOB TITLE Iron Horse RV 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.21172 SHEET NO. Phone: (801) 298-1118 CALCULATED BY JC DATE 6/30/21 CHECKED BY JC DATE Wind Loads :ASCE 7- 16 Ultimate Wind Speed 105 mphNominal Wind Speed 81.3 mph Risk Category IIExposure Category CEnclosure Classif.Enclosed Building Internal pressure +/-0.18Directionality (Kd)0.85 Kh case 1 0.953 Kh case 2 0.953 Type of roof Monoslope Topographic Factor (Kzt) Topography Flat Hill Height (H)80.0 ft Half Hill Length (Lh) 100.0 ft Actual H/Lh =0.80 Use H/Lh =0.50 Modified Lh = 160.0 ft From top of crest: x =50.0 ft Bldg up/down wind?downwind H/Lh=0.50 K1 =0.000 x/Lh =0.31 K2 =0.792 z/Lh =0.16 K3 =1.000 At Mean Roof Ht: Kzt = (1+K1K2K3)^2 =1.00 Gust Effect Factor Flexible structure if natural frequency < 1 Hz (T > 1 second). h =26.0 ft If building h/B>4 then may be flexible and should be investigated. B =100.0 ft h/B =0.26 Rigid structure (low rise bldg) /z (0.6h) =15.6 ft G =0.85 Using rigid structure default Rigid Structure Flexible or Dynamically Sensitive Structureē =0.20 34 ncy (η1) =0.0 Hz ℓ =500 ft Damping ratio (β) =0zmin =15 ft /b =0.65 c =0.20 /α =0.15gQ, gv =3.4 Vz =89.2Lz =430.4 ft N1 =0.00 Q =0.88 Rn =0.000 Iz =0.23 Rh =28.282 η =0.000 h =26.0 ft G =0.86 use G = 0.85 RB =28.282 η =0.000 RL =28.282 η =0.000 gR =0.000 R =0.000 Gf =0.000 Page 4 of 97 WCA Structural Engineering, Inc.JOB TITLE Iron Horse RV 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.21172 SHEET NO. Phone: (801) 298-1118 CALCULATED BY JC DATE 6/30/21 CHECKED BY JC DATE Enclosure Classification Test for Enclosed Building: Ao < 0.01Ag or 4 sf, whichever is smaller Test for Open Building:All walls are at least 80% open.Ao ≥ 0.8Ag Test for Partially Enclosed Building: Predominately open on one side only Input TestAo500.0 sf Ao ≥ 1.1Aoi NOAg600.0 sf Ao > 4' or 0.01Ag YES Aoi 1000.0 sf Aoi / Agi ≤ 0.20 YES Building is NOTAgi10000.0 sf Partially Enclosed Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following: Ao ≥ 1.1Aoi Ao > smaller of 4' or 0.01 Ag Aoi / Agi ≤ 0.20 Where:Ao = the total area of openings in a wall that receives positive external pressure.Ag = the gross area of that wall in which Ao is identified. Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including Ao.Agi = the sum of the gross surface areas of the building envelope (walls and roof) not including Ag. Test for Partially Open Building:A building that does not qualify as open, enclosed or partially enclosed.(This type building will have same wind pressures as an enclosed building. Reduction Factor for large volume partially enclosed buildings (Ri) :If the partially enclosed building contains a single room that is unpartitioned , the internal pressure coefficient may be multiplied by the reduction factor Ri. Total area of all wall & roof openings (Aog):0 sfUnpartitioned internal volume (Vi) :0 cfRi = 1.00 Ground Elevation Factor (Ke) Grd level above sea level =4850.0 ft Ke =0.8390Constant = 0.00256 Adj Constant =0.00215 Page 5 of 97 WCA Structural Engineering, Inc.JOB TITLE Iron Horse RV 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.21172 SHEET NO. Phone: (801) 298-1118 CALCULATED BY JC DATE 6/30/21 CHECKED BY JC DATE Wind Loads - MWFRS h≤60' (Low-rise Buildings) except for open buildings Kz = Kh (case 1) =0.95 Edge Strip (a) =10.0 ftBase pressure (qh) =19.2 psf End Zone (2a) =20.0 ftGCpi = +/-0.18 Zone 2 length =50.0 ft Wind Pressure Coefficients CASE A CASE B Surface GCpf w/-GCpi w/+GCpi GCpf w/-GCpi w/+GCpi 1 0.44 0.62 0.26 -0.45 -0.27 -0.632-0.69 -0.51 -0.87 -0.69 -0.51 -0.873-0.40 -0.22 -0.58 -0.37 -0.19 -0.554-0.33 -0.15 -0.51 -0.45 -0.27 -0.6350.40 0.58 0.226-0.29 -0.11 -0.471E0.67 0.85 0.49 -0.48 -0.30 -0.662E-1.07 -0.89 -1.25 -1.07 -0.89 -1.25 3E -0.58 -0.40 -0.76 -0.53 -0.35 -0.71 4E -0.49 -0.31 -0.67 -0.48 -0.30 -0.66 5E 0.61 0.79 0.436E-0.43 -0.25 -0.61 Ultimate Wind Surface Pressures (psf) 1 11.9 5.0 -5.2 -12.12-9.8 -16.7 -9.8 -16.73-4.3 -11.2 -3.6 -10.64-2.9 -9.8 -5.2 -12.1511.1 4.26-2.1 -9.01E16.2 9.3 -5.8 -12.72E-17.1 -24.0 -17.1 -24.03E-7.6 -14.5 -6.7 -13.64E-6.0 -12.9 -5.8 -12.75E15.2 8.26E-4.8 -11.7 Parapet Windward parapet = 0.0 psf (GCpn = +1.5)Windward roof Leeward parapet = 0.0 psf (GCpn = -1.0)overhangs =13.4 psf (upward) add to windward roof pressureHorizontal MWFRS Simple Diaphragm Pressures (psf)Transverse direction (normal to L)Interior Zone: Wall 14.8 psfRoof -5.5 psf **End Zone: Wall 22.2 psfRoof -9.4 psf ** Longitudinal direction (parallel to L)Interior Zone: Wall 13.2 psfEnd Zone: Wall 20.0 psf** NOTE: Total horiz force shall not be less than that determined by neglecting roof forces (except for MWFRS moment frames). The code requires the MWFRS be designed for a min ultimateforce of 16 psf multiplied by the wall area plus an 8 psf forceapplied to the vertical projection of the roof. θ = 9.5 deg Page 6 of 97 WCA Structural Engineering, Inc.JOB TITLE Iron Horse RV 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.21172 SHEET NO. Phone: (801) 298-1118 CALCULATED BY JC DATE 6/30/21 CHECKED BY JC DATE Ultimate Wind Pressures Wind Loads - Components & Cladding : h ≤ 60' Kh (case 2) =0.95 h =26.0 ft Base pressure (qh) =19.2 psf a =10.0 ft Minimum parapet ht =0.0 ft GCpi =+/-0.18 Roof Angle (θ) =9.5 deg qi = qh = 19.2 psf Type of roof =Monoslope Roof GCp +/- Gcpi Surface Pressure (psf)User input Area 10 sf 20 sf 50 sf 100 sf 10 sf 20 sf 50 sf 100 sf 25 sf 50 sf Negative Zone 1 -1.28 -1.28 -1.28 -1.28 -24.6 -24.6 -24.6 -24.6 -24.6 -24.6Negative Zone 2 -1.48 -1.45 -1.41 -1.38 -28.4 -27.8 -27.1 -26.5 -27.6 -27.1Negative Zone 2'-1.78 -1.75 -1.71 -1.68 -34.1 -33.6 -32.8 -32.2 -33.4 -32.8Negative Zone 3 -1.98 -1.8 -1.56 -1.38 -38.0 -34.5 -29.9 -26.5 -33.4 -29.9Negative Zone 3'-2.78 -2.48 -2.08 -1.78 -53.3 -47.6 -39.9 -34.1 -45.7 -39.9Positive All Zones 0.48 0.45 0.41 0.38 16.0 16.0 16.0 16.0 16.0 16.0 Parapetqp =0.0 psf Surface Pressure (psf)User inputSolid Parapet Pressure 10 sf 20 sf 50 sf 100 sf 200 sf 500 sf 50 sf CASE A: Zone 2 : 0.0 0.0 0.0 0.0 0.0 0.0 0.0Zone 2' : 0.0 0.0 0.0 0.0 0.0 0.0 0.0Zone 3 : 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Zone 3' : 0.0 0.0 0.0 0.0 0.0 0.0 0.0CASE B : Interior zone : 0.0 0.0 0.0 0.0 0.0 0.0 0.0Corner zone : 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Walls GCp +/- GCpi Surface Pressure at hArea10 sf 100 sf 200 sf 500 sf 10 sf 100 sf 200 sf 500 sf 50 sf 225 sfNegative Zone 4 -1.17 -1.01 -0.96 -0.90 -22.4 -19.4 -18.5 -17.3 -20.3 -18.3Negative Zone 5 -1.44 -1.12 -1.03 -0.90 -27.6 -21.5 -19.7 -17.3 -23.4 -19.4Positive Zone 4 & 5 1.08 0.92 0.87 0.81 20.7 17.7 16.8 16.0 18.6 16.6 Note: GCp reduced by 10% due to roof angle <= 10 deg. User input Page 7 of 97 WCA Structural Engineering, Inc.JOB TITLE Iron Horse RV 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.21172 SHEET NO. Phone: (801) 298-1118 CALCULATED BY JC DATE 6/30/21 CHECKED BY JC DATE Seismic Loads:IBC 2018 Strength Level Forces Risk Category : IIImportance Factor (I) : 1.00 Site Class :D - code default Ss (0.2 sec) =36.30 %g S1 (1.0 sec) =21.80 %g A site specific ground motion analysis is required for seismically isolated structures or with damping systems, see ASCE7 11.4.8 Fa =1.510 Sms =0.548 SDS =0.365 Design Category =C Fv =2.164 Sm1 =0.472 SD1 =0.315 Design Category =D Seismic Design Category =D Redundancy Coefficient ρ =1.00 Code exception must be met for p to equal 1.0 Number of Stories:1 Structure Type:All other building systems Horizontal Struct Irregularities:No plan Irregularity Vertical Structural Irregularities:No vertical Irregularity Flexible Diaphragms: Yes Building System: Bearing Wall Systems Seismic resisting system: Light frame (cold-formed steel) walls with wood panels or steel sheets System Structural Height Limit: 65 ft Actual Structural Height (hn) =26.0 ft See ASCE7 Section 12.2.5 for exceptions and other system limitations DESIGN COEFFICIENTS AND FACTORS Response Modification Coefficient (R) =6.5 Over-Strength Factor (Ωo) =2.5Deflection Amplification Factor (Cd) =4 SDS =0.365SD1 =0.315 Seismic Load Effect (E) = Eh +/-Ev = ρ QE +/- 0.2SDS D = Qe +/-0.073D Special Seismic Load Effect (Em) =Emh +/- Ev = Ωo QE +/- 0.2SDS D = 2.5Qe +/-0.073D D = dead load PERMITTED ANALYTICAL PROCEDURES Simplified Analysis - Use Equivalent Lateral Force Analysis Equivalent Lateral-Force Analysis - PermittedBuilding period coef. (CT) =0.020 Cu = 1.40 Approx fundamental period (Ta) =CThnx = 0.230 sec x= 0.75 Tmax = CuTa = 0.322 User calculated fundamental period (T) =sec Use T = 0.230Long Period Transition Period (TL) =ASCE7 map =6 Seismic response coef. (Cs) =SdsI/R =0.056 ASCE7 11.4.8 exception 2 equations used but not less than Cs =0.044SdsI =0.016 USE Cs =0.056 Design Base Shear V =0.056W Model & Seismic Response Analysis - Permitted (see code for procedure) ALLOWABLE STORY DRIFT Structure Type:All other structures Allowable story drift Δa =0.020hsx where hsx is the story height below level x QE = horizontal seismic force Page 8 of 97 WCA Structural Engineering, Inc.JOB TITLE Iron Horse RV 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.21172 SHEET NO. Phone: (801) 298-1118 CALCULATED BY JC DATE 6/30/21 CHECKED BY JC DATE Seismic Loads:IBC 2018 Strength Level Forces Risk Category : IIImportance Factor (I) : 1.00 Site Class :D - code default Ss (0.2 sec) =36.30 %g S1 (1.0 sec) =21.80 %g A site specific ground motion analysis is required for seismically isolated structures or with damping systems, see ASCE7 11.4.8 Fa =1.510 Sms =0.548 SDS =0.365 Design Category =C Fv =2.164 Sm1 =0.472 SD1 =0.315 Design Category =D Seismic Design Category =D Redundancy Coefficient ρ =1.00 Code exception must be met for p to equal 1.0 Number of Stories:1 Structure Type:All other building systems Horizontal Struct Irregularities:No plan Irregularity Vertical Structural Irregularities:No vertical Irregularity Flexible Diaphragms: Yes Building System: Cantilevered Column Systems detailed to conform to the requirements for: Seismic resisting system: Steel ordinary cantilever column system System Structural Height Limit: System not permitted for this seismic design category Actual Structural Height (hn) =26.0 ft See ASCE7 Section 12.2.5 for exceptions and other system limitations DESIGN COEFFICIENTS AND FACTORS Response Modification Coefficient (R) =1.25 Over-Strength Factor (Ωo) =1.25Deflection Amplification Factor (Cd) =1.25 SDS =0.365SD1 =0.315 Seismic Load Effect (E) = Eh +/-Ev = ρ QE +/- 0.2SDS D = Qe +/-0.073D Special Seismic Load Effect (Em) =Emh +/- Ev = Ωo QE +/- 0.2SDS D = 1.25Qe +/-0.073D D = dead load PERMITTED ANALYTICAL PROCEDURES Simplified Analysis - Use Equivalent Lateral Force Analysis Equivalent Lateral-Force Analysis - PermittedBuilding period coef. (CT) =0.020 Cu = 1.40 Approx fundamental period (Ta) =CThnx = 0.230 sec x= 0.75 Tmax = CuTa = 0.322 User calculated fundamental period (T) =sec Use T = 0.230Long Period Transition Period (TL) =ASCE7 map =6 Seismic response coef. (Cs) =SdsI/R =0.292 ASCE7 11.4.8 exception 2 equations used but not less than Cs =0.044SdsI =0.016 USE Cs =0.292 Design Base Shear V =0.292W Model & Seismic Response Analysis - Permitted (see code for procedure) ALLOWABLE STORY DRIFT Structure Type:All other structures Allowable story drift Δa =0.020hsx where hsx is the story height below level x QE = horizontal seismic force Page 9 of 97 WCA Structural Engineering, Inc.JOB TITLE Iron Horse RV 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.21172 SHEET NO. Phone: (801) 298-1118 CALCULATED BY JC DATE 6/30/21 CHECKED BY JC DATE Seismic Loads - cont. :Strength Level Forces Seismic Design Category (SDC)=D Ie =1.00 CONNECTIONS Sds =0.365 Force to connect smaller portions of structure to remainder of structure Fp = 0.133Sdswp =0.049 wp or Fp = 0.05wp =0.05 wp Use Fp =0.05 wp wp = weight of smaller portion Beam, girder or truss connection for resisting horizontal force parallel to member FP = no less than 0.05 times dead plus live load vertical reaction Anchorage of Structural Walls to elements providing lateral support Fp = not less than 0.2KaIeWp Flexible diaphragm span Lf =185.00 ft Fp =0.4SdsKaIeWp =0.292Wp, but not less than 0.4Wp (flexible diaphragm)ka=2 Fp =0.400 Wp Fp =0.4SdskaIeWp = 0.146 Wp, but not less than 0.2Wp (rigid diaphragm)ka= 1 Fp =0.200 Wp but Fp shall not be less than 5 psf MEMBER DESIGN Bearing Walls and Shear Walls (out of plane force) Fp = 0.4SdsIeWw =0.146 ww but not less than 0.10 ww Use Fp =0.15 ww Diaphragms Fp = (Sum Fi / Sum Wi)Wpx + Vpx =(Sum Fi / Sum Wi)Wpx + Vpx need not exceed 0.4 SdsIeWpx + Vpx =0.146 Wpx + Vpx but not less than 0.2 SdsIeWpx + Vpx =0.073 Wpx + Vpx ARCHITECTURAL COMPONENTS SEISMIC COEFFICIENTS Architectural Component : Cantilever Elements (Unbraced or Braced to Structural Frame Below Its Center of Mass): Parapets and cantilever interior nonstructural walls Importance Factor (Ip) : 1.0 Component Amplification Factor (ap) =2.5 h=26.0 feetComp Response Modification Factor (Rp) =2.5 z=18.0 feet z/h =0.69 Over-Strength Factor (Ωo) =2 Fp = 0.4apSdsIpWp(1+2z/h)/Rp =0.348 Wp not greater than Fp = 1.6SdsIpWp =0.585 Wpbut not less than Fp = 0.3SdsIpWp =0.110 Wp use Fp =0.348 Wp MECH AND ELEC COMPONENTS SEISMIC COEFFICIENTS Seismic Design Category D & Ip=1.0, therefore see ASCE7 Section 13.1.4 for exceptions Mech or Electrical Component : Wet-side HVAC, boilers, furnaces, atmospheric tanks and bins, chillers, water heaters, etc plus other mechanical components constructed of high-deformability materials. Importance Factor (Ip) : 1.0 Component Amplification Factor (ap) =1 h=26.0 feetComp Response Modification Factor (Rp) =2.5 z=50.0 feet z/h =1.00 Over-Strength Factor (Ωo) =2 Fp = 0.4apSdsIpWp(1+2z/h)/Rp =0.175 Wp not greater than Fp = 1.6SdsIpWp =0.585 Wp but not less than Fp = 0.3SdsIpWp =0.110 Wp use Fp =0.175 Wp Page 10 of 97 WCA Structural Engineering, Inc.JOB TITLE Iron Horse RV 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.21172 SHEET NO. Phone: (801) 298-1118 CALCULATED BY JC DATE 6/30/21 CHECKED BY JC DATE Snow Loads :ASCE 7- 16 Nominal Snow Forces Roof slope =9.5 deg Horiz. eave to ridge dist (W) =100.0 ftRoof length parallel to ridge (L) =185.0 ft Type of Roof Monoslope Ground Snow Load Pg =50.0 psfRisk Category =II Importance Factor I =1.0 Thermal Factor Ct =1.00Exposure Factor Ce =1.0 Pf = 0.7*Ce*Ct*I*Pg =35.0 psf Unobstructed Slippery Surface no Sloped-roof Factor Cs =1.00 Balanced Snow Load =35.0 psf Near ground level surface balanced snow load = 50.0 psf Rain on Snow Surcharge Angle 2.00 degCode Maximum Rain Surcharge 5.0 psf Rain on Snow Surcharge =0.0 psf Ps plus rain surcharge =35.0 psfMinimum Snow Load Pm =20.0 psf Uniform Roof Design Snow Load =35.0 psf Windward Snow Drifts 1 - Against walls, parapets, etc Up or downwind fetch lu =175.0 ftProjection height h =8.0 ftProjection width/length lp =100.0 ftSnow density g =20.5 pcfBalanced snow height hb =1.71 ft hd =3.90 ft hc =6.29 fthc/hb >0.2 =3.7 Therefore, design for driftDrift height (hd)=3.90 ftDrift width w =15.58 ftSurcharge load: pd = γ*hd =79.9 psf Balanced Snow load: =35.0 psf 114.9 psfWindward Snow Drifts 2 - Against walls, parapets, etc Up or downwind fetch lu =Projection height h =Projection width/length lp =Snow density g =20.5 pcfBalanced snow height hb =1.71 ft hd =1.31 ft hc =-1.71 fthc/hb <0.2 =-1.0 lp <15', drift not req'dDrift height (hc)=0.00 ft Drift width w =-13.66 ftSurcharge load: pd = γ*hd =0.0 psf Balanced Snow load: =35.0 psf 35.0 psf Note: If bottom of projection is at least 2 feet above hb then snow drift is not required. NOTE: Alternate spans of continuous beams shall be loaded with half the design roof snow load so as to produce the greatest possible effect - see code for loading diagrams and exceptions for gable roofs.. Page 11 of 97 WCA Structural Engineering, Inc.JOB TITLE Iron Horse RV 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.21172 SHEET NO. Phone: (801) 298-1118 CALCULATED BY JC DATE 6/30/21 CHECKED BY JC DATE www.struware.comCODE SUMMARY Code:International Building Code 2018 Live Loads: Roof 0 to 200 sf: 20 psf200 to 600 sf: 24 - 0.02Area, but not less than 12 psfover 600 sf: 12 psf Typical Floor 50 psfPartitions15 psf Stairs and exit ways 100 psf Dead Loads: Floor 20.0 psfRoof10.0 psf Wind Design Data: Ultimate Design Wind Speed 105 mphNominal Design Wind Speed 81.33 mphRisk Category IIMean Roof Ht (h)26.0 ftExposure Category CEnclosure Classif.Enclosed BuildingInternal pressure Coef.+/-0.18Directionality (Kd)0.85 Roof Snow Loads: Design Uniform Roof Snow load =35.0 psfFlat Roof Snow Load Pf =35.0 psfBalanced Snow Load Ps =35.0 psfGround Snow Load Pg =50.0 psfImportance Factor I =1.00Snow Exposure Factor Ce =1.00Thermal Factor Ct =1.00Sloped-roof Factor Cs =1.00Drift Surcharge load Pd =Width of Snow Drift w = Earthquake Design Data: Risk Category =II Importance Factor I =1.00 Mapped spectral response accelerat Ss =36.30 S1 =21.80 Site Class = code default Spectral Response Coef.Sds =0.365 Sd1 =0.315 Seismic Design Category =D Basic Structural System =Bearing Wall Systems Seismic Resisting System =Light frame (cold-formed steel) walls with wood panels or steel sheets Design Base Shear V =0.056W Seismic Response Coef.Cs =0.056 Response Modification Factor R =6.5 Analysis Procedure =Equivalent Lateral-Force Analysis Page 12 of 97 WCA Structural Engineering, Inc.JOB TITLE Iron Horse RV 442 North Main Street, #200 Rexburg, ID Bountiful, Utah 84010 JOB NO.21172 SHEET NO. Phone: (801) 298-1118 CALCULATED BY JC DATE 6/30/21 CHECKED BY JC DATE www.struware.comCODE SUMMARY- continued Component and cladding ultimate wind pressures Roof Surface Pressure (psf) Area 10 sf 20 sf 50 sf 100 sf Negative Zone 1 -24.6 -24.6 -24.6 -24.6 Negative Zone 2 -28.4 -27.8 -27.1 -26.5 Negative Zone 2'-34.1 -33.6 -32.8 -32.2 Negative Zone 3 -38.0 -34.5 -29.9 -26.5 Negative Zone 3'-53.3 -47.6 -39.9 -34.1 Positive All Zones 16.0 16.0 16.0 16.0 Parapet Solid Parapet Pressure (psf) Area 10 sf 20 sf 50 sf 100 sf 200 sf 500 sf CASE A: Zone 2 : 0.0 0.0 0.0 0.0 0.0 0.0 Zone 2' : 0.0 0.0 0.0 0.0 0.0 0.0 Zone 3 : 0.0 0.0 0.0 0.0 0.0 0.0 Zone 3' : 0.0 0.0 0.0 0.0 0.0 0.0 CASE B : Interior zone : 0.0 0.0 0.0 0.0 0.0 0.0 Corner zone : 0.0 0.0 0.0 0.0 0.0 0.0 Wall Surface Pressure (psf) Area 10 sf 100 sf 200 sf 500 sf Negative Zone 4 -22.4 -19.4 -18.5 -17.3 Negative Zone 5 -27.6 -21.5 -19.7 -17.3 Positive Zone 4 & 5 20.7 17.7 16.8 16.0 Page 13 of 97 Hazards by Location Search Information Coordinates:43.804518, -111.817923 Elevation:4852 ft Timestamp:2021-06-30T20:21:53.055Z Hazard Type:Wind ASCE 7-16 MRI 10-Year 75 mph MRI 25-Year 81 mph MRI 50-Year 86 mph MRI 100-Year 91 mph Risk Category I 99 mph Risk Category II 105 mph Risk Category III 112 mph Risk Category IV 116 mph ASCE 7-10 MRI 10-Year 76 mph MRI 25-Year 84 mph MRI 50-Year 90 mph MRI 100-Year 96 mph Risk Category I 105 mph Risk Category II 115 mph Risk Category III-IV 120 mph ASCE 7-05 ASCE 7-05 Wind Speed 90 mph The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design. Disclaimer Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region. Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions. While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report. 4852 ft Report a map errorMap data ©2021 Google Page 14 of 97 Hazards by Location Search Information Coordinates:43.804518, -111.817923 Elevation:4852 ft Timestamp:2021-06-30T20:22:45.284Z Hazard Type:Seismic Reference Document: ASCE7-16 Risk Category:II Site Class:D-default MCER Horizontal Response Spectrum Design Horizontal Response Spectrum Basic Parameters Name Value Description SS 0.36 MCER ground motion (period=0.2s) S1 0.141 MCER ground motion (period=1.0s) SMS 0.545 Site-modified spectral acceleration value SM1 0.326 Site-modified spectral acceleration value SDS 0.363 Numeric seismic design value at 0.2s SA SD1 0.218 Numeric seismic design value at 1.0s SA Additional Information Name Value Description SDC D Seismic design category Fa 1.512 Site amplification factor at 0.2s Fv 2.318 Site amplification factor at 1.0s CRS 0.942 Coefficient of risk (0.2s) 4852 ft Report a map errorMap data ©2021 Google 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Period (s) 0.00 0.10 0.20 0.30 0.40 0.50 Sa(g) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Period (s) 0.00 0.10 0.20 0.30 Sa(g) Page 15 of 97 CR1 0.952 Coefficient of risk (1.0s) PGA 0.153 MCEG peak ground acceleration FPGA 1.494 Site amplification factor at PGA PGAM 0.229 Site modified peak ground acceleration TL 6 Long-period transition period (s) SsRT 0.36 Probabilistic risk-targeted ground motion (0.2s) SsUH 0.383 Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years) SsD 1.5 Factored deterministic acceleration value (0.2s) S1RT 0.141 Probabilistic risk-targeted ground motion (1.0s) S1UH 0.148 Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years) S1D 0.6 Factored deterministic acceleration value (1.0s) PGAd 0.5 Factored deterministic acceleration value (PGA) The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design. Disclaimer Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services. While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report. Page 16 of 97 Hazards by Location Search Information Coordinates:43.804518, -111.817923 Elevation:4852 ft Timestamp:2021-06-30T20:26:12.288Z Hazard Type:Snow ASCE 7-16 Ground Snow Load 50 lb/sqft The reported ground snow load applies at the query location of 4852 feet up to a maximum elevation of 4863 feet with a tolerance of 100 feet. ASCE 7-10 Ground Snow Load Case Study Area lb/sqft This is a CS area, which requires site- specific Case Studies to establish ground snow loads and should be approved by the Authority Having Jurisdiction. ASCE 7-05 Ground Snow Load Case Study Area lb/sqft This is a CS area, which requires site- specific Case Studies to establish ground snow loads and should be approved by the Authority Having Jurisdiction. The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design. Disclaimer Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report. 4852 ft Report a map errorMap data ©2021 Google Page 17 of 97 Structural Calculations WCA Project #21172 Mezzanine Page 18 of 97 P a g e 1 9 o f 9 7 Seismic & Wind Lateral Force Calculations 1-Story : Codes: ASCE 7/IBC Note: Longitudinal direction is parallel to L, Transverse direction is parallel to W. Building or building portion: Sales floor lateral - Seismic only Building Geometry: (Input is required for yellow boxes) Building length:L 50ft:=Roof Dead load:Ddia 10 10+( )psf:= Building width:W 57ft:=Roof Live/snow load:S 50psf:=Story height of Roof diaphragm:Hdia 10ft:= Building elevation:Elev 4850ft:= Parapet heights (windward (taller)):HWpar 0ft:=Include live/snow w/ seimic mass: (leeward (shorter)):HLpar 0ft:= Roof overhang (horz. dist):dov 0 ft:= Seismic mass/weights and design data: Wall properties: (weights should be averaged for brick veneer, etc.) For percent of wall & parapet that is solid for seismic mass, (value should be entered as a % or a decimal) (percent of wall masses affect the seismic calculations only) Wtotal 67.7 kip= Wall dead load: Wall % solid: Gable wall dead load: Roof Slope,rise (in/ft): Front wall:Wfr 10psf:=%fr 100%:=WGfr 0psf:=yfr 0 in:= Back wall:Wba 10psf:=%ba 100%:=WGba 0psf:=yba 0 in:= Left wall:Wle 10psf:=%le 100%:=WGle 0psf:=yle 0 in:= Right wall:Wri 10psf:=%ri 100%:=WGri 0psf:=yri 0 in:= Roof_Slope "FLAT roof"= Seismic design data, see Code Search excel output sheets: Occupancy/Risk Category: Importance Factor:IE 1.00= Seismic Design Category: Design spectral response parameter (short periods):SDS 0.365:= Approx fundamental period:Ta 0.230sec:= Vertical distribution exponent:k 1= Longitudinal, parallel to L: Transverse, parallel to W: Response modification factor:RL 6.5:=RT 6.5:= Seismic response coefficient:Cs_L 0.056:=Cs_T 0.056:= Seismic Design: Seismic mass breakdown: Roof mass:Wroof Wdia L 2 dov+( ) W 2 dov+( ) :=Wroof 57 kip= Front wall mass:Wfr.wall Wfr L%fr( ) Hdia 2 Hav.par+ WGfr Lyfr 12 in L 20.5 +:=Wfr.wall 2.5 kip= Back wall mass:Wba.wall Wba L%ba( ) Hdia 2 Hav.par+ WGba Lyba 12 in L 20.5 +:=Wba.wall 2.5 kip= Left wall mass:Wle.wall Wle W%le( ) Hdia 2 Hav.par+ WGle Wyle 12 in W 20.5 +:=Wle.wall 2.9 kip= Right wall mass:Wri.wall Wri W%ri( ) Hdia 2 Hav.par+ WGri Wyri 12 in W 20.5 +:=Wri.wall 2.9 kip= Total building mass:Wtotal Wroof Wfr.wall+Wba.wall+Wle.wall+Wri.wall+:= Wall location: 1/3Page 20 of 97 WV.T 76 plf= Cv.r Wtotal Hdia ft( ) k Wtotal Hdia ft( ) k :=Cv.r 1= Vb.L Cs_L Wtotal( ) :=Vb.T Cs_T Wtotal( ) :=Vb.L 3.8 kip=Vb.T 3.8 kip= Shear wall force distribution: (Program assumes diaphragm is flexible, half to each wall and walls take their own load) Longitudinal distributed uniform load at diaphragm for shear wall forces: WV.L Fr.L W:=WV.L 67 plf= Longitudinal direction shear wall forces: Vfr Vb.L Wroof Wle.wall+Wri.wall+()Hdia ft( ) k Wtotal Hdia ft( ) k 1 2Vb.L Wfr.wall Hdia ft( ) k Wtotal Hdia ft( ) k +:=Vfr 1.9 kip= Vba Vb.L Wroof Wle.wall+Wri.wall+()Hdia ft( ) k Wtotal Hdia ft( ) k 1 2Vb.L Wba.wall Hdia ft( ) k Wtotal Hdia ft( ) k +:=Vba 1.9 kip= Transverse distributed uniform load at diaphragm for shear wall forces: WV.T Fr.T L:= Transverse direction shear wall forces: Vle Vb.T Wroof Wfr.wall+Wba.wall+()Hdia ft( ) k Wtotal Hdia ft( ) k 1 2Vb.T Wle.wall Hdia ft( ) k Wtotal Hdia ft( ) k +:=Vle 1.9 kip= Vri Vb.T Wroof Wfr.wall+Wba.wall+()Hdia ft( ) k Wtotal Hdia ft( ) k 1 2Vb.T Wri.wall Hdia ft( ) k Wtotal Hdia ft( ) k +:=Vri 1.9 kip= Diaphragm force distribution: ASCE 7 Eq. 11.7-1 for SDC=A and Eq. 12.10-1 (Fpx = (Fi/wi)*wpx) for SDC=B..F Fpx.L 0.01 SDC "A"=if 0.4 SDSIE0.4 SDSIEFr.L Wtotal < SDC "A"if Fr.L Wtotal 0.2 SDSIEFr.L Wtotal 0.4 SDSIE SDC "A"if 0.2 SDSIE0.2 SDSIEFr.L Wtotal > SDC "A"if :=Fpx.T 0.01 SDC "A"=if 0.4 SDSIE0.4 SDSIEFr.T Wtotal < if Fr.T Wtotal 0.2 SDSIEFr.T Wtotal if 0.2 SDSIE0.2 SDSIEFr.T Wtotal > if := Fpx.L 0.073=Fpx.T 0.073= Diaphragm distribution forces at the top of wall: (diaphragm forces include the mass of the diaphragm and mass of walls perpendicular to direction of force, walls parallel to direction of force carry their own mass.) wF.pL Fpx.L Wroof Wle.wall+Wri.wall+()W:=wF.pL 80 plf= wF.pT Fpx.T Wroof Wfr.wall+Wba.wall+()L:=wF.pT 91 plf= Unit diaphragm shears: Vertical distribution factor: Seismic base shear for longitudinal & transverse directions: 2/3Page 21 of 97 υL wF.pL W 2 L:=υT wF.pT L 2 W:=υL 46 plf= υT 40 plf= ========================================================================================== 3/3Page 22 of 97 Wood Structural Panel Shear Wall - Multiple Pier Design International Building Code, 2018 IBC Sec. 1605.3.1 ASD Basic Load Combinations (Live loads are assumed to be supported by other elements) - Steel stud aspect ratio Wall Panel: Mezz floor SW-1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ VE/W W T C q DL Point O Holdown Offset, HO w h Wall pier properties: Typ. Holdown offset: HO 6in:= Num. of wall or piers (12 max):n 1:= Effective pier length: Effective pier height: Pier roof tributary: w1 14ft:=h1 10ft:=Tr1 2ft:= w2 0ft:=h2 0ft:=Tr2 0ft:= w3 0ft:=h3 0ft:=Tr3 0ft:= w4 0ft:=h4 0ft:=Tr4 0ft:= w5 0ft:=h5 0ft:=Tr5 0ft:= w6 0ft:=h6 0ft:=Tr6 0ft:= w7 0ft:=h7 0ft:=Tr7 0ft:= w8 0ft:=h8 0ft:=Tr8 0ft:= w9 0ft:=h9 0ft:=Tr9 0ft:= w10 0ft:=h10 0ft:=Tr10 0ft:= w11 0ft:=h11 0ft:=Tr11 0ft:= w12 0ft:=h12 0ft:=Tr12 0ft:= Loads: Gravity loads: Lateral loads: Roof dead load (psf): DLroof 10psf:=Wind load (ultimate level): VW 0kip:= Wall dead load (psf): DLwall 10psf:=Seismic load (ultimate level): VE 2kip:= ρ 1.0:= SDS 0.335:= Calculations Design unit shears and wall aspect ratios: Unit_Shear "Wind unit shear, q = 0 plf" "Seismic unit shear, q = 100 plf" = Aspect_Ratio "Pier aspect ratios meet 2:1, OK for W & EQ"()= Design tension at boundary elements and holdowns: Max_Tension "Seismic controls tension holdowns, T = 0.56 kip"()= Page 23 of 97 Wood Structural Panel Shear Wall - Multiple Pier Design International Building Code, 2018 IBC Sec. 1605.3.1 ASD Basic Load Combinations (Live loads are assumed to be supported by other elements) - Steel stud aspect ratio Wall Panel: Mezz floor SW-2 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ VE/W W T C q DL Point O Holdown Offset, HO w h Wall pier properties: Typ. Holdown offset: HO 6in:= Num. of wall or piers (12 max):n 1:= Effective pier length: Effective pier height: Pier roof tributary: w1 13ft:=h1 10ft:=Tr1 2ft:= w2 0ft:=h2 0ft:=Tr2 0ft:= w3 0ft:=h3 0ft:=Tr3 0ft:= w4 0ft:=h4 0ft:=Tr4 0ft:= w5 0ft:=h5 0ft:=Tr5 0ft:= w6 0ft:=h6 0ft:=Tr6 0ft:= w7 0ft:=h7 0ft:=Tr7 0ft:= w8 0ft:=h8 0ft:=Tr8 0ft:= w9 0ft:=h9 0ft:=Tr9 0ft:= w10 0ft:=h10 0ft:=Tr10 0ft:= w11 0ft:=h11 0ft:=Tr11 0ft:= w12 0ft:=h12 0ft:=Tr12 0ft:= Loads: Gravity loads: Lateral loads: Roof dead load (psf): DLroof 10psf:=Wind load (ultimate level): VW 0kip:= Wall dead load (psf): DLwall 10psf:=Seismic load (ultimate level): VE 2kip:= ρ 1.0:= SDS 0.335:= Calculations Design unit shears and wall aspect ratios: Unit_Shear "Wind unit shear, q = 0 plf" "Seismic unit shear, q = 108 plf" = Aspect_Ratio "Pier aspect ratios meet 2:1, OK for W & EQ"()= Design tension at boundary elements and holdowns: Max_Tension "Seismic controls tension holdowns, T = 0.67 kip"()= Page 24 of 97 Wood Structural Panel Shear Wall - Multiple Pier Design International Building Code, 2018 IBC Sec. 1605.3.1 ASD Basic Load Combinations (Live loads are assumed to be supported by other elements) - Steel stud aspect ratio Wall Panel: Mezz floor SW-3 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ VE/W W T C q DL Point O Holdown Offset, HO w h Wall pier properties: Typ. Holdown offset: HO 6in:= Num. of wall or piers (12 max):n 1:= Effective pier length: Effective pier height: Pier roof tributary: w1 7ft:=h1 10ft:=Tr1 2ft:= w2 0ft:=h2 0ft:=Tr2 0ft:= w3 0ft:=h3 0ft:=Tr3 0ft:= w4 0ft:=h4 0ft:=Tr4 0ft:= w5 0ft:=h5 0ft:=Tr5 0ft:= w6 0ft:=h6 0ft:=Tr6 0ft:= w7 0ft:=h7 0ft:=Tr7 0ft:= w8 0ft:=h8 0ft:=Tr8 0ft:= w9 0ft:=h9 0ft:=Tr9 0ft:= w10 0ft:=h10 0ft:=Tr10 0ft:= w11 0ft:=h11 0ft:=Tr11 0ft:= w12 0ft:=h12 0ft:=Tr12 0ft:= Loads: Gravity loads: Lateral loads: Roof dead load (psf): DLroof 10psf:=Wind load (ultimate level): VW 0kip:= Wall dead load (psf): DLwall 10psf:=Seismic load (ultimate level): VE 2kip:= ρ 1.0:= SDS 0.335:= Calculations Design unit shears and wall aspect ratios: Unit_Shear "Wind unit shear, q = 0 plf" "Seismic unit shear, q = 200 plf" = Aspect_Ratio "Pier aspect ratios meet 2:1, OK for W & EQ"()= Design tension at boundary elements and holdowns: Max_Tension "Seismic controls tension holdowns, T = 1.9 kip"()= Page 25 of 97 Page 26 of 97 ,SPHS[RWERH8IRWMSR8MIW 7,(9,SPHS[RW 8LI7,(9WIVMIWSJLSPHS[RWGSQFMRIWTIVJSVQERGI ZMVXYEPP]IPMQMREXIWQEXIVMEPWXVIXGLVIWYPXMRKMRPS[ XETTMRKWGVI[WMRXSXLIWXYHWVIHYGIWMRWXEPPEXMSRXMQI ERHWEZIWPEFSVGSWX 1EXIVMEPQMPKE *MRMWL+EPZERM^IH -RWXEPPEXMSR 9WIWXERHEVHWIPJHVMPPMRKWGVI[WXSJEWXIRXSWXYHW %RGLSVFSPX[EWLIVMWRSXVIUYMVIH 7II7&778&ERH4%&%RGLSV&SPXWSRTEKIW JSVGEWXMRTPEGIERGLSVEKISTXMSRW 7II7)8<4ERH%8<4EHLIWMZITVSHYGXWJSV 'SHIW7IITEKIJSV'SHI6ITSVX6IJIVIRGI /I]'LEVX8]TMGEP7,(9-RWXEPPEXMSR7,(9 8LI(IWMKRIVWLEPPWTIGMJ]XLIJSYRHEXMSRERGLSV XLIXEFYPEXIHLSPHS[RXIRWMSRPSEHWI\GIIHXLIXIRWMSR WXVIRKXLSJX]TMGEP%781%SV%ERGLSVFSPXW SREQMRMQYQWXYHXLMGORIWWJSVJEWXIRIVGSRRIGXMSR MRGLWIPJHVMPPMRKWGVI[WQE]FIWYFWXMXYXIHJSV WIPJXETTMRKWGVI[W %LIEZ]LI\RYXJSVXLIERGLSVFSPXMWVIUYMVIHXS EGLMIZIXLIXEFPIPSEHWJSV7,(9 LSPHS[RHIJSVQEXMSRERHERGLSVVSHIPSRKEXMSRJSV LSPHS[RWMRWXEPPIHYTXSEFSZIXSTSJGSRGVIXI ,SPHS[RWQE]FIMRWXEPPIHVEMWIHYTXSEFSZI XSTSJGSRGVIXI[MXLRSPSEHVIHYGXMSRTVSZMHIHXLEX EHHMXMSREPIPSRKEXMSRSJXLIERGLSVVSHMWEGGSYRXIHJSV 8LI2SQMREP8IRWMSR0SEHMWFEWIHSRXLIXIWXIH EZIVEKIYPXMQEXITIEO PSEHERHMWTVSZMHIHJSV HIWMKRMREGGSVHERGI[MXLWIGXMSR'SJ%-7-7 XLEXVIUYMVIWELSPHS[RXSLEZIERSQMREPWXVIRKXL XLIQE\MQYQJSVGIXLIW]WXIQGERHIPMZIV 7IITEKIWXLVSYKLJSVQSVIMRJSVQEXMSRSR 7MQTWSR7XVSRK8MIJEWXIRIVW 1SHIP , MR *EWXIRIVW 7XYH1IQFIV 8LMGORIWW QMPKE %7(PFW 06*(PFW 2SQMREP 8IRWMSR0SEH PFW 'SHI 6IJ %RGLSV&SPX (MEQIXIV MR 7XYH *EWXIRIVW 8IRWMSR 0SEH %7(0SEH 8IRWMSR 0SEH 06*(0SEH 7,(9 KE -4 0* KE KE 7XIIP*M\XYVI 7,(9 KE KE KE 7XIIP*M\XYVI 7,(9 KE KE KE 7XIIP*M\XYVI 7,(9 KE KE KE [MXL,IEZ] ,I\2YX KE KE 7XIIP*M\XYVI 8LIWITVSHYGXWEVIEZEMPEFPI[MXLEHHMXMSREPGSVVSWMSRTVSXIGXMSR%HHMXMSREPTVSHYGXWSR XLMWTEKIQE]EPWSFIEZEMPEFPI[MXLXLMWSTXMSR'LIGO[MXL7MQTWSR7XVSRK8MIJSVHIXEMPW 'SQTVIWWMSR 1IQFIV&PSGOMRK 4IV(IWMKR 8]TMGEP 7,(9 *PSSV*PSSV -RWXEPPEXMSR 1E\ ,SPHS[R 'SYTPIV 7LIEV[EPP 'LSVH7XYHW 6SH '0 1E\ ,SPHS[R &IEVMRK 4PEXI 8STSJ 'SRGVIXI &SXXSQ 8VEGO 7PSTI1E\ ,SPHS[R6EMWIH3JJ '*7&SXXSQ8VEGO Page 27 of 97 C- C - 2 0 1 9 © 2 0 1 9 S I M P S O N S T R O N G - T I E C O M P A N Y I N C . Simpson Strong-Tie® Wood Construction Connectors 43 Co n c r e t e C o n n e c t o r s an d A n c h o r s PAB Pre-Assembled Anchor Bolt (cont.) PAB Anchor Bolt – Anchorage Solutions Design Criteria Diameter (in.)Anchor Bolt 2,500 psi Concrete 3,000 psi Concrete Dimensions (in.)Tension Load Dimensions (in.)Tension Load de F ASD LRF D de F ASD LRF D Wind 1/2 PAB4 4 1/2 7 4,270 6,405 4 6 4,270 6,405 5/8 PAB5 4 6 4,030 6,720 4 6 4,415 7,360 6 9 6,675 10,010 5 1/2 8 1/2 6,675 10,010 3/4 PAB6 5 1/2 8 1/2 6,500 10,835 5 7 1/2 6,175 10,290 7 1/2 11 1/2 9,610 14,415 7 10 1/2 9,610 14,415 7⁄8 PAB7 6 9 7,405 12,345 5 1/2 8 1/2 7,120 11,870 9 13 1/2 13,080 19,620 8 1/2 13 13,080 19,620 PAB7H 9 13 1/2 13,610 22,680 8 1/2 13 13,680 22,805 14 21 27,060 40,590 13 1/2 20 1/2 27,060 40,590 1 PAB8 8 12 11,405 19,005 7 1/2 11 1/2 11,340 18,900 10 1/2 16 17,080 25,565 10 15 17,080 25,560 PAB8H 10 1/2 16 17,150 28,580 10 15 17,460 29,100 16 1/2 25 35,345 53,015 15 1/2 23 1/2 35,345 53,015 1 1⁄8 PAB9 9 13 1/2 13,610 22,680 8 12 12,495 20,820 12 1/2 19 21,620 32,430 12 18 21,620 32,430 1 1⁄4 PAB10 14 21 26,690 40,035 13 1/2 20 1/2 26,690 40,035 Seismic 1/2 PAB4 5 7 1/2 4,270 6,405 4 1/2 7 4,270 6,405 5/8 PAB5 6 1/2 10 6,675 10,010 6 9 6,675 10,010 3/4 PAB6 7 1/2 11 1/2 9,060 12,940 7 10 1/2 8,945 12,780 8 12 9,610 14,415 7 1/2 11 1/2 9,610 14,415 7⁄8 PAB7 9 13 1/2 11,905 17,010 8 1/2 13 11,970 17,100 10 15 13,080 19,620 9 1/2 14 1/2 13,080 19,620 PAB7H 14 1/2 22 25,350 36,215 13 1/2 20 1/2 24,650 35,215 15 1/2 23 1/2 27,060 40,590 14 1/2 22 27,060 40,590 1 PAB8 11 16 1/2 15,996 22,850 10 1/2 16 16,435 23,480 11 1/2 17 1/2 17,080 25,625 11 16 1/2 17,080 25,625 PAB8H 17 25 1/2 33,045 47,205 16 24 32,720 46,740 18 27 35,345 53,015 17 25 1/2 35,345 53,015 1 1⁄8 PAB9 12 1/2 19 19,795 28,275 12 18 20,255 28,940 13 1/2 20 1/2 21,620 32,430 12 1/2 19 21,620 32,430 1 1⁄4 PAB10 14 1/2 22 25,350 36,215 14 21 26,190 37,415 15 22 1/2 26,690 40,035 14 1/2 22 26,690 40,035 1. Anchorage designs conform to ACI 318-14 and assume cracked concrete with no supplementary reinforcement. 2. Seismic indicates Seismic Design Category C-F and designs comply with ACI 318-14, Section 17.2.3.4. Per Section 1613 of the IBC, detached one- and two-family dwellings in SDC C may use wind values. 3. Wind includes Seismic Design Category A and B. 4. Foundation dimensions are for anchorage only. Foundation design (size and reinforcement) by Designer. The registered design professional may specify alternative embedment, footing size, and anchor bolt. 5. Where tension loads are governed by anchor steel, the design provisions from AISC 360 are used to determine the tensile steel limit. LRF D values are calculated by multiplying the nominal AISC steel capacity by a 0.75 phi factor, and allowable values are calculated by dividing the AISC nominal capacity by a 2.0 omega factor. 6. Where tension loads are governed by ACI 318 concrete limit, the Allowable Stress Design (ASD) values are obtained by multiplying Load Resistance Factor Design (LRF D) capacities by 0.7 for Seismic and by 0.6 for Wind. PAB Anchor Bolt Page 28 of 97 Page 29 of 97 www.hilti.us Profis Anchor 2.4.7 Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan Company: Specifier: Address: Phone I Fax: E-Mail: WCA Structural Engineering Jason Christensen 442 North Main Street Ste 200 (801) 298-11118 | wca@wcaeng.com Page: Project: Sub-Project I Pos. No.: Date: 1 Maverik Retail Stores 3/23/2015 Specifier's comments: 1 Input data Anchor type and diameter: Kwik Bolt TZ - CS 5/8 (4) Effective embedment depth: hef,act = 4.000 in., hnom = 4.438 in. Material: Carbon Steel Evaluation Service Report: ESR-1917 Issued I Valid: 5/1/2013 | 5/1/2015 Proof: design method ACI 318-11 / Mech. Stand-off installation: eb = 0.000 in. (no stand-off); t = 0.071 in. Anchor plate: lx x ly x t = 32.000 in. x 6.000 in. x 0.071 in.; (Recommended plate thickness: not calculated) Profile: no profile Base material: cracked concrete, 4000, fc' = 4000 psi; h = 24.000 in. Installation: hammer drilled hole, installation condition: dry Reinforcement: tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: > No. 4 bar Geometry [in.] & Loading [lb, in.lb] Page 30 of 97 www.hilti.us Profis Anchor 2.4.7 Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan Company: Specifier: Address: Phone I Fax: E-Mail: WCA Structural Engineering Jason Christensen 442 North Main Street Ste 200 (801) 298-11118 | wca@wcaeng.com Page: Project: Sub-Project I Pos. No.: Date: 2 Maverik Retail Stores 3/23/2015 2 Load case/Resulting anchor forces Load case: Design loads Anchor reactions [lb] Tension force: (+Tension, -Compression) Anchor Tension force Shear force Shear force x Shear force y 1 0 2354 2354 0 max. concrete compressive strain: - [‰] max. concrete compressive stress: - [psi] resulting tension force in (x/y)=(0.000/0.000): 0 [lb] resulting compression force in (x/y)=(0.000/0.000): 0 [lb] 1 x y 3 Tension load Load Nua [lb]Capacity IIIINn [lb]Utilization EEEEN = Nua/IIIINn Status Steel Strength* N/A N/A N/A N/A Pullout Strength* N/A N/A N/A N/A Concrete Breakout Strength** N/A N/A N/A N/A * anchor having the highest loading **anchor group (anchors in tension) Page 31 of 97 www.hilti.us Profis Anchor 2.4.7 Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan Company: Specifier: Address: Phone I Fax: E-Mail: WCA Structural Engineering Jason Christensen 442 North Main Street Ste 200 (801) 298-11118 | wca@wcaeng.com Page: Project: Sub-Project I Pos. No.: Date: 3 Maverik Retail Stores 3/23/2015 4 Shear load Load Vua [lb]Capacity IIIIVn [lb]Utilization EEEEV = Vua/IIIIVn Status Steel Strength* 2354 5259 45 OK Steel failure (with lever arm)* N/A N/A N/A N/A Pryout Strength** 2354 9031 27 OK Concrete edge failure in direction x+** 2354 4262 56 OK * anchor having the highest loading **anchor group (relevant anchors) 4.1 Steel Strength Vsa = ESR value refer to ICC-ES ESR-1917 I Vsteel ≥ Vua ACI 318-11 Table D.4.1.1 Variables n Ase,V [in.2] futa [psi] 1 0.16 106000 Calculations Vsa [lb] 8091 Results Vsa [lb] Isteel I Vsa [lb] Vua [lb] 8091 0.650 5259 2354 4.2 Pryout Strength Vcp = kcp [(ANcANc0) \ed,N \c,N \cp,N Nb] ACI 318-11 Eq. (D-40) I Vcp ≥ Vua ACI 318-11 Table D.4.1.1 ANc see ACI 318-11, Part D.5.2.1, Fig. RD.5.2.1(b) ANc0 = 9 h2ef ACI 318-11 Eq. (D-5) \ec,N = (1 1 + 2 e'N 3 hef ) ≤ 1.0 ACI 318-11 Eq. (D-8) \ed,N = 0.7 + 0.3 (ca,min1.5hef) ≤ 1.0 ACI 318-11 Eq. (D-10) \cp,N = MAX(ca,mincac, 1.5hefcac) ≤ 1.0 ACI 318-11 Eq. (D-12) Nb = kc Oa √f'c h1.5ef ACI 318-11 Eq. (D-6) Variables kcp hef [in.] ec1,N [in.] ec2,N [in.] ca,min [in.] 2 4.000 0.000 0.000 4.000 \c,N cac [in.] kc Oa f'c [psi] 1.000 6.750 17 1.000 4000 Calculations ANc [in.2] ANc0 [in.2] \ec1,N \ec2,N \ed,N \cp,N Nb [lb] 120.00 144.00 1.000 1.000 0.900 1.000 8601 Results Vcp [lb] Iconcrete I Vcp [lb] Vua [lb] 12902 0.700 9031 2354 Page 32 of 97 www.hilti.us Profis Anchor 2.4.7 Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan Company: Specifier: Address: Phone I Fax: E-Mail: WCA Structural Engineering Jason Christensen 442 North Main Street Ste 200 (801) 298-11118 | wca@wcaeng.com Page: Project: Sub-Project I Pos. No.: Date: 4 Maverik Retail Stores 3/23/2015 4.3 Concrete edge failure in direction x+ Vcb = (AVcAVc0) \ed,V \c,V \h,V \parallel,V Vb ACI 318-11 Eq. (D-30) I Vcb ≥ Vua ACI 318-11 Table D.4.1.1 AVc see ACI 318-11, Part D.6.2.1, Fig. RD.6.2.1(b) AVc0 = 4.5 c2a1 ACI 318-11 Eq. (D-32) \ec,V = (1 1 + 2e'v3ca1 ) ≤ 1.0 ACI 318-11 Eq. (D-36) \ed,V = 0.7 + 0.3(ca21.5ca1) ≤ 1.0 ACI 318-11 Eq. (D-38) \h,V = √1.5ca1ha ≥ 1.0 ACI 318-11 Eq. (D-39) Vb = (7 (leda)0.2 √da) Oa √f'c c1.5a1 ACI 318-11 Eq. (D-33) Variables ca1 [in.] ca2 [in.] ecV [in.] \c,V ha [in.] 16.000 4.000 0.000 1.200 24.000 le [in.] Oa da [in.] f'c [psi] \parallel,V 4.000 1.000 0.625 4000 1.000 Calculations AVc [in.2] AVc0 [in.2] \ec,V \ed,V \h,V Vb [lb] 240.00 1152.00 1.000 0.750 1.000 32470 Results Vcb [lb] Iconcrete I Vcb [lb] Vua [lb] 6088 0.700 4262 2354 5 Warnings • Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the loading! • Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard. • Refer to the manufacturer's product literature for cleaning and installation instructions. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-11, Part D.9.1 Fastening meets the design criteria! Page 33 of 97 P a g e 3 4 o f 9 7 P a g e 3 5 o f 9 7 P a g e 3 6 o f 9 7 www.SSMA.com56 Copyright © 2015 by the SSMA Header Loads Table Notes Boxed Header Back-to-Back Header "e" web stiffeners required at ends. Header Allowable Uniform Loads (PLF) Section Yield Strength (ksi) Span 3 (ft)4 (ft)5 (ft)6 (ft)8 (ft)10 (ft)12 (ft) 550S162-33 33 931.4e 698.5e 460.1e 319.5e 179.7e 115.0e 73.8e550S162-43 33 1946.5e 1094.9e 700.8e 486.6e 273.7e 164.6e 95.3e550S162-54 50 3484.7e 1960.1e 1254.5e 871.2e 396.8e 203.2 117.6550S162-68 50 4782.6e 2690.2e 1721.7e 1157.8e 488.5e 250.1 144.7600S137-33 33 850.8e 638.1e 436.5e 303.1e 170.5e 109.1e 75.8e600S162-33 33 850.8e 638.1e 504.9e 350.6e 197.2e 126.2e 87.6e600S200-33 33 850.8e 638.1e 510.5e 398.7e 224.2e 143.5e 99.7e600S137-43 33 1751.1e 985.0e 630.4e 437.8e 246.3e 157.6e 103.2e600S162-43 33 1887.6e 1205.1e 771.3e 535.6e 301.3e 192.8e 117.1e600S200-43 33 1887.6e 1282.4e 820.7e 569.9e 320.6e 205.2e 135.7e600S250-43 33 1887.6e 1350.7e 864.4e 600.3e 337.7e 216.1e 150.1e600S137-54 50 3146.8e 1770.1e 1132.9e 786.7e 429.8e 220.1 127.3600S162-54 50 3763.8e 2158.3e 1381.3e 959.3e 488.3e 250.0e 144.7600S200-54 50 3763.8e 2281.9e 1460.4e 1014.2e 566.7e 290.1e 167.9600S250-54 50 3763.8e 2392.7e 1531.4e 1063.4e 598.2e 329.1e 190.5600S137-68 50 4280.5e 2407.8e 1541.0e 1070.1e 528.3e 270.5 156.5600S162-68 50 5288.3e 2974.7e 1903.8e 1322.1e 601.7e 308.1 178.3600S200-68 50 5880.1e 3307.5e 2116.8e 1470.0e 700.0e 358.4 207.4600S250-68 50 5788.2e 3255.8e 2083.7e 1447.0e 806.3e 412.8e 238.9600S137-97 50 7526.5e 4233.7e 2709.5e 1694.8e 715 366.1 211.8600S162-97 50 8403.7e 4727.1e 3025.3e 1941.3e 819 419.3 242.7600S200-97 50 9432.6e 5305.9e 3395.7e 2270.9e 958.0e 490.5 283.9600S250-97 50 9898.1e 5567.7e 3563.3e 2474.5e 1109.0e 567.8 328.6600S137-118 50 9138.7e 5140.5e 3289.9e 1987.9e 838.7 429.4 248.5600S162-118 50 10212.8e 5744.7e 3676.6e 2287.3e 965 494.1 285.9600S200-118 50 11620.3e 6536.4e 4183.3e 2687.4e 1133.7 580.5 335.9600S250-118 50 12729.2e 7160.2e 4582.5e 3121.2e 1316.7e 674.2 390.1800S137-33 33 632.0e 474.0e 379.2e 316.0e 223.2e 142.8e 99.2e800S162-33 33 632.0e 474.0e 379.2e 316.0e 237.0e 168.1e 116.7e800S200-33 33 632.0e 474.0e 379.2e 316.0e 237.0e 189.6e 134.5e800S137-43 33 1401.5e 1051.2e 840.9e 584.3e 328.7e 210.3e 146.1e800S162-43 33 1401.5e 1051.2e 840.9e 678.8e 381.8e 244.4e 169.7e800S200-43 33 1401.5e 1051.2e 840.9e 700.8e 437.2e 279.8e 194.3e800S250-43 33 1401.5e 1051.2e 840.9e 700.8e 459.5e 294.1e 204.2e800S137-54 50 2788.4e 2091.3e 1518.3e 1054.4e 593.1e 379.6e 251.6e800S162-54 50 2788.4e 2091.3e 1673.0e 1215.2e 683.6e 437.5e 283.3e800S200-54 50 2788.4e 2091.3e 1673.0e 1384.1e 778.6e 498.3e 332.5e800S250-54 50 2788.4e 2091.3e 1673.0e 1394.2e 815.2e 521.7e 362.3e800S137-68 50 5627.6e 3297.6e 2110.4e 1465.6e 824.4e 527.6e 317.9e800S162-68 50 5627.6e 3759.1e 2405.8e 1670.7e 939.8e 601.4e 357.6e800S200-68 50 5627.6e 4220.7e 2917.3e 2025.9e 1139.6e 711.5e 411.8e800S250-68 50 5627.6e 4220.7e 2866.9e 1990.9e 1119.9e 716.7e 467.4e800S137-97 50 9468.1e 5325.8e 3408.5e 2367.0e 1331.5e 751.5e 434.9800S162-97 50 10657.1e 5994.6e 3836.6e 2664.3e 1498.7e 849.0e 491.3800S200-97 50 13297.5e 7479.8e 4787.1e 3324.4e 1870.0e 979.3e 566.7800S250-97 50 13839.9e 7785.0e 4982.4e 3460.0e 1946.2e 1117.9e 646.9e800S137-118 50 14157.3e 7963.5e 5096.6e 3539.3e 1732.3e 886.9 513.3800S162-118 50 15589.2e 8768.9e 5612.1e 3897.3e 1964.0e 1005.5e 581.9800S200-118 50 17414.8e 9795.8e 6269.3e 4353.7e 2273.2e 1163.9e 673.5800S250-118 50 18210.1e 10243.2e 6555.6e 4552.5e 2560.8e 1332.2e 771 1. Values are for unpunched members. 2. Total load deflection is limited to L/360. 3. Headers are made from two boxed or back-to-back members. 4. Allowable moment, shear, and web crippling are based on twice the capacity of a single member. The moment of inertia is based on twice the value of the single member. 5. Web crippling check is based on 1" of bearing at end supports. 6. Members are assumed adequately braced for bending. 7. Allowable loads are for simply supported headers with uniform bending loads only. 8. See page 5 for additional table notes. Page 37 of 97 www.SSMA.com 51Complies With 2009, 2012 and 2015 IBC 15 psf Dead Load and 125 psf Live Load Section Fy (ksi) L/360 Live Load Deflection L/480 Live Load Deflection Single Span Double Span Single Span Double Span Spacing (in) on center Spacing (in) on center Spacing (in) on center Spacing (in) on center 12 16 24 12 16 24 12 16 24 12 16 24 600S162-33 33 6' 9"e 5' 10"e 4' 7"e 5' 9"e 4' 8"e 3' 4"e 6' 9"e 5' 10"e 4' 7"e 5' 9"e 4' 8"e 3' 4"e600S200-33 33 7' 2"e 6' 2"e 4' 7"e 5' 11"e 4' 9"e 3' 4"e 7' 2"e 6' 2"e 4' 7"e 5' 11"e 4' 9"e 3' 4"e600S162-43 33 8' 4"e 7' 2"e 5' 10"e 8' 1"e 6' 9"e 5' 2"e 8' 4"e 7' 2"e 5' 10"e 8' 1"e 6' 9"e 5' 2"e600S200-43 33 8' 7"e 7' 5"e 6' 1"e 8' 2"e 6' 10"e 5' 3"e 8' 7"e 7' 5"e 6' 1"e 8' 2"e 6' 10"e 5' 3"e600S250-43 33 8' 9"e 7' 7"e 6' 3"e 8' 4"e 7' 0"e 5' 4"e 8' 9"e 7' 7"e 6' 3"e 8' 4"e 7' 0"e 5' 4"e600S162-54 50 10' 0" 9' 1" 7' 10"e 11' 1" 9' 5" 7' 4" 9' 1" 8' 3" 7' 3"e 10' 2" 9' 3" 7' 4"600S200-54 50 10' 6" 9' 7" 8' 1"e 11' 2" 9' 5" 7' 4" 9' 7" 8' 8" 7' 7"e 10' 9" 9' 5" 7' 4"600S250-54 50 11' 0" 10' 0"e 8' 3"e 11' 5" 9' 8" 7' 6" 10' 0" 9' 1" 7' 11"e 11' 3" 9' 8" 7' 6"600S162-68 50 10' 9" 9' 9" 8' 6" 12' 0" 10' 11" 8' 11" 9' 9" 8' 10" 7' 9" 10' 11" 9' 11" 8' 8"600S200-68 50 11' 3" 10' 3" 8' 11" 12' 8" 11' 6" 9' 3" 10' 3" 9' 4" 8' 2" 11' 6" 10' 5" 9' 2"600S250-68 50 11' 10" 10' 9" 9' 5" 13' 3" 11' 5" 9' 1" 10' 9" 9' 9" 8' 6" 12' 1" 10' 11" 9' 1"600S162-97 50 11' 11" 10' 10" 9' 5" 13' 4" 12' 1" 10' 7" 10' 10" 9' 10" 8' 7" 12' 1" 11' 0" 9' 7"600S200-97 50 12' 6" 11' 4" 9' 11" 14' 1" 12' 9" 11' 2" 11' 4" 10' 4" 9' 0" 12' 9" 11' 7" 10' 2"600S250-97 50 13' 2" 11' 11" 10' 5" 14' 9" 13' 5" 11' 9" 11' 11" 10' 10" 9' 6" 13' 5" 12' 2" 10' 8"600S162-118 50 12' 7" 11' 5" 10' 0" 14' 1" 12' 10" 11' 2" 11' 5" 10' 4" 9' 1" 12' 10" 11' 8" 10' 2"600S200-118 50 13' 3" 12' 0" 10' 6" 14' 10" 13' 6" 11' 10" 12' 0" 10' 11" 9' 7" 13' 6" 12' 3" 10' 9"600S250-118 50 13' 11" 12' 8" 11' 1" 15' 8" 14' 2" 12' 5" 12' 8" 11' 6" 10' 0" 14' 2" 12' 11" 11' 3" 800S162-33 33 6' 9"e 5' 1"e 3' 5"e 5' 0"e 3' 11"e 2' 8"e 6' 9"e 5' 1"e 3' 5"e 5' 0"e 3' 11"e 2' 8"e800S200-33 33 6' 9"e 5' 1"e 3' 5"e 5' 1"e 3' 11"e 2' 8"e 6' 9"e 5' 1"e 3' 5"e 5' 1"e 3' 11"e 2' 8"e800S162-43 33 9' 4"e 8' 1"e 6' 7"e 8' 4"e 6' 10"e 5' 1"e 9' 4"e 8' 1"e 6' 7"e 8' 4"e 6' 10"e 5' 1"e800S200-43 33 10' 0"e 8' 8"e 7' 1"e 9' 0"e 7' 4"e 5' 4"e 10' 0"e 8' 8"e 7' 1"e 9' 0"e 7' 4"e 5' 4"e800S250-43 33 10' 3"e 8' 11"e 7' 3"e 9' 0"e 7' 4"e 5' 4"e 10' 3"e 8' 11"e 7' 3"e 9' 0"e 7' 4"e 5' 4"e800S162-54 50 12' 6"e 10' 10"e 8' 10"e 12' 3" 10' 4" 8' 1" 11' 5" 10' 4"e 8' 10"e 12' 3" 10' 4" 8' 1"800S200-54 50 13' 2"e 11' 7"e 9' 5"e 13' 4" 11' 2" 8' 7"e 12' 0" 10' 11"e 9' 5"e 13' 4" 11' 2" 8' 7"e800S250-54 50 13' 8"e 11' 10"e 9' 8"e 13' 5" 11' 3" 8' 8"e 12' 6"e 11' 4"e 9' 8"e 13' 5" 11' 3" 8' 8"e800S162-68 50 13' 6" 12' 4" 10' 4"e 14' 8" 12' 8" 10' 1" 12' 4" 11' 2" 9' 9"e 13' 10" 12' 7" 10' 1"800S200-68 50 14' 2" 12' 11" 11' 3"e 15' 11" 14' 0" 11' 3" 12' 11" 11' 8" 10' 3"e 14' 5" 13' 2" 11' 3"800S250-68 50 14' 10" 13' 5" 11' 4"e 16' 0" 13' 10" 11' 0" 13' 5" 12' 3" 10' 8"e 15' 1" 13' 9" 11' 0"800S162-97 50 15' 0" 13' 8" 11' 11" 16' 11" 15' 4" 12' 8" 13' 8" 12' 5" 10' 10" 15' 4" 13' 11" 12' 2"800S200-97 50 15' 9" 14' 4" 12' 6" 17' 8" 16' 1" 14' 1" 14' 4" 13' 0" 11' 4" 16' 1" 14' 7" 12' 9"800S250-97 50 16' 6" 15' 0" 13' 1" 18' 6" 16' 10" 14' 8" 15' 0" 13' 7" 11' 11" 16' 10" 15' 3" 13' 4"800S162-118 50 15' 11" 14' 5" 12' 7" 17' 10" 16' 3" 14' 2" 14' 5" 13' 2" 11' 6" 16' 3" 14' 9" 12' 11"800S200-118 50 16' 8" 15' 2" 13' 3" 18' 9" 17' 0" 14' 11" 15' 2" 13' 9" 12' 0" 17' 0" 15' 6" 13' 6"800S250-118 50 17' 6" 15' 10" 13' 10" 19' 7" 17' 10" 15' 7" 15' 10" 14' 5" 12' 7" 17' 10" 16' 2" 14' 2" 1000S162-43 33 10' 4"e 8' 11"e 6' 0"e 8' 1"e 6' 5"e 4' 6"e 10' 4"e 8' 11"e 6' 0"e 8' 1"e 6' 5"e 4' 6"e1000S200-43 33 11' 2"e 8' 11"e 6' 0"e 8' 3"e 6' 6"e 4' 7"e 11' 2"e 8' 11"e 6' 0"e 8' 3"e 6' 6"e 4' 7"e1000S250-43 33 11' 6"e 8' 11"e 6' 0"e 8' 5"e 6' 7"e 4' 7"e 11' 6"e 8' 11"e 6' 0"e 8' 5"e 6' 7"e 4' 7"e1000S162-54 50 13' 10"e 12' 0"e 9' 10"e 12' 10" 10' 7" 7' 11" 13' 7"e 12' 0"e 9' 10"e 12' 10" 10' 7" 7' 11"1000S200-54 50 14' 11"e 12' 11"e 10' 6"e 13' 3" 10' 10" 8' 0"e 14' 2"e 12' 10"e 10' 6"e 13' 3" 10' 10" 8' 0"e1000S250-54 50 15' 4"e 13' 3"e 10' 10"e 13' 8" 11' 2" 8' 2"e 14' 11"e 13' 3"e 10' 10"e 13' 8" 11' 2" 8' 2"e1000S162-68 50 16' 2" 14' 2"e 11' 7"e 16' 5" 14' 2" 11' 2" 14' 9" 13' 5" 11' 7"e 16' 5" 14' 2" 11' 2"1000S200-68 50 16' 11" 15' 2"e 12' 5"e 17' 6" 14' 10" 11' 8" 15' 5" 14' 0"e 12' 2"e 17' 3" 14' 10" 11' 8"1000S250-68 50 17' 8" 15' 7"e 12' 9"e 18' 0" 15' 7" 12' 4"e 16' 1" 14' 7"e 12' 9"e 18' 0" 15' 7" 12' 4"e1000S162-97 50 18' 1" 16' 5" 14' 4" 20' 4" 18' 2" 14' 9" 16' 5" 14' 11" 13' 1" 18' 6" 16' 9" 14' 8"1000S200-97 50 18' 11" 17' 2" 15' 0" 21' 3" 19' 3" 15' 8" 17' 2" 15' 7" 13' 8" 19' 3" 17' 6" 15' 4"1000S250-97 50 19' 8" 17' 11" 15' 8" 22' 1" 20' 1" 16' 11" 17' 11" 16' 3" 14' 2" 20' 1" 18' 3" 15' 11"1000S162-118 50 19' 2" 17' 5" 15' 3" 21' 6" 19' 7" 16' 7" 17' 5" 15' 10" 13' 10" 19' 7" 17' 9" 15' 6"1000S200-118 50 20' 1" 18' 3" 15' 11" 22' 6" 20' 5" 17' 8" 18' 3" 16' 7" 14' 5" 20' 5" 18' 7" 16' 3"1000S250-118 50 20' 11" 19' 0" 16' 7" 23' 5" 21' 4" 18' 7" 19' 0" 17' 3" 15' 1" 21' 4" 19' 4" 16' 11" "e" web stiffeners required at ends. Web stiffeners required at interior supports for double span conditions. See Table Notes on page 42. Floor Joist Spans Page 38 of 97 www.SSMA.com 31Complies With 2009, 2012 and 2015 IBC Combined Axial and Lateral Loads Table Notes 5 psf Lateral Load (Interior Walls) Wall Height (ft) Spacing (in) oc 350S162 362S137 362S162 362S200 33 ksi 50 ksi 33 ksi 50 ksi 33 ksi 50 ksi 33 ksi 50 ksi 33 43 54 68 33 43 54 68 33 43 54 68 33 43 54 68 8 12 1.81 2.56 3.97 5.08 1.49 2.14 3.32 4.37 1.87 2.65 4.15 5.38 2.25 3.28 5.18 6.68 16 1.74 2.48 3.90 5.01 1.42 2.07 3.26 4.30 1.80 2.57 4.08 5.31 2.17 3.20 5.10 6.60 24 1.58 2.32 3.76 4.87 1.29 1.93 3.13 4.17 1.65 2.42 3.94 5.17 2.01 3.03 4.94 6.45 9 12 1.67 2.38 3.65 4.67 1.38 2.01 3.11 4.07 1.74 2.48 3.86 4.99 2.10 3.07 4.79 6.17 16 1.57 2.28 3.56 4.58 1.30 1.92 3.02 3.99 1.64 2.38 3.77 4.90 2.00 2.96 4.69 6.07 24 1.39 2.09 3.39 4.41 1.13 1.74 2.87 3.82 1.46 2.19 3.60 4.72 1.80 2.76 4.49 5.88 10 12 1.51 2.18 3.29 4.23 1.26 1.85 2.85 3.73 1.58 2.29 3.53 4.55 1.93 2.84 4.37 5.61 16 1.40 2.07 3.19 4.12 1.16 1.75 2.75 3.63 1.47 2.17 3.42 4.44 1.81 2.71 4.25 5.49 24 1.19 1.84 2.99 3.92 0.96 1.54 2.57 3.44 1.26 1.95 3.22 4.23 1.57 2.47 4.01 5.27 12 12 1.18 1.75 2.56 3.31 0.99 1.51 2.27 2.97 1.25 1.87 2.79 3.60 1.56 2.32 3.45 4.44 16 1.04 4 1.61 2.44 3.18 0.86 4 1.37 2.15 2.85 1.11 1.72 2.66 3.47 1.40 2.16 3.30 4.30 24 0.79 3 1.34 3 2.21 2.94 0.63 3 1.12 3 1.93 4 2.62 0.86 3 1.44 4 2.42 3.22 1.12 3 1.86 3.03 4.03 14 12 0.86 3 1.33 1.95 2.54 0.72 3 1.15 4 1.75 2.30 0.93 4 1.44 2.14 2.78 1.18 1.81 2.64 3.43 16 0.71 3 1.17 3 1.82 4 2.40 0.59 3 1.00 3 1.62 4 2.16 0.78 3 1.28 4 2.00 2.64 1.01 3 1.63 4 2.48 3.27 24 0.46 2 0.89 3 1.58 3 2.16 3 0.34 2 0.73 2 1.39 3 1.92 3 0.52 2 0.99 3 1.75 3 2.38 4 0.70 3 1.31 3 2.19 3 2.99 16 12 0.59 3 0.96 3 1.48 4 1.95 0.50 3 0.83 3 1.33 3 1.76 4 0.65 3 1.06 3 1.63 4 2.14 0.84 3 1.36 4 2.01 2.66 16 0.45 2 0.80 3 1.35 3 1.81 3 0.36 2 0.68 2 1.20 3 1.63 3 0.51 2 0.90 3 1.49 3 2.00 4 0.67 3 1.18 3 1.86 3 2.50240.21 1 0.54 2 1.12 2 1.57 3 0.12 1 0.42 1 0.97 2 1.39 2 0.25 1 0.62 2 1.25 2 1.74 3 0.38 2 0.86 2 1.58 3 2.21 3 5 psf Lateral Load (Interior Walls) Wall Height (ft) Spacing (in) oc 400S137 400S162 400S200 550S162 33 ksi 50 ksi 33 ksi 50 ksi 33 ksi 50 ksi 33 ksi 50 ksi 33 43 54 68 33 43 54 68 33 43 54 68 33 43 54 68 8 12 1.61 2.31 3.67 4.98 2.03 2.87 4.62 6.18 2.42 3.55 5.77 7.63 2.39 3.38 5.63 7.45161.55 2.25 3.61 4.91 1.96 2.80 4.55 6.11 2.34 3.48 5.70 7.56 2.34 3.33 5.58 7.41241.42 2.12 3.49 4.78 1.82 2.66 4.42 5.97 2.19 3.32 5.54 7.41 2.24 3.23 5.49 7.32 9 12 1.52 2.20 3.49 4.79 1.91 2.72 4.37 5.85 2.28 3.37 5.43 7.19 2.32 3.31 5.55 7.41161.44 2.12 3.42 4.70 1.82 2.63 4.28 5.76 2.19 3.27 5.33 7.10 2.26 3.24 5.49 7.35241.28 1.95 3.27 4.54 1.65 2.46 4.11 5.59 2.00 3.08 5.14 6.91 2.13 3.12 5.38 7.24 10 12 1.41 2.07 3.28 4.49 1.77 2.56 4.08 5.47 2.13 3.16 5.04 6.70 2.25 3.22 5.41 7.35161.31 1.97 3.19 4.38 1.67 2.45 3.97 5.36 2.01 3.04 4.92 6.58 2.16 3.14 5.34 7.27241.12 1.77 3.00 4.18 1.46 2.23 3.77 5.14 1.79 2.81 4.69 6.34 2.00 2.99 5.19 7.12 12 12 1.16 1.76 2.77 3.75 1.46 2.17 3.41 4.54 1.79 2.69 4.19 5.57 2.05 3.00 5.04 6.87161.03 1.62 2.64 3.61 1.32 2.02 3.27 4.39 1.63 2.53 4.03 5.41 1.93 2.89 4.93 6.76240.80 3 1.36 4 2.40 3.35 1.06 4 1.74 3.01 4.12 1.35 2.22 3.74 5.11 1.71 2.68 4.71 6.54 14 12 0.90 4 1.41 2.22 2.96 1.14 1.75 2.71 3.57 1.43 2.19 3.32 4.39 1.81 2.72 4.54 6.23160.75 3 1.25 4 2.08 2.80 0.98 3 1.58 2.55 3.41 1.25 4 2.00 3.14 4.21 1.66 2.57 4.39 6.07240.49 2 0.96 3 1.81 3 2.52 4 0.70 3 1.26 3 2.27 4 3.10 0.92 3 1.65 4 2.82 3.88 1.37 2.29 4.11 5.78 16 12 0.65 3 1.08 3 1.74 2.30 0.84 3 1.35 4 2.12 2.78 1.07 4 1.71 2.60 3.42 1.53 2.39 3.95 5.45160.50 2 0.91 3 1.59 3 2.14 4 0.68 3 1.17 3 1.96 4 2.61 0.89 3 1.51 4 2.41 3.24 1.35 2.20 3.77 5.26240.23 1 0.61 2 1.32 3 1.86 3 0.39 2 0.85 2 1.67 3 2.31 3 0.56 2 1.16 3 2.09 3 2.91 4 1.02 3 1.87 3.43 4.90 If no note, deflection meets L/720 1Deflection meets L/120 2Deflection meets L/240 3Deflection meets L/360 4Deflection meets L/600 1. Allowable axial loads listed in kips (1 kip = 1,000 pounds). 2. Allowable axial loads listed are based on simple one span condition. 3. Allowable axial loads determined in accordance with AISI S100 Section C5 and with the assumption that axial load passes through centroid of the effective section. 4. Allowable axial loads are based on 4'-0" on center bracing. 5. Studs are assumed to be adequately braced at a maximum spacing of Lu to develop full allowable moment, Ma. 6. Listed wind pressures represent calculated designed wind pressure (1.0 W based on 2009 or 0.6 W based on 2012 IBC or later ASD load combinations). For deflection calculations, listed wind pressures have been reduced by 0.70 as allowed by IBC. The 5 psf pressure has not been reduced for deflection checks. 7. End supports have not been checked for web crippling. See web crippling tables on page 51. 8. See page 5 for additional table notes. Page 39 of 97 www.SSMA.com32 Copyright © 2015 by the SSMA Combined Axial and Lateral Loads 15 psf Lateral Load Wall Height (ft) Spacing (in) oc 350S162 362S137 362S162 362S200 33 ksi 50 ksi 33 ksi 50 ksi 33 ksi 50 ksi 33 ksi 50 ksi 33 43 54 68 33 43 54 68 33 43 54 68 33 43 54 68 8 12 1.37 2.10 3.56 4.66 1.09 1.72 2.95 3.98 1.44 2.20 3.74 4.96 1.77 2.79 4.71 6.22161.16 1.89 3.36 4.46 0.91 1.53 2.77 3.80 1.23 1.99 3.55 4.76 1.55 2.56 4.49 6.01 24 0.78 1.49 2.99 4.08 0.56 4 1.16 2.43 3.44 0.85 1.59 3.17 4.38 1.13 2.13 4.06 5.58 9 12 1.13 1.82 3.14 4.16 0.90 1.49 2.64 3.59 1.21 1.93 3.35 4.47 1.51 2.47 4.21 5.60 16 0.90 1.57 2.91 3.92 0.68 1.26 2.43 3.37 0.97 1.68 3.12 4.23 1.25 2.19 3.94 5.34 24 0.46 3 1.11 4 2.48 3.48 0.28 3 0.83 4 2.03 2.94 0.53 3 1.21 2.68 3.77 0.77 4 1.68 3.44 4.84 10 12 0.90 1.53 2.71 3.63 0.70 4 1.25 2.31 3.16 0.97 1.64 2.94 3.94 1.25 2.13 3.69 4.95 16 0.64 3 1.25 2.45 3.37 0.46 3 0.99 4 2.07 2.91 0.71 4 1.36 2.67 3.66 0.95 1.82 3.38 4.65 24 0.17 3 0.74 3 1.99 4 2.88 -0.51 3 1.62 3 2.44 4 0.23 3 0.84 3 2.18 4 3.15 0.42 3 1.25 4 2.83 4.09 12 12 0.47 3 0.98 3 1.90 4 2.62 0.33 3 0.78 3 1.63 4 2.30 0.53 3 1.08 4 2.10 2.88 0.74 3 1.46 2.65 3.66 16 0.18 2 0.67 3 1.62 3 2.33 4 - 0.48 3 1.36 3 2.02 4 0.24 2 0.76 3 1.81 3 2.58 4 0.41 3 1.11 3 2.32 4 3.32 24 -0.13 2 1.13 2 1.81 3 - - 0.89 2 1.51 3 - 0.20 2 1.29 3 2.03 3 - 0.49 3 1.73 3 2.72 3 14 12 0.13 2 0.53 2 1.27 3 1.83 3 - 0.38 2 1.08 3 1.60 3 0.18 2 0.61 3 1.42 3 2.03 3 0.32 2 0.90 3 1.82 3 2.61 4 16 - 0.22 2 1.00 2 1.54 3 - - 0.82 2 1.31 3 - 0.29 2 1.14 2 1.73 3 - 0.54 2 1.49 3 2.28 3 24 - - 0.53 1 1.04 2 - -0.35 1 0.82 2 - - 0.64 1 1.19 2 - - 0.92 2 1.69 2 16 12 - 0.20 1 0.82 2 1.26 3 - - 0.68 2 1.07 2 - 0.26 2 0.93 2 1.41 3 - 0.46 2 1.22 3 1.85 3 16 - - 0.57 1 0.98 2 - - 0.42 1 0.80 2 - - 0.66 1 1.12 2 -0.12 1 0.91 2 1.53 2 24 - -0.13 1 0.51 1 - - - 0.34 1 - -0.19 1 0.62 1 - - 0.38 1 0.97 1 5 psf Lateral Load (Interior Walls) Wall Height (ft) Spacing (in) oc. 600S137 600S162 600S200 33 ksi 50 ksi 33 ksi 50 ksi 33 ksi 50 ksi 33 43 54 68 97 33 43 54 68 97 33 43 54 68 97 8 12 1.77 2.51 3.81 5.05 7.54 2.42 3.40 5.61 7.45 11.39 2.86 4.31 7.46 9.97 15.65161.73 2.47 3.78 5.02 7.52 2.37 3.35 5.57 7.41 11.35 2.81 4.26 7.41 9.93 15.60241.65 2.39 3.72 4.96 7.46 2.28 3.27 5.49 7.33 11.28 2.72 4.16 7.31 9.83 15.51 9 12 1.74 2.47 3.78 5.02 7.52 2.38 3.36 5.57 7.41 11.35 2.80 4.23 7.31 9.79 15.39161.69 2.43 3.74 4.98 7.48 2.32 3.30 5.52 7.36 11.31 2.74 4.16 7.25 9.73 15.33241.59 2.33 3.66 4.90 7.41 2.20 3.19 5.42 7.26 11.21 2.62 4.03 7.12 9.61 15.20 10 12 1.70 2.44 3.75 4.99 7.49 2.33 3.31 5.53 7.37 11.31 2.73 4.13 7.14 9.58 15.07161.63 2.37 3.70 4.94 7.44 2.25 3.24 5.46 7.30 11.25 2.65 4.05 7.05 9.50 14.99241.51 2.25 3.59 4.83 7.36 2.10 3.11 5.33 7.17 11.12 2.50 3.88 6.89 9.35 14.83 12 12 1.60 2.34 3.66 4.90 7.41 2.17 3.15 5.35 7.25 11.19 2.55 3.88 6.67 9.00 14.21161.51 2.25 3.59 4.82 7.34 2.06 3.05 5.25 7.15 11.09 2.44 3.76 6.55 8.89 14.09241.33 2.07 3.43 4.67 7.21 1.85 2.85 5.05 6.95 10.89 2.22 3.53 6.31 8.66 13.85 14 12 1.48 2.22 3.55 4.79 7.31 1.95 2.91 4.93 6.77 10.96 2.32 3.56 6.07 8.26 13.08161.36 2.09 3.44 4.67 7.20 1.81 2.78 4.80 6.63 10.80 2.17 3.40 5.91 8.10 12.91241.11 1.85 3.21 4.45 7.00 1.54 2.51 4.53 6.35 10.49 1.89 3.09 5.59 7.79 12.58 16 12 1.34 2.07 3.40 4.63 7.15 1.71 2.62 4.41 6.10 9.89 2.05 3.18 5.38 7.38 11.74161.18 1.90 3.24 4.46 7.00 1.53 2.45 4.24 5.91 9.68 1.87 2.98 5.18 7.17 11.52240.87 3 1.59 2.95 4.16 6.71 1.20 4 2.12 3.91 5.57 9.28 1.52 2.61 4.79 6.79 11.09 5 psf Lateral Load (Interior Walls) Wall Height (ft) Spacing (in) oc 800S137 800S162 800S200 33 ksi 50 ksi 33 ksi 50 ksi 33 ksi 50 ksi 43 54 68 97 43 54 68 97 118 43 54 68 97 118 8 12 2.43 3.57 4.74 7.21 3.35 5.43 7.25 11.25 14.30 4.47 7.74 10.29 15.98 20.46 16 2.40 3.55 4.72 7.19 3.32 5.40 7.22 11.23 14.28 4.44 7.71 10.25 15.95 20.43 24 2.35 3.50 4.68 7.16 3.26 5.35 7.16 11.17 14.23 4.36 7.64 10.19 15.88 20.37 9 12 2.40 3.55 4.73 7.20 3.33 5.41 7.22 11.23 14.28 4.44 7.71 10.26 15.95 20.43 16 2.37 3.52 4.70 7.17 3.29 5.37 7.19 11.20 14.25 4.39 7.67 10.21 15.91 20.39 24 2.30 3.47 4.65 7.12 3.21 5.30 7.12 11.13 14.19 4.30 7.57 10.13 15.83 20.31 10 12 2.38 3.53 4.71 7.18 3.30 5.38 7.19 11.20 14.26 4.41 7.68 10.22 15.92 20.40 16 2.34 3.49 4.67 7.15 3.25 5.33 7.15 11.16 14.22 4.35 7.62 10.17 15.87 20.35 24 2.26 3.43 4.61 7.09 3.15 5.24 7.06 11.07 14.14 4.23 7.50 10.06 15.76 20.25 12 12 2.32 3.48 4.66 7.13 3.22 5.31 7.13 11.14 14.20 4.32 7.59 10.14 15.84 20.32 16 2.26 3.43 4.61 7.09 3.15 5.24 7.06 11.07 14.14 4.23 7.50 10.06 15.76 20.24 24 2.14 3.33 4.51 7.00 3.00 5.11 6.93 10.94 14.03 4.06 7.32 9.90 15.60 20.08 14 12 2.25 3.42 4.60 7.08 3.13 5.22 7.04 11.05 14.12 4.16 7.36 9.96 15.72 20.20 16 2.16 3.35 4.53 7.01 3.03 5.13 6.94 10.95 14.03 4.04 7.24 9.84 15.61 20.09 24 2.00 3.21 4.40 6.88 2.83 4.94 6.76 10.76 13.87 3.80 6.99 9.61 15.38 19.86 16 12 2.16 3.34 4.52 7.00 3.02 5.11 6.93 10.93 14.01 3.93 6.95 9.45 15.15 19.78 16 2.05 3.25 4.43 6.91 2.89 4.98 6.80 10.80 13.89 3.77 6.78 9.30 15.00 19.62241.83 3.06 4.25 6.74 2.62 4.72 6.54 10.53 13.66 3.46 6.46 9.00 14.68 19.29 If no note, deflection meets L/720 1Deflection meets L/120 2Deflection meets L/240 3Deflection meets L/360 4Deflection meets L/600 See Table Notes on page 31.Page 40 of 97 Structural Calculations WCA Project #21172 Sales Floor Page 41 of 97 P a g e 4 2 o f 9 7 Wood Structural Panel Shear Wall - Multiple Pier Design International Building Code, 2018 IBC Sec. 1605.3.1 ASD Basic Load Combinations (Live loads are assumed to be supported by other elements) - Steel stud aspect ratio Wall Panel: Sales floor SW-1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ VE/W W T C q DL Point O Holdown Offset, HO w h Wall pier properties: Typ. Holdown offset: HO 6in:= Num. of wall or piers (12 max):n 2:= Effective pier length: Effective pier height: Pier roof tributary: w1 3ft:=h1 6ft:=Tr1 5ft:= w2 3ft:=h2 6ft:=Tr2 5ft:= w3 0ft:=h3 0ft:=Tr3 0ft:= w4 0ft:=h4 0ft:=Tr4 0ft:= w5 0ft:=h5 0ft:=Tr5 0ft:= w6 0ft:=h6 0ft:=Tr6 0ft:= w7 0ft:=h7 0ft:=Tr7 0ft:= w8 0ft:=h8 0ft:=Tr8 0ft:= w9 0ft:=h9 0ft:=Tr9 0ft:= w10 0ft:=h10 0ft:=Tr10 0ft:= w11 0ft:=h11 0ft:=Tr11 0ft:= w12 0ft:=h12 0ft:=Tr12 0ft:= Loads: Gravity loads: Lateral loads: Roof dead load (psf): DLroof 10psf:=Wind load (ultimate level): VW 0kip:= Wall dead load (psf): DLwall 10psf:=Seismic load (ultimate level): VE 0.5kip:= ρ 1.0:= SDS 0.335:= Calculations Design unit shears and wall aspect ratios: Unit_Shear "Wind unit shear, q = 0 plf" "Seismic unit shear, q = 58 plf" = Aspect_Ratio "Pier aspect ratios meet 2:1, OK for W & EQ" "Pier aspect ratios meet 2:1, OK for W & EQ" = Design tension at boundary elements and holdowns: Max_Tension "No tension, holdown is not required" "No tension, holdown is not required" = Page 43 of 97 Wood Structural Panel Shear Wall - Multiple Pier Design International Building Code, 2018 IBC Sec. 1605.3.1 ASD Basic Load Combinations (Live loads are assumed to be supported by other elements) - Steel stud aspect ratio Wall Panel: Sales floor SW-2 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ VE/W W T C q DL Point O Holdown Offset, HO w h Wall pier properties: Typ. Holdown offset: HO 6in:= Num. of wall or piers (12 max):n 2:= Effective pier length: Effective pier height: Pier roof tributary: w1 5ft:=h1 10ft:=Tr1 2ft:= w2 5ft:=h2 10ft:=Tr2 2ft:= w3 0ft:=h3 0ft:=Tr3 0ft:= w4 0ft:=h4 0ft:=Tr4 0ft:= w5 0ft:=h5 0ft:=Tr5 0ft:= w6 0ft:=h6 0ft:=Tr6 0ft:= w7 0ft:=h7 0ft:=Tr7 0ft:= w8 0ft:=h8 0ft:=Tr8 0ft:= w9 0ft:=h9 0ft:=Tr9 0ft:= w10 0ft:=h10 0ft:=Tr10 0ft:= w11 0ft:=h11 0ft:=Tr11 0ft:= w12 0ft:=h12 0ft:=Tr12 0ft:= Loads: Gravity loads: Lateral loads: Roof dead load (psf): DLroof 10psf:=Wind load (ultimate level): VW 0kip:= Wall dead load (psf): DLwall 10psf:=Seismic load (ultimate level): VE 1.0kip:= ρ 1.0:= SDS 0.335:= Calculations Design unit shears and wall aspect ratios: Unit_Shear "Wind unit shear, q = 0 plf" "Seismic unit shear, q = 70 plf" = Aspect_Ratio "Pier aspect ratios meet 2:1, OK for W & EQ" "Pier aspect ratios meet 2:1, OK for W & EQ" = Design tension at boundary elements and holdowns: Max_Tension "Seismic controls tension holdowns, T = 0.59 kip" "Seismic controls tension holdowns, T = 0.59 kip" = Page 44 of 97 Page 45 of 97 ,SPHS[RWERH8IRWMSR8MIW 7,(9,SPHS[RW 8LI7,(9WIVMIWSJLSPHS[RWGSQFMRIWTIVJSVQERGI ZMVXYEPP]IPMQMREXIWQEXIVMEPWXVIXGLVIWYPXMRKMRPS[ XETTMRKWGVI[WMRXSXLIWXYHWVIHYGIWMRWXEPPEXMSRXMQI ERHWEZIWPEFSVGSWX 1EXIVMEPQMPKE *MRMWL+EPZERM^IH -RWXEPPEXMSR 9WIWXERHEVHWIPJHVMPPMRKWGVI[WXSJEWXIRXSWXYHW %RGLSVFSPX[EWLIVMWRSXVIUYMVIH 7II7&778&ERH4%&%RGLSV&SPXWSRTEKIW JSVGEWXMRTPEGIERGLSVEKISTXMSRW 7II7)8<4ERH%8<4EHLIWMZITVSHYGXWJSV 'SHIW7IITEKIJSV'SHI6ITSVX6IJIVIRGI /I]'LEVX8]TMGEP7,(9-RWXEPPEXMSR7,(9 8LI(IWMKRIVWLEPPWTIGMJ]XLIJSYRHEXMSRERGLSV XLIXEFYPEXIHLSPHS[RXIRWMSRPSEHWI\GIIHXLIXIRWMSR WXVIRKXLSJX]TMGEP%781%SV%ERGLSVFSPXW SREQMRMQYQWXYHXLMGORIWWJSVJEWXIRIVGSRRIGXMSR MRGLWIPJHVMPPMRKWGVI[WQE]FIWYFWXMXYXIHJSV WIPJXETTMRKWGVI[W %LIEZ]LI\RYXJSVXLIERGLSVFSPXMWVIUYMVIHXS EGLMIZIXLIXEFPIPSEHWJSV7,(9 LSPHS[RHIJSVQEXMSRERHERGLSVVSHIPSRKEXMSRJSV LSPHS[RWMRWXEPPIHYTXSEFSZIXSTSJGSRGVIXI ,SPHS[RWQE]FIMRWXEPPIHVEMWIHYTXSEFSZI XSTSJGSRGVIXI[MXLRSPSEHVIHYGXMSRTVSZMHIHXLEX EHHMXMSREPIPSRKEXMSRSJXLIERGLSVVSHMWEGGSYRXIHJSV 8LI2SQMREP8IRWMSR0SEHMWFEWIHSRXLIXIWXIH EZIVEKIYPXMQEXITIEO PSEHERHMWTVSZMHIHJSV HIWMKRMREGGSVHERGI[MXLWIGXMSR'SJ%-7-7 XLEXVIUYMVIWELSPHS[RXSLEZIERSQMREPWXVIRKXL XLIQE\MQYQJSVGIXLIW]WXIQGERHIPMZIV 7IITEKIWXLVSYKLJSVQSVIMRJSVQEXMSRSR 7MQTWSR7XVSRK8MIJEWXIRIVW 1SHIP , MR *EWXIRIVW 7XYH1IQFIV 8LMGORIWW QMPKE %7(PFW 06*(PFW 2SQMREP 8IRWMSR0SEH PFW 'SHI 6IJ %RGLSV&SPX (MEQIXIV MR 7XYH *EWXIRIVW 8IRWMSR 0SEH %7(0SEH 8IRWMSR 0SEH 06*(0SEH 7,(9 KE -4 0* KE KE 7XIIP*M\XYVI 7,(9 KE KE KE 7XIIP*M\XYVI 7,(9 KE KE KE 7XIIP*M\XYVI 7,(9 KE KE KE [MXL,IEZ] ,I\2YX KE KE 7XIIP*M\XYVI 8LIWITVSHYGXWEVIEZEMPEFPI[MXLEHHMXMSREPGSVVSWMSRTVSXIGXMSR%HHMXMSREPTVSHYGXWSR XLMWTEKIQE]EPWSFIEZEMPEFPI[MXLXLMWSTXMSR'LIGO[MXL7MQTWSR7XVSRK8MIJSVHIXEMPW 'SQTVIWWMSR 1IQFIV&PSGOMRK 4IV(IWMKR 8]TMGEP 7,(9 *PSSV*PSSV -RWXEPPEXMSR 1E\ ,SPHS[R 'SYTPIV 7LIEV[EPP 'LSVH7XYHW 6SH '0 1E\ ,SPHS[R &IEVMRK 4PEXI 8STSJ 'SRGVIXI &SXXSQ 8VEGO 7PSTI1E\ ,SPHS[R6EMWIH3JJ '*7&SXXSQ8VEGO Page 46 of 97 C- C - 2 0 1 9 © 2 0 1 9 S I M P S O N S T R O N G - T I E C O M P A N Y I N C . Simpson Strong-Tie® Wood Construction Connectors 43 Co n c r e t e C o n n e c t o r s an d A n c h o r s PAB Pre-Assembled Anchor Bolt (cont.) PAB Anchor Bolt – Anchorage Solutions Design Criteria Diameter (in.)Anchor Bolt 2,500 psi Concrete 3,000 psi Concrete Dimensions (in.)Tension Load Dimensions (in.)Tension Load de F ASD LRF D de F ASD LRF D Wind 1/2 PAB4 4 1/2 7 4,270 6,405 4 6 4,270 6,405 5/8 PAB5 4 6 4,030 6,720 4 6 4,415 7,360 6 9 6,675 10,010 5 1/2 8 1/2 6,675 10,010 3/4 PAB6 5 1/2 8 1/2 6,500 10,835 5 7 1/2 6,175 10,290 7 1/2 11 1/2 9,610 14,415 7 10 1/2 9,610 14,415 7⁄8 PAB7 6 9 7,405 12,345 5 1/2 8 1/2 7,120 11,870 9 13 1/2 13,080 19,620 8 1/2 13 13,080 19,620 PAB7H 9 13 1/2 13,610 22,680 8 1/2 13 13,680 22,805 14 21 27,060 40,590 13 1/2 20 1/2 27,060 40,590 1 PAB8 8 12 11,405 19,005 7 1/2 11 1/2 11,340 18,900 10 1/2 16 17,080 25,565 10 15 17,080 25,560 PAB8H 10 1/2 16 17,150 28,580 10 15 17,460 29,100 16 1/2 25 35,345 53,015 15 1/2 23 1/2 35,345 53,015 1 1⁄8 PAB9 9 13 1/2 13,610 22,680 8 12 12,495 20,820 12 1/2 19 21,620 32,430 12 18 21,620 32,430 1 1⁄4 PAB10 14 21 26,690 40,035 13 1/2 20 1/2 26,690 40,035 Seismic 1/2 PAB4 5 7 1/2 4,270 6,405 4 1/2 7 4,270 6,405 5/8 PAB5 6 1/2 10 6,675 10,010 6 9 6,675 10,010 3/4 PAB6 7 1/2 11 1/2 9,060 12,940 7 10 1/2 8,945 12,780 8 12 9,610 14,415 7 1/2 11 1/2 9,610 14,415 7⁄8 PAB7 9 13 1/2 11,905 17,010 8 1/2 13 11,970 17,100 10 15 13,080 19,620 9 1/2 14 1/2 13,080 19,620 PAB7H 14 1/2 22 25,350 36,215 13 1/2 20 1/2 24,650 35,215 15 1/2 23 1/2 27,060 40,590 14 1/2 22 27,060 40,590 1 PAB8 11 16 1/2 15,996 22,850 10 1/2 16 16,435 23,480 11 1/2 17 1/2 17,080 25,625 11 16 1/2 17,080 25,625 PAB8H 17 25 1/2 33,045 47,205 16 24 32,720 46,740 18 27 35,345 53,015 17 25 1/2 35,345 53,015 1 1⁄8 PAB9 12 1/2 19 19,795 28,275 12 18 20,255 28,940 13 1/2 20 1/2 21,620 32,430 12 1/2 19 21,620 32,430 1 1⁄4 PAB10 14 1/2 22 25,350 36,215 14 21 26,190 37,415 15 22 1/2 26,690 40,035 14 1/2 22 26,690 40,035 1. Anchorage designs conform to ACI 318-14 and assume cracked concrete with no supplementary reinforcement. 2. Seismic indicates Seismic Design Category C-F and designs comply with ACI 318-14, Section 17.2.3.4. Per Section 1613 of the IBC, detached one- and two-family dwellings in SDC C may use wind values. 3. Wind includes Seismic Design Category A and B. 4. Foundation dimensions are for anchorage only. Foundation design (size and reinforcement) by Designer. The registered design professional may specify alternative embedment, footing size, and anchor bolt. 5. Where tension loads are governed by anchor steel, the design provisions from AISC 360 are used to determine the tensile steel limit. LRF D values are calculated by multiplying the nominal AISC steel capacity by a 0.75 phi factor, and allowable values are calculated by dividing the AISC nominal capacity by a 2.0 omega factor. 6. Where tension loads are governed by ACI 318 concrete limit, the Allowable Stress Design (ASD) values are obtained by multiplying Load Resistance Factor Design (LRF D) capacities by 0.7 for Seismic and by 0.6 for Wind. PAB Anchor Bolt Page 47 of 97 Page 48 of 97 www.hilti.us Profis Anchor 2.4.7 Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan Company: Specifier: Address: Phone I Fax: E-Mail: WCA Structural Engineering Jason Christensen 442 North Main Street Ste 200 (801) 298-11118 | wca@wcaeng.com Page: Project: Sub-Project I Pos. No.: Date: 1 Maverik Retail Stores 3/23/2015 Specifier's comments: 1 Input data Anchor type and diameter: Kwik Bolt TZ - CS 5/8 (4) Effective embedment depth: hef,act = 4.000 in., hnom = 4.438 in. Material: Carbon Steel Evaluation Service Report: ESR-1917 Issued I Valid: 5/1/2013 | 5/1/2015 Proof: design method ACI 318-11 / Mech. Stand-off installation: eb = 0.000 in. (no stand-off); t = 0.071 in. Anchor plate: lx x ly x t = 32.000 in. x 6.000 in. x 0.071 in.; (Recommended plate thickness: not calculated) Profile: no profile Base material: cracked concrete, 4000, fc' = 4000 psi; h = 24.000 in. Installation: hammer drilled hole, installation condition: dry Reinforcement: tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: > No. 4 bar Geometry [in.] & Loading [lb, in.lb] Page 49 of 97 www.hilti.us Profis Anchor 2.4.7 Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan Company: Specifier: Address: Phone I Fax: E-Mail: WCA Structural Engineering Jason Christensen 442 North Main Street Ste 200 (801) 298-11118 | wca@wcaeng.com Page: Project: Sub-Project I Pos. No.: Date: 2 Maverik Retail Stores 3/23/2015 2 Load case/Resulting anchor forces Load case: Design loads Anchor reactions [lb] Tension force: (+Tension, -Compression) Anchor Tension force Shear force Shear force x Shear force y 1 0 2354 2354 0 max. concrete compressive strain: - [‰] max. concrete compressive stress: - [psi] resulting tension force in (x/y)=(0.000/0.000): 0 [lb] resulting compression force in (x/y)=(0.000/0.000): 0 [lb] 1 x y 3 Tension load Load Nua [lb]Capacity IIIINn [lb]Utilization EEEEN = Nua/IIIINn Status Steel Strength* N/A N/A N/A N/A Pullout Strength* N/A N/A N/A N/A Concrete Breakout Strength** N/A N/A N/A N/A * anchor having the highest loading **anchor group (anchors in tension) Page 50 of 97 www.hilti.us Profis Anchor 2.4.7 Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan Company: Specifier: Address: Phone I Fax: E-Mail: WCA Structural Engineering Jason Christensen 442 North Main Street Ste 200 (801) 298-11118 | wca@wcaeng.com Page: Project: Sub-Project I Pos. No.: Date: 3 Maverik Retail Stores 3/23/2015 4 Shear load Load Vua [lb]Capacity IIIIVn [lb]Utilization EEEEV = Vua/IIIIVn Status Steel Strength* 2354 5259 45 OK Steel failure (with lever arm)* N/A N/A N/A N/A Pryout Strength** 2354 9031 27 OK Concrete edge failure in direction x+** 2354 4262 56 OK * anchor having the highest loading **anchor group (relevant anchors) 4.1 Steel Strength Vsa = ESR value refer to ICC-ES ESR-1917 I Vsteel ≥ Vua ACI 318-11 Table D.4.1.1 Variables n Ase,V [in.2] futa [psi] 1 0.16 106000 Calculations Vsa [lb] 8091 Results Vsa [lb] Isteel I Vsa [lb] Vua [lb] 8091 0.650 5259 2354 4.2 Pryout Strength Vcp = kcp [(ANcANc0) \ed,N \c,N \cp,N Nb] ACI 318-11 Eq. (D-40) I Vcp ≥ Vua ACI 318-11 Table D.4.1.1 ANc see ACI 318-11, Part D.5.2.1, Fig. RD.5.2.1(b) ANc0 = 9 h2ef ACI 318-11 Eq. (D-5) \ec,N = (1 1 + 2 e'N 3 hef ) ≤ 1.0 ACI 318-11 Eq. (D-8) \ed,N = 0.7 + 0.3 (ca,min1.5hef) ≤ 1.0 ACI 318-11 Eq. (D-10) \cp,N = MAX(ca,mincac, 1.5hefcac) ≤ 1.0 ACI 318-11 Eq. (D-12) Nb = kc Oa √f'c h1.5ef ACI 318-11 Eq. (D-6) Variables kcp hef [in.] ec1,N [in.] ec2,N [in.] ca,min [in.] 2 4.000 0.000 0.000 4.000 \c,N cac [in.] kc Oa f'c [psi] 1.000 6.750 17 1.000 4000 Calculations ANc [in.2] ANc0 [in.2] \ec1,N \ec2,N \ed,N \cp,N Nb [lb] 120.00 144.00 1.000 1.000 0.900 1.000 8601 Results Vcp [lb] Iconcrete I Vcp [lb] Vua [lb] 12902 0.700 9031 2354 Page 51 of 97 www.hilti.us Profis Anchor 2.4.7 Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan Company: Specifier: Address: Phone I Fax: E-Mail: WCA Structural Engineering Jason Christensen 442 North Main Street Ste 200 (801) 298-11118 | wca@wcaeng.com Page: Project: Sub-Project I Pos. No.: Date: 4 Maverik Retail Stores 3/23/2015 4.3 Concrete edge failure in direction x+ Vcb = (AVcAVc0) \ed,V \c,V \h,V \parallel,V Vb ACI 318-11 Eq. (D-30) I Vcb ≥ Vua ACI 318-11 Table D.4.1.1 AVc see ACI 318-11, Part D.6.2.1, Fig. RD.6.2.1(b) AVc0 = 4.5 c2a1 ACI 318-11 Eq. (D-32) \ec,V = (1 1 + 2e'v3ca1 ) ≤ 1.0 ACI 318-11 Eq. (D-36) \ed,V = 0.7 + 0.3(ca21.5ca1) ≤ 1.0 ACI 318-11 Eq. (D-38) \h,V = √1.5ca1ha ≥ 1.0 ACI 318-11 Eq. (D-39) Vb = (7 (leda)0.2 √da) Oa √f'c c1.5a1 ACI 318-11 Eq. (D-33) Variables ca1 [in.] ca2 [in.] ecV [in.] \c,V ha [in.] 16.000 4.000 0.000 1.200 24.000 le [in.] Oa da [in.] f'c [psi] \parallel,V 4.000 1.000 0.625 4000 1.000 Calculations AVc [in.2] AVc0 [in.2] \ec,V \ed,V \h,V Vb [lb] 240.00 1152.00 1.000 0.750 1.000 32470 Results Vcb [lb] Iconcrete I Vcb [lb] Vua [lb] 6088 0.700 4262 2354 5 Warnings • Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the loading! • Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard. • Refer to the manufacturer's product literature for cleaning and installation instructions. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-11, Part D.9.1 Fastening meets the design criteria! Page 52 of 97 P a g e 5 3 o f 9 7 P a g e 5 4 o f 9 7 www.SSMA.com 49Complies With 2009, 2012 and 2015 IBC 10 psf Dead Load and 50 psf Live Load Section Fy (ksi) L/360 Live Load Deflection L/480 Live Load Deflection Single Span Double Span Single Span Double Span Spacing (in) on center Spacing (in) on center Spacing (in) on center Spacing (in) on center 12 16 24 12 16 24 12 16 24 12 16 24 600S162-33 33 10' 3"e 8' 11"e 7' 3"e 10' 1" 8' 5"e 6' 5"e 10' 3"e 8' 11"e 7' 3"e 10' 1" 8' 5"e 6' 5"e600S200-33 33 10' 11"e 9' 6"e 7' 9"e 10' 5" 8' 8"e 6' 7"e 10' 11"e 9' 6"e 7' 9"e 10' 5" 8' 8"e 6' 7"e600S162-43 33 12' 8" 11' 0"e 9' 0"e 12' 8" 11' 0" 8' 10" 11' 6" 10' 5"e 9' 0"e 12' 8" 11' 0" 8' 10"600S200-43 33 13' 1" 11' 4"e 9' 3"e 13' 1" 11' 4" 9' 0"e 12' 1" 11' 0"e 9' 3"e 13' 1" 11' 4" 9' 0"e600S250-43 33 13' 5"e 11' 7"e 9' 6"e 13' 5" 11' 7" 9' 2"e 12' 8" 11' 6"e 9' 6"e 13' 5" 11' 7" 9' 2"e600S162-54 50 13' 7" 12' 4" 10' 9" 15' 3" 13' 10" 12' 0" 12' 4" 11' 2" 9' 9" 13' 10" 12' 7" 11' 0"600S200-54 50 14' 3" 13' 0" 11' 4" 16' 0" 14' 7" 12' 2" 13' 0" 11' 9" 10' 3" 14' 7" 13' 3" 11' 7"600S250-54 50 14' 11" 13' 7" 11' 10" 16' 9" 15' 3" 12' 6" 13' 7" 12' 4" 10' 9" 15' 3" 13' 10" 12' 1"600S162-68 50 14' 7" 13' 3" 11' 7" 16' 4" 14' 10" 13' 0" 13' 3" 12' 0" 10' 6" 14' 10" 13' 6" 11' 9"600S200-68 50 15' 4" 13' 11" 12' 2" 17' 2" 15' 7" 13' 8" 13' 11" 12' 8" 11' 0" 15' 7" 14' 2" 12' 5"600S250-68 50 16' 1" 14' 7" 12' 9" 18' 0" 16' 4" 14' 4" 14' 7" 13' 3" 11' 7" 16' 4" 14' 10" 13' 0"600S162-97 50 16' 2" 14' 8" 12' 10" 18' 1" 16' 5" 14' 4" 14' 8" 13' 4" 11' 8" 16' 5" 14' 11" 13' 1"600S200-97 50 17' 0" 15' 5" 13' 6" 19' 1" 17' 4" 15' 2" 15' 5" 14' 0" 12' 3" 17' 4" 15' 9" 13' 9"600S250-97 50 17' 10" 16' 3" 14' 2" 20' 0" 18' 2" 15' 11" 16' 3" 14' 9" 12' 10" 18' 2" 16' 6" 14' 5"600S162-118 50 17' 0" 15' 6" 13' 6" 19' 1" 17' 4" 15' 2" 15' 6" 14' 1" 12' 3" 17' 4" 15' 9" 13' 9"600S200-118 50 18' 0" 16' 4" 14' 3" 20' 2" 18' 4" 16' 0" 16' 4" 14' 10" 13' 0" 18' 4" 16' 8" 14' 7"600S250-118 50 18' 11" 17' 2" 15' 0" 21' 3" 19' 3" 16' 10" 17' 2" 15' 7" 13' 7" 19' 3" 17' 6" 15' 4" 800S162-33 33 11' 10"e 10' 3"e 7' 11"e 9' 10"e 8' 0"e 5' 9"e 11' 10"e 10' 3"e 7' 11"e 9' 10"e 8' 0"e 5' 9"e800S200-33 33 12' 8"e 11' 0"e 7' 11"e 10' 3"e 8' 2"e 5' 10"e 12' 8"e 11' 0"e 7' 11"e 10' 3"e 8' 2"e 5' 10"e800S162-43 33 14' 3"e 12' 4"e 10' 1"e 13' 11" 11' 9" 9' 2"e 14' 3"e 12' 4"e 10' 1"e 13' 11" 11' 9" 9' 2"e800S200-43 33 15' 3"e 13' 3"e 10' 10"e 15' 3" 12' 11"e 10' 0"e 15' 2"e 13' 3"e 10' 10"e 15' 3" 12' 11"e 10' 0"e800S250-43 33 15' 8"e 13' 7"e 11' 1"e 15' 6" 13' 0"e 10' 0"e 15' 8"e 13' 7"e 11' 1"e 15' 6" 13' 0"e 10' 0"e800S162-54 50 17' 1" 15' 6" 13' 6" 19' 1" 16' 6" 13' 5" 15' 7" 14' 1" 12' 4" 17' 5" 15' 10" 13' 5"800S200-54 50 17' 11" 16' 3" 14' 3" 20' 1" 17' 8" 14' 5" 16' 3" 14' 9" 12' 11" 18' 3" 16' 7" 14' 5"800S250-54 50 18' 8" 17' 0" 14' 9"e 20' 10" 18' 1" 14' 8" 17' 0" 15' 5" 13' 6" 19' 1" 17' 4" 14' 8"800S162-68 50 18' 4" 16' 8" 14' 7" 20' 7" 18' 9" 15' 10" 16' 8" 15' 2" 13' 3" 18' 9" 17' 0" 14' 10"800S200-68 50 19' 3" 17' 6" 15' 3" 21' 7" 19' 7" 17' 2" 17' 6" 15' 11" 13' 10" 19' 7" 17' 10" 15' 7"800S250-68 50 20' 1" 18' 3" 15' 11" 22' 7" 20' 6" 17' 3" 18' 3" 16' 7" 14' 6" 20' 6" 18' 7" 16' 3"800S162-97 50 20' 5" 18' 6" 16' 2" 22' 11" 20' 10" 18' 2" 18' 6" 16' 10" 14' 9" 20' 10" 18' 11" 16' 6"800S200-97 50 21' 5" 19' 5" 17' 0" 24' 0" 21' 10" 19' 1" 19' 5" 17' 8" 15' 5" 21' 10" 19' 10" 17' 4"800S250-97 50 22' 4" 20' 4" 17' 9" 25' 1" 22' 10" 19' 11" 20' 4" 18' 5" 16' 1" 22' 10" 20' 9" 18' 1"800S162-118 50 21' 7" 19' 7" 17' 2" 24' 3" 22' 0" 19' 3" 19' 7" 17' 10" 15' 7" 22' 0" 20' 0" 17' 6"800S200-118 50 22' 8" 20' 7" 18' 0" 25' 5" 23' 1" 20' 2" 20' 7" 18' 8" 16' 4" 23' 1" 21' 0" 18' 4"800S250-118 50 23' 8" 21' 6" 18' 10" 26' 7" 24' 2" 21' 2" 21' 6" 19' 7" 17' 1" 24' 2" 22' 0" 19' 2" 1000S162-43 33 15' 10"e 13' 8"e 11' 2"e 14' 8"e 12' 2"e 9' 1"e 15' 10"e 13' 8"e 11' 2"e 14' 8"e 12' 2"e 9' 1"e1000S200-43 33 17' 1"e 14' 9"e 12' 1"e 15' 4"e 12' 7"e 9' 4"e 17' 1"e 14' 9"e 12' 1"e 15' 4"e 12' 7"e 9' 4"e1000S250-43 33 17' 6"e 15' 2"e 12' 5"e 15' 10"e 13' 0"e 9' 7"e 17' 6"e 15' 2"e 12' 5"e 15' 10"e 13' 0"e 9' 7"e1000S162-54 50 20' 4" 18' 4" 15' 0"e 21' 2" 18' 2" 14' 2" 18' 6" 16' 10" 14' 7"e 20' 8" 18' 2" 14' 2"1000S200-54 50 21' 3" 19' 3" 16' 1"e 22' 2" 18' 9" 14' 7" 19' 4" 17' 7" 15' 3"e 21' 8" 18' 9" 14' 7"1000S250-54 50 22' 4" 20' 3" 16' 6"e 23' 1" 19' 6" 15' 1" 20' 3" 18' 5" 16' 1"e 22' 9" 19' 6" 15' 1"1000S162-68 50 22' 1" 20' 0" 17' 5" 24' 8" 21' 8" 17' 8" 20' 1" 18' 3" 15' 11" 22' 6" 20' 5" 17' 8"1000S200-68 50 23' 0" 20' 11" 18' 3" 25' 9" 23' 2" 18' 11" 20' 11" 19' 0" 16' 7" 23' 6" 21' 4" 18' 7"1000S250-68 50 24' 0" 21' 9" 19' 0" 26' 11" 23' 10" 19' 5" 21' 9" 19' 9" 17' 3" 24' 5" 22' 3" 19' 5"1000S162-97 50 24' 7" 22' 4" 19' 6" 27' 7" 25' 1" 21' 11" 22' 4" 20' 3" 17' 9" 25' 1" 22' 9" 19' 11"1000S200-97 50 25' 8" 23' 4" 20' 4" 28' 10" 26' 2" 22' 10" 23' 4" 21' 2" 18' 6" 26' 2" 23' 9" 20' 9"1000S250-97 50 26' 9" 24' 3" 21' 2" 30' 0" 27' 3" 23' 10" 24' 3" 22' 1" 19' 3" 27' 3" 24' 9" 21' 8"1000S162-118 50 26' 0" 23' 8" 20' 8" 29' 3" 26' 7" 23' 2" 23' 8" 21' 6" 18' 9" 26' 7" 24' 1" 21' 1"1000S200-118 50 27' 3" 24' 9" 21' 7" 30' 7" 27' 9" 24' 3" 24' 9" 22' 6" 19' 7" 27' 9" 25' 3" 22' 0"1000S250-118 50 28' 4" 25' 9" 22' 6" 31' 10" 28' 11" 25' 3" 25' 9" 23' 5" 20' 5" 28' 11" 26' 3" 22' 11" "e" web stiffeners required at ends. Web stiffeners required at interior supports for double span conditions. See Table Notes on page 42. Floor Joist Spans Page 55 of 97 www.SSMA.com56 Copyright © 2015 by the SSMA Header Loads Table Notes Boxed Header Back-to-Back Header "e" web stiffeners required at ends. Header Allowable Uniform Loads (PLF) Section Yield Strength (ksi) Span 3 (ft)4 (ft)5 (ft)6 (ft)8 (ft)10 (ft)12 (ft) 550S162-33 33 931.4e 698.5e 460.1e 319.5e 179.7e 115.0e 73.8e550S162-43 33 1946.5e 1094.9e 700.8e 486.6e 273.7e 164.6e 95.3e550S162-54 50 3484.7e 1960.1e 1254.5e 871.2e 396.8e 203.2 117.6550S162-68 50 4782.6e 2690.2e 1721.7e 1157.8e 488.5e 250.1 144.7600S137-33 33 850.8e 638.1e 436.5e 303.1e 170.5e 109.1e 75.8e600S162-33 33 850.8e 638.1e 504.9e 350.6e 197.2e 126.2e 87.6e600S200-33 33 850.8e 638.1e 510.5e 398.7e 224.2e 143.5e 99.7e600S137-43 33 1751.1e 985.0e 630.4e 437.8e 246.3e 157.6e 103.2e600S162-43 33 1887.6e 1205.1e 771.3e 535.6e 301.3e 192.8e 117.1e600S200-43 33 1887.6e 1282.4e 820.7e 569.9e 320.6e 205.2e 135.7e600S250-43 33 1887.6e 1350.7e 864.4e 600.3e 337.7e 216.1e 150.1e600S137-54 50 3146.8e 1770.1e 1132.9e 786.7e 429.8e 220.1 127.3600S162-54 50 3763.8e 2158.3e 1381.3e 959.3e 488.3e 250.0e 144.7600S200-54 50 3763.8e 2281.9e 1460.4e 1014.2e 566.7e 290.1e 167.9600S250-54 50 3763.8e 2392.7e 1531.4e 1063.4e 598.2e 329.1e 190.5600S137-68 50 4280.5e 2407.8e 1541.0e 1070.1e 528.3e 270.5 156.5600S162-68 50 5288.3e 2974.7e 1903.8e 1322.1e 601.7e 308.1 178.3600S200-68 50 5880.1e 3307.5e 2116.8e 1470.0e 700.0e 358.4 207.4600S250-68 50 5788.2e 3255.8e 2083.7e 1447.0e 806.3e 412.8e 238.9600S137-97 50 7526.5e 4233.7e 2709.5e 1694.8e 715 366.1 211.8600S162-97 50 8403.7e 4727.1e 3025.3e 1941.3e 819 419.3 242.7600S200-97 50 9432.6e 5305.9e 3395.7e 2270.9e 958.0e 490.5 283.9600S250-97 50 9898.1e 5567.7e 3563.3e 2474.5e 1109.0e 567.8 328.6600S137-118 50 9138.7e 5140.5e 3289.9e 1987.9e 838.7 429.4 248.5600S162-118 50 10212.8e 5744.7e 3676.6e 2287.3e 965 494.1 285.9600S200-118 50 11620.3e 6536.4e 4183.3e 2687.4e 1133.7 580.5 335.9600S250-118 50 12729.2e 7160.2e 4582.5e 3121.2e 1316.7e 674.2 390.1800S137-33 33 632.0e 474.0e 379.2e 316.0e 223.2e 142.8e 99.2e800S162-33 33 632.0e 474.0e 379.2e 316.0e 237.0e 168.1e 116.7e800S200-33 33 632.0e 474.0e 379.2e 316.0e 237.0e 189.6e 134.5e800S137-43 33 1401.5e 1051.2e 840.9e 584.3e 328.7e 210.3e 146.1e800S162-43 33 1401.5e 1051.2e 840.9e 678.8e 381.8e 244.4e 169.7e800S200-43 33 1401.5e 1051.2e 840.9e 700.8e 437.2e 279.8e 194.3e800S250-43 33 1401.5e 1051.2e 840.9e 700.8e 459.5e 294.1e 204.2e800S137-54 50 2788.4e 2091.3e 1518.3e 1054.4e 593.1e 379.6e 251.6e800S162-54 50 2788.4e 2091.3e 1673.0e 1215.2e 683.6e 437.5e 283.3e800S200-54 50 2788.4e 2091.3e 1673.0e 1384.1e 778.6e 498.3e 332.5e800S250-54 50 2788.4e 2091.3e 1673.0e 1394.2e 815.2e 521.7e 362.3e800S137-68 50 5627.6e 3297.6e 2110.4e 1465.6e 824.4e 527.6e 317.9e800S162-68 50 5627.6e 3759.1e 2405.8e 1670.7e 939.8e 601.4e 357.6e800S200-68 50 5627.6e 4220.7e 2917.3e 2025.9e 1139.6e 711.5e 411.8e800S250-68 50 5627.6e 4220.7e 2866.9e 1990.9e 1119.9e 716.7e 467.4e800S137-97 50 9468.1e 5325.8e 3408.5e 2367.0e 1331.5e 751.5e 434.9800S162-97 50 10657.1e 5994.6e 3836.6e 2664.3e 1498.7e 849.0e 491.3800S200-97 50 13297.5e 7479.8e 4787.1e 3324.4e 1870.0e 979.3e 566.7800S250-97 50 13839.9e 7785.0e 4982.4e 3460.0e 1946.2e 1117.9e 646.9e800S137-118 50 14157.3e 7963.5e 5096.6e 3539.3e 1732.3e 886.9 513.3800S162-118 50 15589.2e 8768.9e 5612.1e 3897.3e 1964.0e 1005.5e 581.9800S200-118 50 17414.8e 9795.8e 6269.3e 4353.7e 2273.2e 1163.9e 673.5800S250-118 50 18210.1e 10243.2e 6555.6e 4552.5e 2560.8e 1332.2e 771 1. Values are for unpunched members. 2. Total load deflection is limited to L/360. 3. Headers are made from two boxed or back-to-back members. 4. Allowable moment, shear, and web crippling are based on twice the capacity of a single member. The moment of inertia is based on twice the value of the single member. 5. Web crippling check is based on 1" of bearing at end supports. 6. Members are assumed adequately braced for bending. 7. Allowable loads are for simply supported headers with uniform bending loads only. 8. See page 5 for additional table notes. Page 56 of 97 www.SSMA.com 31Complies With 2009, 2012 and 2015 IBC Combined Axial and Lateral Loads Table Notes 5 psf Lateral Load (Interior Walls) Wall Height (ft) Spacing (in) oc 350S162 362S137 362S162 362S200 33 ksi 50 ksi 33 ksi 50 ksi 33 ksi 50 ksi 33 ksi 50 ksi 33 43 54 68 33 43 54 68 33 43 54 68 33 43 54 68 8 12 1.81 2.56 3.97 5.08 1.49 2.14 3.32 4.37 1.87 2.65 4.15 5.38 2.25 3.28 5.18 6.68 16 1.74 2.48 3.90 5.01 1.42 2.07 3.26 4.30 1.80 2.57 4.08 5.31 2.17 3.20 5.10 6.60 24 1.58 2.32 3.76 4.87 1.29 1.93 3.13 4.17 1.65 2.42 3.94 5.17 2.01 3.03 4.94 6.45 9 12 1.67 2.38 3.65 4.67 1.38 2.01 3.11 4.07 1.74 2.48 3.86 4.99 2.10 3.07 4.79 6.17 16 1.57 2.28 3.56 4.58 1.30 1.92 3.02 3.99 1.64 2.38 3.77 4.90 2.00 2.96 4.69 6.07 24 1.39 2.09 3.39 4.41 1.13 1.74 2.87 3.82 1.46 2.19 3.60 4.72 1.80 2.76 4.49 5.88 10 12 1.51 2.18 3.29 4.23 1.26 1.85 2.85 3.73 1.58 2.29 3.53 4.55 1.93 2.84 4.37 5.61 16 1.40 2.07 3.19 4.12 1.16 1.75 2.75 3.63 1.47 2.17 3.42 4.44 1.81 2.71 4.25 5.49 24 1.19 1.84 2.99 3.92 0.96 1.54 2.57 3.44 1.26 1.95 3.22 4.23 1.57 2.47 4.01 5.27 12 12 1.18 1.75 2.56 3.31 0.99 1.51 2.27 2.97 1.25 1.87 2.79 3.60 1.56 2.32 3.45 4.44 16 1.04 4 1.61 2.44 3.18 0.86 4 1.37 2.15 2.85 1.11 1.72 2.66 3.47 1.40 2.16 3.30 4.30 24 0.79 3 1.34 3 2.21 2.94 0.63 3 1.12 3 1.93 4 2.62 0.86 3 1.44 4 2.42 3.22 1.12 3 1.86 3.03 4.03 14 12 0.86 3 1.33 1.95 2.54 0.72 3 1.15 4 1.75 2.30 0.93 4 1.44 2.14 2.78 1.18 1.81 2.64 3.43 16 0.71 3 1.17 3 1.82 4 2.40 0.59 3 1.00 3 1.62 4 2.16 0.78 3 1.28 4 2.00 2.64 1.01 3 1.63 4 2.48 3.27 24 0.46 2 0.89 3 1.58 3 2.16 3 0.34 2 0.73 2 1.39 3 1.92 3 0.52 2 0.99 3 1.75 3 2.38 4 0.70 3 1.31 3 2.19 3 2.99 16 12 0.59 3 0.96 3 1.48 4 1.95 0.50 3 0.83 3 1.33 3 1.76 4 0.65 3 1.06 3 1.63 4 2.14 0.84 3 1.36 4 2.01 2.66 16 0.45 2 0.80 3 1.35 3 1.81 3 0.36 2 0.68 2 1.20 3 1.63 3 0.51 2 0.90 3 1.49 3 2.00 4 0.67 3 1.18 3 1.86 3 2.50240.21 1 0.54 2 1.12 2 1.57 3 0.12 1 0.42 1 0.97 2 1.39 2 0.25 1 0.62 2 1.25 2 1.74 3 0.38 2 0.86 2 1.58 3 2.21 3 5 psf Lateral Load (Interior Walls) Wall Height (ft) Spacing (in) oc 400S137 400S162 400S200 550S162 33 ksi 50 ksi 33 ksi 50 ksi 33 ksi 50 ksi 33 ksi 50 ksi 33 43 54 68 33 43 54 68 33 43 54 68 33 43 54 68 8 12 1.61 2.31 3.67 4.98 2.03 2.87 4.62 6.18 2.42 3.55 5.77 7.63 2.39 3.38 5.63 7.45161.55 2.25 3.61 4.91 1.96 2.80 4.55 6.11 2.34 3.48 5.70 7.56 2.34 3.33 5.58 7.41241.42 2.12 3.49 4.78 1.82 2.66 4.42 5.97 2.19 3.32 5.54 7.41 2.24 3.23 5.49 7.32 9 12 1.52 2.20 3.49 4.79 1.91 2.72 4.37 5.85 2.28 3.37 5.43 7.19 2.32 3.31 5.55 7.41161.44 2.12 3.42 4.70 1.82 2.63 4.28 5.76 2.19 3.27 5.33 7.10 2.26 3.24 5.49 7.35241.28 1.95 3.27 4.54 1.65 2.46 4.11 5.59 2.00 3.08 5.14 6.91 2.13 3.12 5.38 7.24 10 12 1.41 2.07 3.28 4.49 1.77 2.56 4.08 5.47 2.13 3.16 5.04 6.70 2.25 3.22 5.41 7.35161.31 1.97 3.19 4.38 1.67 2.45 3.97 5.36 2.01 3.04 4.92 6.58 2.16 3.14 5.34 7.27241.12 1.77 3.00 4.18 1.46 2.23 3.77 5.14 1.79 2.81 4.69 6.34 2.00 2.99 5.19 7.12 12 12 1.16 1.76 2.77 3.75 1.46 2.17 3.41 4.54 1.79 2.69 4.19 5.57 2.05 3.00 5.04 6.87161.03 1.62 2.64 3.61 1.32 2.02 3.27 4.39 1.63 2.53 4.03 5.41 1.93 2.89 4.93 6.76240.80 3 1.36 4 2.40 3.35 1.06 4 1.74 3.01 4.12 1.35 2.22 3.74 5.11 1.71 2.68 4.71 6.54 14 12 0.90 4 1.41 2.22 2.96 1.14 1.75 2.71 3.57 1.43 2.19 3.32 4.39 1.81 2.72 4.54 6.23160.75 3 1.25 4 2.08 2.80 0.98 3 1.58 2.55 3.41 1.25 4 2.00 3.14 4.21 1.66 2.57 4.39 6.07240.49 2 0.96 3 1.81 3 2.52 4 0.70 3 1.26 3 2.27 4 3.10 0.92 3 1.65 4 2.82 3.88 1.37 2.29 4.11 5.78 16 12 0.65 3 1.08 3 1.74 2.30 0.84 3 1.35 4 2.12 2.78 1.07 4 1.71 2.60 3.42 1.53 2.39 3.95 5.45160.50 2 0.91 3 1.59 3 2.14 4 0.68 3 1.17 3 1.96 4 2.61 0.89 3 1.51 4 2.41 3.24 1.35 2.20 3.77 5.26240.23 1 0.61 2 1.32 3 1.86 3 0.39 2 0.85 2 1.67 3 2.31 3 0.56 2 1.16 3 2.09 3 2.91 4 1.02 3 1.87 3.43 4.90 If no note, deflection meets L/720 1Deflection meets L/120 2Deflection meets L/240 3Deflection meets L/360 4Deflection meets L/600 1. Allowable axial loads listed in kips (1 kip = 1,000 pounds). 2. Allowable axial loads listed are based on simple one span condition. 3. Allowable axial loads determined in accordance with AISI S100 Section C5 and with the assumption that axial load passes through centroid of the effective section. 4. Allowable axial loads are based on 4'-0" on center bracing. 5. Studs are assumed to be adequately braced at a maximum spacing of Lu to develop full allowable moment, Ma. 6. Listed wind pressures represent calculated designed wind pressure (1.0 W based on 2009 or 0.6 W based on 2012 IBC or later ASD load combinations). For deflection calculations, listed wind pressures have been reduced by 0.70 as allowed by IBC. The 5 psf pressure has not been reduced for deflection checks. 7. End supports have not been checked for web crippling. See web crippling tables on page 51. 8. See page 5 for additional table notes. Page 57 of 97 Structural Calculations WCA Project #21172 Entry Canopy Page 58 of 97 P a g e 5 9 o f 9 7 P a g e 6 0 o f 9 7 P a g e 6 1 o f 9 7 P a g e 6 2 o f 9 7 www.SSMA.com 51Complies With 2009, 2012 and 2015 IBC 15 psf Dead Load and 125 psf Live Load Section Fy (ksi) L/360 Live Load Deflection L/480 Live Load Deflection Single Span Double Span Single Span Double Span Spacing (in) on center Spacing (in) on center Spacing (in) on center Spacing (in) on center 12 16 24 12 16 24 12 16 24 12 16 24 600S162-33 33 6' 9"e 5' 10"e 4' 7"e 5' 9"e 4' 8"e 3' 4"e 6' 9"e 5' 10"e 4' 7"e 5' 9"e 4' 8"e 3' 4"e600S200-33 33 7' 2"e 6' 2"e 4' 7"e 5' 11"e 4' 9"e 3' 4"e 7' 2"e 6' 2"e 4' 7"e 5' 11"e 4' 9"e 3' 4"e600S162-43 33 8' 4"e 7' 2"e 5' 10"e 8' 1"e 6' 9"e 5' 2"e 8' 4"e 7' 2"e 5' 10"e 8' 1"e 6' 9"e 5' 2"e600S200-43 33 8' 7"e 7' 5"e 6' 1"e 8' 2"e 6' 10"e 5' 3"e 8' 7"e 7' 5"e 6' 1"e 8' 2"e 6' 10"e 5' 3"e600S250-43 33 8' 9"e 7' 7"e 6' 3"e 8' 4"e 7' 0"e 5' 4"e 8' 9"e 7' 7"e 6' 3"e 8' 4"e 7' 0"e 5' 4"e600S162-54 50 10' 0" 9' 1" 7' 10"e 11' 1" 9' 5" 7' 4" 9' 1" 8' 3" 7' 3"e 10' 2" 9' 3" 7' 4"600S200-54 50 10' 6" 9' 7" 8' 1"e 11' 2" 9' 5" 7' 4" 9' 7" 8' 8" 7' 7"e 10' 9" 9' 5" 7' 4"600S250-54 50 11' 0" 10' 0"e 8' 3"e 11' 5" 9' 8" 7' 6" 10' 0" 9' 1" 7' 11"e 11' 3" 9' 8" 7' 6"600S162-68 50 10' 9" 9' 9" 8' 6" 12' 0" 10' 11" 8' 11" 9' 9" 8' 10" 7' 9" 10' 11" 9' 11" 8' 8"600S200-68 50 11' 3" 10' 3" 8' 11" 12' 8" 11' 6" 9' 3" 10' 3" 9' 4" 8' 2" 11' 6" 10' 5" 9' 2"600S250-68 50 11' 10" 10' 9" 9' 5" 13' 3" 11' 5" 9' 1" 10' 9" 9' 9" 8' 6" 12' 1" 10' 11" 9' 1"600S162-97 50 11' 11" 10' 10" 9' 5" 13' 4" 12' 1" 10' 7" 10' 10" 9' 10" 8' 7" 12' 1" 11' 0" 9' 7"600S200-97 50 12' 6" 11' 4" 9' 11" 14' 1" 12' 9" 11' 2" 11' 4" 10' 4" 9' 0" 12' 9" 11' 7" 10' 2"600S250-97 50 13' 2" 11' 11" 10' 5" 14' 9" 13' 5" 11' 9" 11' 11" 10' 10" 9' 6" 13' 5" 12' 2" 10' 8"600S162-118 50 12' 7" 11' 5" 10' 0" 14' 1" 12' 10" 11' 2" 11' 5" 10' 4" 9' 1" 12' 10" 11' 8" 10' 2"600S200-118 50 13' 3" 12' 0" 10' 6" 14' 10" 13' 6" 11' 10" 12' 0" 10' 11" 9' 7" 13' 6" 12' 3" 10' 9"600S250-118 50 13' 11" 12' 8" 11' 1" 15' 8" 14' 2" 12' 5" 12' 8" 11' 6" 10' 0" 14' 2" 12' 11" 11' 3" 800S162-33 33 6' 9"e 5' 1"e 3' 5"e 5' 0"e 3' 11"e 2' 8"e 6' 9"e 5' 1"e 3' 5"e 5' 0"e 3' 11"e 2' 8"e800S200-33 33 6' 9"e 5' 1"e 3' 5"e 5' 1"e 3' 11"e 2' 8"e 6' 9"e 5' 1"e 3' 5"e 5' 1"e 3' 11"e 2' 8"e800S162-43 33 9' 4"e 8' 1"e 6' 7"e 8' 4"e 6' 10"e 5' 1"e 9' 4"e 8' 1"e 6' 7"e 8' 4"e 6' 10"e 5' 1"e800S200-43 33 10' 0"e 8' 8"e 7' 1"e 9' 0"e 7' 4"e 5' 4"e 10' 0"e 8' 8"e 7' 1"e 9' 0"e 7' 4"e 5' 4"e800S250-43 33 10' 3"e 8' 11"e 7' 3"e 9' 0"e 7' 4"e 5' 4"e 10' 3"e 8' 11"e 7' 3"e 9' 0"e 7' 4"e 5' 4"e800S162-54 50 12' 6"e 10' 10"e 8' 10"e 12' 3" 10' 4" 8' 1" 11' 5" 10' 4"e 8' 10"e 12' 3" 10' 4" 8' 1"800S200-54 50 13' 2"e 11' 7"e 9' 5"e 13' 4" 11' 2" 8' 7"e 12' 0" 10' 11"e 9' 5"e 13' 4" 11' 2" 8' 7"e800S250-54 50 13' 8"e 11' 10"e 9' 8"e 13' 5" 11' 3" 8' 8"e 12' 6"e 11' 4"e 9' 8"e 13' 5" 11' 3" 8' 8"e800S162-68 50 13' 6" 12' 4" 10' 4"e 14' 8" 12' 8" 10' 1" 12' 4" 11' 2" 9' 9"e 13' 10" 12' 7" 10' 1"800S200-68 50 14' 2" 12' 11" 11' 3"e 15' 11" 14' 0" 11' 3" 12' 11" 11' 8" 10' 3"e 14' 5" 13' 2" 11' 3"800S250-68 50 14' 10" 13' 5" 11' 4"e 16' 0" 13' 10" 11' 0" 13' 5" 12' 3" 10' 8"e 15' 1" 13' 9" 11' 0"800S162-97 50 15' 0" 13' 8" 11' 11" 16' 11" 15' 4" 12' 8" 13' 8" 12' 5" 10' 10" 15' 4" 13' 11" 12' 2"800S200-97 50 15' 9" 14' 4" 12' 6" 17' 8" 16' 1" 14' 1" 14' 4" 13' 0" 11' 4" 16' 1" 14' 7" 12' 9"800S250-97 50 16' 6" 15' 0" 13' 1" 18' 6" 16' 10" 14' 8" 15' 0" 13' 7" 11' 11" 16' 10" 15' 3" 13' 4"800S162-118 50 15' 11" 14' 5" 12' 7" 17' 10" 16' 3" 14' 2" 14' 5" 13' 2" 11' 6" 16' 3" 14' 9" 12' 11"800S200-118 50 16' 8" 15' 2" 13' 3" 18' 9" 17' 0" 14' 11" 15' 2" 13' 9" 12' 0" 17' 0" 15' 6" 13' 6"800S250-118 50 17' 6" 15' 10" 13' 10" 19' 7" 17' 10" 15' 7" 15' 10" 14' 5" 12' 7" 17' 10" 16' 2" 14' 2" 1000S162-43 33 10' 4"e 8' 11"e 6' 0"e 8' 1"e 6' 5"e 4' 6"e 10' 4"e 8' 11"e 6' 0"e 8' 1"e 6' 5"e 4' 6"e1000S200-43 33 11' 2"e 8' 11"e 6' 0"e 8' 3"e 6' 6"e 4' 7"e 11' 2"e 8' 11"e 6' 0"e 8' 3"e 6' 6"e 4' 7"e1000S250-43 33 11' 6"e 8' 11"e 6' 0"e 8' 5"e 6' 7"e 4' 7"e 11' 6"e 8' 11"e 6' 0"e 8' 5"e 6' 7"e 4' 7"e1000S162-54 50 13' 10"e 12' 0"e 9' 10"e 12' 10" 10' 7" 7' 11" 13' 7"e 12' 0"e 9' 10"e 12' 10" 10' 7" 7' 11"1000S200-54 50 14' 11"e 12' 11"e 10' 6"e 13' 3" 10' 10" 8' 0"e 14' 2"e 12' 10"e 10' 6"e 13' 3" 10' 10" 8' 0"e1000S250-54 50 15' 4"e 13' 3"e 10' 10"e 13' 8" 11' 2" 8' 2"e 14' 11"e 13' 3"e 10' 10"e 13' 8" 11' 2" 8' 2"e1000S162-68 50 16' 2" 14' 2"e 11' 7"e 16' 5" 14' 2" 11' 2" 14' 9" 13' 5" 11' 7"e 16' 5" 14' 2" 11' 2"1000S200-68 50 16' 11" 15' 2"e 12' 5"e 17' 6" 14' 10" 11' 8" 15' 5" 14' 0"e 12' 2"e 17' 3" 14' 10" 11' 8"1000S250-68 50 17' 8" 15' 7"e 12' 9"e 18' 0" 15' 7" 12' 4"e 16' 1" 14' 7"e 12' 9"e 18' 0" 15' 7" 12' 4"e1000S162-97 50 18' 1" 16' 5" 14' 4" 20' 4" 18' 2" 14' 9" 16' 5" 14' 11" 13' 1" 18' 6" 16' 9" 14' 8"1000S200-97 50 18' 11" 17' 2" 15' 0" 21' 3" 19' 3" 15' 8" 17' 2" 15' 7" 13' 8" 19' 3" 17' 6" 15' 4"1000S250-97 50 19' 8" 17' 11" 15' 8" 22' 1" 20' 1" 16' 11" 17' 11" 16' 3" 14' 2" 20' 1" 18' 3" 15' 11"1000S162-118 50 19' 2" 17' 5" 15' 3" 21' 6" 19' 7" 16' 7" 17' 5" 15' 10" 13' 10" 19' 7" 17' 9" 15' 6"1000S200-118 50 20' 1" 18' 3" 15' 11" 22' 6" 20' 5" 17' 8" 18' 3" 16' 7" 14' 5" 20' 5" 18' 7" 16' 3"1000S250-118 50 20' 11" 19' 0" 16' 7" 23' 5" 21' 4" 18' 7" 19' 0" 17' 3" 15' 1" 21' 4" 19' 4" 16' 11" "e" web stiffeners required at ends. Web stiffeners required at interior supports for double span conditions. See Table Notes on page 42. Floor Joist Spans Page 63 of 97 www.SSMA.com 43Complies With 2009, 2012 and 2015 IBC 10 psf Dead Load and 20 psf Live Load Section Fy (ksi) L/360 Live Load Deflection L/480 Live Load Deflection Single Span Double Span Single Span Double Span Spacing (in) on center Spacing (in) on center Spacing (in) on center Spacing (in) on center 12 16 24 12 16 24 12 16 24 12 16 24 600S162-33 33 14' 6" 12' 7"e 10' 3"e 14' 6" 12' 7" 10' 1" 14' 4" 12' 7"e 10' 3"e 14' 6" 12' 7" 10' 1"600S200-33 33 15' 6" 13' 5"e 10' 11"e 15' 6" 13' 3" 10' 5" 15' 0" 13' 5"e 10' 11"e 15' 6" 13' 3" 10' 5"600S162-43 33 17' 2" 15' 6" 12' 8" 17' 11" 15' 6" 12' 8" 15' 7" 14' 2" 12' 5" 17' 6" 15' 6" 12' 8"600S200-43 33 18' 0" 16' 0" 13' 1" 18' 6" 16' 0" 13' 1" 16' 5" 14' 11" 13' 0" 18' 5" 16' 0" 13' 1"600S250-43 33 18' 11" 16' 5" 13' 5"e 19' 0" 16' 5" 13' 5" 17' 2" 15' 7" 13' 5"e 19' 0" 16' 5" 13' 5"600S162-54 50 18' 5" 16' 9" 14' 7" 20' 8" 18' 9" 16' 5" 16' 9" 15' 2" 13' 3" 18' 9" 17' 1" 14' 11"600S200-54 50 19' 4" 17' 7" 15' 4" 21' 9" 19' 9" 17' 3" 17' 7" 16' 0" 14' 0" 19' 9" 17' 11" 15' 8"600S250-54 50 20' 3" 18' 5" 16' 1" 22' 9" 20' 8" 17' 10" 18' 5" 16' 9" 14' 8" 20' 8" 18' 10" 16' 5"600S162-68 50 19' 9" 17' 11" 15' 8" 22' 2" 20' 2" 17' 7" 17' 11" 16' 4" 14' 3" 20' 2" 18' 4" 16' 0"600S200-68 50 20' 9" 18' 10" 16' 6" 23' 4" 21' 2" 18' 6" 18' 10" 17' 2" 15' 0" 21' 2" 19' 3" 16' 10"600S250-68 50 21' 9" 19' 9" 17' 3" 24' 5" 22' 3" 19' 5" 19' 9" 18' 0" 15' 8" 22' 3" 20' 2" 17' 8"600S162-97 50 21' 11" 19' 11" 17' 4" 24' 7" 22' 4" 19' 6" 19' 11" 18' 1" 15' 9" 22' 4" 20' 3" 17' 9"600S200-97 50 23' 1" 20' 11" 18' 4" 25' 11" 23' 6" 20' 7" 20' 11" 19' 0" 16' 8" 23' 6" 21' 4" 18' 8"600S250-97 50 24' 3" 22' 0" 19' 3" 27' 2" 24' 8" 21' 7" 22' 0" 20' 0" 17' 6" 24' 8" 22' 5" 19' 7"600S162-118 50 23' 1" 21' 0" 18' 4" 25' 11" 23' 7" 20' 7" 21' 0" 19' 1" 16' 8" 23' 7" 21' 5" 18' 9"600S200-118 50 24' 5" 22' 2" 19' 4" 27' 5" 24' 11" 21' 9" 22' 2" 20' 2" 17' 7" 24' 11" 22' 7" 19' 9"600S250-118 50 25' 8" 23' 4" 20' 4" 28' 9" 26' 2" 22' 10" 23' 4" 21' 2" 18' 6" 26' 2" 23' 9" 20' 9" 800S162-33 33 16' 9"e 14' 6"e 11' 10"e 15' 8"e 13' 0"e 9' 10"e 16' 9"e 14' 6"e 11' 10"e 15' 8"e 13' 0"e 9' 10"e800S200-33 33 18' 0"e 15' 7"e 12' 8"e 16' 6"e 13' 8"e 10' 3"e 18' 0"e 15' 7"e 12' 8"e 16' 6"e 13' 8"e 10' 3"e800S162-43 33 20' 2" 17' 6" 14' 3"e 20' 2" 17' 6" 13' 11" 19' 6" 17' 6" 14' 3"e 20' 2" 17' 6" 13' 11"800S200-43 33 21' 7" 18' 8" 15' 3"e 21' 7" 18' 8" 15' 3" 20' 7" 18' 8" 15' 3"e 21' 7" 18' 8" 15' 3"800S250-43 33 22' 2" 19' 2"e 15' 8"e 22' 2" 19' 2" 15' 6" 21' 5" 19' 2"e 15' 8"e 22' 2" 19' 2" 15' 6"800S162-54 50 23' 3" 21' 1" 18' 4" 26' 0" 23' 5" 19' 1" 21' 1" 19' 2" 16' 9" 23' 8" 21' 6" 18' 9"800S200-54 50 24' 4" 22' 1" 19' 4" 27' 4" 24' 10" 20' 5" 22' 1" 20' 1" 17' 6" 24' 10" 22' 6" 19' 8"800S250-54 50 25' 4" 23' 1" 20' 2" 28' 6" 25' 6" 20' 10" 23' 1" 20' 11" 18' 3" 25' 10" 23' 6" 20' 6"800S162-68 50 24' 11" 22' 8" 19' 9" 28' 0" 25' 5" 22' 3" 22' 8" 20' 7" 18' 0" 25' 5" 23' 1" 20' 2"800S200-68 50 26' 1" 23' 9" 20' 9" 29' 4" 26' 8" 23' 3" 23' 9" 21' 7" 18' 10" 26' 8" 24' 2" 21' 2"800S250-68 50 27' 3" 24' 9" 21' 8" 30' 7" 27' 10" 24' 3" 24' 9" 22' 6" 19' 8" 27' 10" 25' 3" 22' 1"800S162-97 50 27' 8" 25' 2" 22' 0" 31' 1" 28' 3" 24' 8" 25' 2" 22' 10" 20' 0" 28' 3" 25' 8" 22' 5"800S200-97 50 29' 0" 26' 5" 23' 1" 32' 7" 29' 7" 25' 11" 26' 5" 24' 0" 20' 11" 29' 7" 26' 11" 23' 6"800S250-97 50 30' 4" 27' 7" 24' 1" 34' 1" 30' 11" 27' 1" 27' 7" 25' 1" 21' 11" 30' 11" 28' 2" 24' 7"800S162-118 50 29' 4" 26' 7" 23' 3" 32' 11" 29' 11" 26' 1" 26' 7" 24' 2" 21' 1" 29' 11" 27' 2" 23' 9"800S200-118 50 30' 9" 27' 11" 24' 5" 34' 6" 31' 5" 27' 5" 27' 11" 25' 5" 22' 2" 31' 5" 28' 6" 24' 11"800S250-118 50 32' 2" 29' 3" 25' 6" 36' 1" 32' 10" 28' 8" 29' 3" 26' 7" 23' 2" 32' 10" 29' 10" 26' 1" 1000S162-43 33 22' 4"e 19' 4"e 15' 10"e 22' 3"e 18' 10"e 14' 8"e 22' 4"e 19' 4"e 15' 10"e 22' 3"e 18' 10"e 14' 8"e1000S200-43 33 24' 1"e 20' 11"e 17' 1"e 23' 5"e 19' 9"e 15' 4"e 24' 1"e 20' 11"e 17' 1"e 23' 5"e 19' 9"e 15' 4"e1000S250-43 33 24' 10"e 21' 6"e 17' 6"e 24' 5"e 20' 6"e 15' 10"e 24' 10"e 21' 6"e 17' 6"e 24' 5"e 20' 6"e 15' 10"e1000S162-54 50 27' 7" 25' 0" 21' 2" 29' 11" 25' 11" 21' 2" 25' 2" 22' 10" 19' 11" 28' 2" 25' 6" 21' 2"1000S200-54 50 28' 10" 26' 2" 22' 9" 32' 2" 27' 10" 22' 2" 26' 4" 23' 10" 20' 9" 29' 5" 26' 8" 22' 2"1000S250-54 50 30' 3" 27' 6" 23' 4" 33' 1" 28' 8" 23' 1" 27' 6" 25' 0" 21' 10" 30' 10" 28' 1" 23' 1"1000S162-68 50 30' 0" 27' 2" 23' 8" 33' 6" 30' 5" 25' 0" 27' 3" 24' 9" 21' 7" 30' 7" 27' 9" 24' 2"1000S200-68 50 31' 3" 28' 5" 24' 9" 35' 0" 31' 9" 26' 9" 28' 5" 25' 10" 22' 7" 31' 11" 28' 11" 25' 3"1000S250-68 50 32' 6" 29' 7" 25' 10" 36' 6" 33' 2" 27' 6" 29' 7" 26' 10" 23' 5" 33' 2" 30' 2" 26' 4"1000S162-97 50 33' 4" 30' 4" 26' 6" 37' 5" 34' 0" 29' 9" 30' 4" 27' 6" 24' 1" 34' 0" 30' 11" 27' 0"1000S200-97 50 34' 10" 31' 8" 27' 8" 39' 1" 35' 6" 31' 0" 31' 8" 28' 9" 25' 1" 35' 6" 32' 3" 28' 2"1000S250-97 50 36' 3" 32' 11" 28' 9" 40' 9" 37' 0" 32' 4" 32' 11" 29' 11" 26' 2" 37' 0" 33' 7" 29' 4"1000S162-118 50 35' 4" 32' 1" 28' 0" 39' 8" 36' 0" 31' 6" 32' 1" 29' 2" 25' 6" 36' 0" 32' 9" 28' 7"1000S200-118 50 36' 11" 33' 7" 29' 4" 41' 6" 37' 8" 32' 11" 33' 7" 30' 6" 26' 8" 37' 8" 34' 3" 29' 11"1000S250-118 50 38' 6" 35' 0" 30' 7" 43' 2" 39' 3" 34' 4" 35' 0" 31' 9" 27' 9" 39' 3" 35' 8" 31' 2" "e" web stiffeners required at ends. Web stiffeners required at interior supports for double span conditions. See Table Notes on page 42. Floor Joist Spans Page 64 of 97 www.SSMA.com56 Copyright © 2015 by the SSMA Header Loads Table Notes Boxed Header Back-to-Back Header "e" web stiffeners required at ends. Header Allowable Uniform Loads (PLF) Section Yield Strength (ksi) Span 3 (ft)4 (ft)5 (ft)6 (ft)8 (ft)10 (ft)12 (ft) 550S162-33 33 931.4e 698.5e 460.1e 319.5e 179.7e 115.0e 73.8e550S162-43 33 1946.5e 1094.9e 700.8e 486.6e 273.7e 164.6e 95.3e550S162-54 50 3484.7e 1960.1e 1254.5e 871.2e 396.8e 203.2 117.6550S162-68 50 4782.6e 2690.2e 1721.7e 1157.8e 488.5e 250.1 144.7600S137-33 33 850.8e 638.1e 436.5e 303.1e 170.5e 109.1e 75.8e600S162-33 33 850.8e 638.1e 504.9e 350.6e 197.2e 126.2e 87.6e600S200-33 33 850.8e 638.1e 510.5e 398.7e 224.2e 143.5e 99.7e600S137-43 33 1751.1e 985.0e 630.4e 437.8e 246.3e 157.6e 103.2e600S162-43 33 1887.6e 1205.1e 771.3e 535.6e 301.3e 192.8e 117.1e600S200-43 33 1887.6e 1282.4e 820.7e 569.9e 320.6e 205.2e 135.7e600S250-43 33 1887.6e 1350.7e 864.4e 600.3e 337.7e 216.1e 150.1e600S137-54 50 3146.8e 1770.1e 1132.9e 786.7e 429.8e 220.1 127.3600S162-54 50 3763.8e 2158.3e 1381.3e 959.3e 488.3e 250.0e 144.7600S200-54 50 3763.8e 2281.9e 1460.4e 1014.2e 566.7e 290.1e 167.9600S250-54 50 3763.8e 2392.7e 1531.4e 1063.4e 598.2e 329.1e 190.5600S137-68 50 4280.5e 2407.8e 1541.0e 1070.1e 528.3e 270.5 156.5600S162-68 50 5288.3e 2974.7e 1903.8e 1322.1e 601.7e 308.1 178.3600S200-68 50 5880.1e 3307.5e 2116.8e 1470.0e 700.0e 358.4 207.4600S250-68 50 5788.2e 3255.8e 2083.7e 1447.0e 806.3e 412.8e 238.9600S137-97 50 7526.5e 4233.7e 2709.5e 1694.8e 715 366.1 211.8600S162-97 50 8403.7e 4727.1e 3025.3e 1941.3e 819 419.3 242.7600S200-97 50 9432.6e 5305.9e 3395.7e 2270.9e 958.0e 490.5 283.9600S250-97 50 9898.1e 5567.7e 3563.3e 2474.5e 1109.0e 567.8 328.6600S137-118 50 9138.7e 5140.5e 3289.9e 1987.9e 838.7 429.4 248.5600S162-118 50 10212.8e 5744.7e 3676.6e 2287.3e 965 494.1 285.9600S200-118 50 11620.3e 6536.4e 4183.3e 2687.4e 1133.7 580.5 335.9600S250-118 50 12729.2e 7160.2e 4582.5e 3121.2e 1316.7e 674.2 390.1800S137-33 33 632.0e 474.0e 379.2e 316.0e 223.2e 142.8e 99.2e800S162-33 33 632.0e 474.0e 379.2e 316.0e 237.0e 168.1e 116.7e800S200-33 33 632.0e 474.0e 379.2e 316.0e 237.0e 189.6e 134.5e800S137-43 33 1401.5e 1051.2e 840.9e 584.3e 328.7e 210.3e 146.1e800S162-43 33 1401.5e 1051.2e 840.9e 678.8e 381.8e 244.4e 169.7e800S200-43 33 1401.5e 1051.2e 840.9e 700.8e 437.2e 279.8e 194.3e800S250-43 33 1401.5e 1051.2e 840.9e 700.8e 459.5e 294.1e 204.2e800S137-54 50 2788.4e 2091.3e 1518.3e 1054.4e 593.1e 379.6e 251.6e800S162-54 50 2788.4e 2091.3e 1673.0e 1215.2e 683.6e 437.5e 283.3e800S200-54 50 2788.4e 2091.3e 1673.0e 1384.1e 778.6e 498.3e 332.5e800S250-54 50 2788.4e 2091.3e 1673.0e 1394.2e 815.2e 521.7e 362.3e800S137-68 50 5627.6e 3297.6e 2110.4e 1465.6e 824.4e 527.6e 317.9e800S162-68 50 5627.6e 3759.1e 2405.8e 1670.7e 939.8e 601.4e 357.6e800S200-68 50 5627.6e 4220.7e 2917.3e 2025.9e 1139.6e 711.5e 411.8e800S250-68 50 5627.6e 4220.7e 2866.9e 1990.9e 1119.9e 716.7e 467.4e800S137-97 50 9468.1e 5325.8e 3408.5e 2367.0e 1331.5e 751.5e 434.9800S162-97 50 10657.1e 5994.6e 3836.6e 2664.3e 1498.7e 849.0e 491.3800S200-97 50 13297.5e 7479.8e 4787.1e 3324.4e 1870.0e 979.3e 566.7800S250-97 50 13839.9e 7785.0e 4982.4e 3460.0e 1946.2e 1117.9e 646.9e800S137-118 50 14157.3e 7963.5e 5096.6e 3539.3e 1732.3e 886.9 513.3800S162-118 50 15589.2e 8768.9e 5612.1e 3897.3e 1964.0e 1005.5e 581.9800S200-118 50 17414.8e 9795.8e 6269.3e 4353.7e 2273.2e 1163.9e 673.5800S250-118 50 18210.1e 10243.2e 6555.6e 4552.5e 2560.8e 1332.2e 771 1. Values are for unpunched members. 2. Total load deflection is limited to L/360. 3. Headers are made from two boxed or back-to-back members. 4. Allowable moment, shear, and web crippling are based on twice the capacity of a single member. The moment of inertia is based on twice the value of the single member. 5. Web crippling check is based on 1" of bearing at end supports. 6. Members are assumed adequately braced for bending. 7. Allowable loads are for simply supported headers with uniform bending loads only. 8. See page 5 for additional table notes. Page 65 of 97 www.SSMA.com 57Complies With 2009, 2012 and 2015 IBC Header Loads "e" web stiffeners required at ends. See Table Notes on page 56. Header Allowable Uniform Loads (PLF) Section Yield Strength (ksi) Span 3 (ft)4 (ft)5 (ft)6 (ft)8 (ft)10 (ft)12 (ft) 1000S137-43 33 1114.6e 835.9e 668.7e 557.3e 397.8e 254.6e 176.8e1000S162-43 33 1114.6e 835.9e 668.7e 557.3e 418.0e 299.9e 208.2e1000S200-43 33 1114.6e 835.9e 668.7e 557.3e 418.0e 334.4e 242.1e1000S250-43 33 1114.6e 835.9e 668.7e 557.3e 418.0e 334.4e 256.2e1000S137-54 50 2214.5e 1660.8e 1328.7e 1107.2e 721.1e 461.5e 320.5e1000S162-54 50 2214.5e 1660.8e 1328.7e 1107.2e 830.4e 538.3e 373.8e1000S200-54 50 2214.5e 1660.8e 1328.7e 1107.2e 830.4e 621.6e 431.6e1000S250-54 50 2214.5e 1660.8e 1328.7e 1107.2e 830.4e 655.5e 455.2e1000S137-68 50 4460.5e 3345.4e 2611.5e 1813.5e 1020.1e 652.9e 453.4e1000S162-68 50 4460.5e 3345.4e 2676.3e 2087.2e 1174.0e 751.4e 521.8e1000S200-68 50 4460.5e 3345.4e 2676.3e 2230.3e 1343.8e 860.0e 597.2e1000S250-68 50 4460.5e 3345.4e 2676.3e 2230.3e 1419.4e 908.4e 630.8e1000S137-97 50 12117.7e 6816.2e 4362.4e 3029.4e 1704.1e 1090.6e 757.4e1000S162-97 50 13151.6e 7712.9e 4936.2e 3427.9e 1928.2e 1234.1e 857.0e1000S200-97 50 13151.6e 8727.6e 5585.7e 3878.9e 2181.9e 1396.4e 969.7e1000S250-97 50 13151.6e 9863.7e 6407.1e 4449.4e 2502.8e 1601.8e 1104.1e1000S137-118 50 15854.9e 8918.4e 5707.8e 3963.7e 2229.6e 1426.9e 910.9e1000S162-118 50 17827.7e 10028.1e 6418.0e 4456.9e 2507.0e 1604.5e 1020.2e1000S200-118 50 20110.4e 11312.1e 7239.8e 5027.6e 2828.0e 1809.9e 1166.0e1000S250-118 50 21646.1e 13316.3e 8522.4e 5918.4e 3329.1e 2130.6e 1319.2e1200S137-54 50 1836.5e 1377.4e 1101.9e 918.2e 688.7e 529.9e 368.0e1200S162-54 50 1836.5e 1377.4e 1101.9e 918.2e 688.7e 550.9e 432.9e1200S200-54 50 1836.5e 1377.4e 1101.9e 918.2e 688.7e 550.9e 459.1e1200S250-54 50 1836.5e 1377.4e 1101.9e 918.2e 688.7e 550.9e 459.1e1200S137-68 50 3694.3e 2770.7e 2216.6e 1847.2e 1187.3e 759.9e 527.7e1200S162-68 50 3694.3e 2770.7e 2216.6e 1847.2e 1377.9e 881.8e 612.4e1200S200-68 50 3694.3e 2770.7e 2216.6e 1847.2e 1385.4e 1020.7e 708.8e1200S250-68 50 3694.3e 2770.7e 2216.6e 1847.2e 1385.4e 1087.9e 755.5e1200S137-97 50 10862.7e 8144.0e 5212.1e 3619.5e 2036.0e 1303.0e 904.9e1200S162-97 50 10862.7e 8147.0e 5936.1e 4122.3e 2318.8e 1484.0e 1030.6e1200S200-97 50 10862.7e 8147.0e 6517.6e 4698.7e 2643.0e 1691.5e 1174.7e1200S250-97 50 10862.7e 8147.0e 6517.6e 5013.8e 2820.3e 1805.0e 1253.5e1200S137-118 50 19323.9e 10869.7e 6956.6e 4831.0e 2717.4e 1739.1e 1207.7e1200S162-118 50 19980.7e 12269.5e 7852.5e 5453.1e 3067.4e 1963.1e 1363.3e1200S200-118 50 19980.7e 13900.1e 8896.1e 6177.8e 3475.0e 2224.0e 1544.5e1200S250-118 50 19980.7e 14880.8e 9523.7e 6613.7e 3720.2e 2380.9e 1653.4e1200S300-118 50 19980.7e 14985.5e 10756.0e 7469.4e 4201.6e 2689.0e 1867.4e1200S350-118 50 19980.7e 14985.5e 11988.4e 8850.4e 4978.3e 3186.1e 2212.6e1400S162-54 50 1568.7e 1176.5e 941.2e 784.4e 588.3e 470.6e 392.2e1400S200-54 50 1568.7e 1176.5e 941.2e 784.4e 588.3e 470.6e 392.2e1400S250-54 50 1568.7e 1176.5e 941.2e 784.4e 588.3e 470.6e 392.2e1400S300-54 50 1568.7e 1176.5e 941.2e 784.4e 588.3e 470.6e 392.2e1400S350-54 50 1568.7e 1176.5e 941.2e 784.4e 588.3e 470.6e 392.2e1400S162-68 50 3152.8e 2364.6e 1891.7e 1576.4e 1182.3e 945.8e 690.3e1400S200-68 50 3152.8e 2364.6e 1891.7e 1576.4e 1182.3e 945.8e 788.2e1400S250-68 50 3152.8e 2364.6e 1891.7e 1576.4e 1182.3e 945.8e 788.2e1400S300-68 50 3152.8e 2364.6e 1891.7e 1576.4e 1182.3e 945.8e 788.2e1400S350-68 50 3152.8e 2364.6e 1891.7e 1576.4e 1182.3e 945.8e 788.2e1400S162-97 50 9252.4e 6939.3e 5551.4e 4626.2e 2665.9e 1706.2e 1184.8e1400S200-97 50 9252.4e 6939.3e 5551.4e 4626.2e 3062.0e 1959.7e 1360.9e1400S250-97 50 9252.4e 6939.3e 5551.4e 4626.2e 3290.4e 2105.8e 1462.4e1400S300-97 50 9252.4e 6939.3e 5551.4e 4626.2e 3446.8e 2206.0e 1531.9e1400S350-97 50 9252.4e 6939.3e 5551.4e 4626.2e 3469.6e 2683.4e 1863.5e1400S162-118 50 16993.8e 12745.4e 9153.4e 6356.5e 3575.5e 2288.3e 1589.1e1400S200-118 50 16993.8e 12745.4e 10196.3e 7245.3e 4075.5e 2608.3e 1811.3e1400S250-118 50 16993.8e 12745.4e 10196.3e 7793.3e 4383.7e 2805.6e 1948.3e1400S300-118 50 16993.8e 12745.4e 10196.3e 8178.0e 4600.1e 2944.1e 2044.5e1400S350-118 50 16993.8e 12745.4e 10196.3e 8496.9e 5892.6e 3771.3e 2618.9e1600S162-68 50 2749.7e 2062.3e 1649.8e 1374.8e 1031.1e 824.9e 687.4e1600S200-68 50 2749.7e 2062.3e 1649.8e 1374.8e 1031.1e 824.9e 687.4e1600S250-68 50 2749.7e 2062.3e 1649.8e 1374.8e 1031.1e 824.9e 687.4e1600S300-68 50 2749.7e 2062.3e 1649.8e 1374.8e 1031.1e 824.9e 687.4e1600S350-68 50 2749.7e 2062.3e 1649.8e 1374.8e 1031.1e 824.9e 687.4e1600S162-97 50 8057.9e 6043.4e 4834.7e 4028.9e 2975.1e 1904.1e 1322.3e1600S200-97 50 8057.9e 6043.4e 4834.7e 4028.9e 3021.7e 2199.8e 1527.7e1600S250-97 50 8057.9e 6043.4e 4834.7e 4028.9e 3021.7e 2381.4e 1653.7e1600S300-97 50 8057.9e 6043.4e 4834.7e 4028.9e 3021.7e 2417.4e 1743.7e1600S350-97 50 8057.9e 6043.4e 4834.7e 4028.9e 3021.7e 2417.4e 2014.5e1600S162-118 50 14783.8e 11087.9e 8870.3e 7175.0e 4035.9e 2583.0e 1793.8e1600S200-118 50 14783.8e 11087.9e 8870.3e 7391.9e 4622.1e 2958.1e 2054.3e1600S250-118 50 14783.8e 11087.9e 8870.3e 7391.9e 5001.5e 3201.0e 2222.9e1600S300-118 50 14783.8e 11087.9e 8870.3e 7391.9e 5275.8e 3376.5e 2344.8e1600S350-118 50 14783.8e 11087.9e 8870.3e 7391.9e 5543.9e 4061.0e 2820.1e Page 66 of 97 www.SSMA.com34 Copyright © 2015 by the SSMA 20 psf Lateral Load Wall Height (ft) Spacing (in) oc 400S137 400S162 400S200 550S162 33 ksi 50 ksi 33 ksi 50 ksi 33 ksi 50 ksi 33 ksi 50 ksi 33 43 54 68 33 43 54 68 33 43 54 68 33 43 54 68 8 12 1.06 1.74 3.14 4.41 1.42 2.25 4.04 5.57 1.76 2.88 5.10 6.97 1.93 2.95 5.22 7.06 16 0.83 1.50 2.92 4.18 1.17 1.99 3.79 5.31 1.48 2.60 4.82 6.69 1.74 2.77 5.05 6.89 24 0.40 4 1.04 2.50 3.72 0.70 1.50 3.32 4.81 0.97 2.06 4.28 6.14 1.35 2.41 4.70 6.55 9 12 0.84 1.49 2.83 4.07 1.17 1.95 3.64 5.08 1.47 2.53 4.59 6.36 1.75 2.77 5.03 6.90 16 0.57 4 1.20 2.56 3.77 0.87 1.64 3.34 4.76 1.15 2.19 4.25 6.01 1.50 2.54 4.80 6.67 24 -0.67 3 2.06 3.21 0.33 3 1.07 4 2.78 4.16 0.55 4 1.56 3.61 5.35 1.03 2.09 4.36 6.23 10 12 0.62 4 1.22 2.49 3.62 0.90 1.64 3.21 4.54 1.18 2.17 4.05 5.69 1.54 2.56 4.76 6.69 16 0.31 3 0.89 4 2.18 3.28 0.57 3 1.29 2.87 4.17 0.81 4 1.78 3.66 5.29 1.24 2.28 4.48 6.40 24 - 0.30 3 1.61 3 2.65 4 - 0.64 3 2.24 4 3.48 0.15 3 1.07 3 2.94 4.54 0.69 1.74 3.94 5.85 12 12 0.19 3 0.70 3 1.78 4 2.67 0.41 3 1.03 3 2.33 4 3.38 0.61 3 1.44 4 2.96 4.31 1.08 2.07 4.10 5.91 16 - 0.32 3 1.42 3 2.27 3 - 0.62 3 1.94 3 2.96 4 0.20 3 0.99 3 2.52 4 3.84 0.70 4 1.69 3.72 5.51 24 - -0.79 2 1.58 3 - -1.25 2 2.20 3 - 0.20 2 1.73 3 3.00 3 - 0.99 4 3.01 4.76 14 12 - 0.25 2 1.15 3 1.82 3 - 0.50 3 1.56 3 2.35 3 0.14 2 0.81 3 2.01 3 3.05 4 0.61 3 1.53 3.34 4.97 16 - -0.79 2 1.42 2 - -1.16 2 1.92 3 -0.35 2 1.57 3 2.58 3 0.17 3 1.08 3 2.88 4 4.48 24 - -0.16 1 0.73 1 - - 0.48 1 1.18 2 - -0.79 2 1.76 2 - 0.26 3 2.05 3 3.59 3 16 12 - -0.67 2 1.17 2 - - 0.98 2 1.58 3 - 0.32 2 1.30 2 2.10 3 0.18 3 1.00 3 2.57 4 3.97 16 - - 0.32 1 0.80 2 - - 0.60 1 1.17 2 - - 0.87 2 1.65 2 -0.51 3 2.07 3 3.43 3 24 - - -0.15 1 - - - 0.48 1 - -0.14 1 0.89 1 - -1.19 2 2.48 3 20 psf Lateral Load Wall Height (ft) Spacing (in) oc 350S162 362S137 362S162 362S200 33 ksi 50 ksi 33 ksi 50 ksi 33 ksi 50 ksi 33 ksi 50 ksi 33 43 54 68 33 43 54 68 33 43 54 68 33 43 54 68 8 12 1.16 1.89 3.36 4.46 0.91 1.53 2.77 3.80 1.23 1.99 3.55 4.76 1.55 2.56 4.49 6.01160.90 1.62 3.11 4.21 0.67 1.28 2.54 3.56 0.98 1.72 3.30 4.50 1.27 2.27 4.20 5.72 24 0.43 3 1.11 4 2.64 3.72 0.24 3 0.81 4 2.11 3.10 0.50 4 1.21 2.82 4.01 0.74 4 1.71 3.65 5.18 9 12 0.90 1.57 2.91 3.92 0.68 1.26 2.43 3.37 0.97 1.68 3.12 4.23 1.25 2.19 3.94 5.34 16 0.60 3 1.26 2.62 3.62 0.41 3 0.97 4 2.16 3.08 0.67 4 1.36 2.82 3.92 0.92 1.85 3.60 5.00 24 - 0.69 3 2.08 4 3.06 - 0.44 3 1.66 3 2.55 4 0.13 3 0.78 3 2.27 4 3.34 0.32 3 1.21 4 2.97 4.37 10 12 0.64 3 1.25 2.45 3.37 0.46 3 0.99 4 2.07 2.91 0.71 4 1.36 2.67 3.66 0.95 1.82 3.38 4.65 16 0.32 3 0.91 3 2.14 4 3.03 0.16 3 0.66 3 1.77 4 2.59 0.38 3 1.01 3 2.34 3.32 0.59 3 1.43 4 3.00 4.27 24 - 0.29 3 1.56 3 2.43 3 - -1.22 3 2.01 3 - 0.38 3 1.74 3 2.69 4 -0.74 3 2.32 3 3.58 4 12 12 0.18 2 0.67 3 1.62 3 2.33 4 - 0.48 3 1.36 3 2.02 4 0.24 2 0.76 3 1.81 3 2.58 4 0.41 3 1.11 3 2.32 4 3.32 16 - 0.30 2 1.29 3 1.97 3 -0.13 2 1.04 3 1.67 3 - 0.38 2 1.45 3 2.20 3 - 0.69 3 1.92 3 2.91 4 24 - -0.70 2 1.35 2 - - 0.48 2 1.06 2 - - 0.84 2 1.55 2 -1.21 2 2.19 3 14 12 - 0.22 2 1.00 2 1.54 3 - - 0.82 2 1.31 3 - 0.29 2 1.14 2 1.73 3 - 0.54 2 1.49 3 2.28 3 16 - - 0.68 2 1.20 2 - - 0.50 1 0.97 2 - -0.79 2 1.36 2 -0.12 2 1.10 2 1.88 3 24 - -0.13 1 0.60 1 - -0.39 1 - -0.21 1 0.73 1 -0.43 1 1.18 2 16 12 - - 0.57 1 0.98 2 - - 0.42 1 0.80 2 - - 0.66 1 1.12 2 -0.12 1 0.91 2 1.53 2 16 - - 0.26 1 0.66 1 - -0.13 1 0.49 1 - - 0.34 1 0.77 1 - - 0.54 1 1.15 2 24 - - -0.11 1 - - - - - - -0.19 1 - - - 0.50 1 20 psf Lateral Load Wall Height (ft) Spacing (in) oc 600S137 600S162 600S200 33 ksi 50 ksi 33 ksi 50 ksi 33 ksi 50 ksi 33 43 54 68 97 33 43 54 68 97 33 43 54 68 97 8 12 1.42 2.17 3.53 4.77 7.30 2.00 3.02 5.25 7.10 11.06 2.43 3.86 7.01 9.55 15.23161.27 2.02 3.40 4.65 7.20 1.82 2.85 5.10 6.95 10.91 2.25 3.66 6.81 9.36 15.04240.97 1.73 3.15 4.40 6.99 1.47 2.53 4.79 6.65 10.61 1.88 3.27 6.42 9.00 14.67 9 12 1.29 2.04 3.41 4.66 7.21 1.85 2.87 5.11 6.96 10.91 2.26 3.65 6.73 9.25 14.84161.10 1.85 3.25 4.50 7.07 1.62 2.66 4.91 6.76 10.72 2.02 3.40 6.48 9.01 14.60240.73 1.48 2.93 4.18 6.80 1.18 2.25 4.51 6.38 10.34 1.56 2.91 5.98 8.54 14.12 10 12 1.15 1.90 3.28 4.53 7.09 1.67 2.71 4.94 6.79 10.74 2.06 3.41 6.41 8.89 14.37160.92 1.67 3.08 4.33 6.92 1.40 2.45 4.69 6.55 10.50 1.77 3.11 6.10 8.59 14.06240.47 1.22 2.69 3.94 6.58 0.86 1.94 4.20 6.06 10.01 1.22 2.51 5.49 8.01 13.47 12 12 0.82 1.56 2.97 4.21 6.80 1.25 2.28 4.48 6.37 10.29 1.60 2.86 5.63 8.00 13.16160.50 1.24 2.68 3.92 6.54 0.88 1.92 4.11 6.00 9.91 1.22 2.44 5.19 7.58 12.7224- 0.63 4 2.13 3.36 6.03 0.19 3 1.24 3.43 5.30 9.18 0.50 4 1.66 4.37 6.77 11.86 14 12 0.46 4 1.17 2.59 3.81 6.42 0.79 1.78 3.79 5.58 9.63 1.11 2.24 4.71 6.92 11.6416-0.76 4 2.21 3.42 6.05 0.35 3 1.33 4 3.33 5.10 9.09 0.64 4 1.73 4.18 6.38 11.0624-0.01 3 1.50 3 2.68 4 5.35 - 0.52 3 2.49 3 4.21 8.09 -0.79 3 3.19 4 5.39 9.97 16 12 -0.76 3 2.15 4 3.33 5.92 0.35 3 1.26 4 3.03 4.64 8.21 0.62 3 1.62 3.76 5.75 9.9416- 0.28 3 1.69 3 2.84 4 5.44 -0.75 3 2.52 3 4.08 7.58 0.10 3 1.04 3 3.16 4 5.13 9.2524- - 0.85 2 1.95 3 4.56 3 - -1.60 3 3.09 3 6.44 4 - -2.09 3 4.03 3 8.00 If no note, deflection meets L/720 1Deflection meets L/120 2Deflection meets L/240 3Deflection meets L/360 4Deflection meets L/600 See Table Notes on page 31. Combined Axial and Lateral Loads Page 67 of 97 Simple Beam with uniform load and multiple point loads:Member: Entry B-1Loading information: x l a1 a2 a3 a4 a5 a6 P1 P2 P3 P4 P5 P6 R2 R1 W Span:l 10ft= Uniform load:w 10 97+( )psf 4ft= Deflection:Δ 240= Point loads:Point load locations: P1 0lbf=P4 0lbf=a1 0ft=a4 0ft= P2 0lbf=P5 0lbf=a2 0ft=a5 0ft= P3 0lbf=P6 0lbf=a3 0ft=a6 0ft= i 1 6..=bi l ai-=n 200=x 0 n..= Material:Allow bending stress:Fb 900 psi= Allow shear stress:Fv 180 psi=Repetitive use factor:Cr 1.0= Modulus :E 1600 ksi=Load duration factor:Cd 1.15= Calculate shear and moment R1 w l.5 1 6 i Pi ai( ) l = +=R2 w l.5 1 6 i Pi l ai-( ) l = +=R1 2140 lbf=R2 2140 lbf= Shearx R2 w xl n- 1 6 i if ai x l n>0 lb, Pi, = -=Momentx R2 xl nw x 2( ) 2 l2 n2- 1 6 i if ai x l n>0 lbft, Pi-( ) ai x l n- , = -= max Shear( ) 2140 lbf=max Moment( ) 5350 ft lbf=M max Moment( )= V if R1 max Shear( )>R1, max Shear( ), ()=V 2140 lbf=M 5350 ft lbf= Beam Size: bb 11.25in=d 11.25in= Cv min 21ft l 1 10 12in d 1 10 5.125in bb 1 10 1.0, =Cf 12 in d .111 = Required properties Cf 1.01= Sreq M Fb CdCrCf=Areq V d w-( ) 1.5 Fv Cd=S bb d 2 6= A bb d= Sreq 61.6 in 3=<S 237.3 in 3=Areq 12.6 in 2=<A 126.6 in 2= deflection: I bb d 3 12=wdeltax w xl( ) n 24EI( ) l3 2 lx l n 2 -x l n 3 + = Sreq S 0.26= deltax 1 6 i if ai x l n > Pi bix l n 6 EIll( ) 2 bi( ) 2-x l n 2 - , Pi ail x l n- 6 EIll( ) 2 ai( ) 2-l x l n- 2 - , = =Areq A 0.1= δx deltax wdeltax+()-=min δ( ) 0.0451-in=min δ( )Δ( ) l-0.09= 1/1 Page 68 of 97 Simple Beam with uniform load and multiple point loads:Member: Entry B-5Loading information: x l a1 a2 a3 a4 a5 a6 P1 P2 P3 P4 P5 P6 R2 R1 W Span:l 9ft= Uniform load:w 50plf= Deflection:Δ 240= Point loads:Point load locations: P1 2200lbf=P4 0lbf=a1 6ft=a4 0ft= P2 0lbf=P5 0lbf=a2 0ft=a5 0ft= P3 0lbf=P6 0lbf=a3 0ft=a6 0ft= i 1 6..=bi l ai-=n 200=x 0 n..= Material:Allow bending stress:Fb 900 psi= Allow shear stress:Fv 180 psi=Repetitive use factor:Cr 1.0= Modulus :E 1600 ksi=Load duration factor:Cd 1.15= Calculate shear and moment R1 w l.5 1 6 i Pi ai( ) l = +=R2 w l.5 1 6 i Pi l ai-( ) l = +=R1 1691.7 lbf=R2 958.3 lbf= Shearx R2 w xl n- 1 6 i if ai x l n>0 lb, Pi, = -=Momentx R2 xl nw x 2( ) 2 l2 n2- 1 6 i if ai x l n>0 lbft, Pi-( ) ai x l n- , = -= max Shear( ) 958.3 lbf=max Moment( ) 4840.1 ft lbf=M max Moment( )= V if R1 max Shear( )>R1, max Shear( ), ()=V 1691.7 lbf=M 4840.1 ft lbf= Beam Size: bb 11.25in=d 11.25in= Cv min 21ft l 1 10 12in d 1 10 5.125in bb 1 10 1.0, =Cf 12 in d .111 = Required properties Cf 1.01= Sreq M Fb CdCrCf=Areq V d w-( ) 1.5 Fv Cd=S bb d 2 6= A bb d= Sreq 55.7 in 3=<S 237.3 in 3=Areq 11.9 in 2=<A 126.6 in 2= deflection: I bb d 3 12=wdeltax w xl( ) n 24EI( ) l3 2 lx l n 2 -x l n 3 + = Sreq S 0.23= deltax 1 6 i if ai x l n > Pi bix l n 6 EIll( ) 2 bi( ) 2-x l n 2 - , Pi ail x l n- 6 EIll( ) 2 ai( ) 2-l x l n- 2 - , = =Areq A 0.09= δx deltax wdeltax+()-=min δ( ) 0.0267-in=min δ( )Δ( ) l-0.06= 1/1 Page 69 of 97 Current Date: 7/1/2021 2:00 PM Units system: English File name: I:\2021\21172 - Clarity Design - Iron Horse RV Dealership\Calculations\Entry Truss.retx Load condition: D2=DL+SL Page 70 of 97 Current Date: 7/1/2021 2:01 PM Units system: English File name: I:\2021\21172 - Clarity Design - Iron Horse RV Dealership\Calculations\Entry Truss.retx Steel Code Check __________________________________________________________________________________________________________________________ Report: Concise Members: Hot-rolled Design code: AISC 360-2016 ASD _________________________________________________ Member :1 (Bottom chord) Design status :OK _________________________________________________ DESIGN WARNINGS Section information __________________________________________________________________________________________________________________________ Section name: HSS_SQR 5X5X5_16 (US) Dimensions --------------------------------------------------------------------------------------------------------- a =5.000 [in]Height b =5.000 [in]Width T =0.291 [in]Thickness Properties --------------------------------------------------------------------------------------------------------- Section properties Unit Major axis Minor axis Gross area of the section. (Ag)[in2]5.260 Moment of Inertia (local axes) (I)[in4]19.000 19.000 Moment of Inertia (principal axes) (I')[in4]19.000 19.000 Bending constant for moments (principal axis) (J')[in]0.000 0.000 Radius of gyration (local axes) (r)[in]1.901 1.901 Radius of gyration (principal axes) (r')[in]1.901 1.901 Saint-Venant torsion constant. (J)[in4]31.200 Section warping constant. (Cw)[in6]0.000 Distance from centroid to shear center (principal axis) (xo,yo)[in]0.000 0.000 Top elastic section modulus of the section (local axis) (Ssup)[in3]7.600 7.600 Bottom elastic section modulus of the section (local axis) (Sinf)[in3]7.600 7.600 Top elastic section modulus of the section (principal axis) (S'sup)[in3]7.600 7.600 Bottom elastic section modulus of the section (principal axis) (S'inf)[in3]7.600 7.600 Plastic section modulus (local axis) (Z)[in3]9.200 9.200 Plastic section modulus (principal axis) (Z')[in3]9.200 9.200 Polar radius of gyration. (ro)[in]2.687 Area for shear (Aw)[in2]2.402 2.402 Torsional constant. (C)[in3]12.808 Page1 Page 71 of 97 Material : A500 GrC rectangular Properties Unit Value ------------------------------------------------------------------------------------------------------------------------------------------- Yield stress (Fy):[Kip/in2]50.00 Tensile strength (Fu):[Kip/in2]62.00 Elasticity Modulus (E):[Kip/in2]29000.00 Shear modulus for steel (G):[Kip/in2]11153.85 ------------------------------------------------------------------------------------------------------------------------------------------- DESIGN CRITERIA Description Unit Value ------------------------------------------------------------------------------------------------------------------------------------------- Length for tension slenderness ratio (L)[ft]37.00 Distance between member lateral bracing points ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Length (Lb) [ft] Top Bottom ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 37.00 37.00 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Laterally unbraced length ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Length [ft]Effective length factor Major axis(L33)Minor axis(L22)Torsional axis(Lt)Major axis(K33)Minor axis(K22)Torsional axis(Kt) ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 37.00 37.00 37.00 1.0 1.0 1.0 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Additional assumptions Continuous lateral torsional restraint No Tension field action No Continuous flexural torsional restraint No Effective length factor value type None Major axis frame type Sway Minor axis frame type Sway DESIGN CHECKS AXIAL TENSION DESIGN Axial tension Ratio :0.23 Capacity :157.49 [Kip]Reference :Cl.D2 Demand :35.62 [Kip]Ctrl Eq.:D2 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored axial tension capacity(Pn/)[Kip]157.49 Cl.D2 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- AXIAL COMPRESSION DESIGN Compression in the major axis 33 Page2 Page 72 of 97 Ratio :0.00 Capacity :14.49 [Kip]Reference :Cl.E3 Demand :0.00 [Kip]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored flexural buckling strength(Pn33/)[Kip]14.49 Cl.E3 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Compression in the minor axis 22 Ratio :0.00 Capacity :14.49 [Kip]Reference :Cl.E3 Demand :0.00 [Kip]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored flexural buckling strength(Pn22/)[Kip]14.49 Cl.E3 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- FLEXURAL DESIGN Bending about major axis, M33 Ratio :0.04 Capacity :22.95 [Kip*ft]Reference :Cl.F7.1 Demand :0.93 [Kip*ft]Ctrl Eq.:D2 at 50.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored yielding strength(Mn/)[Kip*ft]22.95 Cl.F7.1 Factored lateral-torsional buckling strength(Mn/)[Kip*ft]22.95 Cl.F7.4 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Bending about minor axis, M22 Ratio :0.00 Capacity :22.95 [Kip*ft]Reference :Cl.F7.1 Demand :0.00 [Kip*ft]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored yielding strength about a geometric axis(Mn/)[Kip*ft]22.95 Cl.F7.1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN FOR SHEAR Shear in major axis 33 Ratio :0.00 Capacity :43.15 [Kip]Reference :Cl.G1 Demand :0.00 [Kip]Ctrl Eq.:D1 at 0.00% Page3 Page 73 of 97 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored shear capacity(Vn/)[Kip]43.15 Cl.G1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Shear in minor axis 22 Ratio :0.00 Capacity :43.15 [Kip]Reference :Cl.G1 Demand :0.05 [Kip]Ctrl Eq.:D2 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored shear capacity(Vn/)[Kip]43.15 Cl.G1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- TORSION DESIGN Torsion Ratio :0.00 Capacity :19.17 [Kip*ft]Reference :Cl.H3.1 Demand :0.00 [Kip*ft]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored torsion capacity(Tn/)[Kip*ft]19.17 Cl.H3.1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- COMBINED ACTIONS DESIGN Combined flexure and axial ................................................................................................................................................................................... Ratio :0.26 Ctrl Eq.:D2 at 50.00%Reference :Eq.H1-1a ................................................................................................................................................................................... ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Interaction of flexure and axial force --0.26 Eq.H1-1a ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- _________________________________________________ Member :2 (Web) Design status :OK _________________________________________________ DESIGN WARNINGS Section information __________________________________________________________________________________________________________________________ Section name: HSS_SQR 4X4X3_16 (US) Page4 Page 74 of 97 Dimensions --------------------------------------------------------------------------------------------------------- a =4.000 [in]Height b =4.000 [in]Width T =0.174 [in]Thickness Properties --------------------------------------------------------------------------------------------------------- Section properties Unit Major axis Minor axis Gross area of the section. (Ag)[in2]2.580 Moment of Inertia (local axes) (I)[in4]6.200 6.200 Moment of Inertia (principal axes) (I')[in4]6.200 6.200 Bending constant for moments (principal axis) (J')[in]0.000 0.000 Radius of gyration (local axes) (r)[in]1.550 1.550 Radius of gyration (principal axes) (r')[in]1.550 1.550 Saint-Venant torsion constant. (J)[in4]10.000 Section warping constant. (Cw)[in6]0.000 Distance from centroid to shear center (principal axis) (xo,yo)[in]0.000 0.000 Top elastic section modulus of the section (local axis) (Ssup)[in3]3.100 3.100 Bottom elastic section modulus of the section (local axis) (Sinf)[in3]3.100 3.100 Top elastic section modulus of the section (principal axis) (S'sup)[in3]3.100 3.100 Bottom elastic section modulus of the section (principal axis) (S'inf)[in3]3.100 3.100 Plastic section modulus (local axis) (Z)[in3]3.700 3.700 Plastic section modulus (principal axis) (Z')[in3]3.700 3.700 Polar radius of gyration. (ro)[in]2.191 Area for shear (Aw)[in2]1.210 1.210 Torsional constant. (C)[in3]5.073 Material : A500 GrC rectangular Properties Unit Value ------------------------------------------------------------------------------------------------------------------------------------------- Yield stress (Fy):[Kip/in2]50.00 Tensile strength (Fu):[Kip/in2]62.00 Elasticity Modulus (E):[Kip/in2]29000.00 Shear modulus for steel (G):[Kip/in2]11153.85 ------------------------------------------------------------------------------------------------------------------------------------------- DESIGN CRITERIA Description Unit Value ------------------------------------------------------------------------------------------------------------------------------------------- Length for tension slenderness ratio (L)[ft]5.67 Distance between member lateral bracing points ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Length (Lb) [ft] Top Bottom ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 5.67 5.67 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Page5 Page 75 of 97 Laterally unbraced length ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Length [ft]Effective length factor Major axis(L33)Minor axis(L22)Torsional axis(Lt)Major axis(K33)Minor axis(K22)Torsional axis(Kt) ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 5.67 5.67 5.67 1.0 1.0 1.0 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Additional assumptions Continuous lateral torsional restraint No Tension field action No Continuous flexural torsional restraint No Effective length factor value type None Major axis frame type Sway Minor axis frame type Sway DESIGN CHECKS AXIAL TENSION DESIGN Axial tension Ratio :0.10 Capacity :77.25 [Kip]Reference :Cl.D2 Demand :8.08 [Kip]Ctrl Eq.:D2 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored axial tension capacity(Pn/)[Kip]77.25 Cl.D2 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- AXIAL COMPRESSION DESIGN Compression in the major axis 33 Ratio :0.00 Capacity :67.11 [Kip]Reference :Cl.E3 Demand :0.00 [Kip]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored flexural buckling strength(Pn33/)[Kip]67.11 Cl.E3 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Compression in the minor axis 22 Ratio :0.00 Capacity :67.11 [Kip]Reference :Cl.E3 Demand :0.00 [Kip]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored flexural buckling strength(Pn22/)[Kip]67.11 Cl.E3 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- FLEXURAL DESIGN Bending about major axis, M33 Page6 Page 76 of 97 Ratio :0.00 Capacity :9.23 [Kip*ft]Reference :Cl.F7.1 Demand :0.00 [Kip*ft]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored yielding strength(Mn/)[Kip*ft]9.23 Cl.F7.1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Bending about minor axis, M22 Ratio :0.00 Capacity :9.23 [Kip*ft]Reference :Cl.F7.1 Demand :0.00 [Kip*ft]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored yielding strength about a geometric axis(Mn/)[Kip*ft]9.23 Cl.F7.1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN FOR SHEAR Shear in major axis 33 Ratio :0.00 Capacity :21.74 [Kip]Reference :Cl.G1 Demand :0.00 [Kip]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored shear capacity(Vn/)[Kip]21.74 Cl.G1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Shear in minor axis 22 Ratio :0.00 Capacity :21.74 [Kip]Reference :Cl.G1 Demand :0.00 [Kip]Ctrl Eq.:D2 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored shear capacity(Vn/)[Kip]21.74 Cl.G1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- TORSION DESIGN Torsion Ratio :0.00 Capacity :7.59 [Kip*ft]Reference :Cl.H3.1 Demand :0.00 [Kip*ft]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored torsion capacity(Tn/)[Kip*ft]7.59 Cl.H3.1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Page7 Page 77 of 97 COMBINED ACTIONS DESIGN Combined flexure and axial ................................................................................................................................................................................... Ratio :0.05 Ctrl Eq.:D2 at 0.00%Reference :Eq.H1-1b ................................................................................................................................................................................... ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Interaction of flexure and axial force --0.05 Eq.H1-1b ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- _________________________________________________ Member :7 (Web) Design status :OK _________________________________________________ DESIGN WARNINGS Section information __________________________________________________________________________________________________________________________ Section name: HSS_SQR 4X4X3_16 (US) Dimensions --------------------------------------------------------------------------------------------------------- a =4.000 [in]Height b =4.000 [in]Width T =0.174 [in]Thickness Properties --------------------------------------------------------------------------------------------------------- Section properties Unit Major axis Minor axis Gross area of the section. (Ag)[in2]2.580 Moment of Inertia (local axes) (I)[in4]6.200 6.200 Moment of Inertia (principal axes) (I')[in4]6.200 6.200 Bending constant for moments (principal axis) (J')[in]0.000 0.000 Radius of gyration (local axes) (r)[in]1.550 1.550 Radius of gyration (principal axes) (r')[in]1.550 1.550 Saint-Venant torsion constant. (J)[in4]10.000 Section warping constant. (Cw)[in6]0.000 Distance from centroid to shear center (principal axis) (xo,yo)[in]0.000 0.000 Top elastic section modulus of the section (local axis) (Ssup)[in3]3.100 3.100 Bottom elastic section modulus of the section (local axis) (Sinf)[in3]3.100 3.100 Top elastic section modulus of the section (principal axis) (S'sup)[in3]3.100 3.100 Bottom elastic section modulus of the section (principal axis) (S'inf)[in3]3.100 3.100 Plastic section modulus (local axis) (Z)[in3]3.700 3.700 Plastic section modulus (principal axis) (Z')[in3]3.700 3.700 Polar radius of gyration. (ro)[in]2.191 Area for shear (Aw)[in2]1.210 1.210 Torsional constant. (C)[in3]5.073 Material : A500 GrC rectangular Page8 Page 78 of 97 Properties Unit Value ------------------------------------------------------------------------------------------------------------------------------------------- Yield stress (Fy):[Kip/in2]50.00 Tensile strength (Fu):[Kip/in2]62.00 Elasticity Modulus (E):[Kip/in2]29000.00 Shear modulus for steel (G):[Kip/in2]11153.85 ------------------------------------------------------------------------------------------------------------------------------------------- DESIGN CRITERIA Description Unit Value ------------------------------------------------------------------------------------------------------------------------------------------- Length for tension slenderness ratio (L)[ft]9.67 Distance between member lateral bracing points ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Length (Lb) [ft] Top Bottom ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 9.67 9.67 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Laterally unbraced length ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Length [ft]Effective length factor Major axis(L33)Minor axis(L22)Torsional axis(Lt)Major axis(K33)Minor axis(K22)Torsional axis(Kt) ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 9.67 9.67 9.67 1.0 1.0 1.0 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Additional assumptions Continuous lateral torsional restraint No Tension field action No Continuous flexural torsional restraint No Effective length factor value type None Major axis frame type Sway Minor axis frame type Sway DESIGN CHECKS AXIAL TENSION DESIGN Axial tension Ratio :0.00 Capacity :77.25 [Kip]Reference :Cl.D2 Demand :0.00 [Kip]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored axial tension capacity(Pn/)[Kip]77.25 Cl.D2 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- AXIAL COMPRESSION DESIGN Compression in the major axis 33 Ratio :0.27 Capacity :51.26 [Kip]Reference :Cl.E3 Demand :13.97 [Kip]Ctrl Eq.:D2 at 0.00% Page9 Page 79 of 97 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored flexural buckling strength(Pn33/)[Kip]51.26 Cl.E3 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Compression in the minor axis 22 Ratio :0.27 Capacity :51.26 [Kip]Reference :Cl.E3 Demand :13.97 [Kip]Ctrl Eq.:D2 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored flexural buckling strength(Pn22/)[Kip]51.26 Cl.E3 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- FLEXURAL DESIGN Bending about major axis, M33 Ratio :0.00 Capacity :9.23 [Kip*ft]Reference :Cl.F7.1 Demand :0.00 [Kip*ft]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored yielding strength(Mn/)[Kip*ft]9.23 Cl.F7.1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Bending about minor axis, M22 Ratio :0.00 Capacity :9.23 [Kip*ft]Reference :Cl.F7.1 Demand :0.00 [Kip*ft]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored yielding strength about a geometric axis(Mn/)[Kip*ft]9.23 Cl.F7.1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN FOR SHEAR Shear in major axis 33 Ratio :0.00 Capacity :21.74 [Kip]Reference :Cl.G1 Demand :0.00 [Kip]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored shear capacity(Vn/)[Kip]21.74 Cl.G1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Shear in minor axis 22 Page10 Page 80 of 97 Ratio :0.00 Capacity :21.74 [Kip]Reference :Cl.G1 Demand :0.00 [Kip]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored shear capacity(Vn/)[Kip]21.74 Cl.G1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- TORSION DESIGN Torsion Ratio :0.00 Capacity :7.59 [Kip*ft]Reference :Cl.H3.1 Demand :0.00 [Kip*ft]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored torsion capacity(Tn/)[Kip*ft]7.59 Cl.H3.1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- COMBINED ACTIONS DESIGN Combined flexure and axial ................................................................................................................................................................................... Ratio :0.27 Ctrl Eq.:D2 at 0.00%Reference :Eq.H1-1a ................................................................................................................................................................................... ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Interaction of flexure and axial force --0.27 Eq.H1-1a ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- _________________________________________________ Member :8 (Web) Design status :OK _________________________________________________ DESIGN WARNINGS Section information __________________________________________________________________________________________________________________________ Section name: HSS_SQR 4X4X3_16 (US) Dimensions --------------------------------------------------------------------------------------------------------- a =4.000 [in]Height b =4.000 [in]Width T =0.174 [in]Thickness Page11 Page 81 of 97 Properties --------------------------------------------------------------------------------------------------------- Section properties Unit Major axis Minor axis Gross area of the section. (Ag)[in2]2.580 Moment of Inertia (local axes) (I)[in4]6.200 6.200 Moment of Inertia (principal axes) (I')[in4]6.200 6.200 Bending constant for moments (principal axis) (J')[in]0.000 0.000 Radius of gyration (local axes) (r)[in]1.550 1.550 Radius of gyration (principal axes) (r')[in]1.550 1.550 Saint-Venant torsion constant. (J)[in4]10.000 Section warping constant. (Cw)[in6]0.000 Distance from centroid to shear center (principal axis) (xo,yo)[in]0.000 0.000 Top elastic section modulus of the section (local axis) (Ssup)[in3]3.100 3.100 Bottom elastic section modulus of the section (local axis) (Sinf)[in3]3.100 3.100 Top elastic section modulus of the section (principal axis) (S'sup)[in3]3.100 3.100 Bottom elastic section modulus of the section (principal axis) (S'inf)[in3]3.100 3.100 Plastic section modulus (local axis) (Z)[in3]3.700 3.700 Plastic section modulus (principal axis) (Z')[in3]3.700 3.700 Polar radius of gyration. (ro)[in]2.191 Area for shear (Aw)[in2]1.210 1.210 Torsional constant. (C)[in3]5.073 Material : A500 GrC rectangular Properties Unit Value ------------------------------------------------------------------------------------------------------------------------------------------- Yield stress (Fy):[Kip/in2]50.00 Tensile strength (Fu):[Kip/in2]62.00 Elasticity Modulus (E):[Kip/in2]29000.00 Shear modulus for steel (G):[Kip/in2]11153.85 ------------------------------------------------------------------------------------------------------------------------------------------- DESIGN CRITERIA Description Unit Value ------------------------------------------------------------------------------------------------------------------------------------------- Length for tension slenderness ratio (L)[ft]9.67 Distance between member lateral bracing points ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Length (Lb) [ft] Top Bottom ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 9.67 9.67 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Laterally unbraced length ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Length [ft]Effective length factor Major axis(L33)Minor axis(L22)Torsional axis(Lt)Major axis(K33)Minor axis(K22)Torsional axis(Kt) ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 9.67 9.67 9.67 1.0 1.0 1.0 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Additional assumptions Continuous lateral torsional restraint No Tension field action No Continuous flexural torsional restraint No Effective length factor value type None Major axis frame type Sway Minor axis frame type Sway Page12 Page 82 of 97 DESIGN CHECKS AXIAL TENSION DESIGN Axial tension Ratio :0.00 Capacity :77.25 [Kip]Reference :Cl.D2 Demand :0.00 [Kip]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored axial tension capacity(Pn/)[Kip]77.25 Cl.D2 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- AXIAL COMPRESSION DESIGN Compression in the major axis 33 Ratio :0.27 Capacity :51.26 [Kip]Reference :Cl.E3 Demand :13.97 [Kip]Ctrl Eq.:D2 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored flexural buckling strength(Pn33/)[Kip]51.26 Cl.E3 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Compression in the minor axis 22 Ratio :0.27 Capacity :51.26 [Kip]Reference :Cl.E3 Demand :13.97 [Kip]Ctrl Eq.:D2 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored flexural buckling strength(Pn22/)[Kip]51.26 Cl.E3 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- FLEXURAL DESIGN Bending about major axis, M33 Ratio :0.00 Capacity :9.23 [Kip*ft]Reference :Cl.F7.1 Demand :0.00 [Kip*ft]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored yielding strength(Mn/)[Kip*ft]9.23 Cl.F7.1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Bending about minor axis, M22 Ratio :0.00 Capacity :9.23 [Kip*ft]Reference :Cl.F7.1 Demand :0.00 [Kip*ft]Ctrl Eq.:D1 at 0.00% Page13 Page 83 of 97 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored yielding strength about a geometric axis(Mn/)[Kip*ft]9.23 Cl.F7.1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN FOR SHEAR Shear in major axis 33 Ratio :0.00 Capacity :21.74 [Kip]Reference :Cl.G1 Demand :0.00 [Kip]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored shear capacity(Vn/)[Kip]21.74 Cl.G1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Shear in minor axis 22 Ratio :0.00 Capacity :21.74 [Kip]Reference :Cl.G1 Demand :0.00 [Kip]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored shear capacity(Vn/)[Kip]21.74 Cl.G1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- TORSION DESIGN Torsion Ratio :0.00 Capacity :7.59 [Kip*ft]Reference :Cl.H3.1 Demand :0.00 [Kip*ft]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored torsion capacity(Tn/)[Kip*ft]7.59 Cl.H3.1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- COMBINED ACTIONS DESIGN Combined flexure and axial ................................................................................................................................................................................... Ratio :0.27 Ctrl Eq.:D2 at 0.00%Reference :Eq.H1-1a ................................................................................................................................................................................... ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Interaction of flexure and axial force --0.27 Eq.H1-1a ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- _________________________________________________ Page14 Page 84 of 97 Member :9 (Top chord) Design status :OK _________________________________________________ DESIGN WARNINGS Section information __________________________________________________________________________________________________________________________ Section name: HSS_SQR 5X5X5_16 (US) Dimensions --------------------------------------------------------------------------------------------------------- a =5.000 [in]Height b =5.000 [in]Width T =0.291 [in]Thickness Properties --------------------------------------------------------------------------------------------------------- Section properties Unit Major axis Minor axis Gross area of the section. (Ag)[in2]5.260 Moment of Inertia (local axes) (I)[in4]19.000 19.000 Moment of Inertia (principal axes) (I')[in4]19.000 19.000 Bending constant for moments (principal axis) (J')[in]0.000 0.000 Radius of gyration (local axes) (r)[in]1.901 1.901 Radius of gyration (principal axes) (r')[in]1.901 1.901 Saint-Venant torsion constant. (J)[in4]31.200 Section warping constant. (Cw)[in6]0.000 Distance from centroid to shear center (principal axis) (xo,yo)[in]0.000 0.000 Top elastic section modulus of the section (local axis) (Ssup)[in3]7.600 7.600 Bottom elastic section modulus of the section (local axis) (Sinf)[in3]7.600 7.600 Top elastic section modulus of the section (principal axis) (S'sup)[in3]7.600 7.600 Bottom elastic section modulus of the section (principal axis) (S'inf)[in3]7.600 7.600 Plastic section modulus (local axis) (Z)[in3]9.200 9.200 Plastic section modulus (principal axis) (Z')[in3]9.200 9.200 Polar radius of gyration. (ro)[in]2.687 Area for shear (Aw)[in2]2.402 2.402 Torsional constant. (C)[in3]12.808 Material : A500 GrC rectangular Properties Unit Value ------------------------------------------------------------------------------------------------------------------------------------------- Yield stress (Fy):[Kip/in2]50.00 Tensile strength (Fu):[Kip/in2]62.00 Elasticity Modulus (E):[Kip/in2]29000.00 Shear modulus for steel (G):[Kip/in2]11153.85 ------------------------------------------------------------------------------------------------------------------------------------------- DESIGN CRITERIA Description Unit Value ------------------------------------------------------------------------------------------------------------------------------------------- Length for tension slenderness ratio (L)[ft]19.35 Page15 Page 85 of 97 Distance between member lateral bracing points ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Length (Lb) [ft] Top Bottom ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 19.35 19.35 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Laterally unbraced length ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Length [ft]Effective length factor Major axis(L33)Minor axis(L22)Torsional axis(Lt)Major axis(K33)Minor axis(K22)Torsional axis(Kt) ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 19.35 19.35 19.35 1.0 1.0 1.0 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Additional assumptions Continuous lateral torsional restraint No Tension field action No Continuous flexural torsional restraint No Effective length factor value type None Major axis frame type Sway Minor axis frame type Sway DESIGN CHECKS AXIAL TENSION DESIGN Axial tension Ratio :0.00 Capacity :157.49 [Kip]Reference :Cl.D2 Demand :0.00 [Kip]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored axial tension capacity(Pn/)[Kip]157.49 Cl.D2 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- AXIAL COMPRESSION DESIGN Compression in the major axis 33 Ratio :0.72 Capacity :52.98 [Kip]Reference :Cl.E3 Demand :38.06 [Kip]Ctrl Eq.:D2 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored flexural buckling strength(Pn33/)[Kip]52.98 Cl.E3 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Compression in the minor axis 22 Ratio :0.72 Capacity :52.98 [Kip]Reference :Cl.E3 Demand :38.06 [Kip]Ctrl Eq.:D2 at 0.00% Page16 Page 86 of 97 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored flexural buckling strength(Pn22/)[Kip]52.98 Cl.E3 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- FLEXURAL DESIGN Bending about major axis, M33 Ratio :0.26 Capacity :22.95 [Kip*ft]Reference :Cl.F7.1 Demand :-6.08 [Kip*ft]Ctrl Eq.:D2 at 50.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored yielding strength(Mn/)[Kip*ft]22.95 Cl.F7.1 Factored lateral-torsional buckling strength(Mn/)[Kip*ft]22.95 Cl.F7.4 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Bending about minor axis, M22 Ratio :0.00 Capacity :22.95 [Kip*ft]Reference :Cl.F7.1 Demand :0.00 [Kip*ft]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored yielding strength about a geometric axis(Mn/)[Kip*ft]22.95 Cl.F7.1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- DESIGN FOR SHEAR Shear in major axis 33 Ratio :0.00 Capacity :43.15 [Kip]Reference :Cl.G1 Demand :0.00 [Kip]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored shear capacity(Vn/)[Kip]43.15 Cl.G1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Shear in minor axis 22 Ratio :0.09 Capacity :43.15 [Kip]Reference :Cl.G1 Demand :3.91 [Kip]Ctrl Eq.:D2 at 50.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored shear capacity(Vn/)[Kip]43.15 Cl.G1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- TORSION DESIGN Page17 Page 87 of 97 Torsion Ratio :0.00 Capacity :19.17 [Kip*ft]Reference :Cl.H3.1 Demand :0.00 [Kip*ft]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored torsion capacity(Tn/)[Kip*ft]19.17 Cl.H3.1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- COMBINED ACTIONS DESIGN Combined flexure and axial ................................................................................................................................................................................... Ratio :0.90 Ctrl Eq.:D2 at 18.75%Reference :Eq.H1-1a ................................................................................................................................................................................... ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Interaction of flexure and axial force --0.90 Eq.H1-1a ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- _________________________________________________ Member :10 (Top chord) Design status :OK _________________________________________________ DESIGN WARNINGS Section information __________________________________________________________________________________________________________________________ Section name: HSS_SQR 5X5X5_16 (US) Dimensions --------------------------------------------------------------------------------------------------------- a =5.000 [in]Height b =5.000 [in]Width T =0.291 [in]Thickness Properties --------------------------------------------------------------------------------------------------------- Section properties Unit Major axis Minor axis Gross area of the section. (Ag)[in2]5.260 Moment of Inertia (local axes) (I)[in4]19.000 19.000 Moment of Inertia (principal axes) (I')[in4]19.000 19.000 Bending constant for moments (principal axis) (J')[in]0.000 0.000 Radius of gyration (local axes) (r)[in]1.901 1.901 Radius of gyration (principal axes) (r')[in]1.901 1.901 Saint-Venant torsion constant. (J)[in4]31.200 Section warping constant. (Cw)[in6]0.000 Distance from centroid to shear center (principal axis) (xo,yo)[in]0.000 0.000 Page18 Page 88 of 97 Top elastic section modulus of the section (local axis) (Ssup)[in3]7.600 7.600 Bottom elastic section modulus of the section (local axis) (Sinf)[in3]7.600 7.600 Top elastic section modulus of the section (principal axis) (S'sup)[in3]7.600 7.600 Bottom elastic section modulus of the section (principal axis) (S'inf)[in3]7.600 7.600 Plastic section modulus (local axis) (Z)[in3]9.200 9.200 Plastic section modulus (principal axis) (Z')[in3]9.200 9.200 Polar radius of gyration. (ro)[in]2.687 Area for shear (Aw)[in2]2.402 2.402 Torsional constant. (C)[in3]12.808 Material : A500 GrC rectangular Properties Unit Value ------------------------------------------------------------------------------------------------------------------------------------------- Yield stress (Fy):[Kip/in2]50.00 Tensile strength (Fu):[Kip/in2]62.00 Elasticity Modulus (E):[Kip/in2]29000.00 Shear modulus for steel (G):[Kip/in2]11153.85 ------------------------------------------------------------------------------------------------------------------------------------------- DESIGN CRITERIA Description Unit Value ------------------------------------------------------------------------------------------------------------------------------------------- Length for tension slenderness ratio (L)[ft]19.35 Distance between member lateral bracing points ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Length (Lb) [ft] Top Bottom ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 19.35 19.35 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Laterally unbraced length ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Length [ft]Effective length factor Major axis(L33)Minor axis(L22)Torsional axis(Lt)Major axis(K33)Minor axis(K22)Torsional axis(Kt) ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 19.35 19.35 19.35 1.0 1.0 1.0 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Additional assumptions Continuous lateral torsional restraint No Tension field action No Continuous flexural torsional restraint No Effective length factor value type None Major axis frame type Sway Minor axis frame type Sway DESIGN CHECKS AXIAL TENSION DESIGN Axial tension Ratio :0.00 Capacity :157.49 [Kip]Reference :Cl.D2 Demand :0.00 [Kip]Ctrl Eq.:D1 at 0.00% Page19 Page 89 of 97 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored axial tension capacity(Pn/)[Kip]157.49 Cl.D2 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- AXIAL COMPRESSION DESIGN Compression in the major axis 33 Ratio :0.72 Capacity :52.98 [Kip]Reference :Cl.E3 Demand :38.06 [Kip]Ctrl Eq.:D2 at 100.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored flexural buckling strength(Pn33/)[Kip]52.98 Cl.E3 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Compression in the minor axis 22 Ratio :0.72 Capacity :52.98 [Kip]Reference :Cl.E3 Demand :38.06 [Kip]Ctrl Eq.:D2 at 100.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored flexural buckling strength(Pn22/)[Kip]52.98 Cl.E3 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- FLEXURAL DESIGN Bending about major axis, M33 Ratio :0.26 Capacity :22.95 [Kip*ft]Reference :Cl.F7.1 Demand :-6.08 [Kip*ft]Ctrl Eq.:D2 at 50.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored yielding strength(Mn/)[Kip*ft]22.95 Cl.F7.1 Factored lateral-torsional buckling strength(Mn/)[Kip*ft]22.95 Cl.F7.4 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Bending about minor axis, M22 Ratio :0.00 Capacity :22.95 [Kip*ft]Reference :Cl.F7.1 Demand :0.00 [Kip*ft]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Section classification Factored yielding strength about a geometric axis(Mn/)[Kip*ft]22.95 Cl.F7.1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Page20 Page 90 of 97 DESIGN FOR SHEAR Shear in major axis 33 Ratio :0.00 Capacity :43.15 [Kip]Reference :Cl.G1 Demand :0.00 [Kip]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored shear capacity(Vn/)[Kip]43.15 Cl.G1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Shear in minor axis 22 Ratio :0.09 Capacity :43.15 [Kip]Reference :Cl.G1 Demand :3.91 [Kip]Ctrl Eq.:D2 at 50.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored shear capacity(Vn/)[Kip]43.15 Cl.G1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- TORSION DESIGN Torsion Ratio :0.00 Capacity :19.17 [Kip*ft]Reference :Cl.H3.1 Demand :0.00 [Kip*ft]Ctrl Eq.:D1 at 0.00% ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Factored torsion capacity(Tn/)[Kip*ft]19.17 Cl.H3.1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- COMBINED ACTIONS DESIGN Combined flexure and axial ................................................................................................................................................................................... Ratio :0.92 Ctrl Eq.:D2 at 50.00%Reference :Eq.H1-1a ................................................................................................................................................................................... ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Intermediate results Unit Value Reference ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Interaction of flexure and axial force --0.92 Eq.H1-1a ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Page21 Page 91 of 97 Steel Column Design - Combined loading - Square HSS Sections AISC 360-16 Specification for Structural Steel Building and Steel Construction Manual, 15th Edition (Load calculation for ASD and LRFD are pre-design) Member: CL-1 Case 1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Loading criteria:Design methodology: Effective unbraced length (x): Lx 12.75ft:= Effective length factor (x): kx 1.2:=Ωc 1.67:=Ωb 1.67:= Effective unbraced length (y): Ly 12.75ft:=Φc 0.90:=Φb 0.90:= Effective length factor (y): ky 1.2:=Column Material: Service loads:Steel Grade: Axial load: P 2.8kip:=Fy 50 ksi=Fu 62 ksi=E 29000ksi= Moment in major axis (x):Mx 0.6kip Lx7.65 kip ft=:= Shape: Moment in minor axis (y):My 0kip ft:= Section geometry Compression Design (AISC 360-16 Chapter E): ASD/LRFD capacity: Pcapacity 40.6 kip=P Pcapacity 0.07= CompressionCheck "P < Pn (ASD), Compression OK" "ASD Compression ratio = 0.07" = Flexure Design (AISC 360-16, Chapter F): ASD/LRFD capacity: Mx.capacity 14 kip ft=Mx Mx.capacity 0.55= X_FlexureCheck "Mx < Mn.x (ASD), Flexure OK" "ASD X-axis Flexure ratio = 0.55" = My.capacity 14 kip ft=My My.capacity 0=ASD/LRFD capacity: Y_FlexureCheck "Y-axis Flexure N.A."= Combined Forces Design (AISC 360-16, Chapter H): CF_Check1 "Combine Forces OK" "AISC 360-16 Eq. H1-1b Controls" "Combine Forces ratio = 0.56" = Page 92 of 97 Steel Column Design - Combined loading - Square HSS Sections AISC 360-16 Specification for Structural Steel Building and Steel Construction Manual, 15th Edition (Load calculation for ASD and LRFD are pre-design) Member: CL-1 Case 2 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Loading criteria:Design methodology: Effective unbraced length (x): Lx 12.75ft:= Effective length factor (x): kx 1.2:=Ωc 1.67:=Ωb 1.67:= Effective unbraced length (y): Ly 12.75ft:=Φc 0.90:=Φb 0.90:= Effective length factor (y): ky 1.2:=Column Material: Service loads:Steel Grade: Axial load: P 13.8kip:=Fy 50 ksi=Fu 62 ksi=E 29000ksi= Moment in major axis (x):Mx P 0.02Lx3.52 kip ft=:= Shape: Moment in minor axis (y):My 0kip ft:= Section geometry Compression Design (AISC 360-16 Chapter E): ASD/LRFD capacity: Pcapacity 40.6 kip=P Pcapacity 0.34= CompressionCheck "P < Pn (ASD), Compression OK" "ASD Compression ratio = 0.34" = Flexure Design (AISC 360-16, Chapter F): ASD/LRFD capacity: Mx.capacity 14 kip ft=Mx Mx.capacity 0.25= X_FlexureCheck "Mx < Mn.x (ASD), Flexure OK" "ASD X-axis Flexure ratio = 0.25" = My.capacity 14 kip ft=My My.capacity 0=ASD/LRFD capacity: Y_FlexureCheck "Y-axis Flexure N.A."= Combined Forces Design (AISC 360-16, Chapter H): CF_Check1 "Combine Forces OK" "AISC 360-16 Eq. H1-1a Controls" "Combine Forces ratio = 0.56" = Page 93 of 97 Spread Footing Design With Base Moment: 4'-6" x 4'-6" x 12" footing Soil bearing pressure:qa 1500 psf:= Unfactored Column Dead Load:Pd 2.8 k:= Unfactored Column Total Load:P 13.8 k:= Factored Column Load (Re: UBC 1612.2.1 & 1909.2):Pu 1.2 2.81.4 12.+() k:= Unfactored Base Moment M 0.6 k12.67ft:= Factored Base Moment (Re: UBC 1612.2.1 & 1909.2):Mu 0.6 k12.67ft0.7:= Pedistal Width:c 12 in:= Pedistal Length:b 12 in:= Pedistal Height:Ph 12 in:= Estimated Ftg Depth:h 12 in:= Estimated Ftg Width:B 3.75 ft:= Estimated Ftg Length (direction of moment):L 3.75 ft:= Concrete Weight:wc 150 pcf:= Soil Height Above Footing:s Ph:= Soil Weight:ws 110 pcf:= Compressive Strength of Concrete:fc 3000 psi:= Yeild Stress of Reinforcing Steel:fy 60 ksi:= Workmanship Factor:θ 0.85:= Flexure Factor:θ1 0.90:= Page 94 of 97 Check Stbility Resisting Moment: Rm Pd L 2c bPhwcL 2+h BL2 2wc+s B3 8L2 ws+:=Rm 11.7k ft= Over Turning Moment: M 7.6k ft=Om M:= Saftey Factor: FS Rm Om:=FS 1.53=> 1.5 OK Ultimate Bearing Pressure: qu Pu P qa:=qu 2191.3psf= Proportion Footing For Non-uniform Pressure Distribution: Load eccentricity e Mu c bPhwcL 2h BL2 2wc+s L Bc b-( )L 2ws+ - Pu h BLwc+:= e 0.176ft=(where e < Length/6 to be in middle third) Estimate Footing Width and Length:where: 1) qu max less than qu 2) e less than L/6 Try:B Pu qu:= Width B 3.033ft= Length L 1 in:=(Guess to start) Given qu Pu B L1 6 e L+ = L Find L( ):=L 3.864ft= Use Footing Size:B 3.75 ft:=L 3.75 ft:= Calculate Footing Pressure Distribution: Max pressure qumax Pu B L1 6 e L+ :=qumax 1838.3psf=<qu 2191.304psf= Min pressure qumin Pu B L1 6 e L- :=qumin 1028.9psf=> 0 psf (OK e < L/3) e 0.176ft=<L 3 1.25ft=Check e < L/3: Page 95 of 97 Check Punching Shear average qu: quavg qumax qumin+ 2:= β c b:= Vc 4 θfc psi:= Vc if β 2.0Vc, 2 4 β+ θfc psi, psi:=Vc 186.2psi= d 1 in:=(Guess to start) Given L Bb c-( ) quavg 4d2 Vc quavg 4+ d Vc quavg 2+ c+= dp Find d( ):=dp 1.78in= Check Wide Beam Shear: Vc 2 θfc psipsi:=Vc 93.1psi= d 1 in:=Input trial Guess Vc1 quavg qumax qumin- 2 L L 2 c 2+d+ + L 2 c 2-d- d:= Verify: Vc1 182.871psi=<Vc 93.113psi=(Change d as needed) Required Footing Depth: d if d dpdp, d, ():=d 1.78in= Use footing thickness of:h 12 in:= Depth to reinforcing:d 9 in:= Required Steel Reinforcing In The Long Direction :(Direction of moment) (Pressure adjacent to column face) qf qumin qumax qumin- L L 2 c 2+ +:=qf 1541.5psf= Page 96 of 97 Required Moment/foot strip: Mu qf 2 L 2 c 2- 2 ftqumax qf-( ) L 2 c 2- 2 ft 3+:= Mu 1644.3ft lb= b 12 in:=(Use 12" wide strip) As 1 in 2:=(Guess to start) Given Mu θ1 Asfyd As fy 1.7 fcb- =As Find As( ):=As 0.041in 2= Check reinforcement ratio: ρ As b d:=ρ 0.00038= ρmin .0018:=(Spread footings and slabs/ 60 Grade - ACI 7.12.2) Factor b1:β1 if fc 4000 psi.85, .85 0.05 fc 4000 psi- 1000 psi- , := β1 if β1 .65β1, 0.65, ():=β1 0.85= Balanced Steel Ratio: ρb .85 β1fc fy 87000 psi 87000 psify+:=ρb 0.021= ρmax .75 ρb:=ρmax 0.01604= Verify rmin < r < rmax ρ if ρ ρmin1.33 ρ, ρ, ():=ρ 0.0005= ρ if ρ ρmaxρ, 1000, ():=ρ 0.0005= Area of steel in long direction/foot: As ρ bh:=As 0.072in 2= Footing Size: Depth:h 12in= Depth to steel:d 9in= Width:B 3.75ft= Length:L 3.75ft= Use:(4) #5 spaced @ 9" o.c. Ea. Way top and bottom of footing Page 97 of 97