HomeMy WebLinkAboutSTRUCTURAL CALCS - 21-00586 - Just4Kids Pediatric Urgent CareSTRUCTURAL CALCULATIONS
for
SALEM HIGHWAY U.S. 20
ARTCO BUSINESS PARK – BLOCK 1, LOT 2
REXBURG, ID 83440
Project No. 2100882
SUBMITTAL DATE: July 27, 2021
12 Sunnen Drive, Suite 100
St. Louis, MO 63143
7/27/21
3.0 (psf)
2.0 (psf)
2.5 (psf)
2.5 (psf)
5.0 (psf)
TOTAL 15.0 (psf)
R1 =1
R1 =
R1 =0.6
R2 =1
R2 =1.2 - 0.05F For 4 < F < 12
R2 =0.6 For F ≥ 12
100 year - 1 hour rainfall = 1.50 in/hour (Figure 1611.1)
100 year - 15 minute rainfall = 0.00 in/hour (From NOAA precipitaion chart)
Static head, ds =1.00 in
Hydraulic head of overflow, dh =2.00 in
Depth of water at drain, ds + dh =3.00 in
Rain Load, R = 5.2(ds + dh) =15.6 psf (Equation 16-36)
Flat-Roof Snow Load:
50.0 (psf) (Figure 1608.2)
pf, min =20.0 (psf) (Section 7.3.4)
f 2 =0.7 Roof configuration does not shed snow off of the structure
1.0 (Table 7-2)
1.00 (Table 7-3)
II (Table 1604.5 or 1.5-1)
1.0 (Table 7-4 or 1.5-2)
pf = 0.7CeCtIspg =35.0 (psf)
Includes Rain-On-Snow Surcharge of 0 (psf) (Section 7.10)
Thermal Factor, Ct =
Risk Category
Importance Factor, Is =
(NOTE: Consider drift loads per Section 7.7 & 7.8 as required)
(NOTE: Evaluate susceptible bays for ponding instability in accordance with ASCE 7-10, Secton 8.4)
(NOTE: Evaluate susceptible bays for ponding instability in accordance with ASCE 7-10, Secton 8.4)
ROOF UNIFORM SNOW LOADS (PER ASCE 7-16, Secton 7)
Ground Snow Load, pg =
Exposure Factor, Ce =
Project: J4K - Rexburg, ID
Project Number: 2100882
Designer: rdm
Date: 7/12/21
Page: 1 of 6
GlueLam Girders
GRAVITY LOADS
ROOF DEAD LOADS
Roof Membrane & Insulation
19/32 plywood sheathing
L 0 = 20 psf (Table 4-1, Ordinary flat, pitched roof)
L r = L 0 R 1 R 2 = 20R 1 R 2
Mech/Plumb/Elec/Ceiling/Collateral
For At ≤ 200 ft2
(NOTE: Where uniform roof live loads are reduced to less than 20 psf for structural members arranged so as to
create continuity, the reduced live load shall be applied to adjacent spans or to alternate spans, whichever
creates the greatest unfavorable effect)
RAIN LOADS (Per 2018 IBC, Section 1611 and ASCE 7-16, Chapter 8)
BUILDING LOAD SUMMARY (2018 IBC)
For At ≥ 600 ft2
For F ≤ 4
1.2 - 0.001At
14" TJI wood joist
ROOF LIVE LOADS (Minimum Per ASCE 7-16, Section 4.8)
For 200 ft2 < At < 600 ft2
Limitations (Secton 28.5.2) - Building is:
A simple diaphragm, low-rise, enclosed, regular shaped building
Not classified as flexible or having response characteristics making it subject to across wind loading
An approximately symmetrical cross section with either a flat or gable roof with ≤ 45o
Exempt from torsional load cases of Note 5 of Figure 28.3-1
II (Table 1.5-1)
115 mph (Figure 26.5-1B)
89 mph (2018 IBC Table 1609.3.1)
Exposure Category: C (Section 26.7.3)
Topographic Factor, Kzt =1.00 (Section 26.8)
46.0 ft
15.0 ft
9.20 ft (Figure 28.5-1)
Height And Exposure Adjustment Factor, =1.21 (Figure 28.5-1)
Interior Zone (C) 13.9 16.8
End Zone (A) (2)21.0 25.4
Maximum Windward Roof Pressures
Interior Zone (G) -17.5 -21.2
End Zone (E) (2)-25.2 -30.5
Maximum Leeward Roof Pressures
Interior Zone (H) -11.1 -13.4
End Zone (F) (2)-14.3 -17.3
Overhang
Windward (EOH) (2)-35.3 -42.7
Leeward (FOH) (2)-27.6 -33.4
Page: 2 of 6
(3) End zone applies for width of end zone, 2a (figure 28.5-1)
Ultimate Design Wind Speed, V ult =
(1) All wind pressures shown are ultimate
Project: J4K - Rexburg, ID
Project Number: 2100882
PART 2: ENCLOSED SIMPLE DIAPHRAGM LOW-RISE BUILDINGS
Nominal Design Wind Speed, V asd =
Date: 7/12/21
Risk Category:
Designer: rdm
ASCE 7-16 - CHAPTER 28 - ENVELOPE PROCEDURE
DESCRIPTION
LATERAL LOADS: MWFRS ULTIMATE WIND PRESSURES
Width Of End Zone, 2a =
Eave Height =
NOTE: Values shown from Figure 28.6-1 for ≤ 5o
Least Horizontal Dimension Of Building =
MWFRS ULTIMATE DESIGN WIND PRESSURES, p s
VERTICALp s = l K zt p s30 (Equation 28.6-1)
BUILDING LOAD SUMMARY (2018 IBC)Base, ps30Project Specific, psHORIZONTAL(1)(2) The load effect shall not be less than a minimum load by assuming the pressures
for Zones A & C equal to +16 psf, zones B & D equal to +8 psf, while assuming ps for
Zones E, F, G and H are equal to 0. (Section 28.5.4)
ULTIMATE DESIGN
PRESSURE (psf)
Wind Directionality Factor, Kd =0.85 Table 26.6-1
GCpm =1.5 -1.0
Parapet Height (above grade), z = 20.7 0.0 0.0 0.0 ft
Kh =0.90536 #N/A #N/A #N/A Table 26.10-1
qp = 0.00256KhKztKdV2 =26.1 #N/A #N/A #N/A psf (Equation 26.10-1)
Parapet pressure, pp =39.1 #N/A #N/A #N/A Windward (psf)
-26.1 #N/A #N/A #N/A Leeward (psf)
(1) All wind pressures shown are ultimate
Porosity of parapet = Solid Porous
Internal pressure coefficient, Gcpi =0 0.18
Parapet Height (above grade), z =20.7 0.0 0.0 0.0 ft
Kh =0.90536 #N/A #N/A #N/A Table 26.10-1
qZ = 0.00256KhKztKdV2 =26.1 #N/A #N/A #N/A psf (Equation 26.10-1)
Solid Parapet Internal, pi = ±0.0 #N/A #N/A #N/A psf
Porous Parapet Internal, pi = ±4.7 #N/A #N/A #N/A psf
(1) All wind pressures shown are ultimate
See Figure 30.8-1 for application of parapet wind loads
WINDWARD PARAPET - CASE A
Apply positive wall pressure from Zones 4 or 5 to windward face
Apply negative roof pressure from Zones 2 or 3 as negative horizontal pressure to leeward face
Apply internal pressure to each face as appropriate
LEEWARD PARAPET - CASE B
Apply positive wall pressure from Zones 4 or 5 to windward face
Apply negative wall pressure from Zones 4 or 5 as negative pressure to leeward face
Apply internal pressure to each face as appropriate
LATERAL LOADS: COMPONENTS AND CLADDING ULTIMATE WIND PRESSURES
ASCE 7-16 - CHAPTER 30: PART 6: 30.8 PARAPETS
Page: 3 of 6
BUILDING LOAD SUMMARY (2018 IBC)
For low-rise buildings desinged using the Envelope Procedure use Section 28.3.2 for Parapets
Project: J4K - Rexburg, ID
LATERAL LOADS: MWFRS ULTIMATE WIND PRESSURES
ASCE 7-16 - CHAPTER 29: OTHER STRUCTURES AND BUILDING APPURTENANCES - 29.6 PARAPETS
Project Number: 2100882
Designer: rdm
Date: 7/12/21
Limitations (Secton 30.4.1) - Building is:
A regular shaped building with mean roof height ≤ 60 feet
Enclosed and conforms to the wind-borne debris provisions of Secion 26.12.3
Not subject to response characteristics making it subject to across wind loading
Either a flat roof, a gable roof with ≤ 45o or a hip roof with ≤ 27o
Width Of End Zone, a = 4.60 ft (Figure 30.3-1)WindwardLeewardWindwardLeeward1 10 9.7 -37.9 16.0 -45.9
1 20 9.1 -35.4 16.0 -42.8
1 50 8.3 -32.1 16.0 -38.8
1 100 7.7 -29.6 16.0 -35.8
2 10 9.7 -50.0 16.0 -60.5
2 20 9.1 -46.8 16.0 -56.6
2 50 8.3 -42.5 16.0 -51.4
2 100 7.7 -39.3 16.0 -47.6
3 10 9.7 -68.1 16.0 -82.4
3 20 9.1 -61.7 16.0 -74.7
3 50 8.3 -53.2 16.0 -64.4
3 100 7.7 -46.8 16.0 -56.6
2 10 -34.3 -41.5
2 20 -33.7 -40.8
2 50 -32.9 -39.8
2 100 -32.3 -39.1
3 10 -56.5 -68.4
3 20 -44.3 -53.6
3 50 -28.3 -34.2
3 100 -16.1 -19.5
4 10 23.8 -25.8 28.8 -31.2
4 20 22.7 -24.7 27.5 -29.9
4 50 21.3 -23.3 25.8 -28.2
4 100 20.2 -22.2 24.4 -26.9
5 10 23.8 -31.9 28.8 -38.6
5 20 22.7 -29.7 27.5 -35.9
5 50 21.3 -26.9 25.8 -32.5
5 100 20.2 -24.7 24.4 -29.9
Eff. Wind
Area (sqft)
ASCE 7-16 - CHAPTER 30: PART 2: LOW-RISE BUILDINGS (SIMPLIFIED)
p net = l K zt p s30 (Equation 30.4-1)
BUILDING LOAD SUMMARY (2018 IBC)RoofsProject Number: 2100882
Project: J4K - Rexburg, ID
Page: 4 of 6
Designer: rdm
Corner Zone (3)(2) End zone applies for width of edge strip, a
(3) Corner zone size = a x a
(1) All wind pressures shown are ultimateWallsEnd Zone (2)End Zone (2)Corner Zone (3)COMPONENTS AND CLADDING ULTIMATE DESIGN WIND PRESSURES, p net
Interior ZoneZone
Project Specific,
pnet
End Zone (2)Roof OverhangsBase, ps30
LATERAL LOADS: COMPONENTS AND CLADDING ULTIMATE WIND PRESSURES
Date: 7/12/21
Interior Zone NOTE: Values shown from Figure 30.4-1 for ≤ 7o
0.366 (Figure 22-1)
0.142 (Figure 22-2)
Long period transition period, TL (sec) =12 (Figures 22-14)
D (Table 20.3-1)
I (Table 1.5-1)
1.0 (Table 1.5-2)
Fa =1.507 (Table 11.4-1)SMS = Fa x Ss =0.552 (Equation 11.4-1)
Fv =2.316 (Table 11.4-2)SM1 = Fv x S1 =0.329 (Equation 11.4-2)
Design Spectral Response Acceleration Parameters:
SDS = 2/3 SMS =0.368 (Equation 11.4-3)
SD1 = 2/3 SM1 =0.219 (Equation 11.4-4)
Seismic Design Category:D (Table 11.6-1 & 11.6-2)
Bearing Wall System?Yes
5.00 (Table 12.2-1)
2.50 (Table 12.2-1)
3.50 (Table 12.2-1)
Seismic Base Shear: V=Cs*W (Equation 12.8-1)Csmin =0.016 (Equations 12.8-5 & 12.8-6)
T = 0.02hn
0.75 =0.152 Csmax =0.288 (Equations 12.8-3 & 12.8-4)
SDS/(R/Ie) =0.074 (Equation 12.8-2)
Cs =0.074
Roof Area = 4,784 (ft2)
Snow Load = 33 (kips)
0.2 pf if ground snow > 30 psf
*Total Roof Weight = 105 (kips)
Length1=104.0 (ft)
Height1=19.7 (ft)
Weight 1=70.0 (psf)
Length2=46.0 (ft)
Height2=19.7 (ft)
Weight 2=70.0 (psf)
Length3=104.0 (ft)
Height3=19.7 (ft)
Weight 3=70.0 (psf)
Length4=46.0 (ft)Height4=19.7 (ft)Weight 4=70.0 (psf)
Total Exterior Wall Weight = 413.1 (kips)
Seismic Base Shear, V = 38.1 (kips) (Ultimate)
Seismic Base Shear, V = 26.7 (kips) (ASD)
Soil Site Class:
Page: 5 of 6
1.0 Sec. Spectral Response Acceleration, S1 =
Seismic Importance Factor, Ie =
Adjusted Spectral Response Acceleration Parameters:
Project: J4K - Rexburg, ID
(See Section 14.4 for detailing requirements)
Risk Category:
Project Number: 2100882
Exterior Walls:
Basic Seismic-Force-Resisting System:
Building Weights:
Designer: rdm
Date: 7/12/21
BUILDING LOAD SUMMARY (2018 IBC)
SEISMIC DESIGN DATA:
LATERAL LOADS: SEISMIC LOADS (ASCE 7-16, CHAPTER 12)
0.2 Sec. Spectral Response Acceleration, Ss =
Special Reinforced Masonry Shear Walls
System Overstrength Factor, Ωo =
Response Modification Factor, R =
Deflection Amplification Factor, Cd =
SEISMIC DESIGN LATERAL FORCE (Eq. Lateral Force Procedure, ASCE 7-16 Section 12.8):
Roof:
Roof Diaphragm (ASCE 7-16 Section 12.10.1):
0.074 Wp 0.147 Wp
Cs =0.074 Fp =0.074 x (Weight of Diaphragm and Attached Components)
Design of Structural Walls (ASCE 7-16 Section 12.11.1)
Fp = 0.4*Ie*Sds*w ≥ 0.1*w =0.147 x (Weight of Wall)
Anchorage of Structural Walls to Flexible Diaphragms (ASCE 7-16 (Section 12.11.2)
Dipahragm Span, Lf =104.0 ft
ka = 1.0 + Lf/100 ≤ 2.0 =2.0
Fp(min) = 0.2kaIewp =0.400
0.4SDSkaIewp =0.294
Fp =0.400 x (Weight of Wall Tributary to Support)
(NOTE: See Section 13.1.4 for exemptions)
Elements attached at roof level:
0.11033
0.59
2.5 1.0 1.0 1.0 1.0
2.5 2.5 2.5 1.5 2.5
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
0.44 0.18 0.18 0.29 0.18
Fp =0.44 0.18 0.18 0.29 0.18
(0.4*a p *S DS *W p )(1+2*z/h )/(R p /I p ) =
Ratio of point of attachment to roof height, z/h =
Component Importance Factor, Ip =
Component Response Modification Factor, Rp =
Fp(min) = 0.3*S ds *I p *W p =
Fp(max) = 1.6*S ds *I p *W p =
Unrein. Int.
Masonry
Other Int.
Partitions
Component Amplification Factor, ap =
Braced
Parapet
Page: 6 of 6
Date: 7/12/21
NONSTRUCTURAL COMPONENT LOAD EFFECTS (ASCE 7-16, Section 13.3):
Ext. Wall
Element
Unbraced
Parapet
Project: J4K - Rexburg, ID
Fp max = 0.4*IE*SDS*wp =Fp min = 0.2*Ie*SDS*wp =
STRUCTURAL COMPONENT LOAD EFFECTS (ASCE 7-16 Section 12.10)
NOTE: See Section 12.11.2.2 for additional requirements for SDC C thru F
LATERAL LOADS: SEISMIC LOADS (CONTINUED)
Project Number: 2100882
Designer: rdm
BUILDING LOAD SUMMARY (2018 IBC)
FLAT ROOF AND DRIFTING SNOW LOADS PER ASCE 7-16
Ground snow load, pg (psf)50 Risk Category (Table 1.5-1) I II III IV
Exposure Factor, Ce 1.0 (See Table 7.3.1)Snow Importance Factor, Is 0.80 1.00 1.10 1.20
Thermal Factor, Ct 1.0 (See Table 7.3.2)
Risk Category II Snow Density, pcf 20.50
Importance Factor, Is 1.00 Height of balanced snow, hb (ft)1.71 (For drift conditions)
Minimum low-slope roof snow load, pm (psf)20.0
Rain on Snow Surcharge (psf) 0.0
Low-slope Roof Snow Load, pf (psf)35.0
Flat Roof Snow Load, pf (psf)35.0 (To be combined with drift loads)
Leeward Drift Cases
Height to Upper Roof, h (ft)
Length of Upper Roof (ft)
Clear height, hc (ft)
hc/hb
Max Height of Drift, hdmax (ft)
Height of Drift (ft)
Width of drift (ft)
Max intensity of drift, pd (psf)
Windward Drift Cases
Typical
Parapet
Along N/S
Typical
Parapet
Along E/W
Tower
Along
N/S
Tower
Along
E/W
Vestibule
Height of Obstruction, h (ft) 3.5 3.5 5.6 5.6 8.7
Length of Upwind Roof (ft) 45 100 45 100 10
Clear height, hc (ft)1.79 1.79 3.88 3.88 6.96
hc/hb 1.05 1.05 2.27 2.27 4.08
Max Height of Drift, hdmax (ft)2.06 3.03 2.06 3.03 1.31
Height of Drift (ft) 1.79 1.79 2.06 3.03 1.31
Width of drift (ft)7.17 7.17 8.25 12.14 5.24
Max intensity of drift, pd (psf)36.75 36.75 42.30 62.21 26.83
(Need not be combined with drift, sliding, unbalanced or partial loads)
(Need not be combined with drift, sliding, unbalanced or partial loads)
(Need not be combined with drift, sliding, unbalanced or partial loads)
Project: J4K - Rexburg, ID
Project Number: 2100882
Designer: rdm
Date: 7/12/21
Client:Just4Kids
Project:Rexburg, ID
Proj #2100882 By: rdm
Date:7/12/21
MWFRS (Enclosed Buildings) -
(Envelope Procedure) -ASCE 7-16 Chapter 28
1. Design Wind Pressures:
Ultimate Wind Speed (mph):≔V 115 mph
Importance Factor:≔I 1.0
Exposure Category:C
End Zone Pressure (Ultimate):≔qe 25.4 ――lb
ft 2
Interior Zone Pressure
(Ultimate):
≔qi 16.8 ――lb
ft 2
Combined Net Parapet Pressure (Ultimate):≔qpww 39.1 ――lb
ft 2 ≔qplw -26.1 ――lb
ft 2
≔qp =+qpww abs ⎛⎝qplw⎞⎠65.2 ――lb
ft 2
Building length:≔L 104 ft Least Building width:≔B 46 ft
Building eave height:≔hw 15 ft Parapet height =>(average)≔hp 5.67 ft
Vestibule eave height:≔hv 12 ft
≔a1 =⋅0.1 B 4.6 ft ≔a2 =⋅0.4 hw 6 ft ASCE 7-16, Figure 28.5-1, Notation "a"
≔a3 =⋅0.04 B 1.84 ft ≔a3 3 ft
Page 1 of 10
Client:Just4Kids
Project:Rexburg, ID
Proj #2100882 By: rdm
Date:7/12/21
2. Wind -Roof Diaphragm Analysis (east/west direction):
a. Diaphragm Load:
Diaphragm load interior zone:≔WDi =⋅qi
⎛
⎜⎝―hw
2
⎞
⎟⎠126 ―lb
ft
Diaphragm load end zone:≔PDe =⋅⋅⎛⎝-qe qi⎞⎠
⎛
⎜⎝―hw
2
⎞
⎟⎠
⎛⎝⋅2 a1⎞⎠593.4 lb
Diaphragm load parapet:≔Wp =⋅qp hp 369.68 ―lb
ft
Diaphragm load vestibule:≔Wvest =⋅qe ―hv
2 152.4 ―lb
ft
≔Rew =++⎛
⎜⎝―――――
⎛⎝⋅⎛⎝+WDi Wp⎞⎠L⎞⎠
2
⎞
⎟⎠PDe ⎛⎝⋅Wvest 10 ft⎞⎠27892.97 lb
Diaphragm shear forces:≔vew =⎛
⎜⎝⋅――Rew
B 0.6⎞
⎟⎠364 ―lb
ft
Allowable diaphragm
shear:
≔vallowable =―――――
⋅⎛
⎜⎝800 ―lb
ft
⎞
⎟⎠0.92
2 368 ―lb
ft 2015 NDS, SDPWS,Table
4.2A & subnote 1 & 3
=if ⎛⎝,,<vew vallowable “OK”“NG”⎞⎠“OK”
19/32" APA rated plywood sheathing, Exposure 1, span rating 32/16. Nailed with
minimum 10d nails @ 6" o.c. at all panel edges and 12" o.c. field area (unblocked).
Equivalent uniform load:≔Weqew =⋅―――
⎛⎝⋅2 Rew⎞⎠
L 0.6 321.84 ―lb
ft
Diaphragm moment:≔Mew =――――
⎛⎝⋅Weqew L 2 ⎞⎠
8 435130 ⋅lb ft
Diaphragm chord Tension force:≔Tew =――Mew
B 9459 lb
Diaphragm chord Compression force:≔Cew =Tew 9459 lb
Page 2 of 10
Client:Just4Kids
Project:Rexburg, ID
Proj #2100882 By: rdm
Date:7/12/21≔Cew =Tew 9459 lb
Diaphragm Chord :8" CMU Bond Beam Chord with #5 Bar continuous.
≔Ft 32000 ――lb
in 2 #5 bar =>≔Abar 0.31 in 2 ≔As =――Tew
Ft
0.3 in 2
=if ⎛⎝,,<As Abar “OK”“NG”⎞⎠“OK”
Shear Wall Analysis (east/west direction):
See attached sheet for shear wall anaysis for CMU walls
3. Wind -Roof Diaphragm Analysis (north/south direction):
a. Diaphragm Load:
Diaphragm load interior zone:≔WDi =⋅qi
⎛
⎜⎝+―hw
2 hp
⎞
⎟⎠221 ―lb
ft
Diaphragm load end zone:≔PDe =⋅⋅⎛⎝-qe qi⎞⎠
⎛
⎜⎝―hw
2
⎞
⎟⎠
⎛⎝⋅2 a1⎞⎠593.4 lb
Diaphragm load parapet:≔Wp =⋅⎛⎝-qp qi⎞⎠⎛⎝hp⎞⎠274.43 ―lb
ft
Diaphragm load vestibule:≔Wvest =⋅qe ―hv
2 152.4 ―lb
ft
≔Rew =++⎛
⎜⎝―――――⋅⎛⎝+WDi Wp⎞⎠B
2
⎞
⎟⎠PDe ⎛⎝⋅Wvest 10 ft⎞⎠13518 lb
Diaphragm shear forces:≔vLew =⋅――Rew
L 0.6 78 ―lb
ft
Allowable diaphragm
shear:
2015 NDS, SDPWS,Table
4.2A & subnote 1 & 3≔vallowable =―――――
⋅⎛
⎜⎝800 ―lb
ft
⎞
⎟⎠0.92
2 368 ―lb
ft
See north/south direction analysis for plywood deck information
Equivalent uniform load:≔Weqew =⋅―――
⎛⎝⋅2 Rew⎞⎠
L 0.6 155.98 ―lb
ft
Diaphragm moment:≔Mew =――――
⎛⎝⋅Weqew L 2 ⎞⎠
8 210883 ⋅lb ft
Diaphragm chord tension force:≔Tew =――Mew
B 4584 lb
≔Cew =Tew 4584 lbDiaphragm chord Compression force:Page 3 of 10
Client:Just4Kids
Project:Rexburg, ID
Proj #2100882 By: rdm
Date:7/12/21≔Tew =――Mew
B 4584 lb
Diaphragm chord Compression force:≔Cew =Tew 4584 lb
Diaphragm Chord :8" CMU Bond Beam Chord with #5 Bar continuous.
≔Ft 32000 ――lb
in 2 #5 bar =>≔Abar 0.31 in 2 ≔As =――Tew
Ft
0.14 in 2
=if ⎛⎝,,<As Abar “OK”“NG”⎞⎠“OK”
Shear Wall Analysis (east/west direction):
See attached sheet for shear wall anaysis for CMU walls
Page 4 of 10
Client:Just4Kids
Project:Rexburg, ID
Proj #2100882 By: rdm
Date:7/12/21
SEISMIC FORCE RESISTIVE SYSTEM (SFRS)
SEISMIC DESIGN CATAGORY (SDC) = D
ASCE 7-16, Chapter 12
4. Lateral force (East/West):≔Cs 0.074 ≔SDS 0.368 ≔Ie 1
Total roof weight:≔Droof 105000 lb ≔VASD 26700 lb
Total wall weight:≔Dwall 191756 lb
Lateral force at roof diaphragm:≔Fx =⎛⎝Cs VASD⎞⎠1975.8 lb ASCE 7-16 Eq. 12.8-11
Lateral force at roof diaphragm (min.):≔Fxmin =⋅⋅⋅0.2 SDS Ie ⎛⎝+Droof Dwall⎞⎠21841 lb
ASCE 7-16 Eq. 12.10-2
Lateral force at roof diaphragm (max.):≔Fxmax =⋅⋅⋅0.4 SDS Ie ⎛⎝+Droof Dwall⎞⎠43682 lb
ASCE 7-16 Eq. 12.10-3
≔A =if ⎛⎝,,<Fxmin Fx Fx Fxmin⎞⎠21841 lb
≔Bew =B 46 ft
≔B =if ⎛⎝,,>Fx Fxmin Fxmin Fx⎞⎠1976 lb
≔Few
A
B
⎡
⎢⎣
⎤
⎥⎦=max ⎛⎝Few⎞⎠21841 lb
Lateral force at roof diaphragm from vestibule:≔Fvestibule 1000 lb
Diaphragm reaction:≔Rewseismic =+―――max ⎛⎝Few⎞⎠
2 Fvestibule 11921 lb
Diaphragm shear east/west
direction:
≔νewseismic =⋅―――Rewseismic
Bew
0.7 181 ―lb
ft
MWFRS diaphragm load in the north/south direction controls. See MWFRS diaphragm
analysis above for roof deck requirements.
Equivalent uniform load:≔Wewqsesimic =⋅―――max ⎛⎝Few⎞⎠
Bew
0.7 332 ―lb
ft
Diaphragm moment:≔Mewseismic =――――――
⎛⎝⋅Wewqsesimic ⎛⎝L⎞⎠2 ⎞⎠
8 449360 ⋅lb ft
Diaphragm chord force:≔Tewseismic =―――Mewseismic
Bew
9769 lb
Page 5 of 10
Client:Just4Kids
Project:Rexburg, ID
Proj #2100882 By: rdm
Date:7/12/21≔Tewseismic =―――Mewseismic
Bew
9769 lb
Diaphragm Chord :8" CMU Bond Beam Chord with #5 Bar continuous.
≔Ft 32000 ――lb
in 2 #5 bar =>≔Abar 0.31 in 2 ≔As =―――Tewseismic
Ft
0.305 in 2
=if ⎛⎝,,≤As Abar “OK”“NG”⎞⎠“OK”
5. Lateral force (North/south):≔Cs 0.074 ≔SDS 0.368 ≔Ie 1
Total roof weight:≔D'roof 105000 lb ≔Vbase 26700 lb
Total wall weight:≔D'wall 84815 lb
Lateral force at roof diaphragm:≔Fx =⎛⎝Cs Vbase⎞⎠1975.8 lb ASCE 7-16 Eq. 12.8-11
Lateral force at roof diaphragm (min.):≔Fxmin =⋅⋅⋅0.2 SDS Ie ⎛⎝+D'roof D'wall⎞⎠13970 lb
ASCE 7-16 Eq. 12.10-2
Lateral force at roof diaphragm (max.):≔Fxmax =⋅⋅⋅0.4 SDS Ie ⎛⎝+D'roof D'wall⎞⎠27941 lb
ASCE 7-16 Eq. 12.10-3
≔A =if ⎛⎝,,<<Fxmin Fx Fxmax Fx Fxmin⎞⎠13970 lb
≔Bns 45 ft
≔B =if ⎛⎝,,>Fx Fxmax Fxmax Fx⎞⎠1976 lb
≔Fns
A
B
⎡
⎢⎣
⎤
⎥⎦=max ⎛⎝Fns⎞⎠13970 lb
Lateral force at roof diaphragm from vestibule:≔Fvestibule 1000 lb
Diaphragm reaction:≔Rnsseismic =+―――max ⎛⎝Fns⎞⎠
2 Fvestibule 7985 lb
Diaphragm shear north/
south direction:
≔νnsseismic =⋅―――Rnsseismic
L 0.7 54 ―lb
ft
MWFRS diaphragm load in the east/west direction controls. See MWFRS diaphragm
analysis above for roof deck requirements.`
≔Wnsseismic =⋅――Fx
Bns
0.7 30.7 ―lb
ft
Page 6 of 10
Client:Just4Kids
Project:Rexburg, ID
Proj #2100882 By: rdm
Date:7/12/21
Equivalent uniform load:≔Wnsseismic =⋅――Fx
Bns
0.7 30.7 ―lb
ft
Diaphragm moment:≔Mnsseismic =――――――
⎛⎝⋅Wnsseismic ⎛⎝Bns⎞⎠2 ⎞⎠
8 7780 ⋅lb ft
Diaphragm chord force:≔Tnsw =―――Mnsseismic
L 74.805 lb
MWFRS controls over seismic, See MWFRS for shear wall design.
6. Design of wood ledger to support TJI's (Gravity & Wind):
Try: 4"x6"≔b 3.5 in ≔d 5.5 in
≔A =⋅b d 19.25 in 2 ≔Sx =――⋅b d 2
6 17.65 in 3 ≔Ix =――⋅b d 3
12 48.53 in 4
Wood Properties: #2 Douglas Fir -Larch, 2" & Wider, 2015 NDS Supplement
≔Fb 900 ――lb
in 2 ≔Fv 180 ――lb
in 2 ≔Fc 1350 ――lb
in 2 ≔Fcperp 625 ――lb
in 2 ≔Ft 575 ――lb
in 2
≔E 1600000 ――lb
in 2 ≔Emin 580000 ――lb
in 2
Wood adjustment factors:
≔CD 1.15 ≔Cm 1.0 ≔Ct 1.0 ≔CF 1.0 ≔Ci 1.0
≔CL 1.0 ≔Cfu 1.0 ≔Cr 1.15
Design Uniform Loads:≔wDL ⋅15 ――lb
ft 2 ≔wSL ⋅52 ――lb
ft 2 ≔wCCuplift 33 ――lb
ft 2
≔wTL =⋅⎛⎝+wDL wSL⎞⎠11.25 ft 753.75 ―lb
ft Ledger Span =>≔L 4 ft
≔M =―――⋅wTL L 2
8 1507.5 ⎛⎝⋅lb ft⎞⎠≔fb =―M
Sx
1025 ――lb
in 2
Page 7 of 10
Client:Just4Kids
Project:Rexburg, ID
Proj #2100882 By: rdm
Date:7/12/21
≔F'b =⋅⋅⋅⋅Fb Cm Ct CD Cfu 1035 ――lb
in 2 =if ⎛⎝,,<fb F'b “OK”“NG”⎞⎠“OK”
≔R =――⋅wTL L
2 1508 lb ≔fv =―R
A 78.31 ――lb
in 2
≔F'v =⋅⋅⋅⋅Fv CD Cm Ct Ci 207 ――lb
in 2 =if ⎛⎝,,<fv F'v “OK”“NG”⎞⎠“OK”
Live Load Deflection ≔WSL =⋅⎛⎝⋅wSL 11.25 ft⎞⎠L 2340 lb
≔Δ =――――⋅⋅5 WSL ⎛⎝L⎞⎠3
⋅384 E Ix
0.043 in ≔Δallowable =――L
360 0.13 in
=if ⎛⎝,,<Δ Δallowable “OK”“NG”⎞⎠“OK”
Total Load Deflection ≔WTL =⋅wTL L 3015 lb
≔Δ =――――⋅⋅5 WTL ⎛⎝L⎞⎠3
⋅384 E Ix
0.056 in ≔Δallowable =――L
240 0.2 in
=if ⎛⎝,,<Δ Δallowable “OK”“NG”⎞⎠“OK”
Design anchorage to CMU wall:
Anchor spacing =>≔Sbolt 4 ft Anchors are 3/4" dia. HILTI HAS Rods
w/ HILTI HIT HY 270 adhesive, 6" min
embed≔fbolt =R 1508 lb
≔α =――6
6.75 0.89 <= Embed adjustment
≔Ftension =⋅⎛⎝3810 lb⎞⎠α 3387 lb
≔Fshear =⋅⎛⎝4090 lb⎞⎠α 3636 lb
Page 8 of 10
Client:Just4Kids
Project:Rexburg, ID
Proj #2100882 By: rdm
Date:7/12/21
Check compression perpendicular to the grain at anchor:
≔Anet =0.75 in ⎛⎝b⎞⎠2.63 in 2 ≔fcperp =――R
Anet
574 ――lb
in 2
≔F'cperp =⋅⋅⋅⋅Fb Cm Ct CD Cfu 1035 ――lb
in 2 =if ⎛⎝,,≤fcperp F'cperp “OK”“NG”⎞⎠“OK”
Wind uplift:≔wnetuplift =+-⎛⎝⋅wCCuplift 11.25 ft⎞⎠⎛⎝⋅⋅0.9 wDL 11.25 ft⎞⎠-219.38 ―lb
ft
The gravity load (DL+SL) is much greater than the wind uplift load (0.9DL+WL). By
inspection the ledger size and anchorage is adequate. The "-" sign signifies upward
force
Tie down for the TJI roof joist to ledger:
Joist spacing =>≔Sjoist 2 ft ≔Ljoist 22.5 ft
≔Fuplift =abs ⎛
⎜⎝―――――
⎛⎝⋅wnetuplift Sjoist⎞⎠
2
⎞
⎟⎠219 lb < 780 lbs allowable load for a Simpson "H8"
7. Anchorage of CMU to Diaphragm -Seismic:
Anchorage top chord of TJI to CMU wall to transfer diaphragm load (east/west direction):
≔Sjoist 2 ft ≔Hwall 19.67 ft ≔Ie 1.0 ≔ka 2 < = See attached load summary sheet
≔DLwall =⋅70 ――lb
ft 2 Sjoist 0.7 98 ―lb
ft ≔Wwallweight =⋅DLwall ――Hwall
2 964 lb
≔Fseismic1 =⋅⋅⋅0.2 ka Ie Wwallweight 386 lb < = Controls
≔Fseismic2 =⋅⋅⋅0.4 SDS Ie Wwallweight 142 lb
< 1055 lbs allowable load for a Simpson "PAI18" Purlin Anchors
Page 9 of 10
Client:Just4Kids
Project:Rexburg, ID
Proj #2100882 By: rdm
Date:7/12/21
Per ASCE 7-16, section 12.11.2.2, requires continuous ties between the
diaphragm chords in addition to the plywood sheathing. Therefore, Simpson
"PAI18" Purlin Anchors to be fastened to the top flange of each TJI roof joist
and a Simpson "LSTA18" strap ties across the joist and top of GLUELAM
beam to create a continuous connection across the roof. The TJI roof joists
will act as a tension members in the East/West Direction. All fastening of
Simpson products shall be installed on top of the wood members, not on top
of the plywood sheathing.
Anchorage top chord of TJI to CMU wall to transfer diaphragm load (north/south direction):
≔Stensionties 11.5 ft ≔Hwall 19.67 ft ≔Ie 1.0 ≔ka 2 < = See attached load summary sheet
≔DLwall =⋅⎛
⎜⎝
70 ――lb
ft 2 Stensionties
⎞
⎟⎠
0.7 563.5 ―lb
ft ≔Wwallweight =⋅DLwall ――Hwall
2 5542 lb
≔Fseismic1 =⋅⋅⋅0.2 ka Ie Wwallweight 2217 lb < = Controls
≔Fseismic2 =⋅⋅⋅0.4 SDS Ie Wwallweight 816 lb
< 3610 lbs allowable load for a Simpson "HTT4" Tension Tie, 3840 lbs allowable
load for Simpson "CMSTC16 Coil Strap w/ (40) 10d nails, 10" min lap distance.
Design anchorage to CMU wall:
Anchor spacing =>≔Sbolt 11.5 ft
≔fbolt =Fseismic1 2217 lb
≔Ftension 2840 lb ≔U =――fbolt
Ftension
0.78
Anchors: 5/8" dia. HILTI HAS Rods w/ HILTI HIT HY 270
adhesive, 5-5/8" min embed
For the North/South direction continuous tie, anchor a Simpson "HTT4"
Tension Tie to the CMU wall, at 11'-6" o.c. max., with 5/8" dia. HILTI HAS Rod
& HIT HY 270 Adhesive, 5-5/8" min. embed. Then, provide a simpson
"MSTD" Marraige Stap to overlap with the "HTT4" and a CMSTC16 coil strap.
The coil strap to extend continuously across the roof to the opposite side
CMU wall where the same attachemnt to the CMU wall will occur. Wood 4x
blocking to be installed between TJI's for the intire length of building and will
be attached to the coil strap. All fastening of Simpson products shall be
installed on top of the wood members, not on top of the plywood sheathing.
Page 10 of 10
Project:No.
Subject:
By: Date:
Just4Kids -Rexburg, ID 2100882
Roof Framing Design
KMB 06/17/21
12 Sunnen Drive, Suite 100
St. Louis, MO 63143 Page 1 of 5
Roof Framing Design
1. Glulam Beams: 5 1/2" x 27" Simple Spans (DF/DF 24F-V4)
Beam Max. Span:≔L =+28 ft 6 in 28.5 ft
Tributary Width:≔tw +22 ft 8 in
See attached Risa analysis
Max. Bending Stress Ratio:≔B.S.R.0.863 =if ⎛⎝,,<B.S.R.1.0 “OK”“NG”⎞⎠“OK”
Max. Shear Stress Ratio:≔S.S.R.0.464 =if ⎛⎝,,<S.S.R.1.0 “OK”“NG”⎞⎠“OK”
2. TJI Roof Joists: 14" TJI (560 Series) Typical @ 24" O.C.
Joist Depth:≔d 14 in
Joist Span:≔L =+22 ft 8 in 22.7 ft
Joist EI:≔EI ⋅⋅926 10 6 in 2 lb
Tributary Width:≔tw 2 ft
Dead Load:≔D 14 ――lb
ft 2 Flat Roof Snow Load:≔S 35 ――lb
ft 2
Drift Max Intensity:≔Sdrift 42.30 ――lb
ft 2 Drift Width:≔ldrift 8.25 ft
Total Uniform Load:≔w =⋅tw ⎛⎝+D S⎞⎠98 ―lb
ft
Wood Adjustment Factors (NDS 7.3)
≔CD 1.15 ≔CM 1.0 ≔CT 1.0 ≔CL 1.0
See attached analysis
Check Shear
Max. Shear, End Reaction:≔V 1560 lb
Allowable Max. Shear:≔Vallowable 2390 lb
≔V'allowable =⋅⋅⋅Vallowable CD CM CT 2748.5 lb =if ⎛⎝,,<V V'allowable “OK”“NG”⎞⎠“OK”
Allowable End Reaction:≔Vend_allowable 1725 lb
≔V'end_allowable =⋅⋅⋅Vend_allowable CD CM CT 1983.8 lb =if ⎛⎝,,<V V'allowable “OK”“NG”⎞⎠“OK”
Wood Beam
CASCOLic. # : KW-06009540
DESCRIPTION:Roof Girder with 28'-6" max span
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24
File: J4K - Rexburg, ID.ec6
CODE REFERENCES
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : ASCE 7-16
Material Properties
Beam Bracing :Beam is Fully Braced against lateral-torsional buckling
Allowable Stress Design
DF/DF
24F - V8
2,400.0
2,400.0
1,650.0
650.0
1,800.0
950.0
265.0
1,100.0 31.210
Analysis Method :
Eminbend - xx ksi
Wood Species :
Wood Grade :
Fb +
psi
psi
Fv psi
Fb -
Ft psi
Fc - Prll psi
psiFc - Perp
E : Modulus of Elasticity
1,600.0 ksi
850.0 ksi
Ebend- yy
Eminbend - yy
Ebend- xx ksi
Density pcf
Load Combination :ASCE 7-16
.Applied Loads Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loads
Uniform Load : D = -0.3380, Lr = -0.450, S = -0.8550, W = 0.80, E = -0.10 , Tributary Width = 1.0 ft
.DESIGN SUMMARY Design OK
Maximum Bending Stress Ratio 0.863: 1
Load Combination +D+S
Span # where maximum occurs Span # 1
Location of maximum on span 14.250 ft
141.48 psi=
=
2,451.10 psi
5.5x27Section used for this span
Span # where maximum occurs
Location of maximum on span
Span # 1=
Load Combination +D+S
=
=
=
304.75 psi==
Section used for this span 5.5x27
Maximum Shear Stress Ratio 0.464 : 1
26.316 ft=
=
2,116.43 psi
Maximum Deflection
435 >=240
1254
Ratio =320 >=180
Max Downward Transient Deflection 0.736 in 464Ratio =>=240
Max Upward Transient Deflection -0.786 in Ratio =
Max Downward Total Deflection 0.273 in Ratio =>=180
Max Upward Total Deflection -1.067 in
fb: Actual
Fb: Allowable
fv: Actual
Fv: Allowable
.
Location in SpanLoad CombinationMax. "-" Defl Location in SpanLoad Combination Span Max. "+" Defl
Overall Maximum Deflections
+D+S10.0000 0.000 -1.0674 14.354
Location in SpanMax. Downward Defl Location in SpanLoad Combination Span Max. Upward Defl
Maximum Deflections for Load Combinations
+D+0.60W 1 0.1602 14.354 0.0000 0.000in ftinft
+0.60D+0.60W 1 0.2726 14.354 0.0000 0.000in ftinft
W Only 1 0.7356 14.354 0.0000 0.000in ftinft
.
Load Combination Support 1 Support 2
Vertical Reactions Support notation : Far left is #1 Values in KIPS
Overall MAXimum -16.542 -16.542
Overall MINimum -1.425 -1.425
D Only -4.358 -4.358
+D+Lr -10.770 -10.770
+D+S -16.542 -16.542
Wood Beam
CASCOLic. # : KW-06009540
DESCRIPTION:Roof Girder with 28'-6" max span
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24
File: J4K - Rexburg, ID.ec6
Load Combination Support 1 Support 2
Vertical Reactions Support notation : Far left is #1 Values in KIPS
+D+0.750Lr -9.167 -9.167
+D+0.750S -13.496 -13.496
+D+0.60W 2.482 2.482
+D+0.750Lr+0.450W -4.037 -4.037
+D+0.750S+0.450W -8.366 -8.366
+0.60D+0.60W 4.225 4.225
+D+0.70E -5.355 -5.355
+D+0.750S+0.5250E -14.244 -14.244
+0.60D+0.70E -3.612 -3.612
Lr Only -6.413 -6.413
S Only -12.184 -12.184
W Only 11.400 11.400
E Only -1.425 -1.425
SINGLE-SPAN BEAM ANALYSIS
For Simple, Propped, Fixed, or Cantilever Beams
Job Name:J4K - Rexburg, ID Subject:TJI Joist Check
Job Number:2100882 Originator:KMB Checker:
Input Data:Typical Joist With Tower Parapet Drift c
e
Beam Data:Simple Beam b
Span Type?Simple a
Span, L =22.6667 ft.Propped Beam +P +M +we
Modulus, E =1000 ksi +wb
Inertia, I =1000.00 in.^4 Fixed Beam +w
E,I L
Beam Loadings:Cantilever Beam RL x RR
Full Uniform:Nomenclature
w =0.0980 kips/ft.=(14psf + 35 psf)*(2ft)
Start End Results:
Distributed:b (ft.)wb (kips/ft.)e (ft.)we (kips/ft.)Reactions:
#1:0.0000 0.1244 8.2500 0.0000 RL =1.56 k RR =1.17 k
#2:ML =N.A.MR =N.A.
#3:Maximum Moments:
#4:+M(max) =7.02 ft-k @ x =10.70 ft.
#5:-M(max) =0.00 ft-k @ x =0.00 ft.
#6:Maximum Deflections:
#7:-D(max) =-0.656 in.@ x =11.17 ft.
#8:+D(max) =0.000 in.@ x =0.00 ft.
D(ratio) =L/414
Point Loads:a (ft.)P (kips)
#1:
#2:
#3:
#4:
#5:
#6:
#7:
#8:
#9:
#10:
#11:
#12:
#13:
#14:
#15:
Moments:c (ft.)M (ft-kips)
#1:
#2:
#3:
#4:
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
0.001.362.724.085.446.808.169.5210.8812.2413.6014.9616.3217.6819.0420.4021.76Shear (kips)x (ft.)
Shear Diagram
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
0.001.362.724.085.446.808.169.5210.8812.2413.6014.9616.3217.6819.0420.4021.76Moment (ft-kips)x (ft.)
Moment Diagram
Project: Just4Kids - Rexburg, ID No. 2100882
Subject: Interior Column Design
By: KMB Date: 07/23/21
HSS COLUMN DESIGN (ASTM A500, Grade B)
(Use the section properties from the AISC HSS Connections Manual)
Nominal Size HSS 5.5x5.5x1/4
Depth, in 5.5
Actual Thickness, t, in 0.233
Area, A, in^2 4.77
Radius of gyration, r, in 2.13
Section Modulus, S, in^3 7.9
Effective Length, kl, ft 13.375
D, k 16.542 D, k 16.542
Lr or S, k 0 Lr or S, k 0
Allowable Concentric Load, k 90 e, in 2 e, in 2
Local Buckling: (d-3t)/t = 20.61 37.30 OK
Axial Load, P, k 33.1
Eccentricity, e, in 0.00
Moment = P*e, in-k 0.00
fa = P/A, ksi 6.94 <= Fa, ksi 18.88 OK
fb = M/S, ksi 0.00 <= Fb = 0.6Fy, ksi 27.60 OK
Cm 0.60
F'ex, ksi 26.30
fa/Fa + Cm*fb/(1-fa/F'ex)/Fb = 0.37 <= 1.00 OK
fa/0.6Fy + fb/Fb = 0.25 <= 1.00 OK
Axial Load, P, k 33.1
Eccentricity, e, in 0.00
Moment = P*e, in-k 0.00
fa = P/A, ksi 6.94 <= Fa, ksi 18.88 OK
fb = M/S, ksi 0.00 <= Fb = 0.6Fy, ksi 27.60 OK
Cm 0.60
F'ex, ksi 26.30
fa/Fa + Cm*fb/(1-fa/F'ex)/Fb = 0.37 <= 1.00 OK
fa/0.6Fy + fb/Fb = 0.25 <= 1.00 OK
Axial Load, P, k 33.1
Eccentricity, e, in 0.00
Moment = P*e, in-k 0.00
fa = P/A, ksi 6.94 <= Fa, ksi 18.88 OK
fb = M/S, ksi 0.00 <= Fb = 0.6Fy, ksi 27.60 OK
Cm 0.60
F'ex, ksi 26.30
fa/Fa + Cm*fb/(1-fa/F'ex)/Fb = 0.37 <= 1.00 OK
fa/0.6Fy + fb/Fb = 0.25 <= 1.00 OK
Partial Loading 2 (Dead Load plus Live Load on Right Side)
Partial Loading 1 (Dead Load plus Live Load on Left Side)
Full Loading (Dead Load plus Live Load on Both Sides)
LOADING
<= 253/sqrt(Fy) =
P1 P2
P1 P2
e1 e2
Project:No.
Subject:
By: Date:
Just4Kids -Rexburg, ID 2100882
Roof Framing Design
KMB 06/17/21
12 Sunnen Drive, Suite 100
St. Louis, MO 63143 Page 2 of 5
Check Moment
Max. Moment:≔M ⋅7020 ft lb
Allowable Max. Moment:≔Mallowable ⋅11275 lb ft
≔M'allowable =⋅⋅⋅⋅Mallowable CD CM CT CL 12966.3 ⋅lb ft =if ⎛⎝,,<M M'allowable “OK”“NG”⎞⎠“OK”
Check Deflection
Max. Deflection:≔Δ =⋅0.656 in ――――――
⎛⎝⋅⋅1.0 10 9 in 2 lb⎞⎠
EI 0.708 in
Allowable Deflection:≔Δallowable =――L
240 1.133 in =if ⎛⎝,,<Δ Δallowable “OK”“NG”⎞⎠“OK”
Top Chord Tension
Max. Moment:≔M ⋅7020 ft lb Joist Depth:≔d 14 in
≔TS =―M
d 6017.1 lb
Load Combination: D + S
≔weffective =―――⎛⎝⋅M 8⎞⎠
L 2 109.3 ―lb
ft
Load Combination #5: D + 0.7E
Dead Load:≔D 14 ――lb
ft 2 Snow Drift ≔Stotal =+S Sdrift 77.3 ――lb
ft 2
≔Fx 1975.8 lb
≔vewseismic =――Fx
46 ft 43 ―lb
ft
≔weffective =―――vewseismic
1.6 26.8 ―lb
ft
≔ME =⋅⎛⎝+⋅tw D weffective⎞⎠―――――⎛⎝+22 ft 8 in⎞⎠
2
8 3522.3 ⋅lb ft
≔TE =――ME
d 3019.1 lb =if ⎛⎝,,<TE TS “OK”“NG”⎞⎠“OK”
11'-4"x 10'-5 3/8" subdiaphragm is confirmed for strap location for tension in the
top chord of TJI 14" joist. Tension = compression in TJI therefore the TJI is adequate
for the subdiaphragm.
Project:No.
Subject:
By: Date:
Just4Kids -Rexburg, ID 2100882
Roof Framing Design
KMB 06/17/21
12 Sunnen Drive, Suite 100
St. Louis, MO 63143 Page 3 of 5
Joist Hangers at Glulam Beam:Try Simpson BA3.56/14 Hangers
Check Shear
Max. End Reaction:=V 1560 lb
Allowable Max. Total Load:≔Vallowable 4720 lb
≔V'allowable =⋅⋅⋅Vallowable CD CM CT 5428 lb =if ⎛⎝,,<V V'allowable “OK”“NG”⎞⎠“OK”
Check Uplift (Use end joist which is in highest uplift zones)
Tributary Width:=tw 2 ft Mean Roof Height:≔h 15 ft
Dead Load:=D 14 ――lb
ft 2
C&C Zone 3 Roof Wind Load:≔Wuplift3 -62.2 ――lb
ft 2 Zone 3 Width:≔w3 =⋅0.6 h 9 ft
C&C Zone 2 Roof Wind Load:≔Wuplift2 -47.2 ――lb
ft 2 Zone 2 Width:≔w2 =-L w3 13.7 ft
Max. Uplift Load:≔Vuplift 448 lb (From beam analysis)
Uplift Load:≔Vuplift_allowable 1275 lb
≔V'uplift_allowable =⋅⋅⋅Vuplift_allowable CD CM CT 1466.3 lb =if ⎛⎝,,<V V'allowable “OK”“NG”⎞⎠“OK”
Use Simpson BA3.56/14 (with web stiffener) with (6) 16d nails into the beam top flange,
(10) 16d nails into the beam face, and (8) 10d x 1 1/2" nails into the joist.
3. TJI Roof Joists: Double 14" TJI (560 Series) Girder at Jack Trusses
Project:No.
Subject:
By: Date:
Just4Kids -Rexburg, ID 2100882
Roof Framing Design
KMB 06/17/21
12 Sunnen Drive, Suite 100
St. Louis, MO 63143 Page 4 of 5
3. TJI Roof Joists: Double 14" TJI (560 Series) Girder at Jack Trusses
Joist Depth:≔d 14 in
Joist Span:≔L =+22 ft 8 in 22.7 ft
Joist EI:≔EI ⋅⋅926 10 6 in 2 lb
Tributary Width:≔tw 1.5 ft (Check Joist for Bearing Jack Trusses)
Dead Load:≔D 14 ――lb
ft 2 Flat Snow Load:≔S 35 ――lb
ft 2
Average Tower Side Snow Drift:≔wtowerside 76.02 ―lb
ft
Average Typical Side Snow Drift:≔wtypside 37.83 ―lb
ft
Front Tower Snow Max. Drift:≔wtowerfront =⋅62.21 ――lb
ft 2 tw 93.3 ―lb
ft Drift Width:≔ldrift 8.25 ft
Total Uniform Load:≔w =⋅tw ⎛⎝+D S⎞⎠74 ―lb
ft
Wood Adjustment Factors (NDS 7.3)
≔CD 1.15 ≔CM 1.0 ≔CT 1.0 ≔CL 1.0
Check Shear
Max. Shear, End Reaction:≔V 1880 lb
Allowable Max. Shear:≔Vallowable 2390 lb
≔V'allowable =⋅⋅⋅Vallowable CD CM CT 2748.5 lb =if ⎛⎝,,<V V'allowable “OK”“NG”⎞⎠“OK”
Allowable End Reaction:≔Vend_allowable 1725 lb
≔V'end_allowable =⋅⋅⋅Vend_allowable CD CM CT 1983.8 lb =if ⎛⎝,,<V V'allowable “OK”“NG”⎞⎠“OK”
Check Moment
Max. Moment:≔M ⋅9470 lb ft
Allowable Max. Moment:≔Mallowable ⋅11275 lb ft
≔M'allowable =⋅⋅⋅⋅Mallowable CD CM CT CL 12966.3 ⋅lb ft =if ⎛⎝,,<M M'allowable “OK”“NG”⎞⎠“OK”
Check Deflection
Max. Deflection:≔Δ =⋅0.656 in ――――――
⎛⎝⋅⋅1.0 10 9 in 2 lb⎞⎠
EI 0.708 in
Allowable Deflection:≔Δallowable =――L
240 1.133 in =if ⎛⎝,,<Δ Δallowable “OK”“NG”⎞⎠“OK”
SINGLE-SPAN BEAM ANALYSIS
For Simple, Propped, Fixed, or Cantilever Beams
Job Name:J4K - Rexburg, ID Subject:TJI Joist Check
Job Number:2100882 Originator:KMB Checker:
Input Data:Double Girder Joist with Tower/Typ Drift from Side c
and Tower Drift Front e
Beam Data:Simple Beam b
Span Type?Simple a
Span, L =22.6667 ft.Propped Beam +P +M +we
Modulus, E =1000 ksi +wb
Inertia, I =1000.00 in.^4 Fixed Beam +w
E,I L
Beam Loadings:Cantilever Beam RL x RR
Full Uniform:Nomenclature
w =0.0735 kips/ft.=(14psf + 35 psf)*(1.5ft)
Start End Results:
Distributed:b (ft.)wb (kips/ft.)e (ft.)we (kips/ft.)Reactions:
#1:0.0000 0.0760 15.3333 0.0760 RL =1.88 k RR =1.49 k
#2:15.3333 0.0378 22.6667 0.0378 ML =N.A.MR =N.A.
#3:0.0000 0.0635 8.2500 0.0000 Maximum Moments:
#4:+M(max) =9.47 ft-k @ x =10.82 ft.
#5:-M(max) =0.00 ft-k @ x =0.00 ft.
#6:Maximum Deflections:
#7:-D(max) =-0.873 in.@ x =11.19 ft.
#8:+D(max) =0.000 in.@ x =0.00 ft.
D(ratio) =L/312
Point Loads:a (ft.)P (kips)
#1:
#2:
#3:
#4:
#5:
#6:
#7:
#8:
#9:
#10:
#11:
#12:
#13:
#14:
#15:
Moments:c (ft.)M (ft-kips)
#1:
#2:
#3:
#4:
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
0.001.362.724.085.446.808.169.5210.8812.2413.6014.9616.3217.6819.0420.4021.76Shear (kips)x (ft.)
Shear Diagram
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
0.001.362.724.085.446.808.169.5210.8812.2413.6014.9616.3217.6819.0420.4021.76Moment (ft-kips)x (ft.)
Moment Diagram
Project:No.
Subject:
By: Date:
Just4Kids -Rexburg, ID 2100882
Roof Framing Design
KMB 06/17/21
12 Sunnen Drive, Suite 100
St. Louis, MO 63143 Page 5 of 5≔Δallowable =――L
240 1.133 in =if ⎛⎝,,<Δ Δallowable “OK”“NG”⎞⎠“OK”
3. Wood Ledger at Joists
Check Ledger: Try (1) 4x6 Douglas Fir #2
≔n 1 ≔t 3.5 in ≔b =⋅n t 3.5 in ≔d 5.5 in ≔Sx =――⋅b d 2
6 17.6 in 3
Joist Bearing Area:≔Ab =⋅3.5 in 1.75 in 6.1 in 2
See attached Risa analysis
Joist Holddowns at Ledger:Try H2.5A at each joist
Max. Uplift Load:=Vuplift 448 lb (From joist analysis above)
Allowable Uplift Load:≔Vuplift_allowable 780 lb
≔V'uplift_allowable =⋅⋅⋅Vuplift_allowable CD CM CT 897 lb =if ⎛⎝,,<V V'allowable “OK”“NG”⎞⎠“OK”
Use Simpson H8 with (5) 0.148 x 1 1/2" nails into joists and (5) 0.148 x 1 1/2" nails into the
ledger.
Wood Ledger
CASCOLic. # : KW-06009540
DESCRIPTION:4x6 Wood Ledger to support roof joist
Title Block Line 6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24
File: J4K - Rexburg, ID.ec6
Code References
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : ASCE 7-16
General Information
3.50
5.50
Douglas Fir-Larch (North)
0.49
Concrete as Main Supporting Member
Using 6" anchor embedment length in equations.
Using dowel bearing strength fixed at 7.5 ksi per NDS Table 11E
Douglas Fir - Larch, No.2
900.0
180.0
in
Cm - Wet Service Factor 1.0
Ct - Temperature Factor 1.0
Cg - Group Action Factor 1.0
C /\ - Geometry Factor 1.0
Bolt Spacing
3/4"
48.0
Design Method: ASD (using Service Load Combinations
Fyb : Bolt Bending Yield 45,000 psi
G : Specific Gravity
Ledger Width
in Wood Stress Grade :Ledger Depth
in
Bolt Diameter in
Ledger Wood Species Fb Allow psi
Fv Allow psi
Load Data
-0.170 -0.2250 -0.5850 0.50 -0.10
Floor Live Snow Wind Seismic Earth
Uniform Load...
Roof LiveDead
plfplfplfplf plf plfplf
Point Load...lbslbs lbs lbs lbs
lbs
Spacing in
lbs
Offset in
Horizontal Shear lbslbslbs lbs lbs lbslbs
Wood Ledger
CASCOLic. # : KW-06009540
DESCRIPTION:4x6 Wood Ledger to support roof joist
Title Block Line 6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24
File: J4K - Rexburg, ID.ec6
DESIGN SUMMARY Design OK
Maximum Ledger Bending
Fb : Allowable Stress 1,035.0 psi
0.002986Stress Ratio, Wood @ Bolt
Maximum Bolt Bearing Summary
Load Combination . . .
+D+S
Max. Vertical Load 3.020 lbs
Bolt Allow Vertical Load 1,011.38 lbs
Max. Horizontal Load 0.0 lbs
Bolt Allow Horizontal Load 1,972.29 lbs
Maximum Ledger Shear
Angle of Resultant 90.0 deg
(for specific gravity & bolt diameter)
3.020 lbs
Load Combination . . .
Diagonal Component+D+S
7,500.0
Allow Diagonal Bolt Force 1,011.38 lbs
Dowel Bearing Strengths
:1
:1
Moment 1.007 ft-lb
fb : Actual Stress 0.6846 psi
Stress Ratio 0.000661
Ledger, Perp to Grain ksi
Shear 1.510 lbs
2,500.0 ksi
7,500.0 ksi
Fv : Allowable Stress 138.0 psi
Load Combination . . .
fv : Actual Stress 0.1569 psi
Ledger, Parallel to Grain
5,500.0 ksiSupporting Member, Parallel to Grain
Stress Ratio 0.001137 :1
+D+S
Supporting Member, Perp to Grain
Allowable Bolt Capacity
Bolt Capacity - Load Perpendicular to Grain Bolt Capacity - Load Parallel to Grain
Note !
Governing Load Combination . . .
Fem 7,500.0 Fem 7,500.0
Refer to NDS Section 11.3 for Bolt Capacity calculation method.
+D+S
Zmin : Basic Design Value =
2,295.89 lbs
Rd =3.60 Z =
Z = IIIm : Eq 11.3-4 3.20 3,472.42
lbs
lbs
Rd =
IV : Eq 11.3-6 3.20 Z =1,715.04 lbs
Z * CM * CD* Ct * Cg * Cdelta =1,011.38 lbs Z * CM * CD* Ct * Cg * Cdelta =1,972.29 lbs
Fes 2,500.0 Fes 5,500.0
Resutant Load Angle : Theta =90.0 deg
Fyb 45,000.0 Fyb 45,000.0
Ktheta =1.250 Fe theta =1,011.38
Re 3.0 Re 1.364Rt1.714 Rt 1.714
k1 1.356 0.7451
k2 1.905 1.227
k3 0.8934 k1 k2 k3 1.021
Im : Eq 11.3-1 Rd =5.0 Z =0.0 lbs Im : Eq 11.3-1 0.0 lbs
Is : Eq 11.3-2 Z =1,312.50 lbs
Rd =4.0 Z =
Rd = Is : Eq 11.3-2 3,609.38 lbs5.0
II : Eq 11.3-3
879.46 lbs
Rd = Z =
IIIs : Eq 11.3-5 3.20 Z =1,867.50 lbs
1,978.07 lbs
Rd =4.0 Z =
Z = II : Eq 11.3-3 2,988.31 lbsRd =4.50
IIIm : Eq 11.3-4 Rd =4.0
IIIs : Eq 11.3-5 Rd =4.0 Z =
1,054.69IV : Eq 11.3-6 Rd =4.0 Z =
879.46 lbs
Rd =
Zmin : Basic Design Value =1,715.04 lbs
Reference design value - Perpendicular to Grain : Reference design value - Parallel to Grain :
www.hilti.com
Hilti PROFIS Engineering 3.0.71
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering ( c ) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan
1
Company:
Address:
Phone I Fax:
Design:
Fastening point:
|
Masonry - Jul 27, 2021
Page:
Specifier:
E-Mail:
Date:
1
7/27/2021
Specifier's comments: TJI joist seat anchorage
1 Input data
Anchor type and diameter: HY 270 + threaded rod 5.8 3/4
Item number: 385432 HAS 5.8 3/4"x10" (element) / 2194247 HIT-HY
270 (adhesive)
Effective embedment depth: hef = 6.750 in.
Material: 5.8
Evaluation Service Report: ESR-4143
Issued I Valid: 3/1/2021 | 1/1/2022
Proof: Design Method ASD Masonry
Stand-off installation: eb = 0.000 in. (no stand-off); t = 0.400 in.
Anchor plateR : lx x ly x t = 36.000 in. x 6.000 in. x 0.400 in.; (Recommended plate thickness: not calculated)
Profile: Rectangular plates and bars (AISC), 1/4 - 3/16; (L x W x T) = 0.250 in. x 0.188 in.
Base material: Grout-filled CMU, L x W x H: 16.000 in. x 8.000 in. x 8.000 in.;
Joints: vertical: 0.375 in.; horizontal: 0.375 in.
Base material temperature: 68 °F
Installation: Face installation
Seismic loads no
R - The anchor calculation is based on a rigid anchor plate assumption.
Geometry [in.]
www.hilti.com
Hilti PROFIS Engineering 3.0.71
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering ( c ) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan
2
Company:
Address:
Phone I Fax:
Design:
Fastening point:
|
Masonry - Jul 27, 2021
Page:
Specifier:
E-Mail:
Date:
2
7/27/2021
Geometry [in.] & Loading [lb, in.lb]
1.1 Design results
Case Description Forces [lb] / Moments [in.lb]Seismic Max. Util. Anchor [%]
1 Combination 1 N = 0; Vx = 0; Vy = -1,880;
Mx = 3,760; My = 0; Mz = 0;
no 84
www.hilti.com
Hilti PROFIS Engineering 3.0.71
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering ( c ) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan
3
Company:
Address:
Phone I Fax:
Design:
Fastening point:
|
Masonry - Jul 27, 2021
Page:
Specifier:
E-Mail:
Date:
3
7/27/2021
2 Proof I Utilization (Governing Cases)
Design values [lb]Utilization
Loading Proof Load Capacity bN / bV [%]Status
Tension Bond strength 750 2,653 29 / -OK
Shear Bond strength --- / 56 OK
Loading bN bV a Utilization bN,V [%]Status
Combined tension and shear loads 0.283 0.553 1.000 84 OK
3 Warnings
• Please consider all details and hints/warnings given in the detailed report!
Fastening meets the design criteria!
www.hilti.com
Hilti PROFIS Engineering 3.0.71
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering ( c ) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan
4
Company:
Address:
Phone I Fax:
Design:
Fastening point:
|
Masonry - Jul 27, 2021
Page:
Specifier:
E-Mail:
Date:
4
7/27/2021
4 Remarks; Your Cooperation Duties
• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and
security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly
complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using
the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in.
Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you.
Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to
compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms
and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific
application.
• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
or programs, arising from a culpable breach of duty by you.
LATERAL LOAD ON CMU SHEAR WALLS
Design is basd upon TMS 402-16
Project:Just4Kids - Rexburg, ID
Project no.2100882
Designer:rdm
Date:7/19/2021 Per TMS 402-16, Section 8.3.5.1.3, M/Vd = 1.0 as the max. value
West Wall:
Lateral Load (V) = 14 kips
V(x) = (R(x)/ΣR(x))*V
F'm = 1500 Bar Spacing (in.) 16 As (sq. in.) 0.31
Pier Height (ft.)
Length
(ft.)∆R V(x)
(kips)
% of
Total
Load
Moment
(k-in.)
As req'd
sq. in.)M/Vd F (vm)
(psi)
f (v)
(psi)
Horiz.
Rienf.
Req'd
F (vs)
(psi)
Av
Req'd
(sq. in.)
P1 15 4.33 166.29 0.0060 0.76 5 136 0.175 1.000 24.654 0.002 No 0.000 0
P2 15 6.25 55.30 0.0181 2.27 16 409 0.321 1.000 24.654 0.006 No 0.000 0
P3 15 6.33 53.23 0.0188 2.36 17 425 0.328 1.000 24.654 0.006 No 0.000 0
P4 15 4.833 119.59 0.0084 1.05 8 189 0.208 1.000 24.654 0.003 No 0.000 0
P5 15 5.33 89.16 0.0112 1.41 10 254 0.245 1.000 24.654 0.004 No 0.000 0
P6 15 5.33 89.16 0.0112 1.41 10 254 0.245 1.000 24.654 0.004 No 0.000 0
P7 15 5.33 89.16 0.0112 1.41 10 254 0.245 1.000 24.654 0.004 No 0.000 0
P8 15 5.33 89.16 0.0112 1.41 10 254 0.245 1.000 24.654 0.004 No 0.000 0
P9 15 5 108.00 0.0093 1.16 8 209 0.220 1.000 24.654 0.003 No 0.000 0
P10 15 4.33 166.29 0.0060 0.76 5 136 0.175 1.000 24.654 0.002 No 0.000 0
total = 0.11
East Wall:
Lateral Load (V) = 14 kips
V(x) = (R(x)/ΣR(x))*V
F'm = 1500 Bar Spacing (in.) 16 As (sq. in.) 0.31
Pier Height (ft.)
Length
(ft.)∆R V(x)
(kips)
% of
Total
Load
Moment
(k-in.)
As req'd
sq. in.)M/Vd F (vm)
(psi)
f (v)
(psi)
Horiz.
Rienf.
Req'd
F (vs)
(psi)
Av
Req'd
(sq. in.)
P1 15 4.17 186.18 0.0054 0.03 0.22 6 0.007 1.000 24.654 0.00008 No 0.000 0
P2 15 21 1.46 0.6860 3.91 28 704 0.138 0.763 28.677 0.010 No 0.000 0
P3 15 7 39.36 0.0254 0.14 1 26 0.018 1.000 24.654 0.000 No 0.000 0
P4 15 27.5 0.65 1.5405 8.78 63 1581 0.233 0.573 31.887 0.022 No 0.000 0
P5 15 4.33 166.29 0.0060 0.03 0 6 0.008 1.000 24.654 0.000 No 0.000 0
P6 15 13.75 5.19 0.1926 1.10 8 198 0.061 1.000 24.654 0.003 No 0.000 0
total = 2.4559
North Wall:
Lateral Load (V) = 28 kips
V(x) = (R(x)/ΣR(x))*V
F'm = 1500 Bar Spacing (in.) 16 As (sq. in.) 0.31
Pier Height (ft.)
Length
(ft.)∆R V(x)
(kips)
% of
Total
Load
Moment
(k-in.)
As req'd
sq. in.)M/Vd F (vm)
(psi)
f (v)
(psi)
Horiz.
Rienf.
Req'd
F (vs)
(psi)
Av
Req'd
(sq. in.)
P1 15 4.33 166.29 0.0060 4.55 16 819 1.054 1.000 24.654 0.011 No 0.000 0
P2 15 5.33 89.16 0.0112 8.49 30 1528 1.474 1.000 24.654 0.021 No 0.000 0
P3 15 3.5 314.87 0.0032 2.40 9 433 0.769 1.000 24.654 0.006 No 0.000 0
P4 15 5.33 89.16 0.0112 8.49 30 1528 1.474 1.000 24.654 0.021 No 0.000 0
P5 15 4.17 186.18 0.0054 4.07 15 732 0.994 1.000 24.654 0.010 No 0.000 0
total = 0.0370
South Wall:
Lateral Load (V) = 28 kips
V(x) = (R(x)/ΣR(x))*V
F'm = 1500 Bar Spacing (in.) 16 As (sq. in.) 0.31
Pier Height (ft.)
Length
(ft.)∆R V(x)
(kips)
% of
Total
Load
Moment
(k-in.)
As req'd
sq. in.)M/Vd F (vm)
(psi)
f (v)
(psi)
Horiz.
Rienf.
Req'd
F (vs)
(psi)
Av
Req'd
(sq. in.)
P1 15 3 500.00 0.0020 0.12 0.42 21 0.049 1.000 24.654 0.000 No 0.000 0
P2 15 1.5 4000.00 0.0003 0.01 0.05 3 0.060 1.000 24.654 0.000 No 0.000 0
P3 15 8.33 23.36 0.0428 2.51 9 452 0.249 1.000 24.654 0.006 No 0.000 0
P4 15 18 2.31 0.4320 25.36 91 4564 1.056 0.900 26.352 0.064 No 0.000 0
total = 0.4771
NOMINAL THICKNESS (in) 8 Wall height (ft) 15.0
Depth of block (in) 7.625 Parapet height (ft) 5.7
Face shell thickness (in) 1.250 GRAVITY LOADS P (lb/ft)
Web thickness (in) 1.000 Dead Load 135
Block Density (pcf) 135 Roof Live or Rain Load 225
Grout Density (pcf) 145 Roof Snow Load 585
Grouting Partial Flat Roof Snow Load (psf) 35
96 Ledger Eccentricity (in) 2.0
f'm (psi)1,500 LATERAL LOADS Unif Load (psf)
Em = 900 f'm (psi)1,350,000 Ultimate Wind 32.6
fy (psi)60,000 Design Response, Sds 0.368
Es (psi)29,000,000 Vertical Design Response, S dsv 0.368
n = Es/Em 21.48 Occupancy Category II
Vertical Bar Size 5 Importance Factor, I 1.00
Vertical Bar Spacing (in) 48 Seismic Load Coefficient, 0.40 I(Sds) > 0.10 0.15
Layers of Reinforcing 1
Seismic, Fp = Load coefficient * weight 7.0
Depth to Reinforcing (in) 3.81 Seismic Design Category D
72 Lap Splice Length (in)45 Seismic Reliability Factor, 1.0
Depth to NA (in) 0.899 SCALING FACTOR 1.00
Itr (in4/ft)17.04 (for wall weight and lateral loads only)
As (in2/ft)0.078
Avg Weight Minimum Net Section Maximum Net Section Average Net Section
(psf)A (in2/ft)Ig (in4/ft)A (in2/ft) I (in
4/ft) A (in
2/ft) I (in
4/ft)r (in)
47.4 40.3 331 49.9 352 49.4 351 2.7
D + (Lr or S or R)
Pw (#/ft) =624 Pf (#/ft) =720 P (#/ft) = 1,344
w (#/ft2) =0 M (in-#/ft) = 720
fa (psi) =33 ≤
Fa (psi) =288 OK
fa + fm (psi) =71 ≤
Fm (psi) =675 OK
fs (psi) =2,645 ≤
Fs (psi) =32,000 OK
D + 0.6W
Pw (#/ft) =624 Pf (#/ft) =135 P (#/ft) = 759
w (#/ft2) =19.6 M (in-#/ft) = 6,737
fa (psi) =19 ≤
Fa (psi) =288 OK
fa + fm (psi) =374 ≤
Fm (psi) =675 OK
fs (psi) =24,745 ≤
Fs (psi) =32,000 OK
D + 0.75[0.6W + (Lr or S or R)]
Pw (#/ft) =624 Pf (#/ft) =574 P (#/ft) = 1,198
w (#/ft2) =14.7 M (in-#/ft) = 5,525
fa (psi) =30 ≤
Fa (psi) =288 OK
fa + fm (psi) =321 ≤
Fm (psi) =675 OK
fs (psi) =20,294 ≤
Fs (psi) =32,000 OK
(1 + 0.14Sdsv)D + 0.7Fp
Pw (#/ft) =657 Pf (#/ft) =142 P (#/ft) = 799
w (#/ft2) =4.9 M (in-#/ft) = 1,791
fa (psi) =20 ≤
Fa (psi) =288 OK
fa + fm (psi) =114 ≤
Fm (psi) =675 OK
fs (psi) =6,578 ≤
Fs (psi) =32,000 OK
(1 + 0.105Sdsv)D + 0.75[0.7Fp + 0.75(0.2S)]
Pw (#/ft) =649 Pf (#/ft) =228 P (#/ft) = 876
w (#/ft2) =3.7 M (in-#/ft) = 1,465
fa (psi) =22 ≤
Fa (psi) =288 OK
fa + fm (psi) =99 ≤
Fm (psi) =675 OK
fs (psi) =5,380 ≤
Fs (psi) =32,000 OK
Uncracked Section Properites
Spacing of Bond Beams (in)
Project: J4K - Rexburg, ID
Project Number: 2100882
Designer: rdm
Date: 7/12/21
8" CMU Wall Design
Input Data - 2018 IBC Allowable Stress Design (Basic Load Combinations)
NOMINAL THICKNESS (in) 8 Wall height (ft) 15.0
Depth of block (in) 7.625 Parapet height (ft) 4.7
Face shell thickness (in) 1.250 GRAVITY LOADS P (lb/ft)
Web thickness (in) 1.000 Dead Load 1,204
Block Density (pcf) 135 Roof Live or Rain Load 1,605
Grout Density (pcf) 145 Roof Snow Load 4,173
Grouting Partial Flat Roof Snow Load (psf) 35
96 Ledger Eccentricity (in) 4.0
f'm (psi)1,500 LATERAL LOADS Unif Load (psf)
Em = 900 f'm (psi)1,350,000 Ultimate Wind 32.6
fy (psi)60,000 Design Response, Sds 0.368
Es (psi)29,000,000 Vertical Design Response, S dsv 0.368
n = Es/Em 21.48 Occupancy Category II
Vertical Bar Size 5 Importance Factor, I 1.00
Vertical Bar Spacing (in) 8 Seismic Load Coefficient, 0.40 I(Sds) > 0.10 0.15
Layers of Reinforcing 1
Seismic, Fp = Load coefficient * weight 12.6
Depth to Reinforcing (in) 3.81 Seismic Design Category D
72 Lap Splice Length (in)45 Seismic Reliability Factor, 1.0
Depth to NA (in) 1.821 SCALING FACTOR 1.00
Itr (in4/ft)63.77 (for wall weight and lateral loads only)
As (in2/ft)0.465
Avg Weight Minimum Net Section Maximum Net Section Average Net Section
(psf)A (in2/ft)Ig (in4/ft)A (in2/ft) I (in
4/ft) A (in
2/ft) I (in
4/ft)r (in)
85.8 91.5 443 91.5 443 91.5 443 2.2
D + (Lr or S or R)
Pw (#/ft) =1,044 Pf (#/ft) =5,377 P (#/ft) = 6,421
w (#/ft2) =0 M (in-#/ft) = 10,754
fa (psi) =70 ≤
Fa (psi) =247 OK
fa + fm (psi) =377 ≤
Fm (psi) =675 OK
fs (psi) =7,215 ≤
Fs (psi) =32,000 OK
D + 0.6W
Pw (#/ft) =1,044 Pf (#/ft) =1,204 P (#/ft) = 2,248
w (#/ft2) =19.6 M (in-#/ft) = 9,010
fa (psi) =25 ≤
Fa (psi) =247 OK
fa + fm (psi) =282 ≤
Fm (psi) =675 OK
fs (psi) =6,044 ≤
Fs (psi) =32,000 OK
D + 0.75[0.6W + (Lr or S or R)]
Pw (#/ft) =1,044 Pf (#/ft) =4,334 P (#/ft) = 5,378
w (#/ft2) =14.7 M (in-#/ft) = 13,619
fa (psi) =59 ≤
Fa (psi) =247 OK
fa + fm (psi) =448 ≤
Fm (psi) =675 OK
fs (psi) =9,136 ≤
Fs (psi) =32,000 OK
(1 + 0.14Sdsv)D + 0.7Fp
Pw (#/ft) =1,098 Pf (#/ft) =1,266 P (#/ft) = 2,364
w (#/ft2) =8.8 M (in-#/ft) = 5,515
fa (psi) =26 ≤
Fa (psi) =247 OK
fa + fm (psi) =183 ≤
Fm (psi) =675 OK
fs (psi) =3,700 ≤
Fs (psi) =32,000 OK
(1 + 0.105Sdsv)D + 0.75[0.7Fp + 0.75(0.2S)]
Pw (#/ft) =1,084 Pf (#/ft) =1,876 P (#/ft) = 2,961
w (#/ft2) =6.6 M (in-#/ft) = 5,990
fa (psi) =32 ≤
Fa (psi) =247 OK
fa + fm (psi) =203 ≤
Fm (psi) =675 OK
fs (psi) =4,019 ≤
Fs (psi) =32,000 OK
Uncracked Section Properites
Spacing of Bond Beams (in)
Project: J4K - Rexburg, ID
Project Number: 2100882
Designer: rdm
Date: 7/12/21
GLUELAM Beam Bearing
Input Data - 2012 IBC Allowable Stress Design (Basic Load Combinations)
Masonry Beam
CASCOLic. # : KW-06009540
DESCRIPTION:Masonry Lintel Spans between 3 '-0" and 4'-8"
Title Block Line 6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24
File: J4K - Rexburg, ID.ec6
Calculations per TMS 402-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : ASCE 7-16
Code References
General Information
1,500.0
32,000.0
750.0 Thickness 8 in Top Clear 6.0 in
End Fixity Pin-Pin
Bar Spacing 5.0 in
Equiv. Solid Thick 7.60 in
Wall Weight 84.0 psf
E 1,125.0 ksi
n 25.778
Note! Shear calculated at "d/2" from edge of beam
Lateral Wall Weight Seismic Factor 0.330
Calculate vertical beam weight ? Yes
Beam is Fully Braced ? Yes
Lateral Wind Load 183.0 psf
Shear Reinf Bar Size 5#
Shear Reinf Bar Spacing 24.0 in
Block Type Normal Wt
Btm Clear 2.0 in1.0
# Bar Sets 1
psi ftClear Span 4.670 Rebar Size 5f'm
Fs psi Beam Depth 0.670 ft # Bars @ Locations 1
Em = f'm *
Wall Wt Mult
Uniform Loads
4.670 0.50ft
ft
ft
ft
Start X End X Dead Load L : Floor Live Lr : Roof Live S : Snow W : Wind E : Earthquake
ft#1 k/ft
#2 k/ftft
ft#3 k/ft
k/ftft#4
Design OKDESIGN SUMMARY
Maximum Stress Ratios...Vertical Lateral SRSS Combination
fb/Fb 0.2781 0.1448 0.3135 : 1.00
fv/Fv 0.1930 0.1447 0.2412 : 1.00
Maximum Moment Actual Allowable
Vertical Loads 0.8178k-ft 2.941k-ft
for Load Combination : +0.60W
Lateral Loads 0.2005k-ft 1.385
k-ft
for Load Combination : +0.60W
Maximum Shear Actual Allowable
Vertical Loads 13.641psi 70.675psi
for Load Combination : +0.60W
Lateral Loads 5.604psi 38.730psi0.8899 k-ftMinimum Mn = 1.3 * Fcr * S =for Load Combination : +0.60W
Vertical Strength
As 0.310 in^2
rho 0.006731
np 0.1735
k : ((np)^2+2np)^.5-np 0.4406
j = 1 - k/3 0.8531
M:mas=Fb k j b d^2/2 2.941 k-ft
M:Stl = Fs As j d 4.260 k-ft
Lateral Strength (Checking lateral bending for span)
As 0.310in^2
rho 0.01011
np 0.2607
k : (np^2+2np)^.5-np 0.5070
j = 1 - k/3 0.8310
M:mas=Fb k j b d^2/2 1.385 k-ft
M:Stl = Fs As j d 2.619 k-ft
Masonry Beam
CASCOLic. # : KW-06009540
DESCRIPTION:Masonry Lintel Spans between 3 '-0" and 4'-8"
Title Block Line 6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24
File: J4K - Rexburg, ID.ec6
Load Combination Vertical Lateral
Fv
k-ft psik-ft k-ft k-ft psipsi psi
Mmax Mallow fvFv : Vertfv : Vert Mactual Mallow
Detailed Load Combination Results
0.00 2.94 0.00 77.46 0.00 1.38 0.00 38.73
+0.60W 0.82 2.94 13.64 70.67 0.20 1.38 5.60 38.73
-0.60W 0.82 2.94 13.64 70.67 0.20 1.38 5.60 38.73
+0.450W 0.61 2.94 10.23 70.67 0.15 1.38 4.20 38.73
-0.450W 0.61 2.94 10.23 70.67 0.15 1.38 4.20 38.73
E Only * 1.750 0.00 2.94 0.00 77.46 0.09 1.38 2.48 38.73
E Only * -1.750 0.00 2.94 0.00 77.46 0.09 1.38 2.48 38.73
E Only * 1.313 0.00 2.94 0.00 77.46 0.07 1.38 1.86 38.73
E Only * -1.313 0.00 2.94 0.00 77.46 0.07 1.38 1.86 38.73
NOMINAL THICKNESS (in) 8 Wall height (ft) 15.0
Depth of block (in) 7.625 Parapet height (ft) 5.7
Face shell thickness (in) 1.250 GRAVITY LOADS P (lb/ft)
Web thickness (in) 1.000 Dead Load 135
Block Density (pcf) 135 Roof Live or Rain Load 225
Grout Density (pcf) 145 Roof Snow Load 585
Grouting Partial Flat Roof Snow Load (psf) 35
96 Ledger Eccentricity (in) 2.0
f'm (psi)1,500 LATERAL LOADS Unif Load (psf)
Em = 900 f'm (psi)1,350,000 Ultimate Wind 32.6
fy (psi)60,000 Design Response, Sds 0.368
Es (psi)29,000,000 Vertical Design Response, S dsv 0.368
n = Es/Em 21.48 Occupancy Category II
Vertical Bar Size 5 Importance Factor, I 1.00
Vertical Bar Spacing (in) 24 Seismic Load Coefficient, 0.40 I(Sds) > 0.10 0.15
Layers of Reinforcing 1
Seismic, Fp = Load coefficient * weight 8.1
Depth to Reinforcing (in) 3.81 Seismic Design Category D
72 Lap Splice Length (in)45 Seismic Reliability Factor, 1.0
Depth to NA (in) 1.203 SCALING FACTOR 2.35
Itr (in4/ft)29.64 (for wall weight and lateral loads only)
As (in2/ft)0.155
Avg Weight Minimum Net Section Maximum Net Section Average Net Section
(psf)A (in2/ft)Ig (in4/ft)A (in2/ft) I (in
4/ft) A (in
2/ft) I (in
4/ft)r (in)
55.1 50.5 354 58.2 370 57.8 370 2.5
D + (Lr or S or R)
Pw (#/ft) =1,705 Pf (#/ft) =720 P (#/ft) = 2,425
w (#/ft2) =0 M (in-#/ft) = 720
fa (psi) =48 ≤
Fa (psi) =278 OK
fa + fm (psi) =77 ≤
Fm (psi) =675 OK
fs (psi) =1,362 ≤
Fs (psi) =32,000 OK
D + 0.6W
Pw (#/ft) =1,705 Pf (#/ft) =135 P (#/ft) = 1,840
w (#/ft2) =46.0 M (in-#/ft) = 15,649
fa (psi) =36 ≤
Fa (psi) =278 OK
fa + fm (psi) =672 ≤
Fm (psi) =675 OK
fs (psi) =29,594 ≤
Fs (psi) =32,000 OK
D + 0.75[0.6W + (Lr or S or R)]
Pw (#/ft) =1,705 Pf (#/ft) =574 P (#/ft) = 2,279
w (#/ft2) =34.5 M (in-#/ft) = 12,209
fa (psi) =45 ≤
Fa (psi) =278 OK
fa + fm (psi) =541 ≤
Fm (psi) =675 OK
fs (psi) =23,089 ≤
Fs (psi) =32,000 OK
(1 + 0.14Sdsv)D + 0.7Fp
Pw (#/ft) =1,793 Pf (#/ft) =142 P (#/ft) = 1,935
w (#/ft2) =13.3 M (in-#/ft) = 4,644
fa (psi) =38 ≤
Fa (psi) =278 OK
fa + fm (psi) =227 ≤
Fm (psi) =675 OK
fs (psi) =8,782 ≤
Fs (psi) =32,000 OK
(1 + 0.105Sdsv)D + 0.75[0.7Fp + 0.75(0.2S)]
Pw (#/ft) =1,771 Pf (#/ft) =228 P (#/ft) = 1,999
w (#/ft2) =10.0 M (in-#/ft) = 3,604
fa (psi) =40 ≤
Fa (psi) =278 OK
fa + fm (psi) =186 ≤
Fm (psi) =675 OK
fs (psi) =6,816 ≤
Fs (psi) =32,000 OK
Uncracked Section Properites
Spacing of Bond Beams (in)
Project: J4K - Rexburg, ID
Project Number: 2100882
Designer: rdm
Date: 7/12/21
CMU Jamb Design with 2.35 max. scale factor at East/West walls
Input Data - 2018 IBC Allowable Stress Design (Basic Load Combinations)
Masonry Beam
CASCOLic. # : KW-06009540
DESCRIPTION:Masonry Lintel spans between 5'-0" and 8'-0"
Title Block Line 6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24
File: J4K - Rexburg, ID.ec6
Calculations per TMS 402-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : ASCE 7-16
Code References
General Information
1,500.0
32,000.0
750.0 Thickness 8 in Top Clear 14.0 in
End Fixity Pin-Pin
Bar Spacing 3.625 in
Equiv. Solid Thick 7.60 in
Wall Weight 84.0 psf
E 1,125.0 ksi
n 25.778
Note! Shear calculated at "d/2" from edge of beam
Lateral Wall Weight Seismic Factor 0.330
Calculate vertical beam weight ? Yes
Beam is Fully Braced ? No
Lateral Wind Load 183.0 psf
Shear Reinf Bar Size 5#
Shear Reinf Bar Spacing 24.0 in
Block Type Normal Wt
Btm Clear 2.0 in1.0
# Bar Sets 1
psi ftClear Span 8.0 Rebar Size 5f'm
Fs psi Beam Depth 1.330 ft # Bars E/F 1
Em = f'm *
Wall Wt Mult
Uniform Loads
8.0 0.8950 0.50 0.10ft
ft
ft
ft
Start X End X Dead Load L : Floor Live Lr : Roof Live S : Snow W : Wind E : Earthquake
ft#1 k/ft
#2 k/ftft
ft#3 k/ft
k/ftft#4
Design OKDESIGN SUMMARY
Maximum Stress Ratios...Vertical Lateral SRSS Combination
fb/Fb 0.6952 0.2835 0.7508 : 1.00
fv/Fv 0.5952 0.1680 0.6185 : 1.00
Maximum Moment Actual Allowable
Vertical Loads 10.454k-ft 15.037k-ft
for Load Combination : +D+0.60W
Lateral Loads 1.168k-ft 4.120
k-ft
for Load Combination : +D+0.60W
Maximum Shear Actual Allowable
Vertical Loads 42.069psi 70.675psi
for Load Combination : +D+0.60W
Lateral Loads 6.507psi 38.730psi3.507 k-ftMinimum Mn = 1.3 * Fcr * S =for Load Combination : +D+0.60W
Vertical Strength
As 0.620 in^2
rho 0.005825
np 0.1501
k : ((np)^2+2np)^.5-np 0.4180
j = 1 - k/3 0.8607
M:mas=Fb k j b d^2/2 15.037 k-ft
M:Stl = Fs As j d 19.864 k-ft
Lateral Strength (Checking lateral bending for span)
As 0.310in^2
rho 0.003453
np 0.08901
k : (np^2+2np)^.5-np 0.3422
j = 1 - k/3 0.8859
M:mas=Fb k j b d^2/2 4.306 k-ft
M:Stl = Fs As j d 4.120 k-ft
NOMINAL THICKNESS (in) 8 Wall height (ft) 15.0
Depth of block (in) 7.625 Parapet height (ft) 5.7
Face shell thickness (in) 1.250 GRAVITY LOADS P (lb/ft)
Web thickness (in) 1.000 Dead Load 60
Block Density (pcf) 135 Roof Live or Rain Load 80
Grout Density (pcf) 145 Roof Snow Load 208
Grouting Partial Flat Roof Snow Load (psf) 35
96 Ledger Eccentricity (in) 2.0
f'm (psi)1,500 LATERAL LOADS Unif Load (psf)
Em = 900 f'm (psi)1,350,000 Ultimate Wind 32.6
fy (psi)60,000 Design Response, Sds 0.368
Es (psi)29,000,000 Vertical Design Response, S dsv 0.368
n = Es/Em 21.48 Occupancy Category II
Vertical Bar Size 5 Importance Factor, I 1.00
Vertical Bar Spacing (in) 16 Seismic Load Coefficient, 0.40 I(Sds) > 0.10 0.15
Layers of Reinforcing 1
Seismic, Fp = Load coefficient * weight 9.2
Depth to Reinforcing (in) 3.81 Seismic Design Category D
72 Lap Splice Length (in)45 Seismic Reliability Factor, 1.0
Depth to NA (in) 1.417 SCALING FACTOR 2.70
Itr (in4/ft)40.03 (for wall weight and lateral loads only)
As (in2/ft)0.233
Avg Weight Minimum Net Section Maximum Net Section Average Net Section
(psf)A (in2/ft)Ig (in4/ft)A (in2/ft) I (in
4/ft) A (in
2/ft) I (in
4/ft)r (in)
62.8 60.8 376 66.5 389 66.2 388 2.4
D + (Lr or S or R)
Pw (#/ft) =2,232 Pf (#/ft) =268 P (#/ft) = 2,500
w (#/ft2) =0 M (in-#/ft) = 268
fa (psi) =41 ≤
Fa (psi) =269 OK
fa + fm (psi) =51 ≤
Fm (psi) =675 OK
fs (psi) =344 ≤
Fs (psi) =32,000 OK
D + 0.6W
Pw (#/ft) =2,232 Pf (#/ft) =60 P (#/ft) = 2,292
w (#/ft2) =52.8 M (in-#/ft) = 17,884
fa (psi) =38 ≤
Fa (psi) =269 OK
fa + fm (psi) =671 ≤
Fm (psi) =675 OK
fs (psi) =22,989 ≤
Fs (psi) =32,000 OK
D + 0.75[0.6W + (Lr or S or R)]
Pw (#/ft) =2,232 Pf (#/ft) =216 P (#/ft) = 2,448
w (#/ft2) =39.6 M (in-#/ft) = 13,584
fa (psi) =40 ≤
Fa (psi) =269 OK
fa + fm (psi) =521 ≤
Fm (psi) =675 OK
fs (psi) =17,462 ≤
Fs (psi) =32,000 OK
(1 + 0.14Sdsv)D + 0.7Fp
Pw (#/ft) =2,347 Pf (#/ft) =63 P (#/ft) = 2,410
w (#/ft2) =17.5 M (in-#/ft) = 5,956
fa (psi) =40 ≤
Fa (psi) =269 OK
fa + fm (psi) =250 ≤
Fm (psi) =675 OK
fs (psi) =7,656 ≤
Fs (psi) =32,000 OK
(1 + 0.105Sdsv)D + 0.75[0.7Fp + 0.75(0.2S)]
Pw (#/ft) =2,318 Pf (#/ft) =94 P (#/ft) = 2,411
w (#/ft2) =13.1 M (in-#/ft) = 4,513
fa (psi) =40 ≤
Fa (psi) =269 OK
fa + fm (psi) =199 ≤
Fm (psi) =675 OK
fs (psi) =5,801 ≤
Fs (psi) =32,000 OK
Uncracked Section Properites
Spacing of Bond Beams (in)
Project: J4K - Rexburg, ID
Project Number: 2100882
Designer: rdm
Date: 7/12/21
CMU Jamb Design with 2.70 max. scale factor at North/South walls
Input Data - 2018 IBC Allowable Stress Design (Basic Load Combinations)
Masonry Beam
CASCOLic. # : KW-06009540
DESCRIPTION:Masonry Lintel with 10'-0" span
Title Block Line 6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24
File: J4K - Rexburg, ID.ec6
Calculations per TMS 402-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : ASCE 7-16
Code References
General Information
1,500.0
32,000.0
750.0 Thickness 8 in Top Clear 14.0 in
End Fixity Pin-Pin
Bar Spacing 5.0 in
Equiv. Solid Thick 7.60 in
Wall Weight 84.0 psf
E 1,125.0 ksi
n 25.778
Note! Shear calculated at "d/2" from edge of beam
Lateral Wall Weight Seismic Factor 0.330
Calculate vertical beam weight ? Yes
Beam is Fully Braced ? Yes
Lateral Wind Load 183.0 psf
Shear Reinf Bar Size 5#
Shear Reinf Bar Spacing 18.0 in
Block Type Normal Wt
Btm Clear 2.0 in1.0
# Bar Sets 2
psi ftClear Span 10.0 Rebar Size 5f'm
Fs psi Beam Depth 1.330 ft # Bars E/F 1
Em = f'm *
Wall Wt Mult
Uniform Loads
10.0 0.50ft
ft
ft
ft
Start X End X Dead Load L : Floor Live Lr : Roof Live S : Snow W : Wind E : Earthquake
ft#1 k/ft
#2 k/ftft
ft#3 k/ft
k/ftft#4
Design OKDESIGN SUMMARY
Maximum Stress Ratios...Vertical Lateral SRSS Combination
fb/Fb 0.2494 0.2788 0.3741 : 1.00
fv/Fv 0.1611 0.1871 0.2469 : 1.00
Maximum Moment Actual Allowable
Vertical Loads 3.750k-ft 15.037k-ft
for Load Combination : +0.60W
Lateral Loads 1.825k-ft 6.545
k-ft
for Load Combination : +0.60W
Maximum Shear Actual Allowable
Vertical Loads 12.477psi 77.460psi
for Load Combination : +0.60W
Lateral Loads 7.248psi 38.730psi3.507 k-ftMinimum Mn = 1.3 * Fcr * S =for Load Combination : +0.60W
Vertical Strength
As 0.620 in^2
rho 0.005825
np 0.1501
k : ((np)^2+2np)^.5-np 0.4180
j = 1 - k/3 0.8607
M:mas=Fb k j b d^2/2 15.037 k-ft
M:Stl = Fs As j d 19.864 k-ft
Lateral Strength (Checking lateral bending for span)
As 0.620in^2
rho 0.006154
np 0.1586
k : (np^2+2np)^.5-np 0.4265
j = 1 - k/3 0.8578
M:mas=Fb k j b d^2/2 6.545 k-ft
M:Stl = Fs As j d 8.953 k-ft
NOMINAL THICKNESS (in) 8 Wall height (ft) 9.0
Depth of block (in) 7.625 Parapet height (ft) 11.7
Face shell thickness (in) 1.250 GRAVITY LOADS P (lb/ft)
Web thickness (in) 1.000 Dead Load 60
Block Density (pcf) 135 Roof Live or Rain Load 80
Grout Density (pcf) 145 Roof Snow Load 208
Grouting Partial Flat Roof Snow Load (psf) 35
96 Ledger Eccentricity (in) 2.0
f'm (psi)1,500 LATERAL LOADS Unif Load (psf)
Em = 900 f'm (psi)1,350,000 Ultimate Wind 32.6
fy (psi)60,000 Design Response, Sds 0.368
Es (psi)29,000,000 Vertical Design Response, S dsv 0.368
n = Es/Em 21.48 Occupancy Category II
Vertical Bar Size 5 Importance Factor, I 1.00
Vertical Bar Spacing (in) 8 Seismic Load Coefficient, 0.40 I(Sds) > 0.10 0.15
Layers of Reinforcing 1
Seismic, Fp = Load coefficient * weight 12.6
Depth to Reinforcing (in) 3.81 Seismic Design Category D
72 Lap Splice Length (in)45 Seismic Reliability Factor, 1.0
Depth to NA (in) 1.821 SCALING FACTOR 3.70
Itr (in4/ft)63.77 (for wall weight and lateral loads only)
As (in2/ft)0.465
Avg Weight Minimum Net Section Maximum Net Section Average Net Section
(psf)A (in2/ft)Ig (in4/ft)A (in2/ft) I (in
4/ft) A (in
2/ft) I (in
4/ft)r (in)
85.8 91.5 443 91.5 443 91.5 443 2.2
D + (Lr or S or R)
Pw (#/ft) =5,132 Pf (#/ft) =268 P (#/ft) = 5,400
w (#/ft2) =0 M (in-#/ft) = 268
fa (psi) =59 ≤
Fa (psi) =329 OK
fa + fm (psi) =67 ≤
Fm (psi) =675 OK
fs (psi) =180 ≤
Fs (psi) =32,000 OK
D + 0.6W
Pw (#/ft) =5,132 Pf (#/ft) =60 P (#/ft) = 5,192
w (#/ft2) =72.4 M (in-#/ft) = 8,853
fa (psi) =57 ≤
Fa (psi) =329 OK
fa + fm (psi) =310 ≤
Fm (psi) =675 OK
fs (psi) =5,939 ≤
Fs (psi) =32,000 OK
D + 0.75[0.6W + (Lr or S or R)]
Pw (#/ft) =5,132 Pf (#/ft) =216 P (#/ft) = 5,348
w (#/ft2) =54.3 M (in-#/ft) = 6,811
fa (psi) =58 ≤
Fa (psi) =329 OK
fa + fm (psi) =253 ≤
Fm (psi) =675 OK
fs (psi) =4,569 ≤
Fs (psi) =32,000 OK
(1 + 0.14Sdsv)D + 0.7Fp
Pw (#/ft) =5,397 Pf (#/ft) =63 P (#/ft) = 5,460
w (#/ft2) =32.7 M (in-#/ft) = 4,037
fa (psi) =60 ≤
Fa (psi) =329 OK
fa + fm (psi) =175 ≤
Fm (psi) =675 OK
fs (psi) =2,708 ≤
Fs (psi) =32,000 OK
(1 + 0.105Sdsv)D + 0.75[0.7Fp + 0.75(0.2S)]
Pw (#/ft) =5,331 Pf (#/ft) =94 P (#/ft) = 5,424
w (#/ft2) =24.5 M (in-#/ft) = 3,074
fa (psi) =59 ≤
Fa (psi) =329 OK
fa + fm (psi) =147 ≤
Fm (psi) =675 OK
fs (psi) =2,062 ≤
Fs (psi) =32,000 OK
Uncracked Section Properites
Spacing of Bond Beams (in)
Project: J4K - Rexburg, ID
Project Number: 2100882
Designer: rdm
Date: 7/12/21
CMU Jamb Design with 3.70 max. scale factor at 1'-6" wide , between windows on South wall
Input Data - 2018 IBC Allowable Stress Design (Basic Load Combinations)
12 Sunnen Drive, Suite 100
St. Louis, MO 63143
Project:No.
Subject:
By: Date:
Just4Kids -Rexburg, ID 2100882
Foundation Design
KMB 07/23/21 Page 1 of 3
Exterior Footing Design
(Stem wall footing)
Properties:
Concrete Strength:≔f'c 4000 ――lb
in 2 Concrete Weight:≔ωc 150 ――lb
ft 3
Grade 60 reinforcement ≔fy 60000 ――lb
in 2 Footing Height:≔h 12 in
Tributary Width:≔w +22 ft 8 in
Soil bearing pressure:≔qnet 2000 ――lb
ft 2(Geotechnical Report)
Concrete Modulus of Elasticity:≔Ec 3000000 ――lb
in 2
Steel Modulus of Elasticity:≔Es 29000000 ――lb
in 2
Applied Loads:
Roof Dead Load:≔DL =⋅18 ――lb
ft 2 w 408 ―lb
ft Roof Rain Load:≔RL 0 ―lb
ft
Roof Live Load:≔Lr =⋅20 ――lb
ft 2 w 453.3 ―lb
ft Exterior wall Wt
(including stem wall):
≔Wwt +1635 ―lb
ft 100 ―lb
ft
Roof Snow Load: ≔SL =⋅56 ――lb
ft 2 w 1269.3 ―lb
ft Trench Footing Wt.:≔FDL 150 ――lb
ft 2(based upon a 1'-0" strip)
Load Combinations:(ACI 318-14, Chapter 5, Table 5.3.1)
≔U1 =⋅1.4 ⎛⎝+DL Wwt⎞⎠3000.2 ―lb
ft
≔U2 =+⎛⎝⋅1.2 ⎛⎝+DL Wwt⎞⎠⎞⎠⎛⎝⋅0.5 Lr⎞⎠2798 ―lb
ft ≔U5 =+⎛⎝⋅1.2 ⎛⎝+DL Wwt⎞⎠⎞⎠⎛⎝⋅1.6 Lr⎞⎠3297 ―lb
ft
≔U3 =+⎛⎝⋅1.2 ⎛⎝+DL Wwt⎞⎠⎞⎠⎛⎝⋅0.5 SL⎞⎠3206 ―lb
ft ≔U6 =+⎛⎝⋅1.2 ⎛⎝+DL Wwt⎞⎠⎞⎠⎛⎝⋅1.6 SL⎞⎠4603 ―lb
ft
≔U4 =+⎛⎝⋅1.2 ⎛⎝+DL Wwt⎞⎠⎞⎠⋅0.5 RL 2572 ―lb
ft ≔U7 =+⎛⎝⋅1.2 ⎛⎝+DL Wwt⎞⎠⎞⎠⎛⎝⋅1.6 RL⎞⎠2572 ―lb
ft
≔U U1 U2 U3 U4
U5 U6 U7 0
⎡
⎢⎣
⎤
⎥⎦
=max ⎛⎝U⎞⎠4603 ―lb
ft
Footing Design:
12 Sunnen Drive, Suite 100
St. Louis, MO 63143
Project:No.
Subject:
By: Date:
Just4Kids -Rexburg, ID 2100882
Foundation Design
KMB 07/23/21 Page 2 of 3
Footing Design:
Footing design is based upon a 1'-0" strip
Required footing area =>≔Af =―――――
⎛⎝++DL Wwt SL⎞⎠
qnet
1.7 ft
Footing width required =>≔WGB =Af 1.7 ft
Footing width provided =>≔W'GB 2.5 ft
Soil Reaction due to factored loads:
≔q's =―――max ⎛⎝U⎞⎠
W'GB
1841 ――lb
ft 2 =if ⎛⎝,,<q's qnet “OK”“NG”⎞⎠“OK”
Minimum reinforcement:
Provide minimum longitudinal reinforcement based upon minimum shrinkage and
temperature reinforcement as stated in ACI 318 -14 Chapter 24, Table 24.4.3.2
#5 Longitudinal bars ≔Abar 0.31 in 2
Minimum temperature reinforcement =>≔As =⋅⋅0.0018 h WGB 0.4 in 2
Number of bars required =>≔n =――As
Abar
1.4
Number of bars provided =>≔np 3 (3 bars bottom)
Area of steel provided =>≔Ap =⋅np Abar 0.9 in 2
=if ⎛⎝,,>Ap As “OK”“NG”⎞⎠“OK”
Therefore, use 1'-0" x 2'-6" stem wall footing with (3) #5 longitudinal bars bottom
Exterior Footing at Girder Bearing
12 Sunnen Drive, Suite 100
St. Louis, MO 63143
Project:No.
Subject:
By: Date:
Just4Kids -Rexburg, ID 2100882
Foundation Design
KMB 07/23/21 Page 3 of 3
Exterior Footing at Girder Bearing
(Stem wall footing)
Properties:
Concrete Strength:≔f'c 4000 ――lb
in 2 Concrete weight:≔ωc 150 ――lb
ft 3
Grade 60 reinforcement ≔fy 60000 ――lb
in 2 Footing Height:≔hf 12 in
Soil bearing pressure:≔qnet 2000 ――lb
ft 2 Footing Width:≔wf 36 in
(Geotechnical report)
Concrete Modulus of Elasticity:≔Ec 3000000 ――lb
in 2 Stem Wall Height:≔hs 48 in
Steel Modulus of Elasticity:≔Es 29000000 ――lb
in 2 Stem Wall Width:≔ws 8 in
Footing Width, try:≔w 4 ft
Applied Loads:
Truss Girder Dead Load:≔DL 4358 lb Exterior wall Wt
(including stem wall):
≔Wwt =⋅⎛
⎜⎝
+1635 ―lb
ft 100 ―lb
ft
⎞
⎟⎠
w 6940 lb
Truss Girder Live Load:≔Lr 6413 lb
Trench Footing Wt.:≔FDL 150 ――lb
ft 2Truss Girder Snow Load:≔SL 12184 lb (based upon a 1'-0" strip)
Load Combinations:(ACI 318-14, Chapter 5, Table 5.3.1)
≔U1 =⋅1.4 ⎛⎝+DL Wwt⎞⎠15817.2 lb
≔U2 =+⎛⎝⋅1.2 ⎛⎝+DL Wwt⎞⎠⎞⎠⎛⎝⋅0.5 Lr⎞⎠16764 lb ≔U4 =+⎛⎝⋅1.2 ⎛⎝+DL Wwt⎞⎠⎞⎠⎛⎝⋅1.6 Lr⎞⎠23818 lb
≔U3 =+⎛⎝⋅1.2 ⎛⎝+DL Wwt⎞⎠⎞⎠⎛⎝⋅0.5 SL⎞⎠19650 lb ≔U5 =+⎛⎝⋅1.2 ⎛⎝+DL Wwt⎞⎠⎞⎠⎛⎝⋅1.6 SL⎞⎠33052 lb
≔U U1 U2 U3 U4
U5 0 0 0
⎡
⎢⎣
⎤
⎥⎦=max ⎛⎝U⎞⎠33052 lb
Soil Reaction due to factored loads:
≔q's =――――++DL Wwt SL
⋅w wf
1957 ――lb
ft 2 =if ⎛⎝,,<q's qnet “OK”“NG”⎞⎠“OK”