Loading...
HomeMy WebLinkAboutSTRUCTURAL CALCS - 21-00586 - Just4Kids Pediatric Urgent CareSTRUCTURAL CALCULATIONS for SALEM HIGHWAY U.S. 20 ARTCO BUSINESS PARK – BLOCK 1, LOT 2 REXBURG, ID 83440 Project No. 2100882 SUBMITTAL DATE: July 27, 2021 12 Sunnen Drive, Suite 100 St. Louis, MO 63143 7/27/21 3.0 (psf) 2.0 (psf) 2.5 (psf) 2.5 (psf) 5.0 (psf) TOTAL 15.0 (psf) R1 =1 R1 = R1 =0.6 R2 =1 R2 =1.2 - 0.05F For 4 < F < 12 R2 =0.6 For F ≥ 12 100 year - 1 hour rainfall = 1.50 in/hour (Figure 1611.1) 100 year - 15 minute rainfall = 0.00 in/hour (From NOAA precipitaion chart) Static head, ds =1.00 in Hydraulic head of overflow, dh =2.00 in Depth of water at drain, ds + dh =3.00 in Rain Load, R = 5.2(ds + dh) =15.6 psf (Equation 16-36) Flat-Roof Snow Load: 50.0 (psf) (Figure 1608.2) pf, min =20.0 (psf) (Section 7.3.4) f 2 =0.7 Roof configuration does not shed snow off of the structure 1.0 (Table 7-2) 1.00 (Table 7-3) II (Table 1604.5 or 1.5-1) 1.0 (Table 7-4 or 1.5-2) pf = 0.7CeCtIspg =35.0 (psf) Includes Rain-On-Snow Surcharge of 0 (psf) (Section 7.10) Thermal Factor, Ct = Risk Category Importance Factor, Is = (NOTE: Consider drift loads per Section 7.7 & 7.8 as required) (NOTE: Evaluate susceptible bays for ponding instability in accordance with ASCE 7-10, Secton 8.4) (NOTE: Evaluate susceptible bays for ponding instability in accordance with ASCE 7-10, Secton 8.4) ROOF UNIFORM SNOW LOADS (PER ASCE 7-16, Secton 7) Ground Snow Load, pg = Exposure Factor, Ce = Project: J4K - Rexburg, ID Project Number: 2100882 Designer: rdm Date: 7/12/21 Page: 1 of 6 GlueLam Girders GRAVITY LOADS ROOF DEAD LOADS Roof Membrane & Insulation 19/32 plywood sheathing L 0 = 20 psf (Table 4-1, Ordinary flat, pitched roof) L r = L 0 R 1 R 2 = 20R 1 R 2 Mech/Plumb/Elec/Ceiling/Collateral For At ≤ 200 ft2 (NOTE: Where uniform roof live loads are reduced to less than 20 psf for structural members arranged so as to create continuity, the reduced live load shall be applied to adjacent spans or to alternate spans, whichever creates the greatest unfavorable effect) RAIN LOADS (Per 2018 IBC, Section 1611 and ASCE 7-16, Chapter 8) BUILDING LOAD SUMMARY (2018 IBC) For At ≥ 600 ft2 For F ≤ 4 1.2 - 0.001At 14" TJI wood joist ROOF LIVE LOADS (Minimum Per ASCE 7-16, Section 4.8) For 200 ft2 < At < 600 ft2 Limitations (Secton 28.5.2) - Building is: A simple diaphragm, low-rise, enclosed, regular shaped building Not classified as flexible or having response characteristics making it subject to across wind loading An approximately symmetrical cross section with either a flat or gable roof with ≤ 45o Exempt from torsional load cases of Note 5 of Figure 28.3-1 II (Table 1.5-1) 115 mph (Figure 26.5-1B) 89 mph (2018 IBC Table 1609.3.1) Exposure Category: C (Section 26.7.3) Topographic Factor, Kzt =1.00 (Section 26.8) 46.0 ft 15.0 ft 9.20 ft (Figure 28.5-1) Height And Exposure Adjustment Factor,  =1.21 (Figure 28.5-1) Interior Zone (C) 13.9 16.8 End Zone (A) (2)21.0 25.4 Maximum Windward Roof Pressures Interior Zone (G) -17.5 -21.2 End Zone (E) (2)-25.2 -30.5 Maximum Leeward Roof Pressures Interior Zone (H) -11.1 -13.4 End Zone (F) (2)-14.3 -17.3 Overhang Windward (EOH) (2)-35.3 -42.7 Leeward (FOH) (2)-27.6 -33.4 Page: 2 of 6 (3) End zone applies for width of end zone, 2a (figure 28.5-1) Ultimate Design Wind Speed, V ult = (1) All wind pressures shown are ultimate Project: J4K - Rexburg, ID Project Number: 2100882 PART 2: ENCLOSED SIMPLE DIAPHRAGM LOW-RISE BUILDINGS Nominal Design Wind Speed, V asd = Date: 7/12/21 Risk Category: Designer: rdm ASCE 7-16 - CHAPTER 28 - ENVELOPE PROCEDURE DESCRIPTION LATERAL LOADS: MWFRS ULTIMATE WIND PRESSURES Width Of End Zone, 2a = Eave Height = NOTE: Values shown from Figure 28.6-1 for  ≤ 5o Least Horizontal Dimension Of Building = MWFRS ULTIMATE DESIGN WIND PRESSURES, p s VERTICALp s = l K zt p s30 (Equation 28.6-1) BUILDING LOAD SUMMARY (2018 IBC)Base, ps30Project Specific, psHORIZONTAL(1)(2) The load effect shall not be less than a minimum load by assuming the pressures for Zones A & C equal to +16 psf, zones B & D equal to +8 psf, while assuming ps for Zones E, F, G and H are equal to 0. (Section 28.5.4) ULTIMATE DESIGN PRESSURE (psf) Wind Directionality Factor, Kd =0.85 Table 26.6-1 GCpm =1.5 -1.0 Parapet Height (above grade), z = 20.7 0.0 0.0 0.0 ft Kh =0.90536 #N/A #N/A #N/A Table 26.10-1 qp = 0.00256KhKztKdV2 =26.1 #N/A #N/A #N/A psf (Equation 26.10-1) Parapet pressure, pp =39.1 #N/A #N/A #N/A Windward (psf) -26.1 #N/A #N/A #N/A Leeward (psf) (1) All wind pressures shown are ultimate Porosity of parapet = Solid Porous Internal pressure coefficient, Gcpi =0 0.18 Parapet Height (above grade), z =20.7 0.0 0.0 0.0 ft Kh =0.90536 #N/A #N/A #N/A Table 26.10-1 qZ = 0.00256KhKztKdV2 =26.1 #N/A #N/A #N/A psf (Equation 26.10-1) Solid Parapet Internal, pi = ±0.0 #N/A #N/A #N/A psf Porous Parapet Internal, pi = ±4.7 #N/A #N/A #N/A psf (1) All wind pressures shown are ultimate See Figure 30.8-1 for application of parapet wind loads WINDWARD PARAPET - CASE A Apply positive wall pressure from Zones 4 or 5 to windward face Apply negative roof pressure from Zones 2 or 3 as negative horizontal pressure to leeward face Apply internal pressure to each face as appropriate LEEWARD PARAPET - CASE B Apply positive wall pressure from Zones 4 or 5 to windward face Apply negative wall pressure from Zones 4 or 5 as negative pressure to leeward face Apply internal pressure to each face as appropriate LATERAL LOADS: COMPONENTS AND CLADDING ULTIMATE WIND PRESSURES ASCE 7-16 - CHAPTER 30: PART 6: 30.8 PARAPETS Page: 3 of 6 BUILDING LOAD SUMMARY (2018 IBC) For low-rise buildings desinged using the Envelope Procedure use Section 28.3.2 for Parapets Project: J4K - Rexburg, ID LATERAL LOADS: MWFRS ULTIMATE WIND PRESSURES ASCE 7-16 - CHAPTER 29: OTHER STRUCTURES AND BUILDING APPURTENANCES - 29.6 PARAPETS Project Number: 2100882 Designer: rdm Date: 7/12/21 Limitations (Secton 30.4.1) - Building is: A regular shaped building with mean roof height ≤ 60 feet Enclosed and conforms to the wind-borne debris provisions of Secion 26.12.3 Not subject to response characteristics making it subject to across wind loading Either a flat roof, a gable roof with  ≤ 45o or a hip roof with  ≤ 27o Width Of End Zone, a = 4.60 ft (Figure 30.3-1)WindwardLeewardWindwardLeeward1 10 9.7 -37.9 16.0 -45.9 1 20 9.1 -35.4 16.0 -42.8 1 50 8.3 -32.1 16.0 -38.8 1 100 7.7 -29.6 16.0 -35.8 2 10 9.7 -50.0 16.0 -60.5 2 20 9.1 -46.8 16.0 -56.6 2 50 8.3 -42.5 16.0 -51.4 2 100 7.7 -39.3 16.0 -47.6 3 10 9.7 -68.1 16.0 -82.4 3 20 9.1 -61.7 16.0 -74.7 3 50 8.3 -53.2 16.0 -64.4 3 100 7.7 -46.8 16.0 -56.6 2 10 -34.3 -41.5 2 20 -33.7 -40.8 2 50 -32.9 -39.8 2 100 -32.3 -39.1 3 10 -56.5 -68.4 3 20 -44.3 -53.6 3 50 -28.3 -34.2 3 100 -16.1 -19.5 4 10 23.8 -25.8 28.8 -31.2 4 20 22.7 -24.7 27.5 -29.9 4 50 21.3 -23.3 25.8 -28.2 4 100 20.2 -22.2 24.4 -26.9 5 10 23.8 -31.9 28.8 -38.6 5 20 22.7 -29.7 27.5 -35.9 5 50 21.3 -26.9 25.8 -32.5 5 100 20.2 -24.7 24.4 -29.9 Eff. Wind Area (sqft) ASCE 7-16 - CHAPTER 30: PART 2: LOW-RISE BUILDINGS (SIMPLIFIED) p net = l K zt p s30 (Equation 30.4-1) BUILDING LOAD SUMMARY (2018 IBC)RoofsProject Number: 2100882 Project: J4K - Rexburg, ID Page: 4 of 6 Designer: rdm Corner Zone (3)(2) End zone applies for width of edge strip, a (3) Corner zone size = a x a (1) All wind pressures shown are ultimateWallsEnd Zone (2)End Zone (2)Corner Zone (3)COMPONENTS AND CLADDING ULTIMATE DESIGN WIND PRESSURES, p net Interior ZoneZone Project Specific, pnet End Zone (2)Roof OverhangsBase, ps30 LATERAL LOADS: COMPONENTS AND CLADDING ULTIMATE WIND PRESSURES Date: 7/12/21 Interior Zone NOTE: Values shown from Figure 30.4-1 for  ≤ 7o 0.366 (Figure 22-1) 0.142 (Figure 22-2) Long period transition period, TL (sec) =12 (Figures 22-14) D (Table 20.3-1) I (Table 1.5-1) 1.0 (Table 1.5-2) Fa =1.507 (Table 11.4-1)SMS = Fa x Ss =0.552 (Equation 11.4-1) Fv =2.316 (Table 11.4-2)SM1 = Fv x S1 =0.329 (Equation 11.4-2) Design Spectral Response Acceleration Parameters: SDS = 2/3 SMS =0.368 (Equation 11.4-3) SD1 = 2/3 SM1 =0.219 (Equation 11.4-4) Seismic Design Category:D (Table 11.6-1 & 11.6-2) Bearing Wall System?Yes 5.00 (Table 12.2-1) 2.50 (Table 12.2-1) 3.50 (Table 12.2-1) Seismic Base Shear: V=Cs*W (Equation 12.8-1)Csmin =0.016 (Equations 12.8-5 & 12.8-6) T = 0.02hn 0.75 =0.152 Csmax =0.288 (Equations 12.8-3 & 12.8-4) SDS/(R/Ie) =0.074 (Equation 12.8-2) Cs =0.074 Roof Area = 4,784 (ft2) Snow Load = 33 (kips) 0.2 pf if ground snow > 30 psf *Total Roof Weight = 105 (kips) Length1=104.0 (ft) Height1=19.7 (ft) Weight 1=70.0 (psf) Length2=46.0 (ft) Height2=19.7 (ft) Weight 2=70.0 (psf) Length3=104.0 (ft) Height3=19.7 (ft) Weight 3=70.0 (psf) Length4=46.0 (ft)Height4=19.7 (ft)Weight 4=70.0 (psf) Total Exterior Wall Weight = 413.1 (kips) Seismic Base Shear, V = 38.1 (kips) (Ultimate) Seismic Base Shear, V = 26.7 (kips) (ASD) Soil Site Class: Page: 5 of 6 1.0 Sec. Spectral Response Acceleration, S1 = Seismic Importance Factor, Ie = Adjusted Spectral Response Acceleration Parameters: Project: J4K - Rexburg, ID (See Section 14.4 for detailing requirements) Risk Category: Project Number: 2100882 Exterior Walls: Basic Seismic-Force-Resisting System: Building Weights: Designer: rdm Date: 7/12/21 BUILDING LOAD SUMMARY (2018 IBC) SEISMIC DESIGN DATA: LATERAL LOADS: SEISMIC LOADS (ASCE 7-16, CHAPTER 12) 0.2 Sec. Spectral Response Acceleration, Ss = Special Reinforced Masonry Shear Walls System Overstrength Factor, Ωo = Response Modification Factor, R = Deflection Amplification Factor, Cd = SEISMIC DESIGN LATERAL FORCE (Eq. Lateral Force Procedure, ASCE 7-16 Section 12.8): Roof: Roof Diaphragm (ASCE 7-16 Section 12.10.1): 0.074 Wp 0.147 Wp Cs =0.074 Fp =0.074 x (Weight of Diaphragm and Attached Components) Design of Structural Walls (ASCE 7-16 Section 12.11.1) Fp = 0.4*Ie*Sds*w ≥ 0.1*w =0.147 x (Weight of Wall) Anchorage of Structural Walls to Flexible Diaphragms (ASCE 7-16 (Section 12.11.2) Dipahragm Span, Lf =104.0 ft ka = 1.0 + Lf/100 ≤ 2.0 =2.0 Fp(min) = 0.2kaIewp =0.400 0.4SDSkaIewp =0.294 Fp =0.400 x (Weight of Wall Tributary to Support) (NOTE: See Section 13.1.4 for exemptions) Elements attached at roof level: 0.11033 0.59 2.5 1.0 1.0 1.0 1.0 2.5 2.5 2.5 1.5 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.44 0.18 0.18 0.29 0.18 Fp =0.44 0.18 0.18 0.29 0.18 (0.4*a p *S DS *W p )(1+2*z/h )/(R p /I p ) = Ratio of point of attachment to roof height, z/h = Component Importance Factor, Ip = Component Response Modification Factor, Rp = Fp(min) = 0.3*S ds *I p *W p = Fp(max) = 1.6*S ds *I p *W p = Unrein. Int. Masonry Other Int. Partitions Component Amplification Factor, ap = Braced Parapet Page: 6 of 6 Date: 7/12/21 NONSTRUCTURAL COMPONENT LOAD EFFECTS (ASCE 7-16, Section 13.3): Ext. Wall Element Unbraced Parapet Project: J4K - Rexburg, ID Fp max = 0.4*IE*SDS*wp =Fp min = 0.2*Ie*SDS*wp = STRUCTURAL COMPONENT LOAD EFFECTS (ASCE 7-16 Section 12.10) NOTE: See Section 12.11.2.2 for additional requirements for SDC C thru F LATERAL LOADS: SEISMIC LOADS (CONTINUED) Project Number: 2100882 Designer: rdm BUILDING LOAD SUMMARY (2018 IBC) FLAT ROOF AND DRIFTING SNOW LOADS PER ASCE 7-16 Ground snow load, pg (psf)50 Risk Category (Table 1.5-1) I II III IV Exposure Factor, Ce 1.0 (See Table 7.3.1)Snow Importance Factor, Is 0.80 1.00 1.10 1.20 Thermal Factor, Ct 1.0 (See Table 7.3.2) Risk Category II Snow Density, pcf 20.50 Importance Factor, Is 1.00 Height of balanced snow, hb (ft)1.71 (For drift conditions) Minimum low-slope roof snow load, pm (psf)20.0 Rain on Snow Surcharge (psf) 0.0 Low-slope Roof Snow Load, pf (psf)35.0 Flat Roof Snow Load, pf (psf)35.0 (To be combined with drift loads) Leeward Drift Cases Height to Upper Roof, h (ft) Length of Upper Roof (ft) Clear height, hc (ft) hc/hb Max Height of Drift, hdmax (ft) Height of Drift (ft) Width of drift (ft) Max intensity of drift, pd (psf) Windward Drift Cases Typical Parapet Along N/S Typical Parapet Along E/W Tower Along N/S Tower Along E/W Vestibule Height of Obstruction, h (ft) 3.5 3.5 5.6 5.6 8.7 Length of Upwind Roof (ft) 45 100 45 100 10 Clear height, hc (ft)1.79 1.79 3.88 3.88 6.96 hc/hb 1.05 1.05 2.27 2.27 4.08 Max Height of Drift, hdmax (ft)2.06 3.03 2.06 3.03 1.31 Height of Drift (ft) 1.79 1.79 2.06 3.03 1.31 Width of drift (ft)7.17 7.17 8.25 12.14 5.24 Max intensity of drift, pd (psf)36.75 36.75 42.30 62.21 26.83 (Need not be combined with drift, sliding, unbalanced or partial loads) (Need not be combined with drift, sliding, unbalanced or partial loads) (Need not be combined with drift, sliding, unbalanced or partial loads) Project: J4K - Rexburg, ID Project Number: 2100882 Designer: rdm Date: 7/12/21 Client:Just4Kids Project:Rexburg, ID Proj #2100882 By: rdm Date:7/12/21 MWFRS (Enclosed Buildings) - (Envelope Procedure) -ASCE 7-16 Chapter 28 1. Design Wind Pressures: Ultimate Wind Speed (mph):≔V 115 mph Importance Factor:≔I 1.0 Exposure Category:C End Zone Pressure (Ultimate):≔qe 25.4 ――lb ft 2 Interior Zone Pressure (Ultimate): ≔qi 16.8 ――lb ft 2 Combined Net Parapet Pressure (Ultimate):≔qpww 39.1 ――lb ft 2 ≔qplw -26.1 ――lb ft 2 ≔qp =+qpww abs ⎛⎝qplw⎞⎠65.2 ――lb ft 2 Building length:≔L 104 ft Least Building width:≔B 46 ft Building eave height:≔hw 15 ft Parapet height =>(average)≔hp 5.67 ft Vestibule eave height:≔hv 12 ft ≔a1 =⋅0.1 B 4.6 ft ≔a2 =⋅0.4 hw 6 ft ASCE 7-16, Figure 28.5-1, Notation "a" ≔a3 =⋅0.04 B 1.84 ft ≔a3 3 ft Page 1 of 10 Client:Just4Kids Project:Rexburg, ID Proj #2100882 By: rdm Date:7/12/21 2. Wind -Roof Diaphragm Analysis (east/west direction): a. Diaphragm Load: Diaphragm load interior zone:≔WDi =⋅qi ⎛ ⎜⎝―hw 2 ⎞ ⎟⎠126 ―lb ft Diaphragm load end zone:≔PDe =⋅⋅⎛⎝-qe qi⎞⎠ ⎛ ⎜⎝―hw 2 ⎞ ⎟⎠ ⎛⎝⋅2 a1⎞⎠593.4 lb Diaphragm load parapet:≔Wp =⋅qp hp 369.68 ―lb ft Diaphragm load vestibule:≔Wvest =⋅qe ―hv 2 152.4 ―lb ft ≔Rew =++⎛ ⎜⎝――――― ⎛⎝⋅⎛⎝+WDi Wp⎞⎠L⎞⎠ 2 ⎞ ⎟⎠PDe ⎛⎝⋅Wvest 10 ft⎞⎠27892.97 lb Diaphragm shear forces:≔vew =⎛ ⎜⎝⋅――Rew B 0.6⎞ ⎟⎠364 ―lb ft Allowable diaphragm shear: ≔vallowable =――――― ⋅⎛ ⎜⎝800 ―lb ft ⎞ ⎟⎠0.92 2 368 ―lb ft 2015 NDS, SDPWS,Table 4.2A & subnote 1 & 3 =if ⎛⎝,,<vew vallowable “OK”“NG”⎞⎠“OK” 19/32" APA rated plywood sheathing, Exposure 1, span rating 32/16. Nailed with minimum 10d nails @ 6" o.c. at all panel edges and 12" o.c. field area (unblocked). Equivalent uniform load:≔Weqew =⋅――― ⎛⎝⋅2 Rew⎞⎠ L 0.6 321.84 ―lb ft Diaphragm moment:≔Mew =―――― ⎛⎝⋅Weqew L 2 ⎞⎠ 8 435130 ⋅lb ft Diaphragm chord Tension force:≔Tew =――Mew B 9459 lb Diaphragm chord Compression force:≔Cew =Tew 9459 lb Page 2 of 10 Client:Just4Kids Project:Rexburg, ID Proj #2100882 By: rdm Date:7/12/21≔Cew =Tew 9459 lb Diaphragm Chord :8" CMU Bond Beam Chord with #5 Bar continuous. ≔Ft 32000 ――lb in 2 #5 bar =>≔Abar 0.31 in 2 ≔As =――Tew Ft 0.3 in 2 =if ⎛⎝,,<As Abar “OK”“NG”⎞⎠“OK” Shear Wall Analysis (east/west direction): See attached sheet for shear wall anaysis for CMU walls 3. Wind -Roof Diaphragm Analysis (north/south direction): a. Diaphragm Load: Diaphragm load interior zone:≔WDi =⋅qi ⎛ ⎜⎝+―hw 2 hp ⎞ ⎟⎠221 ―lb ft Diaphragm load end zone:≔PDe =⋅⋅⎛⎝-qe qi⎞⎠ ⎛ ⎜⎝―hw 2 ⎞ ⎟⎠ ⎛⎝⋅2 a1⎞⎠593.4 lb Diaphragm load parapet:≔Wp =⋅⎛⎝-qp qi⎞⎠⎛⎝hp⎞⎠274.43 ―lb ft Diaphragm load vestibule:≔Wvest =⋅qe ―hv 2 152.4 ―lb ft ≔Rew =++⎛ ⎜⎝―――――⋅⎛⎝+WDi Wp⎞⎠B 2 ⎞ ⎟⎠PDe ⎛⎝⋅Wvest 10 ft⎞⎠13518 lb Diaphragm shear forces:≔vLew =⋅――Rew L 0.6 78 ―lb ft Allowable diaphragm shear: 2015 NDS, SDPWS,Table 4.2A & subnote 1 & 3≔vallowable =――――― ⋅⎛ ⎜⎝800 ―lb ft ⎞ ⎟⎠0.92 2 368 ―lb ft See north/south direction analysis for plywood deck information Equivalent uniform load:≔Weqew =⋅――― ⎛⎝⋅2 Rew⎞⎠ L 0.6 155.98 ―lb ft Diaphragm moment:≔Mew =―――― ⎛⎝⋅Weqew L 2 ⎞⎠ 8 210883 ⋅lb ft Diaphragm chord tension force:≔Tew =――Mew B 4584 lb ≔Cew =Tew 4584 lbDiaphragm chord Compression force:Page 3 of 10 Client:Just4Kids Project:Rexburg, ID Proj #2100882 By: rdm Date:7/12/21≔Tew =――Mew B 4584 lb Diaphragm chord Compression force:≔Cew =Tew 4584 lb Diaphragm Chord :8" CMU Bond Beam Chord with #5 Bar continuous. ≔Ft 32000 ――lb in 2 #5 bar =>≔Abar 0.31 in 2 ≔As =――Tew Ft 0.14 in 2 =if ⎛⎝,,<As Abar “OK”“NG”⎞⎠“OK” Shear Wall Analysis (east/west direction): See attached sheet for shear wall anaysis for CMU walls Page 4 of 10 Client:Just4Kids Project:Rexburg, ID Proj #2100882 By: rdm Date:7/12/21 SEISMIC FORCE RESISTIVE SYSTEM (SFRS) SEISMIC DESIGN CATAGORY (SDC) = D ASCE 7-16, Chapter 12 4. Lateral force (East/West):≔Cs 0.074 ≔SDS 0.368 ≔Ie 1 Total roof weight:≔Droof 105000 lb ≔VASD 26700 lb Total wall weight:≔Dwall 191756 lb Lateral force at roof diaphragm:≔Fx =⎛⎝Cs VASD⎞⎠1975.8 lb ASCE 7-16 Eq. 12.8-11 Lateral force at roof diaphragm (min.):≔Fxmin =⋅⋅⋅0.2 SDS Ie ⎛⎝+Droof Dwall⎞⎠21841 lb ASCE 7-16 Eq. 12.10-2 Lateral force at roof diaphragm (max.):≔Fxmax =⋅⋅⋅0.4 SDS Ie ⎛⎝+Droof Dwall⎞⎠43682 lb ASCE 7-16 Eq. 12.10-3 ≔A =if ⎛⎝,,<Fxmin Fx Fx Fxmin⎞⎠21841 lb ≔Bew =B 46 ft ≔B =if ⎛⎝,,>Fx Fxmin Fxmin Fx⎞⎠1976 lb ≔Few A B ⎡ ⎢⎣ ⎤ ⎥⎦=max ⎛⎝Few⎞⎠21841 lb Lateral force at roof diaphragm from vestibule:≔Fvestibule 1000 lb Diaphragm reaction:≔Rewseismic =+―――max ⎛⎝Few⎞⎠ 2 Fvestibule 11921 lb Diaphragm shear east/west direction: ≔νewseismic =⋅―――Rewseismic Bew 0.7 181 ―lb ft MWFRS diaphragm load in the north/south direction controls. See MWFRS diaphragm analysis above for roof deck requirements. Equivalent uniform load:≔Wewqsesimic =⋅―――max ⎛⎝Few⎞⎠ Bew 0.7 332 ―lb ft Diaphragm moment:≔Mewseismic =―――――― ⎛⎝⋅Wewqsesimic ⎛⎝L⎞⎠2 ⎞⎠ 8 449360 ⋅lb ft Diaphragm chord force:≔Tewseismic =―――Mewseismic Bew 9769 lb Page 5 of 10 Client:Just4Kids Project:Rexburg, ID Proj #2100882 By: rdm Date:7/12/21≔Tewseismic =―――Mewseismic Bew 9769 lb Diaphragm Chord :8" CMU Bond Beam Chord with #5 Bar continuous. ≔Ft 32000 ――lb in 2 #5 bar =>≔Abar 0.31 in 2 ≔As =―――Tewseismic Ft 0.305 in 2 =if ⎛⎝,,≤As Abar “OK”“NG”⎞⎠“OK” 5. Lateral force (North/south):≔Cs 0.074 ≔SDS 0.368 ≔Ie 1 Total roof weight:≔D'roof 105000 lb ≔Vbase 26700 lb Total wall weight:≔D'wall 84815 lb Lateral force at roof diaphragm:≔Fx =⎛⎝Cs Vbase⎞⎠1975.8 lb ASCE 7-16 Eq. 12.8-11 Lateral force at roof diaphragm (min.):≔Fxmin =⋅⋅⋅0.2 SDS Ie ⎛⎝+D'roof D'wall⎞⎠13970 lb ASCE 7-16 Eq. 12.10-2 Lateral force at roof diaphragm (max.):≔Fxmax =⋅⋅⋅0.4 SDS Ie ⎛⎝+D'roof D'wall⎞⎠27941 lb ASCE 7-16 Eq. 12.10-3 ≔A =if ⎛⎝,,<<Fxmin Fx Fxmax Fx Fxmin⎞⎠13970 lb ≔Bns 45 ft ≔B =if ⎛⎝,,>Fx Fxmax Fxmax Fx⎞⎠1976 lb ≔Fns A B ⎡ ⎢⎣ ⎤ ⎥⎦=max ⎛⎝Fns⎞⎠13970 lb Lateral force at roof diaphragm from vestibule:≔Fvestibule 1000 lb Diaphragm reaction:≔Rnsseismic =+―――max ⎛⎝Fns⎞⎠ 2 Fvestibule 7985 lb Diaphragm shear north/ south direction: ≔νnsseismic =⋅―――Rnsseismic L 0.7 54 ―lb ft MWFRS diaphragm load in the east/west direction controls. See MWFRS diaphragm analysis above for roof deck requirements.` ≔Wnsseismic =⋅――Fx Bns 0.7 30.7 ―lb ft Page 6 of 10 Client:Just4Kids Project:Rexburg, ID Proj #2100882 By: rdm Date:7/12/21 Equivalent uniform load:≔Wnsseismic =⋅――Fx Bns 0.7 30.7 ―lb ft Diaphragm moment:≔Mnsseismic =―――――― ⎛⎝⋅Wnsseismic ⎛⎝Bns⎞⎠2 ⎞⎠ 8 7780 ⋅lb ft Diaphragm chord force:≔Tnsw =―――Mnsseismic L 74.805 lb MWFRS controls over seismic, See MWFRS for shear wall design. 6. Design of wood ledger to support TJI's (Gravity & Wind): Try: 4"x6"≔b 3.5 in ≔d 5.5 in ≔A =⋅b d 19.25 in 2 ≔Sx =――⋅b d 2 6 17.65 in 3 ≔Ix =――⋅b d 3 12 48.53 in 4 Wood Properties: #2 Douglas Fir -Larch, 2" & Wider, 2015 NDS Supplement ≔Fb 900 ――lb in 2 ≔Fv 180 ――lb in 2 ≔Fc 1350 ――lb in 2 ≔Fcperp 625 ――lb in 2 ≔Ft 575 ――lb in 2 ≔E 1600000 ――lb in 2 ≔Emin 580000 ――lb in 2 Wood adjustment factors: ≔CD 1.15 ≔Cm 1.0 ≔Ct 1.0 ≔CF 1.0 ≔Ci 1.0 ≔CL 1.0 ≔Cfu 1.0 ≔Cr 1.15 Design Uniform Loads:≔wDL ⋅15 ――lb ft 2 ≔wSL ⋅52 ――lb ft 2 ≔wCCuplift 33 ――lb ft 2 ≔wTL =⋅⎛⎝+wDL wSL⎞⎠11.25 ft 753.75 ―lb ft Ledger Span =>≔L 4 ft ≔M =―――⋅wTL L 2 8 1507.5 ⎛⎝⋅lb ft⎞⎠≔fb =―M Sx 1025 ――lb in 2 Page 7 of 10 Client:Just4Kids Project:Rexburg, ID Proj #2100882 By: rdm Date:7/12/21 ≔F'b =⋅⋅⋅⋅Fb Cm Ct CD Cfu 1035 ――lb in 2 =if ⎛⎝,,<fb F'b “OK”“NG”⎞⎠“OK” ≔R =――⋅wTL L 2 1508 lb ≔fv =―R A 78.31 ――lb in 2 ≔F'v =⋅⋅⋅⋅Fv CD Cm Ct Ci 207 ――lb in 2 =if ⎛⎝,,<fv F'v “OK”“NG”⎞⎠“OK” Live Load Deflection ≔WSL =⋅⎛⎝⋅wSL 11.25 ft⎞⎠L 2340 lb ≔Δ =――――⋅⋅5 WSL ⎛⎝L⎞⎠3 ⋅384 E Ix 0.043 in ≔Δallowable =――L 360 0.13 in =if ⎛⎝,,<Δ Δallowable “OK”“NG”⎞⎠“OK” Total Load Deflection ≔WTL =⋅wTL L 3015 lb ≔Δ =――――⋅⋅5 WTL ⎛⎝L⎞⎠3 ⋅384 E Ix 0.056 in ≔Δallowable =――L 240 0.2 in =if ⎛⎝,,<Δ Δallowable “OK”“NG”⎞⎠“OK” Design anchorage to CMU wall: Anchor spacing =>≔Sbolt 4 ft Anchors are 3/4" dia. HILTI HAS Rods w/ HILTI HIT HY 270 adhesive, 6" min embed≔fbolt =R 1508 lb ≔α =――6 6.75 0.89 <= Embed adjustment ≔Ftension =⋅⎛⎝3810 lb⎞⎠α 3387 lb ≔Fshear =⋅⎛⎝4090 lb⎞⎠α 3636 lb Page 8 of 10 Client:Just4Kids Project:Rexburg, ID Proj #2100882 By: rdm Date:7/12/21 Check compression perpendicular to the grain at anchor: ≔Anet =0.75 in ⎛⎝b⎞⎠2.63 in 2 ≔fcperp =――R Anet 574 ――lb in 2 ≔F'cperp =⋅⋅⋅⋅Fb Cm Ct CD Cfu 1035 ――lb in 2 =if ⎛⎝,,≤fcperp F'cperp “OK”“NG”⎞⎠“OK” Wind uplift:≔wnetuplift =+-⎛⎝⋅wCCuplift 11.25 ft⎞⎠⎛⎝⋅⋅0.9 wDL 11.25 ft⎞⎠-219.38 ―lb ft The gravity load (DL+SL) is much greater than the wind uplift load (0.9DL+WL). By inspection the ledger size and anchorage is adequate. The "-" sign signifies upward force Tie down for the TJI roof joist to ledger: Joist spacing =>≔Sjoist 2 ft ≔Ljoist 22.5 ft ≔Fuplift =abs ⎛ ⎜⎝――――― ⎛⎝⋅wnetuplift Sjoist⎞⎠ 2 ⎞ ⎟⎠219 lb < 780 lbs allowable load for a Simpson "H8" 7. Anchorage of CMU to Diaphragm -Seismic: Anchorage top chord of TJI to CMU wall to transfer diaphragm load (east/west direction): ≔Sjoist 2 ft ≔Hwall 19.67 ft ≔Ie 1.0 ≔ka 2 < = See attached load summary sheet ≔DLwall =⋅70 ――lb ft 2 Sjoist 0.7 98 ―lb ft ≔Wwallweight =⋅DLwall ――Hwall 2 964 lb ≔Fseismic1 =⋅⋅⋅0.2 ka Ie Wwallweight 386 lb < = Controls ≔Fseismic2 =⋅⋅⋅0.4 SDS Ie Wwallweight 142 lb < 1055 lbs allowable load for a Simpson "PAI18" Purlin Anchors Page 9 of 10 Client:Just4Kids Project:Rexburg, ID Proj #2100882 By: rdm Date:7/12/21 Per ASCE 7-16, section 12.11.2.2, requires continuous ties between the diaphragm chords in addition to the plywood sheathing. Therefore, Simpson "PAI18" Purlin Anchors to be fastened to the top flange of each TJI roof joist and a Simpson "LSTA18" strap ties across the joist and top of GLUELAM beam to create a continuous connection across the roof. The TJI roof joists will act as a tension members in the East/West Direction. All fastening of Simpson products shall be installed on top of the wood members, not on top of the plywood sheathing. Anchorage top chord of TJI to CMU wall to transfer diaphragm load (north/south direction): ≔Stensionties 11.5 ft ≔Hwall 19.67 ft ≔Ie 1.0 ≔ka 2 < = See attached load summary sheet ≔DLwall =⋅⎛ ⎜⎝ 70 ――lb ft 2 Stensionties ⎞ ⎟⎠ 0.7 563.5 ―lb ft ≔Wwallweight =⋅DLwall ――Hwall 2 5542 lb ≔Fseismic1 =⋅⋅⋅0.2 ka Ie Wwallweight 2217 lb < = Controls ≔Fseismic2 =⋅⋅⋅0.4 SDS Ie Wwallweight 816 lb < 3610 lbs allowable load for a Simpson "HTT4" Tension Tie, 3840 lbs allowable load for Simpson "CMSTC16 Coil Strap w/ (40) 10d nails, 10" min lap distance. Design anchorage to CMU wall: Anchor spacing =>≔Sbolt 11.5 ft ≔fbolt =Fseismic1 2217 lb ≔Ftension 2840 lb ≔U =――fbolt Ftension 0.78 Anchors: 5/8" dia. HILTI HAS Rods w/ HILTI HIT HY 270 adhesive, 5-5/8" min embed For the North/South direction continuous tie, anchor a Simpson "HTT4" Tension Tie to the CMU wall, at 11'-6" o.c. max., with 5/8" dia. HILTI HAS Rod & HIT HY 270 Adhesive, 5-5/8" min. embed. Then, provide a simpson "MSTD" Marraige Stap to overlap with the "HTT4" and a CMSTC16 coil strap. The coil strap to extend continuously across the roof to the opposite side CMU wall where the same attachemnt to the CMU wall will occur. Wood 4x blocking to be installed between TJI's for the intire length of building and will be attached to the coil strap. All fastening of Simpson products shall be installed on top of the wood members, not on top of the plywood sheathing. Page 10 of 10 Project:No. Subject: By: Date: Just4Kids -Rexburg, ID 2100882 Roof Framing Design KMB 06/17/21 12 Sunnen Drive, Suite 100 St. Louis, MO 63143 Page 1 of 5 Roof Framing Design 1. Glulam Beams: 5 1/2" x 27" Simple Spans (DF/DF 24F-V4) Beam Max. Span:≔L =+28 ft 6 in 28.5 ft Tributary Width:≔tw +22 ft 8 in See attached Risa analysis Max. Bending Stress Ratio:≔B.S.R.0.863 =if ⎛⎝,,<B.S.R.1.0 “OK”“NG”⎞⎠“OK” Max. Shear Stress Ratio:≔S.S.R.0.464 =if ⎛⎝,,<S.S.R.1.0 “OK”“NG”⎞⎠“OK” 2. TJI Roof Joists: 14" TJI (560 Series) Typical @ 24" O.C. Joist Depth:≔d 14 in Joist Span:≔L =+22 ft 8 in 22.7 ft Joist EI:≔EI ⋅⋅926 10 6 in 2 lb Tributary Width:≔tw 2 ft Dead Load:≔D 14 ――lb ft 2 Flat Roof Snow Load:≔S 35 ――lb ft 2 Drift Max Intensity:≔Sdrift 42.30 ――lb ft 2 Drift Width:≔ldrift 8.25 ft Total Uniform Load:≔w =⋅tw ⎛⎝+D S⎞⎠98 ―lb ft Wood Adjustment Factors (NDS 7.3) ≔CD 1.15 ≔CM 1.0 ≔CT 1.0 ≔CL 1.0 See attached analysis Check Shear Max. Shear, End Reaction:≔V 1560 lb Allowable Max. Shear:≔Vallowable 2390 lb ≔V'allowable =⋅⋅⋅Vallowable CD CM CT 2748.5 lb =if ⎛⎝,,<V V'allowable “OK”“NG”⎞⎠“OK” Allowable End Reaction:≔Vend_allowable 1725 lb ≔V'end_allowable =⋅⋅⋅Vend_allowable CD CM CT 1983.8 lb =if ⎛⎝,,<V V'allowable “OK”“NG”⎞⎠“OK” Wood Beam CASCOLic. # : KW-06009540 DESCRIPTION:Roof Girder with 28'-6" max span Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 File: J4K - Rexburg, ID.ec6 CODE REFERENCES Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16 Material Properties Beam Bracing :Beam is Fully Braced against lateral-torsional buckling Allowable Stress Design DF/DF 24F - V8 2,400.0 2,400.0 1,650.0 650.0 1,800.0 950.0 265.0 1,100.0 31.210 Analysis Method : Eminbend - xx ksi Wood Species : Wood Grade : Fb + psi psi Fv psi Fb - Ft psi Fc - Prll psi psiFc - Perp E : Modulus of Elasticity 1,600.0 ksi 850.0 ksi Ebend- yy Eminbend - yy Ebend- xx ksi Density pcf Load Combination :ASCE 7-16 .Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Uniform Load : D = -0.3380, Lr = -0.450, S = -0.8550, W = 0.80, E = -0.10 , Tributary Width = 1.0 ft .DESIGN SUMMARY Design OK Maximum Bending Stress Ratio 0.863: 1 Load Combination +D+S Span # where maximum occurs Span # 1 Location of maximum on span 14.250 ft 141.48 psi= = 2,451.10 psi 5.5x27Section used for this span Span # where maximum occurs Location of maximum on span Span # 1= Load Combination +D+S = = = 304.75 psi== Section used for this span 5.5x27 Maximum Shear Stress Ratio 0.464 : 1 26.316 ft= = 2,116.43 psi Maximum Deflection 435 >=240 1254 Ratio =320 >=180 Max Downward Transient Deflection 0.736 in 464Ratio =>=240 Max Upward Transient Deflection -0.786 in Ratio = Max Downward Total Deflection 0.273 in Ratio =>=180 Max Upward Total Deflection -1.067 in fb: Actual Fb: Allowable fv: Actual Fv: Allowable . Location in SpanLoad CombinationMax. "-" Defl Location in SpanLoad Combination Span Max. "+" Defl Overall Maximum Deflections +D+S10.0000 0.000 -1.0674 14.354 Location in SpanMax. Downward Defl Location in SpanLoad Combination Span Max. Upward Defl Maximum Deflections for Load Combinations +D+0.60W 1 0.1602 14.354 0.0000 0.000in ftinft +0.60D+0.60W 1 0.2726 14.354 0.0000 0.000in ftinft W Only 1 0.7356 14.354 0.0000 0.000in ftinft . Load Combination Support 1 Support 2 Vertical Reactions Support notation : Far left is #1 Values in KIPS Overall MAXimum -16.542 -16.542 Overall MINimum -1.425 -1.425 D Only -4.358 -4.358 +D+Lr -10.770 -10.770 +D+S -16.542 -16.542 Wood Beam CASCOLic. # : KW-06009540 DESCRIPTION:Roof Girder with 28'-6" max span Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 File: J4K - Rexburg, ID.ec6 Load Combination Support 1 Support 2 Vertical Reactions Support notation : Far left is #1 Values in KIPS +D+0.750Lr -9.167 -9.167 +D+0.750S -13.496 -13.496 +D+0.60W 2.482 2.482 +D+0.750Lr+0.450W -4.037 -4.037 +D+0.750S+0.450W -8.366 -8.366 +0.60D+0.60W 4.225 4.225 +D+0.70E -5.355 -5.355 +D+0.750S+0.5250E -14.244 -14.244 +0.60D+0.70E -3.612 -3.612 Lr Only -6.413 -6.413 S Only -12.184 -12.184 W Only 11.400 11.400 E Only -1.425 -1.425 SINGLE-SPAN BEAM ANALYSIS For Simple, Propped, Fixed, or Cantilever Beams Job Name:J4K - Rexburg, ID Subject:TJI Joist Check Job Number:2100882 Originator:KMB Checker: Input Data:Typical Joist With Tower Parapet Drift c e Beam Data:Simple Beam b Span Type?Simple a Span, L =22.6667 ft.Propped Beam +P +M +we Modulus, E =1000 ksi +wb Inertia, I =1000.00 in.^4 Fixed Beam +w E,I L Beam Loadings:Cantilever Beam RL x RR Full Uniform:Nomenclature w =0.0980 kips/ft.=(14psf + 35 psf)*(2ft) Start End Results: Distributed:b (ft.)wb (kips/ft.)e (ft.)we (kips/ft.)Reactions: #1:0.0000 0.1244 8.2500 0.0000 RL =1.56 k RR =1.17 k #2:ML =N.A.MR =N.A. #3:Maximum Moments: #4:+M(max) =7.02 ft-k @ x =10.70 ft. #5:-M(max) =0.00 ft-k @ x =0.00 ft. #6:Maximum Deflections: #7:-D(max) =-0.656 in.@ x =11.17 ft. #8:+D(max) =0.000 in.@ x =0.00 ft. D(ratio) =L/414 Point Loads:a (ft.)P (kips) #1: #2: #3: #4: #5: #6: #7: #8: #9: #10: #11: #12: #13: #14: #15: Moments:c (ft.)M (ft-kips) #1: #2: #3: #4: -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 0.001.362.724.085.446.808.169.5210.8812.2413.6014.9616.3217.6819.0420.4021.76Shear (kips)x (ft.) Shear Diagram 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 0.001.362.724.085.446.808.169.5210.8812.2413.6014.9616.3217.6819.0420.4021.76Moment (ft-kips)x (ft.) Moment Diagram Project: Just4Kids - Rexburg, ID No. 2100882 Subject: Interior Column Design By: KMB Date: 07/23/21 HSS COLUMN DESIGN (ASTM A500, Grade B) (Use the section properties from the AISC HSS Connections Manual) Nominal Size HSS 5.5x5.5x1/4 Depth, in 5.5 Actual Thickness, t, in 0.233 Area, A, in^2 4.77 Radius of gyration, r, in 2.13 Section Modulus, S, in^3 7.9 Effective Length, kl, ft 13.375 D, k 16.542 D, k 16.542 Lr or S, k 0 Lr or S, k 0 Allowable Concentric Load, k 90 e, in 2 e, in 2 Local Buckling: (d-3t)/t = 20.61 37.30 OK Axial Load, P, k 33.1 Eccentricity, e, in 0.00 Moment = P*e, in-k 0.00 fa = P/A, ksi 6.94 <= Fa, ksi 18.88 OK fb = M/S, ksi 0.00 <= Fb = 0.6Fy, ksi 27.60 OK Cm 0.60 F'ex, ksi 26.30 fa/Fa + Cm*fb/(1-fa/F'ex)/Fb = 0.37 <= 1.00 OK fa/0.6Fy + fb/Fb = 0.25 <= 1.00 OK Axial Load, P, k 33.1 Eccentricity, e, in 0.00 Moment = P*e, in-k 0.00 fa = P/A, ksi 6.94 <= Fa, ksi 18.88 OK fb = M/S, ksi 0.00 <= Fb = 0.6Fy, ksi 27.60 OK Cm 0.60 F'ex, ksi 26.30 fa/Fa + Cm*fb/(1-fa/F'ex)/Fb = 0.37 <= 1.00 OK fa/0.6Fy + fb/Fb = 0.25 <= 1.00 OK Axial Load, P, k 33.1 Eccentricity, e, in 0.00 Moment = P*e, in-k 0.00 fa = P/A, ksi 6.94 <= Fa, ksi 18.88 OK fb = M/S, ksi 0.00 <= Fb = 0.6Fy, ksi 27.60 OK Cm 0.60 F'ex, ksi 26.30 fa/Fa + Cm*fb/(1-fa/F'ex)/Fb = 0.37 <= 1.00 OK fa/0.6Fy + fb/Fb = 0.25 <= 1.00 OK Partial Loading 2 (Dead Load plus Live Load on Right Side) Partial Loading 1 (Dead Load plus Live Load on Left Side) Full Loading (Dead Load plus Live Load on Both Sides) LOADING <= 253/sqrt(Fy) = P1 P2 P1 P2 e1 e2 Project:No. Subject: By: Date: Just4Kids -Rexburg, ID 2100882 Roof Framing Design KMB 06/17/21 12 Sunnen Drive, Suite 100 St. Louis, MO 63143 Page 2 of 5 Check Moment Max. Moment:≔M ⋅7020 ft lb Allowable Max. Moment:≔Mallowable ⋅11275 lb ft ≔M'allowable =⋅⋅⋅⋅Mallowable CD CM CT CL 12966.3 ⋅lb ft =if ⎛⎝,,<M M'allowable “OK”“NG”⎞⎠“OK” Check Deflection Max. Deflection:≔Δ =⋅0.656 in ―――――― ⎛⎝⋅⋅1.0 10 9 in 2 lb⎞⎠ EI 0.708 in Allowable Deflection:≔Δallowable =――L 240 1.133 in =if ⎛⎝,,<Δ Δallowable “OK”“NG”⎞⎠“OK” Top Chord Tension Max. Moment:≔M ⋅7020 ft lb Joist Depth:≔d 14 in ≔TS =―M d 6017.1 lb Load Combination: D + S ≔weffective =―――⎛⎝⋅M 8⎞⎠ L 2 109.3 ―lb ft Load Combination #5: D + 0.7E Dead Load:≔D 14 ――lb ft 2 Snow Drift ≔Stotal =+S Sdrift 77.3 ――lb ft 2 ≔Fx 1975.8 lb ≔vewseismic =――Fx 46 ft 43 ―lb ft ≔weffective =―――vewseismic 1.6 26.8 ―lb ft ≔ME =⋅⎛⎝+⋅tw D weffective⎞⎠―――――⎛⎝+22 ft 8 in⎞⎠ 2 8 3522.3 ⋅lb ft ≔TE =――ME d 3019.1 lb =if ⎛⎝,,<TE TS “OK”“NG”⎞⎠“OK” 11'-4"x 10'-5 3/8" subdiaphragm is confirmed for strap location for tension in the top chord of TJI 14" joist. Tension = compression in TJI therefore the TJI is adequate for the subdiaphragm. Project:No. Subject: By: Date: Just4Kids -Rexburg, ID 2100882 Roof Framing Design KMB 06/17/21 12 Sunnen Drive, Suite 100 St. Louis, MO 63143 Page 3 of 5 Joist Hangers at Glulam Beam:Try Simpson BA3.56/14 Hangers Check Shear Max. End Reaction:=V 1560 lb Allowable Max. Total Load:≔Vallowable 4720 lb ≔V'allowable =⋅⋅⋅Vallowable CD CM CT 5428 lb =if ⎛⎝,,<V V'allowable “OK”“NG”⎞⎠“OK” Check Uplift (Use end joist which is in highest uplift zones) Tributary Width:=tw 2 ft Mean Roof Height:≔h 15 ft Dead Load:=D 14 ――lb ft 2 C&C Zone 3 Roof Wind Load:≔Wuplift3 -62.2 ――lb ft 2 Zone 3 Width:≔w3 =⋅0.6 h 9 ft C&C Zone 2 Roof Wind Load:≔Wuplift2 -47.2 ――lb ft 2 Zone 2 Width:≔w2 =-L w3 13.7 ft Max. Uplift Load:≔Vuplift 448 lb (From beam analysis) Uplift Load:≔Vuplift_allowable 1275 lb ≔V'uplift_allowable =⋅⋅⋅Vuplift_allowable CD CM CT 1466.3 lb =if ⎛⎝,,<V V'allowable “OK”“NG”⎞⎠“OK” Use Simpson BA3.56/14 (with web stiffener) with (6) 16d nails into the beam top flange, (10) 16d nails into the beam face, and (8) 10d x 1 1/2" nails into the joist. 3. TJI Roof Joists: Double 14" TJI (560 Series) Girder at Jack Trusses Project:No. Subject: By: Date: Just4Kids -Rexburg, ID 2100882 Roof Framing Design KMB 06/17/21 12 Sunnen Drive, Suite 100 St. Louis, MO 63143 Page 4 of 5 3. TJI Roof Joists: Double 14" TJI (560 Series) Girder at Jack Trusses Joist Depth:≔d 14 in Joist Span:≔L =+22 ft 8 in 22.7 ft Joist EI:≔EI ⋅⋅926 10 6 in 2 lb Tributary Width:≔tw 1.5 ft (Check Joist for Bearing Jack Trusses) Dead Load:≔D 14 ――lb ft 2 Flat Snow Load:≔S 35 ――lb ft 2 Average Tower Side Snow Drift:≔wtowerside 76.02 ―lb ft Average Typical Side Snow Drift:≔wtypside 37.83 ―lb ft Front Tower Snow Max. Drift:≔wtowerfront =⋅62.21 ――lb ft 2 tw 93.3 ―lb ft Drift Width:≔ldrift 8.25 ft Total Uniform Load:≔w =⋅tw ⎛⎝+D S⎞⎠74 ―lb ft Wood Adjustment Factors (NDS 7.3) ≔CD 1.15 ≔CM 1.0 ≔CT 1.0 ≔CL 1.0 Check Shear Max. Shear, End Reaction:≔V 1880 lb Allowable Max. Shear:≔Vallowable 2390 lb ≔V'allowable =⋅⋅⋅Vallowable CD CM CT 2748.5 lb =if ⎛⎝,,<V V'allowable “OK”“NG”⎞⎠“OK” Allowable End Reaction:≔Vend_allowable 1725 lb ≔V'end_allowable =⋅⋅⋅Vend_allowable CD CM CT 1983.8 lb =if ⎛⎝,,<V V'allowable “OK”“NG”⎞⎠“OK” Check Moment Max. Moment:≔M ⋅9470 lb ft Allowable Max. Moment:≔Mallowable ⋅11275 lb ft ≔M'allowable =⋅⋅⋅⋅Mallowable CD CM CT CL 12966.3 ⋅lb ft =if ⎛⎝,,<M M'allowable “OK”“NG”⎞⎠“OK” Check Deflection Max. Deflection:≔Δ =⋅0.656 in ―――――― ⎛⎝⋅⋅1.0 10 9 in 2 lb⎞⎠ EI 0.708 in Allowable Deflection:≔Δallowable =――L 240 1.133 in =if ⎛⎝,,<Δ Δallowable “OK”“NG”⎞⎠“OK” SINGLE-SPAN BEAM ANALYSIS For Simple, Propped, Fixed, or Cantilever Beams Job Name:J4K - Rexburg, ID Subject:TJI Joist Check Job Number:2100882 Originator:KMB Checker: Input Data:Double Girder Joist with Tower/Typ Drift from Side c and Tower Drift Front e Beam Data:Simple Beam b Span Type?Simple a Span, L =22.6667 ft.Propped Beam +P +M +we Modulus, E =1000 ksi +wb Inertia, I =1000.00 in.^4 Fixed Beam +w E,I L Beam Loadings:Cantilever Beam RL x RR Full Uniform:Nomenclature w =0.0735 kips/ft.=(14psf + 35 psf)*(1.5ft) Start End Results: Distributed:b (ft.)wb (kips/ft.)e (ft.)we (kips/ft.)Reactions: #1:0.0000 0.0760 15.3333 0.0760 RL =1.88 k RR =1.49 k #2:15.3333 0.0378 22.6667 0.0378 ML =N.A.MR =N.A. #3:0.0000 0.0635 8.2500 0.0000 Maximum Moments: #4:+M(max) =9.47 ft-k @ x =10.82 ft. #5:-M(max) =0.00 ft-k @ x =0.00 ft. #6:Maximum Deflections: #7:-D(max) =-0.873 in.@ x =11.19 ft. #8:+D(max) =0.000 in.@ x =0.00 ft. D(ratio) =L/312 Point Loads:a (ft.)P (kips) #1: #2: #3: #4: #5: #6: #7: #8: #9: #10: #11: #12: #13: #14: #15: Moments:c (ft.)M (ft-kips) #1: #2: #3: #4: -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 0.001.362.724.085.446.808.169.5210.8812.2413.6014.9616.3217.6819.0420.4021.76Shear (kips)x (ft.) Shear Diagram 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.001.362.724.085.446.808.169.5210.8812.2413.6014.9616.3217.6819.0420.4021.76Moment (ft-kips)x (ft.) Moment Diagram Project:No. Subject: By: Date: Just4Kids -Rexburg, ID 2100882 Roof Framing Design KMB 06/17/21 12 Sunnen Drive, Suite 100 St. Louis, MO 63143 Page 5 of 5≔Δallowable =――L 240 1.133 in =if ⎛⎝,,<Δ Δallowable “OK”“NG”⎞⎠“OK” 3. Wood Ledger at Joists Check Ledger: Try (1) 4x6 Douglas Fir #2 ≔n 1 ≔t 3.5 in ≔b =⋅n t 3.5 in ≔d 5.5 in ≔Sx =――⋅b d 2 6 17.6 in 3 Joist Bearing Area:≔Ab =⋅3.5 in 1.75 in 6.1 in 2 See attached Risa analysis Joist Holddowns at Ledger:Try H2.5A at each joist Max. Uplift Load:=Vuplift 448 lb (From joist analysis above) Allowable Uplift Load:≔Vuplift_allowable 780 lb ≔V'uplift_allowable =⋅⋅⋅Vuplift_allowable CD CM CT 897 lb =if ⎛⎝,,<V V'allowable “OK”“NG”⎞⎠“OK” Use Simpson H8 with (5) 0.148 x 1 1/2" nails into joists and (5) 0.148 x 1 1/2" nails into the ledger. Wood Ledger CASCOLic. # : KW-06009540 DESCRIPTION:4x6 Wood Ledger to support roof joist Title Block Line 6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 File: J4K - Rexburg, ID.ec6 Code References Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16 General Information 3.50 5.50 Douglas Fir-Larch (North) 0.49 Concrete as Main Supporting Member Using 6" anchor embedment length in equations. Using dowel bearing strength fixed at 7.5 ksi per NDS Table 11E Douglas Fir - Larch, No.2 900.0 180.0 in Cm - Wet Service Factor 1.0 Ct - Temperature Factor 1.0 Cg - Group Action Factor 1.0 C /\ - Geometry Factor 1.0 Bolt Spacing 3/4" 48.0 Design Method: ASD (using Service Load Combinations Fyb : Bolt Bending Yield 45,000 psi G : Specific Gravity Ledger Width in Wood Stress Grade :Ledger Depth in Bolt Diameter in Ledger Wood Species Fb Allow psi Fv Allow psi Load Data -0.170 -0.2250 -0.5850 0.50 -0.10 Floor Live Snow Wind Seismic Earth Uniform Load... Roof LiveDead plfplfplfplf plf plfplf Point Load...lbslbs lbs lbs lbs lbs Spacing in lbs Offset in Horizontal Shear lbslbslbs lbs lbs lbslbs Wood Ledger CASCOLic. # : KW-06009540 DESCRIPTION:4x6 Wood Ledger to support roof joist Title Block Line 6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 File: J4K - Rexburg, ID.ec6 DESIGN SUMMARY Design OK Maximum Ledger Bending Fb : Allowable Stress 1,035.0 psi 0.002986Stress Ratio, Wood @ Bolt Maximum Bolt Bearing Summary Load Combination . . . +D+S Max. Vertical Load 3.020 lbs Bolt Allow Vertical Load 1,011.38 lbs Max. Horizontal Load 0.0 lbs Bolt Allow Horizontal Load 1,972.29 lbs Maximum Ledger Shear Angle of Resultant 90.0 deg (for specific gravity & bolt diameter) 3.020 lbs Load Combination . . . Diagonal Component+D+S 7,500.0 Allow Diagonal Bolt Force 1,011.38 lbs Dowel Bearing Strengths :1 :1 Moment 1.007 ft-lb fb : Actual Stress 0.6846 psi Stress Ratio 0.000661 Ledger, Perp to Grain ksi Shear 1.510 lbs 2,500.0 ksi 7,500.0 ksi Fv : Allowable Stress 138.0 psi Load Combination . . . fv : Actual Stress 0.1569 psi Ledger, Parallel to Grain 5,500.0 ksiSupporting Member, Parallel to Grain Stress Ratio 0.001137 :1 +D+S Supporting Member, Perp to Grain Allowable Bolt Capacity Bolt Capacity - Load Perpendicular to Grain Bolt Capacity - Load Parallel to Grain Note ! Governing Load Combination . . . Fem 7,500.0 Fem 7,500.0 Refer to NDS Section 11.3 for Bolt Capacity calculation method. +D+S Zmin : Basic Design Value = 2,295.89 lbs Rd =3.60 Z = Z = IIIm : Eq 11.3-4 3.20 3,472.42 lbs lbs Rd = IV : Eq 11.3-6 3.20 Z =1,715.04 lbs Z * CM * CD* Ct * Cg * Cdelta =1,011.38 lbs Z * CM * CD* Ct * Cg * Cdelta =1,972.29 lbs Fes 2,500.0 Fes 5,500.0 Resutant Load Angle : Theta =90.0 deg Fyb 45,000.0 Fyb 45,000.0 Ktheta =1.250 Fe theta =1,011.38 Re 3.0 Re 1.364Rt1.714 Rt 1.714 k1 1.356 0.7451 k2 1.905 1.227 k3 0.8934 k1 k2 k3 1.021 Im : Eq 11.3-1 Rd =5.0 Z =0.0 lbs Im : Eq 11.3-1 0.0 lbs Is : Eq 11.3-2 Z =1,312.50 lbs Rd =4.0 Z = Rd = Is : Eq 11.3-2 3,609.38 lbs5.0 II : Eq 11.3-3 879.46 lbs Rd = Z = IIIs : Eq 11.3-5 3.20 Z =1,867.50 lbs 1,978.07 lbs Rd =4.0 Z = Z = II : Eq 11.3-3 2,988.31 lbsRd =4.50 IIIm : Eq 11.3-4 Rd =4.0 IIIs : Eq 11.3-5 Rd =4.0 Z = 1,054.69IV : Eq 11.3-6 Rd =4.0 Z = 879.46 lbs Rd = Zmin : Basic Design Value =1,715.04 lbs Reference design value - Perpendicular to Grain : Reference design value - Parallel to Grain : www.hilti.com Hilti PROFIS Engineering 3.0.71 Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering ( c ) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan 1 Company: Address: Phone I Fax: Design: Fastening point: | Masonry - Jul 27, 2021 Page: Specifier: E-Mail: Date: 1 7/27/2021 Specifier's comments: TJI joist seat anchorage 1 Input data Anchor type and diameter: HY 270 + threaded rod 5.8 3/4 Item number: 385432 HAS 5.8 3/4"x10" (element) / 2194247 HIT-HY 270 (adhesive) Effective embedment depth: hef = 6.750 in. Material: 5.8 Evaluation Service Report: ESR-4143 Issued I Valid: 3/1/2021 | 1/1/2022 Proof: Design Method ASD Masonry Stand-off installation: eb = 0.000 in. (no stand-off); t = 0.400 in. Anchor plateR : lx x ly x t = 36.000 in. x 6.000 in. x 0.400 in.; (Recommended plate thickness: not calculated) Profile: Rectangular plates and bars (AISC), 1/4 - 3/16; (L x W x T) = 0.250 in. x 0.188 in. Base material: Grout-filled CMU, L x W x H: 16.000 in. x 8.000 in. x 8.000 in.; Joints: vertical: 0.375 in.; horizontal: 0.375 in. Base material temperature: 68 °F Installation: Face installation Seismic loads no R - The anchor calculation is based on a rigid anchor plate assumption. Geometry [in.] www.hilti.com Hilti PROFIS Engineering 3.0.71 Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering ( c ) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan 2 Company: Address: Phone I Fax: Design: Fastening point: | Masonry - Jul 27, 2021 Page: Specifier: E-Mail: Date: 2 7/27/2021 Geometry [in.] & Loading [lb, in.lb] 1.1 Design results Case Description Forces [lb] / Moments [in.lb]Seismic Max. Util. Anchor [%] 1 Combination 1 N = 0; Vx = 0; Vy = -1,880; Mx = 3,760; My = 0; Mz = 0; no 84 www.hilti.com Hilti PROFIS Engineering 3.0.71 Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering ( c ) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan 3 Company: Address: Phone I Fax: Design: Fastening point: | Masonry - Jul 27, 2021 Page: Specifier: E-Mail: Date: 3 7/27/2021 2 Proof I Utilization (Governing Cases) Design values [lb]Utilization Loading Proof Load Capacity bN / bV [%]Status Tension Bond strength 750 2,653 29 / -OK Shear Bond strength --- / 56 OK Loading bN bV a Utilization bN,V [%]Status Combined tension and shear loads 0.283 0.553 1.000 84 OK 3 Warnings • Please consider all details and hints/warnings given in the detailed report! Fastening meets the design criteria! www.hilti.com Hilti PROFIS Engineering 3.0.71 Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering ( c ) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan 4 Company: Address: Phone I Fax: Design: Fastening point: | Masonry - Jul 27, 2021 Page: Specifier: E-Mail: Date: 4 7/27/2021 4 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you. LATERAL LOAD ON CMU SHEAR WALLS Design is basd upon TMS 402-16 Project:Just4Kids - Rexburg, ID Project no.2100882 Designer:rdm Date:7/19/2021 Per TMS 402-16, Section 8.3.5.1.3, M/Vd = 1.0 as the max. value West Wall: Lateral Load (V) = 14 kips V(x) = (R(x)/ΣR(x))*V F'm = 1500 Bar Spacing (in.) 16 As (sq. in.) 0.31 Pier Height (ft.) Length (ft.)∆R V(x) (kips) % of Total Load Moment (k-in.) As req'd sq. in.)M/Vd F (vm) (psi) f (v) (psi) Horiz. Rienf. Req'd F (vs) (psi) Av Req'd (sq. in.) P1 15 4.33 166.29 0.0060 0.76 5 136 0.175 1.000 24.654 0.002 No 0.000 0 P2 15 6.25 55.30 0.0181 2.27 16 409 0.321 1.000 24.654 0.006 No 0.000 0 P3 15 6.33 53.23 0.0188 2.36 17 425 0.328 1.000 24.654 0.006 No 0.000 0 P4 15 4.833 119.59 0.0084 1.05 8 189 0.208 1.000 24.654 0.003 No 0.000 0 P5 15 5.33 89.16 0.0112 1.41 10 254 0.245 1.000 24.654 0.004 No 0.000 0 P6 15 5.33 89.16 0.0112 1.41 10 254 0.245 1.000 24.654 0.004 No 0.000 0 P7 15 5.33 89.16 0.0112 1.41 10 254 0.245 1.000 24.654 0.004 No 0.000 0 P8 15 5.33 89.16 0.0112 1.41 10 254 0.245 1.000 24.654 0.004 No 0.000 0 P9 15 5 108.00 0.0093 1.16 8 209 0.220 1.000 24.654 0.003 No 0.000 0 P10 15 4.33 166.29 0.0060 0.76 5 136 0.175 1.000 24.654 0.002 No 0.000 0 total = 0.11 East Wall: Lateral Load (V) = 14 kips V(x) = (R(x)/ΣR(x))*V F'm = 1500 Bar Spacing (in.) 16 As (sq. in.) 0.31 Pier Height (ft.) Length (ft.)∆R V(x) (kips) % of Total Load Moment (k-in.) As req'd sq. in.)M/Vd F (vm) (psi) f (v) (psi) Horiz. Rienf. Req'd F (vs) (psi) Av Req'd (sq. in.) P1 15 4.17 186.18 0.0054 0.03 0.22 6 0.007 1.000 24.654 0.00008 No 0.000 0 P2 15 21 1.46 0.6860 3.91 28 704 0.138 0.763 28.677 0.010 No 0.000 0 P3 15 7 39.36 0.0254 0.14 1 26 0.018 1.000 24.654 0.000 No 0.000 0 P4 15 27.5 0.65 1.5405 8.78 63 1581 0.233 0.573 31.887 0.022 No 0.000 0 P5 15 4.33 166.29 0.0060 0.03 0 6 0.008 1.000 24.654 0.000 No 0.000 0 P6 15 13.75 5.19 0.1926 1.10 8 198 0.061 1.000 24.654 0.003 No 0.000 0 total = 2.4559 North Wall: Lateral Load (V) = 28 kips V(x) = (R(x)/ΣR(x))*V F'm = 1500 Bar Spacing (in.) 16 As (sq. in.) 0.31 Pier Height (ft.) Length (ft.)∆R V(x) (kips) % of Total Load Moment (k-in.) As req'd sq. in.)M/Vd F (vm) (psi) f (v) (psi) Horiz. Rienf. Req'd F (vs) (psi) Av Req'd (sq. in.) P1 15 4.33 166.29 0.0060 4.55 16 819 1.054 1.000 24.654 0.011 No 0.000 0 P2 15 5.33 89.16 0.0112 8.49 30 1528 1.474 1.000 24.654 0.021 No 0.000 0 P3 15 3.5 314.87 0.0032 2.40 9 433 0.769 1.000 24.654 0.006 No 0.000 0 P4 15 5.33 89.16 0.0112 8.49 30 1528 1.474 1.000 24.654 0.021 No 0.000 0 P5 15 4.17 186.18 0.0054 4.07 15 732 0.994 1.000 24.654 0.010 No 0.000 0 total = 0.0370 South Wall: Lateral Load (V) = 28 kips V(x) = (R(x)/ΣR(x))*V F'm = 1500 Bar Spacing (in.) 16 As (sq. in.) 0.31 Pier Height (ft.) Length (ft.)∆R V(x) (kips) % of Total Load Moment (k-in.) As req'd sq. in.)M/Vd F (vm) (psi) f (v) (psi) Horiz. Rienf. Req'd F (vs) (psi) Av Req'd (sq. in.) P1 15 3 500.00 0.0020 0.12 0.42 21 0.049 1.000 24.654 0.000 No 0.000 0 P2 15 1.5 4000.00 0.0003 0.01 0.05 3 0.060 1.000 24.654 0.000 No 0.000 0 P3 15 8.33 23.36 0.0428 2.51 9 452 0.249 1.000 24.654 0.006 No 0.000 0 P4 15 18 2.31 0.4320 25.36 91 4564 1.056 0.900 26.352 0.064 No 0.000 0 total = 0.4771 NOMINAL THICKNESS (in) 8 Wall height (ft) 15.0 Depth of block (in) 7.625 Parapet height (ft) 5.7 Face shell thickness (in) 1.250 GRAVITY LOADS P (lb/ft) Web thickness (in) 1.000 Dead Load 135 Block Density (pcf) 135 Roof Live or Rain Load 225 Grout Density (pcf) 145 Roof Snow Load 585 Grouting Partial Flat Roof Snow Load (psf) 35 96 Ledger Eccentricity (in) 2.0 f'm (psi)1,500 LATERAL LOADS Unif Load (psf) Em = 900 f'm (psi)1,350,000 Ultimate Wind 32.6 fy (psi)60,000 Design Response, Sds 0.368 Es (psi)29,000,000 Vertical Design Response, S dsv 0.368 n = Es/Em 21.48 Occupancy Category II Vertical Bar Size 5 Importance Factor, I 1.00 Vertical Bar Spacing (in) 48 Seismic Load Coefficient, 0.40 I(Sds) > 0.10 0.15 Layers of Reinforcing 1 Seismic, Fp = Load coefficient * weight 7.0 Depth to Reinforcing (in) 3.81 Seismic Design Category D 72 Lap Splice Length (in)45 Seismic Reliability Factor, 1.0 Depth to NA (in) 0.899 SCALING FACTOR 1.00 Itr (in4/ft)17.04 (for wall weight and lateral loads only) As (in2/ft)0.078 Avg Weight Minimum Net Section Maximum Net Section Average Net Section (psf)A (in2/ft)Ig (in4/ft)A (in2/ft) I (in 4/ft) A (in 2/ft) I (in 4/ft)r (in) 47.4 40.3 331 49.9 352 49.4 351 2.7 D + (Lr or S or R) Pw (#/ft) =624 Pf (#/ft) =720 P (#/ft) = 1,344 w (#/ft2) =0 M (in-#/ft) = 720 fa (psi) =33 ≤ Fa (psi) =288 OK fa + fm (psi) =71 ≤ Fm (psi) =675 OK fs (psi) =2,645 ≤ Fs (psi) =32,000 OK D + 0.6W Pw (#/ft) =624 Pf (#/ft) =135 P (#/ft) = 759 w (#/ft2) =19.6 M (in-#/ft) = 6,737 fa (psi) =19 ≤ Fa (psi) =288 OK fa + fm (psi) =374 ≤ Fm (psi) =675 OK fs (psi) =24,745 ≤ Fs (psi) =32,000 OK D + 0.75[0.6W + (Lr or S or R)] Pw (#/ft) =624 Pf (#/ft) =574 P (#/ft) = 1,198 w (#/ft2) =14.7 M (in-#/ft) = 5,525 fa (psi) =30 ≤ Fa (psi) =288 OK fa + fm (psi) =321 ≤ Fm (psi) =675 OK fs (psi) =20,294 ≤ Fs (psi) =32,000 OK (1 + 0.14Sdsv)D + 0.7Fp Pw (#/ft) =657 Pf (#/ft) =142 P (#/ft) = 799 w (#/ft2) =4.9 M (in-#/ft) = 1,791 fa (psi) =20 ≤ Fa (psi) =288 OK fa + fm (psi) =114 ≤ Fm (psi) =675 OK fs (psi) =6,578 ≤ Fs (psi) =32,000 OK (1 + 0.105Sdsv)D + 0.75[0.7Fp + 0.75(0.2S)] Pw (#/ft) =649 Pf (#/ft) =228 P (#/ft) = 876 w (#/ft2) =3.7 M (in-#/ft) = 1,465 fa (psi) =22 ≤ Fa (psi) =288 OK fa + fm (psi) =99 ≤ Fm (psi) =675 OK fs (psi) =5,380 ≤ Fs (psi) =32,000 OK Uncracked Section Properites Spacing of Bond Beams (in) Project: J4K - Rexburg, ID Project Number: 2100882 Designer: rdm Date: 7/12/21 8" CMU Wall Design Input Data - 2018 IBC Allowable Stress Design (Basic Load Combinations) NOMINAL THICKNESS (in) 8 Wall height (ft) 15.0 Depth of block (in) 7.625 Parapet height (ft) 4.7 Face shell thickness (in) 1.250 GRAVITY LOADS P (lb/ft) Web thickness (in) 1.000 Dead Load 1,204 Block Density (pcf) 135 Roof Live or Rain Load 1,605 Grout Density (pcf) 145 Roof Snow Load 4,173 Grouting Partial Flat Roof Snow Load (psf) 35 96 Ledger Eccentricity (in) 4.0 f'm (psi)1,500 LATERAL LOADS Unif Load (psf) Em = 900 f'm (psi)1,350,000 Ultimate Wind 32.6 fy (psi)60,000 Design Response, Sds 0.368 Es (psi)29,000,000 Vertical Design Response, S dsv 0.368 n = Es/Em 21.48 Occupancy Category II Vertical Bar Size 5 Importance Factor, I 1.00 Vertical Bar Spacing (in) 8 Seismic Load Coefficient, 0.40 I(Sds) > 0.10 0.15 Layers of Reinforcing 1 Seismic, Fp = Load coefficient * weight 12.6 Depth to Reinforcing (in) 3.81 Seismic Design Category D 72 Lap Splice Length (in)45 Seismic Reliability Factor, 1.0 Depth to NA (in) 1.821 SCALING FACTOR 1.00 Itr (in4/ft)63.77 (for wall weight and lateral loads only) As (in2/ft)0.465 Avg Weight Minimum Net Section Maximum Net Section Average Net Section (psf)A (in2/ft)Ig (in4/ft)A (in2/ft) I (in 4/ft) A (in 2/ft) I (in 4/ft)r (in) 85.8 91.5 443 91.5 443 91.5 443 2.2 D + (Lr or S or R) Pw (#/ft) =1,044 Pf (#/ft) =5,377 P (#/ft) = 6,421 w (#/ft2) =0 M (in-#/ft) = 10,754 fa (psi) =70 ≤ Fa (psi) =247 OK fa + fm (psi) =377 ≤ Fm (psi) =675 OK fs (psi) =7,215 ≤ Fs (psi) =32,000 OK D + 0.6W Pw (#/ft) =1,044 Pf (#/ft) =1,204 P (#/ft) = 2,248 w (#/ft2) =19.6 M (in-#/ft) = 9,010 fa (psi) =25 ≤ Fa (psi) =247 OK fa + fm (psi) =282 ≤ Fm (psi) =675 OK fs (psi) =6,044 ≤ Fs (psi) =32,000 OK D + 0.75[0.6W + (Lr or S or R)] Pw (#/ft) =1,044 Pf (#/ft) =4,334 P (#/ft) = 5,378 w (#/ft2) =14.7 M (in-#/ft) = 13,619 fa (psi) =59 ≤ Fa (psi) =247 OK fa + fm (psi) =448 ≤ Fm (psi) =675 OK fs (psi) =9,136 ≤ Fs (psi) =32,000 OK (1 + 0.14Sdsv)D + 0.7Fp Pw (#/ft) =1,098 Pf (#/ft) =1,266 P (#/ft) = 2,364 w (#/ft2) =8.8 M (in-#/ft) = 5,515 fa (psi) =26 ≤ Fa (psi) =247 OK fa + fm (psi) =183 ≤ Fm (psi) =675 OK fs (psi) =3,700 ≤ Fs (psi) =32,000 OK (1 + 0.105Sdsv)D + 0.75[0.7Fp + 0.75(0.2S)] Pw (#/ft) =1,084 Pf (#/ft) =1,876 P (#/ft) = 2,961 w (#/ft2) =6.6 M (in-#/ft) = 5,990 fa (psi) =32 ≤ Fa (psi) =247 OK fa + fm (psi) =203 ≤ Fm (psi) =675 OK fs (psi) =4,019 ≤ Fs (psi) =32,000 OK Uncracked Section Properites Spacing of Bond Beams (in) Project: J4K - Rexburg, ID Project Number: 2100882 Designer: rdm Date: 7/12/21 GLUELAM Beam Bearing Input Data - 2012 IBC Allowable Stress Design (Basic Load Combinations) Masonry Beam CASCOLic. # : KW-06009540 DESCRIPTION:Masonry Lintel Spans between 3 '-0" and 4'-8" Title Block Line 6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 File: J4K - Rexburg, ID.ec6 Calculations per TMS 402-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16 Code References General Information 1,500.0 32,000.0 750.0 Thickness 8 in Top Clear 6.0 in End Fixity Pin-Pin Bar Spacing 5.0 in Equiv. Solid Thick 7.60 in Wall Weight 84.0 psf E 1,125.0 ksi n 25.778 Note! Shear calculated at "d/2" from edge of beam Lateral Wall Weight Seismic Factor 0.330 Calculate vertical beam weight ? Yes Beam is Fully Braced ? Yes Lateral Wind Load 183.0 psf Shear Reinf Bar Size 5# Shear Reinf Bar Spacing 24.0 in Block Type Normal Wt Btm Clear 2.0 in1.0 # Bar Sets 1 psi ftClear Span 4.670 Rebar Size 5f'm Fs psi Beam Depth 0.670 ft # Bars @ Locations 1 Em = f'm * Wall Wt Mult Uniform Loads 4.670 0.50ft ft ft ft Start X End X Dead Load L : Floor Live Lr : Roof Live S : Snow W : Wind E : Earthquake ft#1 k/ft #2 k/ftft ft#3 k/ft k/ftft#4 Design OKDESIGN SUMMARY Maximum Stress Ratios...Vertical Lateral SRSS Combination fb/Fb 0.2781 0.1448 0.3135 : 1.00 fv/Fv 0.1930 0.1447 0.2412 : 1.00 Maximum Moment Actual Allowable Vertical Loads 0.8178k-ft 2.941k-ft for Load Combination : +0.60W Lateral Loads 0.2005k-ft 1.385 k-ft for Load Combination : +0.60W Maximum Shear Actual Allowable Vertical Loads 13.641psi 70.675psi for Load Combination : +0.60W Lateral Loads 5.604psi 38.730psi0.8899 k-ftMinimum Mn = 1.3 * Fcr * S =for Load Combination : +0.60W Vertical Strength As 0.310 in^2 rho 0.006731 np 0.1735 k : ((np)^2+2np)^.5-np 0.4406 j = 1 - k/3 0.8531 M:mas=Fb k j b d^2/2 2.941 k-ft M:Stl = Fs As j d 4.260 k-ft Lateral Strength (Checking lateral bending for span) As 0.310in^2 rho 0.01011 np 0.2607 k : (np^2+2np)^.5-np 0.5070 j = 1 - k/3 0.8310 M:mas=Fb k j b d^2/2 1.385 k-ft M:Stl = Fs As j d 2.619 k-ft Masonry Beam CASCOLic. # : KW-06009540 DESCRIPTION:Masonry Lintel Spans between 3 '-0" and 4'-8" Title Block Line 6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 File: J4K - Rexburg, ID.ec6 Load Combination Vertical Lateral Fv k-ft psik-ft k-ft k-ft psipsi psi Mmax Mallow fvFv : Vertfv : Vert Mactual Mallow Detailed Load Combination Results 0.00 2.94 0.00 77.46 0.00 1.38 0.00 38.73 +0.60W 0.82 2.94 13.64 70.67 0.20 1.38 5.60 38.73 -0.60W 0.82 2.94 13.64 70.67 0.20 1.38 5.60 38.73 +0.450W 0.61 2.94 10.23 70.67 0.15 1.38 4.20 38.73 -0.450W 0.61 2.94 10.23 70.67 0.15 1.38 4.20 38.73 E Only * 1.750 0.00 2.94 0.00 77.46 0.09 1.38 2.48 38.73 E Only * -1.750 0.00 2.94 0.00 77.46 0.09 1.38 2.48 38.73 E Only * 1.313 0.00 2.94 0.00 77.46 0.07 1.38 1.86 38.73 E Only * -1.313 0.00 2.94 0.00 77.46 0.07 1.38 1.86 38.73 NOMINAL THICKNESS (in) 8 Wall height (ft) 15.0 Depth of block (in) 7.625 Parapet height (ft) 5.7 Face shell thickness (in) 1.250 GRAVITY LOADS P (lb/ft) Web thickness (in) 1.000 Dead Load 135 Block Density (pcf) 135 Roof Live or Rain Load 225 Grout Density (pcf) 145 Roof Snow Load 585 Grouting Partial Flat Roof Snow Load (psf) 35 96 Ledger Eccentricity (in) 2.0 f'm (psi)1,500 LATERAL LOADS Unif Load (psf) Em = 900 f'm (psi)1,350,000 Ultimate Wind 32.6 fy (psi)60,000 Design Response, Sds 0.368 Es (psi)29,000,000 Vertical Design Response, S dsv 0.368 n = Es/Em 21.48 Occupancy Category II Vertical Bar Size 5 Importance Factor, I 1.00 Vertical Bar Spacing (in) 24 Seismic Load Coefficient, 0.40 I(Sds) > 0.10 0.15 Layers of Reinforcing 1 Seismic, Fp = Load coefficient * weight 8.1 Depth to Reinforcing (in) 3.81 Seismic Design Category D 72 Lap Splice Length (in)45 Seismic Reliability Factor, 1.0 Depth to NA (in) 1.203 SCALING FACTOR 2.35 Itr (in4/ft)29.64 (for wall weight and lateral loads only) As (in2/ft)0.155 Avg Weight Minimum Net Section Maximum Net Section Average Net Section (psf)A (in2/ft)Ig (in4/ft)A (in2/ft) I (in 4/ft) A (in 2/ft) I (in 4/ft)r (in) 55.1 50.5 354 58.2 370 57.8 370 2.5 D + (Lr or S or R) Pw (#/ft) =1,705 Pf (#/ft) =720 P (#/ft) = 2,425 w (#/ft2) =0 M (in-#/ft) = 720 fa (psi) =48 ≤ Fa (psi) =278 OK fa + fm (psi) =77 ≤ Fm (psi) =675 OK fs (psi) =1,362 ≤ Fs (psi) =32,000 OK D + 0.6W Pw (#/ft) =1,705 Pf (#/ft) =135 P (#/ft) = 1,840 w (#/ft2) =46.0 M (in-#/ft) = 15,649 fa (psi) =36 ≤ Fa (psi) =278 OK fa + fm (psi) =672 ≤ Fm (psi) =675 OK fs (psi) =29,594 ≤ Fs (psi) =32,000 OK D + 0.75[0.6W + (Lr or S or R)] Pw (#/ft) =1,705 Pf (#/ft) =574 P (#/ft) = 2,279 w (#/ft2) =34.5 M (in-#/ft) = 12,209 fa (psi) =45 ≤ Fa (psi) =278 OK fa + fm (psi) =541 ≤ Fm (psi) =675 OK fs (psi) =23,089 ≤ Fs (psi) =32,000 OK (1 + 0.14Sdsv)D + 0.7Fp Pw (#/ft) =1,793 Pf (#/ft) =142 P (#/ft) = 1,935 w (#/ft2) =13.3 M (in-#/ft) = 4,644 fa (psi) =38 ≤ Fa (psi) =278 OK fa + fm (psi) =227 ≤ Fm (psi) =675 OK fs (psi) =8,782 ≤ Fs (psi) =32,000 OK (1 + 0.105Sdsv)D + 0.75[0.7Fp + 0.75(0.2S)] Pw (#/ft) =1,771 Pf (#/ft) =228 P (#/ft) = 1,999 w (#/ft2) =10.0 M (in-#/ft) = 3,604 fa (psi) =40 ≤ Fa (psi) =278 OK fa + fm (psi) =186 ≤ Fm (psi) =675 OK fs (psi) =6,816 ≤ Fs (psi) =32,000 OK Uncracked Section Properites Spacing of Bond Beams (in) Project: J4K - Rexburg, ID Project Number: 2100882 Designer: rdm Date: 7/12/21 CMU Jamb Design with 2.35 max. scale factor at East/West walls Input Data - 2018 IBC Allowable Stress Design (Basic Load Combinations) Masonry Beam CASCOLic. # : KW-06009540 DESCRIPTION:Masonry Lintel spans between 5'-0" and 8'-0" Title Block Line 6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 File: J4K - Rexburg, ID.ec6 Calculations per TMS 402-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16 Code References General Information 1,500.0 32,000.0 750.0 Thickness 8 in Top Clear 14.0 in End Fixity Pin-Pin Bar Spacing 3.625 in Equiv. Solid Thick 7.60 in Wall Weight 84.0 psf E 1,125.0 ksi n 25.778 Note! Shear calculated at "d/2" from edge of beam Lateral Wall Weight Seismic Factor 0.330 Calculate vertical beam weight ? Yes Beam is Fully Braced ? No Lateral Wind Load 183.0 psf Shear Reinf Bar Size 5# Shear Reinf Bar Spacing 24.0 in Block Type Normal Wt Btm Clear 2.0 in1.0 # Bar Sets 1 psi ftClear Span 8.0 Rebar Size 5f'm Fs psi Beam Depth 1.330 ft # Bars E/F 1 Em = f'm * Wall Wt Mult Uniform Loads 8.0 0.8950 0.50 0.10ft ft ft ft Start X End X Dead Load L : Floor Live Lr : Roof Live S : Snow W : Wind E : Earthquake ft#1 k/ft #2 k/ftft ft#3 k/ft k/ftft#4 Design OKDESIGN SUMMARY Maximum Stress Ratios...Vertical Lateral SRSS Combination fb/Fb 0.6952 0.2835 0.7508 : 1.00 fv/Fv 0.5952 0.1680 0.6185 : 1.00 Maximum Moment Actual Allowable Vertical Loads 10.454k-ft 15.037k-ft for Load Combination : +D+0.60W Lateral Loads 1.168k-ft 4.120 k-ft for Load Combination : +D+0.60W Maximum Shear Actual Allowable Vertical Loads 42.069psi 70.675psi for Load Combination : +D+0.60W Lateral Loads 6.507psi 38.730psi3.507 k-ftMinimum Mn = 1.3 * Fcr * S =for Load Combination : +D+0.60W Vertical Strength As 0.620 in^2 rho 0.005825 np 0.1501 k : ((np)^2+2np)^.5-np 0.4180 j = 1 - k/3 0.8607 M:mas=Fb k j b d^2/2 15.037 k-ft M:Stl = Fs As j d 19.864 k-ft Lateral Strength (Checking lateral bending for span) As 0.310in^2 rho 0.003453 np 0.08901 k : (np^2+2np)^.5-np 0.3422 j = 1 - k/3 0.8859 M:mas=Fb k j b d^2/2 4.306 k-ft M:Stl = Fs As j d 4.120 k-ft NOMINAL THICKNESS (in) 8 Wall height (ft) 15.0 Depth of block (in) 7.625 Parapet height (ft) 5.7 Face shell thickness (in) 1.250 GRAVITY LOADS P (lb/ft) Web thickness (in) 1.000 Dead Load 60 Block Density (pcf) 135 Roof Live or Rain Load 80 Grout Density (pcf) 145 Roof Snow Load 208 Grouting Partial Flat Roof Snow Load (psf) 35 96 Ledger Eccentricity (in) 2.0 f'm (psi)1,500 LATERAL LOADS Unif Load (psf) Em = 900 f'm (psi)1,350,000 Ultimate Wind 32.6 fy (psi)60,000 Design Response, Sds 0.368 Es (psi)29,000,000 Vertical Design Response, S dsv 0.368 n = Es/Em 21.48 Occupancy Category II Vertical Bar Size 5 Importance Factor, I 1.00 Vertical Bar Spacing (in) 16 Seismic Load Coefficient, 0.40 I(Sds) > 0.10 0.15 Layers of Reinforcing 1 Seismic, Fp = Load coefficient * weight 9.2 Depth to Reinforcing (in) 3.81 Seismic Design Category D 72 Lap Splice Length (in)45 Seismic Reliability Factor, 1.0 Depth to NA (in) 1.417 SCALING FACTOR 2.70 Itr (in4/ft)40.03 (for wall weight and lateral loads only) As (in2/ft)0.233 Avg Weight Minimum Net Section Maximum Net Section Average Net Section (psf)A (in2/ft)Ig (in4/ft)A (in2/ft) I (in 4/ft) A (in 2/ft) I (in 4/ft)r (in) 62.8 60.8 376 66.5 389 66.2 388 2.4 D + (Lr or S or R) Pw (#/ft) =2,232 Pf (#/ft) =268 P (#/ft) = 2,500 w (#/ft2) =0 M (in-#/ft) = 268 fa (psi) =41 ≤ Fa (psi) =269 OK fa + fm (psi) =51 ≤ Fm (psi) =675 OK fs (psi) =344 ≤ Fs (psi) =32,000 OK D + 0.6W Pw (#/ft) =2,232 Pf (#/ft) =60 P (#/ft) = 2,292 w (#/ft2) =52.8 M (in-#/ft) = 17,884 fa (psi) =38 ≤ Fa (psi) =269 OK fa + fm (psi) =671 ≤ Fm (psi) =675 OK fs (psi) =22,989 ≤ Fs (psi) =32,000 OK D + 0.75[0.6W + (Lr or S or R)] Pw (#/ft) =2,232 Pf (#/ft) =216 P (#/ft) = 2,448 w (#/ft2) =39.6 M (in-#/ft) = 13,584 fa (psi) =40 ≤ Fa (psi) =269 OK fa + fm (psi) =521 ≤ Fm (psi) =675 OK fs (psi) =17,462 ≤ Fs (psi) =32,000 OK (1 + 0.14Sdsv)D + 0.7Fp Pw (#/ft) =2,347 Pf (#/ft) =63 P (#/ft) = 2,410 w (#/ft2) =17.5 M (in-#/ft) = 5,956 fa (psi) =40 ≤ Fa (psi) =269 OK fa + fm (psi) =250 ≤ Fm (psi) =675 OK fs (psi) =7,656 ≤ Fs (psi) =32,000 OK (1 + 0.105Sdsv)D + 0.75[0.7Fp + 0.75(0.2S)] Pw (#/ft) =2,318 Pf (#/ft) =94 P (#/ft) = 2,411 w (#/ft2) =13.1 M (in-#/ft) = 4,513 fa (psi) =40 ≤ Fa (psi) =269 OK fa + fm (psi) =199 ≤ Fm (psi) =675 OK fs (psi) =5,801 ≤ Fs (psi) =32,000 OK Uncracked Section Properites Spacing of Bond Beams (in) Project: J4K - Rexburg, ID Project Number: 2100882 Designer: rdm Date: 7/12/21 CMU Jamb Design with 2.70 max. scale factor at North/South walls Input Data - 2018 IBC Allowable Stress Design (Basic Load Combinations) Masonry Beam CASCOLic. # : KW-06009540 DESCRIPTION:Masonry Lintel with 10'-0" span Title Block Line 6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 File: J4K - Rexburg, ID.ec6 Calculations per TMS 402-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16 Code References General Information 1,500.0 32,000.0 750.0 Thickness 8 in Top Clear 14.0 in End Fixity Pin-Pin Bar Spacing 5.0 in Equiv. Solid Thick 7.60 in Wall Weight 84.0 psf E 1,125.0 ksi n 25.778 Note! Shear calculated at "d/2" from edge of beam Lateral Wall Weight Seismic Factor 0.330 Calculate vertical beam weight ? Yes Beam is Fully Braced ? Yes Lateral Wind Load 183.0 psf Shear Reinf Bar Size 5# Shear Reinf Bar Spacing 18.0 in Block Type Normal Wt Btm Clear 2.0 in1.0 # Bar Sets 2 psi ftClear Span 10.0 Rebar Size 5f'm Fs psi Beam Depth 1.330 ft # Bars E/F 1 Em = f'm * Wall Wt Mult Uniform Loads 10.0 0.50ft ft ft ft Start X End X Dead Load L : Floor Live Lr : Roof Live S : Snow W : Wind E : Earthquake ft#1 k/ft #2 k/ftft ft#3 k/ft k/ftft#4 Design OKDESIGN SUMMARY Maximum Stress Ratios...Vertical Lateral SRSS Combination fb/Fb 0.2494 0.2788 0.3741 : 1.00 fv/Fv 0.1611 0.1871 0.2469 : 1.00 Maximum Moment Actual Allowable Vertical Loads 3.750k-ft 15.037k-ft for Load Combination : +0.60W Lateral Loads 1.825k-ft 6.545 k-ft for Load Combination : +0.60W Maximum Shear Actual Allowable Vertical Loads 12.477psi 77.460psi for Load Combination : +0.60W Lateral Loads 7.248psi 38.730psi3.507 k-ftMinimum Mn = 1.3 * Fcr * S =for Load Combination : +0.60W Vertical Strength As 0.620 in^2 rho 0.005825 np 0.1501 k : ((np)^2+2np)^.5-np 0.4180 j = 1 - k/3 0.8607 M:mas=Fb k j b d^2/2 15.037 k-ft M:Stl = Fs As j d 19.864 k-ft Lateral Strength (Checking lateral bending for span) As 0.620in^2 rho 0.006154 np 0.1586 k : (np^2+2np)^.5-np 0.4265 j = 1 - k/3 0.8578 M:mas=Fb k j b d^2/2 6.545 k-ft M:Stl = Fs As j d 8.953 k-ft NOMINAL THICKNESS (in) 8 Wall height (ft) 9.0 Depth of block (in) 7.625 Parapet height (ft) 11.7 Face shell thickness (in) 1.250 GRAVITY LOADS P (lb/ft) Web thickness (in) 1.000 Dead Load 60 Block Density (pcf) 135 Roof Live or Rain Load 80 Grout Density (pcf) 145 Roof Snow Load 208 Grouting Partial Flat Roof Snow Load (psf) 35 96 Ledger Eccentricity (in) 2.0 f'm (psi)1,500 LATERAL LOADS Unif Load (psf) Em = 900 f'm (psi)1,350,000 Ultimate Wind 32.6 fy (psi)60,000 Design Response, Sds 0.368 Es (psi)29,000,000 Vertical Design Response, S dsv 0.368 n = Es/Em 21.48 Occupancy Category II Vertical Bar Size 5 Importance Factor, I 1.00 Vertical Bar Spacing (in) 8 Seismic Load Coefficient, 0.40 I(Sds) > 0.10 0.15 Layers of Reinforcing 1 Seismic, Fp = Load coefficient * weight 12.6 Depth to Reinforcing (in) 3.81 Seismic Design Category D 72 Lap Splice Length (in)45 Seismic Reliability Factor, 1.0 Depth to NA (in) 1.821 SCALING FACTOR 3.70 Itr (in4/ft)63.77 (for wall weight and lateral loads only) As (in2/ft)0.465 Avg Weight Minimum Net Section Maximum Net Section Average Net Section (psf)A (in2/ft)Ig (in4/ft)A (in2/ft) I (in 4/ft) A (in 2/ft) I (in 4/ft)r (in) 85.8 91.5 443 91.5 443 91.5 443 2.2 D + (Lr or S or R) Pw (#/ft) =5,132 Pf (#/ft) =268 P (#/ft) = 5,400 w (#/ft2) =0 M (in-#/ft) = 268 fa (psi) =59 ≤ Fa (psi) =329 OK fa + fm (psi) =67 ≤ Fm (psi) =675 OK fs (psi) =180 ≤ Fs (psi) =32,000 OK D + 0.6W Pw (#/ft) =5,132 Pf (#/ft) =60 P (#/ft) = 5,192 w (#/ft2) =72.4 M (in-#/ft) = 8,853 fa (psi) =57 ≤ Fa (psi) =329 OK fa + fm (psi) =310 ≤ Fm (psi) =675 OK fs (psi) =5,939 ≤ Fs (psi) =32,000 OK D + 0.75[0.6W + (Lr or S or R)] Pw (#/ft) =5,132 Pf (#/ft) =216 P (#/ft) = 5,348 w (#/ft2) =54.3 M (in-#/ft) = 6,811 fa (psi) =58 ≤ Fa (psi) =329 OK fa + fm (psi) =253 ≤ Fm (psi) =675 OK fs (psi) =4,569 ≤ Fs (psi) =32,000 OK (1 + 0.14Sdsv)D + 0.7Fp Pw (#/ft) =5,397 Pf (#/ft) =63 P (#/ft) = 5,460 w (#/ft2) =32.7 M (in-#/ft) = 4,037 fa (psi) =60 ≤ Fa (psi) =329 OK fa + fm (psi) =175 ≤ Fm (psi) =675 OK fs (psi) =2,708 ≤ Fs (psi) =32,000 OK (1 + 0.105Sdsv)D + 0.75[0.7Fp + 0.75(0.2S)] Pw (#/ft) =5,331 Pf (#/ft) =94 P (#/ft) = 5,424 w (#/ft2) =24.5 M (in-#/ft) = 3,074 fa (psi) =59 ≤ Fa (psi) =329 OK fa + fm (psi) =147 ≤ Fm (psi) =675 OK fs (psi) =2,062 ≤ Fs (psi) =32,000 OK Uncracked Section Properites Spacing of Bond Beams (in) Project: J4K - Rexburg, ID Project Number: 2100882 Designer: rdm Date: 7/12/21 CMU Jamb Design with 3.70 max. scale factor at 1'-6" wide , between windows on South wall Input Data - 2018 IBC Allowable Stress Design (Basic Load Combinations) 12 Sunnen Drive, Suite 100 St. Louis, MO 63143 Project:No. Subject: By: Date: Just4Kids -Rexburg, ID 2100882 Foundation Design KMB 07/23/21 Page 1 of 3 Exterior Footing Design (Stem wall footing) Properties: Concrete Strength:≔f'c 4000 ――lb in 2 Concrete Weight:≔ωc 150 ――lb ft 3 Grade 60 reinforcement ≔fy 60000 ――lb in 2 Footing Height:≔h 12 in Tributary Width:≔w +22 ft 8 in Soil bearing pressure:≔qnet 2000 ――lb ft 2(Geotechnical Report) Concrete Modulus of Elasticity:≔Ec 3000000 ――lb in 2 Steel Modulus of Elasticity:≔Es 29000000 ――lb in 2 Applied Loads: Roof Dead Load:≔DL =⋅18 ――lb ft 2 w 408 ―lb ft Roof Rain Load:≔RL 0 ―lb ft Roof Live Load:≔Lr =⋅20 ――lb ft 2 w 453.3 ―lb ft Exterior wall Wt (including stem wall): ≔Wwt +1635 ―lb ft 100 ―lb ft Roof Snow Load: ≔SL =⋅56 ――lb ft 2 w 1269.3 ―lb ft Trench Footing Wt.:≔FDL 150 ――lb ft 2(based upon a 1'-0" strip) Load Combinations:(ACI 318-14, Chapter 5, Table 5.3.1) ≔U1 =⋅1.4 ⎛⎝+DL Wwt⎞⎠3000.2 ―lb ft ≔U2 =+⎛⎝⋅1.2 ⎛⎝+DL Wwt⎞⎠⎞⎠⎛⎝⋅0.5 Lr⎞⎠2798 ―lb ft ≔U5 =+⎛⎝⋅1.2 ⎛⎝+DL Wwt⎞⎠⎞⎠⎛⎝⋅1.6 Lr⎞⎠3297 ―lb ft ≔U3 =+⎛⎝⋅1.2 ⎛⎝+DL Wwt⎞⎠⎞⎠⎛⎝⋅0.5 SL⎞⎠3206 ―lb ft ≔U6 =+⎛⎝⋅1.2 ⎛⎝+DL Wwt⎞⎠⎞⎠⎛⎝⋅1.6 SL⎞⎠4603 ―lb ft ≔U4 =+⎛⎝⋅1.2 ⎛⎝+DL Wwt⎞⎠⎞⎠⋅0.5 RL 2572 ―lb ft ≔U7 =+⎛⎝⋅1.2 ⎛⎝+DL Wwt⎞⎠⎞⎠⎛⎝⋅1.6 RL⎞⎠2572 ―lb ft ≔U U1 U2 U3 U4 U5 U6 U7 0 ⎡ ⎢⎣ ⎤ ⎥⎦ =max ⎛⎝U⎞⎠4603 ―lb ft Footing Design: 12 Sunnen Drive, Suite 100 St. Louis, MO 63143 Project:No. Subject: By: Date: Just4Kids -Rexburg, ID 2100882 Foundation Design KMB 07/23/21 Page 2 of 3 Footing Design: Footing design is based upon a 1'-0" strip Required footing area =>≔Af =――――― ⎛⎝++DL Wwt SL⎞⎠ qnet 1.7 ft Footing width required =>≔WGB =Af 1.7 ft Footing width provided =>≔W'GB 2.5 ft Soil Reaction due to factored loads: ≔q's =―――max ⎛⎝U⎞⎠ W'GB 1841 ――lb ft 2 =if ⎛⎝,,<q's qnet “OK”“NG”⎞⎠“OK” Minimum reinforcement: Provide minimum longitudinal reinforcement based upon minimum shrinkage and temperature reinforcement as stated in ACI 318 -14 Chapter 24, Table 24.4.3.2 #5 Longitudinal bars ≔Abar 0.31 in 2 Minimum temperature reinforcement =>≔As =⋅⋅0.0018 h WGB 0.4 in 2 Number of bars required =>≔n =――As Abar 1.4 Number of bars provided =>≔np 3 (3 bars bottom) Area of steel provided =>≔Ap =⋅np Abar 0.9 in 2 =if ⎛⎝,,>Ap As “OK”“NG”⎞⎠“OK” Therefore, use 1'-0" x 2'-6" stem wall footing with (3) #5 longitudinal bars bottom Exterior Footing at Girder Bearing 12 Sunnen Drive, Suite 100 St. Louis, MO 63143 Project:No. Subject: By: Date: Just4Kids -Rexburg, ID 2100882 Foundation Design KMB 07/23/21 Page 3 of 3 Exterior Footing at Girder Bearing (Stem wall footing) Properties: Concrete Strength:≔f'c 4000 ――lb in 2 Concrete weight:≔ωc 150 ――lb ft 3 Grade 60 reinforcement ≔fy 60000 ――lb in 2 Footing Height:≔hf 12 in Soil bearing pressure:≔qnet 2000 ――lb ft 2 Footing Width:≔wf 36 in (Geotechnical report) Concrete Modulus of Elasticity:≔Ec 3000000 ――lb in 2 Stem Wall Height:≔hs 48 in Steel Modulus of Elasticity:≔Es 29000000 ――lb in 2 Stem Wall Width:≔ws 8 in Footing Width, try:≔w 4 ft Applied Loads: Truss Girder Dead Load:≔DL 4358 lb Exterior wall Wt (including stem wall): ≔Wwt =⋅⎛ ⎜⎝ +1635 ―lb ft 100 ―lb ft ⎞ ⎟⎠ w 6940 lb Truss Girder Live Load:≔Lr 6413 lb Trench Footing Wt.:≔FDL 150 ――lb ft 2Truss Girder Snow Load:≔SL 12184 lb (based upon a 1'-0" strip) Load Combinations:(ACI 318-14, Chapter 5, Table 5.3.1) ≔U1 =⋅1.4 ⎛⎝+DL Wwt⎞⎠15817.2 lb ≔U2 =+⎛⎝⋅1.2 ⎛⎝+DL Wwt⎞⎠⎞⎠⎛⎝⋅0.5 Lr⎞⎠16764 lb ≔U4 =+⎛⎝⋅1.2 ⎛⎝+DL Wwt⎞⎠⎞⎠⎛⎝⋅1.6 Lr⎞⎠23818 lb ≔U3 =+⎛⎝⋅1.2 ⎛⎝+DL Wwt⎞⎠⎞⎠⎛⎝⋅0.5 SL⎞⎠19650 lb ≔U5 =+⎛⎝⋅1.2 ⎛⎝+DL Wwt⎞⎠⎞⎠⎛⎝⋅1.6 SL⎞⎠33052 lb ≔U U1 U2 U3 U4 U5 0 0 0 ⎡ ⎢⎣ ⎤ ⎥⎦=max ⎛⎝U⎞⎠33052 lb Soil Reaction due to factored loads: ≔q's =――――++DL Wwt SL ⋅w wf 1957 ――lb ft 2 =if ⎛⎝,,<q's qnet “OK”“NG”⎞⎠“OK”