HomeMy WebLinkAboutBRACED FRAME DESIGNS - 05-00205 - Rexburg LDS Temple - Foundation�r 1
4/25/05 15:1 7-57
k �t- - 0 &�
SAP2000 v8.2.7 - File:gridline8 e'bf X -Z Plane @ Y=O -Kip, in, F Units -
-gam L--
41?Flfl-q i i-r;a-��
kpff
Consulting En irre.ers
IL
L Beam -Column Design for WF or HSS ti
Columns -1 anF-1 #°turn Footing to 2nd Lev -el
mer ihel_ size
'W12X96
-
D+L r
V :Section IS mi
J
1. D+1, +1,OL _
218.76
d _
12.71
in
Sx =
131
111'
1.2D+ l O D J . O L.+0 �
. _
x.8.2
gin-
� _
44.4
in.�
305.19
r =
1116
in
Zx =
147
in
ta- _0.9
1n
ZY _67.5j
PU 55148
kip
r. _
5.435
�Il
Lb =
1.6
ft
r
3.094
in
FY
50
ksi
Axial
Lead
load =
142.8
kip
Live
load
25
kip
Sos
0.4075
Snow
lead _
14
kip
EQ
toad _
172,74
ki p
F,1„.
i
Load Combinations
IAD =
199.92
D+L r
181.80
1. D+1, +1,OL _
218.76
+ +w =
n/a
1. D+ 1 _ L+0,
2- 1 S. 3 6
1 +L+ W+ /2 =
n/a
1.2D+ l O D J . O L.+0 �
371.90
+L+ +T W/ =
n/a
O.9D+1. =
301.6
D+L+S+E/1.4
305.19
1.2-D, I.OL+ In
553.4
+ '1.
251.91
. -E M =
-228-60
4, ..' 3 .r FF
PU 55148
kip
U _ 0.820
Fc= 37.75 ksi
Pn _ 904.99 kilt
0.6116
n
LDS Rexburg Idaho Temple
Compact Criteria
0.30VEs/Fy 1177
tibra e d Length Criteria
kip
I1P
lei
kip
kip
kip
kip
Major Beading Minor Bending
Ux l 20 k -in muy = 1 -in
1n_x ` 6615-0 -in OmIly = 2997.0 -ill
ax -- 0. 0--0400
o 7 l
nx ay
Combined Stresses
ff P.0 fpL>0.2, teen use Eq.. 1-1 a Use Eq. H 1-=1 a
- dryohm f. 2 M may,
. -1 UX � W,
k lir . =
k l h- Y
Lin =
6105 < 200
35.33 < 200
130.70 in
LRFD Beam -Column Design 4-12-2005,x1s Col -1 F-1 low
MA =
39116
k -in
$ =
534.84
k -in
=
426.6
-in
40
k=1 .1 -L
Cb
0.31
Lr�
131.15
in
Lr '
496.93
ax -- 0. 0--0400
o 7 l
nx ay
Combined Stresses
ff P.0 fpL>0.2, teen use Eq.. 1-1 a Use Eq. H 1-=1 a
- dryohm f. 2 M may,
. -1 UX � W,
k lir . =
k l h- Y
Lin =
6105 < 200
35.33 < 200
130.70 in
LRFD Beam -Column Design 4-12-2005,x1s Col -1 F-1 low
kpff
Consulting Engineer
L FD -Beani-Column Design for WF or HSS Sections
Columns -1 and -1 fr orn 2nd Level to Mechanical Level
_ Section is Compact
-
1 5,
1.n
S y
19,2 in
t =
9.995
111
zX _
77.9 i 113
ff
0.575
in
ZY_2
9.1 rl��
1.x =
5.220
L6 _
B
ft
r
2.478 in
. �,
50
ksi
Dead load 0, kip C = 2
Live load _0 kip SDS _ 0,4075
Snow load 7 kip
EQ load_ 0 kip
M = 2.469 kip
Load Combination
LDS Rexburg Idaho Temple
Compact Criteria
0.30-�)F,s/Fy 12.04
nb rac ed Length ri to r a
IAD = 42.42 D+I..,,-f-S =37310 kip
L2 D+ 1 + .+ 1.OL _ 4T5 6 D+L+wNV n1a kip
1 � +I . L++ + _ 39.86 D=L,z. r F+ / _ n/a kI'P
37.76 D+1 + +wW1 = n/ i'P
�9D+L_ 1.27 D+L, +E/1 A _ 37+30 Kipp
1. � + 1. +Em = L + � . = 27,27 kip
0 -9D -Em 24,80 kip
PLL` 47.56 kip
0100 Ac= 1.152
F, 2&72 ksi
On = 380.88 kip
X11 � 0.1'
Opri
Major Bendino,Min-orYielding
Yielding
%lug — 120 k4n MUy — 120 -in
FIX ` 3505+5 -in Ony
T 1.296.0 -ire
en
= 392.16 -ire
1B = 534.84 -lir
j\JC — 426,6 k -i n
MT 2824 -in
'fib 0.31
L.P = 105.04 in
LT 306-503
nx = 1656.83 -t n
uV0,0724 Wny O0926
R_
MWIned Stresses
IfP� = fPn > U� then use Eq. 141-]a Use q. HII-I
8 All -A49 � r fl
1"a MUIV PJ J1'f Mgf
2 0,�.. 01, Af M'c -2 oj�j 0, Alf Ji. -C I O� M
87.1
41.38 < 200
107+43 In
204359.00
5/23/2005
LRFD Beam -Column Design 4-1 2-�0 5.xis Col -1 r-1 n -ii
kpff
Consulting Engineers
LRFD Bear-Columnars for or HSS Sections
Columns -4 and F-4 from Footing to 2nd Level
Member sizer9 Section is Corn act
d = 12.71 in SX = 131 in
28.2 in' SY = 44.4 in'
f 12-16 in zX 147 i'
tf In Zy-® 7.5 ire'
Axial
LDS Rexburg Idaho Temple
ompar,t Criteria
0.30VEs/F.y 12.77
Untraced Length Criteria
L6 = 16 ft ry = 3.094 i k l /r
F y 50 ksi Lb nein =
Dead
load =
198,
kip
Live
load
58.7
kip
Snow
road
16
kip
EQ
1Dad
17.74
kip
EZTS =
61.6
kip
Load Combinations
I AD =
1.D+1.+1,OL =
1.2D+l l . L+0.5 =
1.2D+ 1. OE+ I - OL+O. 2S =
.9+I.OE =
1.D+1.L+Em =
0.9D -Era =
PU. = 658.56
Xc 0.820
cr 37.75
'Pn = 9.04.99
Pu
Opn
Major Beading
Yielding
277.90
322.50
340.12
472-84
351-39
65.6
418x.01
lip
si
kip
0.7277
U_\ = 120 k -in
Mnx = 6615.0 k --in
Laferal-Torsional Buckling
A �--
392.
k -in
Mi3=
534.84
k -i n
M =
426.6
.-IIS
Mr
5240
-in
Cb -
0.31
Lu =
131.15
in
Lr =
496-93
Ux
nx
= 2.11,58 -ire
0.0475
Combined Stresses
SDS � 0.4075
+L+
L +L+ W
+L+ �- / -
' L+ +E/ I .
.'D+/1. _
273.20
ri/a
of
,5
302.04
kip
kiP
kip
lip
kip
kip
kip
Mitir Beading
Yielding
qly = 1.20 -tn
ny = 2997}0 -in
if PH : 1 n > 0. 2, thea use Eq.X11-1 a Use Eq. HI -1a
'. + �. 1. 0.806 1.0
rmmftV,MMNY
A4 11
_'"� - +P r#.X' dei`
Eq- +._... 1.0
r? LM OJX ,5aril
62.05 < 200
35.33
13M0 in
3 F z_2!5� -
204359.00
5/23/2005
LRFD Beam -Column Design 4u1 - .xis Col CF-4 low
kpff
Consulting Engineers
LRFD .beam -Column Desigii for WF or HSS Sections
alLI M FIs -4 and F4 from 2nd Level to Roof
Mernber size 2X53 v Section is Compeact.
d = 12.06 ire _ X0.6 1n'
=
15,6
�
_
19:2 in3
f =
'.995
in
Z
"T9 jn3
1c
0.575
an
ZY=
�1 in'
kip
159.34
EM
r,, -��
5.220 in
L6 -
is
ft
r =
2.478 in
F _
200.
ksi
109.12
kip
Dead
load =
90.5
kip DID =
Live
load
10.2
kip SDs = 0.4075
Snow
load =
16
kip
EQ
load
X7,34
kip
159.34
EM
82.06
kips
Load Combinations
LIDS ReOurg Idaho Temple
Compact Criteria
Untraced L.tn th Criteria
1.4 _
166 70
D+I,+S =
116.70
kips
I - 2D+ + 1. + 1. OL =
144.40
D+L+w =
a
kip
I . . + 1. L+ , =
13292
D+L+ + / =
a
kip
x . I +1. E+I r L+ + =
159.34
D+L+S+wW/2 =
rda
kip
9 + LOL
118.79
D+Lr + +F,,1 +4 =
143-37
kip
1 • 2. + 1. L+Em
200.
. +E/ 1.4 --
109.12
kip
O.91 -Em
-0-61
kip
TPLIFT
P , 200.86
kip
.._ 1,12
Fcr 28-72 ksl
Prl = 380.88 kip
ViP 0.5273
n.
Major Bendhig Minor Beiiding
i el i
ti
C> Yielding
'UX = 120 k -in Ir 120 _ire
UY
MMI 3505.5 k -in nv = 1296.0 k -in
Lateral -Torsional Bifckling
A =
392.1
-ire
Ma =
534.84
k -in
Mc _
426.6
-i n
r _
2824
k -in
b _
0.31
L� =
105.04
in
Lr `306,503
fIx =165 6.8 3 -in
0.0926
+Mnv
ons. a ed Stresses
if PU = n > 0.2, thea use Eq, H 1-1 a Use Eq. H 1-1 a
M _M.0
,2 OP, 0.6M 20P, + ObM4.1c + _<I�O
kI; 1-
kl/r y
LI nein
87-16 < 200
413 8 < 200
107.43 in
204359,00
}x/005
LRIFD Beani-Colurnn Design 4-1 -2005.x1 Col C-4 F-4 high
Illpff
OrI LIl in g Engineers
LRFD Beam-ColuMzi DesI gn for WF or TISS Section
Columns B-9 and G-9 from Pouting to 2nd Level
Member size I W12XI36
--- section is compact
13.41 in SX= 186 ire'
=
r
tf
Lb
FY _
Axial
39.9 ill'
12.4 ire
1 in
Dead load =
109.6
kip
Live load =
2-8-8
kip
nu Load
13
k1
EQ load =
198.59
kip.
EM `
- �1 1
kip
Load Combinations
1.D =
1,2D' 1.L+O. 5S =
I .. ' 1. + F . O L+0 � _
1.2 D+ I ,L+E m
PU ` 566.43
c OM3
Far 3 .1
153.44
181.12
184.10
361-51
297.23
566-43
-307.47
f LIFT
T
kip
ki
" = 1294.98 kip
F"
0,4374
'1'n
y 64,2 in'
X 214 in3.
Y 98 iT13
rX= 5.575 in
ry = 3.158 111
Q0 _
iD- 0.4075
D+L+S
D, L+ wW
D+ ' wN '
F L+ +w _
D+L++F,'1 +4 _
0, +E/ 1.
151.40
ra
n1a
a
293.2.E
240.49
Major Bending
Min.or Bending
yielding Yielding
LDS Rexburg Idaho Temple
Compact Criteria
0.2 -vEs F 12.77
Un -braced Length Criteria
kip
kip
kip
kip
kip
kip
kip
�MRX = 9630.0 -in OAV = 4333.5 -ire
nx " 3519.52 train
MUX --- 0.0341 UV 0.0277
RX
Combined Stresses
If P = 1 > 0,2, then use Eq. H 1-I aUse Ear HI -1a
A
Eq
��� + }�
H
. y _ 1. - 0.492 1.0
Ptr any
f Alf M �
Eq. H1-1 b _ � + -}�- -4-} 1.0
j�
J/r X
lel/r y
L1, mi r _
W79 < 200
34,44 < 200
133.28 to
i3IF-1-7
204359.00
5/23/2005
LRFD Beam -Column Design 4-12-2005.xis Col B-9 G-9 low
A
192- 1
-in
f3
534.84
k -in
Mc _
426.6
-tip
MT =
7 440
-lei
Cb `
0.31
133.87
in
Lr =
667.704
nx " 3519.52 train
MUX --- 0.0341 UV 0.0277
RX
Combined Stresses
If P = 1 > 0,2, then use Eq. H 1-I aUse Ear HI -1a
A
Eq
��� + }�
H
. y _ 1. - 0.492 1.0
Ptr any
f Alf M �
Eq. H1-1 b _ � + -}�- -4-} 1.0
j�
J/r X
lel/r y
L1, mi r _
W79 < 200
34,44 < 200
133.28 to
i3IF-1-7
204359.00
5/23/2005
LRFD Beam -Column Design 4-12-2005.xis Col B-9 G-9 low
kpff
Consulting Engineers
_ L FD Beam -Column Design for WF or 14SS Sections
Columns B-9 and Gag from 2nd Level to Mechanical Level
Member r size W12XIC)_ wj Section is Compact
=
Axial
Dead
12-89
in
SX
145
i
T7
1,
.In'
y -
49.3
in
f=
12.22
in
zx_
1
i '
tf =
0.99
in
Zy
75.1
i
_ 5900
-111
rX _
5.468
in
T�v = 131-65
18
ft
Lr = 537-601
3.106
in
Fy
50
ksi
Axial
Dead
load _
55.6
kip 00 = 2
Live
load =
T7
tl) SDS = 0.4075
Snow
load -
13
kip
EQ
load =
198.59
%1p 78-71 28.43
k -in
EM -40i.71
NIB 534.84
kip
l oadombinations
1.4D
1. D+1. +1 w L
1 _ + 1. L+ , 5 S_
I .2D+ 1. + 1.01,+0,
0,9D+ 1
1.2D+ 1.O L+.M
.-m =
U = 476.13
F-cr 3 5.1
Pn 931.77
P
On
77.84
95.22
85.54
275.61
248.63
476.13
7
L)" 14A FT
lip
s1
kip
+L+ =
" � L+'W =
D+ L -a- +w W/ _
+L+ + / 1.4 =
a D+E/ 1.4 =
76.0
n/a
n/a
n/a
1.15
191.89
LDS Rexburg Idaho Temple
Compact rite'
0.30-.,,Es/Fy 12.04
Unbraced Length Cri Leri a
kip
i1
kip
kip
kip
kip
kip
MaJ or Bending
Minor Bending
Yieldin,o,
Yielding
Mux ` 1
-111
Mux. - 120 k - in
n.x = 73 8 0. 0
-in
n = 3327.8 k -In
a r l- o f -,s Deal Buckling
410
MA- 392.16
k -in
NIB 534.84
-in
MC= 426.6
k -in
_ 5900
-111
Cb 0.31
T�v = 131-65
In
Lr = 537-601
"1871-24 lint
.LMvX 0.0418 MIL', 0,0361
nx
Combined Stresses
if PU T„ > 0. . then use Eq. H 1-1 a Use Eq. H14
�t�- m
+ - + ar .0 M 0. so19)
1.
Pa IV P
20P
12 T ; fila 20
a, � Off
Ur.=
1/r Y
Lb min
t 4 < 200
39,50 < 200
1.3 1.�4 Vr}
F,_ -, 0 , 1r: � F� �
204359.00
5/23/2005
L., FD Bear -Column Design 4-12-2005.xl.s Col B-9 G-9 mid
kpff
Consulting engineers
LRFD Beam -Column Design for WF or HSS Sections
Columns -' -and G-9 from Meehars1 a[
Level to
Interstitial
1 �1 mbar s'
17e
W �
'Section
Is
+L+ W =
d=
12.71
in
sxl
131
in,
lip
28.2
in`
► �
44.4
- I
r=
12.16
'in
=
147
in'.
fir=0.9
0. +E/1.4
in
ZY-
67.5
ins
5240
k -tri
kiP
r. =
5.4
1r)
L6 =
l
131.15
r =
3094
in
Fy =
50
ksi
Axial
Dead load _ 55,6 kip _
Live load 73 �p SDS_0,4075
Snow load 1_1
kip
EQ load 9-05 kip 78.71 28,43
Lim 22.63 kip
LOad COMbinations
LDS Rexburg Idaho Temple
Compact Criteria
0.30VEs/Fy 12.04
Untraced Length CrAuia
I . 4 D
77.84
+L+ _
76.30
kip
I.2D+] _6S+1 .OL _
95.22
+L+ W =
n/a
kip
1,2D+1 . L+ . _
95.54
+L+ W+S/
n/a
lip
1.2 -r-1. E+ 1 t L+ . _
86-07
+E+ � / =
lip
0. DJ- 1. OE
59.09
+L_ +Ei1 4 -
82,76
kip
1. +1. L+E1n"
9TO5
0. +E/1.4
56.50
kip
0:9D -Em
7.41
5240
k -tri
kiP
111,U = 97.05
kip
Xx 0,923
FCT Iasi
Pn � 839,92 kip
Oprt 11553
Major Bending
Minor Bendincr
15
Yielding
Yielding
tax °-
1
-ire
muy= 120 4in
�Dv1Rx =
6615.0
-111
OmIly = 2997.0 -ire
Lateral -Torsional Buckling
MA=; _
3 X2.1
-in
MB=
534,.84
k -in
C _
426,6
-11 n
A _
5240
k -tri
.b
0,31
131.15
in
Lr:--
496.9-
,Mli { � 2613-97 -in
"" 0.0459 MLIV 0+0400
tlx
Combined Stresses
if PLL „ > 0.2, thea use Eq. H1 -I a Use Eq. H I A
+ + ' 1.
Ora . n". 0 , 9 0�Mnr mnr
, A OJ.t , 661911° L' Mir l
69.8 1 < 200
39,74 < 200
130.70 in
204359.00
5123/2005
LR_FD Beam -Column Design -1 -200..x1 Col B-9 G-9 to
kpff
Consulting Engineers
LRFD in . Design for WF or IISS Sections
oIunins -1I and -II fi-O M Footing to 2n d Level
= 1-5.41 to
SX=
186 irl
39. inn-
Y
64.2 1 J `'
br= 12.4 1n
Z X
214 in
I1 1.25 In
V �
J' � J i�-1
Lb = 16 ft
Fy 50 ksl'
Dead
load =
153,5
lip
Live
load =
2 S. 2
kip
Snow
load =
125
kip
EQ
load =
34 S. 2 _'32
kip
EM =
708.97
kip
Load Combinations
IAD =
.6L+0,5 S
1,2D.' ],C +1. L+ . _
.+ I.OE_
1.2D+1 OL+EFQ =
. -F-M _
H �92L37
c 0.803
214.90
217-60
230.`5
561,28
-222.59
921.37
570-82
kip
1'si
P11 = 1294-98 kip
l` 0.7115
pn
Major Bending
Yielding
MUS: = 12.0 k -in
WrIx � 9630.0 k4n
La ter a l- Tors io), l i i cklin
N4 A =
392-16
-ITl
3 =
534.184
] -i rt
1c =
426.6
k - in
Mr =
7440
-In
� =
0.31
m Ii
LR = 133.87 in
Lr = 667-704
MTLX = 3 19.52 .-in
0.0341
Combined Str=esses
if PU � fP,, > 0.., then use Eq, H 1-1
5.575 in
3.158. in
QO = 2
D = 0.4075
D+L+:
D+L+wW =
+L+ +S =
D+L+ + /
0- +E/ 1..4 =
Eq. HI-Ia + rzv try
bM qIV
Eq. 1 -11 -lb = - - + M U-1, _ L(Y
20pea 0,2 m U -,c Obm IIx, ,
184,95
L'a
n/a
n/a
433.69
356.89
Minor Bending
Yieldinar
LDS Rexburg IdLiho Temple
Compact Criteria
0.3 �s/F 12,77
Unbi'aced Length Criteda
k l/r X
Ury=
Lb ini n =
EQ tower
EQ bIdg
kip
li
kip
kip
kip
kip
kip
any = 43315 k -iii
MLIV +0277
III
60-79 < 200
34.44 < 200
133.28 in
47.42
194.05 242.60
f. -3 f, -� � � o
20459+00
5/23/2005
LRYD Beare. Column Design 4-1 - . l c)1 -11 -1 I low
kpff
Consulting Engineers
__..�.a
LRFD Bearn-Column Design for WT or HSS Sections
Columns -1I and -1 I from 2nd Level to M eck)anicaI Level
Member size
Lb
LV�1�1 0 6. Sect"oil is Compact
12.89 in
. =
1 ins
31.?it
S, ;
49.3 inn
12.22 in
ZX =
164 i n3
.99 in
ZY -=
75.1 i n,�
FX = 5A69 III
is ft ry= 3.106 in
.50 ksi
Dead
lead =
103.1
.Live
load =
MA-
Snow
load _
Ma =
EQ
load
2 66,68
42 6.6
Er _
541-76
Load Combinations
1A _
] . D+ i 6 S+I.OL
LM' 1.6L+O.5
I-D+1.1E + 1 ,L+0. _
.D+1 -OE
1.2D+ 1. I,+ r _
.D -EM
F �,c = 0+919
Fee 35.13
kip
kip
kip
kips
kips
i-4+3
149.82
158-79
411-95 1.47
686.38
-448.97
kip
ksi
OP n = 931-77 kip
P11 0.7366
Opn
Major Bending
Yielding
uX = 1 -i iz
frt- = "380.0 k -in
Lalli-aI-Toy sign al Bucklinr
MP �.M
---
4-1. _ .80.6 1.
Oil Mnv Ob
MA-
392.16
-Pin
Ma =
534.84
k -in
mc =
42 6.6
-in
Mr =
800
k -in
Cb =
0+31
LP
11,65
lei
Lr -537-601
WnX _ 2871.24 k -in
MuX
Omnx
0.0418
Combined Stresses
If P:., - 1'P,, , , then use Eq. 1,1 a
o
SDs = 0.4075
+L-1- _
+L,+ wW
+L+W+ /
L J1+ +WNL',
D+L++EJ1.
. D+E/ 1.
127.25
Hies
n
a
17.74
283+,
LDS Rexburg Idaho Temple
Compact Criteria
0.3 sIF 12-04
04
Un r c d Lenc th ritei-i
kl/r X
Ury=
Lein _
EQ tower
EQ b1du
lip
kip
kip
kip.
kip
kip
kip
Minor Bending
Yield,in
MOO $- 12 -111
O ny = 332T8 k -in
MUS. 0,0361
RV
Use Eq. 1-1a
P
MP �.M
---
4-1. _ .80.6 1.
Oil Mnv Ob
F
err
P,
Alf
MOX MiO-
P1
OAf
X1.4
i
f)
R!_k IJ 1137
69-54 < 200
39.50 < 200
131x34 in
7.2
193-59 .91
204359,00
5/23/2-005
LRFD Beard- olun-in Design --1 -20 . 1s Col B-1 I -11 mi
kpff
Consulting Engineers
y..
LRFD Beam- lump Design for F - r HSS Sections
Columns -11
an -e11 from Nfe li an ica l
Level
to Interstitial
em er size
� W12X96 ._
1 7V Section is Compact
k -in
C
12.71
in
SX=
131
M3
Cb -`=
2Q
int
V -
44.4
inn
r=
12.16
in
Z� =
147
in�
tF
= 0.9
1T1
Zy _
67.5ins
r,� =
5.435
in,
L4=
is
1't
1,_
3.094
in
fy
_50
ksi
Axial
LIDS ReAurs Idaho Temple
Compact i tea l
0-30-4s/Fy 12.04
UnbFaced Lengthtot ri
kl/r . =
Mir y =
Lj, min =
69-81 < 200
39-74 < 200
130,70 in
Dead load = 17.7 kip QO - � I
Live load I lip�� _ 0.407 I.,I.,Q tower 0.00
Snow load _ 3.25 kip EQ N&Y
9.05 OM
Ern 19.54 kip
p
Load Combinations
IA w
1. +1.664-1. L
1. 2 D+1, L+0.56 _
1-+1-OE+1.L+0- _
. 9DTI.OE
1.
E1. D+ 1. L+ -Ern
.-Em
u= 41.x8
- 0-923
-C:r 35.04
0
_ 839.92
P
n
aJor Bending
Yielding
24.78
27,44
24.47
1.'
24x98
41-7
-f1
UPLIFT
11
ip
si
kip
0.0497
UM = 1 -ire
Omni:- 6615.0 -in
Late;'aI-Tors ionaI Bit cklingr
A =
392, l
-in
MP, =
5 3 4.8 4
k -in
C
426.6
-1n
Mr _
5240
-in
Cb -`=
031
LP =
131.15
in
Lr =
496-93
RIX
nx
Mnx � 13.97 k -in
0.0459
Combined Stresses
if P« n > 0.2 teen use Eq. H 1-1a
m M JV
. UV U _ U-
,
,9 012 may.
+L+
D+L+w
D+L+ '+&_
D+L +- + /
D+L+ + / 1.4
Pu M UX P. M M
+ + tO 1.0
20f�045 M, 20P
21.95
na
nJ
28,41
22..9
ip
kip
K:ip
kip
kip
kip
kip
Minor Bending
Yielding
mug = 1 -in
im
nV _ 2997. -ire
UZ 0.0400
AY
Use Eq. HI -lb
.1 1 1 <1,0
043 59.00
/ x/200
LRFD Beam -Column Desi --1 2- 0 . is Col R-1 IA I top
kpff
Consulting Engineers
LRFD Beatin-Column Design for WF or HSS Sections
Col u m n s -1 I and -11 from Footing to 2 n d Level
Member s171 e L "12 13 6 iW:1 Section's Compact
13.41 in SX = 186 ins
39.9 int y � 64.2
12,4 in z_ 214 ire'
1.25 in zV 98
LDS RexburgIdaho Temple
Compact Criteria
-0+30-4slFy 12.77
Unbraced Lcngth Criteria
rX = 5 575 III kl/i,'X =
L= 16 fl ry _ 3. 15 B in l/r y
Fy _50 k i Lb rnin =
Dead
Ioad =
Live
load =
Snow
Load =
].--"Q
load ;--
C =
EEM
M
2.8.1 2 kip
33 kip
r5 kiP
226.356 kid
47112 ki
Load Combinations
IA
1 2+1.+1 +OL =
I .D+1.L+.
1 .+ 1 ,OE+1 #L+.
O.+]. .E _
1. + 1.OL+ETn=-
0t D` ni
P, = 7 90.8
.-.. C 0.803
F,,= 38.18
333.37
3-9.14
341 F 7
546,40
440,66
790,86
-2 57.1
kip
k]
P� = 1294-98 lip
PU 0.6107
pn
Major B adizig
Yielding
1„K = 120 k -i n.
TLX V---' 963. loin
L toi- l -Tors onalzic l s
MA=
392.16
k -in
Ms =
534.84
-in
C =
426.6
k -in
Mr
7440
k -1n
Cb _
0.31
L0
133.87
in.
Lr _
667-704
MuX
. nx
M =3519.52 k -i n
0,0441
Combined Stresses
Eq.
60.79 < 200
34.44 < 200
133.28 111
0 2 EQ tower 8144
n;S -�= 0.4075 EQ bldg 14192-
277,62
a
a
n/a
439.30
375.!9
MinorBending
Yielding
kl*p
kip
iilip
kip
l
lip
kip
by t7 7
rtv
Use Eq, HI -1 a
+ - U �*y 1.0 0.666 1.
204359LOO
5/23/2005
LRFD Bearn- o1un-in Design 4-1 - 0 . 1 Col -11 F-1 I low
kpff
Consulting Engineers
....
LRFD .beam -Column Design for WF or HSS Sections
Columns -11 and F-11 from 2nd Level to Mechanical Level
Member size
y
r
IF=
Lb =
Dead
load =
Live
load =
Snow
load =
E'Q
Ioad =
309.42.6
Esti =
W12X12O Section is Corripact
13.12
in
SX =
163
inn
kip
14T866
kip
309.42.6
}yip
12.32
in
ZX=
186
in'
. 105
in
Y i
85.4
in'
Lr -°
598.829
r., "_`5.506
in
19
ft
Fir
3.12 6
i re
50
ksi
16&02
kip
15. I
kip
6.5
kip
14T866
kip
309.42.6
}yip
Load Combinations
IAD _
1.I+1.+1.L
1. 2D+ 1. 6L+ 0.5,S_
1.+1.E+1.L+.
® D+I.OE
. 9D -EM _
Pu = 526.15
. 0.964
F,cr 33-92
235.23
22x.12
229.03
365.89
299+0
526.15
UPLIFT
lip
ksi
OP ==; 1017-73 kip
Pik
0.5170
Major Bending
Yielding
' rix =8370A l -in
enp
=
53)-.84
-ire
Mc -
426.6
-in
Mr =
6520
-111
0.31
L V �
132,51
in
Lr -°
598.829
MUX 0.0370
J X
Combined Stresses
1f P1, . � > 0.2. then use Eq. HI -1a
I_DS Rexburg Idaho Temple
Compact Criteria
.0s/F 11.72
l/r
1h y -�
Lb m in �
72.93 < 200
41.41 < 200
132.42 in
ESO _ 2 EQ tower 8.3,
os = 0.4075 EQ b Id& 64.43
01� 9 06 q3j, 11 /1 t . )
PLY j UX
1.
2�6p.o Ohm RX 20_�O M if y -
189-62
a
n/
295.4
256.84
lip
kip
kip
kip
i pr
kip
kip
N livor Bending
Yielding
!,rl" Y = 120 k -i n
_ "y 0,0317
O•1Y
Use Eq. 1-1a
4--
2043 59M
5/23/2005
LRFD Beard -Column Dash 4-12-2005.xls Cot x°-11 '-1 l nil -d
kpff
Consulting Engineers
4-7
LRFD Beam -Column
Design for WF or
IISS Sections
Col u ni T1s -1 I an
F-1 I from M.harp ical Level to interstitial
stitial
Meer size
° % 12
_ ,-�Section is Compact
d =
12.25
1n SX -
97.4 in3
A
2 Ll
Sy
.-Irk
bf��
12.04
in X _
108 in,
tf=
0.67
in zy =
49.2
LDS Rexburg Idaho Temple.
Compact Ulteria
0-30-vEs/Fy 12.04
nbr-ac d LengthCritffia
r _
C 0.93
F, _ 34,59 'psi
Pn = 620.46 kip
PU 0.0752
n
Major Bending
5319
in
1/r X _
18
1t
-ry _ 3.040
in
k 1/r ,
F = 0
ksi
Lateral -Torsional rsiona Buckling
L1, rain =
l*al
.-Irk
B 534.84
-irk
Dead load = ';2 S, 9
kip,
k -lin
Mr 3
Uve load = 1.6
kip
SDS _ 0.4075
Snow load = 6.5
kip
Lr 403 , 62.5
EQ load _ 0
lip
EM _2.36
kip
Load Combinations
IAD
40.46
-' L+S =
37.00
kip
L + 1. S+ I . L
46.68
D', L=w
a
kip
1-2D+ i -6L+ .5
40.49
D +L+r '',- S /2 =
ri`a
kip
1.21 +1.OF+1.OL+ .2S
37,58
D+LA`S+ W
ii/a
kip
. + I.OE
26.01
DOLTS+E/ 1.4
37-00
kip
1 - .L + I OL+Ern _
38-64
-9D+E/ 1.4 =
26,01
kip
r9 -Em _
23.65
kip
I'u = 46.68
kip
C 0.93
F, _ 34,59 'psi
Pn = 620.46 kip
PU 0.0752
n
Major Bending
Minor Bending
Yielding
Yieldrna
MUX 120
-i n
MUy = 1 � 0 k -),n
1 riX - 4860.0
k in
m TIV - 2187.0 -111
Lateral -Torsional rsiona Buckling
MA= 392.16
.-Irk
B 534.84
-irk
Mc 42 6.6
k -lin
Mr 3
-1 n
6 _ 0.31
L, 1
in
Lr 403 , 62.5
ON11A � -in
SIX 0.0593 „V 4
M nx rhy
Combined Stresses
ifP1, �, 0. , then use q. HI -1a � Use e E 1 -1 b
UYM rM
N +, UV + �.
T� Rif M Alf
+ +1.
t {J M ?1-1` R 011M nX }k 1 1 pP ,
-152 <L
71.OS < 200
40.61 < 200
129.41 In
2G4359.00
5/23/2005
L D Dear -Column Design -1 -2 . Is CO] -1 I F-11 top
LDSe burcr Zdaho T nip.1e
,�
onsultimy, Engineers
L DBeam-Column D i git for r cti ��
A
olunt�rts ►...and��- from Main L��I t rY LevMember size W12X96 Section is Compact
el
1.71 in _ 131 in3
y Irl
br= 12.16 ire = 14rX 5435 in
7i�3
ADead load = 2-063 kip 2
xial
Live load ` � 6ftp D � .4.7
r�o��
= 1 dip
I,oad Combinations
1 _ L 2-66,82 D+L—S = 257,30
1_ +I.6.-L1.OL. 30'7_56 +L+ = n/a
1. ` D-- 1I AL-+Ot 12.66 +L+wW+ / = -n/
1,2D.1-1 . E ' I.OL+ . 2 S ` 480.56 D+L+S-- wW/2 w /2 = nfa
, D+ l -OE _ 379.67 +L+ +E/l A = 395-87
1,�D+I. L+Em 688-37 D+E/1. = 324.24
0. D-Erri — -219.14
.L Pi
'kip
loEQ load = 194 ki
Em 404,81 kip
ad
P� =688.37
,c = O�7 4
FCr =3&41
M
Pn � 920.76 kip
PU 0.7476
Pll
Major Bending Minor Bending
yiel(ling Yielding
41X EL
Compact Criteria
(].30-�EEsIFy 12.98
Unbi'aced Lericrth rites -i
i
kip
kip
kip
kip
kip
k l' P
nx 6615.0 k -in ny = 99T -in
Late)- I- Tors1*0nI B u I n
A _
192-1
-in
Ma
534.84
-in
C _426.6
k -in
M �
5240
k -i n
6_
0.31
P
131.15
in
Lr =
496-93
P� =688.37
,c = O�7 4
FCr =3&41
M
Pn � 920.76 kip
PU 0.7476
Pll
Major Bending Minor Bending
yiel(ling Yielding
41X EL
Compact Criteria
(].30-�EEsIFy 12.98
Unbi'aced Lericrth rites -i
i
kip
kip
kip
kip
kip
k l' P
nx 6615.0 k -in ny = 99T -in
Late)- I- Tors1*0nI B u I n
A _
192-1
-in
Ma
534.84
-in
C _426.6
k -in
M �
5240
k -i n
6_
0.31
P
131.15
in
Lr =
496-93
� nx = 2485. -iii
_MUX 0.0453
0.0400
b IM
RX OmnV
Combined Stresses
Il -1 '+ M —
+_ � + 1. 0.826 1.0
ION UT,
1
2p']� f ;IVf 0.�)Vf
l/i, X =
kl/-r Y
Lb min =
60-11 < 200
34.2. < 200
130.70 in
204359,00
-3+2005
LRFD Beam -Column Design 4-1 -2 0 .xIs Col A-2-5 G-8-5 to
kpff
Consulting Engineers
LRFD Reani-Column Design, for WF or HSS Sections
LDS Rexburg Who Temple
Columns A.2-5
and G.8-5 from
2nd Lewel to Mechanical Level -
Snow load
Member size
lip
' ;° Section is Compact
Compact Criteria
' 12X53
d
- 12.06 in
XT- 7 0.6 in'
0.30%;ts./Fy 12.04
-41.,64
M
Ru 19 9.17
bf
9.995 lig
ZX 77.9 in'
Lf
- 0-575 in
ZY 29.1 1
U11:b1 aced Length l terra
Lb = 18 ft
Fy = 50 ks]
Axial
Dead load = 7 1.3 kip
Live load =
7.8
kip
Snow load
15
lip
EQ load
146.36
kip
EM =
105-81
kip
Load Combinations
I -4D =
99.8.
L +1. +L L=
117.36
1.D+I,L+. =
105-54
1. +IiO +1 s + .. �
146.36
.L+1.OE
114.17
1.2D-0. r 1. L,+E11n =
199.17
. Em -
-41.,64
M� = 392.16
Ru 19 9.17
kip
?,c - 1.152
F cr 2&72 sl-
Wn 390.88 kip
U 0.5229
1 - 5.22() Jrl r
r„ 2.478 in k1/r y _
L. min
SDS ` 0.401
D+L+S = 94.1 0 kip
D+L+wW = n1a lip
L ' ' + / � n/a kip
+L+ + 1 - nda kip.
+1_.++E/1,4 = 129:81 kip.
0,I+E/1.4 99.89 kips
kip
Major Bending
Minor r Bending
Yielding
Yielding
MUX 120
k4n
MUy= 1 -in.
nx = 3505.5
k -Irl
Omily = 1296,0 -iii
Lateral- Torsional Buckling
M� = 392.16
k -Irl
MC = 4.7-16,6
k -in
1r = 2824
k -in
Cb = 031
L 1 5.04
In
L = X 06.5 03
llx = 1656.83 k4n
MUX. 0.07.4 Mui 0.0926
M -MRPY
mWine Stresses
if Pv . n 0.2. then use Eq. HI -1a
Ft ALL 9 ObMn-v 06 Alf 7TY
U + UX u r
}+
M �Ob M_
Use .Eq. Hl --1a
87.16 < 200
41.38 < 200
107,43 in
f
204359.00
5/23/2005
LR_FD Beam -Column Design 4-12-2005.xis Col A.2-5 G.8-5 nzid
,kp
. ff
Consulting Engineers
,_.
LRFD Beam -Column Design for WF or HSS Sections
Columns C-5 and F -e from Main Level to 2nd Level
Member size
, 1
C
Minor Bending
�I " I n l � act
Live
d =
12.71
in
SK - 131
in
d
28.2
ins
_ 44A
ins
bf =
12.16
EM _
ZX _ 147
in3
0.9
in
ZY 67.5
in
k n
� _ 0."3 1
T -X _ 5.435
in
Lb =
15.5
ft
r 1094
in
FY _50
k$1
Axial
Dead
load _
Minor Bending
kip
Live
load _
48.8
kip
Snow
load
16
kip
EQ
load _
179
kip
k -in
EM _
36.79
kip
Pu = 702.1
c _ 0.794
F r. 38.41
P, = 920.76
32',70
351.00
362.69
507,60
5
70,2.19
-169+34
UP111 FT
kip
s)
kip
0.7626
LDS Rexburg Idaho Temple
Compact Criteria
. s/Fy 12,98
Em braced L D kh Criteria
k1/r . =
/r y =
Lb miry =
60.11 < 200
34.22 < 200
130.70 i n
0
Minor Bending
4n
SDE =
0.4075
X7.40
7.70
D+L S =
+L+wW =
I +E+ +w'W/ =
+L+ +E/ 1.
.+E/1.4 =
295.30
n/a
Iva
Tva
423.16
335+1
kip
yip
kip
kip
kip
kip
kip
Major Ben in.0
Minor Bending
4n
Yielding
DALIN 120
-i n
muy 120 -i n
ray = 661 �.
-ln
2997.0' k -in
Lateral -Tori na.1 Ruckl n
Mme, - A 6
k -in
r _ 534.84
-a n
C ` 4.2.6-6
- i n
Mr _ 5240
k n
� _ 0."3 1
LP 131.1
in
LT _ 496.93
rLm = 2485.98 -in
.I.UX tai=
0.0400
FLX Wny
Combined Stresses
If P'U n > 0.2. thea use Eq. HI -1a Use Eq. HI -1a
E. HI -1 a _ + M
Ob Pi,, 00f
204359+0
5/2312005
LR -FD Beare -Column Design -1 - 0+ 5, 1 l - F-5 low
kpff
Consulting Engineel•s
LRFD Beam -Column Design for WF or HSS`ect* n,
O I LI M n S C-5 and F-5 from 2nd Level to Mechanical Level
1 eml)er size
W1 53
_
Section on lCompact
d =
12.06
in
Sx = 7 0.6in
=
15,6
in
SY= 19.2 in'
bf
9
In.X
= 7.9 in'
4
0-575
in
ZV= 29.1 in
MC = 4
-i n
Mr 2824
k -gin
Ch0.31
rx-= 5.220 ire
Lb =
18
ft
TY � 2.478 in
Fy _
50
le i
Dead load = 51.2 k i p
Live load
4.s kip
Snow load
l 'kips
EQ load _
3 3 kip
Er
70.17 lip
Load Combinations
IAD
1,+1.+I.L =
1. +1. L+ . =
1.2 D+ l . O E+ 1. L+0. =
. 9D+ 1.E =
1 r2 D+ 1 _ L+Em
0. L -EI„=
PU =13 6.41
?--c = 1,152
FCF = 28.72
71,68
91.84
77,12
102.44
79.08
13 AI
-24.09
kip
si
380-88 kip
�� 0.3582
Pn
LDS Rexburg Idaho Teniple
Compact Criteria
0,'350,v)&&/F y 12.04,
nbraced L n ID
Orth Criteria
87.16 < 200
41.38 < 200
107.43 in
o =
Miiior Buidin
Yielding
SDs =
0.4075
'-37.40
13,83
a
LI D+L+wW _
+L+F+ S /
+L+ + NV12
72.00
/a
ri/
n/a
95.5'
.
65
kip
I,
lip
k1p
kip
kip
kip
Major Beading
Miiior Buidin
Yielding
ie 1ding
mux 120
k -in
muy 120 k-111
rix 3505.5
irl
Wny 1296.0 k -in
La feral- To t-siona I Buckling
MA== 392.16
k- i n
% = 534a 84
k -in
MC = 4
-i n
Mr 2824
k -gin
Ch0.31
LO 105.04
in
Lr 3W503
1656.83 -in
L]k 0-0724
SRX1ny
Combined Stresses
if P� t In > 0.2, then use Eq. H I -I a Use Eq. HI -la
MriM M
JI�V OFF � n bM
V M20T� + OM 20Ppro '
+r L
10 ObAf NX
4
204359.00
5123/2005
LRFD Beam- oluniri Design 4-1 T 0 , is Col - F-5 Enid
kpff
C,onsulting Engineers
LRFD Beam -Column Design for WF or HSS Sections
Columns - and F-5 from 2nd. Levelto 1 ec h an is a1 Level
Member size W12C40 -�
d = 1 I.94 in
. = 11. inn
br= 8.005 in
tr '!-- 0.515 in
Lb
Fy _
Dead
load =
51.2
Live
load =
4.8
Snow
load =
1.
EQ
load!--
1
2076
F-111
24.17
Load Combinations
IAD _
1. D+1+ +L L
1.2D+1.L+.
1, 2 D--- 1. .+ L L+0.
O. -9D+ l . OE_
1.d-1.L+Em
0.9D -Em ._
PtJ = 9 L84
11
AC 1.477
cr = 1,11
OP.n =201.70
pri
Major .ren
Yielding
kip
kip
kip
kip
kip
71.68
1.84
77,12
79.44
-0
90.{41
21.91
kip
i
kip
0.4553
IUX IFTT� 1 -i n
nx = 2587,5 -in
Lateral -Torsional Huckfiiig
A �
392).16
-in
1g _
534-84
l --in
C =
4216.6
-ill
r _
2076
k-1171
Cb =
0.31
1,
81.94,
in
L, L
1.642
nx =14.4.7 -in
Ax 0.0836
TIX
ombiaed Stresses
if PO = f , > .2, then use Eq . 1T 1- l a
Section is Compact
1. in
Sy = 11 it),
57.5 in
y = 16-8 i n'
rX 5.126 in
r. 1.933 in
LDS Rexburg Idaho Temple
Compact Criteria
./F 12.04
rib raced Length ri tori
111.73 < 200
42,14 < 200
86-04 in.
0 5
SDS = 0.4075 I .7 9.05
1 +L+
+L+ W =
+L-+ + / -
+L +wW/ _
D+L:+ +-E/ 1,4
0.913+E1.4 -
i� U1, ear � �r
01� 9 9 (4 FEY AM, V
UX M fix
20P, 013 M aX 2 op� 0.4 'IV[ Oix O -b Jwn-v
72.00
ria
Wa
n4
79.14
53.22
kip
kip
kip
kip
kip
lei
leap
Minor Benfflng
Yielding
Uy = 1 -in
ny = 742.5 -ire
`y 0.1616
Omni
Use Eq. HI -1a
LRFD Beare -Column Design 4_1 - 00 . 1s Col -' F-5 top
Consulting Engineers
kpff
Rexburg Idaho Temple
R`D Beam -Column Design for WF or HSS Sections
Grid 5 Brace on Main Level
Member size, W8X40
— 8 .� 5 j.n 3545 M'
11. 7 -S2e
Y2
bf 8.07 in ZX - 39.8 in'
3.5.33 in
Lb = 19.75 t r — 2.049 in.
Fir 50 ksi
10
Slenderness
kyr X, 115.69 < 5.87-,/E `
kI/r Y 67.09 < 5.87�s/Fy
Lb I i 86.74 in
Compact Criteria
.,,X 7.22
Section is Compact
Axial Capacity
U = 92 kip 103.99 4.48
I_ 1.529
Fer 18.75 ksl
�P = 1A.86.51 1 kip
U
�Pll
a.4933,
204359.00
5/23/2005
SCBE Brace Design.xls Grid 5 Main
Consulting Engineers
kpff
Rexbwg Idaho Temple
LRF Beam -Column Design for WF or HSS Sections
Grid 5 Brace on 2nd Level
Member size F)w8X48
d = $.5 in SX = 43.3 fil 3
A = 14.1 in' Sy = 15 in
br = 8.11. in ZX = 49 in
tf 0.685 1T1 Zy = 22.9 Y113
rx 612 in
Lb — 23 ft ry = 2.078 in
FY — 50 ksi
Slenderness
Wr X = 132.80 c 5.87VEsIFy
kllr „ = 76.40 c 5.$7,.&sfFy
L6 min = 8 7.17 ul
Compact Criteria
0.30-4.,jEs/Fy 7.22
Section is Compact
Axial Capacity
PU — 100 kid 111.3 17.3 5
kc =
cr
T
1.755
14.23
17058
0.5863
ok
V .0-11A
204359.00
5/23/200-5-
SCBF
Brace Design.xls Grid 5 2nd
ConSUIting Engineers
kpff
Rexburg Idaho Temple
LRFD Beam -Column Design for WF or HSS Sect*ons
Grid 5 Brace ars 3rd Leel
Member size X 0
d — 8.25 in SX = 3 5.5 M3
A= 11.7m 2 S y= 12.2 in3
br = 8.07 in ZX = 39.8 x113
tf' 0.56 in Zy: = 18.5
�X = 3.5 3 3 in
Lb = 22 ft Ty 2.04] ;n
y = 50 ksi
Slenderness
kl;r X = 18.87 c 5.87,,CslFy
Ur y = 74.73 < 5.87,,rEslFy
Lb rnin — $6.74 in
Compact Crfteria
0.34-�Es1Fy 7.22
Section is Compact
Axial Capacity
PU 67.5 kip 9G.14 27.$1
7,c = 1,703
Fir = 1.5.11 ksi
�Pll — 15:0. 3 1 kid
4.4491
ok
S CBF Brice Design.x1s
a �. ; moo•"
204359.00
5/23/2005
kpf.�
Consulting Engineers
Rexburg Idaho Temple
RJ.LRFD Beam -Column Design fr WF or HSS Secti 9 ons
Grid 5 Brace on Mechanical Mezzanine
M n -ib r size HSS4X4X,.2500
d 4 in SX — 3.9
3.3 7 1 SY -3.9 in'r
f, ZX _ 4.9 7 3
t f 0.25 in Zv 0 in
J
r 1 in
L17.3 3 = 1.521 i
Fy = 46 ksi
L/r X _ .-stF
kL/r v = 136.72 .
Lb nun 44.8 2 i
Compact Criteria
0_64-VjEsIFy 16.07
Section is Compact
Axial Capacity
Pu -- 17.0E kip
�4c = 1.733
FCT = 13.43 ksi
�P=, = 38.7 kip
P" 0.515
On
ak
1-9.82 18.78
CBF Brace Designals Grid 5 Mezz
Consulting Engineers
kpff
Rexburg Idaho Teniple
LRFD Beam -Column Design for WF or HSS Sections
Grids B and G Braces on Main Level
Member size i 1N8X40
d = 8.25 in SX = 35.5 in'
A = 113 znZ Sy = 12.2 in
bf= 8.07 in ZX = 3 9. 8 ins
gyp' - 0.56 iil Z y = 18.5 113
rx = 3.533 �n
18.5 ft r„ = 2.049 in
FV = 50 ksi
Slenderness
kl/r h — 108.37 c 5.87%Es/F'y
kUr y = 62,$4 < 5.87-vtsr'Fy
Lb min = $ 6.74 in
Compact Criteria
0.30-VtSiFy 7.22
Section is Compact
Axial Capacity
P„ _ X35.82 kip 75..13 135_$
— 1.432
F.C,r = 21..23 ksi
�P„ = 711.09 kip
Pu
.r
�Pll
ok
204359.00
s/23r2oos
SCBE` Brace Design.xls Grids !G Main
Cansulting Engineers
kpff
Rexburg Idaho Tempe
LRFD Beam -Column Design for WF or HSS Sections
Grids B and GBraces on 2.nd Level
Member size. WSX48
— 9. 5
in
S_
43.E
3
A — 14.1
Sy _
15
tf . 0.685
in
ZY
22¢9
in'
{f
3.612
in
Lb 1
t
"m f -
2.078
in
Fy -
ksi
Slenderness
l /r y 121-26
• f -�EP F.
Ur y �
f
/F
Lb1 n 7.1
.
Compact C
.vt7.22
Section is Compact
Axial Capacity
w
11 — E`39-6
kip
70
139.60
?c = 1.603
FC,r = 17.07 ksi
1 dip
U
IF.J.1 pn 0.6823
ok
204359.00
5/23/2005
SCBF Brace Design.xls Grids B -G 2nd
ep
Consultm'g Engineers
k ff
Rexburg Idaho Temple
LRFD Beam -Column Design for WF or HSS Sections
Grids B and G Braces an 3rd Level
Member size W8X40 � v
d — 8.25 in SX 35.5 in'
A = 11.7SY v
12.2
in3
tf ~ 0.56 111 zv _ 18.5 in'
rx � 3.533 in
Lb — 21 ft ry — 2.049 in
FY = 50 ksi
Slenderness
ki/r h = 123.01 < 5.87�,sIFy
k1ir y = 71.34 < 5.87�s1Fy
Lb nein = S 6.74 in
Compact Criteria
0.30-,/UsIFy 7.22
Section is Compact
Axial Capacity
PU = 100.75 kip 38.55 100.75
kc
FT _
�Prz =
1.626
16.59 ksi
164.97
U
4--M�Pn
Ev
0.6107
4k
204359.OQ
512312Q05
CBF Brace Desigu.xlsGrids B -G 3rd
kPff
Consulting Engineers
Rexburg Idaho Temple
RFD Beam -Column Design for WF
Grids 13 and G HracesMechanical Manin
Member size w8X28e
-- 8.06 in SN
= 8.25 int SY
bf 6.53 1 ZX — 27.2 i'
t = .465 in ZY _ 10.1 i
T� = 3.447
Lb 1.1 ry= 1.622 in
F _ i
Stendertiess
X 8 1 .' 9 < 5.8 7vEs/Fy
Fr X8.30 < 5.87�s/Fy
J�b n1m 7 0.24 i
Compact Criteria
0.30-, Es/Fy 7.22
Sectlon i's Compact
Axial Capacity
P _ 2D.27 kip 24.5 25,27
Xe = 1.076
Fcr i 30.84 ksi
�Pjn= 216.25 kip
U
��Pn
4.719
o
204359.00
5/23/2005
SCBF Brice Design.xls Gids B -G Mezz
Consulting Engineers
kpff
Rexburg Idaho Temple
- LRFD Beam -Colum -n Design for WF or HSS Sections
Grids C and F Braces on Maim Leel
Member size W10x77
d- 10. 6 in S, � 8 5.9
iY�3
A — 22.G inZ Sy = 30.1 M�
bf= 1Q.19 in Zx = 97.6 in
tf= 0.87 in Zy = 4�.9 in3
rx = 4.4$7 in
Lb = 19 ft - ry = 2.610 in.
ry = Sd ksi
Slenderness
kl,'x x = 87.34 c 5.87,,tslFy
k.Ur y — 50.81 < 5.$7-,&s/Fy
Lb rwn = 109.52 in
Compact Criteria
0.30VESiFy 7.22
Section is compact
Axial Capacity
P„ = 215.07 kip
1.154
Fcr = 28.66
215.07
19,05
204359.00
5/23/2005
SCBE Brace Design.xIs Grids - F Maill
Consultfi-ig Engineers
k,p,ff
Rexburg Idaho Temple
LRFD Beam -Column Design for WF or HSS Sections
Grids C and
F Braces on 2nd Level
Meniber size
I WlDX77
d--
10. 6 in
SX—
8 5.9 jn3
2 2.6 i
S
30. 1 MI
b
i.19io.19 in
ZX
97.6 inn
t
0.87 111
ZY —
45.9 in
&I
Lb
FV
0
Slenderness
klr'rx =
Lb min W
z2.s ft
50 ksi
103,4-3 < 5.87-sCs/Fy
60.17 . ...)tF
109.52 in
Compact Criteria
0.30-�EsrFy 7.22
Section is Compact
Axial Capacity
Pu = 217.97 kip
2uc = 1.367
-Cr = 22.91 ksl
�Pii 4.40 .07 kip
U
0.4953
Oir�
rX — 4,487 In
ry — 2.610 in
217.97 193-69
ePF ?b
20,4359.00
5/23!2005
SCBF Brace I}esign.xls Grids GF end
Consultinor Engineers
kpff
Rexburg Jdaho Temple
LRFD Beam -Column Design for IVF or HSS Sections
Grids C and F Braces on 3rd Level
Member size s ir'WIOX68 I IF
d = 10.4 SX' — 75.? �n3
A. = 20 M' SY = 26.4 ins
bf= 10.3 �. zx = 85.3 3
tf = D.77 in Zy — 40.1 iri3
rT 4.438 xn
Lb — 2 1.5 ft ry = 2.5 $ 8 in
FV = Sa ksi
Slenderness
kl/r x = 99.67 < 5.87�sI1Fy
kllr y LL 58.13 c 5.87-VtslFy
Lb min = 108.88 in
Compact {Criteria
03Nts/Fy 7.22
Section is Compact
Axial Capacity
PU — 175.2$ kip 175.28 151.64
kc 1.317
FCr- 24.22. ksi
�Pn:__ 411.74 kip
PU 0.4257
On
ok
204359.00
5/23/2005
SCBE Brace I i n. x1 Grids -F 3rd
Consulting Engineers
kpff
Rexburg Idaho Temple
-��LRFD Beam -Column Design for WF or SSS Sections
Grids C and F Braces on Mechanical Mezzanine
Member size FW1 X68'
d —
10.4 in
SX —
7 5.7 M'
A —
20 ins
Sy —
2 6.4in'
tr
0.77 in
z —
40. i + 3
4.438 in
F%1— 5 0 ksl'
Slenderness
1/ X 99.67 < _'5'.87-vts/F
kl/r v 5 8.1 3 -Vt
Lb rain = I0$.8 8 in
Compact Criteria
0.30-�tsIFy 7.22
Section is Compact
Axial Capacity
P„ = 104.94 kip
1.317
FCT 24,22 ksi
�PTJ _ 411.74 kip
P„
0.2549
On
ok
104.94 38.07
2043 59.00
5/1-3/2005
SCBF Brad Design.xls Gz-zds C -F Mezz
&I
Consulting Engineers
kpff
Oregon Central Computer Facility
LRFD Beam -Column Design for WF or HSS Sections
Grid 11 Brace on Main Level
Member size W8X40 . � rr
d = 8.25 in SX = 35.5 in'
A= 11.7 in' Sy. = 12.Z M;
b f — 8.07 in ZX = 39.9
�f = x.56 in Zy = 18.5 zri3
rx = 3.533 in
Lb = 21 ft ry = 2.049 in
rY = 50 ksi
Slenderness
123.01 < 5.87-VEs/Fy
kI/r y _ 7 1- . -QtF
b min _ 8 6. y 4 1
Compact Criteria
0.30-\/Es/Fy 7.22
Section is Compact
Axial Capacity
Pu = 66.40 dig
_
1.626
1 6.59 ksi
164.97 kip
PU 0.4025
pn
23.10 66.40
204316.00
5!23/2005
SCF Brace Design.xls Cn-id 11 Main
Consulting En`ineers
kpff
Oregon Central Computer Facility
RFD Beam -Column Design for 'IVF or HSS Sections
Grid 11 Brace on 2nd Level
Member size Fvwvll(OYX49
d = 9.98 in 5,; = 54.G in3
A = I4.4 gin' SY — 18.7 Y�3
tf = 0.56 in ZY = 28.3 in'
rx � 4.345 in
Lb = Z 0 ft ry — 2.547 in
FY — 5 Q ksi
Slenderness
U'r X _ 94.24 C 5.87�E5IFy
kl/r ,, = 55.22 < 5.87-�Es.fFy
Lbniui = 107.48 in
Compact Criteria
0.30,E5/ry 7.22
Secdoii is Non -C ompact
Axial Capacity
Pu = 51.28 kip 13.53 5 1.2 8
ke 1.246
F� = 26.16 k51
320.16 kip
o
204316.00
5/23/2005
SCEF Brace Design.xls Grid 11 2,nd
kpff
Consulti
ng Engineers
Oregon Cental Computer Facility
-�LRFD Beam -Column Design for WF or HSS Sections
Grid 11 Brace an 3rd Level
Member size w X p
9.98 in SXy54.6 in3
A — 14.4 in Y
1&7
bf_ 10 in Z = 60.4
t _ � -'
Lb
Y =
Slenderness
Ur . Z:__
kl/r y
Lb ruin =
19.5 t
50 i
91-98 C 5.87�5/F`]/
5 11
3.84 < 5.87,,fEs/f-qy
107.48 in
Compact Criteria
.. 3 0 s/F7.22
SeCtk)DisNon-Compact -- Resize
r 4.346 in
r _ 2.547 i
Axial Capacity
P„3 5.9 6 kip 0.76 35.96
?�c = 1.214
Fir = 27.01 ksi
�PO — 130,57 kip
P„
0.1088
On
ok
204316.00
512"312005
SCBF Brace DesignAs Grid 11 3rd
kIpff
+Gonsultinb En�zneers
Oregon Central Computer Facility
LRFD Beam --Column Design for WF or IHSS Sections
Grid 11 Brace on Mechanical Alezza.nine
Member sire W8X40-
d = $.25 Sx — 3 5.5 in'
A = 11.7 1n 2 SY = 12.2
bf ` 8.07 in 2x 3 9.8 gin;
of 0.5 6 in Z = 18.5 in
r,; — 3.533 in
Lb = 13 ft ry = 2.049 in
FY = 50 ksi
Slenderness
kI/r x = 76.15 c 5.87�,Es/Fy
kUr y = 44.1.6 { 5.$7�EsIFy
Lbnun = 86.74 in
Compact Criteria
0.30-s,,Y,s/Fy 7.22
Section is Compact
.Axial Capacity
p❑ .25,89 kip
.11
AX_ 1.006
Fcr _ 32.75 ksi
fh Pry3 2 5. 7 1 d
P„
0.0795
pl)
25,89 2,5.79
SCBE Brace Desicrn.xls Grid 11 Mezz
kPff Consulting Engineers
Portland, Oregon
Braced Frame Connection
Special Concentric with 115IrEde Flange Brads
Brace Size
0
Depth = 8.25
11.
tf _ 0.56
br = 8.07
TU U. 643.5
Flange Plate Properties
t= 1
FY
50
FU
65
Width
Iasi
Length =
+19.3
=
. 25
-
in
3 _
15.0
4
2
Gage
kips,
Bolt Hole Diam
15/16
Failure Mechanisms
Bolt Shear
EIon 2t on of BoltHoles
Block Shear of Be rn Flange
Gusset Plate Properties
6ssel
FY -
FU -
6
o
in
ins
'in
I rl
kip
in
e
ki
in
in
in
in
in
In
in
in
649
,
633
1 ,103
LDS Rexburg Idaho Temple
Y =
1.1
FY =
50 ksi
FU =65
Iasi
Flange Hate
Bolts
deg
Type
A490
I
Fv =
45
k i
Diameter
7/8
in
Area
0.60
Iii'
.fir Strength
27.1
kips,
No. of Bolts
1
Actual weld -
Section Fracture of FP 780 kip
Block Tear of FFA 11969 kip
Plate Tension Capacitor
Whitmore Length = 28.42 in
T
11279 #i p
Weld Length
deg
Gusset Plate
Compression
�
Feldi -
/1
in
Lei =
1 i
Total weld =
92.5
in
Prl =
08.30 kip
Weld per leg =
11.
in
kl/r =
64.4
Actual weld -
12
ISI
-4 =
0..85
470,6
kip
HC =
Fcr -,-
36.93 ksi
Mock Shear
0.0
kip
Wn -
892.1 kip
Platn _
1039.7
kip
ok
1086.4
kip
Grasset Edge Buckling
Controlling 1039.7 k J'P Lf 18.1 ICS
ok No Edge Stiffener iq'd
Gusset Connection to Seam and Column
q =43
deg
2 =
48
in
0
in
c _0
in
b _
0
in
=
24.00
in
P
25.74
in
r
35.19
in
C =
470,6
kip
HC =
U
kip
t'
0.0
kip
Hb =
438.9
kip
Flange Plate Not Section Fracture
An = 6.875 Inic
= 1 .o
UAB n
�Rn = A&Fu =
''field Capacity
to =
�Rn
670 kip
204359,00
5/2312005
vert hon
5116 ire 46.32 43.+1
13.92 p/h 470.63 438.87
Dema n dlCap a city Ra do
Be2M = 0.96
Column= DIVYO!
424.31 482:06
Brace Gusset 4-14-2005.xis Grid 5 M2in
kpff Consulting Engineers
Portland, Oregon
LCIS Rexburg Idaho Temple
Baseplate
9
"in
P =
424.30948
Fy -0
U =
ksi
Concrete Bearing
S
Bort Spacing L t
8
in
fc = 4000
psi
TU -
424
kip
A, = 5 76. 0
inZ
PI -
424.31
-gin
kip
p
fin'
rmin,
9.984
in
'pP �1 1 .
i
thin —
2.23
in
Pu = 424.3
kip
t
21/3
in
Bearing is
ok
Anchor Bolts
Soft ,size = 1 1/2 i
Embedment = 42 in nb ,x,
Footing width = 1.5 ft Ase 1.77 ire'
Footing depth = 18 ft tut 75 ksi
I
Tension
Spacing =
9
"in
P =
424.30948
kip
U =
187
kip
S
596.41
kip
cia
262.60
kip
cbg _
262.60
kip
1pn -
1433.60
kip
Wn =
262,60
kip
p
Anchor Sp2cing o
ANO =
1Ifl
11'} =
� [13
V114 =
Ib=
brg _
0,31 BJP =
NAN, 0.712 Interaction with Shear qrd
Shur
=
482..06
kr
Vu =
187
kip
Long Spacing =
a
in
Lt Spacing =
8
in
=
318.09
kip
b =
43.91
kip
cp =
525.20
kip
Wn =
43.91
kap
0.59
VAV., =
4.258
Shear is NO GOOD
oi-nations
Concrete
Steel
4.97 No Good
0.90 ok
324 in
792 in Z.
1.
1.
1.25
1.4
513530 i
in'
128000 lb
Cl = 18 in
*Grade beam present -- edge spacing Is not an issue.
�,
o
Y7 _
" _
cp
1674
1458
1.
1.0
1.
ilk'
in'
27319 Ib
2
204359.00
5/2312005
Br2ce Gusset -1 -0.1 Grid 5 Main
kPff Consulting Engineers
353.43
LDS Rexburg Idaho Temple
2b4359_00
VAP =
1145.50
q)vF1 =
45.58
5/23/2005Portland,
Oregon
0.000
Base Plate Connection
�}
...�.. Gridlines 11 -B and
11 -G
Baseplate
Fy
50
psi
Concrete Bearing
Balt Spacing Lat =
16.5
in
f'�
= 4000
psi
T„ =
571
kip
A,
= 440.8
in'
MP,
1177.69
k -in
A,
7224.8
in 2
Sm;,, =
27.710
in3
�Pp
= 1798.3
kip
tr,;,-, =
2.85
in
Pu
= 921.D
kip
t =
2819
in
Bearing is
ok
Anchor Bolts
Boli Size =
1 114
in
Embedment =
36
in
nbort$
= 8
Footing width
10
ft
ASS
= 1.23
in'
Footing depth =
3.5
ft
fit
= 120
ksl
S2 =
1
Tension
Spacing -
8
in
Anchor Spacing ak
P -
571
kip
A,
= 13455
in`
PU =
571
kip
Aga
= 11664
inz
NS =
6+62.58
kip
lv,
_ 1.0
Ncb =
572.75
kip
Y2
= 1.a
NGbg =
572.75
kip
L1J3
1.25
Npn _[433.60
kip
T4
= 1.4
�N„ =
572.75
kip
Ne
= 397180
Ib
Abrg
= 4
�nG
NP
_ 128000
Ib
Nul�Nn =
D.997
Interaction with Shear Req"d
Shear
V - 0.00
'vU = o
Long Spacing = 8
Lat Spacing = 16,5
Vs =
353.43
Vca9 =
45.58
VAP =
1145.50
q)vF1 =
45.58
0.00
VU4V„ =
0.000
Combinations
Concrete 1.00
Steel 0.$6
kip
kip
in
in
kip
kip
kip
kip
Cl =
kip
Full tension strength allowed
ok
ok
a*V
1903.5
1458
1.0
1.0
t.4
24939
2
in
lb
Brace Gusset 4-1 4-2Q05.x1s Grid 11 base
0
kpff Consulting Engineers
Portland, Oregon
Gridlines 11-C and '11-F
Baseplate
LDS Rexburg Idaho Temple
Fy =
50
ks i'
Concrete Bearing
kid
Bolt Spacing Lot W
16.5
in
f C =: 4000
psi
TU =
z58
kip
A,, = 440.8
in`
M P1 =
532.13
k -in
A2- 7224.8
in'
Smin _
12.521
in3
�Pp V 1798.3
kip
tmin =
1.91
in
Pu = 921.,0
kip
t _
2
in
Bearing is
ok
Anchor Bolts
Balt Size _
Embedment =
Footing width
Footing depth =
Q =
Tension
Ncb
�cbg
Npn_
�Nn =
Nu/n
Shear
vu -
Long Spacing
Lat Spicing =
VS
cb
p
1 1/4
30
10
3.5
1
8
258
258
414.17
434.41
434.41
1433.60
414.17
0.623
220.89
45.58
88.87
45.58
in
in nboits = 8
f# ASS _ 1-23 i ri�
ft fut = 75 ksi
in Anchor
Spicing ok
kid
A,, =
9604
in'
kip
ANO =
8104
' n `
kip
V1, =
1.0
Hi p
W2
1.0
kip
T3 =
1-25
kip
yea =
1.4
kap
Nb w
293102
Ib
Abrg =
4
NP =
128000
Ib
Interaction with
Shear Req'd
kip
kip
in
in
kip
kip
Kip
kip
Av =
Ago =
Y5 =
Uig
W7
Vb =
0.00 kcp =
Wu4Vn _ 0•00.0 Full tension strength allowed
,0�, Combinations
Concrete 0.62 ok
Steel 0.62 o k
0
1903.5
1458
1.0
1.0
1.4
24939
2
in
Ib
204359,0,0
5/23/2005
f -e17 —
J,*.
Brace Gusset 4-1 4-2005.x1s Grid I I base
nM,096onsulting Engineers
Portlorad . Oeg on
Project
Locofion
Client
"wt
I
By
Date
R e-vised
D ate
—7
>
I
f�S 4
14 S
6
ev
AkS CoL
a---) FI- --*- 4...) F-Zp 4 � , f �
rl.k..
+14 Y J
W-
4-
I., e
Sheet No.
Job No.
I
m
w
Porlland ,Oregon
Consulting Engineers
� t 05 rfol
z:&—Z
JM� ,
F��z . e:;Nql
-
PrsI
Xr23 k
-
r—Y
qhep,t No.
%-C
Job No.
a
`�r
A da
7
ie c5-0
�-' r �,. � ��i� !S Gem- �;
J7
9.57=
IAFA,
4eaL
I
Portland, OTegon
L
Consulting Engineers
Project
Loco -Hon
Client
F-
�evised
X
1+
' F-7, lip
d ' 5
Je
7.
=- JO 41" -�6-
(4-0
I %C>pt-r'-
r
5c:)
J
4,r.610 D
4w:
:5"� Z -
too
1--IZO - 144' 4
4,1 MAY
4
5'1
—4-7k
L. -D)
Z A 2 k
4-
10 -7
v
I c�o r7 4 557?
L
p
4-
f
T--74 too ��� - a
Project B
Consultin Eng'
11
.... -..... __.....� �._._,
Date
JShee"r No.
V
Job No.
kpff
Consulting Engineers
FD Beam -Column
Design for WF
or HSS Sections
Columns A.2-8 and G.8-8
fr orn .Main Level
'to 2nd
Level
k -in
Member size
' `12X106 Section
is Compact
Mr =
=
1189 ..-
in
SX=
145
ill
131-65
312
in
S� �
49.3
i�,3
bf ®
12,22
in
Zx
164
in
0.99
in
ZY _
75.1
in
T -x =
5.468
in
Lb _
15 - _5'
ft
ry
3.106
in
Fy _50
ks]
Dead. load = 206.3 lir
Live load 36 lip
Snow load 15 kip
EQ load = 177,87 kip
Eni 372.55 kip
Land Combinations
L4D =
1.2D+ I., 6S+I TOL =
1.I+1.L+.:
1. I +I. +i.OL+0.2S =
. D+I .OH =
1. D+1.OL+Ern
0.9D -Em -
PU =656.11
rte• ..
,c _ O.791
cr 8.49
288,82
X07.56
312.66
464.43)
363.54
656.11
pn 1020.75 kip
PCI 0.642
F1
Major Bending
yielding
nx = 7380.0 -ire
RX
nx
nx 21743.62 %.-iii
0.0437
Camb.1"ned Stresses
I F Pu + n > 0.2. thea use Eq. Ill -la
0
SDS = (14075
l+L+ _
D+L+w
D+L+ W+ / _
l +L+ + W/
P 8 K Ad�, Aflq7,
O,F� 9 ""06MMV 01�mr��, )
20PIr O.&M111 ObMFO,
LDS Rexburg Idaho Teml)l
25730
n/
n/a
x$4.35
31172
ompa c -t Criteria
O_')O- � s11Py 12.98
Unbrac,ed Le ni yth Criteiia
kip
kip
kip
kip
kip
kip
kip
ino r Bending
Yielding
kly = 120 k -in
nv _ 3.327.8k4n
MUV U361
nv
Use Eq.HI-1a
59.88 < 200
34.01 < 200
131.34 in
1
20439.00
5123/2005
LRFD Baa- -Column e icrn 4-12-2005.xis Col. A-2-8 G.8-8 low
,: =
3 92.1 l
-in
Me =
5 34.84
k -in
N4.c =
2 6,6
k -In
Mr =
5800
-in
� =
.31
LO -
131-65
in
Lr =
537-601
RX
nx
nx 21743.62 %.-iii
0.0437
Camb.1"ned Stresses
I F Pu + n > 0.2. thea use Eq. Ill -la
0
SDS = (14075
l+L+ _
D+L+w
D+L+ W+ / _
l +L+ + W/
P 8 K Ad�, Aflq7,
O,F� 9 ""06MMV 01�mr��, )
20PIr O.&M111 ObMFO,
LDS Rexburg Idaho Teml)l
25730
n/
n/a
x$4.35
31172
ompa c -t Criteria
O_')O- � s11Py 12.98
Unbrac,ed Le ni yth Criteiia
kip
kip
kip
kip
kip
kip
kip
ino r Bending
Yielding
kly = 120 k -in
nv _ 3.327.8k4n
MUV U361
nv
Use Eq.HI-1a
59.88 < 200
34.01 < 200
131.34 in
1
20439.00
5123/2005
LRFD Baa- -Column e icrn 4-12-2005.xis Col. A-2-8 G.8-8 low
kpff
Consulting Engineers
L FD Beam -Column Design for WF or HSS Sections
of umn& A.2-8 and G.8-8
from
2nd Level to Mechanical Level
Mem r .si z
L�PX72_
78.75 kip
Section is Compact
163.31 kip
-
12.25
in
S X 7A
i 11
2 1. 1
ir,2
�y r
in'
r=
12.04
in
ZX 108
k -in
t f
0.67
In
Z�r 49.2
inj..
LP = 128.86
r, 5.319
in
Lb =
18
ft
F _ 3.040
in
Fy
50
ksi
*ll
Dead load =- 71.3 kip
Live load =
7.8 kip
Snow load =
15 kip
EQ load =
78.75 kip
Eal =
163.31 kip
Load Combinatioris
1A -
1. I +1. L ,
r + 1.O -
I. + 1.OL+E � =
. -m =
13U = 256-67
99.82
117.36
105-54
175.11
142.92
256.67
-99.1.4
UP LI FT
ki
0,939
Fer34+59 ks1
n _ 620.46 kip
PU 0.4137
pTi
00-
u.s = 0.4075
4.22 0
LDS Rexburg Idaho Temple
94.1
n/a
n/
a
150-35
120.42
Compact Criteria
0.30-,/Es/FY 12.04
Unbraced Length Criteria
kip
kip
kip
kip
kip
kip
k1p
Major Bendi*ng
Nlinor Bending
MUX = 120
k-111
1NTU = 120 -its
STK = 4860.0
-in
Olmn = 187.0 k -in
Latei-al-Torsioiial Buckling
MA = 392-16
-in
B _ 534.84
k -in
Mc _ 42 6: 6
k -in
MY 3896
k -In
Cb 0.31
LP = 128.86
in
1,= 403.625
' nx = 2022.63 k -in
Mix 0.0593 ,s 0.054
�MlixW,y
Combined Stresses
if P= � 0.2 then use Eq. HI -la
MMY P _ M
O
01, Alf n bAlf bMx .
20POI OnM 20F� 011,41 0.� M
Use Eq. 111-1
k 1/r X =
kl/ry_
Lb min
71.05
40.61 < 200
1 -41 In
20439.00
5/2312OD5
.RFD Beam -Column Design 4-12-2005,xls Col A.2-8 G,8-8 nii d
kpff
ConsultingEngineer
LRFD Beam -Column Design for WF or HSS Sections
Columns C-8 and F-8 from Main Lural to 2nd Level
rl, mber size FWi2X96 JSection i's Compact
d
12.71
inX=
LI-ve load
131
int
=
28.2
in
S Y- =
44.4
kip
f=
12.16
in
ZX=
147
ire
tf
0f
Lr =
y �
67.5
r. _
5:435
In
Lb
15,5
ft
ry
.094
in
F�,
50
ksi
Dead load
230.5
kip
LI-ve load
4.8
kip
Snow load =
16
kilp
EQ load =
145,65
kip
M
310.09
kip
Load Combinations
1AD =
1.2 +1.. +I..
1.2D+1 - L+ .5
1. +1 O +1. L+0.
.D+1.E
1.+1.L+Eft) _
0.9D -Em=
Pa = 635+49
Kc 0,794
Fct1
322-70
351.00
.62.68
4}4:25
353.10
635.49
-102.64
"U,PL - � r
kip,
ksi
n = 920,76 kip
Pu 0.6902
On
Major Bending
Yielding
llx = 2485.98 -in
MEIN 0.0483
Omni
Combined tr
i PU : fpn> O 2 � then use Eq, HI -1
0 =
SDS = 0,4075
D+L+
D'-L+wW -
L - L+ wW+ /
1 + L+ + 1/ _
+L+ +E/ 1.
.+E/1.4=
OP9 Alf
20P1 teti 7"j Edi
Alf
, 011 A f M r� ti -
LDS Rexburg Idaho Temple
295.30
n -i a
n/a
a
399.34
3 1149
Compact Criteria
.� OvJ!E/Fy 12.98
Unbraccd Length Criteria
kip
kip
kip
kip
kip
kip
kip
Minor Bending
ieidbi
ily = 120 k -in
n _ 1. -1 n
_ ily 0.0400
n,v
Use Eq. Hl -1a
OrX=
l/r y
Lh nein �=
60.1.1 < 200
34.22 < 200
130.70 in
204359M
512-312005)
LRFD Beam -Column L si 4-12-2005,xls Col - F-8 low
NIA =
392.1
k -in
Ms ^
534.84
k -in
Mc -
426.6
k -in
A '
5240
k -in
Ch _
031
L, =
131,15
in
Lr =
496,93
llx = 2485.98 -in
MEIN 0.0483
Omni
Combined tr
i PU : fpn> O 2 � then use Eq, HI -1
0 =
SDS = 0,4075
D+L+
D'-L+wW -
L - L+ wW+ /
1 + L+ + 1/ _
+L+ +E/ 1.
.+E/1.4=
OP9 Alf
20P1 teti 7"j Edi
Alf
, 011 A f M r� ti -
LDS Rexburg Idaho Temple
295.30
n -i a
n/a
a
399.34
3 1149
Compact Criteria
.� OvJ!E/Fy 12.98
Unbraccd Length Criteria
kip
kip
kip
kip
kip
kip
kip
Minor Bending
ieidbi
ily = 120 k -in
n _ 1. -1 n
_ ily 0.0400
n,v
Use Eq. Hl -1a
OrX=
l/r y
Lh nein �=
60.1.1 < 200
34.22 < 200
130.70 in
204359M
512-312005)
LRFD Beam -Column L si 4-12-2005,xls Col - F-8 low
kpff
Consulting Engineers
F -Column Design for r H salon.
Columns - .n F-8 from 2nd Level to Mechanical Level
Member size W 12X72
d = 12.25 1n
- 1.1 j n2
bf = 12.04 in
tr_ 0.67 in
Lb = 1t
Fy _ 50 ks i
Axial
Dead load - 51.2 kip
Live load
4.8 kip
Snow load =
16 kip.
P_load _
47.32 kip
EM==
98.81 kip
Load Combinations
IAD =
1,D+1.+I .L =
I .+ 1.L+.
1.. + I.O E+ 1. L-110.2
.I+1.E =
1..+1.L.+EM .
. D R E l _
PU = 165-05
71.68
1r8
7.1
116.76
93.40
165 -OS
_52.7.1
UTPL1FT
kip
_
0,939
Fcr -
34.59 ki
Pl =
620,46 kip
Pti O'.'
4Pn
Major Bendinu
MUX ' 1 -i n
RIN = 4860.0 -in
Lateral-Torsio7ial Buckling
A
392).1
-its.
B =
X34.84
-in
Mc =
426.
1 -ire
Mr
3896
k -Irl
Cb �-
0 � 1
Lr =
128.86
in
Lr = 403.625
1nx = 2022.63 -ire
MUX 0.059,
nx
Combined Stresses
if PU n > 0.2, then use Eq. 1- I a
Section is Campact
X 97.4 in'
y 3 2Aire'
X in'
0 =
SDS = 0.4075
D +L+ _
D 7
= L+w _
+1✓+wW+ /
+L' +wW/ _
D+L+ +E/ 1.4 _
. +E/1.
LDS Rexburg Idaho Temple
72.00
rila
a
n/a
105.80
79.88
Compact Criteria
0.30-,,.11E-s/Fy 12.04
Unbraced Length Criteria
kip
kip
k1p
kip
kiP
kip
kip
Minor Bending
Yielding
„y ;-- I '2 0 k -i n
MrLv = 2187.0 k -i n
0.0549
ny
Use Esq. SIX-Ja
1I/rr V =
kUr y
Lb min
T
I _jV1141 �LLl �' F' s
jj ,- + 1. 0.38 1 .0
FI M J4.v df M f.FS LL
71-05
40-1 < 2_00
12 9.41 in
n --- +
e -
.V1
204359-00
5/23/2005
LR'D Beam -Column Design 4-12-2005.xis CoI - F-8 mi
5.319 111
-Ty
3.040 in
0 =
SDS = 0.4075
D +L+ _
D 7
= L+w _
+1✓+wW+ /
+L' +wW/ _
D+L+ +E/ 1.4 _
. +E/1.
LDS Rexburg Idaho Temple
72.00
rila
a
n/a
105.80
79.88
Compact Criteria
0.30-,,.11E-s/Fy 12.04
Unbraced Length Criteria
kip
kip
k1p
kip
kiP
kip
kip
Minor Bending
Yielding
„y ;-- I '2 0 k -i n
MrLv = 2187.0 k -i n
0.0549
ny
Use Esq. SIX-Ja
1I/rr V =
kUr y
Lb min
T
I _jV1141 �LLl �' F' s
jj ,- + 1. 0.38 1 .0
FI M J4.v df M f.FS LL
71-05
40-1 < 2_00
12 9.41 in
n --- +
e -
.V1
204359-00
5/23/2005
LR'D Beam -Column Design 4-12-2005.xis CoI - F-8 mi
kpff
Consulting Engineers
LRFD Beam -Column Design for
Wor
HSS Sections
Columns C-8 and
F-8 from Mechanical
Laval to Roof
kip
Member sig
Section is Compact
Mr
d
11.94 in
SN --51.9
0.31
in
EQ load = 7,99
11.8 in
y=
11
ire'
ht =
8.005 in
ZX _
57.5
in'
-
0.515 in
zy =
16.8
lll'
IAD =
71.68
rX
5.126
in
=
18 ft
ry =
1.933
in
Fy
50 ksl
I +L+wW-S ' _
kip
Axial
4
LLS Rexburg Idaho Temple
Compact Criteria
0.30rksfFy 12.44
Unbraced Length Ctiteria
Dead load 51,2
kip
G
8 _
534+84
Lies load 4,8
kip
SDs 0.4075
-in
Mr
Snow load = 16
lip
Ch
0.31
EQ load = 7,99
kip
in
LF --
231.642
ETR _ 19,95
kip
Load Combinations
IAD =
71.68
+L+ T
71-00
kip
1.2D+ + 1. +1.Off, =
91-84
I +L +w _
-n/a
kiln
1.2D+ 1. L+0. =
77.1
I +L+wW-S ' _
kip
1. D+1. ; + 1. L+0. =
77.33
D. L+ +wW/ !=
n/a
lip
0-9D 1.0E W
53.97
1 +L+ +E-/1.4 =
77.64
kip
l . D+I.OL+Em =
5. .1
. 9D+E/ / 1.4 v
51.72
lip
0. I -Em =
26-13
kip
P� = 9L84
kip
= 1.477
cr = 20.11 ksi
�Pn = 201.70 kip
tj 0.4553
pn
Major Bending
Mg1X = 12 k -in
nx � 2587.5 -in
Lateral- Tot}sl n 2 Buckling
Rai = 1434.72 -in
UX
Combined re.
0.0836
If PU -, t o 02, then use Eq. H I -1
Minor Bending
Yielding
uy - 11-10 k -in
'nv = 742.5 k -in
uy - 0.1616
Use Eq.H1-1a
111.73 < 200
42.14 < 200
56,04 in
204359.00
51 23/2005
LPTD Beam -Column Design -1 - 0 . is Col -8 F-8 top
92,16
-in
8 _
534+84
-in
Mc _
426,6
-in
Mr
2076
-in
Ch
0.31
LP =
1.94
in
LF --
231.642
Rai = 1434.72 -in
UX
Combined re.
0.0836
If PU -, t o 02, then use Eq. H I -1
Minor Bending
Yielding
uy - 11-10 k -in
'nv = 742.5 k -in
uy - 0.1616
Use Eq.H1-1a
111.73 < 200
42.14 < 200
56,04 in
204359.00
51 23/2005
LPTD Beam -Column Design -1 - 0 . is Col -8 F-8 top
kpff Consulting Engineers
Portland, Oregon
Eccentric Braced Frame
Chevron style Beam
Beam Size
Depth
WE
Awi
tf
bf
r
Axial
Pu -
Compactness
kP$ = 0.30-,/E/FY =
VIleb compactness
Link
M
VP = O-ZFyA, _
M P
2MP/e =
Axial effects
0. 1 5 FyAg =
V P3 =
mpa
Max Link Length =
Rotation
ke -
height, h _.
LDS Rexburg Idaho Temple
W14X48
1.3.79
14.1
4.28
0.595
8.03
YWA.,
5.86
1.91
92.2
OX -1111
� 1!
722
56.63
36
128.5
217.8
105.75
12$.52
217,78
142
204
in Ry 1.1
ins Fy 50 ksi
ins FU = 65 ksi
in
in Lb 11.83 ft
in kl/r x = 74.37 < 200
in kl/r y = 2421 < 200
in
kip
ksi
PU
0.2303
kip �Pn
Flange is Compact
Web is Compact
in V„ = 71.0 kip
kip
k -in
kip
�V„ = 128.5 kip
kip VU 0.614
k'i p n
in PuA, 0.39
u
Ag
rd
in
In
0— X 1+ 2 `� � 0.0615
h e
emax = 0.0$
rad
204359.00
5/23/2005
Eccentric Braced Frarne,xls Beam
kpff Consulting Engineers
Portland, Oregon
Link Stiffeners
For O.D8 rad: 30tw-d/5
For d.02 rad; 52tw-d/5
For 0.065 rad.-
Lateral
ad:
LDS Rexburg Idaho Temple
7.442 in
14.922 in
13 in
Lateral Bracing of Link Ends
PU = 0.06Ry Fy bftf = 15.8 kip
Outside of Link Length
RyVn = 141.4
MEQ = 2545
M -gravity
Mu
Use Eq. Hl -la
kip
k -in
k -in
Eq. H 1-1 a = p�.- 8 M1� + MUY < 1.0 = 4.8 9
0-[� 9 A Mnx 004�v )
1� M UX
20Pn ObM nX
M
"'' c 1.0
ObMny
20.4359.00
5/2312005
0 1
�
Eccentric Braced Frarne.xls Beam
kpff Consulting Engineers
Portland, Oregon
Eccentric braced Frame
Chevron style Brace
Brace Size Mx58
--- I•r
Axial
LDS Rexburg Idaho Temple
Depth -
8.75
in
RY =
.
A -
17.1
In 2
FY
50
ksi
A =
3.64
int
FU
65
k i
Compactness
bt =
8.22
in
height=
188.21
in
t =
0.51
in
CIr width=
134.25
in
Flange Flats Properties
3.65
in
L�, _
1.1
in
r
2.10
in,
kl r
110.32
< 200
FY =
36
ksi
kl/r Y =
63.31
< 200
P -
128.52
k 1p
OFV=
45
ks i
b -=�
1 5.29
kip
Diameter
/
in
gravity -=
-
kip
Area
0.60
in
�Fyr =
201.7
kip
Shear tr ri tl 1
.1
kips
P.0 =
247.8
kip
Not o Volts
1
?'C = 1.458
Fcr = 20.58 ksi
204359..00
5/23/205
Eccentric Braced Fr me-xl Brace
PU
0.8284
�Pn =
299.08
kip
tri
Compactness
?tips = 0.3kEIFY =
7.22
Flange
is Compact
Web Co,mpactness
40.50
VVebiS
COMP2Ct
Flange Flats Properties
t -
1
in,
Flange Plate
Bolts
FY =
36
ksi
Type
A490
FU=
58
ksi
OFV=
45
ks i
'width =
8
in
Diameter
/
in
Length =
15.00
in
Area
0.60
in
1.5
in A
Shear tr ri tl 1
.1
kips
in
Not o Volts
1
12.0
I n
4 =
1.5
in
Gage =
I fs
Bolt Hole 1..'� i # 1 IF a
1 511
i
Failure Mechanisms
Bolt She2r
541
kip Section Fr2cture of FP
696 kip
Elongation of Bolt Holes
17958
kip Block Shear
of FP
1 325 kip
Block Shear of Beam
Flange
1:281
.kip
Gusset Plate Properties
Plate Tension Capacity
,sUss et =
3014
in
Width _
13-00
in
F Y =
36
ki
FU =
58
ki
316
kid'
Weld Length
Gusset Piste
Compression
Weld size =
5/16
in
LPA =
0
in
Total weld =
43.0
in
PU =
87.00
.kip
Weld per leg -
5.4
in
k1r =
0.0
tU 1 weld =
8
in
X =
0:00
FCr -
3E3.00
k j
Block Shear
_298.4
kip
Plate
Rn =
545.1
kip
o
204359..00
5/23/205
Eccentric Braced Fr me-xl Brace
kpff Consulting Engineers
Portland, Oregon
LDS Rexburg Idaho Temple
530.9 kip
Gusset Edge Buckling
Controlling 530.9 kip Lfg = 16.0 in
k No Edge Stiffener Req 'd
Gusset Connection
to Beam
and Column
=35
HC tension _
deg
a (beam) =
14
in
b (column) =
18
in
c =
&375
in
b =
6.875
in
Cf =
4.74
in
=
9.00
in
r =
19.38
in
C =
93.7
kip
IAC -
66.4
kip
6 _
71.6
kip
Hb _
49.3
kip
Brace in Compression
= 115.1
Beam
W 1 4x48
HC
a =
Hb _
k_
d
tw
Web Local Yielding
�Rn -
Web Crippling
81.5
87.9
613.6
1.375
13.79
0.595
0.34
kip
kip
kip
kip
296.4375 kip
0.24 Web Yielding A
�Rrj = 147.3766 kip
0.6 Web Crippling o
Flange Plate Net ,lection Fracture
R = 7.125 in'
= 0.90
e = UAR = 6.41 inz
�Rn = eFu = 625 kip
Weil Capacity
to = 5/16 1
�Rn = 13.92 kip/in
DemandlCapacity Ratio
Beam = 0,45
Column = 0.46
a tensron _
71.6 kiP
b comp =
. kip
HC tension _
66.4 kip
FSC COMP
81.5 kip
Column
W1 2x9
k=
1.625
d
12.71
t1•
0.9
tw
0.55
�Rn _ 606-719 kip
0.11 Web Yielding ok
�Rn = 504.733 Cip
0.16 Web Crippling ol,
204359.00
5/23/2005
}
Eccentric Braced FrameAs Brace
kpffConsulting Engineers
Portland, Oregon
Eccentric Braced Frame
Chevron stye Beam
Beam Size
Depth =
A=
Aw
tf �=
f
t
r
. =zY
Axial
PU
Compactness
�.ps = 0.30-VEIFy
Web Compactness
Link
Am
VP = 0.6FyAw =
M P =
2MP/e =
Axi'al Effects
0.15FyA9 _
Vpa -'
Mia =
Max Link Length =
1-X48
13.79
14.1
4.28
0.595
8.03
0.34
5.86
1.91
122.1
0.983
33.40
400.26
722
54.62
36
128.5
3920.0
217.8
105.75
126.58
212.47'
46.54
0.252
1.26
142
204
LDS Rexburg Idaho Temple
in
R Y =
i.1
int
Fy::::
50
ksi
ins
F, =
65
ksi
in
in
Lb =
11.83
ft
;n
kl/r x =
7a..37
< zea
M
Or Y =
24.21
< Z00
in
kip
ksi
PLI
0.3050
kip Wn
Flange is Compact
Web is Compact
in V U = 94.5 kip
kip
k -in
kip
�Vn = 126.6 kip
kip
kip V„
x.830
kip �Vn
in PAW
0.39
VuA9
in 0 = c5x 1+2 � = 0. 055
in
h e
In Orr �0.08
in
rad
rad
204359.00
5/23/2005
Eccentric Braced FrameAs IVlech Beam
kpff Consulting Engineers
Portland, Oregon
Link Stiffeners
For 0.08 rad: 30tw.d/5 =
For 0.02 rad: 52tw-d/5 =
For 0.055 rad:
Lateral Bracing of Link Ends
PU = 0.06RYFybftf =
Outside of Link Length
LIDS Rexburg Idaho Temple
7.442 in
14.922 in
11. in
15.8 kip
Kyr„ = 139.2
MEQ7-- 2506
Mgravity = 365
M„ = 2871
Use Eq. 1-I
kip
k -in
k -in
Eq. HI-Ia plf - 8 Af�47� - - + Alilly < 1.0 — 0.869
0-1� 9 ObMPLY om t
Eq.Hl-lb— -�t—+ MILY 11 + M*.' < .0
20P, ObM FL M Ply
<t.0
204359.00
5/23/2005
lir �
Eccentric Braced Frarne-As Mech Beam.
Q
kP ff Consulting Engineers
Portland, Oregon
Eccentric Braced Frame
Chevron style Beam
Beam Size
f�Vui4x38
Depth =
A =
t =
rX
Axial
PU
C =
�Pn =
Compactness
X'ps = 0.30�/F
Y =
Web Compactness
Link
raw
VP = 0.6FyAw
2Mp/e
Axial Effects
0.15FYAg =
spa -
Mpa =
Max Link Length =
Rotation
e
6 _
height,
14.1
11.2
4.05
0.515
6.77
0.31
5.86
1.54
1.216
26.98
25E.80
7.22
56.42
36
121.6
3075.0
170.8
M
121.55
170.83
LDS Rexburg Idaho Temple
in Ry= 1.1
inZ FY = 50 ksi
in 2 FU = 65 ksi
in
in Lb = 11.83 ft
in kl/r , = 91.97 < 200
in kilr y = 24,22 < 200
in
dip
ksi
PU
0.2383
kip Q�Pn
Flange is Compact
Web is Compact
in V„ = 109.2 kip
kip
k -in
kip
�Vn = 121.6 kip
kip Vul
x.998
dip �Vn
in P uAw
V„Ag
x.20
0.334 in
1.67 in
142
222
0 = ��c 1 +2 a — 0.067
0max = 0.08
rad
204359.00
5/23/2005
IL
at,
ell-
Eccentric
ll
Eccentric Braced Frame.xis 3rd Beam
kpff Consulting Engineers
Portland, Oregon
Link Stiffeners
For 0.,08 rad: 30tw-d/5 =
For 0.02 rad: 52tw-d/5 =
For 0.067 rad:
Latera] Bracing of Link Ends
PU = 0.06RYFybftf = 11.5 k
Outside of Link Length
ftyV„ = 133.7
MEQ= 2407
rav it M U—
Use Eq. HI--1a
559
2966
kip
k -in
k -in
-In
LIDS Rexburg Idaho Temple
6.48 in
13.3 in
8 in
PIt
Eq. 1 a - 8 — 0.996
0-1� 9 ( 0- .
Eq. H1 -1b pie - + - MuX - + - MUY - < 1.0
2 01� 01Mlx ojMly
204359.00
5/23/2005
10
Eccentric Braced Frarne.xls 3rd Beam
kpff Consulting Engineers
Portland, Oregon
Eccentric Braced Frame
_.
Chevron style Beam
Beam Size W14X48
Depth =
PF
Aw
tf
bf _
t _
X
V
Axial
P„ =
�Pn
Compactness
fps - 0.30,,)EIFY
Web Compactness
Link
ml�
VP = 0.6FyAw =
M P =
2MPI/e =
Axial Effects
0-15FA =
Vp'a _
Mpa
Max Link Length =
13.79
14.1
4.28
0.595
5.86
1.91
65.5
0.983
33.40
400,26
7.22
58.43
36
12 8.5
3920.0
217.8
105.75
128.52
217.78
LDS Rexburg Idaho Temple
in RY = 1.1
in 2 FY W 50 ksi
ink FU = E5 ksi
in
in Lb - 11.83 ft
in Or K = 74.37 C 200
in k11r y -- 24.21 < 200
in
kip
ksi
PU
0.1636
kiP Wn
Flange is Compact
Wpb is Compact
in VU =
kip
-ire
kip
kip
kip V„
kip Wn
112.2
MEW
1 • 1
kip
kip
Rotation
axe = 0.221 in 0— S" 1+ 20.053 0.053 rad
Cox = 1.1051.105 inh e
a = 142 I emax = 0.08 dad
height, h = 186 in
204359.00
5/23/2005
�J
Eccentric Braced Frame.As end Beam
kpff Consulting Engineers
Portland, Oregon
Link Stiffeners
For 0.08
rad:
30tw-d/5
=
For 0.-02
rad:
52tw-d/5
=
For 0.053 rad.
Lateral Bracing of Link Ends
PU = 0.06RYFybftf =
Outside of Link Length
LDS Rexburg Idaho Temple
7.442 i n
14.922 in.
15.8 kip
11 in
Ry V n = 141.4 kip
MEQ = 2545 loin
Mgraviry - 879 k -in
M„ = 3424 {c -in
Use Eq.HI-lb
OT� 9 MM' ObAl-f Ily
Eq. HI -lb - J� + MUA + MYV - < 1.0
0.868 <1.0
204359.00
5/23/2005
T-'� 5p�
-
Eccentric Braced Frame.xls 2nd Beam
iig
kpff Consulting Engineers
Portland, Oregon
Braced Frame Connection
Eccentric with Wide Flange braces
Brace Size
L.DS Rexburg Idaho Temple
K
Depth 8.5 in RY d
14.1 i' F 50 ki
tf = 0.68 ire FU 65 k i
r = 8.11 in
TU = 344.0 kip
Flange Plate Properties
37.4
deg
2 =
15
t =
3/4
in
Flange Plate
E3oIt
6.705
FY =
50
ksl
Type
A490
N
FU =
65
ksl
F =
45
ki
Width =
8
in
D12meter
H =
in
Length =
13.3
in
Area
0.60
in
=
in
She2r Strength
27.1
kips
=
3
in
No. of Bolts
3 =
9.0
in
4 =
2
in
Gage =
5
in
Bolt Hole U F m =
15/16
in
Failure MecIan isms
Bolt She2r
433 kip
Section Fracture of FP
585 kip
Elongation of
Bolt Holes
11316 kip
Block Shear of FP
1,115 kip
Block p rof Beam
Flange
1;018 kip
Gus -set Plate Properties
Flats Tension Capacity
��,jsset =
3/4
in
Width =
12,00
in
FY =
l
FU
65
k i
jn =
405
kip
Weld Length
Gusset Plate
Compression
Weld 1 e -
0+1
in
LPI -
in
Total weld =
49.4
in
Prj =
344.00
kip
Weld per [eg =
6.2
in
kl /r -
0.0
Actual weld =
7
in
0.00
Fr --
50.00
ksi
Block Shear
P,
382.5
kip
Folate n =
601.9
kip
ok
588.4
kip
Gusset Edge
Buckling
Controlling
588.4
kip
Lfg -=
115
in
ok
No Edge Stiffener
Raga
Gusset Connection to Beam and Column
=
37.4
deg
2 =
15
in
b _
25.5
in
=
6.705
in
b =
0
in
=
3.04
in.
=
12.75
in
r
15.05
in
_
273.3
kip
H =
143.7
kip
b
0.0
kip
HI _
65.2
kip
Flange Plate Net Section Fracture
:r, = 5.34375 Fns
= 1.00
e _ Un _ 5.34 ins
�Rn = Fu
Weld Capacity
te
�Rn
521 kip
5/16 in
13.92 kid/in
DemandlCapacity,Ratio
Beam _ 0.31
Column _0.87
204359.00
5/23/2005
235
Brace Gusset -�1 -0..I Grid amain
k lting Engineers
70570
LDS Rexburg
ldah,DTemple 204359.00
Portland, Oregon
lb
Coag Sp2cing =
8
in
5/23/2005
8
in
vs =
441.79
kip
Vcb,g =
Baseplate
kip
vCP =
454.15
kip
' )Vn =
Fy
50
ksi
Concrete Bearing
Shear is NO GOOD
Bolt Spacing L
8
in
fG
= 5000
psi
TU
334507
lb
A,
= 576.0
In
MPI
334.51
Un
A,
792.0
in'
SMIn
6.690
in
(ppp
1722.3
kip
tM j n
1.83
In
Pu
803.7
kip
t
2
A
in
Bearing is
ok
Anchor Bolts
Bolt Size
1 1/4
in
Embedment
36
in
10
Footing width
1.5
ft
Ase
= 1.23
Footing depth
18
ft
fut
= 75
ksl
2
Tension
Spacing
9
in
Anchor Spacing ok
P -
334507
lb
A,,
= 324
in'
PU =
669014
lb
ANO
= 7 P, 2
in'
NS -
920.319
kip
�Jfj
= 1.0
Ncb =
227.08
kip
IV2
1.0
Nc-bg =
227.08
kip
1.25
Nps zz-
2240.00
k p
Y4
1.4
�Nn
227.08
kip
Nb
444061
[b
Abig
4
in'
N P
160000
Ib
ANn
2.946
Tension
is, NO GOOD
Shear
V =
70570
fb
u=
141140
lb
Coag Sp2cing =
8
in
Lt 'pain =
8
in
vs =
441.79
kip
Vcb,g =
40.09
kip
vCP =
454.15
kip
' )Vn =
40-09
kip
Avn =
3.521
Shear is NO GOOD
Combihations
Concrete
6.47
No Good
Steel
1.05
ok
*Grade beam prnt -- edge spacing is not an issue.
A
IAIV =
Air =
11'' 5 =
Y 6 =
Y7
VO
kcp.
1674
1458
1.0
1.0
1.
24939
2
X
Brace Gusset -1 -0.0 Grid 8 Maip