Loading...
HomeMy WebLinkAboutBRACED FRAME DESIGNS - 05-00205 - Rexburg LDS Temple - Foundation�r 1 4/25/05 15:1 7-57 k �t- - 0 &� SAP2000 v8.2.7 - File:gridline8 e'bf X -Z Plane @ Y=O -Kip, in, F Units - -gam L-- 41?Flfl-q i i-r;a-�� kpff Consulting En irre.ers IL L Beam -Column Design for WF or HSS ti Columns -1 anF-1 #°turn Footing to 2nd Lev -el mer ihel_ size 'W12X96 - D+L r V :Section IS mi J 1. D+1, +1,OL _ 218.76 d _ 12.71 in Sx = 131 111' 1.2D+ l O D J . O L.+0 � . _ x.8.2 gin- � _ 44.4 in.� 305.19 r = 1116 in Zx = 147 in ta- _0.9 1n ZY _67.5j PU 55148 kip r. _ 5.435 �Il Lb = 1.6 ft r 3.094 in FY 50 ksi Axial Lead load = 142.8 kip Live load 25 kip Sos 0.4075 Snow lead _ 14 kip EQ toad _ 172,74 ki p F,1„. i Load Combinations IAD = 199.92 D+L r 181.80 1. D+1, +1,OL _ 218.76 + +w = n/a 1. D+ 1 _ L+0, 2- 1 S. 3 6 1 +L+ W+ /2 = n/a 1.2D+ l O D J . O L.+0 � 371.90 +L+ +T W/ = n/a O.9D+1. = 301.6 D+L+S+E/1.4 305.19 1.2-D, I.OL+ In 553.4 + '1. 251.91 . -E M = -228-60 4, ..' 3 .r FF PU 55148 kip U _ 0.820 Fc= 37.75 ksi Pn _ 904.99 kilt 0.6116 n LDS Rexburg Idaho Temple Compact Criteria 0.30VEs/Fy 1177 tibra e d Length Criteria kip I1P lei kip kip kip kip Major Beading Minor Bending Ux l 20 k -in muy = 1 -in 1n_x ` 6615-0 -in OmIly = 2997.0 -ill ax -- 0. 0--0400 o 7 l nx ay Combined Stresses ff P.0 fpL>0.2, teen use Eq.. 1-1 a Use Eq. H 1-=1 a - dryohm f. 2 M may, . -1 UX � W, k lir . = k l h- Y Lin = 6105 < 200 35.33 < 200 130.70 in LRFD Beam -Column Design 4-12-2005,x1s Col -1 F-1 low MA = 39116 k -in $ = 534.84 k -in = 426.6 -in 40 k=1 .1 -L Cb 0.31 Lr� 131.15 in Lr ' 496.93 ax -- 0. 0--0400 o 7 l nx ay Combined Stresses ff P.0 fpL>0.2, teen use Eq.. 1-1 a Use Eq. H 1-=1 a - dryohm f. 2 M may, . -1 UX � W, k lir . = k l h- Y Lin = 6105 < 200 35.33 < 200 130.70 in LRFD Beam -Column Design 4-12-2005,x1s Col -1 F-1 low kpff Consulting Engineer L FD -Beani-Column Design for WF or HSS Sections Columns -1 and -1 fr orn 2nd Level to Mechanical Level _ Section is Compact - 1 5, 1.n S y 19,2 in t = 9.995 111 zX _ 77.9 i 113 ff 0.575 in ZY_2 9.1 rl�� 1.x = 5.220 L6 _ B ft r 2.478 in . �, 50 ksi Dead load 0, kip C = 2 Live load _0 kip SDS _ 0,4075 Snow load 7 kip EQ load_ 0 kip M = 2.469 kip Load Combination LDS Rexburg Idaho Temple Compact Criteria 0.30-�)F,s/Fy 12.04 nb rac ed Length ri to r a IAD = 42.42 D+I..,,-f-S =37310 kip L2 D+ 1 + .+ 1.OL _ 4T5 6 D+L+wNV n1a kip 1 � +I . L++ + _ 39.86 D=L,z. r F+ / _ n/a kI'P 37.76 D+1 + +wW1 = n/ i'P �9D+L_ 1.27 D+L, +E/1 A _ 37+30 Kipp 1. � + 1. +Em = L + � . = 27,27 kip 0 -9D -Em 24,80 kip PLL` 47.56 kip 0100 Ac= 1.152 F, 2&72 ksi On = 380.88 kip X11 � 0.1' Opri Major Bendino,Min-orYielding Yielding %lug — 120 k4n MUy — 120 -in FIX ` 3505+5 -in Ony T 1.296.0 -ire en = 392.16 -ire 1B = 534.84 -lir j\JC — 426,6 k -i n MT 2824 -in 'fib 0.31 L.P = 105.04 in LT 306-503 nx = 1656.83 -t n uV0,0724 Wny O0926 R_ MWIned Stresses IfP� = fPn > U� then use Eq. 141-]a Use q. HII-I 8 All -A49 � r fl 1"a MUIV PJ J1'f Mgf 2 0,�.. 01, Af M'c -2 oj�j 0, Alf Ji. -C I O� M 87.1 41.38 < 200 107+43 In 204359.00 5/23/2005 LRFD Beam -Column Design 4-1 2-�0 5.xis Col -1 r-1 n -ii kpff Consulting Engineers LRFD Bear-Columnars for or HSS Sections Columns -4 and F-4 from Footing to 2nd Level Member sizer9 Section is Corn act d = 12.71 in SX = 131 in 28.2 in' SY = 44.4 in' f 12-16 in zX 147 i' tf In Zy-® 7.5 ire' Axial LDS Rexburg Idaho Temple ompar,t Criteria 0.30VEs/F.y 12.77 Untraced Length Criteria L6 = 16 ft ry = 3.094 i k l /r F y 50 ksi Lb nein = Dead load = 198, kip Live load 58.7 kip Snow road 16 kip EQ 1Dad 17.74 kip EZTS = 61.6 kip Load Combinations I AD = 1.D+1.+1,OL = 1.2D+l l . L+0.5 = 1.2D+ 1. OE+ I - OL+O. 2S = .9+I.OE = 1.D+1.L+Em = 0.9D -Era = PU. = 658.56 Xc 0.820 cr 37.75 'Pn = 9.04.99 Pu Opn Major Beading Yielding 277.90 322.50 340.12 472-84 351-39 65.6 418x.01 lip si kip 0.7277 U_\ = 120 k -in Mnx = 6615.0 k --in Laferal-Torsional Buckling A �-- 392. k -in Mi3= 534.84 k -i n M = 426.6 .-IIS Mr 5240 -in Cb - 0.31 Lu = 131.15 in Lr = 496-93 Ux nx = 2.11,58 -ire 0.0475 Combined Stresses SDS � 0.4075 +L+ L +L+ W +L+ �- / - ' L+ +E/ I . .'D+/1. _ 273.20 ri/a of ,5 302.04 kip kiP kip lip kip kip kip Mitir Beading Yielding qly = 1.20 -tn ny = 2997}0 -in if PH : 1 n > 0. 2, thea use Eq.X11-1 a Use Eq. HI -1a '. + �. 1. 0.806 1.0 rmmftV,MMNY A4 11 _'"� - +P r#.X' dei` Eq- +._... 1.0 r? LM OJX ,5aril 62.05 < 200 35.33 13M0 in 3 F z_2!5� - 204359.00 5/23/2005 LRFD Beam -Column Design 4u1 - .xis Col CF-4 low kpff Consulting Engineers LRFD .beam -Column Desigii for WF or HSS Sections alLI M FIs -4 and F4 from 2nd Level to Roof Mernber size 2X53 v Section is Compeact. d = 12.06 ire _ X0.6 1n' = 15,6 � _ 19:2 in3 f = '.995 in Z "T9 jn3 1c 0.575 an ZY= �1 in' kip 159.34 EM r,, -�� 5.220 in L6 - is ft r = 2.478 in F _ 200. ksi 109.12 kip Dead load = 90.5 kip DID = Live load 10.2 kip SDs = 0.4075 Snow load = 16 kip EQ load X7,34 kip 159.34 EM 82.06 kips Load Combinations LIDS ReOurg Idaho Temple Compact Criteria Untraced L.tn th Criteria 1.4 _ 166 70 D+I,+S = 116.70 kips I - 2D+ + 1. + 1. OL = 144.40 D+L+w = a kip I . . + 1. L+ , = 13292 D+L+ + / = a kip x . I +1. E+I r L+ + = 159.34 D+L+S+wW/2 = rda kip 9 + LOL 118.79 D+Lr + +F,,1 +4 = 143-37 kip 1 • 2. + 1. L+Em 200. . +E/ 1.4 -- 109.12 kip O.91 -Em -0-61 kip TPLIFT P , 200.86 kip .._ 1,12 Fcr 28-72 ksl Prl = 380.88 kip ViP 0.5273 n. Major Bendhig Minor Beiiding i el i ti C> Yielding 'UX = 120 k -in Ir 120 _ire UY MMI 3505.5 k -in nv = 1296.0 k -in Lateral -Torsional Bifckling A = 392.1 -ire Ma = 534.84 k -in Mc _ 426.6 -i n r _ 2824 k -in b _ 0.31 L� = 105.04 in Lr `306,503 fIx =165 6.8 3 -in 0.0926 +Mnv ons. a ed Stresses if PU = n > 0.2, thea use Eq, H 1-1 a Use Eq. H 1-1 a M _M.0 ,2 OP, 0.6M 20P, + ObM4.1c + _<I�O kI; 1- kl/r y LI nein 87-16 < 200 413 8 < 200 107.43 in 204359,00 }x/005 LRIFD Beani-Colurnn Design 4-1 -2005.x1 Col C-4 F-4 high Illpff OrI LIl in g Engineers LRFD Beam-ColuMzi DesI gn for WF or TISS Section Columns B-9 and G-9 from Pouting to 2nd Level Member size I W12XI36 --- section is compact 13.41 in SX= 186 ire' = r tf Lb FY _ Axial 39.9 ill' 12.4 ire 1 in Dead load = 109.6 kip Live load = 2-8-8 kip nu Load 13 k1 EQ load = 198.59 kip. EM ` - �1 1 kip Load Combinations 1.D = 1,2D' 1.L+O. 5S = I .. ' 1. + F . O L+0 � _ 1.2 D+ I ,L+E m PU ` 566.43 c OM3 Far 3 .1 153.44 181.12 184.10 361-51 297.23 566-43 -307.47 f LIFT T kip ki " = 1294.98 kip F" 0,4374 '1'n y 64,2 in' X 214 in3. Y 98 iT13 rX= 5.575 in ry = 3.158 111 Q0 _ iD- 0.4075 D+L+S D, L+ wW D+ ' wN ' F L+ +w _ D+L++F,'1 +4 _ 0, +E/ 1. 151.40 ra n1a a 293.2.E 240.49 Major Bending Min.or Bending yielding Yielding LDS Rexburg Idaho Temple Compact Criteria 0.2 -vEs F 12.77 Un -braced Length Criteria kip kip kip kip kip kip kip �MRX = 9630.0 -in OAV = 4333.5 -ire nx " 3519.52 train MUX --- 0.0341 UV 0.0277 RX Combined Stresses If P = 1 > 0,2, then use Eq. H 1-I aUse Ear HI -1a A Eq ��� + }� H . y _ 1. - 0.492 1.0 Ptr any f Alf M � Eq. H1-1 b _ � + -}�- -4-} 1.0 j� J/r X lel/r y L1, mi r _ W79 < 200 34,44 < 200 133.28 to i3IF-1-7 204359.00 5/23/2005 LRFD Beam -Column Design 4-12-2005.xis Col B-9 G-9 low A 192- 1 -in f3 534.84 k -in Mc _ 426.6 -tip MT = 7 440 -lei Cb ` 0.31 133.87 in Lr = 667.704 nx " 3519.52 train MUX --- 0.0341 UV 0.0277 RX Combined Stresses If P = 1 > 0,2, then use Eq. H 1-I aUse Ear HI -1a A Eq ��� + }� H . y _ 1. - 0.492 1.0 Ptr any f Alf M � Eq. H1-1 b _ � + -}�- -4-} 1.0 j� J/r X lel/r y L1, mi r _ W79 < 200 34,44 < 200 133.28 to i3IF-1-7 204359.00 5/23/2005 LRFD Beam -Column Design 4-12-2005.xis Col B-9 G-9 low kpff Consulting Engineers _ L FD Beam -Column Design for WF or 14SS Sections Columns B-9 and Gag from 2nd Level to Mechanical Level Member r size W12XIC)_ wj Section is Compact = Axial Dead 12-89 in SX 145 i T7 1, .In' y - 49.3 in f= 12.22 in zx_ 1 i ' tf = 0.99 in Zy 75.1 i _ 5900 -111 rX _ 5.468 in T�v = 131-65 18 ft Lr = 537-601 3.106 in Fy 50 ksi Axial Dead load _ 55.6 kip 00 = 2 Live load = T7 tl) SDS = 0.4075 Snow load - 13 kip EQ load = 198.59 %1p 78-71 28.43 k -in EM -40i.71 NIB 534.84 kip l oadombinations 1.4D 1. D+1. +1 w L 1 _ + 1. L+ , 5 S_ I .2D+ 1. + 1.01,+0, 0,9D+ 1 1.2D+ 1.O L+.M .-m = U = 476.13 F-cr 3 5.1 Pn 931.77 P On 77.84 95.22 85.54 275.61 248.63 476.13 7 L)" 14A FT lip s1 kip +L+ = " � L+'W = D+ L -a- +w W/ _ +L+ + / 1.4 = a D+E/ 1.4 = 76.0 n/a n/a n/a 1.15 191.89 LDS Rexburg Idaho Temple Compact rite' 0.30-.,,Es/Fy 12.04 Unbraced Length Cri Leri a kip i1 kip kip kip kip kip MaJ or Bending Minor Bending Yieldin,o, Yielding Mux ` 1 -111 Mux. - 120 k - in n.x = 73 8 0. 0 -in n = 3327.8 k -In a r l- o f -,s Deal Buckling 410 MA- 392.16 k -in NIB 534.84 -in MC= 426.6 k -in _ 5900 -111 Cb 0.31 T�v = 131-65 In Lr = 537-601 "1871-24 lint .LMvX 0.0418 MIL', 0,0361 nx Combined Stresses if PU T„ > 0. . then use Eq. H 1-1 a Use Eq. H14 �t�- m + - + ar .0 M 0. so19) 1. Pa IV P 20P 12 T ; fila 20 a, � Off Ur.= 1/r Y Lb min t 4 < 200 39,50 < 200 1.3 1.�4 Vr} F,_ -, 0 , 1r: � F� � 204359.00 5/23/2005 L., FD Bear -Column Design 4-12-2005.xl.s Col B-9 G-9 mid kpff Consulting engineers LRFD Beam -Column Design for WF or HSS Sections Columns -' -and G-9 from Meehars1 a[ Level to Interstitial 1 �1 mbar s' 17e W � 'Section Is +L+ W = d= 12.71 in sxl 131 in, lip 28.2 in` ► � 44.4 - I r= 12.16 'in = 147 in'. fir=0.9 0. +E/1.4 in ZY- 67.5 ins 5240 k -tri kiP r. = 5.4 1r) L6 = l 131.15 r = 3094 in Fy = 50 ksi Axial Dead load _ 55,6 kip _ Live load 73 �p SDS_0,4075 Snow load 1_1 kip EQ load 9-05 kip 78.71 28,43 Lim 22.63 kip LOad COMbinations LDS Rexburg Idaho Temple Compact Criteria 0.30VEs/Fy 12.04 Untraced Length CrAuia I . 4 D 77.84 +L+ _ 76.30 kip I.2D+] _6S+1 .OL _ 95.22 +L+ W = n/a kip 1,2D+1 . L+ . _ 95.54 +L+ W+S/ n/a lip 1.2 -r-1. E+ 1 t L+ . _ 86-07 +E+ � / = lip 0. DJ- 1. OE 59.09 +L_ +Ei1 4 - 82,76 kip 1. +1. L+E1n" 9TO5 0. +E/1.4 56.50 kip 0:9D -Em 7.41 5240 k -tri kiP 111,U = 97.05 kip Xx 0,923 FCT Iasi Pn � 839,92 kip Oprt 11553 Major Bending Minor Bendincr 15 Yielding Yielding tax °- 1 -ire muy= 120 4in �Dv1Rx = 6615.0 -111 OmIly = 2997.0 -ire Lateral -Torsional Buckling MA=; _ 3 X2.1 -in MB= 534,.84 k -in C _ 426,6 -11 n A _ 5240 k -tri .b 0,31 131.15 in Lr:-- 496.9- ,Mli { � 2613-97 -in "" 0.0459 MLIV 0+0400 tlx Combined Stresses if PLL „ > 0.2, thea use Eq. H1 -I a Use Eq. H I A + + ' 1. Ora . n". 0 , 9 0�Mnr mnr , A OJ.t , 661911° L' Mir l 69.8 1 < 200 39,74 < 200 130.70 in 204359.00 5123/2005 LR_FD Beam -Column Design -1 -200..x1 Col B-9 G-9 to kpff Consulting Engineers LRFD in . Design for WF or IISS Sections oIunins -1I and -II fi-O M Footing to 2n d Level = 1-5.41 to SX= 186 irl 39. inn- Y 64.2 1 J `' br= 12.4 1n Z X 214 in I1 1.25 In V � J' � J i�-1 Lb = 16 ft Fy 50 ksl' Dead load = 153,5 lip Live load = 2 S. 2 kip Snow load = 125 kip EQ load = 34 S. 2 _'32 kip EM = 708.97 kip Load Combinations IAD = .6L+0,5 S 1,2D.' ],C +1. L+ . _ .+ I.OE_ 1.2D+1 OL+EFQ = . -F-M _ H �92L37 c 0.803 214.90 217-60 230.`5 561,28 -222.59 921.37 570-82 kip 1'si P11 = 1294-98 kip l` 0.7115 pn Major Bending Yielding MUS: = 12.0 k -in WrIx � 9630.0 k4n La ter a l- Tors io), l i i cklin N4 A = 392-16 -ITl 3 = 534.184 ] -i rt 1c = 426.6 k - in Mr = 7440 -In � = 0.31 m Ii LR = 133.87 in Lr = 667-704 MTLX = 3 19.52 .-in 0.0341 Combined Str=esses if PU � fP,, > 0.., then use Eq, H 1-1 5.575 in 3.158. in QO = 2 D = 0.4075 D+L+: D+L+wW = +L+ +S = D+L+ + / 0- +E/ 1..4 = Eq. HI-Ia + rzv try bM qIV Eq. 1 -11 -lb = - - + M U-1, _ L(Y 20pea 0,2 m U -,c Obm IIx, , 184,95 L'a n/a n/a 433.69 356.89 Minor Bending Yieldinar LDS Rexburg IdLiho Temple Compact Criteria 0.3 �s/F 12,77 Unbi'aced Length Criteda k l/r X Ury= Lb ini n = EQ tower EQ bIdg kip li kip kip kip kip kip any = 43315 k -iii MLIV +0277 III 60-79 < 200 34.44 < 200 133.28 in 47.42 194.05 242.60 f. -3 f, -� � � o 20459+00 5/23/2005 LRYD Beare. Column Design 4-1 - . l c)1 -11 -1 I low kpff Consulting Engineers __..�.a LRFD Bearn-Column Design for WT or HSS Sections Columns -1I and -1 I from 2nd Level to M eck)anicaI Level Member size Lb LV�1�1 0 6. Sect"oil is Compact 12.89 in . = 1 ins 31.?it S, ; 49.3 inn 12.22 in ZX = 164 i n3 .99 in ZY -= 75.1 i n,� FX = 5A69 III is ft ry= 3.106 in .50 ksi Dead lead = 103.1 .Live load = MA- Snow load _ Ma = EQ load 2 66,68 42 6.6 Er _ 541-76 Load Combinations 1A _ ] . D+ i 6 S+I.OL LM' 1.6L+O.5 I-D+1.1E + 1 ,L+0. _ .D+1 -OE 1.2D+ 1. I,+ r _ .D -EM F �,c = 0+919 Fee 35.13 kip kip kip kips kips i-4+3 149.82 158-79 411-95 1.47 686.38 -448.97 kip ksi OP n = 931-77 kip P11 0.7366 Opn Major Bending Yielding uX = 1 -i iz frt- = "380.0 k -in Lalli-aI-Toy sign al Bucklinr MP �.M --- 4-1. _ .80.6 1. Oil Mnv Ob MA- 392.16 -Pin Ma = 534.84 k -in mc = 42 6.6 -in Mr = 800 k -in Cb = 0+31 LP 11,65 lei Lr -537-601 WnX _ 2871.24 k -in MuX Omnx 0.0418 Combined Stresses If P:., - 1'P,, , , then use Eq. 1,1 a o SDs = 0.4075 +L-1- _ +L,+ wW +L+W+ / L J1+ +WNL', D+L++EJ1. . D+E/ 1. 127.25 Hies n a 17.74 283+, LDS Rexburg Idaho Temple Compact Criteria 0.3 sIF 12-04 04 Un r c d Lenc th ritei-i kl/r X Ury= Lein _ EQ tower EQ b1du lip kip kip kip. kip kip kip Minor Bending Yield,in MOO $- 12 -111 O ny = 332T8 k -in MUS. 0,0361 RV Use Eq. 1-1a P MP �.M --- 4-1. _ .80.6 1. Oil Mnv Ob F err P, Alf MOX MiO- P1 OAf X1.4 i f) R!_k IJ 1137 69-54 < 200 39.50 < 200 131x34 in 7.2 193-59 .91 204359,00 5/23/2-005 LRFD Beard- olun-in Design --1 -20 . 1s Col B-1 I -11 mi kpff Consulting Engineers y.. LRFD Beam- lump Design for F - r HSS Sections Columns -11 an -e11 from Nfe li an ica l Level to Interstitial em er size � W12X96 ._ 1 7V Section is Compact k -in C 12.71 in SX= 131 M3 Cb -`= 2Q int V - 44.4 inn r= 12.16 in Z� = 147 in� tF = 0.9 1T1 Zy _ 67.5ins r,� = 5.435 in, L4= is 1't 1,_ 3.094 in fy _50 ksi Axial LIDS ReAurs Idaho Temple Compact i tea l 0-30-4s/Fy 12.04 UnbFaced Lengthtot ri kl/r . = Mir y = Lj, min = 69-81 < 200 39-74 < 200 130,70 in Dead load = 17.7 kip QO - � I Live load I lip�� _ 0.407 I.,I.,Q tower 0.00 Snow load _ 3.25 kip EQ N&Y 9.05 OM Ern 19.54 kip p Load Combinations IA w 1. +1.664-1. L 1. 2 D+1, L+0.56 _ 1-+1-OE+1.L+0- _ . 9DTI.OE 1. E1. D+ 1. L+ -Ern .-Em u= 41.x8 - 0-923 -C:r 35.04 0 _ 839.92 P n aJor Bending Yielding 24.78 27,44 24.47 1.' 24x98 41-7 -f1 UPLIFT 11 ip si kip 0.0497 UM = 1 -ire Omni:- 6615.0 -in Late;'aI-Tors ionaI Bit cklingr A = 392, l -in MP, = 5 3 4.8 4 k -in C 426.6 -1n Mr _ 5240 -in Cb -`= 031 LP = 131.15 in Lr = 496-93 RIX nx Mnx � 13.97 k -in 0.0459 Combined Stresses if P« n > 0.2 teen use Eq. H 1-1a m M JV . UV U _ U- , ,9 012 may. +L+ D+L+w D+L+ '+&_ D+L +- + / D+L+ + / 1.4 Pu M UX P. M M + + tO 1.0 20f�045 M, 20P 21.95 na nJ 28,41 22..9 ip kip K:ip kip kip kip kip Minor Bending Yielding mug = 1 -in im nV _ 2997. -ire UZ 0.0400 AY Use Eq. HI -lb .1 1 1 <1,0 043 59.00 / x/200 LRFD Beam -Column Desi --1 2- 0 . is Col R-1 IA I top kpff Consulting Engineers LRFD Beatin-Column Design for WF or HSS Sections Col u m n s -1 I and -11 from Footing to 2 n d Level Member s171 e L "12 13 6 iW:1 Section's Compact 13.41 in SX = 186 ins 39.9 int y � 64.2 12,4 in z_ 214 ire' 1.25 in zV 98 LDS RexburgIdaho Temple Compact Criteria -0+30-4slFy 12.77 Unbraced Lcngth Criteria rX = 5 575 III kl/i,'X = L= 16 fl ry _ 3. 15 B in l/r y Fy _50 k i Lb rnin = Dead Ioad = Live load = Snow Load = ].--"Q load ;-- C = EEM M 2.8.1 2 kip 33 kip r5 kiP 226.356 kid 47112 ki Load Combinations IA 1 2+1.+1 +OL = I .D+1.L+. 1 .+ 1 ,OE+1 #L+. O.+]. .E _ 1. + 1.OL+ETn=- 0t D` ni P, = 7 90.8 .-.. C 0.803 F,,= 38.18 333.37 3-9.14 341 F 7 546,40 440,66 790,86 -2 57.1 kip k] P� = 1294-98 lip PU 0.6107 pn Major B adizig Yielding 1„K = 120 k -i n. TLX V---' 963. loin L toi- l -Tors onalzic l s MA= 392.16 k -in Ms = 534.84 -in C = 426.6 k -in Mr 7440 k -1n Cb _ 0.31 L0 133.87 in. Lr _ 667-704 MuX . nx M =3519.52 k -i n 0,0441 Combined Stresses Eq. 60.79 < 200 34.44 < 200 133.28 111 0 2 EQ tower 8144 n;S -�= 0.4075 EQ bldg 14192- 277,62 a a n/a 439.30 375.!9 MinorBending Yielding kl*p kip iilip kip l lip kip by t7 7 rtv Use Eq, HI -1 a + - U �*y 1.0 0.666 1. 204359LOO 5/23/2005 LRFD Bearn- o1un-in Design 4-1 - 0 . 1 Col -11 F-1 I low kpff Consulting Engineers .... LRFD .beam -Column Design for WF or HSS Sections Columns -11 and F-11 from 2nd Level to Mechanical Level Member size y r IF= Lb = Dead load = Live load = Snow load = E'Q Ioad = 309.42.6 Esti = W12X12O Section is Corripact 13.12 in SX = 163 inn kip 14T866 kip 309.42.6 }yip 12.32 in ZX= 186 in' . 105 in Y i 85.4 in' Lr -° 598.829 r., "_`5.506 in 19 ft Fir 3.12 6 i re 50 ksi 16&02 kip 15. I kip 6.5 kip 14T866 kip 309.42.6 }yip Load Combinations IAD _ 1.I+1.+1.L 1. 2D+ 1. 6L+ 0.5,S_ 1.+1.E+1.L+. ® D+I.OE . 9D -EM _ Pu = 526.15 . 0.964 F,cr 33-92 235.23 22x.12 229.03 365.89 299+0 526.15 UPLIFT lip ksi OP ==; 1017-73 kip Pik 0.5170 Major Bending Yielding ' rix =8370A l -in enp = 53)-.84 -ire Mc - 426.6 -in Mr = 6520 -111 0.31 L V � 132,51 in Lr -° 598.829 MUX 0.0370 J X Combined Stresses 1f P1, . � > 0.2. then use Eq. HI -1a I_DS Rexburg Idaho Temple Compact Criteria .0s/F 11.72 l/r 1h y -� Lb m in � 72.93 < 200 41.41 < 200 132.42 in ESO _ 2 EQ tower 8.3, os = 0.4075 EQ b Id& 64.43 01� 9 06 q3j, 11 /1 t . ) PLY j UX 1. 2�6p.o Ohm RX 20_�O M if y - 189-62 a n/ 295.4 256.84 lip kip kip kip i pr kip kip N livor Bending Yielding !,rl" Y = 120 k -i n _ "y 0,0317 O•1Y Use Eq. 1-1a 4-- 2043 59M 5/23/2005 LRFD Beard -Column Dash 4-12-2005.xls Cot x°-11 '-1 l nil -d kpff Consulting Engineers 4-7 LRFD Beam -Column Design for WF or IISS Sections Col u ni T1s -1 I an F-1 I from M.harp ical Level to interstitial stitial Meer size ° % 12 _ ,-�Section is Compact d = 12.25 1n SX - 97.4 in3 A 2 Ll Sy .-Irk bf�� 12.04 in X _ 108 in, tf= 0.67 in zy = 49.2 LDS Rexburg Idaho Temple. Compact Ulteria 0-30-vEs/Fy 12.04 nbr-ac d LengthCritffia r _ C 0.93 F, _ 34,59 'psi Pn = 620.46 kip PU 0.0752 n Major Bending 5319 in 1/r X _ 18 1t -ry _ 3.040 in k 1/r , F = 0 ksi Lateral -Torsional rsiona Buckling L1, rain = l*al .-Irk B 534.84 -irk Dead load = ';2 S, 9 kip, k -lin Mr 3 Uve load = 1.6 kip SDS _ 0.4075 Snow load = 6.5 kip Lr 403 , 62.5 EQ load _ 0 lip EM _2.36 kip Load Combinations IAD 40.46 -' L+S = 37.00 kip L + 1. S+ I . L 46.68 D', L=w a kip 1-2D+ i -6L+ .5 40.49 D +L+r '',- S /2 = ri`a kip 1.21 +1.OF+1.OL+ .2S 37,58 D+LA`S+ W ii/a kip . + I.OE 26.01 DOLTS+E/ 1.4 37-00 kip 1 - .L + I OL+Ern _ 38-64 -9D+E/ 1.4 = 26,01 kip r9 -Em _ 23.65 kip I'u = 46.68 kip C 0.93 F, _ 34,59 'psi Pn = 620.46 kip PU 0.0752 n Major Bending Minor Bending Yielding Yieldrna MUX 120 -i n MUy = 1 � 0 k -),n 1 riX - 4860.0 k in m TIV - 2187.0 -111 Lateral -Torsional rsiona Buckling MA= 392.16 .-Irk B 534.84 -irk Mc 42 6.6 k -lin Mr 3 -1 n 6 _ 0.31 L, 1 in Lr 403 , 62.5 ON11A � -in SIX 0.0593 „V 4 M nx rhy Combined Stresses ifP1, �, 0. , then use q. HI -1a � Use e E 1 -1 b UYM rM N +, UV + �. T� Rif M Alf + +1. t {J M ?1-1` R 011M nX }k 1 1 pP , -152 <L 71.OS < 200 40.61 < 200 129.41 In 2G4359.00 5/23/2005 L D Dear -Column Design -1 -2 . Is CO] -1 I F-11 top LDSe burcr Zdaho T nip.1e ,� onsultimy, Engineers L DBeam-Column D i git for r cti �� A olunt�rts ►...and��- from Main L��I t rY LevMember size W12X96 Section is Compact el 1.71 in _ 131 in3 y Irl br= 12.16 ire = 14rX 5435 in 7i�3 ADead load = 2-063 kip 2 xial Live load ` � 6ftp D � .4.7 r�o�� = 1 dip I,oad Combinations 1 _ L 2-66,82 D+L—S = 257,30 1_ +I.6.-L1.OL. 30'7_56 +L+ = n/a 1. ` D-- 1I AL-+Ot 12.66 +L+wW+ / = -n/ 1,2D.1-1 . E ' I.OL+ . 2 S ` 480.56 D+L+S-- wW/2 w /2 = nfa , D+ l -OE _ 379.67 +L+ +E/l A = 395-87 1,�D+I. L+Em 688-37 D+E/1. = 324.24 0. D-Erri — -219.14 .L Pi 'kip loEQ load = 194 ki Em 404,81 kip ad P� =688.37 ,c = O�7 4 FCr =3&41 M Pn � 920.76 kip PU 0.7476 Pll Major Bending Minor Bending yiel(ling Yielding 41X EL Compact Criteria (].30-�EEsIFy 12.98 Unbi'aced Lericrth rites -i i kip kip kip kip kip k l' P nx 6615.0 k -in ny = 99T -in Late)- I- Tors1*0nI B u I n A _ 192-1 -in Ma 534.84 -in C _426.6 k -in M � 5240 k -i n 6_ 0.31 P 131.15 in Lr = 496-93 P� =688.37 ,c = O�7 4 FCr =3&41 M Pn � 920.76 kip PU 0.7476 Pll Major Bending Minor Bending yiel(ling Yielding 41X EL Compact Criteria (].30-�EEsIFy 12.98 Unbi'aced Lericrth rites -i i kip kip kip kip kip k l' P nx 6615.0 k -in ny = 99T -in Late)- I- Tors1*0nI B u I n A _ 192-1 -in Ma 534.84 -in C _426.6 k -in M � 5240 k -i n 6_ 0.31 P 131.15 in Lr = 496-93 � nx = 2485. -iii _MUX 0.0453 0.0400 b IM RX OmnV Combined Stresses Il -1 '+ M — +_ � + 1. 0.826 1.0 ION UT, 1 2p']� f ;IVf 0.�)Vf l/i, X = kl/-r Y Lb min = 60-11 < 200 34.2. < 200 130.70 in 204359,00 -3+2005 LRFD Beam -Column Design 4-1 -2 0 .xIs Col A-2-5 G-8-5 to kpff Consulting Engineers LRFD Reani-Column Design, for WF or HSS Sections LDS Rexburg Who Temple Columns A.2-5 and G.8-5 from 2nd Lewel to Mechanical Level - Snow load Member size lip ' ;° Section is Compact Compact Criteria ' 12X53 d - 12.06 in XT- 7 0.6 in' 0.30%;ts./Fy 12.04 -41.,64 M Ru 19 9.17 bf 9.995 lig ZX 77.9 in' Lf - 0-575 in ZY 29.1 1 U11:b1 aced Length l terra Lb = 18 ft Fy = 50 ks] Axial Dead load = 7 1.3 kip Live load = 7.8 kip Snow load 15 lip EQ load 146.36 kip EM = 105-81 kip Load Combinations I -4D = 99.8. L +1. +L L= 117.36 1.D+I,L+. = 105-54 1. +IiO +1 s + .. � 146.36 .L+1.OE 114.17 1.2D-0. r 1. L,+E11n = 199.17 . Em - -41.,64 M� = 392.16 Ru 19 9.17 kip ?,c - 1.152 F cr 2&72 sl- Wn 390.88 kip U 0.5229 1 - 5.22() Jrl r r„ 2.478 in k1/r y _ L. min SDS ` 0.401 D+L+S = 94.1 0 kip D+L+wW = n1a lip L ' ' + / � n/a kip +L+ + 1 - nda kip. +1_.++E/1,4 = 129:81 kip. 0,I+E/1.4 99.89 kips kip Major Bending Minor r Bending Yielding Yielding MUX 120 k4n MUy= 1 -in. nx = 3505.5 k -Irl Omily = 1296,0 -iii Lateral- Torsional Buckling M� = 392.16 k -Irl MC = 4.7-16,6 k -in 1r = 2824 k -in Cb = 031 L 1 5.04 In L = X 06.5 03 llx = 1656.83 k4n MUX. 0.07.4 Mui 0.0926 M -MRPY mWine Stresses if Pv . n 0.2. then use Eq. HI -1a Ft ALL 9 ObMn-v 06 Alf 7TY U + UX u r }+ M �Ob M_ Use .Eq. Hl --1a 87.16 < 200 41.38 < 200 107,43 in f 204359.00 5/23/2005 LR_FD Beam -Column Design 4-12-2005.xis Col A.2-5 G.8-5 nzid ,kp . ff Consulting Engineers ,_. LRFD Beam -Column Design for WF or HSS Sections Columns C-5 and F -e from Main Level to 2nd Level Member size , 1 C Minor Bending �I " I n l � act Live d = 12.71 in SK - 131 in d 28.2 ins _ 44A ins bf = 12.16 EM _ ZX _ 147 in3 0.9 in ZY 67.5 in k n � _ 0."3 1 T -X _ 5.435 in Lb = 15.5 ft r 1094 in FY _50 k$1 Axial Dead load _ Minor Bending kip Live load _ 48.8 kip Snow load 16 kip EQ load _ 179 kip k -in EM _ 36.79 kip Pu = 702.1 c _ 0.794 F r. 38.41 P, = 920.76 32',70 351.00 362.69 507,60 5 70,2.19 -169+34 UP111 FT kip s) kip 0.7626 LDS Rexburg Idaho Temple Compact Criteria . s/Fy 12,98 Em braced L D kh Criteria k1/r . = /r y = Lb miry = 60.11 < 200 34.22 < 200 130.70 i n 0 Minor Bending 4n SDE = 0.4075 X7.40 7.70 D+L S = +L+wW = I +E+ +w'W/ = +L+ +E/ 1. .+E/1.4 = 295.30 n/a Iva Tva 423.16 335+1 kip yip kip kip kip kip kip Major Ben in.0 Minor Bending 4n Yielding DALIN 120 -i n muy 120 -i n ray = 661 �. -ln 2997.0' k -in Lateral -Tori na.1 Ruckl n Mme, - A 6 k -in r _ 534.84 -a n C ` 4.2.6-6 - i n Mr _ 5240 k n � _ 0."3 1 LP 131.1 in LT _ 496.93 rLm = 2485.98 -in .I.UX tai= 0.0400 FLX Wny Combined Stresses If P'U n > 0.2. thea use Eq. HI -1a Use Eq. HI -1a E. HI -1 a _ + M Ob Pi,, 00f 204359+0 5/2312005 LR -FD Beare -Column Design -1 - 0+ 5, 1 l - F-5 low kpff Consulting Engineel•s LRFD Beam -Column Design for WF or HSS`ect* n, O I LI M n S C-5 and F-5 from 2nd Level to Mechanical Level 1 eml)er size W1 53 _ Section on lCompact d = 12.06 in Sx = 7 0.6in = 15,6 in SY= 19.2 in' bf 9 In.X = 7.9 in' 4 0-575 in ZV= 29.1 in MC = 4 -i n Mr 2824 k -gin Ch0.31 rx-= 5.220 ire Lb = 18 ft TY � 2.478 in Fy _ 50 le i Dead load = 51.2 k i p Live load 4.s kip Snow load l 'kips EQ load _ 3 3 kip Er 70.17 lip Load Combinations IAD 1,+1.+I.L = 1. +1. L+ . = 1.2 D+ l . O E+ 1. L+0. = . 9D+ 1.E = 1 r2 D+ 1 _ L+Em 0. L -EI„= PU =13 6.41 ?--c = 1,152 FCF = 28.72 71,68 91.84 77,12 102.44 79.08 13 AI -24.09 kip si 380-88 kip �� 0.3582 Pn LDS Rexburg Idaho Teniple Compact Criteria 0,'350,v)&&/F y 12.04, nbraced L n ID Orth Criteria 87.16 < 200 41.38 < 200 107.43 in o = Miiior Buidin Yielding SDs = 0.4075 '-37.40 13,83 a LI D+L+wW _ +L+F+ S / +L+ + NV12 72.00 /a ri/ n/a 95.5' . 65 kip I, lip k1p kip kip kip Major Beading Miiior Buidin Yielding ie 1ding mux 120 k -in muy 120 k-111 rix 3505.5 irl Wny 1296.0 k -in La feral- To t-siona I Buckling MA== 392.16 k- i n % = 534a 84 k -in MC = 4 -i n Mr 2824 k -gin Ch0.31 LO 105.04 in Lr 3W503 1656.83 -in L]k 0-0724 SRX1ny Combined Stresses if P� t In > 0.2, then use Eq. H I -I a Use Eq. HI -la MriM M JI�V OFF � n bM V M20T� + OM 20Ppro ' +r L 10 ObAf NX 4 204359.00 5123/2005 LRFD Beam- oluniri Design 4-1 T 0 , is Col - F-5 Enid kpff C,onsulting Engineers LRFD Beam -Column Design for WF or HSS Sections Columns - and F-5 from 2nd. Levelto 1 ec h an is a1 Level Member size W12C40 -� d = 1 I.94 in . = 11. inn br= 8.005 in tr '!-- 0.515 in Lb Fy _ Dead load = 51.2 Live load = 4.8 Snow load = 1. EQ load!-- 1 2076 F-111 24.17 Load Combinations IAD _ 1. D+1+ +L L 1.2D+1.L+. 1, 2 D--- 1. .+ L L+0. O. -9D+ l . OE_ 1.d-1.L+Em 0.9D -Em ._ PtJ = 9 L84 11 AC 1.477 cr = 1,11 OP.n =201.70 pri Major .ren Yielding kip kip kip kip kip 71.68 1.84 77,12 79.44 -0 90.{41 21.91 kip i kip 0.4553 IUX IFTT� 1 -i n nx = 2587,5 -in Lateral -Torsional Huckfiiig A � 392).16 -in 1g _ 534-84 l --in C = 4216.6 -ill r _ 2076 k-1171 Cb = 0.31 1, 81.94, in L, L 1.642 nx =14.4.7 -in Ax 0.0836 TIX ombiaed Stresses if PO = f , > .2, then use Eq . 1T 1- l a Section is Compact 1. in Sy = 11 it), 57.5 in y = 16-8 i n' rX 5.126 in r. 1.933 in LDS Rexburg Idaho Temple Compact Criteria ./F 12.04 rib raced Length ri tori 111.73 < 200 42,14 < 200 86-04 in. 0 5 SDS = 0.4075 I .7 9.05 1 +L+ +L+ W = +L-+ + / - +L +wW/ _ D+L:+ +-E/ 1,4 0.913+E1.4 - i� U1, ear � �r 01� 9 9 (4 FEY AM, V UX M fix 20P, 013 M aX 2 op� 0.4 'IV[ Oix O -b Jwn-v 72.00 ria Wa n4 79.14 53.22 kip kip kip kip kip lei leap Minor Benfflng Yielding Uy = 1 -in ny = 742.5 -ire `y 0.1616 Omni Use Eq. HI -1a LRFD Beare -Column Design 4_1 - 00 . 1s Col -' F-5 top Consulting Engineers kpff Rexburg Idaho Temple R`D Beam -Column Design for WF or HSS Sections Grid 5 Brace on Main Level Member size, W8X40 — 8 .� 5 j.n 3545 M' 11. 7 -S2e Y2 bf 8.07 in ZX - 39.8 in' 3.5.33 in Lb = 19.75 t r — 2.049 in. Fir 50 ksi 10 Slenderness kyr X, 115.69 < 5.87-,/E ` kI/r Y 67.09 < 5.87�s/Fy Lb I i 86.74 in Compact Criteria .,,X 7.22 Section is Compact Axial Capacity U = 92 kip 103.99 4.48 I_ 1.529 Fer 18.75 ksl �P = 1A.86.51 1 kip U �Pll a.4933, 204359.00 5/23/2005 SCBE Brace Design.xls Grid 5 Main Consulting Engineers kpff Rexbwg Idaho Temple LRF Beam -Column Design for WF or HSS Sections Grid 5 Brace on 2nd Level Member size F)w8X48 d = $.5 in SX = 43.3 fil 3 A = 14.1 in' Sy = 15 in br = 8.11. in ZX = 49 in tf 0.685 1T1 Zy = 22.9 Y113 rx 612 in Lb — 23 ft ry = 2.078 in FY — 50 ksi Slenderness Wr X = 132.80 c 5.87VEsIFy kllr „ = 76.40 c 5.$7,.&sfFy L6 min = 8 7.17 ul Compact Criteria 0.30-4.,jEs/Fy 7.22 Section is Compact Axial Capacity PU — 100 kid 111.3 17.3 5 kc = cr T 1.755 14.23 17058 0.5863 ok V .0-11A 204359.00 5/23/200-5- SCBF Brace Design.xls Grid 5 2nd ConSUIting Engineers kpff Rexburg Idaho Temple LRFD Beam -Column Design for WF or HSS Sect*ons Grid 5 Brace ars 3rd Leel Member size X 0 d — 8.25 in SX = 3 5.5 M3 A= 11.7m 2 S y= 12.2 in3 br = 8.07 in ZX = 39.8 x113 tf' 0.56 in Zy: = 18.5 �X = 3.5 3 3 in Lb = 22 ft Ty 2.04] ;n y = 50 ksi Slenderness kl;r X = 18.87 c 5.87,,CslFy Ur y = 74.73 < 5.87,,rEslFy Lb rnin — $6.74 in Compact Crfteria 0.34-�Es1Fy 7.22 Section is Compact Axial Capacity PU 67.5 kip 9G.14 27.$1 7,c = 1,703 Fir = 1.5.11 ksi �Pll — 15:0. 3 1 kid 4.4491 ok S CBF Brice Design.x1s a �. ; moo•" 204359.00 5/23/2005 kpf.� Consulting Engineers Rexburg Idaho Temple RJ.LRFD Beam -Column Design fr WF or HSS Secti 9 ons Grid 5 Brace on Mechanical Mezzanine M n -ib r size HSS4X4X,.2500 d 4 in SX — 3.9 3.3 7 1 SY -3.9 in'r f, ZX _ 4.9 7 3 t f 0.25 in Zv 0 in J r 1 in L17.3 3 = 1.521 i Fy = 46 ksi L/r X _ .-stF kL/r v = 136.72 . Lb nun 44.8 2 i Compact Criteria 0_64-VjEsIFy 16.07 Section is Compact Axial Capacity Pu -- 17.0E kip �4c = 1.733 FCT = 13.43 ksi �P=, = 38.7 kip P" 0.515 On ak 1-9.82 18.78 CBF Brace Designals Grid 5 Mezz Consulting Engineers kpff Rexburg Idaho Teniple LRFD Beam -Column Design for WF or HSS Sections Grids B and G Braces on Main Level Member size i 1N8X40 d = 8.25 in SX = 35.5 in' A = 113 znZ Sy = 12.2 in bf= 8.07 in ZX = 3 9. 8 ins gyp' - 0.56 iil Z y = 18.5 113 rx = 3.533 �n 18.5 ft r„ = 2.049 in FV = 50 ksi Slenderness kl/r h — 108.37 c 5.87%Es/F'y kUr y = 62,$4 < 5.87-vtsr'Fy Lb min = $ 6.74 in Compact Criteria 0.30-VtSiFy 7.22 Section is Compact Axial Capacity P„ _ X35.82 kip 75..13 135_$ — 1.432 F.C,r = 21..23 ksi �P„ = 711.09 kip Pu .r �Pll ok 204359.00 s/23r2oos SCBE` Brace Design.xls Grids !G Main Cansulting Engineers kpff Rexburg Idaho Tempe LRFD Beam -Column Design for WF or HSS Sections Grids B and GBraces on 2.nd Level Member size. WSX48 — 9. 5 in S_ 43.E 3 A — 14.1 Sy _ 15 tf . 0.685 in ZY 22¢9 in' {f 3.612 in Lb 1 t "m f - 2.078 in Fy - ksi Slenderness l /r y 121-26 • f -�EP F. Ur y � f /F Lb1 n 7.1 . Compact C .vt7.22 Section is Compact Axial Capacity w 11 — E`39-6 kip 70 139.60 ?c = 1.603 FC,r = 17.07 ksi 1 dip U IF.J.1 pn 0.6823 ok 204359.00 5/23/2005 SCBF Brace Design.xls Grids B -G 2nd ep Consultm'g Engineers k ff Rexburg Idaho Temple LRFD Beam -Column Design for WF or HSS Sections Grids B and G Braces an 3rd Level Member size W8X40 � v d — 8.25 in SX 35.5 in' A = 11.7SY v 12.2 in3 tf ~ 0.56 111 zv _ 18.5 in' rx � 3.533 in Lb — 21 ft ry — 2.049 in FY = 50 ksi Slenderness ki/r h = 123.01 < 5.87�,sIFy k1ir y = 71.34 < 5.87�s1Fy Lb nein = S 6.74 in Compact Criteria 0.30-,/UsIFy 7.22 Section is Compact Axial Capacity PU = 100.75 kip 38.55 100.75 kc FT _ �Prz = 1.626 16.59 ksi 164.97 U 4--M�Pn Ev 0.6107 4k 204359.OQ 512312Q05 CBF Brace Desigu.xlsGrids B -G 3rd kPff Consulting Engineers Rexburg Idaho Temple RFD Beam -Column Design for WF Grids 13 and G HracesMechanical Manin Member size w8X28e -- 8.06 in SN = 8.25 int SY bf 6.53 1 ZX — 27.2 i' t = .465 in ZY _ 10.1 i T� = 3.447 Lb 1.1 ry= 1.622 in F _ i Stendertiess X 8 1 .' 9 < 5.8 7vEs/Fy Fr X8.30 < 5.87�s/Fy J�b n1m 7 0.24 i Compact Criteria 0.30-, Es/Fy 7.22 Sectlon i's Compact Axial Capacity P _ 2D.27 kip 24.5 25,27 Xe = 1.076 Fcr i 30.84 ksi �Pjn= 216.25 kip U ��Pn 4.719 o 204359.00 5/23/2005 SCBF Brice Design.xls Gids B -G Mezz Consulting Engineers kpff Rexburg Idaho Temple - LRFD Beam -Colum -n Design for WF or HSS Sections Grids C and F Braces on Maim Leel Member size W10x77 d- 10. 6 in S, � 8 5.9 iY�3 A — 22.G inZ Sy = 30.1 M� bf= 1Q.19 in Zx = 97.6 in tf= 0.87 in Zy = 4�.9 in3 rx = 4.4$7 in Lb = 19 ft - ry = 2.610 in. ry = Sd ksi Slenderness kl,'x x = 87.34 c 5.87,,tslFy k.Ur y — 50.81 < 5.$7-,&s/Fy Lb rwn = 109.52 in Compact Criteria 0.30VESiFy 7.22 Section is compact Axial Capacity P„ = 215.07 kip 1.154 Fcr = 28.66 215.07 19,05 204359.00 5/23/2005 SCBE Brace Design.xIs Grids - F Maill Consultfi-ig Engineers k,p,ff Rexburg Idaho Temple LRFD Beam -Column Design for WF or HSS Sections Grids C and F Braces on 2nd Level Meniber size I WlDX77 d-- 10. 6 in SX— 8 5.9 jn3 2 2.6 i S 30. 1 MI b i.19io.19 in ZX 97.6 inn t 0.87 111 ZY — 45.9 in &I Lb FV 0 Slenderness klr'rx = Lb min W z2.s ft 50 ksi 103,4-3 < 5.87-sCs/Fy 60.17 . ...)tF 109.52 in Compact Criteria 0.30-�EsrFy 7.22 Section is Compact Axial Capacity Pu = 217.97 kip 2uc = 1.367 -Cr = 22.91 ksl �Pii 4.40 .07 kip U 0.4953 Oir� rX — 4,487 In ry — 2.610 in 217.97 193-69 ePF ?b 20,4359.00 5/23!2005 SCBF Brace I}esign.xls Grids GF end Consultinor Engineers kpff Rexburg Jdaho Temple LRFD Beam -Column Design for IVF or HSS Sections Grids C and F Braces on 3rd Level Member size s ir'WIOX68 I IF d = 10.4 SX' — 75.? �n3 A. = 20 M' SY = 26.4 ins bf= 10.3 �. zx = 85.3 3 tf = D.77 in Zy — 40.1 iri3 rT 4.438 xn Lb — 2 1.5 ft ry = 2.5 $ 8 in FV = Sa ksi Slenderness kl/r x = 99.67 < 5.87�sI1Fy kllr y LL 58.13 c 5.87-VtslFy Lb min = 108.88 in Compact {Criteria 03Nts/Fy 7.22 Section is Compact Axial Capacity PU — 175.2$ kip 175.28 151.64 kc 1.317 FCr- 24.22. ksi �Pn:__ 411.74 kip PU 0.4257 On ok 204359.00 5/23/2005 SCBE Brace I i n. x1 Grids -F 3rd Consulting Engineers kpff Rexburg Idaho Temple -��LRFD Beam -Column Design for WF or SSS Sections Grids C and F Braces on Mechanical Mezzanine Member size FW1 X68' d — 10.4 in SX — 7 5.7 M' A — 20 ins Sy — 2 6.4in' tr 0.77 in z — 40. i + 3 4.438 in F%1— 5 0 ksl' Slenderness 1/ X 99.67 < _'5'.87-vts/F kl/r v 5 8.1 3 -Vt Lb rain = I0$.8 8 in Compact Criteria 0.30-�tsIFy 7.22 Section is Compact Axial Capacity P„ = 104.94 kip 1.317 FCT 24,22 ksi �PTJ _ 411.74 kip P„ 0.2549 On ok 104.94 38.07 2043 59.00 5/1-3/2005 SCBF Brad Design.xls Gz-zds C -F Mezz &I Consulting Engineers kpff Oregon Central Computer Facility LRFD Beam -Column Design for WF or HSS Sections Grid 11 Brace on Main Level Member size W8X40 . � rr d = 8.25 in SX = 35.5 in' A= 11.7 in' Sy. = 12.Z M; b f — 8.07 in ZX = 39.9 �f = x.56 in Zy = 18.5 zri3 rx = 3.533 in Lb = 21 ft ry = 2.049 in rY = 50 ksi Slenderness 123.01 < 5.87-VEs/Fy kI/r y _ 7 1- . -QtF b min _ 8 6. y 4 1 Compact Criteria 0.30-\/Es/Fy 7.22 Section is Compact Axial Capacity Pu = 66.40 dig _ 1.626 1 6.59 ksi 164.97 kip PU 0.4025 pn 23.10 66.40 204316.00 5!23/2005 SCF Brace Design.xls Cn-id 11 Main Consulting En`ineers kpff Oregon Central Computer Facility RFD Beam -Column Design for 'IVF or HSS Sections Grid 11 Brace on 2nd Level Member size Fvwvll(OYX49 d = 9.98 in 5,; = 54.G in3 A = I4.4 gin' SY — 18.7 Y�3 tf = 0.56 in ZY = 28.3 in' rx � 4.345 in Lb = Z 0 ft ry — 2.547 in FY — 5 Q ksi Slenderness U'r X _ 94.24 C 5.87�E5IFy kl/r ,, = 55.22 < 5.87-�Es.fFy Lbniui = 107.48 in Compact Criteria 0.30,E5/ry 7.22 Secdoii is Non -C ompact Axial Capacity Pu = 51.28 kip 13.53 5 1.2 8 ke 1.246 F� = 26.16 k51 320.16 kip o 204316.00 5/23/2005 SCEF Brace Design.xls Grid 11 2,nd kpff Consulti ng Engineers Oregon Cental Computer Facility -�LRFD Beam -Column Design for WF or HSS Sections Grid 11 Brace an 3rd Level Member size w X p 9.98 in SXy54.6 in3 A — 14.4 in Y 1&7 bf_ 10 in Z = 60.4 t _ � -' Lb Y = Slenderness Ur . Z:__ kl/r y Lb ruin = 19.5 t 50 i 91-98 C 5.87�5/F`]/ 5 11 3.84 < 5.87,,fEs/f-qy 107.48 in Compact Criteria .. 3 0 s/F7.22 SeCtk)DisNon-Compact -- Resize r 4.346 in r _ 2.547 i Axial Capacity P„3 5.9 6 kip 0.76 35.96 ?�c = 1.214 Fir = 27.01 ksi �PO — 130,57 kip P„ 0.1088 On ok 204316.00 512"312005 SCBF Brace DesignAs Grid 11 3rd kIpff +Gonsultinb En�zneers Oregon Central Computer Facility LRFD Beam --Column Design for WF or IHSS Sections Grid 11 Brace on Mechanical Alezza.nine Member sire W8X40- d = $.25 Sx — 3 5.5 in' A = 11.7 1n 2 SY = 12.2 bf ` 8.07 in 2x 3 9.8 gin; of 0.5 6 in Z = 18.5 in r,; — 3.533 in Lb = 13 ft ry = 2.049 in FY = 50 ksi Slenderness kI/r x = 76.15 c 5.87�,Es/Fy kUr y = 44.1.6 { 5.$7�EsIFy Lbnun = 86.74 in Compact Criteria 0.30-s,,Y,s/Fy 7.22 Section is Compact .Axial Capacity p❑ .25,89 kip .11 AX_ 1.006 Fcr _ 32.75 ksi fh Pry3 2 5. 7 1 d P„ 0.0795 pl) 25,89 2,5.79 SCBE Brace Desicrn.xls Grid 11 Mezz kPff Consulting Engineers Portland, Oregon Braced Frame Connection Special Concentric with 115IrEde Flange Brads Brace Size 0 Depth = 8.25 11. tf _ 0.56 br = 8.07 TU U. 643.5 Flange Plate Properties t= 1 FY 50 FU 65 Width Iasi Length = +19.3 = . 25 - in 3 _ 15.0 4 2 Gage kips, Bolt Hole Diam 15/16 Failure Mechanisms Bolt Shear EIon 2t on of BoltHoles Block Shear of Be rn Flange Gusset Plate Properties 6ssel FY - FU - 6 o in ins 'in I rl kip in e ki in in in in in In in in 649 , 633 1 ,103 LDS Rexburg Idaho Temple Y = 1.1 FY = 50 ksi FU =65 Iasi Flange Hate Bolts deg Type A490 I Fv = 45 k i Diameter 7/8 in Area 0.60 Iii' .fir Strength 27.1 kips, No. of Bolts 1 Actual weld - Section Fracture of FP 780 kip Block Tear of FFA 11969 kip Plate Tension Capacitor Whitmore Length = 28.42 in T 11279 #i p Weld Length deg Gusset Plate Compression � Feldi - /1 in Lei = 1 i Total weld = 92.5 in Prl = 08.30 kip Weld per leg = 11. in kl/r = 64.4 Actual weld - 12 ISI -4 = 0..85 470,6 kip HC = Fcr -,- 36.93 ksi Mock Shear 0.0 kip Wn - 892.1 kip Platn _ 1039.7 kip ok 1086.4 kip Grasset Edge Buckling Controlling 1039.7 k J'P Lf 18.1 ICS ok No Edge Stiffener iq'd Gusset Connection to Seam and Column q =43 deg 2 = 48 in 0 in c _0 in b _ 0 in = 24.00 in P 25.74 in r 35.19 in C = 470,6 kip HC = U kip t' 0.0 kip Hb = 438.9 kip Flange Plate Not Section Fracture An = 6.875 Inic = 1 .o UAB n �Rn = A&Fu = ''field Capacity to = �Rn 670 kip 204359,00 5/2312005 vert hon 5116 ire 46.32 43.+1 13.92 p/h 470.63 438.87 Dema n dlCap a city Ra do Be2M = 0.96 Column= DIVYO! 424.31 482:06 Brace Gusset 4-14-2005.xis Grid 5 M2in kpff Consulting Engineers Portland, Oregon LCIS Rexburg Idaho Temple Baseplate 9 "in P = 424.30948 Fy -0 U = ksi Concrete Bearing S Bort Spacing L t 8 in fc = 4000 psi TU - 424 kip A, = 5 76. 0 inZ PI - 424.31 -gin kip p fin' rmin, 9.984 in 'pP �1 1 . i thin — 2.23 in Pu = 424.3 kip t 21/3 in Bearing is ok Anchor Bolts Soft ,size = 1 1/2 i Embedment = 42 in nb ,x, Footing width = 1.5 ft Ase 1.77 ire' Footing depth = 18 ft tut 75 ksi I Tension Spacing = 9 "in P = 424.30948 kip U = 187 kip S 596.41 kip cia 262.60 kip cbg _ 262.60 kip 1pn - 1433.60 kip Wn = 262,60 kip p Anchor Sp2cing o ANO = 1Ifl 11'} = � [13 V114 = Ib= brg _ 0,31 BJP = NAN, 0.712 Interaction with Shear qrd Shur = 482..06 kr Vu = 187 kip Long Spacing = a in Lt Spacing = 8 in = 318.09 kip b = 43.91 kip cp = 525.20 kip Wn = 43.91 kap 0.59 VAV., = 4.258 Shear is NO GOOD oi-nations Concrete Steel 4.97 No Good 0.90 ok 324 in 792 in Z. 1. 1. 1.25 1.4 513530 i in' 128000 lb Cl = 18 in *Grade beam present -- edge spacing Is not an issue. �, o Y7 _ " _ cp 1674 1458 1. 1.0 1. ilk' in' 27319 Ib 2 204359.00 5/2312005 Br2ce Gusset -1 -0.1 Grid 5 Main kPff Consulting Engineers 353.43 LDS Rexburg Idaho Temple 2b4359_00 VAP = 1145.50 q)vF1 = 45.58 5/23/2005Portland, Oregon 0.000 Base Plate Connection �} ...�.. Gridlines 11 -B and 11 -G Baseplate Fy 50 psi Concrete Bearing Balt Spacing Lat = 16.5 in f'� = 4000 psi T„ = 571 kip A, = 440.8 in' MP, 1177.69 k -in A, 7224.8 in 2 Sm;,, = 27.710 in3 �Pp = 1798.3 kip tr,;,-, = 2.85 in Pu = 921.D kip t = 2819 in Bearing is ok Anchor Bolts Boli Size = 1 114 in Embedment = 36 in nbort$ = 8 Footing width 10 ft ASS = 1.23 in' Footing depth = 3.5 ft fit = 120 ksl S2 = 1 Tension Spacing - 8 in Anchor Spacing ak P - 571 kip A, = 13455 in` PU = 571 kip Aga = 11664 inz NS = 6+62.58 kip lv, _ 1.0 Ncb = 572.75 kip Y2 = 1.a NGbg = 572.75 kip L1J3 1.25 Npn _[433.60 kip T4 = 1.4 �N„ = 572.75 kip Ne = 397180 Ib Abrg = 4 �nG NP _ 128000 Ib Nul�Nn = D.997 Interaction with Shear Req"d Shear V - 0.00 'vU = o Long Spacing = 8 Lat Spacing = 16,5 Vs = 353.43 Vca9 = 45.58 VAP = 1145.50 q)vF1 = 45.58 0.00 VU4V„ = 0.000 Combinations Concrete 1.00 Steel 0.$6 kip kip in in kip kip kip kip Cl = kip Full tension strength allowed ok ok a*V 1903.5 1458 1.0 1.0 t.4 24939 2 in lb Brace Gusset 4-1 4-2Q05.x1s Grid 11 base 0 kpff Consulting Engineers Portland, Oregon Gridlines 11-C and '11-F Baseplate LDS Rexburg Idaho Temple Fy = 50 ks i' Concrete Bearing kid Bolt Spacing Lot W 16.5 in f C =: 4000 psi TU = z58 kip A,, = 440.8 in` M P1 = 532.13 k -in A2- 7224.8 in' Smin _ 12.521 in3 �Pp V 1798.3 kip tmin = 1.91 in Pu = 921.,0 kip t _ 2 in Bearing is ok Anchor Bolts Balt Size _ Embedment = Footing width Footing depth = Q = Tension Ncb �cbg Npn_ �Nn = Nu/n Shear vu - Long Spacing Lat Spicing = VS cb p 1 1/4 30 10 3.5 1 8 258 258 414.17 434.41 434.41 1433.60 414.17 0.623 220.89 45.58 88.87 45.58 in in nboits = 8 f# ASS _ 1-23 i ri� ft fut = 75 ksi in Anchor Spicing ok kid A,, = 9604 in' kip ANO = 8104 ' n ` kip V1, = 1.0 Hi p W2 1.0 kip T3 = 1-25 kip yea = 1.4 kap Nb w 293102 Ib Abrg = 4 NP = 128000 Ib Interaction with Shear Req'd kip kip in in kip kip Kip kip Av = Ago = Y5 = Uig W7 Vb = 0.00 kcp = Wu4Vn _ 0•00.0 Full tension strength allowed ,0�, Combinations Concrete 0.62 ok Steel 0.62 o k 0 1903.5 1458 1.0 1.0 1.4 24939 2 in Ib 204359,0,0 5/23/2005 f -e17 — J,*. Brace Gusset 4-1 4-2005.x1s Grid I I base nM,096onsulting Engineers Portlorad . Oeg on Project Locofion Client "wt I By Date R e-vised D ate —7 > I f�S 4 14 S 6 ev AkS CoL a---) FI- --*- 4...) F-Zp 4 � , f � rl.k.. +14 Y J W- 4- I., e Sheet No. Job No. I m w Porlland ,Oregon Consulting Engineers � t 05 rfol z:&—Z JM� , F��z . e:;Nql - PrsI Xr23 k - r—Y qhep,t No. %-C Job No. a `�r A da 7 ie c5-0 �-' r �,. � ��i� !S Gem- �; J7 9.57= IAFA, 4eaL I Portland, OTegon L Consulting Engineers Project Loco -Hon Client F- �evised X 1+ ' F-7, lip d ' 5 Je 7. =- JO 41" -�6- (4-0 I %C>pt-r'- r 5c:) J 4,r.610 D 4w: :5"� Z - too 1--IZO - 144' 4 4,1 MAY 4 5'1 —4-7k L. -D) Z A 2 k 4- 10 -7 v I c�o r7 4 557? L p 4- f T--74 too ��� - a Project B Consultin Eng' 11 .... -..... __.....� �._._, Date JShee"r No. V Job No. kpff Consulting Engineers FD Beam -Column Design for WF or HSS Sections Columns A.2-8 and G.8-8 fr orn .Main Level 'to 2nd Level k -in Member size ' `12X106 Section is Compact Mr = = 1189 ..- in SX= 145 ill 131-65 312 in S� � 49.3 i�,3 bf ® 12,22 in Zx 164 in 0.99 in ZY _ 75.1 in T -x = 5.468 in Lb _ 15 - _5' ft ry 3.106 in Fy _50 ks] Dead. load = 206.3 lir Live load 36 lip Snow load 15 kip EQ load = 177,87 kip Eni 372.55 kip Land Combinations L4D = 1.2D+ I., 6S+I TOL = 1.I+1.L+.: 1. I +I. +i.OL+0.2S = . D+I .OH = 1. D+1.OL+Ern 0.9D -Em - PU =656.11 rte• .. ,c _ O.791 cr 8.49 288,82 X07.56 312.66 464.43) 363.54 656.11 pn 1020.75 kip PCI 0.642 F1 Major Bending yielding nx = 7380.0 -ire RX nx nx 21743.62 %.-iii 0.0437 Camb.1"ned Stresses I F Pu + n > 0.2. thea use Eq. Ill -la 0 SDS = (14075 l+L+ _ D+L+w D+L+ W+ / _ l +L+ + W/ P 8 K Ad�, Aflq7, O,F� 9 ""06MMV 01�mr��, ) 20PIr O.&M111 ObMFO, LDS Rexburg Idaho Teml)l 25730 n/ n/a x$4.35 31172 ompa c -t Criteria O_')O- � s11Py 12.98 Unbrac,ed Le ni yth Criteiia kip kip kip kip kip kip kip ino r Bending Yielding kly = 120 k -in nv _ 3.327.8k4n MUV U361 nv Use Eq.HI-1a 59.88 < 200 34.01 < 200 131.34 in 1 20439.00 5123/2005 LRFD Baa- -Column e icrn 4-12-2005.xis Col. A-2-8 G.8-8 low ,: = 3 92.1 l -in Me = 5 34.84 k -in N4.c = 2 6,6 k -In Mr = 5800 -in � = .31 LO - 131-65 in Lr = 537-601 RX nx nx 21743.62 %.-iii 0.0437 Camb.1"ned Stresses I F Pu + n > 0.2. thea use Eq. Ill -la 0 SDS = (14075 l+L+ _ D+L+w D+L+ W+ / _ l +L+ + W/ P 8 K Ad�, Aflq7, O,F� 9 ""06MMV 01�mr��, ) 20PIr O.&M111 ObMFO, LDS Rexburg Idaho Teml)l 25730 n/ n/a x$4.35 31172 ompa c -t Criteria O_')O- � s11Py 12.98 Unbrac,ed Le ni yth Criteiia kip kip kip kip kip kip kip ino r Bending Yielding kly = 120 k -in nv _ 3.327.8k4n MUV U361 nv Use Eq.HI-1a 59.88 < 200 34.01 < 200 131.34 in 1 20439.00 5123/2005 LRFD Baa- -Column e icrn 4-12-2005.xis Col. A-2-8 G.8-8 low kpff Consulting Engineers L FD Beam -Column Design for WF or HSS Sections of umn& A.2-8 and G.8-8 from 2nd Level to Mechanical Level Mem r .si z L�PX72­_ 78.75 kip Section is Compact 163.31 kip - 12.25 in S X 7A i 11 2 1. 1 ir,2 �y r in' r= 12.04 in ZX 108 k -in t f 0.67 In Z�r 49.2 inj.. LP = 128.86 r, 5.319 in Lb = 18 ft F _ 3.040 in Fy 50 ksi *ll Dead load =- 71.3 kip Live load = 7.8 kip Snow load = 15 kip EQ load = 78.75 kip Eal = 163.31 kip Load Combinatioris 1A - 1. I +1. L , r + 1.O - I. + 1.OL+E � = . -m = 13U = 256-67 99.82 117.36 105-54 175.11 142.92 256.67 -99.1.4 UP LI FT ki 0,939 Fer34+59 ks1 n _ 620.46 kip PU 0.4137 pTi 00- u.s = 0.4075 4.22 0 LDS Rexburg Idaho Temple 94.1 n/a n/ a 150-35 120.42 Compact Criteria 0.30-,/Es/FY 12.04 Unbraced Length Criteria kip kip kip kip kip kip k1p Major Bendi*ng Nlinor Bending MUX = 120 k-111 1NTU = 120 -its STK = 4860.0 -in Olmn = 187.0 k -in Latei-al-Torsioiial Buckling MA = 392-16 -in B _ 534.84 k -in Mc _ 42 6: 6 k -in MY 3896 k -In Cb 0.31 LP = 128.86 in 1,= 403.625 ' nx = 2022.63 k -in Mix 0.0593 ,s 0.054 �MlixW,y Combined Stresses if P= � 0.2 then use Eq. HI -la MMY P _ M O 01, Alf n bAlf bMx . 20POI OnM 20F� 011,41 0.� M Use Eq. 111-1 k 1/r X = kl/ry_ Lb min 71.05 40.61 < 200 1 -41 In 20439.00 5/2312OD5 .RFD Beam -Column Design 4-12-2005,xls Col A.2-8 G,8-8 nii d kpff ConsultingEngineer LRFD Beam -Column Design for WF or HSS Sections Columns C-8 and F-8 from Main Lural to 2nd Level rl, mber size FWi2X96 JSection i's Compact d 12.71 inX= LI-ve load 131 int = 28.2 in S Y- = 44.4 kip f= 12.16 in ZX= 147 ire tf 0f Lr = y � 67.5 r. _ 5:435 In Lb 15,5 ft ry .094 in F�, 50 ksi Dead load 230.5 kip LI-ve load 4.8 kip Snow load = 16 kilp EQ load = 145,65 kip M 310.09 kip Load Combinations 1AD = 1.2 +1.. +I.. 1.2D+1 - L+ .5 1. +1 O +1. L+0. .D+1.E 1.+1.L+Eft) _ 0.9D -Em= Pa = 635+49 Kc 0,794 Fct1 322-70 351.00 .62.68 4}4:25 353.10 635.49 -102.64 "U,PL - � r kip, ksi n = 920,76 kip Pu 0.6902 On Major Bending Yielding llx = 2485.98 -in MEIN 0.0483 Omni Combined tr i PU : fpn> O 2 � then use Eq, HI -1 0 = SDS = 0,4075 D+L+ D'-L+wW - L - L+ wW+ / 1 + L+ + 1/ _ +L+ +E/ 1. .+E/1.4= OP9 Alf 20P1 teti 7"j Edi Alf , 011 A f M r� ti - LDS Rexburg Idaho Temple 295.30 n -i a n/a a 399.34 3 1149 Compact Criteria .� OvJ!E/Fy 12.98 Unbraccd Length Criteria kip kip kip kip kip kip kip Minor Bending ieidbi ily = 120 k -in n _ 1. -1 n _ ily 0.0400 n,v Use Eq. Hl -1a OrX= l/r y Lh nein �= 60.1.1 < 200 34.22 < 200 130.70 in 204359M 512-312005) LRFD Beam -Column L si 4-12-2005,xls Col - F-8 low NIA = 392.1 k -in Ms ^ 534.84 k -in Mc - 426.6 k -in A ' 5240 k -in Ch _ 031 L, = 131,15 in Lr = 496,93 llx = 2485.98 -in MEIN 0.0483 Omni Combined tr i PU : fpn> O 2 � then use Eq, HI -1 0 = SDS = 0,4075 D+L+ D'-L+wW - L - L+ wW+ / 1 + L+ + 1/ _ +L+ +E/ 1. .+E/1.4= OP9 Alf 20P1 teti 7"j Edi Alf , 011 A f M r� ti - LDS Rexburg Idaho Temple 295.30 n -i a n/a a 399.34 3 1149 Compact Criteria .� OvJ!E/Fy 12.98 Unbraccd Length Criteria kip kip kip kip kip kip kip Minor Bending ieidbi ily = 120 k -in n _ 1. -1 n _ ily 0.0400 n,v Use Eq. Hl -1a OrX= l/r y Lh nein �= 60.1.1 < 200 34.22 < 200 130.70 in 204359M 512-312005) LRFD Beam -Column L si 4-12-2005,xls Col - F-8 low kpff Consulting Engineers F -Column Design for r H salon. Columns - .n F-8 from 2nd Level to Mechanical Level Member size W 12X72 d = 12.25 1n - 1.1 j n2 bf = 12.04 in tr_ 0.67 in Lb = 1t Fy _ 50 ks i Axial Dead load - 51.2 kip Live load 4.8 kip Snow load = 16 kip. P_load _ 47.32 kip EM== 98.81 kip Load Combinations IAD = 1,D+1.+I .L = I .+ 1.L+. 1.. + I.O E+ 1. L-110.2 .I+1.E = 1..+1.L.+EM . . D R E l _ PU = 165-05 71.68 1r8 7.1 116.76 93.40 165 -OS _52.7.1 UTPL1FT kip _ 0,939 Fcr - 34.59 ki Pl = 620,46 kip Pti O'.' 4Pn Major Bendinu MUX ' 1 -i n RIN = 4860.0 -in Lateral-Torsio7ial Buckling A 392).1 -its. B = X34.84 -in Mc = 426. 1 -ire Mr 3896 k -Irl Cb �- 0 � 1 Lr = 128.86 in Lr = 403.625 1nx = 2022.63 -ire MUX 0.059, nx Combined Stresses if PU n > 0.2, then use Eq. 1- I a Section is Campact X 97.4 in' y 3 2Aire' X in' 0 = SDS = 0.4075 D +L+ _ D 7 = L+w _ +1✓+wW+ / +L' +wW/ _ D+L+ +E/ 1.4 _ . +E/1. LDS Rexburg Idaho Temple 72.00 rila a n/a 105.80 79.88 Compact Criteria 0.30-,,.11E-s/Fy 12.04 Unbraced Length Criteria kip kip k1p kip kiP kip kip Minor Bending Yielding „y ;-- I '2 0 k -i n MrLv = 2187.0 k -i n 0.0549 ny Use Esq. SIX-Ja 1I/rr V = kUr y Lb min T I _jV1141 �LLl �' F' s jj ,- + 1. 0.38 1 .0 FI M J4.v df M f.FS LL 71-05 40-1 < 2_00 12 9.41 in n --- + e - .V1 204359-00 5/23/2005 LR'D Beam -Column Design 4-12-2005.xis CoI - F-8 mi 5.319 111 -Ty 3.040 in 0 = SDS = 0.4075 D +L+ _ D 7 = L+w _ +1✓+wW+ / +L' +wW/ _ D+L+ +E/ 1.4 _ . +E/1. LDS Rexburg Idaho Temple 72.00 rila a n/a 105.80 79.88 Compact Criteria 0.30-,,.11E-s/Fy 12.04 Unbraced Length Criteria kip kip k1p kip kiP kip kip Minor Bending Yielding „y ;-- I '2 0 k -i n MrLv = 2187.0 k -i n 0.0549 ny Use Esq. SIX-Ja 1I/rr V = kUr y Lb min T I _jV1141 �LLl �' F' s jj ,- + 1. 0.38 1 .0 FI M J4.v df M f.FS LL 71-05 40-1 < 2_00 12 9.41 in n --- + e - .V1 204359-00 5/23/2005 LR'D Beam -Column Design 4-12-2005.xis CoI - F-8 mi kpff Consulting Engineers LRFD Beam -Column Design for Wor HSS Sections Columns C-8 and F-8 from Mechanical Laval to Roof kip Member sig Section is Compact Mr d 11.94 in SN --51.9 0.31 in EQ load = 7,99 11.8 in y= 11 ire' ht = 8.005 in ZX _ 57.5 in' - 0.515 in zy = 16.8 lll' IAD = 71.68 rX 5.126 in = 18 ft ry = 1.933 in Fy 50 ksl I +L+wW-S ' _ kip Axial 4 LLS Rexburg Idaho Temple Compact Criteria 0.30rksfFy 12.44 Unbraced Length Ctiteria Dead load 51,2 kip G 8 _ 534+84 Lies load 4,8 kip SDs 0.4075 -in Mr Snow load = 16 lip Ch 0.31 EQ load = 7,99 kip in LF -- 231.642 ETR _ 19,95 kip Load Combinations IAD = 71.68 +L+ T 71-00 kip 1.2D+ + 1. +1.Off, = 91-84 I +L +w _ -n/a kiln 1.2D+ 1. L+0. = 77.1 I +L+wW-S ' _ kip 1. D+1. ; + 1. L+0. = 77.33 D. L+ +wW/ != n/a lip 0-9D 1.0E W 53.97 1 +L+ +E-/1.4 = 77.64 kip l . D+I.OL+Em = 5. .1 . 9D+E/ / 1.4 v 51.72 lip 0. I -Em = 26-13 kip P� = 9L84 kip = 1.477 cr = 20.11 ksi �Pn = 201.70 kip tj 0.4553 pn Major Bending Mg1X = 12 k -in nx � 2587.5 -in Lateral- Tot}sl n 2 Buckling Rai = 1434.72 -in UX Combined re. 0.0836 If PU -, t o 02, then use Eq. H I -1 Minor Bending Yielding uy - 11-10 k -in 'nv = 742.5 k -in uy - 0.1616 Use Eq.H1-1a 111.73 < 200 42.14 < 200 56,04 in 204359.00 51 23/2005 LPTD Beam -Column Design -1 - 0 . is Col -8 F-8 top 92,16 -in 8 _ 534+84 -in Mc _ 426,6 -in Mr 2076 -in Ch 0.31 LP = 1.94 in LF -- 231.642 Rai = 1434.72 -in UX Combined re. 0.0836 If PU -, t o 02, then use Eq. H I -1 Minor Bending Yielding uy - 11-10 k -in 'nv = 742.5 k -in uy - 0.1616 Use Eq.H1-1a 111.73 < 200 42.14 < 200 56,04 in 204359.00 51 23/2005 LPTD Beam -Column Design -1 - 0 . is Col -8 F-8 top kpff Consulting Engineers Portland, Oregon Eccentric Braced Frame Chevron style Beam Beam Size Depth WE Awi tf bf r Axial Pu - Compactness kP$ = 0.30-,/E/FY = VIleb compactness Link M VP = O-ZFyA, _ M P 2MP/e = Axial effects 0. 1 5 FyAg = V P3 = mpa Max Link Length = Rotation ke - height, h _. LDS Rexburg Idaho Temple W14X48 1.3.79 14.1 4.28 0.595 8.03 YWA., 5.86 1.91 92.2 OX -1111 � 1! 722 56.63 36 128.5 217.8 105.75 12$.52 217,78 142 204 in Ry 1.1 ins Fy 50 ksi ins FU = 65 ksi in in Lb 11.83 ft in kl/r x = 74.37 < 200 in kl/r y = 2421 < 200 in kip ksi PU 0.2303 kip �Pn Flange is Compact Web is Compact in V„ = 71.0 kip kip k -in kip �V„ = 128.5 kip kip VU 0.614 k'i p n in PuA, 0.39 u Ag rd in In 0— X 1+ 2 `� � 0.0615 h e emax = 0.0$ rad 204359.00 5/23/2005 Eccentric Braced Frarne,xls Beam kpff Consulting Engineers Portland, Oregon Link Stiffeners For O.D8 rad: 30tw-d/5 For d.02 rad; 52tw-d/5 For 0.065 rad.- Lateral ad: LDS Rexburg Idaho Temple 7.442 in 14.922 in 13 in Lateral Bracing of Link Ends PU = 0.06Ry Fy bftf = 15.8 kip Outside of Link Length RyVn = 141.4 MEQ = 2545 M -gravity Mu Use Eq. Hl -la kip k -in k -in Eq. H 1-1 a = p�.- 8 M1� + MUY < 1.0 = 4.8 9 0-[� 9 A Mnx 004�v ) 1� M UX 20Pn ObM nX M "'' c 1.0 ObMny 20.4359.00 5/2312005 0 1 � Eccentric Braced Frarne.xls Beam kpff Consulting Engineers Portland, Oregon Eccentric braced Frame Chevron style Brace Brace Size Mx58 --- I•r Axial LDS Rexburg Idaho Temple Depth - 8.75 in RY = . A - 17.1 In 2 FY 50 ksi A = 3.64 int FU 65 k i Compactness bt = 8.22 in height= 188.21 in t = 0.51 in CIr width= 134.25 in Flange Flats Properties 3.65 in L�, _ 1.1 in r 2.10 in, kl r 110.32 < 200 FY = 36 ksi kl/r Y = 63.31 < 200 P - 128.52 k 1p OFV= 45 ks i b -=� 1 5.29 kip Diameter / in gravity -= - kip Area 0.60 in �Fyr = 201.7 kip Shear tr ri tl 1 .1 kips P.0 = 247.8 kip Not o Volts 1 ?'C = 1.458 Fcr = 20.58 ksi 204359..00 5/23/205 Eccentric Braced Fr me-xl Brace PU 0.8284 �Pn = 299.08 kip tri Compactness ?tips = 0.3kEIFY = 7.22 Flange is Compact Web Co,mpactness 40.50 VVebiS COMP2Ct Flange Flats Properties t - 1 in, Flange Plate Bolts FY = 36 ksi Type A490 FU= 58 ksi OFV= 45 ks i 'width = 8 in Diameter / in Length = 15.00 in Area 0.60 in 1.5 in A Shear tr ri tl 1 .1 kips in Not o Volts 1 12.0 I n 4 = 1.5 in Gage = I fs Bolt Hole 1..'� i # 1 IF a 1 511 i Failure Mechanisms Bolt She2r 541 kip Section Fr2cture of FP 696 kip Elongation of Bolt Holes 17958 kip Block Shear of FP 1 325 kip Block Shear of Beam Flange 1:281 .kip Gusset Plate Properties Plate Tension Capacity ,sUss et = 3014 in Width _ 13-00 in F Y = 36 ki FU = 58 ki 316 kid' Weld Length Gusset Piste Compression Weld size = 5/16 in LPA = 0 in Total weld = 43.0 in PU = 87.00 .kip Weld per leg - 5.4 in k1r = 0.0 tU 1 weld = 8 in X = 0:00 FCr - 3E3.00 k j Block Shear _298.4 kip Plate Rn = 545.1 kip o 204359..00 5/23/205 Eccentric Braced Fr me-xl Brace kpff Consulting Engineers Portland, Oregon LDS Rexburg Idaho Temple 530.9 kip Gusset Edge Buckling Controlling 530.9 kip Lfg = 16.0 in k No Edge Stiffener Req 'd Gusset Connection to Beam and Column =35 HC tension _ deg a (beam) = 14 in b (column) = 18 in c = &375 in b = 6.875 in Cf = 4.74 in = 9.00 in r = 19.38 in C = 93.7 kip IAC - 66.4 kip 6 _ 71.6 kip Hb _ 49.3 kip Brace in Compression = 115.1 Beam W 1 4x48 HC a = Hb _ k_ d tw Web Local Yielding �Rn - Web Crippling 81.5 87.9 613.6 1.375 13.79 0.595 0.34 kip kip kip kip 296.4375 kip 0.24 Web Yielding A �Rrj = 147.3766 kip 0.6 Web Crippling o Flange Plate Net ,lection Fracture R = 7.125 in' = 0.90 e = UAR = 6.41 inz �Rn = eFu = 625 kip Weil Capacity to = 5/16 1 �Rn = 13.92 kip/in DemandlCapacity Ratio Beam = 0,45 Column = 0.46 a tensron _ 71.6 kiP b comp = . kip HC tension _ 66.4 kip FSC COMP 81.5 kip Column W1 2x9 k= 1.625 d 12.71 t1• 0.9 tw 0.55 �Rn _ 606-719 kip 0.11 Web Yielding ok �Rn = 504.733 Cip 0.16 Web Crippling ol, 204359.00 5/23/2005 } Eccentric Braced FrameAs Brace kpffConsulting Engineers Portland, Oregon Eccentric Braced Frame Chevron stye Beam Beam Size Depth = A= Aw tf �= f t r . =zY Axial PU Compactness �.ps = 0.30-VEIFy Web Compactness Link Am VP = 0.6FyAw = M P = 2MP/e = Axi'al Effects 0.15FyA9 _ Vpa -' Mia = Max Link Length = 1-X48 13.79 14.1 4.28 0.595 8.03 0.34 5.86 1.91 122.1 0.983 33.40 400.26 722 54.62 36 128.5 3920.0 217.8 105.75 126.58 212.47' 46.54 0.252 1.26 142 204 LDS Rexburg Idaho Temple in R Y = i.1 int Fy:::: 50 ksi ins F, = 65 ksi in in Lb = 11.83 ft ;n kl/r x = 7a..37 < zea M Or Y = 24.21 < Z00 in kip ksi PLI 0.3050 kip Wn Flange is Compact Web is Compact in V U = 94.5 kip kip k -in kip �Vn = 126.6 kip kip kip V„ x.830 kip �Vn in PAW 0.39 VuA9 in 0 = c5x 1+2 � = 0. 055 in h e In Orr �0.08 in rad rad 204359.00 5/23/2005 Eccentric Braced FrameAs IVlech Beam kpff Consulting Engineers Portland, Oregon Link Stiffeners For 0.08 rad: 30tw.d/5 = For 0.02 rad: 52tw-d/5 = For 0.055 rad: Lateral Bracing of Link Ends PU = 0.06RYFybftf = Outside of Link Length LIDS Rexburg Idaho Temple 7.442 in 14.922 in 11. in 15.8 kip Kyr„ = 139.2 MEQ7-- 2506 Mgravity = 365 M„ = 2871 Use Eq. 1-I kip k -in k -in Eq. HI-Ia plf - 8 Af�47� - - + Alilly < 1.0 — 0.869 0-1� 9 ObMPLY om t Eq.Hl-lb— -�t—+ MILY 11 + M*.' < .0 20P, ObM FL M Ply <t.0 204359.00 5/23/2005 lir � Eccentric Braced Frarne-As Mech Beam. Q kP ff Consulting Engineers Portland, Oregon Eccentric Braced Frame Chevron style Beam Beam Size f�Vui4x38 Depth = A = t = rX Axial PU C = �Pn = Compactness X'ps = 0.30�/F Y = Web Compactness Link raw VP = 0.6FyAw 2Mp/e Axial Effects 0.15FYAg = spa - Mpa = Max Link Length = Rotation e 6 _ height, 14.1 11.2 4.05 0.515 6.77 0.31 5.86 1.54 1.216 26.98 25E.80 7.22 56.42 36 121.6 3075.0 170.8 M 121.55 170.83 LDS Rexburg Idaho Temple in Ry= 1.1 inZ FY = 50 ksi in 2 FU = 65 ksi in in Lb = 11.83 ft in kl/r , = 91.97 < 200 in kilr y = 24,22 < 200 in dip ksi PU 0.2383 kip Q�Pn Flange is Compact Web is Compact in V„ = 109.2 kip kip k -in kip �Vn = 121.6 kip kip Vul x.998 dip �Vn in P uAw V„Ag x.20 0.334 in 1.67 in 142 222 0 = ��c 1 +2 a — 0.067 0max = 0.08 rad 204359.00 5/23/2005 IL at, ell- Eccentric ll Eccentric Braced Frame.xis 3rd Beam kpff Consulting Engineers Portland, Oregon Link Stiffeners For 0.,08 rad: 30tw-d/5 = For 0.02 rad: 52tw-d/5 = For 0.067 rad: Latera] Bracing of Link Ends PU = 0.06RYFybftf = 11.5 k Outside of Link Length ftyV„ = 133.7 MEQ= 2407 rav it M U— Use Eq. HI--1a 559 2966 kip k -in k -in -In LIDS Rexburg Idaho Temple 6.48 in 13.3 in 8 in PIt Eq. 1 a - 8 — 0.996 0-1� 9 ( 0- . Eq. H1 -1b pie - + - MuX - + - MUY - < 1.0 2 01� 01Mlx ojMly 204359.00 5/23/2005 10 Eccentric Braced Frarne.xls 3rd Beam kpff Consulting Engineers Portland, Oregon Eccentric Braced Frame _. Chevron style Beam Beam Size W14X48 Depth = PF Aw tf bf _ t _ X V Axial P„ = �Pn Compactness fps - 0.30,,)EIFY Web Compactness Link ml� VP = 0.6FyAw = M P = 2MPI/e = Axial Effects 0-15FA = Vp'a _ Mpa Max Link Length = 13.79 14.1 4.28 0.595 5.86 1.91 65.5 0.983 33.40 400,26 7.22 58.43 36 12 8.5 3920.0 217.8 105.75 128.52 217.78 LDS Rexburg Idaho Temple in RY = 1.1 in 2 FY W 50 ksi ink FU = E5 ksi in in Lb - 11.83 ft in Or K = 74.37 C 200 in k11r y -- 24.21 < 200 in kip ksi PU 0.1636 kiP Wn Flange is Compact Wpb is Compact in VU = kip -ire kip kip kip V„ kip Wn 112.2 MEW 1 • 1 kip kip Rotation axe = 0.221 in 0— S" 1+ 20.053 0.053 rad Cox = 1.1051.105 inh e a = 142 I emax = 0.08 dad height, h = 186 in 204359.00 5/23/2005 �J Eccentric Braced Frame.As end Beam kpff Consulting Engineers Portland, Oregon Link Stiffeners For 0.08 rad: 30tw-d/5 = For 0.-02 rad: 52tw-d/5 = For 0.053 rad. Lateral Bracing of Link Ends PU = 0.06RYFybftf = Outside of Link Length LDS Rexburg Idaho Temple 7.442 i n 14.922 in. 15.8 kip 11 in Ry V n = 141.4 kip MEQ = 2545 loin Mgraviry - 879 k -in M„ = 3424 {c -in Use Eq.HI-lb OT� 9 MM' ObAl-f Ily Eq. HI -lb - J� + MUA + MYV - < 1.0 0.868 <1.0 204359.00 5/23/2005 T-'� 5p� - Eccentric Braced Frame.xls 2nd Beam iig kpff Consulting Engineers Portland, Oregon Braced Frame Connection Eccentric with Wide Flange braces Brace Size L.DS Rexburg Idaho Temple K Depth 8.5 in RY d 14.1 i' F 50 ki tf = 0.68 ire FU 65 k i r = 8.11 in TU = 344.0 kip Flange Plate Properties 37.4 deg 2 = 15 t = 3/4 in Flange Plate E3oIt 6.705 FY = 50 ksl Type A490 N FU = 65 ksl F = 45 ki Width = 8 in D12meter H = in Length = 13.3 in Area 0.60 in = in She2r Strength 27.1 kips = 3 in No. of Bolts 3 = 9.0 in 4 = 2 in Gage = 5 in Bolt Hole U F m = 15/16 in Failure MecIan isms Bolt She2r 433 kip Section Fracture of FP 585 kip Elongation of Bolt Holes 11316 kip Block Shear of FP 1,115 kip Block p rof Beam Flange 1;018 kip Gus -set Plate Properties Flats Tension Capacity ��,jsset = 3/4 in Width = 12,00 in FY = l FU 65 k i jn = 405 kip Weld Length Gusset Plate Compression Weld 1 e - 0+1 in LPI - in Total weld = 49.4 in Prj = 344.00 kip Weld per [eg = 6.2 in kl /r - 0.0 Actual weld = 7 in 0.00 Fr -- 50.00 ksi Block Shear P, 382.5 kip Folate n = 601.9 kip ok 588.4 kip Gusset Edge Buckling Controlling 588.4 kip Lfg -= 115 in ok No Edge Stiffener Raga Gusset Connection to Beam and Column = 37.4 deg 2 = 15 in b _ 25.5 in = 6.705 in b = 0 in = 3.04 in. = 12.75 in r 15.05 in _ 273.3 kip H = 143.7 kip b 0.0 kip HI _ 65.2 kip Flange Plate Net Section Fracture :r, = 5.34375 Fns = 1.00 e _ Un _ 5.34 ins �Rn = Fu Weld Capacity te �Rn 521 kip 5/16 in 13.92 kid/in DemandlCapacity,Ratio Beam _ 0.31 Column _0.87 204359.00 5/23/2005 235 Brace Gusset -�1 -0..I Grid amain k lting Engineers 70570 LDS Rexburg ldah,DTemple 204359.00 Portland, Oregon lb Coag Sp2cing = 8 in 5/23/2005 8 in vs = 441.79 kip Vcb,g = Baseplate kip vCP = 454.15 kip ' )Vn = Fy 50 ksi Concrete Bearing Shear is NO GOOD Bolt Spacing L 8 in fG = 5000 psi TU 334507 lb A, = 576.0 In MPI 334.51 Un A, 792.0 in' SMIn 6.690 in (ppp 1722.3 kip tM j n 1.83 In Pu 803.7 kip t 2 A in Bearing is ok Anchor Bolts Bolt Size 1 1/4 in Embedment 36 in 10 Footing width 1.5 ft Ase = 1.23 Footing depth 18 ft fut = 75 ksl 2 Tension Spacing 9 in Anchor Spacing ok P - 334507 lb A,, = 324 in' PU = 669014 lb ANO = 7 P, 2 in' NS - 920.319 kip �Jfj = 1.0 Ncb = 227.08 kip IV2 1.0 Nc-bg = 227.08 kip 1.25 Nps zz- 2240.00 k p Y4 1.4 �Nn 227.08 kip Nb 444061 [b Abig 4 in' N P 160000 Ib ANn 2.946 Tension is, NO GOOD Shear V = 70570 fb u= 141140 lb Coag Sp2cing = 8 in Lt 'pain = 8 in vs = 441.79 kip Vcb,g = 40.09 kip vCP = 454.15 kip ' )Vn = 40-09 kip Avn = 3.521 Shear is NO GOOD Combihations Concrete 6.47 No Good Steel 1.05 ok *Grade beam prnt -- edge spacing is not an issue. A IAIV = Air = 11'' 5 = Y 6 = Y7 VO kcp. 1674 1458 1.0 1.0 1. 24939 2 X Brace Gusset -1 -0.0 Grid 8 Maip