Loading...
HomeMy WebLinkAboutSTRUCTURAL CALCS - 05-00063 - Hard Hat Cafe05 00063 Hard Hat Cale Ilenr.s Fork Plana DYNAMIC STRUCTURES 1887 North 1120 West, Provo, Utah 84604 (ph) 801.356.1140 (fax) 801.356.0001 Structural Calculations for: HARD HAT CAFE HENRY'S FOK PLAZA REXBURG, ID 14, 2005 Service Provided for: DUBBE - MOULDER ARCHITECTS 0 Cover Sheet.mcd �rard V�4fi Gaffe PROJECT: HENRY'S FORK PLAZA REXBURG, ID CLIENT: DUBBE—MOULDER ARCHITECTS P.O. BOX 9227 1160 ALPINE LANE SUITE 2A JACKSON HOLE, WY SCOPE: PROVIDE STRUCTURAL DESIGN, DRAWINGS, AND CALCULATIONS FOR COMMERCIAL PLAZA BUILDING CODE CRITERIA: 2000 IBC Seismic Design Category: D Design Wind Speed: 90 MPH EXP: C Snow: Pg = 50 PSF EXP 0.7 Pf = 35 PSF Soil: Bearing: qa = 2000 psf (allowable, assumed) Structural Fill: see geo-technical report Backfill: E.F.P = 35 pcf (assumed) Frost: 36 in MATERIALS: WOOD: Dimensional Lumber Douglas Fir -larch #2 Glu-lam Beams: Simple Spans: 24F-V4 DF/DF CONNECTIONS: Simpson STEEL: Beams: ASTM A992 (Gr. 50) fy = 50 ksi Columns: ASTM A500 (Gr. B) fy = 46 ksi BOLTS: A325-N (steel to steel) A307 (embedded in concrete or masonry) MASONRY: Strength: fm = 1500 psi Reinforcing: Grade 60 CONCRETE: Strength: 2500 psi (used for design) FOR CONSTRUCTION: (See Spec.) Reinforcing: Grade 60 Cover Sheet.mcd Revised January, 2000 Page 1 of 1 I 1 Load Summary.mcd DESIGN LOADS: Roof Live load: =35.0 psf ROOF DEAD LOADS: Roof Dead Load: Shingles =2.50 psf Sheathing =2.00 psf Framing =3.00 psf Ceiling =2.50 psf Insulation =2.50 psf Misc =2.69 psf Total roof dead load: =15.0 psf WALL DEAD LOADS: Framing =1.50 psf Sheathing =2.25 psf Gyp. Board =2.50 psf Veneer =7.00 psf Misc =1.75 psf Total wall dead load: =15.0 psf Loads House.mcd Revised August 1999 Page 1 of 1 RAMSBEAM V2.0 - Gravity Beam Design Licensed to: Dynamic Structures Job: Hard Hat Steel Code: AISC 9th Ed. V, ,w SPAN INFORMATION: Ridge Beam Beam Size (User Selecte ) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 23.00 Top Flange Braced By Decking LOADS: Self Weight = 0.019 k/ft Line Loads (k/ft): Dist1 Dist2 DL1 DL2 Pre DL1 Pre DL2 LL1 0.00 23.00 0.180 0.180 0.000 0.000 0.315 SHEAR: Max V (kips) = 5.91 fv (ksi) = 2.07 Fv = 20.00 MOMENTS: Span Cond Moment kip-ft Center Max + 34.0 Controlling 34.0 REACTIONS (kips): DL reaction Max + LL reaction Max + total reaction DEFLECTIONS: Dead load (in) Live load (in) Total load (in) @ Lb Cb Tension Flange ft ft fb Fb 11.5 0.0 1.00 19.15 33.00 11.5 0.0 1.00 19.15 33.00 Left Right 2.29 2.29 3.62 3.62 5.91 5.91 at 11.50 ft = -0.332 L/D = at 11.50 ft = -0.526 L/D at 11.50 ft = -0.858 L/D = LL2 0.315 Comp Flange f b Fb 19.15 33.00 831 525 322 3 RAMSBEAM V2.0 - Gravity Beam Design Licensed to: Dynamic Structures Job: Hard Hat Steel Code: AISC 9th Ed. SPAN INFORMATION: Eave Beam Beam Size (User Selecte ) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 23.00 Top Flange Braced By Decking LOADS: Self Weight = 0.019 k/ft Line Loads (k/ft): Distl Dist2 DL1 DL2 Pre DU Pre DL2 LL1 0.00 23.00 0.130 0.130 0.000 0.000 0.230 SHEAR: Max V (kips) = 4.36 fv (ksi) = 1.53 Fv = 20.00 MOMENTS: Span Cond Moment kip-ft Center Max + 25.1 Controlling 25.1 REACTIONS (kips): DL reaction Max + LL reaction Max + total reaction DEFLECTIONS: Dead load (in) Live load (in) Total load (in) @ Lb Cb Tension Flange ft ft fb Fb 11.5 0.0 1.00 14.12 33.00 11.5 0.0 1.00 14.12 33.00 Left Right 1.71 1.71 2.64 2.64 4.36 4.36 at 11.50 ft = -0.249 at 11.50 ft = -0.384 at 11.50 ft = -0.633 LL2 0.230 Comp Flange f b Fb 14.12 33.00 L/D = 1109 L/D = 719 L/D = 436 K RAMSBEAM V2.0 - Gravity Beam Design Licensed to: Dynamic Structures Job: Hard Hat Steel Code: AISC 9th Ed. b SPAN INFORMATION: Eave Beam (low) Beam Size (User Se ected) = W1 X26 Fy = 50.0 ksi Total Beam Length (ft) = 23.00 Top Flange Braced By Decking LOADS: Self Weight = 0.026 k/ft Line Loads (k/ft): Distl Dist2 DL1 DL2 Pre DL1 Pre DL2 LL1 0.00 23.00 0.280 0.280 0.000 0.000 0.500 SHEAR: Max V (kips) = 9.27 fv (ksi) = 2.47 Fv = 17.90 MOMENTS: Span Cond Moment kip-ft Center Max + 53.3 Controlling 53.3 REACTIONS (kips): DL reaction Max + LL reaction Max + total reaction DEFLECTIONS: Dead load (in) Live load (in) Total load (in) @ Lb Cb Tension Flange ft ft fb Fb 11.5 0.0 1.00 16.66 33.00 11.5 0.0 1.00 16.66 33.00 Left Right 3.52 3.52 5.75 5.75 9.27 9.27 at 11.50 ft = -0.221 at 11.50 ft = -0.361 at 11.50 ft = -0.581 LL2 0.500 Comp Flange f b Fb 16.66 33.00 L/D = 1250 L/D = 765 L/D = 475 5 RAMSBEAM V2.0 - Gravity Beam Design Licensed to: Dynamic Structures Job: Hard Hat Steel Code: AISC 9th Ed. SPAN INFORMATION: Hip Beam Beam Size (User Se ec ed) = W21X50 Fy = 50.0 ksi Total Beam Length (ft) = 39.00 Top Flange Braced By Decking LOADS: Self Weight = 0.050 k/ft Line Loads (k/ft): Distl Dist2 DL1 DL2 Pre DL1 Pre DL2 LL1 LL2 0.00 39.00 0.000 0.560 0.000 0.000 0.000 0.980 SHEAR: Max V (kips) = 21.00 fv (ksi) = 2.65 Fv = 20.00 MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Comp Flange kip-ft ft ft fb Fb fb Fb Center Max + 159.6 22.4 0.0 1.00 20.26 33.00 20.26 33.00 Controlling 159.6 22.4 0.0 1.00 20.26 33.00 --- --- REACTIONS (kips): Left Right DL reaction 4.62 8.26 Max + LL reaction 6.37 12.74 Max + total reaction 10.99 21.00 DEFLECTIONS: Dead load (in) at 20.08 ft = -0.603 L/D = 776 Live load (in) at 20.28 ft = -0.895 L/D = 523 Total load (in) at 20.28 ft = -1.498 L/D = 312 RAMSBEAM V2.0 - Gravity Beam Design Licensed to: Dynamic Structures Job: Hard Hat Steel Code: AISC 9th Ed. SPAN INFORMATION: Entry Beam Beam Size (User Selected) = W12X14 Fy = 50.0 ksi Total Beam Length (ft) = 1 .00 Top Flange Braced By Decking LOADS: Self Weight = 0.014 k/ft Point Loads (kips): Flange Bracing Dist DL Pre DL LL Top Bottom 6.50 0.41 0.00 0.94 Yes No Line Loads (k/ft): Distl Dist2 DL1 DL2 Pre DL1 Pre DL2 LL1 0.00 13.00 0.150 0.240 0.000 0.000 0.350 SHEAR: Max V (kips) = 5.32 fv (ksi) = 2.32 Fv = 18.75 MOMENTS: Span Cond Moment kip-ft Center Max + 18.4 Controlling 18.4 REACTIONS (kips): DL reaction Max + LL reaction Max + total reaction DEFLECTIONS: Dead load (in) at Live load (in) at Total load (in) at @ Lb Cb Tension Flange ft ft fb Fb 6.5 0.0 1.00 14.83 33.00 6.5 0.0 1.00 14.83 33.00 Left Right 1.46 1.66 3.20 3.66 4.67 5.32 6.56 ft = -0.065 6.56 ft = -0.143 6.56 ft = -0.208 LL2 0.560 Comp Flange f b Fb 14.83 33.00 L/D = 2408 L/D = 1092 L/D = 751 Wall !Head r Loading LOAD DESIGN CHART #5 (SEE DETAILS SIP-= through SIP-114) R-CONTROLO STRUCTURAL INSULATED PANELS HEADER HEADER DEPTH SPAN J211 jBa 2411 DEFLECTION U480 L/3 L/240 U U360 U240F8371 U360 2 0 4'-0" 524 703 7081 762 7731 7731 8371 8371A D 6'- 0' 319 3741 3741 4661 4661 4661 557 55571 P L F 8' - 0" 218 2481 2481 3511 3511 3511 4551 4551 4551 [11 LIMITED TO ULTIMATE FAILURE LOAD DIVIDED BY A FACTOR OF SAFETY OF THREE (3). [21 PLEASE REVIEW NOTES ON PAGE 3. Note: Details SIP-112a and SIP-112b are not illustrated here. Refer to R-Control SIP detail book. R-Control SIP - infill below window openings. ISOMETRIC Scale: NTS NOTE: Diagram represents headers In a wall assembly. Headers may be any type, refer to detail SIP-113. Minimum dimensions are not required between openings. but the posts supporting the header must extend to the floor. Also, the bottom plate of the header must extend to the outside of the post. upd"ted 5-1-90 R—Control® SIP NO. Headers I SIP-112 R-Control — Do-AII-Ply, each side. R-Control SIP used as header. 8d Nails or 14 go. in sa 1 1/2" staples O 6" o.c. each side, top do 1 bottom or equivalent. 7�v 0 0 yc a d R-Control Do-AII-Ply 4 & o a. continuous. jy ` c+so A Y Ui 0 c R-Control o Do-AUI-Ply c c a o I typical each side. top k bottom. a °aU �N ° a o 0 -«� Panel Width �+- SECTION Scale: NTS updated 5-1-9e R—Control* SIP TITLE: Header sections NO. to-r .,1...i a... A 1 SIP-113 window and door openings. Numbers indicate sequencing for installation. NOTE: Diagram represents field shop g � Refer to SIP-115 cut openings in a monolithic for connection of 2x's wall assembly. Splines may occur to OSS panel faces. above do below openings. Minimum panel dimension of 12 must be maintained over openings. See Header Load Chart for ISOMETRIC allowable loodDesign s. Scale: NTS LWOW 3-1-ss R—Control® SIP sip uw as ►Aces NO. (wiffan some condition) SIP-114 9 SQUARE TUBE COLUMN DESIGN Unsupported Length: Lx := 22•ft Ly := 22• ft Axial Load: P := 36•k Moments: Mx := 1 •in•P My := 0•ft•k Effective Length Factor: K := 1.0 Interaction Coefficient: Cmx := 1.0 Cmy := 1.0 Bending Coefficient: Cb := 1.0 Axial Stress Bending Stresses: Slenderness Ratio Comparison: K•l = 83.8 r Allowable Axial Stress: INTERIOR COLUMN Column Section and Physical Properties Column Section: TS 8 x 8 x 1!4 Yield Stress: Fy := 46•ksi Modulus of elasticity: E := 29000•ksi Web Thickness: t := .25•in Section Width: b := 8-in Area A = 7.59•in2 Section Modulus S := 18.8•in3 Radius of gyration r := 3.15-in fa := P fa = 4.7 ksi A fbx := Mx fbx = 1.91 ksi S M fby := fby = 0 ksi Sy l := if(Lx > Ly, Lx, Ly) Preferably less than 200 Column slenderness ratio Cc := PF K• 1 2 1 — r 2 •Fy _ 2-CC j E2 1 K•1 K•1 3 3•) - 5 r r L3 + 8-Cc 8•Cc3 J 12•n2•E E2 2 :_ 23• K 1 2 r Fa := if K 1 S Cc, E2-1, E2 2 r — Cc = 111.554 Fa = 17420.1 psi Allowable Bending Stress: Fbx := if b 190 if Lx <— 1200• b , 0.66•Fy, 0.6•Fyl, 0.6•F� Fbx = 27.6 ksi Fy Fy it ksi ksi J J b y :_ i< t 190 , i Ly _< 1200• b , 0.66•Fy, 0.6•Fy1 , 0.6•F� Fby = 27.6 ksi Fy 2y; L ksi J J 6 TS 8 x 8 x .25.mcd Revised June, 1999 Page 1 of 2 to Combined Stresses: 12•�2•E F'ex := F'ex = 21260.1 psi 23• K•Lx 2 r H1_1:= fa + Cmx•fbx + Cmyfby Fa fa fa •Fbx 1 — 1 — •Fby F'ex F'ey H1 2:= fa + fbx + fby — 0.60•Fy Fbx Fby 2 Fey := 12 nE Fey = 21260.1 psi 23• K•Ly 2 r HI-1 = 0.362 < 1.00 HI-2 = 0.241 < 1.00 If fa = 0.27 < 0.15, Equation H1_3 is permitted in liew of equations H1 1 and H1 2 Fa H13:=fa+fbx+fby — Fa Fbx Fby H 1 3 = 0.342 < 1.00 6 TS 8 x 8 x .25.mcd Revised June, 1999 Page 2 of 2 STRUCTURAL DESIGN '� ABLE 1609.6.21(1) SIMPLIFIED DESIGN WIND PRESSURE (MAIN WINDFORCE-RESISTING SYSTFMI n _ �FYOnC11rP P r h- an f-t ..irh t _ BASIC ZONES WIND ROOF ROOF Horizontal Pressures Vertical Pressures erhan s(mph) SPEED ANGLE RISEIN LOAD CASE A B C D E P G H1 31.5 -5.9 7.6 -33 -13.8 -7.8 -9.6 -6.1-15.110° 2 ] 12.9 -54 8.6 -3.1 -33.8 -8A -9.6 -65 -15.115° 3 1 14.4 4.9 9.6 -2.7 -13.8 -9.0 -9.6 -6.9-15.185 20° 4 1 15.9 4.2 10.6 -2.3 -13.8 -9.6 -9.6 -7.3-15.1250 1-21.6-igo 6 1 34.4 2.3 10.4 2.4 -6.4 -87 4.6 •7.0-10.12 -2A 4.7 -0.7 .11)_300 to 45° 7 to 12 i 12.9 88 10.2 7.0 1.0 -7.9 0.3 -6.7-5.22 12.9 8.8 10.2 7.0 5.0 -39 4.3 -2.8-5.2O w 5° Rai 1 12.8 -6.7 85 40 -15.4 -88 -10.7 -6.8-16.910. 2 1 14.5 -6.0 9.6 -3.5 -15A -9.4 -10.7 -72-16.915° 3 1 16.1 -5.4 10.7 -3.0 -15.4 -10.1 -10.7 77.7-16.9 90 200 4 1 17.8 4.7 11.9 -2.6 -15.4 -10.7 -10.7 -8.1 -21.6 -16.9 2.50 6 1 16.1 26 11.7 2.7 -7.2 -9.8 -5.2 -7.8 -13.3 -11.4 2 - - - - -2.7 _5.3 -0.7 -3.4 300 to 45° 7 to 12 1 14.4 9.9 ] 1.5 7.9 L I -8.8 OA -75 -5.1 -5.8 2 1t 9.9 115 7.9 5.6 43 4.8 -3.1 -5.3 -5.8 ��cPdS vtzE L 1 0-15 1.2` 17.9 12.0 13.E 4f-b I�-� I.z� ►g.c� t2.� 19.E 1�.2 25-3o I•�(o' 2D•2 13.E Ib. tl-� 21.E 14.7 17.1 11. 1 17. ,�A� d NA-t -, . 11,11-5c -Ile vv� (-?. 2 r-rx14•SJI��•��'� fi �Z2.8)(`l•s�13.`l Few-) t 1Zl ?A 4 Sb,ClT; Cr�R•bp,,> + (ZA) Fr:)(l6. k p5F) TZASVF�S� Q 6 rgiprz) + 13 kATERAL ANALYSIS - SEISMIC BASE SHEAR - 2000 IBC BUILDING GEOMETRY Number of Stories: N := 1 (N = 4 max) Dimensions & Dead Loads: Length Width Story Height Story DL PARAPET: h(N+1) '= 0. ft STORY 4: L4 := 0•ft D4 := 0-ft h4 := 0•ft DL4 := 0-psf STORY 3: L3 := 0-ft D3 := 0•ft h3 = 0-ft DL3 := 0-psf STORY 2: L2 := 0-ft D2 := 0-ft h2 := 0-ft DL2 := 0•psf STORY 1: LI .= 80•ft DI .— 76•ft hI .= 9•ft DLI .— 15-psf x := 1.. N DESIGN CRITERIA Seismic Use Group: I Soil Site Class: D (1616.2.1; p.354) (Table 1615.1.1; p.350) Spectral Response Acceleration: (&- short periods (&- 1-sec. period (Fig. 1615(5); p.341) (Fig. 1615(6); p.343) SS := .508 S1 := .165 Site Coeffficients: (Table 1615.1.2(1); p.351) (Table 1615.1.2(2); p.351) Design SRA Parameters: (Eqn. 16-18; p.350) (Eqn. 16-19; p.350) Fa := 1.39 Sds := 0.67•Fa SS SdS = 0.473 Seismic Design Category*: D cat := catD (1616.3; p.354) LATERAL SYSTEM: Wood Framed Shear Walls Response Modification Factor: (Table 1617.6; p.365) Importance Factor: (Table 1604.5; p.297) Fundamental Period (appx.): (Eqn. 16-39; p.361) (Table 1617.4.2; p.361) (1617.4.2; p.360) Fundamental Period: Fv := 2.14 Sd1 := 0.67-Fv-SI Sd1 = 0.237 BUILDING WEIGHT Wall DL DLw(N+1) '= 0-psf DLw4 := 0-psf DLw3 := 0-psf DLw2 := 0•psf DLwI := 15-psf *Design Category catA a 1 catB — 2 catC a 3 catD — 4 catE - 5 catF — 6 R := 6.0 Diaphragms: wdx := D X-Lx•Dx Ie := 1 Walls: ww = DLw • hx + DLw h(x+l ) x ' x 2 {x+l)� 2 Story Weight: w = wd + ww •(2•L + 2-D T 0.1 •N x' x x x X. a =_ Cu:= 1.2 Building Weight: W := Ew T := if (Ta > Ta• Cu, Ta•Cu, Ta) W = 112.26 k T=0.1 x Total Height: h X hi i=1 Seismic Base Shear Revised January, 2002 Page 1 of 3 1� o ♦o BASE SHEAR CALCULATIONS Seismic Response Coefficient: Short Periods: (1617.4.1.1; p.360) (Eqn. 16-37; p.360) Design Response Coefficient: TOTAL BASE SHEAR: Vertical Distribution Distribution Exponent: (1617.4.3; p.361) Distribution Factor: (Eqn. 16-42; p.361) Calculated: Long Periods: (Eqn. 16-35; p.360) (Eqn. 16-36; p.360) Csmin := 0.044•Sds•Ie Cs : Sds R Ie Cs := if (Cs < Csmin, Csmin, Cs) Cs := if (Cs > Csmax, Csmax, Cs) Min. Cat. E & F: (Eqn. 16-38; p.360) 0.5• S 1 Csef == R Ie Cs = 0.079 STRENGTH (Egn.16-34; p.359) V: CS.W V = 8852lb 1 *N 0.5 kl := tl :_ (2j (2.5 Cv X. (hnX)k — x N rr LJ Wx� h�x)k x-1 Csmax = Sd 1 R T ( le a Cs := Csef if (cat >— 5)-(Cs < Csef) CSef if (S1 >— 0.6)-(Cs < Csef) Cs otherwise ALLOWABLE (Egn.16-34; p.359) V—v a 1.4 Va = 63231b k := 1 if T < 0.5 linterp(tl, kl , T) if 0.5 <— T 5 2.5 2 if T > 2.5 STORY SHEAR: STRENGTH ALLOWABLE (Egn.16-41; p.361) (Egn.16-41; p.361) F F ' = Cv • V Fa = X xx X 1A STORY 4: F4 = e lb Fa4 = 1 lb STORY 3: F3 =1 lb Fa3 = s lb STORY 2: F2 = lb Fat = e lb STORY 1: FI = 8852lb Fa = 6323lb Seismic Base Shear Revised January, 2002 Pa e 2 of 3 115 DIAPHRAGM FORCES Seismic Diaphragm Force: (Design Category A - C) (Eqn. 16-62; p.372) Seismic Diaphragm Force: (Design Category D - F) (Eqn. 16-65; p.374) Minimum / Maximum: (1620.3.3; p.374) DIAPHRAGM FORCES: STORY 4: STORY 3: STORY 2: STORY 1: PERPENDICULAR TO L: rwd 1 FpL1x := 0.2'4'Sds x + 2-wwx Lx j N E Fi F = i=x Px N ya wi i=x Fpmi X := 0.15-Sds•le Fpx := if (Fpx < Fpminx, Fpminx, Fpx) Fpx := if (Fpx > Fpmaxx, Fpmaxx, Fpx) (wd 1 FpL2x := Fpx.Ill L x + 2 • wwx I x J FpLx := FpLlx if cat 5 3 FpL2x if cat >_ 4 ALLOWABLE FpLx FpLa 1.4 FpLa4 I plf FpLa3 I'plf FpLa2 = plf FpLa1 - 72 plf PERPENDICULAR TO D: wd F D1 = 0.2• •S x P x Ie ds' D x L � + 2-ww x JJ Fpmax x' = 0.3-Sds•le FpD2x := Fpx •rwd D x + 2 • ww1 x I x FpDx := FpD 1 x if cat —< 3 FpD2x if cat >— 4 ALLOWABLE FpDx FpDax 1.4 FpDa4 — plf FpDa3 = p1f FpDa2 �. plf FpDa1 = 75 plf NOTE: forces added from offsets or changes in stiffness of the vertical resisting elements need to be added to the diaphragm design, see (1620.1.5; p.372) & (1620.3.3; p.374). Seismic Base Shear Revised January, 2002 Pa e 3 of 3 S��Sc�PS - J,�t - 7 Y-A?ps - -4.7v-(Fps i S•6S-I-kPS 11 `LATERAL ANALYSIS - WOOD DIAPHRAGM DESIGN - 2000 IBC STORY GEOMETRY Diaphragm Dimensions: Applied Diaphragm Forces: (from base shear calculator) Vertical Resistance: (number of lines) Horizontal Space: (between resistance lines) DIAPHRAGM DESIGN Diaphragm Shear: Length L := 80-ft PERPENDICULAR TO L FpLa := 72-plf (ALLOWABLE) n := 2 (n = 5 max) :- n 11 := 80-ft - Betw. VL1 & VI-2 12 = o-ft - Betw. VI-2 & VI-3 13 := o-ft - Betw. VI-3 & VI-4 14 :=µ0-ft - Betw. VI-4 & VI-5 k : 0.. n lk vlk := FpLa- 2 VLi := ifl vli'5 v1(i-1)'v10-1) Md VL. VI. := '� D Vl 38 plf 1. Vl2 38 plf V13-sOf : V14 = r plf V15 = p1f ROOF Width D := 76-ft PERPENDICULAR TO D FpDa := 75-plf (ALLOWABLE) m := 2 (m = 5 max) d1 := 76-ft - Betw. VD1 & VD2 d2 := 0-ft - Betw. VD2 & VD3 d3 := 0-ft - Betw. VD3 & VD4 d4 := 0-ft - Betw. VD4 & VD5 d` * of p: 0..m d vdp := FpDa- VDT := ifl vd < vd(j-1) , vd(j-1) , vd. l VD. Vd. = �� L Vd 36p1f 1 .. Vd2 36pif Vd3 plf Vd4 = • plf Vds i.plf Bending, Openings, Deflections: Roof diaphragm constructed of 8" thick structurally insulated panels. From "R-Control" design tables, the allowable diaphragm forces using R-Control Screw fasteners at 6" o.c. is 500 pif which far exceeds the values calculated. Wood Diaphragm Design Revised January, 2002 Pa e 1 of 1 Wall - Unity Equation This equation is used to determine design suitablilty. The equation takes into account the ultimate load for a panel subjected to both axial and transverse (bending) conditions: - design axial load + design transverse load < 1 allowable axial load allowable transverse load — (SEE LOAD DESIGN CHART 2B) (SEE LOAD DESIGN CHART 4) Wall -Axial Loading LOAD DESIGN CHART #2113 (SEE DETAIL SIP-101) R-CONTROL® STRUCTURAL INSULATED PANELS PANEL HEIGHT 7/16" OSB THICKNESS EPS CORE THICKNESS 3 1/2" CORE 5 1/2" CORE AXIAL [11 LOAD [PLF] 8' - 0" 2750 4000 10' - 0" 2500 3500 12' - 0" 2000 3000 14' - 0" 2750 16' - 0" 2500 [11 LIMITED TO ULTIMATE FAILURE LOAD DIVIDED BY A FACTOR OF SAFETY OF THREE(3). [2] PLEASE REVIEW NOTES ON PAGE 3. Optional blocking to increase point load capacity. Design as t 1/2" raq'd for specific case. Spacer board (optional) where required for j` standard 8' drywall T application. 8d Nails or 14 go. 1 1/2` staples O 6` o.c. cacti side, or equivalent. Typical top do bottom. Vories f Factory electrical chase. Slide panel RR Control Do -All -Ply continuous down. i r 1 1/2" seolonL NOTE: OSS skins must be R-Control Do -All -Ply typical fully supported by each side. foundation .system. NOTE: Use minimum grade SPF #2 'or SECTION engineered equivalent for 2x plating Scale: NTS upeew 12-1-99 R—Control® SIP Wall - Shear Loading LOAD DESIGN CHART #S (SEE DETAIL SIP-101) 1 Plate Connections I SIP-101 R-CONTROL® STRUCTURAL INSULATED PANELS 7/16" OSB THICKNESS PANEL EPS CORE THICKNESS HEIGHT 3 1/2" CORE 5 V2—COED. RACKING N/A 335 PLF 335 PLF SHEAR [1] PLEASE REVIEW NOTES ON PAGE 3. 010 n 11 - tATERXL ANALYSIS -1 STORY WOOD SHEAR WALL DESIGN - 2000 IBC STORY 1 LINE 1, 2 and B PIERS Length Heigh Tributary # Piers in Shear Line: nl := 2 (n = 8 max) 1: Story Shear. Fa := 11.3•k (Allowable) 2: Shear Attributed To Line: Val := 5.65k (Allowable) 3: Story DL: DLI := 15•psf 4: Wall DL: DLwI .— 15-psf 5: Story Length & Width: Ll := 80-ft DI := 76•ft 6: Story Height: hl := 9•ft 7: Sill Plate Length: Lsl := 60•ft 8: REDUNDANCY Max. Element -Story Ratio: (1617.2.2; p.359) Redundancy Factor: (Eqn. 16-32; p.359) 10 Val lwl nnax = lw 1 • 11 1 Fal P1 •_ rmaxl.Ff—D I P1 = if(P1 < 1.0,1.0,if(P1 ? 1.5,1.5,P1)) P1=1 111 : 19-ft hlI : 10•ft tll .— 6•ft 112:= 14•ft h 1 2 = 10-ft t12:= 6•ft 113 := 0•ft h13 = 9•ft t13 := 6-ft 114 := 0-ft hl4:= 9•ft t14 := 6•ft 115 := 0-ft hl5 9•ft t15 := 3•ft 116:= 0•ft hl6 := 9•ft t16:= 0-ft 117 := 0-ft hl7 := 0•ft t17 :— 0-ft 118 := 0-ft hl8 := 0•ft t18 := 0•ft 1w1 := 14•ft (smallest pier length) SHEAR CALCULATIONS ANCHOR BOLTS P1•Val P1•Val Unit Shear (for walls): vl := Unit Shear (for bolts): vbl :_ Ell Lsi OVERTURNING CALCULATIONS it := l..nl 1/2 bolt in 1 1/2n 05 �_ sill: s (615.1b)-1.33 vbl :_ (pl-Val•hI),II Overturning Moment: M01i1 I i1 5/8 bolt in 1 1/2n 0 sill: s (878•1b)•1.33 I Ell I 625 == vb J 1 llil llil Resisting Moment: Nki = 0.67• (DLI•tli1)-llil- 2 + (DLwI•hlil)-"i1- 2 Nominal Overturning: M1il := Molil — Mrlil Tension at Pier Ends: Tlil Mlil llil DEFLECTION CALCULATIONS Wood Shear Wall Design Revised January, 2002 Page 1 of 2 20 SUMMARY, STORY 1 Reduction in shear walls due to height to width ratio less than 2:1 1w1 r := 2 h r = 3.111 as per (57) of Utah ammended code i r := if (r > 1.0,1.0, r) Unit Shear v1 . . =171 plf r SHEAR WALLS *** Exterior walls shall be constructed from 5 1/2" Structurally Insulated Panels. SIP wall panels have a shear capacity of 335 pif which is much lower than those calculted. *** ANCHOR BOLTS 1/2" A.Bolts SO.5 =104 in USE: 1/2" dia. x 10" J-bolts Spacing = 32" o.c. Pier 1: Pier 2: Pier 3: Pier 4: Pier 5: Pier 6: Pier 7: Pier 8: 5/8" A. Bolts S0.625 149 in Uplift T11 =131b T12 = 415 lb T13=elb T14=alb T15=ilb T26 = lb T1 . a lb T1 = lb HOLD DOWN Pier Deflection NONE NONE Wood Shear Wall Design Revised January, 2002 Pa e 2 of 2 2k fATERIL ANALYSIS -1 STORY WOOD SHEAR WALL DESIGN - 2000 IBC LINE A STORY 1 PIERS Length Height Tributary # Piers in Shear Line: nl .= 8 (n = 8 max) 1: 111 .= 3.5•ft hl1 .= 5•ft t11 .— 6•ft Story Shear: Fat := 9.35-k (Allowable) 2: 112 := 5•ft hl2 := 5•ft t12 := 6•ft Shear Attributed To Line: Val .= 4.7k (Allowable) 3: 113 := 5•ft hl3 := 5-ft t13 := 6-ft Story DL: DL1 .— 15•psf 4: 114:= 3•ft hl4:= 5-ft t14:= 6•ft Wall DL: DLw1 : 15•psf 5: 115 := 3-ft hl5 := 5•ft t15 := 6•ft Story Length & Width: L1 := 80•ft D1 := 76•ft 6: 116 := 3•ft hl6 := 5-ft t16 := 6•ft Story Height: hl := 5•ft 7: 117 := 3•ft hl7 := 5•ft tl7 = 6•ft Sill Plate Length: Ls := 29-ft 8: 118 := 3.5•ft hl8 := 5•ft ti8 := 6•ft lw1 := 3•ft (smallest pier length) REDUNDANCY Va1 10 1w1 Max. Element -Story Ratio: rmax := lw l • 1 Fa (1617.2.2; p.359) �11 Redundancy Factor: p 1 := 2 — I'1•D1 (Eqn. 16-32; p.359) rmax1' P 1 := if (P 1 < 1.0,1.0, if (P 1 ? 1.5,1.5, P 1 P1=1 SHEAR CALCULATIONS ANCHOR BOLTS P1•Val P1•Va1 Unit Shear (for walls): v1 := Unit Shear (for bolts): vb1 Ell Ls OVERTURNING CALCULATIONS il:=1..n1 1/2 bolt in11/2M SQ.S �_ sill: (615•1b)•l.33 := rPl•Val•hlvbl l. Overturning Moment: Molil I llil 518 bolt in 1 1/2 sill: (878•lb)•l.33 l �I1 l 50.625 �— vbl llil llil Resisting Moment: Mrl. 0.67• (DL •tl)•li+[(DLw,"hIi1)-lIi,'( '— 1 itil2 2 Nominal Overturning: Mli1 = Molii — Mrlil Tension at Pier Ends: T1. :_ Mlil it 11il DEFLECTION CALCULATIONS Wood Shear Wall Design Revised January, 2002 Pa e 1 of 2 zi Ad 41V!ARY, STORY 1 Reduction in shear walls due to height to width ratio less than 2:1 1w1 r := 2 r = 1.2 as per (57) of Utah ammended code �1 r = if (r > 1.0,1.0, r) Unit Shear Uplift HOLD DOWN Pier Deflection v1 162plf Pier 1: T11 = 6171b STRAP WINDOWS r Pier 2: T1 = 534 lb STRAP WINDOWS SHEAR WALLS Pier 3: T13 = 5341b STRAP WINDOWS Exterior walls shall be constructed Pier 4: T14 = 645 lb STRAP WINDOWS from 5 1/2" Structurally Insulated Panels. Pier 5: T15`=,645lb STRAP WINDOWS SIP wall panels have a shear capacity pier 6: T1 = 645 lb STRAP WINDOWS of 335 p/f which is much lower than 6 those calculted. *** Pier 7: TL `= 645lb STRAP WINDOWS Pier 8: TIC = 617lb STRAP WINDOWS ANCHOR BOLTS 1/2" A.Bolts 5/8" A. Bolts 50.5 = 61 in 50.625 = 86in USE: 1/2" dia. x 10" J-bolts Spacing = 32" o.c. Wood Shear Wall Design Revised January, 2002 Pa e 2 of 2 2:15 Preliminary Footings and Foundation Design Assumed soil bearing pressure: p := 2000-psf Continuous wall load F1: wl := (35 + 15)-25.plf + 9.15-plf Spread footing F2: P2 := 12000-lb Spread footing F3: P3 := 36000-lb Exterior wall cont. footings: w := w1 w = 8.31 in use 20" x 12" x Cont. w/(2) #4 cont P Spread footing no. F2: w := P2 w = 2.449ft use 2' - 6" sq. x 12" w/ (3) #4 ea. way 4 P Spread footing no. F& w := P3 w = 4.243 ft use 4' - 6" sq. x 12" w/ (5) #4 ea. way P 9 Footings.mcd Revised June, 1999 Page 1 1111'J1V zU✓J7 L1: 27 du l 1dj4.ib2 NOV-03-2005 THU 03:19 PM oti'tNtIINWRO DMA 2801 356 0001 PAGE 02 P. 001 DYNAMIC STRUCTURES 1887 North 1120 West, Provo, Utah 84604 (ph) 801,356.1140 (fax) 801.358.0001 DATE: November 3, 2006 TO: Kurt Dubbe Dubbe—Moulder Architects FROM: JayAdama Dynamic Structures RE: Hard Hat Cafe Transmitting a total of (1) pages (including this cover sheet) COMMENTS: i It is our understanding that the contractor would like to frame the walls of the Hard Rock Cafe with conventional woad framing as opposed to SIP's. Following are the specifications for using conventionally framed walls. • The walls may be framed with 2 x 6 at 16" o.c, sheathed with 7/16" plywood or OSB_ • . Walls marked "A" on 83.1 must have panel edges nailed at 4" o.c., 12' o,c. In the panel field. • No holdowns are required. • Window and door headers up to 4'-0" are to be (2) 2 x 10. Headers up W 6'-O" are to be (3) 2 x 10. Let a know if you have any questions. ( �) gt4NAt, +rN t (. 1 Q 3 �?1' cv DEC-15-2005 THU 04:42 PM 001CSRCTHS Vol 356 0001 P.001 DYNANUC STRUCTURES 1887 North 1120 West, Provo, Utah 84604 (ph) 801.356.1140 (fax) 801.356.0001 DATE: December 15, 2005 TO: Rick Hancock FROM: Jay Adams Dynamic Structures RE: Hard Hat Cafe Transmitting a total of ( 1 ) pages (including this cover sheet) COMMENTS: 0500063 Hard Hat Cafe We reviewed photographs of the strapping used on the interior high area of the restaurant. Although not specified on the original plans, the straps are applied correctly to hold down the upper tower against uplift forces. call if you have any questions. N�@�o0� DEC 1 9 2005 11/03/2005 21:29 3077334302 DMA PAGE 02 NOV-03-2006 THU 03:19 PIS MWICSM 1801 356 0001 P• 001 DLYNANUC SIMUCTURXS 1887 North 1120 West, Provo, Utah 04604 (ph) 801.356.1140 (flax) 801.866.0001 DATE: November 3, 2006 TO: Kurt Dubbe Dubbe-Moulder Archhects FROM: Jay Adams Dynamic Structures RE: Hard Hat C0 Transmitting a total of (1) pages (Including this cover cheat) COMMENTS: It is our understanding that the contractor would like to frame the walls of the Hard Rock Cafd with conventional wood framing as opposed to SIP's. hollowing are the specifications fbr using conventionally framed walls. • The walls may be framed with 2 x e at 18=1 o.c, sheathed with 7116a p"od or OSg_ M Walls marked W on 83.1 must have panel edges nailed at 4# o.c.,122 ox. In the panel field. No holdowns are required. Window and door headers up to 4'-0" are to be (2) 2 x 10. Headers up to W-Qn are to be(3)2x10. Let a know if you have any questions. 93 c r G: AOp�� NOV-18-2005 FRI 03:43 AM DM41CS1ROCilfl:S 2801 356 0001 P. 001 DYNAMIC STRUCTURES 1887 North 1120 West, Provo, Utah 84604 (ph) 801.356.1140 (fax) 801.356.0001 DATE: November 18, 2005 TO: Rick Hancock FROM: Jay Adams Dynamic Structures RE: Hard Hat Cafe Transmitting a total of (1) pages (including this cover sheet) COMMENTS: The structural plans for the Hard Hat Cafes show tube steel columns in each corner of the building to support steel hip beams. As the steel framed roof was replaced with a wood truss framed roof, the comer steel columns are no longer needed. Let r know if you have any AD