HomeMy WebLinkAboutSTRUCTURAL CALCS - 05-00063 - Hard Hat Cafe05 00063
Hard Hat Cale Ilenr.s Fork Plana
DYNAMIC STRUCTURES
1887 North 1120 West, Provo, Utah 84604 (ph) 801.356.1140 (fax) 801.356.0001
Structural Calculations for:
HARD HAT CAFE
HENRY'S FOK PLAZA
REXBURG, ID
14, 2005
Service Provided for:
DUBBE - MOULDER ARCHITECTS
0 Cover Sheet.mcd
�rard V�4fi Gaffe
PROJECT: HENRY'S FORK PLAZA
REXBURG, ID
CLIENT: DUBBE—MOULDER ARCHITECTS
P.O. BOX 9227
1160 ALPINE LANE
SUITE 2A
JACKSON HOLE, WY
SCOPE: PROVIDE STRUCTURAL DESIGN, DRAWINGS, AND
CALCULATIONS FOR COMMERCIAL PLAZA BUILDING
CODE CRITERIA: 2000 IBC
Seismic Design Category: D
Design Wind Speed: 90 MPH EXP: C
Snow: Pg = 50 PSF
EXP 0.7 Pf = 35 PSF
Soil: Bearing:
qa = 2000 psf (allowable, assumed)
Structural Fill:
see geo-technical report
Backfill:
E.F.P = 35 pcf (assumed)
Frost:
36 in
MATERIALS: WOOD:
Dimensional Lumber
Douglas Fir -larch #2
Glu-lam Beams:
Simple Spans:
24F-V4 DF/DF
CONNECTIONS:
Simpson
STEEL: Beams:
ASTM A992 (Gr. 50) fy = 50 ksi
Columns:
ASTM A500 (Gr. B) fy = 46 ksi
BOLTS:
A325-N (steel to steel)
A307 (embedded in concrete or masonry)
MASONRY:
Strength: fm = 1500 psi
Reinforcing: Grade 60
CONCRETE:
Strength: 2500 psi (used for design)
FOR CONSTRUCTION: (See Spec.)
Reinforcing: Grade 60
Cover Sheet.mcd Revised January, 2000 Page 1 of 1
I
1 Load Summary.mcd
DESIGN LOADS: Roof Live load: =35.0 psf
ROOF DEAD LOADS: Roof Dead Load:
Shingles
=2.50 psf
Sheathing
=2.00 psf
Framing
=3.00 psf
Ceiling
=2.50 psf
Insulation
=2.50 psf
Misc
=2.69 psf
Total roof dead load: =15.0 psf
WALL DEAD LOADS: Framing
=1.50 psf
Sheathing
=2.25 psf
Gyp. Board
=2.50 psf
Veneer
=7.00 psf
Misc
=1.75 psf
Total wall dead load: =15.0 psf
Loads House.mcd Revised August 1999 Page 1 of 1
RAMSBEAM V2.0 - Gravity Beam Design
Licensed to: Dynamic Structures
Job: Hard Hat Steel Code: AISC 9th Ed.
V, ,w
SPAN INFORMATION: Ridge Beam
Beam Size (User Selecte ) = W12X19 Fy = 50.0 ksi
Total Beam Length (ft) = 23.00
Top Flange Braced By Decking
LOADS: Self Weight = 0.019 k/ft
Line Loads (k/ft):
Dist1 Dist2 DL1 DL2 Pre DL1 Pre DL2 LL1
0.00 23.00 0.180 0.180 0.000 0.000 0.315
SHEAR: Max V (kips) = 5.91 fv (ksi) = 2.07 Fv = 20.00
MOMENTS:
Span Cond Moment
kip-ft
Center Max + 34.0
Controlling 34.0
REACTIONS (kips):
DL reaction
Max + LL reaction
Max + total reaction
DEFLECTIONS:
Dead load (in)
Live load (in)
Total load (in)
@ Lb Cb Tension Flange
ft ft fb Fb
11.5 0.0 1.00 19.15 33.00
11.5 0.0 1.00 19.15 33.00
Left Right
2.29 2.29
3.62 3.62
5.91 5.91
at 11.50 ft = -0.332 L/D =
at 11.50 ft = -0.526 L/D
at 11.50 ft = -0.858 L/D =
LL2
0.315
Comp Flange
f b Fb
19.15 33.00
831
525
322
3
RAMSBEAM V2.0 - Gravity Beam Design
Licensed to: Dynamic Structures
Job: Hard Hat Steel Code: AISC 9th Ed.
SPAN INFORMATION: Eave Beam
Beam Size (User Selecte ) = W12X19 Fy = 50.0 ksi
Total Beam Length (ft) = 23.00
Top Flange Braced By Decking
LOADS: Self Weight = 0.019 k/ft
Line Loads (k/ft):
Distl Dist2 DL1 DL2 Pre DU Pre DL2 LL1
0.00 23.00 0.130 0.130 0.000 0.000 0.230
SHEAR: Max V (kips) = 4.36 fv (ksi) = 1.53 Fv = 20.00
MOMENTS:
Span Cond Moment
kip-ft
Center Max + 25.1
Controlling 25.1
REACTIONS (kips):
DL reaction
Max + LL reaction
Max + total reaction
DEFLECTIONS:
Dead load (in)
Live load (in)
Total load (in)
@
Lb Cb
Tension
Flange
ft
ft
fb
Fb
11.5
0.0 1.00
14.12
33.00
11.5
0.0 1.00
14.12
33.00
Left
Right
1.71
1.71
2.64
2.64
4.36
4.36
at 11.50 ft = -0.249
at 11.50 ft = -0.384
at 11.50 ft = -0.633
LL2
0.230
Comp Flange
f b Fb
14.12 33.00
L/D = 1109
L/D = 719
L/D = 436
K
RAMSBEAM V2.0 - Gravity Beam Design
Licensed to: Dynamic Structures
Job: Hard Hat Steel Code: AISC 9th Ed.
b
SPAN INFORMATION: Eave Beam (low)
Beam Size (User Se ected) = W1 X26 Fy = 50.0 ksi
Total Beam Length (ft) = 23.00
Top Flange Braced By Decking
LOADS: Self Weight = 0.026 k/ft
Line Loads (k/ft):
Distl Dist2 DL1 DL2 Pre DL1 Pre DL2 LL1
0.00 23.00 0.280 0.280 0.000 0.000 0.500
SHEAR: Max V (kips) = 9.27 fv (ksi) = 2.47 Fv = 17.90
MOMENTS:
Span Cond Moment
kip-ft
Center Max + 53.3
Controlling 53.3
REACTIONS (kips):
DL reaction
Max + LL reaction
Max + total reaction
DEFLECTIONS:
Dead load (in)
Live load (in)
Total load (in)
@
Lb Cb
Tension
Flange
ft
ft
fb
Fb
11.5
0.0 1.00
16.66
33.00
11.5
0.0 1.00
16.66
33.00
Left
Right
3.52
3.52
5.75
5.75
9.27
9.27
at 11.50 ft = -0.221
at 11.50 ft = -0.361
at 11.50 ft = -0.581
LL2
0.500
Comp Flange
f b Fb
16.66 33.00
L/D = 1250
L/D = 765
L/D = 475
5
RAMSBEAM V2.0 - Gravity Beam Design
Licensed to: Dynamic Structures
Job: Hard Hat Steel Code: AISC 9th Ed.
SPAN INFORMATION: Hip Beam
Beam Size (User Se ec ed) = W21X50 Fy = 50.0 ksi
Total Beam Length (ft) = 39.00
Top Flange Braced By Decking
LOADS: Self Weight = 0.050 k/ft
Line Loads (k/ft):
Distl Dist2 DL1 DL2 Pre DL1 Pre DL2 LL1 LL2
0.00 39.00 0.000 0.560 0.000 0.000 0.000 0.980
SHEAR: Max V (kips) = 21.00 fv (ksi) = 2.65 Fv = 20.00
MOMENTS:
Span Cond Moment @ Lb Cb Tension Flange Comp Flange
kip-ft ft ft fb Fb fb Fb
Center Max + 159.6 22.4 0.0 1.00 20.26 33.00 20.26 33.00
Controlling 159.6 22.4 0.0 1.00 20.26 33.00 --- ---
REACTIONS (kips): Left Right
DL reaction 4.62 8.26
Max + LL reaction 6.37 12.74
Max + total reaction 10.99 21.00
DEFLECTIONS:
Dead load (in) at 20.08 ft = -0.603 L/D = 776
Live load (in) at 20.28 ft = -0.895 L/D = 523
Total load (in) at 20.28 ft = -1.498 L/D = 312
RAMSBEAM V2.0 - Gravity Beam Design
Licensed to: Dynamic Structures
Job: Hard Hat Steel Code: AISC 9th Ed.
SPAN INFORMATION: Entry Beam
Beam Size (User Selected) = W12X14 Fy = 50.0 ksi
Total Beam Length (ft) = 1 .00
Top Flange Braced By Decking
LOADS: Self Weight = 0.014 k/ft
Point Loads (kips): Flange Bracing
Dist DL Pre DL LL Top Bottom
6.50 0.41 0.00 0.94 Yes No
Line Loads (k/ft):
Distl Dist2 DL1 DL2 Pre DL1 Pre DL2 LL1
0.00 13.00 0.150 0.240 0.000 0.000 0.350
SHEAR: Max V (kips) = 5.32 fv (ksi) = 2.32 Fv = 18.75
MOMENTS:
Span Cond Moment
kip-ft
Center Max + 18.4
Controlling 18.4
REACTIONS (kips):
DL reaction
Max + LL reaction
Max + total reaction
DEFLECTIONS:
Dead load (in) at
Live load (in) at
Total load (in) at
@
Lb Cb
Tension
Flange
ft
ft
fb
Fb
6.5
0.0 1.00
14.83
33.00
6.5
0.0 1.00
14.83
33.00
Left
Right
1.46
1.66
3.20
3.66
4.67
5.32
6.56 ft = -0.065
6.56 ft = -0.143
6.56 ft = -0.208
LL2
0.560
Comp Flange
f b Fb
14.83 33.00
L/D = 2408
L/D = 1092
L/D = 751
Wall !Head r Loading
LOAD DESIGN CHART #5
(SEE DETAILS SIP-= through SIP-114)
R-CONTROLO STRUCTURAL INSULATED PANELS
HEADER
HEADER DEPTH
SPAN
J211
jBa
2411
DEFLECTION
U480
L/3
L/240
U
U360
U240F8371
U360
2
0
4'-0"
524
703
7081
762
7731
7731
8371
8371A
D
6'- 0'
319
3741
3741
4661
4661
4661
557
55571
P
L
F
8' - 0"
218
2481
2481
3511
3511
3511
4551
4551
4551
[11 LIMITED TO ULTIMATE FAILURE LOAD DIVIDED BY A
FACTOR OF SAFETY OF THREE (3).
[21 PLEASE REVIEW NOTES ON PAGE 3.
Note: Details SIP-112a and SIP-112b are
not illustrated here. Refer to R-Control SIP
detail book.
R-Control SIP -
infill below
window openings.
ISOMETRIC
Scale: NTS
NOTE: Diagram represents headers In
a wall assembly. Headers may be any
type, refer to detail SIP-113. Minimum
dimensions are not required between
openings. but the posts supporting the
header must extend to the floor. Also,
the bottom plate of the header must
extend to the outside of the post.
upd"ted 5-1-90
R—Control® SIP
NO.
Headers I SIP-112
R-Control —
Do-AII-Ply,
each side.
R-Control SIP
used as header.
8d Nails or 14 go.
in
sa
1 1/2" staples O 6"
o.c. each side, top do 1
bottom or equivalent. 7�v
0 0
yc a d
R-Control Do-AII-Ply
4 &
o a.
continuous.
jy `
c+so A Y Ui 0
c
R-Control
o
Do-AUI-Ply
c c a o
I
typical each side.
top k bottom.
a °aU
�N ° a o 0
-«� Panel Width
�+-
SECTION
Scale: NTS updated 5-1-9e
R—Control* SIP
TITLE: Header sections NO.
to-r .,1...i a... A 1 SIP-113
window and door
openings. Numbers
indicate sequencing
for installation.
NOTE: Diagram represents field shop
g �
Refer to SIP-115
cut openings in a monolithic
for connection of 2x's
wall assembly. Splines may occur
to OSS panel faces.
above do below openings. Minimum
panel dimension of 12 must be
maintained over openings. See
Header Load Chart for
ISOMETRIC
allowable loodDesign
s.
Scale: NTS
LWOW 3-1-ss
R—Control® SIP
sip uw as ►Aces NO.
(wiffan some condition) SIP-114
9
SQUARE TUBE COLUMN DESIGN
Unsupported Length:
Lx := 22•ft
Ly := 22• ft
Axial Load:
P := 36•k
Moments:
Mx := 1 •in•P
My := 0•ft•k
Effective Length Factor:
K := 1.0
Interaction Coefficient:
Cmx := 1.0
Cmy := 1.0
Bending Coefficient:
Cb := 1.0
Axial Stress
Bending Stresses:
Slenderness Ratio Comparison: K•l = 83.8
r
Allowable Axial Stress:
INTERIOR COLUMN
Column Section and Physical Properties
Column Section: TS 8 x 8 x 1!4
Yield Stress:
Fy := 46•ksi
Modulus of elasticity:
E := 29000•ksi
Web Thickness:
t := .25•in
Section Width:
b := 8-in
Area
A = 7.59•in2
Section Modulus
S := 18.8•in3
Radius of gyration
r := 3.15-in
fa := P
fa = 4.7 ksi
A
fbx := Mx
fbx = 1.91 ksi
S
M
fby :=
fby = 0 ksi
Sy
l := if(Lx > Ly, Lx, Ly)
Preferably less than 200
Column slenderness ratio Cc := PF
K• 1 2
1 — r 2 •Fy
_ 2-CC j E2 1
K•1 K•1 3
3•) -
5 r r
L3 + 8-Cc 8•Cc3 J
12•n2•E
E2 2 :_
23• K 1 2
r
Fa := if K 1 S Cc, E2-1, E2 2
r —
Cc = 111.554
Fa = 17420.1 psi
Allowable Bending Stress: Fbx := if b 190 if Lx <— 1200• b , 0.66•Fy, 0.6•Fyl, 0.6•F� Fbx = 27.6 ksi
Fy Fy
it ksi ksi J J
b
y :_ i<
t
190
, i Ly _< 1200•
b
, 0.66•Fy, 0.6•Fy1 , 0.6•F� Fby = 27.6 ksi
Fy
2y;
L
ksi
J
J
6 TS 8 x 8 x .25.mcd Revised June, 1999 Page 1 of 2
to
Combined Stresses:
12•�2•E
F'ex := F'ex = 21260.1 psi
23• K•Lx 2
r
H1_1:= fa + Cmx•fbx + Cmyfby
Fa fa fa
•Fbx 1 — 1 — •Fby
F'ex F'ey
H1 2:= fa + fbx + fby
— 0.60•Fy Fbx Fby
2
Fey := 12 nE Fey = 21260.1 psi
23• K•Ly 2
r
HI-1 = 0.362 < 1.00
HI-2 = 0.241 < 1.00
If fa = 0.27 < 0.15, Equation H1_3 is permitted in liew of equations H1 1 and H1 2
Fa
H13:=fa+fbx+fby
— Fa Fbx Fby
H 1 3 = 0.342 < 1.00
6 TS 8 x 8 x .25.mcd Revised June, 1999 Page 2 of 2
STRUCTURAL DESIGN
'�
ABLE 1609.6.21(1)
SIMPLIFIED DESIGN WIND PRESSURE (MAIN WINDFORCE-RESISTING SYSTFMI n _ �FYOnC11rP P r h- an f-t ..irh t _
BASIC
ZONES
WIND
ROOF
ROOF
Horizontal Pressures
Vertical Pressures
erhan
s(mph)
SPEED
ANGLE
RISEIN
LOAD
CASE
A B C D
E
P
G
H1
31.5 -5.9 7.6 -33
-13.8
-7.8
-9.6
-6.1-15.110°
2
]
12.9 -54 8.6 -3.1
-33.8
-8A
-9.6
-65
-15.115°
3
1
14.4 4.9 9.6 -2.7
-13.8
-9.0
-9.6
-6.9-15.185
20°
4
1
15.9 4.2 10.6 -2.3
-13.8
-9.6
-9.6
-7.3-15.1250
1-21.6-igo
6
1
34.4 2.3 10.4 2.4
-6.4
-87
4.6
•7.0-10.12
-2A
4.7
-0.7
.11)_300
to 45°
7 to 12
i
12.9 88 10.2 7.0
1.0
-7.9
0.3
-6.7-5.22
12.9 8.8 10.2 7.0
5.0
-39
4.3
-2.8-5.2O
w 5°
Rai
1
12.8 -6.7 85 40
-15.4
-88
-10.7
-6.8-16.910.
2
1
14.5 -6.0 9.6 -3.5
-15A
-9.4
-10.7
-72-16.915°
3
1
16.1 -5.4 10.7 -3.0
-15.4
-10.1
-10.7
77.7-16.9
90
200
4
1
17.8 4.7 11.9 -2.6
-15.4
-10.7
-10.7
-8.1
-21.6
-16.9
2.50
6
1
16.1 26 11.7 2.7
-7.2
-9.8
-5.2
-7.8
-13.3
-11.4
2
- - - -
-2.7
_5.3
-0.7
-3.4
300 to 45°
7 to 12
1
14.4 9.9 ] 1.5 7.9
L I
-8.8
OA
-75
-5.1
-5.8
2
1t 9.9 115 7.9
5.6
43
4.8
-3.1
-5.3
-5.8
��cPdS vtzE L
1
0-15
1.2`
17.9
12.0
13.E
4f-b
I�-�
I.z�
►g.c�
t2.�
19.E
1�.2
25-3o
I•�(o'
2D•2
13.E
Ib.
tl-�
21.E
14.7
17.1
11. 1
17.
,�A� d NA-t -, .
11,11-5c -Ile
vv�
(-?. 2 r-rx14•SJI��•��'� fi �Z2.8)(`l•s�13.`l Few-)
t 1Zl ?A 4 Sb,ClT; Cr�R•bp,,> + (ZA) Fr:)(l6. k p5F)
TZASVF�S�
Q
6 rgiprz) +
13
kATERAL ANALYSIS - SEISMIC BASE SHEAR - 2000 IBC
BUILDING GEOMETRY
Number of Stories:
N := 1 (N = 4 max)
Dimensions & Dead Loads:
Length Width
Story Height Story DL
PARAPET:
h(N+1) '= 0. ft
STORY 4:
L4 := 0•ft D4 := 0-ft
h4 := 0•ft DL4 := 0-psf
STORY 3:
L3 := 0-ft D3 := 0•ft
h3 = 0-ft DL3 := 0-psf
STORY 2:
L2 := 0-ft D2 := 0-ft
h2 := 0-ft DL2 := 0•psf
STORY 1:
LI .= 80•ft DI .— 76•ft
hI .= 9•ft DLI .— 15-psf
x := 1.. N
DESIGN CRITERIA
Seismic Use Group: I
Soil Site Class: D
(1616.2.1; p.354)
(Table 1615.1.1; p.350)
Spectral Response Acceleration: (&- short periods
(&- 1-sec. period
(Fig. 1615(5); p.341)
(Fig. 1615(6); p.343)
SS := .508
S1 := .165
Site Coeffficients:
(Table 1615.1.2(1); p.351)
(Table 1615.1.2(2); p.351)
Design SRA Parameters:
(Eqn. 16-18; p.350)
(Eqn. 16-19; p.350)
Fa := 1.39
Sds := 0.67•Fa SS
SdS = 0.473
Seismic Design Category*: D cat := catD
(1616.3; p.354)
LATERAL SYSTEM: Wood Framed Shear Walls
Response Modification Factor:
(Table 1617.6; p.365)
Importance Factor:
(Table 1604.5; p.297)
Fundamental Period (appx.):
(Eqn. 16-39; p.361)
(Table 1617.4.2; p.361)
(1617.4.2; p.360)
Fundamental Period:
Fv := 2.14
Sd1 := 0.67-Fv-SI
Sd1 = 0.237
BUILDING WEIGHT
Wall DL
DLw(N+1) '= 0-psf
DLw4 := 0-psf
DLw3 := 0-psf
DLw2 := 0•psf
DLwI := 15-psf
*Design
Category
catA a 1
catB — 2
catC a 3
catD — 4
catE - 5
catF — 6
R := 6.0 Diaphragms: wdx := D X-Lx•Dx
Ie := 1 Walls: ww = DLw • hx + DLw h(x+l )
x ' x 2 {x+l)� 2
Story Weight: w = wd + ww •(2•L + 2-D
T 0.1 •N x' x x x X.
a =_
Cu:= 1.2 Building Weight: W := Ew
T := if (Ta > Ta• Cu, Ta•Cu, Ta) W = 112.26 k
T=0.1 x
Total Height: h X hi
i=1
Seismic Base Shear Revised January, 2002 Page 1 of 3
1�
o ♦o
BASE SHEAR CALCULATIONS
Seismic Response Coefficient: Short Periods:
(1617.4.1.1; p.360) (Eqn. 16-37; p.360)
Design Response Coefficient:
TOTAL BASE SHEAR:
Vertical Distribution
Distribution Exponent:
(1617.4.3; p.361)
Distribution Factor:
(Eqn. 16-42; p.361)
Calculated: Long Periods:
(Eqn. 16-35; p.360) (Eqn. 16-36; p.360)
Csmin := 0.044•Sds•Ie Cs : Sds
R
Ie
Cs := if (Cs < Csmin, Csmin, Cs)
Cs := if (Cs > Csmax, Csmax, Cs)
Min. Cat. E & F:
(Eqn. 16-38; p.360)
0.5• S 1
Csef == R
Ie
Cs = 0.079
STRENGTH
(Egn.16-34; p.359)
V: CS.W
V = 8852lb
1 *N 0.5
kl := tl :_
(2j (2.5
Cv
X. (hnX)k
—
x N rr
LJ
Wx� h�x)k
x-1
Csmax = Sd 1
R T
( le
a
Cs := Csef if (cat >— 5)-(Cs < Csef)
CSef if (S1 >— 0.6)-(Cs < Csef)
Cs otherwise
ALLOWABLE
(Egn.16-34; p.359)
V—v
a 1.4
Va = 63231b
k := 1 if T < 0.5
linterp(tl, kl , T) if 0.5 <— T 5 2.5
2 if T > 2.5
STORY SHEAR: STRENGTH
ALLOWABLE
(Egn.16-41; p.361)
(Egn.16-41; p.361)
F
F ' = Cv • V
Fa = X
xx
X 1A
STORY 4: F4 = e lb
Fa4 = 1 lb
STORY 3: F3 =1 lb
Fa3 = s lb
STORY 2: F2 = lb
Fat = e lb
STORY 1: FI = 8852lb
Fa = 6323lb
Seismic Base Shear Revised January, 2002
Pa e 2 of 3
115
DIAPHRAGM FORCES
Seismic Diaphragm Force:
(Design Category A - C)
(Eqn. 16-62; p.372)
Seismic Diaphragm Force:
(Design Category D - F)
(Eqn. 16-65; p.374)
Minimum / Maximum:
(1620.3.3; p.374)
DIAPHRAGM FORCES:
STORY 4:
STORY 3:
STORY 2:
STORY 1:
PERPENDICULAR TO L:
rwd 1
FpL1x := 0.2'4'Sds x + 2-wwx
Lx j
N
E Fi
F = i=x
Px N
ya wi
i=x
Fpmi X := 0.15-Sds•le
Fpx := if (Fpx < Fpminx, Fpminx, Fpx)
Fpx := if (Fpx > Fpmaxx, Fpmaxx, Fpx)
(wd 1
FpL2x := Fpx.Ill L x + 2 • wwx I
x J
FpLx := FpLlx if cat 5 3
FpL2x if cat >_ 4
ALLOWABLE
FpLx
FpLa
1.4
FpLa4 I plf
FpLa3 I'plf
FpLa2 = plf
FpLa1 - 72 plf
PERPENDICULAR TO D:
wd
F D1 = 0.2• •S x
P x Ie ds' D x
L � + 2-ww x JJ
Fpmax x' = 0.3-Sds•le
FpD2x := Fpx •rwd
D x + 2 • ww1
x I
x
FpDx := FpD 1 x if cat —< 3
FpD2x if cat >— 4
ALLOWABLE
FpDx
FpDax
1.4
FpDa4 — plf
FpDa3 = p1f
FpDa2 �. plf
FpDa1 = 75 plf
NOTE: forces added from offsets or changes in stiffness of the vertical resisting elements
need to be added to the diaphragm design, see (1620.1.5; p.372) & (1620.3.3; p.374).
Seismic Base Shear Revised January, 2002 Pa e 3 of 3
S��Sc�PS
- J,�t - 7 Y-A?ps
- -4.7v-(Fps
i
S•6S-I-kPS
11
`LATERAL ANALYSIS - WOOD DIAPHRAGM DESIGN - 2000 IBC
STORY GEOMETRY
Diaphragm Dimensions:
Applied Diaphragm Forces:
(from base shear calculator)
Vertical Resistance:
(number of lines)
Horizontal Space:
(between resistance lines)
DIAPHRAGM DESIGN
Diaphragm Shear:
Length
L := 80-ft
PERPENDICULAR TO L
FpLa := 72-plf (ALLOWABLE)
n := 2 (n = 5 max)
:-
n
11 := 80-ft
- Betw. VL1 & VI-2
12 = o-ft
- Betw. VI-2 & VI-3
13 := o-ft
- Betw. VI-3 & VI-4
14 :=µ0-ft
- Betw. VI-4 & VI-5
k : 0.. n
lk
vlk := FpLa-
2
VLi := ifl vli'5 v1(i-1)'v10-1) Md
VL.
VI. :=
'� D
Vl 38 plf
1.
Vl2 38 plf
V13-sOf
: V14 = r plf
V15 = p1f
ROOF
Width
D := 76-ft
PERPENDICULAR TO D
FpDa := 75-plf (ALLOWABLE)
m := 2 (m = 5 max)
d1 := 76-ft
- Betw. VD1 & VD2
d2 := 0-ft
- Betw. VD2 & VD3
d3 := 0-ft
- Betw. VD3 & VD4
d4 := 0-ft
- Betw. VD4 & VD5
d` * of
p: 0..m
d
vdp := FpDa-
VDT := ifl vd < vd(j-1) , vd(j-1) , vd. l
VD.
Vd. =
�� L
Vd 36p1f
1 ..
Vd2 36pif
Vd3 plf
Vd4 = • plf
Vds i.plf
Bending, Openings, Deflections:
Roof diaphragm constructed of 8" thick structurally insulated panels. From "R-Control" design tables,
the allowable diaphragm forces using R-Control Screw fasteners at 6" o.c. is 500 pif which far exceeds the
values calculated.
Wood Diaphragm Design Revised January, 2002 Pa e 1 of 1
Wall - Unity Equation
This equation is used to determine design suitablilty. The equation takes into account the ultimate load for a panel subjected
to both axial and transverse (bending) conditions: -
design axial load + design transverse load < 1
allowable axial load allowable transverse load —
(SEE LOAD DESIGN CHART 2B) (SEE LOAD DESIGN CHART 4)
Wall -Axial Loading
LOAD DESIGN CHART #2113
(SEE DETAIL SIP-101)
R-CONTROL® STRUCTURAL INSULATED PANELS
PANEL
HEIGHT
7/16" OSB THICKNESS
EPS CORE THICKNESS
3 1/2" CORE
5 1/2" CORE
AXIAL [11
LOAD
[PLF]
8' - 0"
2750
4000
10' - 0"
2500
3500
12' - 0"
2000
3000
14' - 0"
2750
16' - 0"
2500
[11 LIMITED TO ULTIMATE FAILURE LOAD DIVIDED BY A FACTOR OF
SAFETY OF THREE(3).
[2] PLEASE REVIEW NOTES ON PAGE 3.
Optional blocking to
increase point load
capacity. Design as
t 1/2" raq'd for specific case.
Spacer board (optional)
where required for
j` standard 8' drywall
T application.
8d Nails or 14 go.
1 1/2` staples O 6`
o.c. cacti side, or
equivalent. Typical
top do bottom.
Vories
f
Factory electrical chase.
Slide
panel
RR Control
Do -All -Ply
continuous
down.
i
r 1 1/2"
seolonL
NOTE: OSS skins must be
R-Control
Do -All -Ply typical
fully supported by
each side.
foundation .system.
NOTE: Use minimum grade SPF #2 'or
SECTION
engineered equivalent for 2x plating
Scale: NTS
upeew 12-1-99
R—Control® SIP
Wall - Shear Loading
LOAD DESIGN CHART #S
(SEE DETAIL SIP-101)
1 Plate Connections I SIP-101
R-CONTROL® STRUCTURAL INSULATED PANELS
7/16" OSB THICKNESS
PANEL
EPS CORE THICKNESS
HEIGHT
3 1/2" CORE
5 V2—COED.
RACKING
N/A
335 PLF
335 PLF
SHEAR
[1] PLEASE REVIEW NOTES ON PAGE 3.
010
n
11
-
tATERXL ANALYSIS -1 STORY WOOD SHEAR WALL DESIGN - 2000 IBC
STORY 1
LINE 1, 2 and B
PIERS Length Heigh Tributary
# Piers in Shear Line:
nl := 2
(n = 8 max)
1:
Story Shear.
Fa := 11.3•k
(Allowable)
2:
Shear Attributed To Line:
Val := 5.65k
(Allowable)
3:
Story DL:
DLI := 15•psf
4:
Wall DL:
DLwI .— 15-psf
5:
Story Length & Width:
Ll := 80-ft
DI := 76•ft
6:
Story Height:
hl := 9•ft
7:
Sill Plate Length:
Lsl := 60•ft
8:
REDUNDANCY
Max. Element -Story Ratio:
(1617.2.2; p.359)
Redundancy Factor:
(Eqn. 16-32; p.359)
10
Val lwl
nnax = lw
1 • 11 1 Fal
P1 •_ rmaxl.Ff—D I
P1 = if(P1 < 1.0,1.0,if(P1 ? 1.5,1.5,P1))
P1=1
111 : 19-ft
hlI : 10•ft
tll .— 6•ft
112:= 14•ft
h 1 2 = 10-ft
t12:= 6•ft
113 := 0•ft
h13 = 9•ft
t13 := 6-ft
114 := 0-ft
hl4:= 9•ft
t14 := 6•ft
115 := 0-ft
hl5 9•ft
t15 := 3•ft
116:= 0•ft
hl6 := 9•ft
t16:= 0-ft
117 := 0-ft
hl7 := 0•ft
t17 :— 0-ft
118 := 0-ft
hl8 := 0•ft
t18 := 0•ft
1w1 := 14•ft
(smallest pier
length)
SHEAR CALCULATIONS ANCHOR BOLTS
P1•Val P1•Val
Unit Shear (for walls): vl := Unit Shear (for bolts): vbl :_
Ell Lsi
OVERTURNING CALCULATIONS it := l..nl 1/2 bolt in 1 1/2n 05 �_
sill: s (615.1b)-1.33
vbl
:_ (pl-Val•hI),II
Overturning Moment: M01i1 I i1 5/8 bolt in 1 1/2n 0 sill: s (878•1b)•1.33
I Ell I 625 == vb
J 1
llil llil
Resisting Moment: Nki = 0.67• (DLI•tli1)-llil- 2 + (DLwI•hlil)-"i1- 2
Nominal Overturning: M1il := Molil — Mrlil
Tension at Pier Ends: Tlil Mlil
llil
DEFLECTION CALCULATIONS
Wood Shear Wall Design Revised January, 2002 Page 1 of 2
20
SUMMARY, STORY 1
Reduction in shear walls due to height to width ratio less than 2:1
1w1
r := 2 h r = 3.111 as per (57) of Utah ammended code
i r := if (r > 1.0,1.0, r)
Unit Shear
v1 .
. =171 plf
r
SHEAR WALLS
*** Exterior walls shall be constructed
from 5 1/2" Structurally Insulated Panels.
SIP wall panels have a shear capacity
of 335 pif which is much lower than
those calculted. ***
ANCHOR BOLTS 1/2" A.Bolts
SO.5 =104 in
USE:
1/2" dia. x 10" J-bolts
Spacing = 32" o.c.
Pier 1:
Pier 2:
Pier 3:
Pier 4:
Pier 5:
Pier 6:
Pier 7:
Pier 8:
5/8" A. Bolts
S0.625 149 in
Uplift
T11 =131b
T12 = 415 lb
T13=elb
T14=alb
T15=ilb
T26 = lb
T1 . a lb
T1 = lb
HOLD DOWN Pier Deflection
NONE
NONE
Wood Shear Wall Design Revised January, 2002 Pa e 2 of 2
2k
fATERIL ANALYSIS -1 STORY WOOD SHEAR WALL DESIGN - 2000 IBC
LINE A
STORY 1
PIERS
Length
Height
Tributary
# Piers in Shear Line:
nl .= 8
(n = 8 max)
1:
111 .= 3.5•ft
hl1 .= 5•ft
t11 .— 6•ft
Story Shear:
Fat := 9.35-k
(Allowable)
2:
112 := 5•ft
hl2 := 5•ft
t12 := 6•ft
Shear Attributed To Line:
Val .= 4.7k
(Allowable)
3:
113 := 5•ft
hl3 := 5-ft
t13 := 6-ft
Story DL:
DL1 .— 15•psf
4:
114:= 3•ft
hl4:= 5-ft
t14:= 6•ft
Wall DL:
DLw1 : 15•psf
5:
115 := 3-ft
hl5 := 5•ft
t15 := 6•ft
Story Length & Width:
L1 := 80•ft
D1 := 76•ft
6:
116 := 3•ft
hl6 := 5-ft
t16 := 6•ft
Story Height:
hl := 5•ft
7:
117 := 3•ft
hl7 := 5•ft
tl7 = 6•ft
Sill Plate Length:
Ls := 29-ft
8:
118 := 3.5•ft
hl8 := 5•ft
ti8 := 6•ft
lw1 := 3•ft
(smallest pier length)
REDUNDANCY
Va1
10
1w1
Max. Element -Story Ratio:
rmax := lw
l
•
1 Fa
(1617.2.2; p.359)
�11
Redundancy Factor:
p 1 := 2 —
I'1•D1
(Eqn. 16-32; p.359)
rmax1'
P 1 := if (P 1 < 1.0,1.0, if (P 1 ? 1.5,1.5, P 1
P1=1
SHEAR CALCULATIONS ANCHOR BOLTS
P1•Val P1•Va1
Unit Shear (for walls): v1 := Unit Shear (for bolts): vb1
Ell Ls
OVERTURNING CALCULATIONS il:=1..n1 1/2 bolt in11/2M SQ.S �_ sill: (615•1b)•l.33 := rPl•Val•hlvbl l.
Overturning Moment: Molil I llil 518 bolt in 1 1/2 sill: (878•lb)•l.33
l �I1 l 50.625 �— vbl
llil llil
Resisting Moment: Mrl. 0.67• (DL •tl)•li+[(DLw,"hIi1)-lIi,'(
'— 1 itil2 2
Nominal Overturning: Mli1 = Molii — Mrlil
Tension at Pier Ends: T1. :_ Mlil
it 11il
DEFLECTION CALCULATIONS
Wood Shear Wall Design Revised January, 2002 Pa e 1 of 2
zi
Ad 41V!ARY, STORY 1
Reduction in shear walls due to height to width ratio less than 2:1
1w1
r := 2 r = 1.2 as per (57) of Utah ammended code
�1
r = if (r > 1.0,1.0, r)
Unit Shear
Uplift
HOLD DOWN Pier Deflection
v1
162plf
Pier 1:
T11 = 6171b
STRAP WINDOWS
r
Pier 2:
T1 = 534 lb
STRAP WINDOWS
SHEAR WALLS
Pier 3:
T13 = 5341b
STRAP WINDOWS
Exterior walls shall be constructed
Pier 4:
T14 = 645 lb
STRAP WINDOWS
from 5 1/2" Structurally Insulated Panels.
Pier 5:
T15`=,645lb
STRAP WINDOWS
SIP wall panels have a shear capacity
pier 6:
T1 = 645 lb
STRAP WINDOWS
of 335 p/f which is much lower than
6
those calculted. ***
Pier 7:
TL `= 645lb
STRAP WINDOWS
Pier 8:
TIC = 617lb
STRAP WINDOWS
ANCHOR BOLTS 1/2" A.Bolts 5/8"
A. Bolts
50.5 = 61 in 50.625 = 86in
USE:
1/2" dia. x 10" J-bolts
Spacing = 32" o.c.
Wood Shear Wall Design Revised January, 2002 Pa e 2 of 2
2:15
Preliminary Footings and Foundation Design
Assumed soil bearing pressure: p := 2000-psf
Continuous wall load F1: wl := (35 + 15)-25.plf + 9.15-plf
Spread footing F2: P2 := 12000-lb
Spread footing F3: P3 := 36000-lb
Exterior wall cont. footings:
w := w1 w = 8.31 in use 20" x 12" x Cont. w/(2) #4 cont
P
Spread footing no. F2:
w := P2 w = 2.449ft use 2' - 6" sq. x 12" w/ (3) #4 ea. way
4 P
Spread footing no. F&
w := P3 w = 4.243 ft use 4' - 6" sq. x 12" w/ (5) #4 ea. way
P
9 Footings.mcd Revised June, 1999 Page 1
1111'J1V zU✓J7 L1: 27 du l 1dj4.ib2
NOV-03-2005 THU 03:19 PM oti'tNtIINWRO
DMA
2801 356 0001
PAGE 02
P. 001
DYNAMIC STRUCTURES
1887 North 1120 West, Provo, Utah 84604 (ph) 801,356.1140 (fax) 801.358.0001
DATE: November 3, 2006
TO: Kurt Dubbe
Dubbe—Moulder Architects
FROM: JayAdama
Dynamic Structures
RE: Hard Hat Cafe
Transmitting a total of (1) pages (including this cover sheet)
COMMENTS:
i
It is our understanding that the contractor would like to frame the walls of the Hard Rock Cafe
with conventional woad framing as opposed to SIP's. Following are the specifications for
using conventionally framed walls.
• The walls may be framed with 2 x 6 at 16" o.c, sheathed with 7/16" plywood or OSB_
• . Walls marked "A" on 83.1 must have panel edges nailed at 4" o.c., 12' o,c. In the
panel field.
• No holdowns are required.
• Window and door headers up to 4'-0" are to be (2) 2 x 10. Headers up W 6'-O" are to
be (3) 2 x 10.
Let a know if you have any questions. ( �)
gt4NAt, +rN t (.
1 Q 3 �?1'
cv
DEC-15-2005 THU 04:42 PM 001CSRCTHS
Vol 356 0001 P.001
DYNANUC STRUCTURES
1887 North 1120 West, Provo, Utah 84604 (ph) 801.356.1140 (fax) 801.356.0001
DATE: December 15, 2005
TO: Rick Hancock
FROM: Jay Adams
Dynamic Structures
RE: Hard Hat Cafe
Transmitting a total of ( 1 ) pages (including this cover sheet)
COMMENTS:
0500063
Hard Hat Cafe
We reviewed photographs of the strapping used on the interior high area of the restaurant.
Although not specified on the original plans, the straps are applied correctly to hold down the
upper tower against uplift forces.
call if you have any questions.
N�@�o0�
DEC 1 9 2005
11/03/2005 21:29 3077334302 DMA PAGE 02
NOV-03-2006 THU 03:19 PIS MWICSM 1801 356 0001 P• 001
DLYNANUC SIMUCTURXS
1887 North 1120 West, Provo, Utah 04604 (ph) 801.356.1140 (flax) 801.866.0001
DATE: November 3, 2006
TO: Kurt Dubbe
Dubbe-Moulder Archhects
FROM: Jay Adams
Dynamic Structures
RE: Hard Hat C0
Transmitting a total of (1) pages (Including this cover cheat)
COMMENTS:
It is our understanding that the contractor would like to frame the walls of the Hard Rock Cafd
with conventional wood framing as opposed to SIP's. hollowing are the specifications fbr
using conventionally framed walls.
• The walls may be framed with 2 x e at 18=1 o.c, sheathed with 7116a p"od or OSg_
M Walls marked W on 83.1 must have panel edges nailed at 4# o.c.,122 ox. In the
panel field.
No holdowns are required.
Window and door headers up to 4'-0" are to be (2) 2 x 10. Headers up to W-Qn are to
be(3)2x10.
Let a know if you have any questions.
93
c
r G: AOp��
NOV-18-2005 FRI 03:43 AM DM41CS1ROCilfl:S 2801 356 0001
P. 001
DYNAMIC STRUCTURES
1887 North 1120 West, Provo, Utah 84604 (ph) 801.356.1140 (fax) 801.356.0001
DATE: November 18, 2005
TO: Rick Hancock
FROM: Jay Adams
Dynamic Structures
RE: Hard Hat Cafe
Transmitting a total of (1) pages (including this cover sheet)
COMMENTS:
The structural plans for the Hard Hat Cafes show tube steel columns in each corner of the
building to support steel hip beams. As the steel framed roof was replaced with a wood truss
framed roof, the comer steel columns are no longer needed.
Let r know if you have any
AD