HomeMy WebLinkAboutSTRUCTURAL CALCS - 06-00533 - Avonlea Apartments - 9 UnitsI.
AVONLEA APA
F
Avonlea Apartment's
RTML='NTS
REXBURIGI IDAHO
STRUCTURAL DESIGN CALCULATIONS FOR
THE NEW AVONLEA APA,RITME
NTS -BUILDING #2
LOCATED IN REXBURG; IDAHO
Client.- Keith T. Kennedy, Architect
Idaho Falls, Idaho
Designed by: Mark D. Andrus, PE
Project #03331
PAGE
1.0
2.0-2.4
3.0-3.18
4.0-4.8
5.0-5.8
TABLE OF-C-ONTENTS
DESCRIPTION
Design Criteria
Structural Drawin
Latera! Design
g Napes
r,00r naming Design
Foundation Design
The steel Framing at the entry is to be d'esi
c
. rti
t:�,
z�
Telephone:
gned by o
G & S Structural Engineers
1600 John Adams Parkway
Suite 200
Idaho falls, ID 8340 1
E-mail: s@ wav-ne
Fax: (20$) 523-6922
W
Telephone: (208) 521-691-8
Dade:
Project:
ovation:
Building Cade:
Design Loads,lb
Road:
Floor:
Soil:
G & S Structural Engineers
1600 John Adams Parkway
Suite 200
Idaho Falls, ID 83401
E-mail: gs@dataway.net
DESIGN CRITERIA
JUIV 2c.), 2003
Avonlea ApLartments — Buildin
Rexbura Idaho
20n0 international Buildin
Snow Load (SL).-
Dead
Load (DL):
Live Load (LL):
Dead Load (DL):
F�
Code (IBC
35 PSF
20 PSF
--------- 40 PSF
1
15 PSF
Fax: (208) 523-6922
Project #03331
4ztio Code 83440
Assumed soil type: SW9 SPIP SM SCI GM GC
(Sand, silty sand, clayey sand, silty gravel and clayey gravel)
Allowable soil pressure-, 2000, PSF �
Y.
Wind: 90 -Mph 3 -second gust
Exposure B
Importance Factor = 1.0
Seismic: Site Class D
Design Category Q
Importance Factor 1.0
-n
Per IBC Table
17
804.2
Sheet 1.0
STRUCTURAL DRAWING NOTES
AVONLEA APARTMENTS - BUILDING #2
I. CODES AND SPECIFICATIONS
A. International Building Code .2000 Edition
B. ACI 318-99 Building Code Requirements for Reinforced Concrete
C. AITC Timber Construction Manual - 4'h Edition
II. DESIGN CRITERIA
A. Wind Loads
B. Seismic JBC
C. Live Loads per IRr. Sec. i fi07
Root (Snow Load)
Floors
Slab on Grade
Interior Wali Laterad Pressure
1.
z.
3.
4.
D. Dead Loads
1. Framing System dead Loads
3 Second Gust Win
Exposure = B
I = 1.00
d Speed = 90 MPH
Site Class = D
Seismic Design Category = D
Seismic Use Group = 1
Uniform (PSS
35
40
100
5
20 PSF (Rood
15 PSF (All Floors)
E. Design assumptions
1 q h i l ha n ri n _
• • �-��i �-�u�
��
�a rl uaaml v a�bu���eu
to ae
zuuu
for columns
and wall
footings as per
I
BC Table
1804.2
based i►nnn
a
canri
ciE+..
en
I.,,...,..,..��
gravej,
ywas�w,�ayGy 3dr �U, sj��y ana ciayey
gravel type sail (SW,SD, SM,sc, GM and GCY Any variations encountered, different
from the soil type assumed, shah be brought to the attention of G&S Structural
Engineers before proceeding. Equivalent fluid pressure = 45 PCF.
F. Allowable Stresses sunless otherwise noted)
I. c;oncrete fc (28 days)
2. Concrete Slabs (28 days)
3. Reinforcing Steed4. Wood Framing
a. Stud walls
b. Joists
c. Laminated Veneer Lumber {LVL}
III. GENERAL STRUCTURAL NOTES
3000 PSI
4000 PSI Exposed to freeze/thaw
3000 PSI Unexposed slabs
ASTM A615 Grade 60
Construction Grade Douglas
otherwise noted
Trus Joist or equivalent
1.9 E
Fir - unless
A. All footings shall bear on undisturbed soil or rack. The foundation shall bear on
the same soil type throughout the entire structure. A minimum distance of 3`-0" shag be
maintained from finished grade to the bottom of all concrete footings.
210
5
B. Contractor shall verify all dimensions in the field; any vasa#pan from the drawings shall be
brought to the attention of the. Architect. Any proposed field changes shad have prior
approval from the Architect.
C. Adequate shoring and bracing of al structural members du0
ring construction shall be
provided.
D. Backfill under slabs and footings shad be with approved material. Place fill in 8"
maximum lifts with 95°/o compaction in accordance with ASPM 41557.
IV. CONCRETE
A. Concrete shad be of ready mix type conforming to ASTM C94. No special inspection is
required based upon IBC Section 1704.4.
B. When. the average daily temperature is expected to drop bel -ow 40° F f1111111111111111111 3 or more
successive days, the concrete shad comply with the Dald her Concreting Standard
(ACI 306). Place no concrete against frozen earth.
C. all compression test results to be evaluated according to ACI Standard Recommended
Practice dor Evaluation of Compression Test Results of Field Concrete (ACI X14).
D. All detailin fabdcation and placing of reinforcing bars shall conform to the A.Cl Manual of
Standard Practice for Detailing Reinforcing Concrete Structures {ACI 315}.
E. Splices of reinforcement at points of maximum stress shall be avoided wherever possible.
Minimum overlap for lapped spices shall be 30 bar diameters unless otherwise Holed.
F. ASI reinforcement to be supported in the forms and sPewaacd thwire or plastic bar
supports conforming to the requirements of the ACS Manual of Standard Practice for
Detailing Rein -forced Concrete Structures (ACI 315). Reinforcement in footings shall be
supported on precast concrete block supports c�vnfvrming tv Concrete Reinforcing Steel
Institute Manual of Standard Practice (1992 Edition).
G. All continuous reinforcement shill terminate with 90° return or hook or separate Cvm�r
bar.
H. All vertical reinforcement in piers and walls shall be doweled from the footing or structure
below with rebar of the same size and spacing as required above.
I. Construction joints in large areas of slab on grade s�a[I be ��aced in long stip
construction fashion in widths not to exceed 20 feet.. Control joints at 20 feet maximum
shall be tooled and/or saw cut transverse to the length.
J. All construction joints shall be located so as not to impair the strength of the structure.
Unless noted on the drawings, all reinforcement shall be confinuaus through the joints.
Each construction jaunt shall be keyed.
K. No aluminum products shall be embedded in the concrete.
L_ Unless otherwise noted, reinforce all concrete walls as fQllowS:
Vlfall Size Horizontal Reinforcement Vertical Reinforcement
81C
8c 1011
@ 12it
0. C. ;;N
1811
O.C.
2. 1
lk
Place steel in center of walk and dowel to footing below with the same dowel size and
spacing as vertical reinforcement. All dowels shall have at least 30 diarnetprin
embedment. Provide comer bars at all intersecting corners. Use same size bar and
spacing as hodzontal wail reinforcement.
M. All vertical concrete surfaces below finished grade, where in contact with earth shall be
protected with an asphaltic coaling. '
V. REINFORCING STEEL
A. Welding or tack wedding of reinforcing bars to other bars or plates, angles, etc. is
prohibited.
B. Reinforcement shall be accurately placed and adequately secured in position. Location
of reinforcement shall be as indicated on the drawings. The fallowing protection dor
reinforcement shall be provided.
Minimum Cover:
Cast against and p-ermanently exposed to eatth......mom ..3'1
Exposed to earth or weather - #5 and smaller... 1-1/281
Not exposed to earth or weather - Slabs, Walls. @ 0. 3/411
Vi. PRE-ENGINEERED WOOD TRUSSES
A. Trusses to be designed by Manufacturer. See architectural drawings for rood slopes
and/or truss configurations. Review structural drawings for intended truss placement and
support locations.
B. The pre-engineered roof truss members shall be designed to s ollvwing Toads
in addition to the dead toad of the member as applicable:
1. 35 PSF roof snow load plus drifting as indicated on plans.
2• 12 PSF dead load bottom chard.
3• 8 PSF dead load top chord.
4. 20 PAF wind load.
G. the shop drawings and design calculations shall be produced by, or under the
supervision of a registered Professional Engineer. The shop drawing submittal to the
contractor shall include the following:
1. Truss placement plan.
2., Truss design drawing dor each truss.
3. Connection requirements for truss to truss girder, truss P1Y to ply and field splices.
Such connections shall be designed by truss manufacturer and submitted with shop
drawings. Contractor shall provide such connection requirements as specified in
shop submittals.
4. Contractor shad provide all permanent bracing requirements for the structure,
including the trusses as indicated in structural drawings and shop drawings. The
latera! bracing shall be anchored to solid end walls or permanent diagonal bracing.
D. Contractor shag provide brooking at all truss support locations and V. -notch blocking as
required at all vent locations.
A. No truss Shall be modified without the truss manufacturer's approval.
0 1 Z
ir
A
VII. TIMBER
A. All �ifCiDCl AI'1Ci tlf'1"1}lOr r+nnc�fr..wa.....,, t�,a •-- - _ --
-- u�at rs part of this project shall comply with the Timber
construction Standards of the American Institute of Timber Construction Manual(AITC
4" Edition). Other members with equivalent size and strength can be substituted o
nly if
date is provided to substantiate capacity of new product. All wood framing members shall
have a moisture content less than '19% unless otherwise noted.
B. Notching of any structural member other than that shown on the drawings ss
unless otherwise approved in writing by the Architect.
prohibited
C. There shall be at least two nails at each contact point, with 8d thru 1" tr�aterial, 16d thru
211rnateriaf and 4Q -60d thru 311 materia.
D. Wherever possible nails should be driven perpendicular to the grain instead of toe nailed.
E. ASI wood materials within f" of soil shall be pressure treated d or wood of natural
resistance to decay. When w�4d joists are located closer than 18" or wood beams ars
located closer than 1211 to exposed soil, the woad framing shall be pressure, treated woad
or woad of natural resistance to decay.
F. Where wood tends to split, holes for nails shall be bored a diameter smaller than that of
the nails.
G. Roof and floor plywood face grain mush be perpendicular to its supports,
H. All wall studs shall be continuous from floor to floor or floor to roof diaphipIjms.
I. Floor, roof and wall diaphragms sheathing nails or other approved sheathing connections
shall be driven so that their heed or crown is flush with the surface of the sheathing,
J. All wood connection hardware shown on plans are based upon Sampson Strong die
Products.. Equivalent hardware may be used1101111111"ipapproval of the Architect. All hangers
are to match the width and depth, of framing members with correct slope and skew where
applicably. Fill all nail holes unless otherwise noted.
NAILING SCHEDULE
All nails in this schedule may be sinker, box or pneumatic driven nails unless otherwise
specified. Any nails exposed to weather or moisture shall be stainless steel or galvanized.
Other nails with proper revised spacing may be used with written approval of the Architect,
CONNECTION
Prefab ! joist & blocking
Joists
Blocking between joists
130ttOM {sole} plate to joist or blacking
FASTENING
See manufacturers nailing requirement
3-8d toenail @ each bearing
2-8d endnail from rim to joist
3-8d toenail to support plate orjoist
16
2-16d @ each joist
116d @ 6" O.C. @ rim joist
2.3
it
Studs to bottom (sole) plate
Blocking between studs
Double Tap Plates
Lower plate to top of stud
Upper plate to tower plate -staggered
Upper plate to lower plate cr intersection
Upper plate to lower plate @ splice paint
(Minimum lap: 4'-D" staggered spices)
Beveled Top Plates
Built -gip Comer Studs
2x Built-up Beams & Lintels
1014 or less in depth
12fl or more in depth
Double Joists
19/32"' APA Rated 40120 Roof Sheathing
No blocking required unless shown on
framing pian.
23/32" APA Rated Floor Sheathing
Use tongue and groove APA rated
sheathing panels or black all sides
of panel.
Type I Shear Wall
7/16" APA Rated Wall Sheathing
Block all edges of APA rated sheathing
panels.
ape 2 Shear Wall
7/16" APA Rated Wall Sheathing
Block all edges of APA rated sheathing
panels-
2-16d
endnails or 4-$d toenails
2-8d toenail each end or
2-16d endnaifs each end
2-16d
16d @ 16" O.C.
3-16d
16d @ 4" O.C. staggered
16d @ 4" O.C. staggered
1 6d @ 16" O.C. staggered
2 rows 16d @ T6" O.C.
5/811 0 bolts @ 24" O.C. staggered
16d @ 1 6" O.C. staggered
Boundary nailing fto
12811 � x 21V" nails @ 611 O.C.
EdgenaMng-u.izts41rq� x 2%Z" nails Ob (311
a. C. I
Intermediate nailing,0.12811 0 x 2%" nails @
121, O.C.
Boundary nailing -
0. 128"0 x 2Y211 nails @ 6It O.C.
Edge nailing -0. 128"0 x 2Y211 nails @ 61,
O.C.
intermediate nailing -
0.128" m x 2Y211 nails @ 12" O.C.
Edge nailing -0. 128"0 x 2'/2' nails @ 610
O.C.
Intermediate nailing -
0.128" 0 x 2Y210 nails @ 12" O.C.
t
Edge nailing -0. 1 28"V x 4'/i' nails @ 611,
O.C.
Intermediate nailing 0.128110 x 2Y211 nails @ 12" O.C.
3
P roj ec;t
�j�� ''""^�'��g '�
3&3
*7 _Z:!�3
Project No. DateA n i
Designed By
%W
_ ��81`z lbs
/4
SCIl+-ic� �c°vE� �� %� r� _ /3 22
7 /bf
�rsf Ile
�' }�' e- _ /3227
�e�Z-°rsz-/Pr-�
f "z7 A�f
. ... .. . ....
sv
G&S Structural Engineers
Sheet .2.>,
{
Designed By ,
Project No. n33:Z 1 Date—Z7:05�403
zh��;Zwr z )
G&S Structural Engineers
)7S
/7 8
/7 S
la, C)
Hv �2(o•33N�
?,)50 imp- //
'94, 0 ;
ri
Sheet Z -f -i
_
a
TA13LE 1 609.6.2.1 (1 )
322
Inti
loc
:D
W
0
91.
X
w
PWW
0
cn
U.
0
LLI
X:
LL
0
0
cc
Z
.0
(D
uj
.i
0
.i
m
0
LL
0
w
U)
cn
0
z
U)
�w
U)
Lu
ix
LLJ
a:
0
LL.
0
z
z
cc oc C,4 te� C- 1
kr� r
a.
l4n r-- aN oo; r-- CD oc "T fn
0 — -----
.j
.j
.j
cog (-4 -,t rN 00 C-4 cc cn Cr% --T
+
16
Z
0 N
LLJ t6,_
W-)
VW -m W-4
0 1
x +
rr Fn 00 \0 00 M C:� 00
cc( coo rq rn CA
n•.-., ewe! 64P
I I f
C:) C�
ki? cn
>
0
cc
C+
�o C cl% C% CN
Lu 0 0
7 Ce) ff)
p I 1�1
C)
< 0 tn oc
\c C* 00 C)
C)
0 1 C1
.j
•
0
0 cu
o
C�
tu CD
oc
>
X 00 x oc OC all \C 0-1
0 d.
0 rn
p
W- p ON CD �o
p-
0 J
00 00
Lu o C)
00 00
P m
C-1 C14 CN 00 <N C)\
I F
00
0•.
C 0 m d 4.
CD M r --q UP)
+
0
7r
0
0
C)
.j CN cq
—1
z
"L,
0 cc V) 'I- ; W) OC oo CN �C. -1: cx�
r--w'
F-d CK C�
0 0
ALL
Lu Ln CN o) 00
oc
+ 00
rqw
ON (%- C) C -q
C4 Nr t
L L I
G 0
kn
con
V1 -T En
LL LLQ0 vi 0 V I V f,
z 0
u 1-n Q.) 4-j C -q C rA 'CL4 0 0 tL& Cl C C�
od C) cl C:)i 03 cz m CA C14
0 v v
0 < v v
cnp C:>
A P.—
z CU w
c0 cl
W6.1 9z: Q3 q-4
5-1
> tu -01 P-4
> U
> >
w Lol (r, 1L.J
c I -
C3 rl
k-� 0
UJ CD C:)
C) CL
00
E 0
co).
A.
k
STRUCTURAL DESIGN
2000 INTERNATIONAL BUILDING CODEO
11
ArchWind 98 0
SCE -7 )-Oa
C„Hbn�iN• A,� ttSaj-
4 13
4E
3E
CASE A
MAX AND MIN PRESSURE VALUES FOR EACH AREA:
LOW RISE STRUCTURE MA[N W ESISTING VALUES
]PRESSURE VALUES FOR CASE A WIND DIRECTION:
(AREA 1) P = I0.42 psf, 5.20 psf
(AREA 2} PT- -3.98 psf, -9.21 psf
(AREA 3) P = 4.17 psf, -9.39 psf
(AREA 4) P = -3.4� psf, -8.63 psf
(AREA lE) P = 13.81 psi, S.SS psf
(AREA 2E) P = -7.$3 psi', -13.05 psf
(AREA 3E) P = -6.80 psf,-12.02 psf
(AREA 4E) F = -6,07 psf, -11.30 psf
PRESSURE VALUES FOR CASE g WIND DrAECON:
(AREA 1 ) P = -3.92 psf, -9.15 psf
(AREA 2) P = -7.41 psf, -12. 3 psf
(AREA 3) P ; -2.76 psf, -7.99 psf
(AREA 4) P -3.92 psf, -9-15 psf
(AREA S) P = 8.42 psf, 3.19 psf
(AREA 6) P = -1.60 psf, -6.82sf
(AREA 1E) P = -4.36 psf, 9.58 psf
(AREA A 2E) P = -1.92 psf, -5.15 psf
(AREA 3E) P = -5.08 psf, - i Q.3 1 psf
(AREA 4E) P = -4.36 psf, -9.58sf
(AREA SE) P � 11.47 psf, G.24 psf
(AREA 6E) P = -3.63 psf, -8.$6 psf
NOTES,
4E
When combining values to obtain the worst case load an the frame.
the resultant pressure used must be greaser than 10 psf. If not
use 10 psf.
The above pressure values include effects from intemalPressure,
qt
Page I oft
6E-
Wind
MAX
COMBINED VALUES
FOR DESIGN
Overturning combinations do not include internal pre
Roof pressures do include internal pressure.
Total Combined Loads
Across Sides I and 4
Max P(CASE A) = 13.83 psf
Max P(CASE $) = 10.00 psf
Total Combined Loads
Across Sides lE and 4E
Max P(CASE A) = 19.8-8 psi'
Marc P(CASE B) = 10.00 psf
Total Combined Loads
Across Sides S and 5
Max P(GASE B) = X0.02 psf
Total Combined Loads
Across Sides SE and 6E
Max P(CASE B) = 15.10 psf
Roof Area 21VIax Values
There is no downward pressure
Uplift P = - 2.63 psf
Roof Area 3 Max Values
There is no downward pressure
Uplift P = -1 0.00 psf
Roof Area 2E Max Values
There is no downward pressure
Uplift P = -i8.15 psf
Roof Area 3E Max Values
There is no downward pressure
Uplift P = - 12.02 psf
■
ArchWind 98
CONSTANTS:
Building Width 50.00 ft
Building Length = 112.40 ft
Roof Mean Height = 29.50 ft
Roof Angle = 22.62 deg
Dimension a = 5.40 ft
EQUATION CONSTANTS:
Pressure based on ASCE 7-98 EQ.(6.16)
Low Rise Buildings, Main Structure
P=q(GCpf+GCpI) and P—q((aCpf-Gcpi)
Kz =x.74 Vel. Pressure Coef.
Kzt = 1.00 Topographic Factor
Kd = 1.00 Wind Direction Factor
V = 90.0 mph
X — 1.D0 Importance Factor
q = 14.52 psf Velocity Pressure
GCpi = 0. 1$ (+-) Internal Pressure Coe ff.
Exposure = B
Importance Cat. = Z
The following are Area external nressurc. mPfcz,aczPfa
GCp.f Values:
(AREA
1 )Case A =
0.54
(AREA
2)Case A
-0.45
(AREA
3)Gass A =
-0.47
(AREA
4)Case A =
-0.41
(AREA
1E)Case A
— 0,77
(AREA
2E)Case A,
= -0,72
(AREA
3E)Case A.
_ -0.55
(AREA
4E)Case A
= -0.60
(AREA
OCase B =
-0.45
(AREA
2)Case B =
-0.69
(AREA
3)Case B:=
-0.37
(AREA
4)base B =
-0.45
(AREA
S)Case B =
0.40
(AREA
6)Case B —
-0.29
(AREA
1 E)Case B
= -0.4 8
(AREA
2E)base B
= -1.07
(AREA
3E)Case B
= -+0.53
(AREA
4E)Case B
-0.48
(AREA
SE)Case B
= 0.61
(AREA
6E)base
B
= -0.43
Fags 2 of 2
I
f i
P roject
Designed By���
P
p f
// -,
W-0001-��
Project No. �3fW1 Date 7X27-03
lJz - 2r(iv) - /�i2)
CScc ...! �r�.e I = � HHfi �f 21
76 G lIltl)�-(i78-i/-ykl�G)
_ /3 2 7 1b,;
it y�rz ins
/O 3Z 7 /5S
G&S Structural Engineers
�3s%9G iss
3
011-1-112 07Z
z
%Zcl�'fz
�i+�9�YllGG�i�q�
She et Sr
•�
I
0
Project
Designe
Project No.. /
Date 7 7-03
d By
1�= IZSos )4 / S33
1Z (1• y� �
R> �
Y zt r
4()-761 L-0
Gore Zo�osr� frr' G,��i..Lic,2i iii
irj LscU.Y n� �y�,
76
L 72z,)(vg.3s)3
zm
0
75'l/ iys
'e�ll 1kr
2s yi/ ,bs
15
_.€.. ..... .. _S..
•
14,
G&S
-
-
r
F
pp
` ^ e .. ..:. _. ,... ,�.., d..• -r •.w.z.:.....w n.ot+.. ,>��dn .-,T _w.n,,,:-a,.t ,may ,
uhMjr. iY. "T _
Structural
Engineers �'—�'- _ _G,.:..-.�,.,w.,,,,!�:•_nr;�..w�-+.:,¢.._r-v.,,,-..�..�rf�,m•..a wr,+, .�-.,,e..•.._�•,w,l..�.�. � � 1 .. ,r: ......, d. ,. ..:_ . ,. __ .,. _ '._ „_ y,r r _:. .. •
Avonlea Apt. Buldg. #2
Date and Time-, 7/25/2003 11:23:20 AM
MCE Parameters - Conterminous 48 States
Zip Code - $3440 Central L2fittiritz- Q= ,,a 7CZOA�,
v. i vJ�tVG
Central Longitude=-111Bogn��
Data are based on the 0. 10 dPn nrirl cat � ' •"vav i i
Period
(sec)
0.2
1.0
SA
(%g)
060.6
019.3
NICE Parameters
0.2 080.0
1.0
039.2
Map Value, Soil Facto
Map Value'Soil Facto
x Specified Soil Factors
Soil Factor of '1.32
Sail Factor of 2.0%5
r of 1.0
r of 1.0
MCE Parameters - Conterminous 48 States
Zip Code - 83440 Central I atit"riA = nJZ 7coAn�
VJYVL
Central Longitude = -111.
Data are based on the 0. 10 dna nricl :�Pt � � 609017
Period
(sec)
D.2
1.0
SA
.(%g)
060.6
019.3
Map
Mar)
MCE SPECTRUM x SOI
Fa = 1.32
Fv = 2.03
Period
(sec)
0.000
0.098
0.200
0.490
0.500
0.600
0.700
0.800
0.900
1.000
1.100
1.200
1.300
1.400
1.500
1.600
1.700
1.800
1.900,
2.000
SA
(%g)
032.0
080.0
080.0
080.0
078.5
065.4
056.1
049.1
043.6
039.2
035.7
032.7
030.2
028.0
026.2
024.5
023.1
021.8
020.7
019.6
Value, Soil Factor of 1.0
Value, Soil Factor of 1.0
L FACTORS
OAFaSs
To
T=0.2, FaSs
Ts
T=1.0, FvSI
.l
J ir
0
a
Maximum Considered Earthquake Ground Motion
Fa = 7.32 F1 = 2.03
Zip Code = 8344U
Central Lat. = 43.763462 deg Central Long.rl
= -111-609017 de
R.
. 1 I
Period, sec
41
Period, sec
. 0
0r0
00801
0.20:.
0.49
0.801
0.50
04785'
0,654
00.70
6..561
�r
0.491
0.90
0.436
"� ■
. 0.392
0.357
1420.
01327
130
:... 0.302
.0-280
.50
.:..
1.60
OA2 45
1.70
.
:0''
.218
.0.207
2.00
0.1
s
8
t
Des*
gner
Date:
Project:
Mark Andrus
7l251ZQ03
Avonlea Apt, 13uldg. #2
SEISMIC DESIGN:
G & S Structural Engineers
1600 John Adams Parkway
Idaho Falls, Idaho 83401
Type Of Occupancy: (Table 1604,5 and 1607.1
commercial
Building Category or Seismic Use Group:
(Table F
lding
Seismic Imtanco r�Factor:
Category
Irl Site Glass: (1615.1.1) Ie 1.000
Response Modification CoLaff. R: (Table 1617.6) Site Class D
6
BuildingLocation: i de, or .
p Code)
Approximate Fundamental Period,
hn = Height (feet) above base to highest level of b ildil
1617.4.2.1) t ` '0.02
II prt�ur�rnlPeriod, T�,� 314 n Ta 0.285
Maximum Considered Ea r-th uAccelerations:
Short Periods, SS: (CCS for) Ss 0.606
Second Period, l D roil
) %g
Earthquake Response Accelerations Adjusted fir Site lEffects:
Site Coefficients:
5.1.2(1) or CIS r om
F = 1.320
(Ta b le 1615.1.2 (2) o r C D ro m) FV 2.030 g
S• F,,S,
(Eq. 16-16 or CD ror
Smi FVS1 (Eq. 16-17 or CD rom
SMS E:; 0.800
i +392
Design SP tial Response Acceleration Parameters: •11.1.
SDS 2/3SMS (Eq. 16-18)
S = SDS 0.53
SDI — 0.261
SDC is the "Seismic Design C 1 =0.193
at�'
S,Olsmic Use Groups I and Il structures td on sites with rapped maximum considered
SPectresponseacceleration. at I -s e c n d p ri o d m 1, equal t r t�t� f
r greater , i�li bassigned
tSeismicDin Category E, and Seismic Use
Group III structures ltd on such sites
assigned to Seismic Design Category F.
ali b
3,9
4
Designer* Mark Andrus
Date:
Project:
712512003
Avonlea Apt, Buldg. #2
General Procedure Response Spectrum:
T=.dl/S=
Effm
Ts=Sdl/Sds-.
For periods To:
S-= .Sdi *T+Asda
Z
0
LU
LU
W
LO
Z
0
LU
F -
L1
U)
0.600
7s ? For periods y To.-
Sa
= Sds
G & S Structural Engineers
1600 John Adams Parkway
Idaho Falls, Idaho 83401
For periods >
Sa=Stf1/T
Ts:
.300
0.200
0,0 .1 1.
1.2 1.4 1.6 1.
PEI[ T
SL'iSMic Response Coefficient,
Since Seismic Design Category is D** and S1 is less thanin 0-044Sds(lelCs shall not be •
less than: C = . Sd N
e) 0.0231
CS fed Cs = d l
e) = 0.0891
Cs need t exceed: Cs = Sdl/((Rlle)*T)
CS used for design of Seismic base shear 0
P 0851
Seismic Base Shear:
See Section 1617 for the E to use in the load combinations of Section 1605.4.
QE = The effect of horizontal Seismic forces = Seismic base shear (V) = CS*W
T
T
{Eq. 16-37)
(Eq . 16-35)
(Eq. 16-35)
(Eq. 16-34)
Seismic load 'effect E. Where the seismic
sel smi c load , E , for use i n F0 rm u I a s 15-51 10, a nd 17 sh all be defined by -W
ground motion are additive,
* E + ¢*SDS*D
(Eq, 16-28)
Where the effects Of gravity and seismic ground motion counteract, the seismic fid# E,
for use in Formulas 1- a 12, and 18 shall be defined by. -
E = P*QF: - C).2*SSS*
(Eq. 16-29)
T~p
0.
.1
.
.
.
1.0
1.
1.
1.
1.
.
0.98 g
x.490 g
0.21
0.533
0-533
.
435
0.326
0.261
0.218
0.'187
0.163
0.145
0.131
r
TABLE 1616.3(1)
SEISMIC DESIGN CATEGORY BASED ON
SHORT PERIOD RESPONSE ACCELERATIONS
a. SeismicUse GrounsT qnri II tri f�., reg IE� e� � iter with-
a p d maximum considered earthquakestr l
le rte r� � i'eU�U e riea�' response
t 1} equal t r greater than 0.7'58, shall be assigned
to Seismicerg Category Ex
and Seismic UserIr r It i
des shall be assigned to Seismic Design Category F.
TABLE 1616.3(2)
SEISMIC DESIGN CATEGORY BASED ON
1 SECOND PERIOD RESPONSE ACCELERATION
L
Project X.4
Designed By—
�S—t,o�
�:
&t)
Project No. / Date
x g -Z , z let
r
A
G
S
G&S Structural Engineers
s�
22 ' Com)
<�y
& 4e�2 " ��--17 .51�;14 )
R
Sheet3 I I ?...,
Project
Designed By.�«".,
Project No. ) 7 73 / Date 7 Z%03
C/I.r�.rc �r�''lii,
�, )0 �,' � -P / 0
,Ezo- ewlr-14-
2) 3� 1:5- - 7/�,1�
/35�o{F
5JA2.01 / ) yA
v
OS13 w�
Cl'32Z7�i12�19,���22 /OS�/�
z /ZZ,
/zz - 281 IPI4
&'fie �r'Y
�Ci32 z 7 jirzl3�-s��3(�
.33,5] 1-3�
L
-�AL
v
d
k
l ., - : +�-• • •: •._xaa�,r4 sna�vxy�_�rA°ri-0'�F'�.W;l'T }r.j &4r,0407e
� a5do t1,1C
444ae ++r'q'vfr1�4+ .•�'+4e�-vt:•`u4._p zn'�MF?.fru^hric.•ti.r� ...n: O y Sheet
¢ �
e
.,rvv .r 4i v. •v: •d1 s.•. as'•..a a .i' �
G&S Structural
9 0
Project
Designed By
04
10
Im
All
AkI �Y- 14
COM
I
�l� f�51� JA,)1 8c�� � i� v/ GG
�'1EfC/iG/�h1 Ce, �7d ��.sBCtuL'. �Pl�(1
Project No.�%'
�_3
�3/ Date
0
(iosyZ/err )ZZ/
fit
/Byo3 /ylJ)ZZIHy
(259VY/yV) z2. /yy
zoy,0
1-1
��f
Y/ nr -71
zlc��Vo
4;$l«
40
50 .
<i�eyz/yy )1z l��,r��
(/S�/03/yH� ZL�%g-G9
�ZS 9�y/y�r)
G&S Structural Engineers
Sheet Af
K I
a
Project
Designed By
07
Project No. date 7-4?�--�23
�-3
I //& j_e�
'Al 7
RM
ly-2;1 mpft
G&S Structural Engineers
71�s) ley) �- b...ls� q
g9rs,A,�-ice
3Zlo70
�3G3)tl9L��)1 zzD� = ZY(J
Syiv
I
I/
Sheet � r I�
Project
Designed ByJv�
r/ �GCG�r� �8x� o
G&S Structural Engineers
Project Noll, / Date
// )1a zrr? =-
�J71 S
syv /yam
Zl�3i�
mom
7-S )l
yyl°V 14���l�d)�=
A
7 �/� /--/ v
eZI-14ilid-
Sheet �'��
4
0
Designed By
ZIIIIIII0
Project No. ��
Date
xM � j2�%)�- �-,)]a�z�� � �ryzv�
4-
Zoo -
7-2 7—Q3
9y>z� �� /.�1
98 Y4(o � .��
e6
R�7 � CZI�o) �-eC� 1 � 3 Py7 7 Y%
[a
3
Sheet 2ti
.... . ......
[a
3
Sheet 2ti
Project
a9 -Z
J
Project No.'2.'S3�J Date
Cl.ec k ,�1N�%u� 07,�.,.,,,�
r,>7W z- �ZticS,5-)c�� Sys
R� � �ZZc,7�� sc,��� s,s�z-�s3WWI
(a Zn I LY -I S1
a 5-eeeol lrdf,-e -..
00., /n'ret
V4P
oTry
595 Z�'6 -•�S�
000, Cof
74 o5 �s, j
ILZ393y 1'L-/61
MMF
�ID �. ? � 7�
7;*� /1? (46 +41
dffi
A v)
h ID ; = (.0 1Zy /sj
y2 5-v y1�-�b3
S
Sheet StIs
_...
r
'f„=.'vs.. rca�tioa..'-v-:�"r�-�,,.ti.
Structural
Engineers
,_•r.0. ..
..,d.: � ,.-...•r.. v...r} -• .�. _ .. .
y2 5-v y1�-�b3
S
Sheet StIs
1
Project
'Res.igned By
oj�s r a,, I
7
t/e-v/4
Project No. -d 1 pale 7
45PLrfr�
v..,I.p;CdJ
� Cz� J 'y x 11 �b 1-Ut.
yPI;
Z�K IL/tV 11
9L
410
JI
or
7Z40
�.. k
• ......ZOO-
iy
_ ate.: �e.�:.•� —.t. xa e
f
C �
n5 ......... i'b... .._ ..... ..�
4
e.
4.rsr xsrsypaar.y:., .... v.�.�-i.ss: i.:'ua � 5$
MM{_ P•vi4 vrf.v.+Y'd ts. -04• •^...v' eL�...
•—:h•:�-. +h-d'•J.v
y. •• �
R
. I
s •. �
�
.. :.
.a...v r{. ir+. er��� h. �Y.is••-f- Yse.�[+.w•.*psvawud
•• •
G&S
Structural Engineers
R.:...rs eY �'v�v Y'{QC=a,rA:-0.^aT�.54i�p.lys}�Lih��'4a.,;-$.... n
eev-a. .. e•fMs. r.: � ,� '^'-. n. .r {5 � ... - .. .r.
... s1'17 !'ev fh..,.4._ a. f r .. .. ..
Sheetif—tol-
u-eeam(rM) 6,06 sella- ni��B?039 11 7/$" TJ101Pro(TM).j50 @ 16" o/C
u:er z 7rz9n0039:4e53ant THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE
Pagel Engine Version: 1.6.44 APPLICATION AND LOADS LISTED
Overall Dirnension: 32' 6-11
yam. =��r■ a%�Lr 96 ILA %MI s
Analysis is for a Joist Member,
Primary Load Group - Residential -Living Areas (psq' 40.0 Live at 100 ° durations 15-0 Dead
SUPPORTS: -
Design
Control
Control
Input
Bearing
1562
Width
Length
1 Stud wall
3_.10"`
2.251F
Stud gall
3-5011,
3.50H
Stud wall
3.50"11
' 2511
Vertical Reactions ps]
Live/Dead/Uplift Total
<�O 1134 10 1534
1071 140 10 / 147
70/115101.48s
[detail
Other
A3_ Kiat Board 1 Ply 1 1/4" x 11 /8" 0_8E TJ -Strand Rim Board
B3 None
3: Rim Beard 1 Ply 1 1141P x 11 718" 0,8E TJ -Strand Rim BoarcKD
-See TJ SPECIFIER'S I BUILDERS UI'B for detail(s): 3: Rim Buerd,133
DESIGN CONTROLS:
Sheer (Cbs)
Vertical Reaction (lis)
Moment fl -Lbs)
Live Load Deli (in)
Teta I Load Defl (in)
TJ P re
Mairnurn,
Design
Control
Control
-757
-708
1562
Passed (45
1473
1473
1 895
Passed (78
-2374
-23-74
3765
Passed (3%
0.213
0,660
Passed (1-1946)
0.267
QZ40
Passed (L/754)
48
45
Passed
Location
Int. end Span 1 under Floor loading
E3earing 2 under Floor leading
sarin under Floor loading
MID Span 1 under Floor ALTERNATE span loading
I'D Spam 1 under Floor ALTERNATE span loading
Spam 1
Deflection hterfa: f 1NlUM(LL-U360,TL:L 40),
-Allowable mornent was increased for repetitive member usage.
-Dofleotion anallysis is basad cri composite a tion w fth single layer of 23132', /,4'' PsineIs4
-Braoing(Lu): All rnpression edges ftoP and bcttorr� rnu�t be �'.��� �.at�n�� LUL � I�IL�b ec�d d�el�ir`r�.
braced at F 81. o/c unfess detailed otherwise. Proper attachment -and positioning Of lateral bracingis re '
-The load conditions considered in this design analysis include alternate rr�em ruire t achieve a rr,omber stability,
petterr� loading.
TJ-Pro.TING SYSTEM
-Tho TJ -Pru Rating System value prov-rdes addItional floor Performance information and
well's- Additional considerations for this rating In,�i�#��'. pilin - ��, �ir��k is based on a GLUED& �lAl`LE[] 3/3"', 4F� Panels (24" Baan Rating) decking, Th. controlling span is
Applied Gypsum Ceiling° structural analysis of tho deck hes not been pefformad b the program. supported b
�' � Comparison Value,, 1.5
ADDITIONAL NOTES:
-II'ORTNTI The anaf s'rs Presented is output from software developed by Trams Joist LTi). TJ warrants the sr -
zine of its eructs this soma re i
criteria and a accepted d si n values. The s �' 1I be �e 'r�plisled in accordance at a T� product design
� -
o�o product application, input design Icads, and stated dirner��ier� have fieri provided b� the sere user.
Ass i ate. This output has not b9e n reviewed by a TJ
-Not a I l products are readily available, Check With your supplier o r TJ technical representative for roduct availability.
-`AHI i LY I FOR TRY'S JOIST PRODUCTS ONLY! PRODUCT UB �
SUBSTITUTION �I[� THIS ANALYSIS.
-Allowable tress Resign methodology was used for 86Iding Code UBC analyzing the TJ Distribut nrodu
� et listed above.
PROJECT INFORMATION:
OPEIR-ATOR INFORMATION:
Mark Andrus
Structural Engineers
1 600 John Adorns Fes., Suite 200
Idaho Falls, IU 83431
Phone, ( 08) 523-6918
Fax (206) 523-6922
s@dataway.net
COP right 0 2003 by Trus Joist, a WeyerhaeusE�T Bu5inez;s
TJIe and Tj-8earmD are registered tradernaz s of 'Trus Joist
e-1 30i s t`r P rom` and TJ -Pro""` are tratdeniar s of finis Joist.
R.
y /
7J-Beam(TM) 6.06 Senal�mp�zpjg
user: z 712912oo39:50:29nM THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE
Page 1 en9inavarsio,,: 1.6.44
APPLICATION AND LOADS LISTED
11 7/8" TJ1V/Pro(TM)-150 @ 16" o/c
Overall Dimension: 371
Anmysi s is for a Joist Member,
Primary Load Group - Res i dent is l - Living Areas (ps : 40.0 Live at 1 duration, 15.0 Dead
SUPPORTS:
Detail
A3, Rim Board
8
D3
A: Rare Board
-See TJ PE IFIE ' } BUILDERS FIDE fGr detail(s): A3: Rim Bcard,B
DESIGN CONT RL :
Shear (lbs)
Verti f Reaction (Ibs
Moment (Ft -Lbs)
Live Load Dei (in)
TotaC Load Deft (in)
TJPro
Maximum
Input
Bearing
'vertical Reactions (Ibs)
1553
Width
Length
LlveiDead/Upfift[T tal
1 Stud wall
3.5011
2.2514
305 / 102 10 1 40 7
Stud Wall
3.50"
.04"
7911275 10 11
Stud wall
3.1"
3.50"
774 / 266 10 / 104o
4 Stud walk
3.50"
2.2511
296 / 98 J 013.94
Detail
A3, Rim Board
8
D3
A: Rare Board
-See TJ PE IFIE ' } BUILDERS FIDE fGr detail(s): A3: Rim Bcard,B
DESIGN CONT RL :
Shear (lbs)
Verti f Reaction (Ibs
Moment (Ft -Lbs)
Live Load Dei (in)
TotaC Load Deft (in)
TJPro
Maximum
Design
Control
Control
1553
-515
1562
Passed (33%)
1 C66
1066
1895
Passed (56%)
-1262
-1262
3765
Passed (34%)
U-074
-410
Fussed (u999+)
0.093
0,615
Passed (U999+)
60
45
Passed
Other
1 Ply 1 1/4+0,x 11 718" 0-8E Tj- trand Flim Board
None
None
1 Ply 1 114''x 11 718" 0.8E TJ -S trand Rjm 8 oa r
cMD
Location
Rt, end Span 1 under Floor ADJA ENT Pan loading
Bearing 2 under Floor ADJACENT span loading
Bearing 2 under Floor ADJACENT span loading
M I D Sp a n 1 u n der E leor A,.LTE R NATE spa a n loadln
MID Span 1 under Floor ALTERNATE span loading
Span 2
-Deflection Criteria_ lVl1 N IIVIUI (LL:Lr360,TL: L 40).
-Allowable moment was increased for repetitive member u -sage.
-Deflection analysis is based On cOMPOSitO acticrl with, single layer of 23/32'9', 14'F Panels24'r ars Ratin
-Braui�ng(Lu)R All n�press io n e(topand bc ttcm M uPanels(24,r '�� GLUED � NAILED wood decking, be braced at ' 8'" o/c un lea s detail led othe r wise. P rope r attach m ent a ridoslt ion i n of la
-The load wriditions Considered in this design analysis include alternate and adjacent p drr,�nt member attem loading. P � #e�ral bracir� is required to achieve t�e�ber #gib let
.
TJ -Pro FZATING SYSTEM
-The Ti -Pro ati ng SYStOm value presides additional floor pie dorm a n information and is h
'galls. Additnaf sideration for this rating Include: Ceiling - 1�' "� C�ir��:t lied �; seed �rti a GLUED NAILED f 2' 3���� Panels 2�" an l titin@) decking. The controlling span is u
� � � �' parted bar
R u iI-[ng- str`ucturaI analysis of the decd Inas not been per-f`ormed b the r ram. Gem a 4
p p r�sor, a 1 ue: 1. 55
ADDITIONAL i'�YE,:
-IMPORTANT! The analysis presented is output from software developed
by Trus Joest (TJ). TJ warrants the sizing of its products by this software will be design design a cm lished
�� a� rda n with
ith TJ product design
criteriaand ode accepted �aIae �. T. sper�c product application, input toad . andstoted dimensions ���� ha�e been provided b the s�ftare user. This Output has riot been reviewed by a TJAssociate,
-Not all products are readily available. Check with YOur supplier or TJ technical representative f
-THISANALYSIS FOR TU JOISTPRODUCTSQALY! pre
uct availability,
QCT UB TITUTION V ID THIS
ANALYSIS.
-Allowable Stress Design methodology was used for Building Code UBC analyzing the TJ Distribution `
eruct :fisted above-
PROJECT
bove_
PROJE T INFORMATION:
OPERATOR II` rORMATION:
Mark Andrus
tfuttural Engineers
1600 John Adams PkWy-, Suite 200
Idaho Falls, ICS 83401
Phone: (208) 523-6918
Fax : (208) 523--6-922
Qs datawav_ net
COPYright 0 2003 by Trus jo �stf a WeYerhaeuser Business
and TJ=Seam(& are registered tr de narks of Trus Joist.
-� Joistmp ftcm and TJ -Pre"' are trademarks of Trus joist,
LOADS: ( lbs, psf, or p!f )
Load I Type
Load2 Live
*Tributary wic
MAXIMUM REF
COMPANY
Mark D. Andras, PE
Structural Engineers.
1600 John Adams Pkwy., Suite 200 '
Idaho Falls, 183401
July 29, 2003 09:51
Design Check Calculation Sheet
Sizer 2002a
Distribution.Magnitude
Location [ft]
Start �'�.tt�n
End end Load?
PROJECT .
scams
�- 1 '
Dead 730 4
33
Live 211• 730
Total 1 6050
Bearing: 2848 8483 2117
2848
Length 1.1
a3.2
..1
LVL n -ply, 1.gE, 260OFb, 1 -314x1 1 -7I8", 2-Plys
Self Weight of 1.98 p!f automatically included in loads;
Load combinations: ICC -115C.; "
SECTION us. DESIGN CODE Nos -1997: (lbs, Ibs-ft, or in)
Criterion
Shear
Bending +
Bending(-)
Dead Def 1 ri
Live Def 1 n
Total D fl'n
Analysis Value Design
ADDITIONAL DATA:
FACTORS:
d
3631
Vr
.0
t
6571
M r
p
1.00
9332
Mr
0-0
=<L/999
2600
1.00
0.12
=
L
0.37
0.16
285
L/850
0.73
ADDITIONAL DATA:
FACTORS:
F
CD
.0
t
Fb' +=
2600
1.00
1.00
1.00
Fb r -;
2600
1.00
1.00
1.00
F t =
285
1.00
1,00
1;00
P -
1.8
million
1.00
1:00
Value
7896
17848
17848
L/360
L/1-80
8�nalYSis /Design
V/Vr = 0.46
M/Mr = 0.37
M/Mr _0.52
L CF CV Cfu Cr L
1.000 1.00 1.000 1.00 1.00
1.000 1.00 1-000 1.00 1.00
2
91
Bending ( + ) : LC# 3_ D+L (pattern: L_) , M = 6571 lbs -ft
Bending(-): L # 2_ D+L M 9332 lbs -ft
Shear ; L +Lr V 4242r V@d 3631 lbs
(pattern: L_ ) Ej= 879.14eO6 lb -int /pl y
Total Detlection 1 . ( dead Load Deflection) + Live Lai Deflection.
(D=dead L1 --live =snow W=wind I -impact =con tru t�
�on Ldz--Conntratd)
(Ail LC's are listed in the Analysis output)
(Load Pattern: S= S/21 KL+S or L+C, =no patternl
oad in this span)
DESIGN NOTES:
1 Please verify that the default deflection
I
fts are �Pr�Pr��t� fir�r ��f��t�n
. L -BEAMS (Structural Composite Lumber):
the attached SCLselection is ter preliminary design only. F� final �r design
contact your Ictal L manufacturer.
3. BUILT-UP SCL�BEAMS: contact
manufacturer for connection details when loads are no
t applied equally to all yrs.
i
0
LOADS: (Ibs,psf, or pit )Load i Type Distributiion
Load1 aia1 IT
Load2 Live Axial UDL
LoadLoad3 Impact
F 1 1 Area
*Tributary Width (ir)
mAximUM REACTIONS (lbs):
COMPANY
Mar,Mar,k D. Andrus, P
Structural Engineers
1600 John Adams Suite
Idaho Falls, ID 83401
Design Check Calculation Sheet
Sizer 2802a
Magnitude Location [ft)
Start End Start End
480 (Eccent i it 0 .r
1280 ( crit 1 ci t = i n
Paha-rn
Load?
No
"JET
0'
Dead
L1 ~
otai 20 20
0
Spaced at 12" c1c; Self Weight of 1. if automatically
(b); Ke x Lb.- I - 00 x 4.00; 4.00 Ift); L : '1.00 x 8,00= 8. -
Lb; Repetitive factor: applied where permitted (refer to online help); Loan[ or enation : ICC -mc;
SECTION Vs, DESIGN CODEN DS .1997: ( stress=psi, and in )
Criterion
Shear
Bending
Axial
Axial Bearing
COMbined(axial
Dead De 1rr
Live £fie l ' n
Total D flOn
Analy5js Value
fv @d
_
0.03
157
f
_ 337
+`'S
2 .00
337
compression +
li ible
�<L/999
0.17
�0.05
V i
.lam /999
'ADDITIONAL DATA:
FACTORS:
F ' + -
F '
Fp F
E'
Fc t -
F1 -
Design Value
Fv 190
Fb = 910
F" _ 436
Ft 2020
Side loadbending)
Utj =
0.53
F
D
0.03
t
L
900
+`'S
2 .00
1.00
1..00
0.937
L/ IiSU
U/lBo
F
1.50
•
1.15
+ bending—
CV
end]! n
Aral iln
f
0.03
fbbp _
0.05
625
0.77
1.00
0.17
1.00
1350
1.00
1■00
1.00
1350
2.00
--cornbined
comp.
1.6
million
1.00
1:00
y
L/ IiSU
U/lBo
F
1.50
•
1.15
+ bending—
CV
end]! n
Aral iln
f
0.03
fbbp _
0.05
cF'
0.77
f 9/F -Ci 1 -
0.17
1.000
t u
1.00
0. 14 6)
Cr L
1.15
3
Beading (+ )■ L 3 U+L+I f - 4 lbs -ft
Shear: L# = D+L+I ,= 20f d
Deflect' ][,' _
j— 8.57eO6 lb- tit
Total Deflection - 1 , 0 ( Dead Load Ike i I e ti.or�
Axial ) Li Lead Deflection.
L = D+Lj P = 1770 lbs
or in d : LC# 3= D+L+I , CDS - (1 - fc/ FcE) 0.47
(D=dead L=jive S=snowl-ind 1 =impact = Cons t ruc
(All LC's LC'are listed in the Analysis output)
DESIGN NOTES:
1 - Please verify that the default deflection Homits areappropriate for your application,
3
3
2
y `/
I
48
s
LOADS: (1bs,Psforp1f)
Load I Type I Distribution
Loadl Dead A i 1 UDL
Loa Live Axil TIL
Lo I act Full Area*Tributary Width (in)
4
MAXIMUM REACTIONS (Ibs):
F1
Dead
Live 27
Total 27
0
Works
ORE FOR o<)L) jG
COMPANY
Mark D. Andrus, PE
S Structural Engineers
1600 John Adams Pkwy., Suite 200
Idaho Falls, JD 83401
July 29, 2003 10:23:54
Design Check Calculation Sheet
magnitude
Sart Fn
320
(Ec ent
4 E c nt
f
Sizer 0 a
Location [ft]
Start Fn
icitY0.00 .gin)
Pattern
Load?
No
Lumber Stud, D.Fir-L,No.2,2x4"
Spaced at 1611
CIC; Self Weight of 1.25 p if automatically included • .
I�Ir�rre�i bas e; �.� = ����(b); Lbs: �[ft];
�n ���y! 1 . .0 4.00 L. 1.00 8.00= 8.00[ft];
L , Repetitive factor: applied where permittedrefer t online •
� � ��ll��� Lidcombinations: [C -IB.;
SECTION `Vs. DESIGN CODENDS..�g�T; � stress=psi, and in j
Criterion
Shear
Bending (+)
Axial
Axial Bearing
Combined (ala_
Dead Deft' i
Live DeflIn
Total Deft I n
Anal.'Analysi'S Value
fb = 209
fc 300
f9 300
compression +
negligible
0.'7 =<L/999
0.07 =<L/999
ADDITIONAL
FACTORS:
F
CD
Fbl+=
F Y ' =
900
2.0
2.00
Fcp' =
625
1.00
Fc' =
1350
1.00
Fc'
1350
2.00
Er -
1.6
million
Fr
2020
1.00
Design
F'
Fb r
F' -_
Fg'
-de load
0.53
_L }
53
CM ct CL
1.00 1.00 0.937
1.00: 1.0k.+
1.00 1.00
1.00 1.00
0.07
--combined
rorp +
1.00 1.00
1.00
0*1
190
2910
436 .
2020
ending)
L/180
L/180
1.15
bending --
Analysis
ndin -_
nal i /resign
fFb_
0.07
fF
0.69
f Fgr
0*1
CV
1*000
0.281)
0,146)
ndi (+) : LC# 3 = +L+ I # M_53 lbs -ft
Shear'
! L4 3 = D+L+ I j V 27, V@d
25 lbs
Deflect
Total Defection 1 -WSO � � T A n
Lion Live Load Deflect
Ami;l L +L 10ti+
=
Y � 1Ib lbs
53
(= dead L'1 =cF .
now =wired I im act =cOn. t uc t i c n
(All LC's are listed n the Analysis output)
PROJECT
Columni
DESIGN NATES: � � -----
1-Please verify that the default deflection limits are appropriate for your appficatian.
�n�r
0
7
27
q
illWor��4°
•
LOADS: (Ibs, psf, ar p!t)
Load Type Distribution
Loadl Dead_Wxd�aIUDL
LoadLoad2 SnowAxial UDL
Load3jWind Full Area
*Tributary Width, (in)
MAXIMUM REACTIONS (Ibs):
0r
COMPANY
Mark D. fir,ndrus PE
Structural Engineers
1600 John Adams Pkwy., Suite 200
Idaho Falls, JD 83401
July 29, 2003 1218*7
Design Check Calculation Sheet
Sizer 2002a
Magnitude
Start End
720 (nt
1614 (n
B_ (16.0)*
Location [ft]
Start End
i itY - 0.00 in)
Pattern
Load?
No
(PROJECT
Columns
Dead
Live 47
Total 47 s7
P
4
Lumber Stud,D,Fir-L, I.,
Spaced at 16" c1c; Self' i lit of 1.96 pif automaticallyin
cluded in loads;
Lb; , , ), . 1. 0 x .00= 4.00 eft), a Ld! 1-0 x.00=[ft]; •Lb;Jepet�t factr:appIi� � r� r� �p);oad . �� L���f � � �. t� � Lig, �t� m �-combinationsm ICC -IBC;
SECTION vs. DESIGNCODE NDSA997: (Stress=psi, and in)
Criterion
Shear
Bending .( + )
Axial
Axial Bearing
Combined ( aia
Dead D flrn
Live Deflin
'dotal DeflIn
3 bw- -
Analysis Value
Design
fV @dsr
1.60
f = 149
Fbw =
fc 379
Fl
9 379
F r
compression + side
load
negligible
million
0'03 L
0.53 =
1.00
Load Deflection) + Live L oad Deflection.
AULII I IUNAL DATA:
FACTORS:
Fb l +
Fur
Fcp '
F F E
F ' -
F r
F
CD
900
1.60
5
1.60
625
fFt
1350
1.1.5
1350
1.60
1.6
million
2020
1.15
CM t L
1.00 .1.00 0.915
1.00
Anal iS Li n
1.00
`� -
1.00
Shear
1.00
fFt
1.00
i471-
42 lbs
1.00
Fc'
--combined
comp.
1.00
fF# =
1.00
Load Deflection) + Live L oad Deflection.
briding)
Eq.* -
1.00
Value
Anal iS Li n
152
`� -
0.05
Shear
1970
fFt
0.08
i471-
42 lbs
439
Fc'
0.86
.6D+w .6D+EIS . 7 1b -in
2323
fF# =
0.1;
Load Deflection) + Live L oad Deflection.
briding)
Eq.* -
0.56
L10 0.06
L/180 0.06
1.10
bending -
CV
in -
fu C r L
1.000 1.00 1.15 4
4 -
(CP `` 0.257)
(P 0. 189 )
4
2
DESIGN NOTES: --
'i. Please verify that the default deflection limits are appropriate for your application.
7
Shear
LC#
4=
+j
i471-
42 lbs
'fetal
#
4
.6D+w .6D+EIS . 7 1b -in
Deflection
1.5 (Dead
Load Deflection) + Live L oad Deflection.
(D=zdead
Llilve
) 0.80
(All LC's LC'
are
listed
S=zsnow W-Y-i1d
in the
1=impact fi-ons}r;tio
,
Y7I
Analysis
output)
DESIGN NOTES: --
'i. Please verify that the default deflection limits are appropriate for your application.
7
�1 itsWor,,,
°SORWARE FOR WOOD DEMN
LOADS: (lbs,,pf,.rplf)
ICOMPA14Y
Mark D. Andrus, PE
Structurai Engineers
1600 John Adams Pkwy., Suite 200
Idaho Falls, I D 83401
July 29, 2003 1-2:19:36
Design Check Calcination Sheet
Ir 2002a
*Trihutar ldt
k.1 11)
MAXIMUM REACTIONS (Ibs):
0 1
Dead
Live 27
Total 27
PROJECT
lun1
Lumber Stud, D.Fir-L, No.1, 2xV
`paced at 16"' 1 selfeight of 1.96 PH automatically in `
Pinned base; Ladfa = width(b); ' ��� �[ft];
lu�d �r� I��s;
)� ."x.00 4.00 4.00° Ld,, t0 4.67[ft]; _L i ii # r(refer
. Ltrl u p� rt 0 bottom
� � �� nllr�� ��I)Loadcombinations: r-Ic'
SECTION YS. DESIGN CODE Nasw1997: (stress -psi, and in)
Criterion
Shear
Een ng +
Axial
Axial Bearing
Combined (aria
Dead D fl'n
'
Ive Deft 'ri
Total Def l ' n.
..h,
Analysis Value
i
Value
fV d 4
F ' _
152
f 1
Fb T2168
1.60
f = 464
Fc'
468
fg = 464
F91 _
2323
Compression + side
load
bending)
negligible
1.7
million
0.00 _ L
0.31
L/180
* L
0.31 =
L.180
Auui a ivNAL DATA:
FACTORS:
F
CD
Fb'+=
1000
1.60
FT =
95
1.60
Fcp l =
625
Fc' -
1500
1.1
Fc'
1500
1.60
E' �-
1.7
million
F`' w
2020
1.15
CM t CL
1,00 1.00 0.907
1.00
1.00
1.00
1a0
1.00
1.00
--combined
comp.
1.00
1.00
1.00
F
1*0
Analysis/Design
fFi 0.03
fb/Fbq 0.02
f F ' = 0.99
fgF, = 0.20
Eq -3.9-3 0.68
CV
1.000
U
1*00
1.10 (CP = 0.247)
+ pending-- (cp = 0.1 1
Cr L
1.15 4
4
Beading (+) 1,C,# 4= . n+ l M 32 is if
Shear LC4 4=. D+W, V 27, V d - 23 lis
E
Deflection: L # 4 . 6D+W El= 35.35eO6 lb -int
Total Deflect'
Axial 10n 1.50(Dead Load Deflection) + Live Load Deflection.
3832 lbs,
a L=lig snow =wind I=impact =coast
(All L' are listed in the Analysis output)
DESIGN NOTES
Please ver'
ify that the default deflection emits are appropriate for your applicationi
2
3
4
2
41
' r �
7
7
r
F______ -
orks
odW
wo
LOADS: � lbs, �]$f, or pif �
Loan Type Ditriuton
Loadl Dead Axial UDL
Load2 Snow Ax.1al UDL
L-oad3.Wind Full Area
Tributary Width (; n �
MAXIMUM REQ
Dead
Live
Total
COMPANY
Mark D. Andrusp P
Structural Engineers
1600 John Adams Pkwy., Suite 200
Idaho Falk, ID 83401
July 29, 2003 12:22:38
Design Check Calculation Sheet
Sizer 2002a
MagnitudeLocation[ft]
start
6
120
17.80
LastEnd
(Feat icit =0.00 )
(:accent i itry 0.00 in)
(1}0)
Pattern
Load?
wo
PROJECT
221
196
1.96
Lumber Stud, D.Fir-L,
. ,
® " c.1 ; Self Welight of 2.58 p[f aut nnaticall
y included in loads;
P in ne d base - Loa dface = width(b); Ke x L b: 1 - 00 x *00= 4.00 [ft]; Ke x L d: I - 00 X 22.00= 22.00 [ ; Lateral su
Lb; Repetitivefir: ppri�i her permitted(refer to - ] F� rt: t� - ��, fttr�
tela �� l�l� �� +�i��.tronJ: I-Ee.
WARNING: Member length exceeds typical stock length of 18.0 [ft]
i
SECTION vs. DESIGN CODE Nas_1997: (Stress=psl., and in)
Criterion
Shear
Bending
Axial
Axial Bearing
Combined (a 1 a
Dead. De fl R n
Live DeflIn
'dotal D l ' n
Analysis Value
f v @d
F
fb =
983
fc
22
f CJ
22
1.60
F p' _
negligible
1.23 =
L`14
1.23
L14.
ADDITIONAL DATA:
FACTORS:
F
CD
Eb ' +=
900
1.60
F' =
95
1.60
F p' _
625
Fc'
1350
1.1
Fc'
1350
1.60
Er '
1.6
million
Fg'
2020
1.15
Design Value
Fv' 152
Fb1 1°700
F' = 344
Fi 2323
de load bending)
Analysis /Design
fF'
0.1_
L180
fh/Fb r
0.58
1-47
fC/F'
0.06
1.00
f F r
0-01
Eq.3-9-3
0.59
' om.
1.47
=
L180
0.84
1.00
1-47
=
L/180
1.00
t CL
1.00 1.00 0.855
i.0
CV
1.00
Cr
1.00
1.000
1 a
0
1.00
1.00
--combined
' om.
1.00
1.00
1.00
F
CV
Cfu
Cr
1*0
1.000
1.00
1.15
1+-05
+ bending--
(p 0.21.)
(CP 0. 15 4 )
Bending (+) : L # 4 = . D+ r M 1077 lb --tt
Shear ; LC# 4 +j V= 196 V@d =
187 lbs
W E 76.21 :06 lb -in
Total uetlection 1. 0 (Dead Load Defletl a) +- Live �� Deflection.
} L # D+ , P = 237 lbs
Combined LCA# 4 = .6D+ # D= 1. 01
( D=Lel i � � f� ��E � 0.98
now W=wind 1; --impact =Cons tru tion
(All LC s are listed in the Analysis output)
Please verifythat th a defau It def I ecti o n 1.i M its a re appro priate
L#
4
4
2
4
4
2
q
mop
a
Project
Designed By
Project Na.` _Dated
:;y
D� � (m?'I 2Z��,-�
a (6) Ap 00p Irt,
� L /O /z LNv)Czx tr�
D` Z
l��si1�- �riP��,rih� r3 �Pr/r'r- G1irr,�r ;
Z
G&S Structural Engineers
71. 970 yo /6s
Z-7� 3 A1S/ /mss
i
Sheet
��
Mark D. Andrus, P
Structural Engineers
1600 John Adams Pkwy., Suite 200
Idaho Falls, ID 83401
(208) 523-6918
Iain Pro 6.0, 23 -Sep:
C
- p-
C-
Retained Height
Wali height above soil
,Tape Behind Wal
Height OfSoil over To
ail Density
'Find on Stem
urcharge Loads
Title : Avonlea Apts. Bldg.
Job : 03331 lDnr; Mark
Description.,..
cWall
This Wall in File: c:1rp5lmark.rp5
Cantilevered Retaining Design
_ 3.00
ft
- 0.50
ft
0-00:
1
i 0.00
in
_ 11 O..DO
Pf
z>urcnar9e Uver Heel u Ps7
Used To Resist sliding & Overturning
Surcharge Over Toe = o. o ,pst
Used for Siiding & Overturning
Design Summary
Total Bearing Loa
-..resultant ecc.
3*218 lbs
0.74 i
Soil Pressure @ To
1,908
f OK
Soil Pressure @ Hee -
1 X309
Psf OK
Allowable _
25000
pst
Soil Pressure Less Than
Allowable
ACI Factored @ Toe _
2,846
psf
! Factored @ Heel
1)953
pst
Footing Shear @ To
4.2
psi OIC
Footing Shear @ Hoe
6.1,i
P OK
All
.0
Psi
Wall Stability Ratios
Total Force @ Section
ibs =
Overturning =
5.05
.
Sliding
1.95
OK
Sliding Caics slab Resists All
Sliding
psi=
Lateral Sliding Fore
318.5lbs
psi =
Factored Pressure
u': Upward
Mu': Downward
Mu. Design
Actual 1 -Way Shear
Allow 1 -Way Shear
Toe Reinforcing
Heel Reinforcing
Key Reinforcing
21846
0
0
344
.
24
85.00
None p`
None speed
# 4 @ 16.00 in
Safi Data -- - _ -- --
Allow Soil E3ring 21000.O PSf
Fluid
Equivalent Pressure Method
Heel ACtive Press u r''f t
T
Passive _ p
Water height over hl - 150.o psf/ft
0.0 ft
FotingIlSoil Fri do 0.300
Soil height to, ignore
for passive pressure 0.00 in
Lateral Loyd 45, 0 #Ift
...Height to To _ 3.50 ft
...Height to 13oto 3. C) ft
Page: _
Date= JUL 29x2003
Code: IBC 2000
Footing- Dimension
'S-
s &
Toe Width = 0.67 ft
Heel Width 1.33
Total Footing 1'idt
_
•
F otin u Thickness 10. 0 i
Key Width - 0.00 in
Ked' Depth 0.00 i
Key Distance from Toe 0.00 ft
fc = 2,500 psi F =607000 psi
Footing n trete D res it =150.00
p
cf
Min, As. % = 0.0018
Cover @ Top = 2.00 in @ Bt.m.= 3.00 in
Axial Load Applied to Stem
Axil Dead Load - 11005.0
Ib
Acini Live Load 11320.0 Ib
Axial Load Eccentricity 0.0 in:
tem Construction
Heel
Top Stem
1,953
pf
0
Wali i t ria.f Above "Ht"
Concrete
224
-
6.09
psi
85.00
psi
Lateral Loyd 45, 0 #Ift
...Height to To _ 3.50 ft
...Height to 13oto 3. C) ft
Page: _
Date= JUL 29x2003
Code: IBC 2000
Footing- Dimension
'S-
s &
Toe Width = 0.67 ft
Heel Width 1.33
Total Footing 1'idt
_
•
F otin u Thickness 10. 0 i
Key Width - 0.00 in
Ked' Depth 0.00 i
Key Distance from Toe 0.00 ft
fc = 2,500 psi F =607000 psi
Footing n trete D res it =150.00
p
cf
Min, As. % = 0.0018
Cover @ Top = 2.00 in @ Bt.m.= 3.00 in
Axial Load Applied to Stem
Axil Dead Load - 11005.0
Ib
Acini Live Load 11320.0 Ib
Axial Load Eccentricity 0.0 in:
tem Construction
Top Stem
Design
ft=
Stem OK
0.00
Wali i t ria.f Above "Ht"
Concrete
Th icns
-
8.00
Rebar Size
_
Rebar Spacing
-
18p00
Rebar ,dated at
=.
Center
Design Data
/F B + fa/Fa
-
0.14 f
Total Force @ Section
ibs =
344.
Moment. ... Ato a I
ft-# =
344.3
Moment.... Allowable
2 , 305.6
Shear., -Actual
psi=
7.2
Shear.. .. -Allowable
psi =
85RO
Lap Splice if Above
in =
31,20
L@ p Splice if Below
in =
6.00
''mall Weight
-
100.0
Rebar Depth V
in =
4.00
Masonry Data
fm
i=
-
Fs
pi
Solid Grouting
Special Inspection
=
Modular Ratio 'n'
_
Short Terra Factor
_
Equiv. Solid Thick.
_
Masonry r Block Type _Medium
Weight
Concrete Date. -
f
500.0
Fy
psi =
601000.0
Other Acceptable Sizes & spacings
Too: Notrq', Mu < S *Fr
Heel: Not req'd, Mu < S *
Fr
Key'. No key defined
4
S,/
arF- D. Andrus, PE
Title vonleap Bldg. �StructuralEngineers
Job 03331 C nr: lar
0err aPkwy., Suite 0 Date, JUL 2972003
Idaho Falls, ID 8340
(208) 5231
This Wali in File: c:'krp5\mark.rp5
Cantilevered Retaining Wall Design
Code: IBC 2000
SUmmary Overturningai
ResiSting Forces & Moments
. T... L IFU, I .....
Item
Force Distance Moment
l
Heel Active Pressure _ 3.30.6 1.28 422.5
Toe Active Pressure _ -122 0.
Surcharge Over Toe
Adjacent Footing Load =
Added Lateral Load 4.33
Load @ Stem Above Soi
Total
_ 318.5 0-T. M,
Res isting/Overturning Ratio
.
05
Vertical Loads used for Soil Pressure 3t217.7 lbs
'vertical component of acture pressure used for soil pressure
,,...F iSTI .,F..
Fre Distance Moment
lbs ft
Soil Over Hee 220.0 1.67 366,7
Sloped Soil Over Hee
Surcharge Over Heel
Adjacent I` ootin Lnarl
Acral Dead Load on Ste
Soil Over T
SurchargeOver Toe
StemWeight(s)
Earth @ Stern T,r n iti n Footing Wi h
Key Weight
Vert. Component
_
Total
1,005.0 700 .0
350.0 1.00 350.0
250.0 1.00 250.0
. 2.00
13897.7 lbs R -M.
145.4
23117.0
sZ
a
I
Sliding Re,:5traint
#C)@ I .in
@Toe
#09 15 m
@ Hcel
7777
)loop
dMk
Ab I . . . . . . .
r.
De:5iiper 5eicct
all horiz. reinf.
5ce Appendix A
211
M.
3 P-041
RA
S.3
4
4 .5f
E)L= 1 005 , LL=
132049
.083# 1p
1. F
1908.5 F5f
5f
Err, = 0,1
Mark: -D, Andrus, PE
Structural EngineersTitf►'� rel a Ott I
John Adams PkwyJob Page-
1600-
., Suite 200 03331 nr; Mark Date-
Idaho Falls, ID 83401 Description.... L 29,2003
(208) 523-6918
Retain Pic) 6.0, 23 -Sep -2002, (C)1-989-2002 This Wall in File: cArp,51markxpS
Cantilevered Retaining Wall Design
Calculation Trace Listing
Beginning Trace
2 Sefting ACI Lia
3 �yjj actors. DL Fact. ;1,4 � LL , a t 1, _ act_. r0
that EFF Method being used
4 BaCk-Solving internal friCtion eagle from derisity and EFS angle z 24-.800 deg!
5 Victual Heel Width (past back of = 0.667 ft
6 I* I Height for Stability (wa r
Calculating rt rnin Values
Active Pressure (no water) = 3.8333 A2 * 45,00 *
9 Arm = 1.2778 ft, Moment = 422.465
10 Active Pressure @ Toe: (0.000 + 10.0000) A 2 * 35,000 , = 2. 53 s
11 Arm = (0.000 + 0.0000)1 /1 _ 0.278 ft, Homan
12 Added Lateral Load, Force = 3.7500 *(42.000 _ 42.000) 0.000 ft4
13 Arm = (10. 0000 + (42.000 - 42.00 /2.0)_ -
1ressure . ,ft, Moment _ 0.000 52,000: �-
Used To t Sliding, o DD SW over toe = 12.153
1 l ul t;nn tin . 1 Ito TotalOve�urningLoads
16 Soil 't Over Heel = 0.667
.00 110,000 = 220.000 lbs
17 Arm = 2,0000 0.667 18 Axial Load on . 1.6667 ft, Moment = 220.00 1-6667 =
Stem Toe, DL Force =1 A5.00 I b
19
20 Top Stem Weight = 350.000 Ibs, Arm = (0.667 + 0.667 / 2.0) - 1.000 ft 00 2P0UU
. 0.000 =12.000 ft, Moment = 1005 - 00 * t
21 Stem Avg. Arm =12,000 , Total moment
22, Avg. Arra _ 0.000 ft, Moment = 0.000 ft-#
23 Footirg VVe i Int _ ..0 * 10.
150.000 250,000 I Arm = 2.00
24 Key _ � _ � � � = 1. 1~t� mit = � t 0.00 0.00 150.000 , 250.000 lbs
25 Soil Vertical Component = 0,069 * 3.8333 * 3.8333 * 0.5 = 72.675 lbs, Arm:--- 2,0000 ft
26
.
t- #Total I, t = 1897,68 lbs, mL�� ,�1. fp27 MCalculated StenForces for
Preliminary Checks
28 CantileveredStem C l u lation
29 Tip Stem Section: far = 344.250
49131.00 ft-#
30 Calcuaiting Actual Shear Stress
1 Concrete Un it Shear Stress = 344,25
/ 4900 12. 0 = 7.1719 psi
32 Determine Allowable Moments
33 Top Concrete Stem Capacity = 27,667 J
34 Tip Concrete StemShear Capacit = 0.85 *sqrt(2,500.00)_
35 Ca,lcullate Bar Lap Lengths 85.000 PSI
36 Tip Stem, Hooked Embed into Concrete Footing.
37 Top Stem, Embed into Concrete ABOVE - 31-200 in
38 Calculating Soil Pressure
39 Toe Bar Depth =
40 Service �105000 , Heel Bar Depth= 110.0000 - .. _
Load fl Pressures...:.Ire
41 P = 3,217.68 Ibs, Ece _ 0.745 in, .1TPr Pressure -
159.038 p f, Heel Pressure 109.101 Calculating Factored Load Shear
Pressure = 159.038 p f, Heel Pressure
44 char @ T _ � � .� 109. 1 l pf
45 Shear @ Heele = (4.2363 - .667 ' 0.000 - 123.548 � '0f'� �••� _ 1fff�1 (12. 0 5 000) 4.2 363p i
46 Shear Distances from Edge; Toe in
47 Toe Upward 'lent = 7,32 ,51 -#
48 Toe D'nwa rd Mome rpt = 1 �4000 * (10. 0000 * 1 .0417 + 0 000 * 0
a(10.0000 c4 Moment Toe war .. 466.r=.4000 *�*041 + 0.000 0. 4+
A50 tase Stem Moment Governs! Toe Dari
51 Design Toe Moment <= 6.5 * d A 2 * SQRT(fc) --->> No Reinforcing
52 Flag t t ignore Updrd pressure p under heel- Heel Upward
53 Heel Downward Mc)ment = .400(10. 1.041 + 3 000 * 0. 764 + 0 - 000 + 0
54 Add moment due to vertical sO'l 55 Preliminary Design Moment 2,687,053 ft-#
component = i ► * 7.x.675 * 8.00 _ 988-386 ft -4
�#
56 Design Heel Moment <_ 6.5 d'12 * SQRT(fc) --->> No Reinforcing Used
57 Soil Height for Passive Pressure O000 + 10.000-0 + 0.000 =: 10.0000 ft
58 Sliding Resistance due t Friction 1
'. �= . Ike
t
59 Fri ction
stan ce a dj u sted for- S pecified '%' 1 - 00-0 569.303 = 56 9.303 1 bs
60 Sliding Passive Pressure =
(10-0000 - 0.000) 1.041 (10-000-0
(0-000 *1.041 1 . - 0.000))-
52.083 lbs
62 Passive Resistance adjusted for Specified% - 1 .000 569-303 = 52-083 lbs
63 Sliding Factor of Safety = (52.083 + 569-303) 1�318.472 = 1.9511 lbs
64 Calculating Footing Rebar Requirements
Andrus, PE
Structural Engineers
1600 John AdamsPkwy.., Suite 200
Idaho Falls, JD 83401
(208) 523; 1
Retain Pro 6,0. 2.3-S tan. 9 f) tr,� 1 q A a n n 77
Title Avonlea Apts. < « + #
Job 03331 n r: Mark
Description....
This Waft in File: Arr). mar mg;
Cantilevered
gn
Calculation Trace Listing
65
___ -I._PW ..... �. '%0%j jr—%j u - Uv I OU UUU "v U. 8 5 0 * (87 '0'0.0 (8 '000.0 + 000
66 Calculated Stem Forces r F0 18
67 Cantilevered Stem Calculations
68 Top Stem Section: Shear = 344-250 lbs, Moment = 41131.00 ft-#
69 Calcualting Actual Shear Stress
70 Concrete Unit Shear qtr
1 Determine Allowable Moments
72 Top Concrete Stern Capacity =
73 Top Concrete Stem Shear Capacity = 0.85 * 2.0 * sqrt(2,500.00) � 85.000 psi
74 Calculate Bar Lap Lengths
75 Top eta Hooked Embed into Concrete
76 Top Sten, Embed into Concrete ABOVE
Pane:
'
UL 29x 2003
f
P
-P
44
Fl�vonlea Apartments Bldg, #2
Service Soil Bearing
l4 B I Maximum Bearing 1294.17 psf DL+LL
Max/Allowable Ratio .647
�a T1294.17 psf
:- , Y R
e � .
0 Psf
uplift
r
�v'e � �te�r•.,. 9 : .. , ..
e <
w_ ., ._._..-. ..
Flexure Design
Maximum MuXX lfd 4.30799e-7 k -ft ACI 9.1
D �--� C mX Maximum MuzZ /0 .312 k -ft ACI 9.1
Allowable Soil Bearing
Concrete Weight
Concrete f c
Steel fy
T
r
.H
CD
C
2000 nsf
:145 Pcf
2.5 ksi
60 ksi
ED]
C
$$X Dir. Steel: .216 in 2 (min)
Z Dir. Steel: .324 in 2 (min)
z direction steel requires the following placement:
Region 1 (starts of A}: 3 in Steel-- .032 in 2
Region 2 (middle): 12 in Steel :.Z 5 9 [n 2
mwm� Region 3 (ends at D): 3 in Steel: .032 ins
Maximum Shear Check Ratios (Vu ISS VC)
Two V1lay krunching} Shear
One Way Shear, X fir. cut
One Way Shear, Z dir. cut
HA
0 ACI 9.1
0 ACI 9.1
Overturning Moment Safety Factors (OTM SF)
OTM SF About X -X Axis NA DL+LL
OTMSF About Z -Z Acis NA DL+LL
Concrete Bearing (For Vertical Loads Only'.)
Maximum Bu /fi6 4.431 k ACI 9.1
Allowable -B -c 140.25 k
Loads
DL
LL0
Mx (k -ft)
Mz (k-ft).OverburdenIWAL (Ps
+Mz J +Over
A n
s% 7
LO
N
Alt
1C
1 .25 ft
Avonlea Apartments Bldg, #2
(9
3 ft
Allowable Soil Bearing
Concrete Weight
Concrete f c
Steel fy
Loads
DL
LL
:2000 psf
:145 pcf
:2.5 ksi
.1
60 ksi
service Sail fearing
Maximum Bearing
Max/Allowable Ratio
VAI
Is]
1530.94 psi DL+LL
.765
B 1530.94 psf
0 psf
J
Uplift
C
Flexure Design
Maximum MUXX I
Maximum MuZZ /)2f
C
6.384 k -ft
6.384 k -ft
ACI 9.1
ACI 9.1
$$X Dir. Steel: .648 int (min)
n Z Dir. Steel: .648 int (min)
Maximum Shear Check Ratios (Vu /)2l
Two Way (Punching) Shear ,351
One Way Shear, X dir. cut .262
One Way Shear, Z dir, gut ,2�^
VC)
ACI 9.1
ACI 9.1
ACI 9.1
Overturning Moment Safety Factors (OTM SF)
OTM SF About X -X Axis NA DL+LL
OTM SF About Z -Z Axis NA DL+LL
Concrete Bearing (For Vertical Loads Only!)
Maximum Bu I)e 31.517 k ACI 9.1
Allowable Bc 153 k
VX z�k)
*uX +Vz
A D D C
Mx (k -ft
M (k -ft)
5
F
Overburden (psi
0