Loading...
HomeMy WebLinkAboutSTRUCTURAL CALCS - 06-00533 - Avonlea Apartments - 9 UnitsI. AVONLEA APA F Avonlea Apartment's RTML='NTS REXBURIGI IDAHO STRUCTURAL DESIGN CALCULATIONS FOR THE NEW AVONLEA APA,RITME NTS -BUILDING #2 LOCATED IN REXBURG; IDAHO Client.- Keith T. Kennedy, Architect Idaho Falls, Idaho Designed by: Mark D. Andrus, PE Project #03331 PAGE 1.0 2.0-2.4 3.0-3.18 4.0-4.8 5.0-5.8 TABLE OF-C-ONTENTS DESCRIPTION Design Criteria Structural Drawin Latera! Design g Napes r,00r naming Design Foundation Design The steel Framing at the entry is to be d'esi c . rti t:�, z� Telephone: gned by o G & S Structural Engineers 1600 John Adams Parkway Suite 200 Idaho falls, ID 8340 1 E-mail: s@ wav-ne Fax: (20$) 523-6922 W Telephone: (208) 521-691-8 Dade: Project: ovation: Building Cade: Design Loads,lb Road: Floor: Soil: G & S Structural Engineers 1600 John Adams Parkway Suite 200 Idaho Falls, ID 83401 E-mail: gs@dataway.net DESIGN CRITERIA JUIV 2c.), 2003 Avonlea ApLartments — Buildin Rexbura Idaho 20n0 international Buildin Snow Load (SL).- Dead Load (DL): Live Load (LL): Dead Load (DL): F� Code (IBC 35 PSF 20 PSF --------- 40 PSF 1 15 PSF Fax: (208) 523-6922 Project #03331 4ztio Code 83440 Assumed soil type: SW9 SPIP SM SCI GM GC (Sand, silty sand, clayey sand, silty gravel and clayey gravel) Allowable soil pressure-, 2000, PSF � Y. Wind: 90 -Mph 3 -second gust Exposure B Importance Factor = 1.0 Seismic: Site Class D Design Category Q Importance Factor 1.0 -n Per IBC Table 17 804.2 Sheet 1.0 STRUCTURAL DRAWING NOTES AVONLEA APARTMENTS - BUILDING #2 I. CODES AND SPECIFICATIONS A. International Building Code .2000 Edition B. ACI 318-99 Building Code Requirements for Reinforced Concrete C. AITC Timber Construction Manual - 4'h Edition II. DESIGN CRITERIA A. Wind Loads B. Seismic JBC C. Live Loads per IRr. Sec. i fi07 Root (Snow Load) Floors Slab on Grade Interior Wali Laterad Pressure 1. z. 3. 4. D. Dead Loads 1. Framing System dead Loads 3 Second Gust Win Exposure = B I = 1.00 d Speed = 90 MPH Site Class = D Seismic Design Category = D Seismic Use Group = 1 Uniform (PSS 35 40 100 5 20 PSF (Rood 15 PSF (All Floors) E. Design assumptions 1 q h i l ha n ri n _ • • �-��i �-�u� �� �a rl uaaml v a�bu���eu to ae zuuu for columns and wall footings as per I BC Table 1804.2 based i►nnn a canri ciE+.. en I.,,...,..,..�� gravej, ywas�w,�ayGy 3dr �U, sj��y ana ciayey gravel type sail (SW,SD, SM,sc, GM and GCY Any variations encountered, different from the soil type assumed, shah be brought to the attention of G&S Structural Engineers before proceeding. Equivalent fluid pressure = 45 PCF. F. Allowable Stresses sunless otherwise noted) I. c;oncrete fc (28 days) 2. Concrete Slabs (28 days) 3. Reinforcing Steed4. Wood Framing a. Stud walls b. Joists c. Laminated Veneer Lumber {LVL} III. GENERAL STRUCTURAL NOTES 3000 PSI 4000 PSI Exposed to freeze/thaw 3000 PSI Unexposed slabs ASTM A615 Grade 60 Construction Grade Douglas otherwise noted Trus Joist or equivalent 1.9 E Fir - unless A. All footings shall bear on undisturbed soil or rack. The foundation shall bear on the same soil type throughout the entire structure. A minimum distance of 3`-0" shag be maintained from finished grade to the bottom of all concrete footings. 210 5 B. Contractor shall verify all dimensions in the field; any vasa#pan from the drawings shall be brought to the attention of the. Architect. Any proposed field changes shad have prior approval from the Architect. C. Adequate shoring and bracing of al structural members du0 ring construction shall be provided. D. Backfill under slabs and footings shad be with approved material. Place fill in 8" maximum lifts with 95°/o compaction in accordance with ASPM 41557. IV. CONCRETE A. Concrete shad be of ready mix type conforming to ASTM C94. No special inspection is required based upon IBC Section 1704.4. B. When. the average daily temperature is expected to drop bel -ow 40° F f1111111111111111111 3 or more successive days, the concrete shad comply with the Dald her Concreting Standard (ACI 306). Place no concrete against frozen earth. C. all compression test results to be evaluated according to ACI Standard Recommended Practice dor Evaluation of Compression Test Results of Field Concrete (ACI X14). D. All detailin fabdcation and placing of reinforcing bars shall conform to the A.Cl Manual of Standard Practice for Detailing Reinforcing Concrete Structures {ACI 315}. E. Splices of reinforcement at points of maximum stress shall be avoided wherever possible. Minimum overlap for lapped spices shall be 30 bar diameters unless otherwise Holed. F. ASI reinforcement to be supported in the forms and sPewaacd thwire or plastic bar supports conforming to the requirements of the ACS Manual of Standard Practice for Detailing Rein -forced Concrete Structures (ACI 315). Reinforcement in footings shall be supported on precast concrete block supports c�vnfvrming tv Concrete Reinforcing Steel Institute Manual of Standard Practice (1992 Edition). G. All continuous reinforcement shill terminate with 90° return or hook or separate Cvm�r bar. H. All vertical reinforcement in piers and walls shall be doweled from the footing or structure below with rebar of the same size and spacing as required above. I. Construction joints in large areas of slab on grade s�a[I be ��aced in long stip construction fashion in widths not to exceed 20 feet.. Control joints at 20 feet maximum shall be tooled and/or saw cut transverse to the length. J. All construction joints shall be located so as not to impair the strength of the structure. Unless noted on the drawings, all reinforcement shall be confinuaus through the joints. Each construction jaunt shall be keyed. K. No aluminum products shall be embedded in the concrete. L_ Unless otherwise noted, reinforce all concrete walls as fQllowS: Vlfall Size Horizontal Reinforcement Vertical Reinforcement 81C 8c 1011 @ 12it 0. C. ;;N 1811 O.C. 2. 1 lk Place steel in center of walk and dowel to footing below with the same dowel size and spacing as vertical reinforcement. All dowels shall have at least 30 diarnetprin embedment. Provide comer bars at all intersecting corners. Use same size bar and spacing as hodzontal wail reinforcement. M. All vertical concrete surfaces below finished grade, where in contact with earth shall be protected with an asphaltic coaling. ' V. REINFORCING STEEL A. Welding or tack wedding of reinforcing bars to other bars or plates, angles, etc. is prohibited. B. Reinforcement shall be accurately placed and adequately secured in position. Location of reinforcement shall be as indicated on the drawings. The fallowing protection dor reinforcement shall be provided. Minimum Cover: Cast against and p-ermanently exposed to eatth......mom ..3'1 Exposed to earth or weather - #5 and smaller... 1-1/281 Not exposed to earth or weather - Slabs, Walls. @ 0. 3/411 Vi. PRE-ENGINEERED WOOD TRUSSES A. Trusses to be designed by Manufacturer. See architectural drawings for rood slopes and/or truss configurations. Review structural drawings for intended truss placement and support locations. B. The pre-engineered roof truss members shall be designed to s ollvwing Toads in addition to the dead toad of the member as applicable: 1. 35 PSF roof snow load plus drifting as indicated on plans. 2• 12 PSF dead load bottom chard. 3• 8 PSF dead load top chord. 4. 20 PAF wind load. G. the shop drawings and design calculations shall be produced by, or under the supervision of a registered Professional Engineer. The shop drawing submittal to the contractor shall include the following: 1. Truss placement plan. 2., Truss design drawing dor each truss. 3. Connection requirements for truss to truss girder, truss P1Y to ply and field splices. Such connections shall be designed by truss manufacturer and submitted with shop drawings. Contractor shall provide such connection requirements as specified in shop submittals. 4. Contractor shad provide all permanent bracing requirements for the structure, including the trusses as indicated in structural drawings and shop drawings. The latera! bracing shall be anchored to solid end walls or permanent diagonal bracing. D. Contractor shag provide brooking at all truss support locations and V. -notch blocking as required at all vent locations. A. No truss Shall be modified without the truss manufacturer's approval. 0 1 Z ir A VII. TIMBER A. All �ifCiDCl AI'1Ci tlf'1"1}lOr r+nnc�fr..wa.....,, t�,a •-- - _ -- -- u�at rs part of this project shall comply with the Timber construction Standards of the American Institute of Timber Construction Manual(AITC 4" Edition). Other members with equivalent size and strength can be substituted o nly if date is provided to substantiate capacity of new product. All wood framing members shall have a moisture content less than '19% unless otherwise noted. B. Notching of any structural member other than that shown on the drawings ss unless otherwise approved in writing by the Architect. prohibited C. There shall be at least two nails at each contact point, with 8d thru 1" tr�aterial, 16d thru 211rnateriaf and 4Q -60d thru 311 materia. D. Wherever possible nails should be driven perpendicular to the grain instead of toe nailed. E. ASI wood materials within f" of soil shall be pressure treated d or wood of natural resistance to decay. When w�4d joists are located closer than 18" or wood beams ars located closer than 1211 to exposed soil, the woad framing shall be pressure, treated woad or woad of natural resistance to decay. F. Where wood tends to split, holes for nails shall be bored a diameter smaller than that of the nails. G. Roof and floor plywood face grain mush be perpendicular to its supports, H. All wall studs shall be continuous from floor to floor or floor to roof diaphipIjms. I. Floor, roof and wall diaphragms sheathing nails or other approved sheathing connections shall be driven so that their heed or crown is flush with the surface of the sheathing, J. All wood connection hardware shown on plans are based upon Sampson Strong die Products.. Equivalent hardware may be used1101111111"ipapproval of the Architect. All hangers are to match the width and depth, of framing members with correct slope and skew where applicably. Fill all nail holes unless otherwise noted. NAILING SCHEDULE All nails in this schedule may be sinker, box or pneumatic driven nails unless otherwise specified. Any nails exposed to weather or moisture shall be stainless steel or galvanized. Other nails with proper revised spacing may be used with written approval of the Architect, CONNECTION Prefab ! joist & blocking Joists Blocking between joists 130ttOM {sole} plate to joist or blacking FASTENING See manufacturers nailing requirement 3-8d toenail @ each bearing 2-8d endnail from rim to joist 3-8d toenail to support plate orjoist 16 2-16d @ each joist 116d @ 6" O.C. @ rim joist 2.3 it Studs to bottom (sole) plate Blocking between studs Double Tap Plates Lower plate to top of stud Upper plate to tower plate -staggered Upper plate to lower plate cr intersection Upper plate to lower plate @ splice paint (Minimum lap: 4'-D" staggered spices) Beveled Top Plates Built -gip Comer Studs 2x Built-up Beams & Lintels 1014 or less in depth 12fl or more in depth Double Joists 19/32"' APA Rated 40120 Roof Sheathing No blocking required unless shown on framing pian. 23/32" APA Rated Floor Sheathing Use tongue and groove APA rated sheathing panels or black all sides of panel. Type I Shear Wall 7/16" APA Rated Wall Sheathing Block all edges of APA rated sheathing panels. ape 2 Shear Wall 7/16" APA Rated Wall Sheathing Block all edges of APA rated sheathing panels- 2-16d endnails or 4-$d toenails 2-8d toenail each end or 2-16d endnaifs each end 2-16d 16d @ 16" O.C. 3-16d 16d @ 4" O.C. staggered 16d @ 4" O.C. staggered 1 6d @ 16" O.C. staggered 2 rows 16d @ T6" O.C. 5/811 0 bolts @ 24" O.C. staggered 16d @ 1 6" O.C. staggered Boundary nailing fto 12811 � x 21V" nails @ 611 O.C. EdgenaMng-u.izts41rq� x 2%Z" nails Ob (311 a. C. I Intermediate nailing,0.12811 0 x 2%" nails @ 121, O.C. Boundary nailing - 0. 128"0 x 2Y211 nails @ 6It O.C. Edge nailing -0. 128"0 x 2Y211 nails @ 61, O.C. intermediate nailing - 0.128" m x 2Y211 nails @ 12" O.C. Edge nailing -0. 128"0 x 2'/2' nails @ 610 O.C. Intermediate nailing - 0.128" 0 x 2Y210 nails @ 12" O.C. t Edge nailing -0. 1 28"V x 4'/i' nails @ 611, O.C. Intermediate nailing 0.128110 x 2Y211 nails @ 12" O.C. 3 P roj ec;t �j�� ''""^�'��g '� 3&3 *7 _Z:!�3 Project No. DateA n i Designed By %W _ ��81`z lbs /4 SCIl+-ic� �c°vE� �� %� r� _ /3 22 7 /bf �rsf Ile �' }�' e- _ /3227 �e�Z-°rsz-/Pr-� f "z7 A�f . ... .. . .... sv G&S Structural Engineers Sheet .2.>, { Designed By , Project No. n33:Z 1 Date—Z7:05�403 zh��;Zwr z ) G&S Structural Engineers )7S /7 8 /7 S la, C) Hv �2(o•33N� ?,)50 imp- // '94, 0 ; ri Sheet Z -f -i _ a TA13LE 1 609.6.2.1 (1 ) 322 Inti loc :D W 0 91. X w PWW 0 cn U. 0 LLI X: LL 0 0 cc Z .0 (D uj .i 0 .i m 0 LL 0 w U) cn 0 z U) �w U) Lu ix LLJ a: 0 LL. 0 z z cc oc C,4 te� C- 1 kr� r a. l4n r-- aN oo; r-- CD oc "T fn 0 — ----- .j .j .j cog (-4 -,t rN 00 C-4 cc cn Cr% --T + 16 Z 0 N LLJ t6,_ W-) VW -m W-4 0 1 x + rr Fn 00 \0 00 M C:� 00 cc( coo rq rn CA n•.-., ewe! 64P I I f C:) C� ki? cn > 0 cc C+ �o C cl% C% CN Lu 0 0 7 Ce) ff) p I 1�1 C) < 0 tn oc \c C* 00 C) C) 0 1 C1 .j • 0 0 cu o C� tu CD oc > X 00 x oc OC all \C 0-1 0 d. 0 rn p W- p ON CD �o p- 0 J 00 00 Lu o C) 00 00 P m C-1 C14 CN 00 <N C)\ I F 00 0•. C 0 m d 4. CD M r --q UP) + 0 7r 0 0 C) .j CN cq —1 z "L, 0 cc V) 'I- ; W) OC oo CN �C. -1: cx� r--w' F-d CK C� 0 0 ALL Lu Ln CN o) 00 oc + 00 rqw ON (%- C) C -q C4 Nr t L L I G 0 kn con V1 -T En LL LLQ0 vi 0 V I V f, z 0 u 1-n Q.) 4-j C -q C rA 'CL4 0 0 tL& Cl C C� od C) cl C:)i 03 cz m CA C14 0 v v 0 < v v cnp C:> A P.— z CU w c0 cl W6.1 9z: Q3 q-4 5-1 > tu -01 P-4 > U > > w Lol (r, 1L.J c I - C3 rl k-� 0 UJ CD C:) C) CL 00 E 0 co). A. k STRUCTURAL DESIGN 2000 INTERNATIONAL BUILDING CODEO 11 ArchWind 98 0 SCE -7 )-Oa C„Hbn�iN• A,� ttSaj- 4 13 4E 3E CASE A MAX AND MIN PRESSURE VALUES FOR EACH AREA: LOW RISE STRUCTURE MA[N W ESISTING VALUES ]PRESSURE VALUES FOR CASE A WIND DIRECTION: (AREA 1) P = I0.42 psf, 5.20 psf (AREA 2} PT- -3.98 psf, -9.21 psf (AREA 3) P = 4.17 psf, -9.39 psf (AREA 4) P = -3.4� psf, -8.63 psf (AREA lE) P = 13.81 psi, S.SS psf (AREA 2E) P = -7.$3 psi', -13.05 psf (AREA 3E) P = -6.80 psf,-12.02 psf (AREA 4E) F = -6,07 psf, -11.30 psf PRESSURE VALUES FOR CASE g WIND DrAECON: (AREA 1 ) P = -3.92 psf, -9.15 psf (AREA 2) P = -7.41 psf, -12. 3 psf (AREA 3) P ; -2.76 psf, -7.99 psf (AREA 4) P -3.92 psf, -9-15 psf (AREA S) P = 8.42 psf, 3.19 psf (AREA 6) P = -1.60 psf, -6.82sf (AREA 1E) P = -4.36 psf, 9.58 psf (AREA A 2E) P = -1.92 psf, -5.15 psf (AREA 3E) P = -5.08 psf, - i Q.3 1 psf (AREA 4E) P = -4.36 psf, -9.58sf (AREA SE) P � 11.47 psf, G.24 psf (AREA 6E) P = -3.63 psf, -8.$6 psf NOTES, 4E When combining values to obtain the worst case load an the frame. the resultant pressure used must be greaser than 10 psf. If not use 10 psf. The above pressure values include effects from intemalPressure, qt Page I oft 6E- Wind MAX COMBINED VALUES FOR DESIGN Overturning combinations do not include internal pre Roof pressures do include internal pressure. Total Combined Loads Across Sides I and 4 Max P(CASE A) = 13.83 psf Max P(CASE $) = 10.00 psf Total Combined Loads Across Sides lE and 4E Max P(CASE A) = 19.8-8 psi' Marc P(CASE B) = 10.00 psf Total Combined Loads Across Sides S and 5 Max P(GASE B) = X0.02 psf Total Combined Loads Across Sides SE and 6E Max P(CASE B) = 15.10 psf Roof Area 21VIax Values There is no downward pressure Uplift P = - 2.63 psf Roof Area 3 Max Values There is no downward pressure Uplift P = -1 0.00 psf Roof Area 2E Max Values There is no downward pressure Uplift P = -i8.15 psf Roof Area 3E Max Values There is no downward pressure Uplift P = - 12.02 psf ■ ArchWind 98 CONSTANTS: Building Width 50.00 ft Building Length = 112.40 ft Roof Mean Height = 29.50 ft Roof Angle = 22.62 deg Dimension a = 5.40 ft EQUATION CONSTANTS: Pressure based on ASCE 7-98 EQ.(6.16) Low Rise Buildings, Main Structure P=q(GCpf+GCpI) and P—q((aCpf-Gcpi) Kz =x.74 Vel. Pressure Coef. Kzt = 1.00 Topographic Factor Kd = 1.00 Wind Direction Factor V = 90.0 mph X — 1.D0 Importance Factor q = 14.52 psf Velocity Pressure GCpi = 0. 1$ (+-) Internal Pressure Coe ff. Exposure = B Importance Cat. = Z The following are Area external nressurc. mPfcz,aczPfa GCp.f Values: (AREA 1 )Case A = 0.54 (AREA 2)Case A -0.45 (AREA 3)Gass A = -0.47 (AREA 4)Case A = -0.41 (AREA 1E)Case A — 0,77 (AREA 2E)Case A, = -0,72 (AREA 3E)Case A. _ -0.55 (AREA 4E)Case A = -0.60 (AREA OCase B = -0.45 (AREA 2)Case B = -0.69 (AREA 3)Case B:= -0.37 (AREA 4)base B = -0.45 (AREA S)Case B = 0.40 (AREA 6)Case B — -0.29 (AREA 1 E)Case B = -0.4 8 (AREA 2E)base B = -1.07 (AREA 3E)Case B = -+0.53 (AREA 4E)Case B -0.48 (AREA SE)Case B = 0.61 (AREA 6E)base B = -0.43 Fags 2 of 2 I f i P roject Designed By��� P p f // -, W-0001-�� Project No. �3fW1 Date 7X27-03 lJz - 2r(iv) - /�i2) CScc ...! �r�.e I = � HHfi �f 21 76 G lIltl)�-(i78-i/-ykl�G) _ /3 2 7 1b,; it y�rz ins /O 3Z 7 /5S G&S Structural Engineers �3s%9G iss 3 011-1-112 07Z z %Zcl�'fz �i+�9�YllGG�i�q� She et Sr •� I 0 Project Designe Project No.. / Date 7 7-03 d By 1�= IZSos )4 / S33 1Z (1• y� � R> � Y zt r 4()-761 L-0 Gore Zo�osr� frr' G,��i..Lic,2i iii irj LscU.Y n� �y�, 76 L 72z,)(vg.3s)3 zm 0 75'l/ iys 'e�ll 1kr 2s yi/ ,bs 15 _.€.. ..... .. _S.. • 14, G&S - - r F pp ` ^ e .. ..:. _. ,... ,�.., d..• -r •.w.z.:.....w n.ot+.. ,>��dn .-,T _w.n,,,:-a,.t ,may , uhMjr. iY. "T _ Structural Engineers �'—�'- _ _G,.:..-.�,.,w.,,,,!�:•_nr;�..w�-+.:,¢.._r-v.,,,-..�..�rf�,m•..a wr,+, .�-.,,e..•.._�•,w,l..�.�. � � 1 .. ,r: ......, d. ,. ..:_ . ,. __ .,. _ '._ „_ y,r r _:. .. • Avonlea Apt. Buldg. #2 Date and Time-, 7/25/2003 11:23:20 AM MCE Parameters - Conterminous 48 States Zip Code - $3440 Central L2fittiritz- Q= ,,a 7CZOA�, v. i vJ�tVG Central Longitude=-111Bogn�� Data are based on the 0. 10 dPn nrirl cat � ' •"vav i i Period (sec) 0.2 1.0 SA (%g) 060.6 019.3 NICE Parameters 0.2 080.0 1.0 039.2 Map Value, Soil Facto Map Value'Soil Facto x Specified Soil Factors Soil Factor of '1.32 Sail Factor of 2.0%5 r of 1.0 r of 1.0 MCE Parameters - Conterminous 48 States Zip Code - 83440 Central I atit"riA = nJZ 7coAn� VJYVL Central Longitude = -111. Data are based on the 0. 10 dna nricl :�Pt � � 609017 Period (sec) D.2 1.0 SA .(%g) 060.6 019.3 Map Mar) MCE SPECTRUM x SOI Fa = 1.32 Fv = 2.03 Period (sec) 0.000 0.098 0.200 0.490 0.500 0.600 0.700 0.800 0.900 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900, 2.000 SA (%g) 032.0 080.0 080.0 080.0 078.5 065.4 056.1 049.1 043.6 039.2 035.7 032.7 030.2 028.0 026.2 024.5 023.1 021.8 020.7 019.6 Value, Soil Factor of 1.0 Value, Soil Factor of 1.0 L FACTORS OAFaSs To T=0.2, FaSs Ts T=1.0, FvSI .l J ir 0 a Maximum Considered Earthquake Ground Motion Fa = 7.32 F1 = 2.03 Zip Code = 8344U Central Lat. = 43.763462 deg Central Long.rl = -111-609017 de R. . 1 I Period, sec 41 Period, sec . 0 0r0 00801 0.20:. 0.49 0.801 0.50 04785' 0,654 00.70 6..561 �r 0.491 0.90 0.436 "� ■ . 0.392 0.357 1420. 01327 130 :... 0.302 .0-280 .50 .:.. 1.60 OA2 45 1.70 . :0'' .218 .0.207 2.00 0.1 s 8 t Des* gner Date: Project: Mark Andrus 7l251ZQ03 Avonlea Apt, 13uldg. #2 SEISMIC DESIGN: G & S Structural Engineers 1600 John Adams Parkway Idaho Falls, Idaho 83401 Type Of Occupancy: (Table 1604,5 and 1607.1 commercial Building Category or Seismic Use Group: (Table F lding Seismic Imtanco r�Factor: Category Irl Site Glass: (1615.1.1) Ie 1.000 Response Modification CoLaff. R: (Table 1617.6) Site Class D 6 BuildingLocation: i de, or . p Code) Approximate Fundamental Period, hn = Height (feet) above base to highest level of b ildil 1617.4.2.1) t ` '0.02 II prt�ur�rnlPeriod, T�,� 314 n Ta 0.285 Maximum Considered Ea r-th uAccelerations: Short Periods, SS: (CCS for) Ss 0.606 Second Period, l D roil ) %g Earthquake Response Accelerations Adjusted fir Site lEffects: Site Coefficients: 5.1.2(1) or CIS r om F = 1.320 (Ta b le 1615.1.2 (2) o r C D ro m) FV 2.030 g S• F,,S, (Eq. 16-16 or CD ror Smi FVS1 (Eq. 16-17 or CD rom SMS E:; 0.800 i +392 Design SP tial Response Acceleration Parameters: •11.1. SDS 2/3SMS (Eq. 16-18) S = SDS 0.53 SDI — 0.261 SDC is the "Seismic Design C 1 =0.193 at�' S,Olsmic Use Groups I and Il structures td on sites with rapped maximum considered SPectresponseacceleration. at I -s e c n d p ri o d m 1, equal t r t�t� f r greater , i�li bassigned tSeismicDin Category E, and Seismic Use Group III structures ltd on such sites assigned to Seismic Design Category F. ali b 3,9 4 Designer* Mark Andrus Date: Project: 712512003 Avonlea Apt, Buldg. #2 General Procedure Response Spectrum: T=.dl/S= Effm Ts=Sdl/Sds-. For periods To: S-= .Sdi *T+Asda Z 0 LU LU W LO Z 0 LU F - L1 U) 0.600 7s ? For periods y To.- Sa = Sds G & S Structural Engineers 1600 John Adams Parkway Idaho Falls, Idaho 83401 For periods > Sa=Stf1/T Ts: .300 0.200 0,0 .1 1. 1.2 1.4 1.6 1. PEI[ T SL'iSMic Response Coefficient, Since Seismic Design Category is D** and S1 is less thanin 0-044Sds(lelCs shall not be • less than: C = . Sd N e) 0.0231 CS fed Cs = d l e) = 0.0891 Cs need t exceed: Cs = Sdl/((Rlle)*T) CS used for design of Seismic base shear 0 P 0851 Seismic Base Shear: See Section 1617 for the E to use in the load combinations of Section 1605.4. QE = The effect of horizontal Seismic forces = Seismic base shear (V) = CS*W T T {Eq. 16-37) (Eq . 16-35) (Eq. 16-35) (Eq. 16-34) Seismic load 'effect E. Where the seismic sel smi c load , E , for use i n F0 rm u I a s 15-51 10, a nd 17 sh all be defined by -W ground motion are additive, * E + ¢*SDS*D (Eq, 16-28) Where the effects Of gravity and seismic ground motion counteract, the seismic fid# E, for use in Formulas 1- a 12, and 18 shall be defined by. - E = P*QF: - C).2*SSS* (Eq. 16-29) T~p 0. .1 . . . 1.0 1. 1. 1. 1. . 0.98 g x.490 g 0.21 0.533 0-533 . 435 0.326 0.261 0.218 0.'187 0.163 0.145 0.131 r TABLE 1616.3(1) SEISMIC DESIGN CATEGORY BASED ON SHORT PERIOD RESPONSE ACCELERATIONS a. SeismicUse GrounsT qnri II tri f�., reg IE� e� � iter with- a p d maximum considered earthquakestr l le rte r� � i'eU�U e riea�' response t 1} equal t r greater than 0.7'58, shall be assigned to Seismicerg Category Ex and Seismic UserIr r It i des shall be assigned to Seismic Design Category F. TABLE 1616.3(2) SEISMIC DESIGN CATEGORY BASED ON 1 SECOND PERIOD RESPONSE ACCELERATION L Project X.4 Designed By— �S—t,o� �: &t) Project No. / Date x g -Z , z let r A G S G&S Structural Engineers s� 22 ' Com) <�y & 4e�2 " ��--17 .51�;14 ) R Sheet3 I I ?..., Project Designed By.�«"., Project No. ) 7 73 / Date 7 Z%03 C/I.r�.rc �r�''lii, �, )0 �,' � -P / 0 ,Ezo- ewlr-14- 2) 3� 1:5- - 7/�,1� /35�o{F 5JA2.01 / ) yA v OS13 w� Cl'32Z7�i12�19,���22 /OS�/� z /ZZ, /zz - 281 IPI4 &'fie �r'Y �Ci32 z 7 jirzl3�-s��3(� .33,5] 1-3� L -�AL v d k l ., - : +�-• • •: •._xaa�,r4 sna�vxy�_�rA°ri-0'�F'�.W;l'T }r.j &4r,0407e � a5do t1,1C 444ae ++r'q'vfr1�4+ .•�'+4e�-vt:•`u4._p zn'�MF?.fru^hric.•ti.r� ...n: O ­y Sheet ¢ � e .,rvv .r 4i v. •v: •d1 s.•. as'•..a a .i' � G&S Structural 9 0 Project Designed By 04 10 Im All AkI �Y- 14 COM I �l� f�51� JA,)1 8c�� � i� v/ GG �'1EfC/iG/�h1 Ce, �7d ��.sBCtuL'. �Pl�(1 Project No.�%' �_3 �3/ Date 0 (iosyZ/err )ZZ/ fit /Byo3 /ylJ)ZZIHy (259VY/yV) z2. /yy zoy,0 1-1 ��f Y/ nr -71 zlc��Vo 4;$l« 40 50 . <i�eyz/yy )1z l��,r�� (/S�/03/yH� ZL�%g-G9 �ZS 9�y/y�r) G&S Structural Engineers Sheet Af K I a Project Designed By 07 Project No. date 7-4?�--�23 �-3 I //& j_e� 'Al 7 RM ly-2;1 mpft G&S Structural Engineers 71�s) ley) �- b...ls� q g9rs,A,�-ice 3Zlo70 �3G3)tl9L��)1 zzD� = ZY(J Syiv I I/ Sheet � r I� Project Designed ByJv� r/ �GCG�r� �8x� o G&S Structural Engineers Project Noll, / Date // )1a zrr? =- �J71 S syv /yam Zl�3i� mom 7-S )l yyl°V 14���l�d)�= A 7 �/� /--/ v eZI-14ilid- Sheet �'�� 4 0 Designed By ZIIIIIII0 Project No. �� Date xM � j2�%)�- �-,)]a�z�� � �ryzv� 4- Zoo - 7-2 7—Q3 9y>z� �� /.�1 98 Y4(o � .�� e6 R�7 � CZI�o) �-eC� 1 � 3 Py7 7 Y% [a 3 Sheet 2ti .... . ...... [a 3 Sheet 2ti Project a9 -Z J Project No.'2.'S3�J Date Cl.ec k ,�1N�%u� 07,�.,.,,,� r,>7W z- �ZticS,5-)c�� Sys R� � �ZZc,7�� sc,��� s,s�z-�s3WWI (a Zn I LY -I S1 a 5-eeeol lrdf,-e -.. 00., /n'ret V4P oTry 595 Z�'6 -•�S� 000, Cof 74 o5 �s, j ILZ393y 1'L-/61 MMF �ID �. ? � 7� 7;*� /1? (46 +41 dffi A v) h ID ; = (.0 1Zy /sj y2 5-v y1�-�b3 S Sheet StIs _... r 'f„=.'vs.. rca�tioa..'-v-:�"r�-�,,.ti. Structural Engineers ,_•r.0. .. ..,d.: � ,.-...•r.. v...r} -• .�. _ .. . y2 5-v y1�-�b3 S Sheet StIs 1 Project 'Res.igned By oj�s r a,, I 7 t/e-v/4 Project No. -d 1 pale 7 45PLrfr� v..,I.p;CdJ � Cz� J 'y x 11 �b 1-Ut. yPI; Z�K IL/tV 11 9L 410 JI or 7Z40 �.. k • ......ZOO- iy _ ate.: �e.�:.•� —.t. xa e f C � n5 ......... i'b... .._ ..... ..� 4 e. 4.rsr xsrsypaar.y:., .... v.�.�-i.ss: i.:'ua � 5$ MM{_ P•vi4 vrf.v.+Y'd ts. -04• •^...v' eL�... •—:h•:�-. +h-d'•J.v y. •• � R . I s •. � � .. :. .a...v r{. ir+. er��� h. �Y.is••-f- Yse.�[+.w•.*psvawud •• • G&S Structural Engineers R.:...rs eY �'v�v Y'{QC=a,rA:-0.^aT�.54i�p.lys}�Lih��'4a.,;-$.... n eev-a. .. e•fMs. r.: � ,� '^'-. n. .r {5 � ... - .. .r. ... s1'17 !'ev fh..,.4._ a. f r .. .. .. Sheetif—tol- u-eeam(rM) 6,06 sella- ni��B?039 11 7/$" TJ101Pro(TM).j50 @ 16" o/C u:er z 7rz9n0039:4e53ant THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE Pagel Engine Version: 1.6.44 APPLICATION AND LOADS LISTED Overall Dirnension: 32' 6-11 yam. =��r■ a%�Lr 96 ILA %MI s Analysis is for a Joist Member, Primary Load Group - Residential -Living Areas (psq' 40.0 Live at 100 ° durations 15-0 Dead SUPPORTS: - Design Control Control Input Bearing 1562 Width Length 1 Stud wall 3_.10"` 2.251F Stud gall 3-5011, 3.50H Stud wall 3.50"11 ' 2511 Vertical Reactions ps] Live/Dead/Uplift Total <�O 1134 10 1534 1071 140 10 / 147 70/115101.48s [detail Other A3_ Kiat Board 1 Ply 1 1/4" x 11 /8" 0_8E TJ -Strand Rim Board B3 None 3: Rim Beard 1 Ply 1 1141P x 11 718" 0,8E TJ -Strand Rim BoarcKD -See TJ SPECIFIER'S I BUILDERS UI'B for detail(s): 3: Rim Buerd,133 DESIGN CONTROLS: Sheer (Cbs) Vertical Reaction (lis) Moment fl -Lbs) Live Load Deli (in) Teta I Load Defl (in) TJ P re Mairnurn, Design Control Control -757 -708 1562 Passed (45 1473 1473 1 895 Passed (78 -2374 -23-74 3765 Passed (3% 0.213 0,660 Passed (1-1946) 0.267 QZ40 Passed (L/754) 48 45 Passed Location Int. end Span 1 under Floor loading E3earing 2 under Floor leading sarin under Floor loading MID Span 1 under Floor ALTERNATE span loading I'D Spam 1 under Floor ALTERNATE span loading Spam 1 Deflection hterfa: f 1NlUM(LL-U360,TL:L 40), -Allowable mornent was increased for repetitive member usage. -Dofleotion anallysis is basad cri composite a tion w fth single layer of 23132', /,4'' PsineIs4 -Braoing(Lu): All rnpression edges ftoP and bcttorr� rnu�t be �'.��� �.at�n�� LUL � I�IL�b ec�d d�el�ir`r�. braced at F 81. o/c unfess detailed otherwise. Proper attachment -and positioning Of lateral bracingis re ' -The load conditions considered in this design analysis include alternate rr�em ruire t achieve a rr,omber stability, petterr� loading. TJ-Pro.TING SYSTEM -Tho TJ -Pru Rating System value prov-rdes addItional floor Performance information and well's- Additional considerations for this rating In,�i�#��'. pilin - ��, �ir��k is based on a GLUED& �lAl`LE[] 3/3"', 4F� Panels (24" Baan Rating) decking, Th. controlling span is Applied Gypsum Ceiling° structural analysis of tho deck hes not been pefformad b the program. supported b �' � Comparison Value,, 1.5 ADDITIONAL NOTES: -II'ORTNTI The anaf s'rs Presented is output from software developed by Trams Joist LTi). TJ warrants the sr - zine of its eructs this soma re i criteria and a accepted d si n values. The s �' 1I be �e 'r�plisled in accordance at a T� product design � - o�o product application, input design Icads, and stated dirner��ier� have fieri provided b� the sere user. Ass i ate. This output has not b9e n reviewed by a TJ -Not a I l products are readily available, Check With your supplier o r TJ technical representative for roduct availability. -`AHI i LY I FOR TRY'S JOIST PRODUCTS ONLY! PRODUCT UB � SUBSTITUTION �I[� THIS ANALYSIS. -Allowable tress Resign methodology was used for 86Iding Code UBC analyzing the TJ Distribut nrodu � et listed above. PROJECT INFORMATION: OPEIR-ATOR INFORMATION: Mark Andrus Structural Engineers 1 600 John Adorns Fes., Suite 200 Idaho Falls, IU 83431 Phone, ( 08) 523-6918 Fax (206) 523-6922 s@dataway.net COP right 0 2003 by Trus Joist, a WeyerhaeusE�T Bu5inez;s TJIe and Tj-8earmD are registered tradernaz s of 'Trus Joist e-1 30i s t`r P rom` and TJ -Pro""` are tratdeniar s of finis Joist. R. y / 7J-Beam(TM) 6.06 Senal�mp�zpjg user: z 712912oo39:50:29nM THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE Page 1 en9inavarsio,,: 1.6.44 APPLICATION AND LOADS LISTED 11 7/8" TJ1V/Pro(TM)-150 @ 16" o/c Overall Dimension: 371 Anmysi s is for a Joist Member, Primary Load Group - Res i dent is l - Living Areas (ps : 40.0 Live at 1 duration, 15.0 Dead SUPPORTS: Detail A3, Rim Board 8 D3 A: Rare Board -See TJ PE IFIE ' } BUILDERS FIDE fGr detail(s): A3: Rim Bcard,B DESIGN CONT RL : Shear (lbs) Verti f Reaction (Ibs Moment (Ft -Lbs) Live Load Dei (in) TotaC Load Deft (in) TJPro Maximum Input Bearing 'vertical Reactions (Ibs) 1553 Width Length LlveiDead/Upfift[T tal 1 Stud wall 3.5011 2.2514 305 / 102 10 1 40 7 Stud Wall 3.50" .04" 7911275 10 11 Stud wall 3.1" 3.50" 774 / 266 10 / 104o 4 Stud walk 3.50" 2.2511 296 / 98 J 013.94 Detail A3, Rim Board 8 D3 A: Rare Board -See TJ PE IFIE ' } BUILDERS FIDE fGr detail(s): A3: Rim Bcard,B DESIGN CONT RL : Shear (lbs) Verti f Reaction (Ibs Moment (Ft -Lbs) Live Load Dei (in) TotaC Load Deft (in) TJPro Maximum Design Control Control 1553 -515 1562 Passed (33%) 1 C66 1066 1895 Passed (56%) -1262 -1262 3765 Passed (34%) U-074 -410 Fussed (u999+) 0.093 0,615 Passed (U999+) 60 45 Passed Other 1 Ply 1 1/4+0,x 11 718" 0-8E Tj- trand Flim Board None None 1 Ply 1 114''x 11 718" 0.8E TJ -S trand Rjm 8 oa r cMD Location Rt, end Span 1 under Floor ADJA ENT Pan loading Bearing 2 under Floor ADJACENT span loading Bearing 2 under Floor ADJACENT span loading M I D Sp a n 1 u n der E leor A,.LTE R NATE spa a n loadln MID Span 1 under Floor ALTERNATE span loading Span 2 -Deflection Criteria_ lVl1 N IIVIUI (LL:Lr360,TL: L 40). -Allowable moment was increased for repetitive member u -sage. -Deflection analysis is based On cOMPOSitO acticrl with, single layer of 23/32'9', 14'F Panels24'r ars Ratin -Braui�ng(Lu)R All n�press io n e(topand bc ttcm M uPanels(24,r '�� GLUED � NAILED wood decking, be braced at ' 8'" o/c un lea s detail led othe r wise. P rope r attach m ent a ridoslt ion i n of la -The load wriditions Considered in this design analysis include alternate and adjacent p drr,�nt member attem loading. P � #e�ral bracir� is required to achieve t�e�ber #gib let . TJ -Pro FZATING SYSTEM -The Ti -Pro ati ng SYStOm value presides additional floor pie dorm a n information and is h 'galls. Additnaf sideration for this rating Include: Ceiling - 1�' "� C�ir��:t lied �; seed �rti a GLUED NAILED f 2' 3���� Panels 2�" an l titin@) decking. The controlling span is u � � � �' parted bar R u iI-[ng- str`ucturaI analysis of the decd Inas not been per-f`ormed b the r ram. Gem a 4 p p r�sor, a 1 ue: 1. 55 ADDITIONAL i'�YE,: -IMPORTANT! The analysis presented is output from software developed by Trus Joest (TJ). TJ warrants the sizing of its products by this software will be design design a cm lished �� a� rda n with ith TJ product design criteriaand ode accepted �aIae �. T. sper�c product application, input toad . andstoted dimensions ���� ha�e been provided b the s�ftare user. This Output has riot been reviewed by a TJAssociate, -Not all products are readily available. Check with YOur supplier or TJ technical representative f -THISANALYSIS FOR TU JOISTPRODUCTSQALY! pre uct availability, QCT UB TITUTION V ID THIS ANALYSIS. -Allowable Stress Design methodology was used for Building Code UBC analyzing the TJ Distribution ` eruct :fisted above- PROJECT bove_ PROJE T INFORMATION: OPERATOR II` rORMATION: Mark Andrus tfuttural Engineers 1600 John Adams PkWy-, Suite 200 Idaho Falls, ICS 83401 Phone: (208) 523-6918 Fax : (208) 523--6-922 Qs datawav_ net COPYright 0 2003 by Trus jo �stf a WeYerhaeuser Business and TJ=Seam(& are registered tr de narks of Trus Joist. -� Joistmp ftcm and TJ -Pre"' are trademarks of Trus joist, LOADS: ( lbs, psf, or p!f ) Load I Type Load2 Live *Tributary wic MAXIMUM REF COMPANY Mark D. Andras, PE Structural Engineers. 1600 John Adams Pkwy., Suite 200 ' Idaho Falls, 183401 July 29, 2003 09:51 Design Check Calculation Sheet Sizer 2002a Distribution.Magnitude Location [ft] Start �'�.tt�n End end Load? PROJECT . scams �- 1 ' Dead 730 4 33 Live 211• 730 Total 1 6050 Bearing: 2848 8483 2117 2848 Length 1.1 a3.2 ..1 LVL n -ply, 1.gE, 260OFb, 1 -314x1 1 -7I8", 2-Plys Self Weight of 1.98 p!f automatically included in loads; Load combinations: ICC -115C.; " SECTION us. DESIGN CODE Nos -1997: (lbs, Ibs-ft, or in) Criterion Shear Bending + Bending(-) Dead Def 1 ri Live Def 1 n Total D fl'n Analysis Value Design ADDITIONAL DATA: FACTORS: d 3631 Vr .0 t 6571 M r p 1.00 9332 Mr 0-0 =<L/999 2600 1.00 0.12 = L 0.37 0.16 285 L/850 0.73 ADDITIONAL DATA: FACTORS: F CD .0 t Fb' += 2600 1.00 1.00 1.00 Fb r -; 2600 1.00 1.00 1.00 F t = 285 1.00 1,00 1;00 P - 1.8 million 1.00 1:00 Value 7896 17848 17848 L/360 L/1-80 8�nalYSis /Design V/Vr = 0.46 M/Mr = 0.37 M/Mr _0.52 L CF CV Cfu Cr L 1.000 1.00 1.000 1.00 1.00 1.000 1.00 1-000 1.00 1.00 2 91 Bending ( + ) : LC# 3_ D+L (pattern: L_) , M = 6571 lbs -ft Bending(-): L # 2_ D+L M 9332 lbs -ft Shear ; L +Lr V 4242r V@d 3631 lbs (pattern: L_ ) Ej= 879.14eO6 lb -int /pl y Total Detlection 1 . ( dead Load Deflection) + Live Lai Deflection. (D=dead L1 --live =snow W=wind I -impact =con tru t� �on Ldz--Conntratd) (Ail LC's are listed in the Analysis output) (Load Pattern: S= S/21 K­L+S or L+C, =no patternl oad in this span) DESIGN NOTES: 1 Please verify that the default deflection I fts are �Pr�Pr��t� fir�r ��f��t�n . L -BEAMS (Structural Composite Lumber): the attached SCLselection is ter preliminary design only. F� final �r design contact your Ictal L manufacturer. 3. BUILT-UP SCL�BEAMS: contact manufacturer for connection details when loads are no t applied equally to all yrs. i 0 LOADS: (Ibs,psf, or pit )Load i Type Distributiion Load1 aia1 IT Load2 Live Axial UDL LoadLoad3 Impact F 1 1 Area *Tributary Width (ir) mAximUM REACTIONS (lbs): COMPANY Mar,Mar,k D. Andrus, P Structural Engineers 1600 John Adams Suite Idaho Falls, ID 83401 Design Check Calculation Sheet Sizer 2802a Magnitude Location [ft) Start End Start End 480 (Eccent i it 0 .r 1280 ( crit 1 ci t = i n Paha-rn Load? No "JET 0' Dead L1 ~ otai 20 20 0 Spaced at 12" c1c; Self Weight of 1. if automatically (b); Ke x Lb.- I - 00 x 4.00; 4.00 Ift); L : '1.00 x 8,00= 8. - Lb; Repetitive factor: applied where permitted (refer to online help); Loan[ or enation : ICC -mc; SECTION Vs, DESIGN CODEN DS .1997: ( stress=psi, and in ) Criterion Shear Bending Axial Axial Bearing COMbined(axial Dead De 1rr Live £fie l ' n Total D flOn Analy5js Value fv @d _ 0.03 157 f _ 337 +`'S 2 .00 337 compression + li ible �<L/999 0.17 �0.05 V i .lam /999 'ADDITIONAL DATA: FACTORS: F ' + - F ' Fp F E' Fc t - F1 - Design Value Fv 190 Fb = 910 F" _ 436 Ft 2020 Side loadbending) Utj = 0.53 F D 0.03 t L 900 +`'S 2 .00 1.00 1..00 0.937 L/ IiSU U/lBo F 1.50 • 1.15 + bending— CV end]! n Aral iln f 0.03 fbbp _ 0.05 625 0.77 1.00 0.17 1.00 1350 1.00 1■00 1.00 1350 2.00 --cornbined comp. 1.6 million 1.00 1:00 y L/ IiSU U/lBo F 1.50 • 1.15 + bending— CV end]! n Aral iln f 0.03 fbbp _ 0.05 cF' 0.77 f 9/F -Ci 1 - 0.17 1.000 t u 1.00 0. 14 6) Cr L 1.15 3 Beading (+ )■ L 3 U+L+I f - 4 lbs -ft Shear: L# = D+L+I ,= 20f d Deflect' ][,' _ j— 8.57eO6 lb- tit Total Deflection - 1 , 0 ( Dead Load Ike i I e ti.or� Axial ) Li Lead Deflection. L = D+Lj P = 1770 lbs or in d : LC# 3= D+L+I , CDS - (1 - fc/ FcE) 0.47 (D=dead L=jive S=snowl-ind 1 =impact = Cons t ruc (All LC's LC'are listed in the Analysis output) DESIGN NOTES: 1 - Please verify that the default deflection Homits areappropriate for your application, 3 3 2 y `/ I 48 s LOADS: (1bs,Psforp1f) Load I Type I Distribution Loadl Dead A i 1 UDL Loa Live Axil TIL Lo I act Full Area*Tributary Width (in) 4 MAXIMUM REACTIONS (Ibs): F1 Dead Live 27 Total 27 0 Works ORE FOR o<)L) jG COMPANY Mark D. Andrus, PE S Structural Engineers 1600 John Adams Pkwy., Suite 200 Idaho Falls, JD 83401 July 29, 2003 10:23:54 Design Check Calculation Sheet magnitude Sart Fn 320 (Ec ent 4 E c nt f Sizer 0 a Location [ft] Start Fn icitY0.00 .gin) Pattern Load? No Lumber Stud, D.Fir-L,No.2,2x4" Spaced at 1611 CIC; Self Weight of 1.25 p if automatically included • . I�Ir�rre�i bas e; �.� = ����(b); Lbs: �[ft]; �n ���y! 1 . .0 4.00 L. 1.00 8.00= 8.00[ft]; L , Repetitive factor: applied where permittedrefer t online • � � ��ll��� Lidcombinations: [C -IB.; SECTION `Vs. DESIGN CODENDS..�g�T; � stress=psi, and in j Criterion Shear Bending (+) Axial Axial Bearing Combined (ala_ Dead Deft' i Live DeflIn Total Deft I n Anal.'Analysi'S Value fb = 209 fc 300 f9 300 compression + negligible 0.'7 =<L/999 0.07 =<L/999 ADDITIONAL FACTORS: F CD Fbl+= F Y ' = 900 2.0 2.00 Fcp' = 625 1.00 Fc' = 1350 1.00 Fc' 1350 2.00 Er - 1.6 million Fr 2020 1.00 Design F' Fb r F' -_ Fg' -de load 0.53 _L } 53 CM ct CL 1.00 1.00 0.937 1.00: 1.0k.+ 1.00 1.00 1.00 1.00 0.07 --combined rorp + 1.00 1.00 1.00 0*1 190 2910 436 . 2020 ending) L/180 L/180 1.15 bending -- Analysis ndin -_ nal i /resign fFb_ 0.07 fF 0.69 f Fgr 0*1 CV 1*000 0.281) 0,146) ndi (+) : LC# 3 = +L+ I # M_53 lbs -ft Shear' ! L4 3 = D+L+ I j V 27, V@d 25 lbs Deflect Total Defection 1 -WSO � � T A n Lion Live Load Deflect Ami;l L +L 10ti+ = Y � 1Ib lbs 53 (= dead L'1 =cF . now =wired I im act =cOn. t uc t i c n (All LC's are listed n the Analysis output) PROJECT Columni DESIGN NATES: � � ----- 1-Please verify that the default deflection limits are appropriate for your appficatian. �n�r 0 7 27 q illWor��4° • LOADS: (Ibs, psf, ar p!t) Load Type Distribution Loadl Dead_Wxd�aIUDL LoadLoad2 SnowAxial UDL Load3jWind Full Area *Tributary Width, (in) MAXIMUM REACTIONS (Ibs): 0r COMPANY Mark D. fir,ndrus PE Structural Engineers 1600 John Adams Pkwy., Suite 200 Idaho Falls, JD 83401 July 29, 2003 1218*7 Design Check Calculation Sheet Sizer 2002a Magnitude Start End 720 (nt 1614 (n B_ (16.0)* Location [ft] Start End i itY - 0.00 in) Pattern Load? No (PROJECT Columns Dead Live 47 Total 47 s7 P 4 Lumber Stud,D,Fir-L, I., Spaced at 16" c1c; Self' i lit of 1.96 pif automaticallyin cluded in loads; Lb; , , ), . 1. 0 x .00= 4.00 eft), a Ld! 1-0 x.00=[ft]; •Lb;Jepet�t factr:appIi� � r� r� �p);oad . �� L���f � � �. t� � Lig, �t� m �-combinationsm ICC -IBC; SECTION vs. DESIGNCODE NDSA997: (Stress=psi, and in) Criterion Shear Bending .( + ) Axial Axial Bearing Combined ( aia Dead D flrn Live Deflin 'dotal DeflIn 3 bw- - Analysis Value Design fV @dsr 1.60 f = 149 Fbw = fc 379 Fl 9 379 F r compression + side load negligible million 0'03 L 0.53 = 1.00 Load Deflection) + Live L oad Deflection. AULII I IUNAL DATA: FACTORS: Fb l + Fur Fcp ' F F E F ' - F r F CD 900 1.60 5 1.60 625 fFt 1350 1.1.5 1350 1.60 1.6 million 2020 1.15 CM t L 1.00 .1.00 0.915 1.00 Anal iS Li n 1.00 `� - 1.00 Shear 1.00 fFt 1.00 i471- 42 lbs 1.00 Fc' --combined comp. 1.00 fF# = 1.00 Load Deflection) + Live L oad Deflection. briding) Eq.* - 1.00 Value Anal iS Li n 152 `� - 0.05 Shear 1970 fFt 0.08 i471- 42 lbs 439 Fc' 0.86 .6D+w .6D+EIS . 7 1b -in 2323 fF# = 0.1; Load Deflection) + Live L oad Deflection. briding) Eq.* - 0.56 L10 0.06 L/180 0.06 1.10 bending - CV in - fu C r L 1.000 1.00 1.15 4 4 - (CP `` 0.257) (P 0. 189 ) 4 2 DESIGN NOTES: -- 'i. Please verify that the default deflection limits are appropriate for your application. 7 Shear LC# 4= +j i471- 42 lbs 'fetal # 4 .6D+w .6D+EIS . 7 1b -in Deflection 1.5 (Dead Load Deflection) + Live L oad Deflection. (D=zdead Llilve ) 0.80 (All LC's LC' are listed S=zsnow W-Y-i1d in the 1=impact fi-ons}r;tio , Y7I Analysis output) DESIGN NOTES: -- 'i. Please verify that the default deflection limits are appropriate for your application. 7 �1 itsWor,,, °SORWARE FOR WOOD DEMN LOADS: (lbs,,pf,.rplf) ICOMPA14Y Mark D. Andrus, PE Structurai Engineers 1600 John Adams Pkwy., Suite 200 Idaho Falls, I D 83401 July 29, 2003 1-2:19:36 Design Check Calcination Sheet Ir 2002a *Trihutar ldt k.1 11) MAXIMUM REACTIONS (Ibs): 0 1 Dead Live 27 Total 27 PROJECT lun1 Lumber Stud, D.Fir-L, No.1, 2xV `paced at 16"' 1 selfeight of 1.96 PH automatically in ` Pinned base; Ladfa = width(b); ' ��� �[ft]; lu�d �r� I��s; )� ."x.00 4.00 4.00° Ld,, t0 4.67[ft]; _L i ii # r(refer . Ltrl u p� rt 0 bottom � � �� nllr�� ��I)Loadcombinations: r-Ic' SECTION YS. DESIGN CODE Nasw1997: (stress -psi, and in) Criterion Shear Een ng + Axial Axial Bearing Combined (aria Dead D fl'n ' Ive Deft 'ri Total Def l ' n. ..h, Analysis Value i Value fV d 4 F ' _ 152 f 1 Fb T2168 1.60 f = 464 Fc' 468 fg = 464 F91 _ 2323 Compression + side load bending) negligible 1.7 million 0.00 _ L 0.31 L/180 * L 0.31 = L.180 Auui a ivNAL DATA: FACTORS: F CD Fb'+= 1000 1.60 FT = 95 1.60 Fcp l = 625 Fc' - 1500 1.1 Fc' 1500 1.60 E' �- 1.7 million F`' w 2020 1.15 CM t CL 1,00 1.00 0.907 1.00 1.00 1.00 1a0 1.00 1.00 --combined comp. 1.00 1.00 1.00 F 1*0 Analysis/Design fFi 0.03 fb/Fbq 0.02 f F ' = 0.99 fgF, = 0.20 Eq -3.9-3 0.68 CV 1.000 U 1*00 1.10 (CP = 0.247) + pending-- (cp = 0.1 1 Cr L 1.15 4 4 Beading (+) 1,C,# 4= . n+ l M 32 is if Shear LC4 4=. D+W, V 27, V d - 23 lis E Deflection: L # 4 . 6D+W El= 35.35eO6 lb -int Total Deflect' Axial 10n 1.50(Dead Load Deflection) + Live Load Deflection. 3832 lbs, a L=lig snow =wind I=impact =coast (All L' are listed in the Analysis output) DESIGN NOTES Please ver' ify that the default deflection emits are appropriate for your applicationi 2 3 4 2 41 ' r � 7 7 r F______ - orks odW wo LOADS: � lbs, �]$f, or pif � Loan Type Ditriuton Loadl Dead Axial UDL Load2 Snow Ax.1al UDL L-oad3.Wind Full Area Tributary Width (; n � MAXIMUM REQ Dead Live Total COMPANY Mark D. Andrusp P Structural Engineers 1600 John Adams Pkwy., Suite 200 Idaho Falk, ID 83401 July 29, 2003 12:22:38 Design Check Calculation Sheet Sizer 2002a MagnitudeLocation[ft] start 6 120 17.80 LastEnd (Feat icit =0.00 ) (:accent i itry 0.00 in) (1}0) Pattern Load? wo PROJECT 221 196 1.96 Lumber Stud, D.Fir-L, . , ® " c.1 ; Self Welight of 2.58 p[f aut nnaticall y included in loads; P in ne d base - Loa dface = width(b); Ke x L b: 1 - 00 x *00= 4.00 [ft]; Ke x L d: I - 00 X 22.00= 22.00 [ ; Lateral su Lb; Repetitivefir: ppri�i her permitted(refer to - ] F� rt: t� - ��, fttr� tela �� l�l� �� +�i��.tronJ: I-Ee. WARNING: Member length exceeds typical stock length of 18.0 [ft] i SECTION vs. DESIGN CODE Nas_1997: (Stress=psl., and in) Criterion Shear Bending Axial Axial Bearing Combined (a 1 a Dead. De fl R n Live DeflIn 'dotal D l ' n Analysis Value f v @d F fb = 983 fc 22 f CJ 22 1.60 F p' _ negligible 1.23 = L`14 1.23 L14. ADDITIONAL DATA: FACTORS: F CD Eb ' += 900 1.60 F' = 95 1.60 F p' _ 625 Fc' 1350 1.1 Fc' 1350 1.60 Er ' 1.6 million Fg' 2020 1.15 Design Value Fv' 152 Fb1 1°700 F' = 344 Fi 2323 de load bending) Analysis /Design fF' 0.1_ L180 fh/Fb r 0.58 1-47 fC/F' 0.06 1.00 f F r 0-01 Eq.3-9-3 0.59 ' om. 1.47 = L180 0.84 1.00 1-47 = L/180 1.00 t CL 1.00 1.00 0.855 i.0 CV 1.00 Cr 1.00 1.000 1 a 0 1.00 1.00 --combined ' om. 1.00 1.00 1.00 F CV Cfu Cr 1*0 1.000 1.00 1.15 1+-05 + bending-- (p 0.21.) (CP 0. 15 4 ) Bending (+) : L # 4 = . D+ r M 1077 lb --tt Shear ; LC# 4 +j V= 196 V@d = 187 lbs W E 76.21 :06 lb -in Total uetlection 1. 0 (Dead Load Defletl a) +- Live �� Deflection. } L # D+ , P = 237 lbs Combined LCA# 4 = .6D+ # D= 1. 01 ( D=Lel i � � f� ��E � 0.98 now W=wind 1; --impact =Cons tru tion (All LC s are listed in the Analysis output) Please verifythat th a defau It def I ecti o n 1.i M its a re appro priate L# 4 4 2 4 4 2 q mop a Project Designed By Project Na.` _Dated :;y D� � (m?'I 2Z��,-� a (6) Ap 00p Irt, � L /O /z LNv)Czx tr� D` Z l��si1�- �riP��,rih� r3 �Pr/r'r- G1irr,�r ; Z G&S Structural Engineers 71. 970 yo /6s Z-7� 3 A1S/ /mss i Sheet �� Mark D. Andrus, P Structural Engineers 1600 John Adams Pkwy., Suite 200 Idaho Falls, ID 83401 (208) 523-6918 Iain Pro 6.0, 23 -Sep: C - p- C- Retained Height Wali height above soil ,Tape Behind Wal Height OfSoil over To ail Density 'Find on Stem urcharge Loads Title : Avonlea Apts. Bldg. Job : 03331 lDnr; Mark Description.,.. cWall This Wall in File: c:1rp5lmark.rp5 Cantilevered Retaining Design _ 3.00 ft - 0.50 ft 0-00: 1 i 0.00 in _ 11 O..DO Pf z>urcnar9e Uver Heel u Ps7 Used To Resist sliding & Overturning Surcharge Over Toe = o. o ,pst Used for Siiding & Overturning Design Summary Total Bearing Loa -..resultant ecc. 3*218 lbs 0.74 i Soil Pressure @ To 1,908 f OK Soil Pressure @ Hee - 1 X309 Psf OK Allowable _ 25000 pst Soil Pressure Less Than Allowable ACI Factored @ Toe _ 2,846 psf ! Factored @ Heel 1)953 pst Footing Shear @ To 4.2 psi OIC Footing Shear @ Hoe 6.1,i P OK All .0 Psi Wall Stability Ratios Total Force @ Section ibs = Overturning = 5.05 . Sliding 1.95 OK Sliding Caics slab Resists All Sliding psi= Lateral Sliding Fore 318.5lbs psi = Factored Pressure u': Upward Mu': Downward Mu. Design Actual 1 -Way Shear Allow 1 -Way Shear Toe Reinforcing Heel Reinforcing Key Reinforcing 21846 0 0 344 . 24 85.00 None p` None speed # 4 @ 16.00 in Safi Data -- - _ -- -- Allow Soil E3ring 21000.O PSf Fluid Equivalent Pressure Method Heel ACtive Press u r''f t T Passive _ p Water height over hl - 150.o psf/ft 0.0 ft FotingIlSoil Fri do 0.300 Soil height to, ignore for passive pressure 0.00 in Lateral Loyd 45, 0 #Ift ...Height to To _ 3.50 ft ...Height to 13oto 3. C) ft Page: _ Date= JUL 29x2003 Code: IBC 2000 Footing- Dimension 'S- s & Toe Width = 0.67 ft Heel Width 1.33 Total Footing 1'idt _ • F otin u Thickness 10. 0 i Key Width - 0.00 in Ked' Depth 0.00 i Key Distance from Toe 0.00 ft fc = 2,500 psi F =607000 psi Footing n trete D res it =150.00 p cf Min, As. % = 0.0018 Cover @ Top = 2.00 in @ Bt.m.= 3.00 in Axial Load Applied to Stem Axil Dead Load - 11005.0 Ib Acini Live Load 11320.0 Ib Axial Load Eccentricity 0.0 in: tem Construction Heel Top Stem 1,953 pf 0 Wali i t ria.f Above "Ht" Concrete 224 - 6.09 psi 85.00 psi Lateral Loyd 45, 0 #Ift ...Height to To _ 3.50 ft ...Height to 13oto 3. C) ft Page: _ Date= JUL 29x2003 Code: IBC 2000 Footing- Dimension 'S- s & Toe Width = 0.67 ft Heel Width 1.33 Total Footing 1'idt _ • F otin u Thickness 10. 0 i Key Width - 0.00 in Ked' Depth 0.00 i Key Distance from Toe 0.00 ft fc = 2,500 psi F =607000 psi Footing n trete D res it =150.00 p cf Min, As. % = 0.0018 Cover @ Top = 2.00 in @ Bt.m.= 3.00 in Axial Load Applied to Stem Axil Dead Load - 11005.0 Ib Acini Live Load 11320.0 Ib Axial Load Eccentricity 0.0 in: tem Construction Top Stem Design ft= Stem OK 0.00 Wali i t ria.f Above "Ht" Concrete Th icns - 8.00 Rebar Size _ Rebar Spacing - 18p00 Rebar ,dated at =. Center Design Data /F B + fa/Fa - 0.14 f Total Force @ Section ibs = 344. Moment. ... Ato a I ft-# = 344.3 Moment.... Allowable 2 , 305.6 Shear., -Actual psi= 7.2 Shear.. .. -Allowable psi = 85RO Lap Splice if Above in = 31,20 L@ p Splice if Below in = 6.00 ''mall Weight - 100.0 Rebar Depth V in = 4.00 Masonry Data fm i= - Fs pi Solid Grouting Special Inspection = Modular Ratio 'n' _ Short Terra Factor _ Equiv. Solid Thick. _ Masonry r Block Type _Medium Weight Concrete Date. - f 500.0 Fy psi = 601000.0 Other Acceptable Sizes & spacings Too: Notrq', Mu < S *Fr Heel: Not req'd, Mu < S * Fr Key'. No key defined 4 S,/ arF- D. Andrus, PE Title vonleap Bldg. �StructuralEngineers Job 03331 C nr: lar 0err aPkwy., Suite 0 Date, JUL 2972003 Idaho Falls, ID 8340 (208) 5231 This Wali in File: c:'krp5\mark.rp5 Cantilevered Retaining Wall Design Code: IBC 2000 SUmmary Overturningai ResiSting Forces & Moments . T... L IFU, I ..... Item Force Distance Moment l Heel Active Pressure _ 3.30.6 1.28 422.5 Toe Active Pressure _ -122 0. Surcharge Over Toe Adjacent Footing Load = Added Lateral Load 4.33 Load @ Stem Above Soi Total _ 318.5 0-T. M, Res isting/Overturning Ratio . 05 Vertical Loads used for Soil Pressure 3t217.7 lbs 'vertical component of acture pressure used for soil pressure ,,...F iSTI .,F.. Fre Distance Moment lbs ft Soil Over Hee 220.0 1.67 366,7 Sloped Soil Over Hee Surcharge Over Heel Adjacent I` ootin Lnarl Acral Dead Load on Ste Soil Over T SurchargeOver Toe StemWeight(s) Earth @ Stern T,r n iti n Footing Wi h Key Weight Vert. Component _ Total 1,005.0 700 .0 350.0 1.00 350.0 250.0 1.00 250.0 . 2.00 13897.7 lbs R -M. 145.4 23117.0 sZ a I Sliding Re,:5traint #C)@ I .in @Toe #09 15 m @ Hcel 7777 )loop dMk Ab I . . . . . . . r. De:5iiper 5eicct all horiz. reinf. 5ce Appendix A 211 M. 3 P-041 RA S.3 4 4 .5f E)L= 1 005 , LL= 132049 .083# 1p 1. F 1908.5 F5f 5f Err, = 0,1 Mark: -D, Andrus, PE Structural EngineersTitf►'� rel a Ott I John Adams PkwyJob Page- 1600- ., Suite 200 03331 nr; Mark Date- Idaho Falls, ID 83401 Description.... L 29,2003 (208) 523-6918 Retain Pic) 6.0, 23 -Sep -2002, (C)1-989-2002 This Wall in File: cArp,51markxpS Cantilevered Retaining Wall Design Calculation Trace Listing Beginning Trace 2 Sefting ACI Lia 3 �yjj actors. DL Fact. ;1,4 � LL , a t 1, _ act_. r0 that EFF Method being used 4 BaCk-Solving internal friCtion eagle from derisity and EFS angle z 24-.800 deg! 5 Victual Heel Width (past back of = 0.667 ft 6 I* I Height for Stability (wa r Calculating rt rnin Values Active Pressure (no water) = 3.8333 A2 * 45,00 * 9 Arm = 1.2778 ft, Moment = 422.465 10 Active Pressure @ Toe: (0.000 + 10.0000) A 2 * 35,000 , = 2. 53 s 11 Arm = (0.000 + 0.0000)1 /1 _ 0.278 ft, Homan 12 Added Lateral Load, Force = 3.7500 *(42.000 _ 42.000) 0.000 ft4 13 Arm = (10. 0000 + (42.000 - 42.00 /2.0)_ - 1ressure . ,ft, Moment _ 0.000 52,000: �- Used To t Sliding, o DD SW over toe = 12.153 1 l ul t;nn tin . 1 Ito TotalOve�urningLoads 16 Soil 't Over Heel = 0.667 .00 110,000 = 220.000 lbs 17 Arm = 2,0000 0.667 18 Axial Load on . 1.6667 ft, Moment = 220.00 1-6667 = Stem Toe, DL Force =1 A5.00 I b 19 20 Top Stem Weight = 350.000 Ibs, Arm = (0.667 + 0.667 / 2.0) - 1.000 ft 00 2P0UU . 0.000 =12.000 ft, Moment = 1005 - 00 * t 21 Stem Avg. Arm =12,000 , Total moment 22, Avg. Arra _ 0.000 ft, Moment = 0.000 ft-# 23 Footirg VVe i Int _ ..0 * 10. 150.000 250,000 I Arm = 2.00 24 Key _ � _ � � � = 1. 1~t� mit = � t 0.00 0.00 150.000 , 250.000 lbs 25 Soil Vertical Component = 0,069 * 3.8333 * 3.8333 * 0.5 = 72.675 lbs, Arm:--- 2,0000 ft 26 . t- #Total I, t = 1897,68 lbs, mL�� ,�1. fp27 MCalculated StenForces for Preliminary Checks 28 CantileveredStem C l u lation 29 Tip Stem Section: far = 344.250 49131.00 ft-# 30 Calcuaiting Actual Shear Stress 1 Concrete Un it Shear Stress = 344,25 / 4900 12. 0 = 7.1719 psi 32 Determine Allowable Moments 33 Top Concrete Stem Capacity = 27,667 J 34 Tip Concrete StemShear Capacit = 0.85 *sqrt(2,500.00)_ 35 Ca,lcullate Bar Lap Lengths 85.000 PSI 36 Tip Stem, Hooked Embed into Concrete Footing. 37 Top Stem, Embed into Concrete ABOVE - 31-200 in 38 Calculating Soil Pressure 39 Toe Bar Depth = 40 Service �105000 , Heel Bar Depth= 110.0000 - .. _ Load fl Pressures...:.Ire 41 P = 3,217.68 Ibs, Ece _ 0.745 in, .1TPr Pressure - 159.038 p f, Heel Pressure 109.101 Calculating Factored Load Shear Pressure = 159.038 p f, Heel Pressure 44 char @ T _ � � .� 109. 1 l pf 45 Shear @ Heele = (4.2363 - .667 ' 0.000 - 123.548 � '0f'� �••� _ 1fff�1 (12. 0 5 000) 4.2 363p i 46 Shear Distances from Edge; Toe in 47 Toe Upward 'lent = 7,32 ,51 -# 48 Toe D'nwa rd Mome rpt = 1 �4000 * (10. 0000 * 1 .0417 + 0 000 * 0 a(10.0000 c4 Moment Toe war .. 466.r=.4000 *�*041 + 0.000 0. 4+ A50 tase Stem Moment Governs! Toe Dari 51 Design Toe Moment <= 6.5 * d A 2 * SQRT(fc) --->> No Reinforcing 52 Flag t t ignore Updrd pressure p under heel- Heel Upward 53 Heel Downward Mc)ment = .400(10. 1.041 + 3 000 * 0. 764 + 0 - 000 + 0 54 Add moment due to vertical sO'l 55 Preliminary Design Moment 2,687,053 ft-# component = i ► * 7.x.675 * 8.00 _ 988-386 ft -4 �# 56 Design Heel Moment <_ 6.5 d'12 * SQRT(fc) --->> No Reinforcing Used 57 Soil Height for Passive Pressure O000 + 10.000-0 + 0.000 =: 10.0000 ft 58 Sliding Resistance due t Friction 1 '. �= . Ike t 59 Fri ction stan ce a dj u sted for- S pecified '%' 1 - 00-0 569.303 = 56 9.303 1 bs 60 Sliding Passive Pressure = (10-0000 - 0.000) 1.041 (10-000-0 (0-000 *1.041 1 . - 0.000))- 52.083 lbs 62 Passive Resistance adjusted for Specified% - 1 .000 569-303 = 52-083 lbs 63 Sliding Factor of Safety = (52.083 + 569-303) 1�318.472 = 1.9511 lbs 64 Calculating Footing Rebar Requirements Andrus, PE Structural Engineers 1600 John AdamsPkwy.., Suite 200 Idaho Falls, JD 83401 (208) 523; 1 Retain Pro 6,0. 2.3-S tan. 9 f) tr,� 1 q A a n n 77 Title Avonlea Apts. < « + # Job 03331 n r: Mark Description.... This Waft in File: Arr). mar mg; Cantilevered gn Calculation Trace Listing 65 ___ -I._PW ..... �. '%0%j jr—%j u - Uv I OU UUU "v U. 8 5 0 * (87 '0'0.0 (8 '000.0 + 000 66 Calculated Stem Forces r F0 18 67 Cantilevered Stem Calculations 68 Top Stem Section: Shear = 344-250 lbs, Moment = 41131.00 ft-# 69 Calcualting Actual Shear Stress 70 Concrete Unit Shear qtr 1 Determine Allowable Moments 72 Top Concrete Stern Capacity = 73 Top Concrete Stem Shear Capacity = 0.85 * 2.0 * sqrt(2,500.00) � 85.000 psi 74 Calculate Bar Lap Lengths 75 Top eta Hooked Embed into Concrete 76 Top Sten, Embed into Concrete ABOVE Pane: ' UL 29x 2003 f P -P 44 Fl�vonlea Apartments Bldg, #2 Service Soil Bearing l4 B I Maximum Bearing 1294.17 psf DL+LL Max/Allowable Ratio .647 �a T1294.17 psf :- , Y R e � . 0 Psf uplift r �v'e � �te�r•.,. 9 : .. , .. e < w_ ., ._._..-. .. Flexure Design Maximum MuXX lfd 4.30799e-7 k -ft ACI 9.1 D �--� C mX Maximum MuzZ /0 .312 k -ft ACI 9.1 Allowable Soil Bearing Concrete Weight Concrete f c Steel fy T r .H CD C 2000 nsf :145 Pcf 2.5 ksi 60 ksi ED] C $$X Dir. Steel: .216 in 2 (min) Z Dir. Steel: .324 in 2 (min) z direction steel requires the following placement: Region 1 (starts of A}: 3 in Steel-- .032 in 2 Region 2 (middle): 12 in Steel :.Z 5 9 [n 2 mwm� Region 3 (ends at D): 3 in Steel: .032 ins Maximum Shear Check Ratios (Vu ISS VC) Two V1lay krunching} Shear One Way Shear, X fir. cut One Way Shear, Z dir. cut HA 0 ACI 9.1 0 ACI 9.1 Overturning Moment Safety Factors (OTM SF) OTM SF About X -X Axis NA DL+LL OTMSF About Z -Z Acis NA DL+LL Concrete Bearing (For Vertical Loads Only'.) Maximum Bu /fi6 4.431 k ACI 9.1 Allowable -B -c 140.25 k Loads DL LL0 Mx (k -ft) Mz (k-ft).OverburdenIWAL (Ps +Mz J +Over A n s% 7 LO N Alt 1C 1 .25 ft Avonlea Apartments Bldg, #2 (9 3 ft Allowable Soil Bearing Concrete Weight Concrete f c Steel fy Loads DL LL :2000 psf :145 pcf :2.5 ksi .1 60 ksi service Sail fearing Maximum Bearing Max/Allowable Ratio VAI Is] 1530.94 psi DL+LL .765 B 1530.94 psf 0 psf J Uplift C Flexure Design Maximum MUXX I Maximum MuZZ /)2f C 6.384 k -ft 6.384 k -ft ACI 9.1 ACI 9.1 $$X Dir. Steel: .648 int (min) n Z Dir. Steel: .648 int (min) Maximum Shear Check Ratios (Vu /)2l Two Way (Punching) Shear ,351 One Way Shear, X dir. cut .262 One Way Shear, Z dir, gut ,2�^ VC) ACI 9.1 ACI 9.1 ACI 9.1 Overturning Moment Safety Factors (OTM SF) OTM SF About X -X Axis NA DL+LL OTM SF About Z -Z Axis NA DL+LL Concrete Bearing (For Vertical Loads Only!) Maximum Bu I)e 31.517 k ACI 9.1 Allowable Bc 153 k VX z�k) *uX +Vz A D D C Mx (k -ft M (k -ft) 5 F Overburden (psi 0