HomeMy WebLinkAboutSTRUCTURAL REVIEW - 06-00355 - Parkside Townhomes - Bldg #19 4 UnitsA
5-ft-qql
11
UO 00352
Parkside Townhomes
Bldg I'll S#l6,a Ph --e 4
side Rexbur
Georgetown Development)
Structural Review11
Rexburg. IdahO
May 9 2006
Job #2006 547
9
I'll
IM
�,1�Iaiakzytxeet
�3Q�
SPauis�
F Utah �40�(�
Phan, &Q�-���-Q��Ss
--0-Iwm,798mm9,39,3
�.E,
I. CO,usult%ng Engjneers and Surve voars, enc.
4
Engaueer's seal tQ th* -tire, catculat cr �a.�l��*�.
This, pa�ket
S V.QId I*f bindins��l xO-'s brayer�
e�a�zneex3s or if
S.C.-al gip€- V.I. . Pin -S I-uM I tot��a -�r� iu
red i��..
This eng* eer* Am. .0 a fXIII ORm 109 rePort is valionly itor toe a-0 ejunt
n ed b
located at ]RuRding 16, Phase 4
i Park We Subdivision 1
Th�S report is, to b-die
*n �ex��
-e used Only once and may not copT.I'Mie. 0
W-4111out the, written coju[s I �Onsulfin2
E
Structural Review for:
Location:
Joh #.I
Engineered by:
Code:
Loadin_qs
Ground Snow Load:
€f Snow Load
Georgetown Development
Rexburg,, ID
2006-547
B. Dance
2003 IBC
P9=
50.7 pf
Roof Dead Load:
Floor Loadir;
Wind Loath �
35.1 psf
Mean Roof Height = [20
Wind Speed V = 90
Freight & Exposure Factor = 1
Seismic Loi:
Roof diaphragm heights _ :.::: . ft
Fundamental Period T = 0.175 sec.
R.30 Horizontal Pressures
1.4
zone A
zone B
zone C
zone
16.1
2.6
11.7
2.7
p, Horizontal Pressures
1.4
zone A
zoneB
zone
7 -on D
16.1
2.6
11.7
2.7
F=
1.4
Fv _
S%js
0.
M1
0.3
SDS =
--467
D1 _
0.200
T, _ 0-0857143 sec.
TS _ 0,4285714 sec.
Seismic Use Group
Seismic Zone Category D.
Soil Beari Coq Capac1500psf
�e
Preface & Structural Notes
This engineering report is valid only for the N-lowling plan and location.,-
Parkside
o ation,
Parkside Townhames Phase 4
Building 16, Phase 4. Parkside SubdivisionRexburg, Idaho
OT.. ToC'. - T OR.-:
PLANC
I A)ING-INSPIE
If the above address fines not match the intended building address noti�v LEI immediately @ 801-798-0555.
This engineering packet -is to be used only once for the above mentioned location and i P s not to be copied or reproduced
without Tr tten consent of LEI Consulting n in e r .
Structural Notes:
General Notes
1 If -values and assumptions stated in this report are incorrect, or ifehan es in the field are noticed which are different from those stated in this report,
the i eer must be notified In order for the necessary corrections to be made.
If there are any discrepancies be en the calculations and the drawings, these calculations shall supersede.
3 This engineering: report deals only with the structural parts of the building and does not provide liability to the non-structural parts.
If plans ars stamped in conjunction with this engineering packet, certification pertains only to the structural elements of the plans.
Site Preparation
1 Do not place f'ootin. s or foundations on disturbed soils# undocumented fill debris, frozensoil.,. r in ponded water,
All slabs on grade shall be underlain by 4 in. offree-draining ranular material such as "pea" gravel or / - I in.. minus clean gravel.
Concrete
I All concrete shall have a 28 day minimum strea, h = 3000 psi.
Concrete Shall be properly vibrated dUFing placement.
Footings shall be centered below the wall and/or column above, typical unless noted otherwise -
4 t ri or footings shall bear below the ell e uts of frost,
to r footingonstrt.retior� joints from wall construction .� oin ts� aboveb at least feet.
Reinforcing in continuous footings shall b oritirluous at comers ander inter -sections by provid%nproper lap lengthsand/or corner barn
Continuous footings /out concrete foundation walls above shall be reinforced a min. of 244 longitudinal top bars in .addition to footing reinforcing.
Interior stabs on grade shall be a ruin. of 4" thick.
Place vertical reinforcing in the center of the gall (except forretaining walls or when each face is specified),
to Vertical reinforcing shall be dowelled to footing r structure below and to structure above with the carne size bar and spacing, typical U.1 _0.
1 f Provide comer bars at all intersections and comers. Use same size liar .and spacing as the hon ontal r infoTeing
12 Horizontal reinforcing shall terminate at the ends of the walls, and at openings with a standard hook.
13 Provide drainage at the base of ret in i n malls.
Reinforcing Steel
I Reinforcing steel shall e new stock deformed ars and shall conform to TAbl� th a design yield strength o s"
grade , i
Reinforcing steel shall be free of loose, flaky rust, scale, grease, oil, dirt, and other materials which might affect or impair bond.
Splices in continuous reinforcing shall b made on areas ofcompression and/or at points of mir,irnurn stress, t�� cal _I . .
4 Lap splices shall be 40 bar diameters or 4" long in concrete. Dowels shall have a minimum of 30 bar diameters embedment,
Bends shall be made cold; do not use heat. Ido not urs -bead or re -bend a previously bent bar.
Reinforcing,steel iin concrete shall be securely ancl-i r d and flied in place pr'ox- t� jplacrnr- uoncrctc and Aall bc positioned with the following ii-iin. cover:
concrete cast against and prrn.anently exposed to earth = ,
n e rete e�r a q ad to e l rte. or �x7eather
slabs on grade = center of slab
tructural Steel
1 Structural steel shapes shall conform to ASTM A572 grade 50 enhancod steel. Structural steel plat -es shall confer -n to ASTM A36.
Structural tube steel small conforin to A TMA 0o, grade B wl-th a m� in. veld strength F m 46 ksi.
Structural pipe shall cots forx-n to ASTM A , -%Yi th a miin, yield strciigth Fy = 36 ksl'-
4
High strength bolts shall conform to ASTIR A325 all oth-cr bolts shall conform to ASTM A307 or letter.
Welded anchor studs and deformed bar anchors sli.ail conform tc) the manufacturer's specs.,
Fabrication shall be done in an approved fabricator's shop.
Use high stre. cydh (8000 psi min. at 28 days), non shrink, liquid epoxy grout beneath all stee.l. base plates and bearing plates.
Bolt shall be bearing t%- eonrIeetlons U.N.O..
Steel to steel bolted connection -is shall bc. made with ASTM 3 high Aren th bolts and nU.ts, U.N.O.
to All other bolted connecLi ns shall be made with bc)lts and nuts cojiformin.,to ASTIR A307 UN -0- 7 iiicluding anchor hol.ts.
11 Bolted connections shall be tightened and shall have washers as re mr- d by AISC U.N.O.
12 Enlarging of holes shall be accomplished by mcaris of rear ring. Do )lot use a torch on any bolt holes.
13 Welded connections shall be made Lising low hydrogen matching filler material electrodes, . .o.
14 Welders shall be currently certified according to AWS w/in the last year. All welding procedures shall be pre -qualified.
1 Welding anda.s cutting shall be done per ..
16 Welds shall have the slag removed,
Welders shall follow welding preccftre.4�,
Structural No,trs (icont);
llasn. Veneer Anchor Ties
1 Masonry veneer ties shall be one of the following:
a- Dovetail anchors
b r X- 10 se i sm i o 01 i p interlock system by Hohmann & B ar n rd
c. Engineer approved piece adjustable hot -dipped galvanized ties.
Ma imurn spacing shall be 16" o.e, horizontal and vertical.
Provide continuous horizontal galvanized 99 wire in center third -of mortar joints at 16" o.c. Engage wire Nvith .all anchor tie
'good Truss .
I Bottom chords of trusses, acting as ce.fling members roust be able to support a 10 psf live. load per 13C requirements.
The muss manufacturer shall be responsible for the deslan and fabrication of the pre-engineered trusses.
The trusses shall be desired as per the attached engineering specs.
4 The trusses shall be designed to carte any additional loads due to mechanical units, overhead doors roof overbuilds, etc.
The trusses shall be designed per the 2003 IBC and local ordinances.
All members shall be designed for combined stresses based on the worst loading condition,
The truss manufacturer shall indicate proper bracing ofcompression chord members � lora � '
� dor lor��or� as ill as bracing for truss er��tzon.
All dimensions shall be Mold verified prior to fabrication,
The Contractor shall be responsible for the installation of the trusses per the truss manufacturer's recommendations and specs -
10
ecs_10 web or chord members shall be modified in the field.
I I The protect engineer is not responsible for the pre -engIneered trusses, nor for the instaIIat 1 on of the trusses.
12 Contractor is to verify truss layout is consistent with these plans and notify engineer of any deviations.
General Framing
1 Ali joints, rafters, pests and headers shall be DF -L 42 or equal U.N.O. If"TJI's or equal are used, they must be installed per manufacturer's specs,
All foists and rafters shall have solid blocking at their bearing points,
All Cod umber placed onto o Derete shall be pressure treated or redwood.
Verify all beam sizes with engineering specs,
ll burns and headers over " shall be supported by double trimmers UNO.
All over frame areas are to have full roof sheathing below,
Provide squash blocking at rim joist below all posts from header or bearn point loads frorn above.
Provide double floor Joists belo�v all parallel bearing ells above.
lulam beams slialI be 2 4F-' 4 DF/DIF for singie spans and 24 F -V 8 DF /D F for multiple spans and cant ilevcred Spans,
10 All rafters and Joists over- 3 ft long shall be hankered if not supported by bottom bearing.
I 1 A 11 hangers and other wood connections mush be desicyned to camf the ea aei o the member '
p r that t.t�eare sr�pprting,
1 No structural � ernber shall be cut r notched unless specifically shown, noted or approved by
e��ir�eer,
13 Lag screws shall be inserted in. a drilled pilot hole 60 75% of the share diameter by turning ),vith a i\,-rcnc.h_ not by drivingwith hammer.
14 Nails are to be common wire `_..
15 All bolt boles shall be drilled with a bit 1/3211 to 1/16" larger than the nominal bolt diameter.
16 All joints in v, all sheathing hall occur i�� the middle fa plate or block and nailed on each side f. the Joint w ed e naili � '� per the st�ear�� a� i schedule,
1 All over built. roof rafters shall be braced vertically to the trusses below at 4'o -c- max.
18 Double top ,platen are to have a minimum 48" lap splicekv16d nails UNO.
Summary
Floor Joists:
Deck Joists:
Roof:
Other:
Beams;
FJ1: 2x1O DF -L#2 ar 1611 o.c, as noted on plans
FJ2: Not Used
314" T&G flooring to be nailed with 10d nails @ 6 11 v.c, edge, 12" o.c. field
DJI: Not Used
Trusses by others
711611 roof sheathing to be nailed with 8d nails @ fi" v,c, edge, 12" o.c. field
Overbuild to be 2" x $" Timber @ 2411 n.c.
All bearing headers to be (2) 2x1O (DF L #2 or bitter) unless noted otherwise
All exterior sheathing to he Shear Wail #1 unless noted otherwise
All alularn beams are to be 24F -V4 unless noted otherwise
Strap end lengths dor shear walls (see also Simpson Coiled strap specs.:
CS16 � 14" CMST14 = 34"' CMSTC16= 25"
Unit A
Beam Number S ize hype
RBS 2 2 x 12 Timber
RB2 2 2 x 10 Timber
MB'!
3
9 112"
Microl(am
MB2
2
2 x 12
Timber
MB3
2
2 x $
Timber
MB4
3
9X12"
Microllam
MB5
1
2 x 10
Timber
MB6
2
2 x 10
Timber
MB7
2
2 x 6
Timber
MB8
2
2 x 10
Timber
BBI 1
3 1/811
x 9"
Glulam
or 1
5 1/8" x
13 1/21t
Glulam
-4-
Beams:
Unit B
Beam Number Size Type
RBI 2 2 x 10 Timber
MB1
2
2 x 6
Timber
MB2
3
91/2"
Microllam
MB3
3
911211
Microllam
MB4
2
117/811
Microllam
M65
2
2 x 10
Timber
MB6
2
2 x 8
Timber
M67
1
2 x 10
Timber
MBS
2
2 x 10
Timber
MB9
3
2 x 10
Timber
BB1
1
3 1/811 x 91$
Glulam
or
1
5 1/8" x 1511'
Glulam
Garage
Beam
Number
Size
Type
CB1
2
1'f 718"
Microllam
GB2
2
2 x 10
Timber
F)
Multi-L02ded Beams 2003 International Build i n Code (01
By: Brian Dance , LEI Consulting Engineers. 05-09-2006
Project" 2006-547- Location* FJ1 Double
Summary:
( 1. i . IN x 1 . FT
N 0 / - '�ui-Fir-Larh Dry Use
-
S tion Adequate : .1 % nt-ollin Factor: Mom
.,� int f Inertia � [nth
Laminations are t b fully connected t provide uniform
Center Span [ *� rrr� transfer � Cid
p Deflect
Dead Load.-
Live
oad:
Live Load:
Tl Ld :
Right Cantilever Deflections-,
Dead Load:
Live Loyd:
Total Load:
Gntr- n Lett End Reactions •
Live Load-
Dead
oad;
D d Loa
Total Load:
ire For U rA ft Loads (Includes oiift Factor of
Bearing Len.qth Required(Beamni , UPP rt p it not checked
Center Span Right End Reactions 8):
Live Load:
Dead Load:
Total Load:
Bearing Lnth Required (Beam only, support it not checked):
Dead Load Uplift F.S,:
Beam Data:
Center Span Length}
Center Span Embraced Length-Topf Beam:
Center Span Embraced Length -Bottom of Basra:
Right Cantilever Length:
Iiia Cantilever Embraced Length -Top f Bean+
F i ht Cantilever Embraced Length -Bottom f Barn:
Live Load D u mti n Factor. -
Live Load Deflect. Criteria:
Total Load Deflect. Criteria:
Center Span L d n :
Uniform Load:
Live Load:
Dead Load
Beam Self Weight-,
Total Load:
Rig ht Cantilever Lodi rig .
Uniform Load:
Live Load:
Dead Load:
Beam Self Weight:
Total Loyd:
'int Load 1
Live Load:
Dead Load:
Location (From left end span):
Properties For: - Douglas -Fir -Larch
ndinq Stress:
Shear Stress:
Modulus of Elasticity:
Stress Perpendicular t Grain:
Adjusted Fero p rti
FW mor i n Face in Tension):
dju t nt Factors; Cdr . 14 . F=1.1Cr- 1 _`�
Adjustment Factors: Cd; I
.00
Design Requirements:
Contra llin Moment-.
Over rig ht port f span (Center Span)
���tii nt rte � r�bir�in il �
d Ind and live loads on span(s) 3
�tr��rn� ��hr:
At distance d from left U p rt f .n(Riqht Span)
Critical shear created b combining all dead loads and .
ve
Comparisons With Required Sections:
Section Modulus(Moment):
� ]Ver: 7.01.(]1
71:2:21 AM
Required 9.Q1 In
to all members
o L D -Cent r=
.�0.02
I
LLD -Center=
-0.07
IN
TLD -Center=
-0-10
IN
DLD-Fight=
0.03
IN
LLD -Right=
0.09
IN
TLD -Right=
0.12
I
LL -,n -a=
200
L
D L- n-, =
-67
L
TL- n- =
133
L
Rxn--min =
-478
L
L-=
I 1
LL- n- -
DL -n -B-
TL -n -B=
BL -B=
FS=
L=
Lug -T j3'
Lug -Bottom=
L3=
LW -Top=
W3-13ottom=
Cd=
U
L/
2706
1195
3901
1.04
1.
10-0
0.0
10.0
2_0
0.0
2_U
1.00
480
360
LB
L
L
I
FT
FT
FT
FT
FT
FT
= L1 668
U1258
=
=2L/389
L-= 40 PLF
-= 10 PLF
B= 12 PLF
T, = 62 PLF
L-=
40
PLF
10
PLF
W=
12
PLF
T- =
62
PLF
PLI -=
2015
LB
PDI -3=
864
L
X1 -=
2.0
FT
F b=
F=
=
Fc perp;
Area {Shear}:
Moment of inertia (Deflection):
loads on span(s) 2, 3
FI
Ff=
M=
r q=
S -=:
roq=
ir=
1=
901
18 #.
600000
625
1133
2956
62.31
85.56
24.63
55-50-
365.94
395.x`3
PSI
PSI
PSI
PSI
PSI
PSI
FT -LB
LOM
I I
I
[112
I
I4
I
Multi -Loaded Beam[ 2003 International Building Cade {01 NDS) I Ver 7.01.01
By: Brian Dance . LEI Cons"Ifinn Fnnininrarc nn• nr;_na_9nruz • -s a .ewz.01:? ARA
U1 R!c;al 5nedr creaiep Dy cammning all dead loads and live loads on span(s) 2, 3
Comparisons Vlfith Required Sections.
Section Modulus (Moment):
Area (Shear):
Moment of Inertia (Deflection)-
Sreq=
S-
Areq,
A=
lreq=
1=
-0.02
rrl t. Z _ - LO , ti n. Fjz u u i
Summary:
I N'�
= L/1551
( 3 ) 1.5 1 N x 9.25 IN 14.0 FT f 1 + 2 - [ l `Fir L rch. - DrV Use
IN =
Section Adequate . . � Controlling Factor: Moment of inertia / Depth
Required
� I n
,� Laminations are to be fully connected to provideuniform transfer of loads
.
to all members
Center Span DefieGdOn
IN =
Dead Load:
LLD -Center=
Live Load:
LLD -Center=
Total Load:
TLD-Center--
LD- ent r=Right
RightCantilever Deflections:
Dead Load:
[QLD -Fig t=
Live d:
LLD -Fiat=
Total Load:
TLD -Rig ht=
Center Span Left End Reactions (Support .
Live Load:
LL-Rn
Dead Load:
L n-
Ttl. Load:
TL -n-=
Design For Uplift Loads (includes Urflift Factor of f t)
Rxni -
BearinLenqth cn1, support capacity not mol d .
L
Center SiDan rq ht End Reactions (Support .
Live Load:
LL -1 n B=
Dead Load:
CSL -F ri-B=
Total Load:
TL- - =
Be .ring Length I e aired (Beam only, support capacitor not checked):
L- =
Dead Load Uplift FLS.:
FS=
Beam Dat .
Center Span L n t :
L2=
Center Span Unbraced Length -T f Beam R
Lug -Top=
Center Span Unbr2ced Length -Hotton of Bean.
Lir tern=
iq fit Cantilever Length:
L_
Right Cantilever Unbr2ced Length -Top of M:
Luh -To
iOt cantilever Untraced Length -Bottom f Beam:
Lu - ottt m=
Live Load Duration tion F ctnr:
Cd -
Live Load Deflect. Criteria.Lr
xr+
Total Load [deflect. Criteria:
L/
Center Sian Loading:
Uniform Load:
Live Load:
L- =
Bead Lad:
- _
Begin Self Weight:
BSW=
Total Load:
, T- =
1 Int Cantilever L in :
Uniform Load:
Live Load:
L- =
Dead Load,:
D- =
Bean Self Weight-,
B SW: ---
Total Load:
T-=
Point Load 1
Live Load:
P L 1-3 =
Dead Load:
PD1 -3=
Location (From left end of spar):
X1- =
Properties For: 2- Douglas -Fir -Larch
Bending Stress:
Fb-
Shear Stress:
Fv-
Modulus of Elasticity:
F_
Stress Perpendicular to Grain:
Fc er =
Adjusted Properties
FW(Compression Face In Tension):
F =
Adjustment
ent
Factors. Cd ----::1.00
CI
-0.99
F=1.1
r=1.
1
F7r i!
dju tin nt Factors:Cd=1.00
Design Requirements:
Controllinq Moment-
M=
Over right suPport of span 2 (Center Span)
Critical moment created by combiningall dead loads and live loads on
span(s)
Ccs ntre lli nq Shear.
=
At a distance d from left support of n 3 (Richt Span).
s
U1 R!c;al 5nedr creaiep Dy cammning all dead loads and live loads on span(s) 2, 3
Comparisons Vlfith Required Sections.
Section Modulus (Moment):
Area (Shear):
Moment of Inertia (Deflection)-
Sreq=
S-
Areq,
A=
lreq=
1=
-0.02
IN
-0.09
I N'�
= L/1551
-0.11
IN =
U1255
0.03
I
009
IN =
2L/512
. 12
IN
L/
240
1
255
X20
0.09
1891
826
2717
.
97
1.
12,0
.
12.0
2,0
040
.
1.00
480
360
t
40
1
9
59
1 341
575
.o
900
180
1600000
625
1 125
FY+�1
-3950
42.14
64.1
16.58
41.63
278.11
296.79
LB
LB
L
L
IN
LLB
L
LB
IN
FT
FT
FT
FT
FT
FT
PLF
PAF
PLF
PLF
PLF
PLF
PLF
PLF
LB
LB
FT
PSI
PSI
PSI
PSS
P51
PSS
FT -LB
MV
IN3
1N3
fN2
IN2
I N4
I N4
—7—
r
OF
to
�r
s
� IIS f
-. I I I s~.
LL
CD a)..� I I
0.
0 V)I_,.
-- `;, E
�r
.0
�I
a)
ALI
o
0
110
4.4
LL
C
(L)
II
�..i
t I I I
....,
a
.�:3�
_
s � -
ift
LO
to
;01
D
-CO CO C)
II
-
CD
C °LO:.C
CD
CD
�
cl y
CD
0
CIO
cz
W
:.
C13
4-
0
Cl
41
f7
:
rr
0
_: °.
co C) : I ImoLo
-
' :: CD 0 ' C)
INC .; �,.`
CD CD
0 �D M
' ,,. . ; .. .. ..: ° .. �� :� �� �i.� Hifi x ■ w
CD
++
•- ■
::
° IL
CA
,:-
,•—"
.:
s
■
. .. .. . , ° .. -, ,. • -. ". S � Vii, { �T�
M1_�V
° ■���
10
Uf
{ 10
s .
`5C�'x�y ?......... ,..:..v.>�r•°1r'�:t�° °.. :;- ;. ,k : } -.:, °. t {x};s t { ��.x:�� •.
{¢
='::P .... ., { r 1. r., tis •
fq
r w�ti r}• r { i
Cy
R
II
0 C> 0
F``�--�
II II L)C-0 co II
LL
II
rim -d .P -M
CL 'C.
W LL 1-42
I I
II
I
cl y
0
11■
W
C13
4-
0
Cl
I F)
Multi -Loaded Beam[ 2003 International Buildinq Code (01 NDS) I e'er: r . 1. 1
By: Joshua Anderson , LEI Consulting Engineers on: 05-10-2006 08§,-02:19 AM
Fri t: 2006-547 - Location: M132
Summary:
( 1.75 IN x 9.5IN . FT 1.19E Microlam - Trus -,foist MacMillan
Section AdeqU2te By: 31.7% Controllin.q Factor: Moment of inertia Required
� L�ptl� r 8.67 In
* Laminations are to be fully connected t provide uniform transfer f
Center Span Deflections.-
� � t orf members
Lead Load; D LLQ =
Live Load: LLD -Center -
Total Load: TLD -Center=
Center Span Left End Reactions (Support
A).-
LiveLoad: LIL-Rxn-A=
Dead Load: L -
A=
Total Load: TL- _
A=
Bearing Length Reaquired (Beam only, support capacity not checked): BL -A::-- Span F j ht End Reactions (Support 13):
Live Load: LL -In -B=
Dead Load: DL--
Totl Loads TL- i
B=
Bearing Length Required (Deem only, support capacity not checked): BL -B=
Beam Data:
Center Span Length:
L --
Center Span Un traced Lengthy -Top of Beam: L
Town
Center Span Unbraced Length -Bottom of Beam: Lug -Butt
om-
Live Load Duration Factor:
Live Load Deflect.ritri:
Cd..
L/
Total L
d Deflect. Criteria: L
Center Span Loading:
Uniform Load:
Live Load: WL - 2=
Dead Load: WD -2=
Beam Self Weight:
Total Load:
Point Load 1
Live Load-, PL1 -2=
Dead Load; PD1 -2=
Location n left end of span): X1- =
Fount Load 2
Live Load: PL -
2=
d Load: P[_=
Location (From: lift end of span): X-=
Trapezoidal Load 1
Left Live Load: TFL`Left- 1 -2=
Left Dead Load: T D -L
eft -1-2=
Fit Live Load: TSL - i _1
ght
Rr ht Dead Load: TR - Rig ht- 1 -2=
Load Stant
Load X41 -�
End.
Load 1- =
Lr�tl�-�,
Properties_ _ �-1 -_
For: 1.9E li r l rn -Trus Joist MacMillan
B ndin Stress:
Fb=
Shear Stress:
Fv=
Modulus of E l t« it :
P�_
Stress
Perpendicular t Grain: Fc perp -
Adjusted Properties
Fb' (Te nsion : =
AdjustmentFhp
F t r'. Cd=1.1 F=1. 0
F -
Adjustment Factors: Gd=1.1
Design Requirements#
Controlling Moment; N4=
4.96 Ft fro rn left s u pport of sr)an 2 (Center Span)
Critical moment created by combiningall dead loads and live loads on span(s) 2
Conn o llin Shear-, =
At stance d from left rt of span (Center Span)
rit l shear created b Combining all dead loads
, r�� �� Ind n span(s)2
Comparisons n With Required Sections:
Section Modulus (Mornent)--
Area
(Shear):
Moment of Inertia (Deflection):
S=
Areq=
A-
lreq=
f=
0.06
0.14
0.20
4301
1893
6194
1.57
4697
2061
6758
1.72
8_0
0.0
$.Q
1.15
48[3
3fi{3
380
175
0
555
1902
1
1.
1902
815
.
718
307
718
307
.
.
..
2600
285
1900000
750
2990
13133
5794
52.71
78,97
26.52
49.88
rte`
.1
1
IN = L/682
IN = L/474
LB
L
L
I
1k,
FT
FT
FT
PLF
P! F
PLF
PAF
LE
LB
FT
L8
LB
FT
PLF
PLF
PLF
PLF
FT
FT
FT
PSI
PSI
PS!
PSI
PSI
PSI
FT -LB
W.
IN3
tN3
IN2
IN2
I N4
IN4
1ti-Lo d d Beam[ 2003 International Building Code 01 KIDS e'er; 7.01.01
B .
Joshua r LEI nsultin Engineers on: 05-10-2006:08:06:41 AM
Project: 2006-547 - Location:
Summary:
( 2 ) 1.75 «l x 11.875 I N x 9.0FT / 1 .9 E Mi r l -Trus-Joist dit 1i11n
Section Adequate By- 3.3% Controlling Factor: Section Modulus /Depth
Required 11.68 In
Laminations are t fully connected t r id uniform transfer of loads to all members
Center Span Deflections:
Dead Load: DLD-Center=
Live Load.- LLD -Center=
Total Lid:
TLD -Center --
Center Span Left End Reactions (Support :
Live Load: LL- _ -
Dead Load: Fr� -
Total L02d : TL_ _
Bearing Length Recluired (Beam onIv, support capacity not checked): -
Cent r Span Dight End Peactions (Support B) --
Live
zLi Load.- L L -
Dead Ld
Total Load: _ _
Bearing Length required (Beam only, support capacity not checked)- BL -B=
Beam Data.
Center Span Leri.qth: L-
Center Span Untraced Length -Top of Beam: L
Center Span Untraced Length -Bot f Bear: Lug -
Li L �tt�=
Load Duration ti Factor: d=
Live Load Deflect. Criteria:
L
Total Load Deflect. Criteria: L
Center Span Loading.-
Uniform
oading:Uniform Load:
Live Load: L- -
Deed Load: D- =
Beam Self Weight: BSW=
Tote I Load:
Point Load 1
Live Load:
P'L 1 --
Dead Load:
Lo(From tinleft end f span): _
Point Load
Live L PL
Dead Load: PD-=
Location (Fray left end of span): X-
Trapezoidal Load 1
Left Live Load: TIAL -Left- 1 -
2 zz-
Left Dec -:2d Load: T -Left-1- =
F ip t Live Load: TRL- I
Q ht -1 -2=
i ht
Dead Load: TPD - i -
Lod Start:
LoadLiA-1 -2=
End-
Load L n the
C-1-2=
Properties For: 1.9E Micro l r ' Trus -J oist MacMillan
Beading Stress:
Shear Stress: F=
Modulus of Elasticity: F=
Stress Perpendicular t r in: E=
Adjusted Properties
Fb' (Tension): _
Adjustment Factors: � Fh,
ors: -- --1. 1- 1 . CF= 1 .
F':
Adjustment Factors: Cd=l..00
Design r Quir ment :
Controlling moment: =
4.32 Ft from left support of span 2 (CenterSpan)
Critical moment created by combiningall dead loads and live loads on span(s) 2
Controll'Inq Shear.
_
t a distance d from left a port of span 2 (Center n),
Critical shear created by combiningall dead roads and
ComparisonsWith Recluired Sections:
Section Modulus (Moment):
Area Shear);
Moment of Inertia (Deflection):
5081
2234
731
2•x9
5121
2248
7370
2.81
F
1.33
.0
1.00
480
360
1417
608
0.75
1417
608
3.5
718
307
718
307
3.5
•
.
2600
2$5
1900000
750
2590
17185
6325
79.sz
82.26
33.29
41.56
432.50
4$8.4'i
IN
IN L/585
L-140,7
L
LB
L
I
L
L
LE
FT
FT
FT
PLF
PLF
PLF
PLF
LES
LB
FT
PLF
PLF
PLF
PLF
FT
FT
FT
PSI
PSE
PSI
PSI
PSI
FT -LB
I
I
1
1N
l
1 I
4
El
CL
BENNER If CIO
CL
fI� �
o
I I I y'"
LL LL
CD CD 0 o
11 rl
o3 CZ NOW CL
OOZ -a LL 1L. LL1 Liz
. _
�I
cz
C3
0
03
C
0
X20
..W
J
o
iw
■L If
L{-- cu
0
�I
CL
0
Lu
wo
JrC
LO.: .4
co
co
•'�'
0
CL
CD
wo
LO.: .4
co
co
•'�'
wo
11
•'�'
0
CL
CD
4•P
e
■
Q
�I
0
4-5
■ Y
,0
CL
��••�o
�L
LL
CL
r�
as
Cf
I !LL
uCZ
Co
a
CD
x„
E
00
Yi
wo
H II H
■� r� � II ■� IIS
JQ Lam.., * �
ILL Um LU
11
•'�'
0
CD
e
■
Q
�I
■ Y
CL
��••�o
0
�L
�—+
—j
0
Cf
Co
a
CD
CD
•—
0)
.�
H II H
■� r� � II ■� IIS
JQ Lam.., * �
ILL Um LU
11
•'�'
0
■
Q
�I
■ Y
CL
��••�o
0
�L
�—+
—j
0
ladu
PC
SUJOAO,q PUlAA
(D
floUl)
..CL
oil h
LO
0-
C.0
1
CD
M I
CD co oa
i 1 I i I 1 1 1cD
� p �
1 , dp '
f
+
SUJOAO,q PUlAA
11.d
CL
0
cu
Q)
r -
0)I
r
0
z
.Q
f�
U) u7
i I
oil h
IN
.
I
s
� p �
1 , dp '
f
J7
rf C/�y,D
10
A�
4D
(D
'� •'
Vr
_
00
jj
C)
V #y
V—
7--
7—_
I
ryyy---����+�,
l
F
LCD
cr)
]LyFl)
00
LO
LO
00
IN
CF)
l
CO
CN
CO
OL
C'-4
OL
•
i-4
• ,
t
Nr
0",!t
11
AL�}'rtF
^iC)
(
Y_L
0—
it
11.d
CL
0
cu
Q)
r -
0)I
r
0
z
.Q
f�
J'
to
N
Y�J
�u
ln
�
U) u7
i I
oil h
IN
.
I
s
� p �
1 , dp '
f
J7
J'
to
N
Y�J
�u
ln
�
U) u7
L
U)
D
PUN
Lo
D
L
IN
fZ
'�r-�F••�,
� p �
1 , dp '
f
J7
rf C/�y,D
10
A�
1 /r
Lm
'� •'
N
_
00
Y J
co
V #y
PUN
Lo
D
L
IN
fZ
'�r-�F••�,
� p �
1 , dp '
f
rf C/�y,D
10
A�
1 /r
Lm
'� •'
N
_
PUN
Lo
D
CL
�F
fZ
CL
LO
A�
1 /r
Lm
'� •'
00
�/ J�J
F
r
V #y
V—
7--
7—_
I
OL
iia
OL
•
i-4
CL
�F
fZ
CL
Lm
L
r
V #y
IJ
Ado
ti
CL
�F
L)
a
r r•..
CO
m
CD
Co
Im
<I csa Q Ito
4rJl
T
Q7
0
s
�P
yr.
4-
cl
co
�.
ti V
O
<I csa Q Ito
C
0
m
,73
L)
in
0
c
Zi
UJ PUJAA
y q '
a 7.d
4rJl
T
LO
0
C
0
m
,73
L)
in
0
c
Zi
UJ PUJAA
y q '
a 7.d
T
C
0
m
,73
L)
in
0
c
Zi
UJ PUJAA
y q '
a 7.d
0
s
�P
}
4-
0
z
I
CO
ti
00
,
p.,
co
CD
M
C)
cv
Z:
CO
cc
CO
ti
00
,
p.,
co
colco
D
co
SUJOAO!D pUJAA
0
C
c
0
0
Lm
UJ
C) W CL
Z) 44--
0
:3 M
D
D
n Lo C:) Lr)
c1r) C%q
0
00 mo
LO Lc) tr) L()
CO
c
C4")
Lo cr)
rz
<
�5
0
ru
0
LL LO
TY
C)
= V-- V--
lqr
tn
CO
W
D
U-)
Z:
CO
SUJOAO!D pUJAA
0
C
c
0
0
Lm
UJ
C) W CL
Z) 44--
0
:3 M
D
D
n Lo C:) Lr)
c1r) C%q
0
00 mo
LO Lc) tr) L()
CO
c
C4")
Lo cr)
rz
<
�5
0
ru
0
LL LO
TY
C)
= V-- V--
lqr
C)
CO
W
D
U-)
4p M
C)
C)
CO
W
D
U-)
Z:
CO
cc
co
00
CO
0
L)
U)
tu
Ln
r"
LO
0
-0
Ab�
0
U)
4
co
4p M
't
C)
C)
m
D
U-)
't
C)
CD,
m
D
CL
SUIDA0E) Puim
a
0
0
gc---
LO co
It
Q) a) M
cl� CU 'm CZ
CL o- <
0
Cc:) u
-cr-
4-0
C
m
D
CL
0
0
_0
CO
0
L)
U)
tu
0
-0
Ab�
0
U)
gc---
LO co
It
Q) a) M
cl� CU 'm CZ
CL o- <
0
Cc:) u
-cr-
4-0
1{3j At
7t COD C'14 N
E
U)
co
.
N
DS
Ua AO PU!
0
0
, a7-
CO
CO
co
L -D
LO
Lr)
CNI
:....
cr
to
CD
E
U)
co
.
N
DS
Ua AO PU!
0
0
0
0
C)
LO
am
L -D
LO
Lr)
ILO
} j
; /00
�1!
-
eY
(D
(D
I
oLJ
a
u
ty r�
'w.� J
+ 4.�
�l�-��
ui
_-_
0
0
C)
LO
am
E
CA
co
0
UJO-O PUIAA
0
CL
0
0
Ma
■ iifi'
0
Ma
0
C)
i
i
E
+O
Ef)
C)
LO
0
CO
to
co
CL
C)
IT'"
CD
D
Q0
f�
�,i..�
.. ,
E
CA
co
0
UJO-O PUIAA
0
CL
0
0
Ma
■ iifi'
0
Ma
0
C)
i
i
E
+O
Ef)
C)
LO
0
C)
Cl
LO_
. •. •. - -
Ln
C)
CD
CD
D
Q0
f�
�,i..�
.. ,
0
to
LO
LO
E
CA
co
0
UJO-O PUIAA
0
CL
0
0
Ma
■ iifi'
0
Ma
0
C)
i
i
E
UJOAO U r
U)
D
+O
Ef)
C)
LO
0
C)
Cl
LO_
. •. •. - -
Ln
C)
CD
CD
D
Q0
f�
�,i..�
0
UJOAO U r
U)
D
+O
Ef)
C)
LO
0
C)
Cl
LO_
0
v
C)
CD
CD
D
Q0
f�
�,i..�
0
0
E
E
x
UL
fl� IL-0
UD
Nr
E
w
>
CD
12
04
U)
0
E
E
x
UL
fl� IL-0
UD
Nr
'SUIOAOE) PUIM
CNJ
>Tod,
SUJOAOE) PUIM
d 44- 6
6 x 6
LL
LO
04 U)
0
0
C -D
Q (Z:)
.0 A
ty) U) co
c) ol: .0 00 10
L-
0
0
CZ)
ITS Lo u L)
0 CO '0
uCO C),
(n co Q) n IL
C37 C%4 :3
C)')
(3) C)7
> 0
U)
0 0
E
>
to
U) 14
D
V --
E
w
>
04
C)
0
LO
U)
m
'SUIOAOE) PUIM
CNJ
>Tod,
SUJOAOE) PUIM
d 44- 6
6 x 6
LL
LO
04 U)
0
0
C -D
Q (Z:)
.0 A
ty) U) co
c) ol: .0 00 10
L-
0
0
CZ)
ITS Lo u L)
0 CO '0
uCO C),
(n co Q) n IL
C37 C%4 :3
C)')
(3) C)7
> 0
U)
0 0
E
>
to
U) 14
D
V --
0
cq
rs
0
3
C)
D
F9
E
Lo
0
0
z
CD
CD
CA
r--
U)
CIO
•
�C
4—J
0
0
=7
V-
-17�(--) —
d.�-r
0
cq
rs
0
3
C)
D
F9
E
Lo
0
0
z
CD
CD
U)
•
CD
ft�t
Lo
(D
CC
'V" -
Lr>
17-
d)
CD)
0
0
-0
M
1,
0)
0
>
W
V-
-17�(--) —
d.�-r
U)
UJO PUIAA
0'
0
Ic
C
!i
CD
co
cn
UJO PUIAA
0'
0
Ic
C
0
z
D
!i
co
0
z
D
E
SUJaAOO PUI
3: 3:
a
0
w PMEw
0
00
F=
0
{
1p
0
y
i
■
'r4
C4
T
�a
UlE)PU IAA
r
°
T
ti
±
.r
If
ICcn
a
0
w PMEw
0
00
F=
0
{
1p
0
y
i
■
'r4
C4
T
�a
UlE)PU IAA
CL
j CLJ
+
LLJ
v r
0 x 1
LL M LU
bg
0
6
rF
T
ti
±
.r
{
I
I I
m
CL
j CLJ
+
LLJ
v r
0 x 1
LL M LU
bg
0
6
rF
*2:
a
U)
•@
W
0 O
��--qo��
6 +.
0
0
UIR &M 0
CL
C.
N
W
CL
f�
r
Ula O
P u lm
cd
(*D�
cy)
CO
01
Lo
ol
V
CL
CO
ee
0
co
cr)
.,.
�.
CL
�`'� �
k �1
11
•.
UIR &M 0
CL
C.
N
W
•
CL
f�
r
Ula O
P u lm
cd
co
cy)
CO
01
Lo
ol
(Y)
CL
CO
ee
0
6
.,.
�.
0
11
•.
11
C
m
d
CD
0
..
0
03
LL
Y�
M
co ,{-
IJ
JI
®
_:.
CN
0
o
o-
aff
.-.
■
L- J
C
0
mr0
7
Ln
%tt
m
et
•
CL
f�
r
Ula O
P u lm
cd
co
cy)
CO
01
Lo
CL
o „'
ee
0
LO
0
0
11
•.
11
C
m
d
CD
0
..
0
03
LL
Y�
•
CL
f�
r
Ula O
P u lm
cd
co
cy)
CO
Lo
•
CL
Ula O
P u lm
cd
co
cy)
CO
Lo
CL
ee
c
•.
ecoe
1.11
d
0
..
0
03
LL
Y�
co ,{-
IJ
JI
®
_:.
r
o
o-
aff
■
L- J
C
0
mr0
7
Ln
%tt
et
CL
LL
U)
L
CD
6
+
C
0
cuee�
LO
N
E
CD
CL
0
W%
ee6k
IOUU
C
CL
'Zo
CD
T—
� arp
6
0
CD
r4
■
E
CIO
0LO
to
r s
to
a� ��Q��
g
'161"
MEMPER
Lo
1
eeee�
■
t!
4� •Cpm'
■ e.e�
P
CD
I -L-
CL
..
'C
•
CL
a
cd
co
cy)
CO
Lo
CL
ee
•.
0
1.11
d
0
..
0
03
LL
Y�
co ,{-
IJ
JI
0
o-
aff
■
L- J
C
0
mr0
7
Ln
%tt
et
CL
LL
U)
L
CD
•
CL
a
cd
co
cy)
CO
Lo
CL
•
SUJOAOO A
CL
a
cd
co
cy)
CO
W5..d'.{
CL
ee
•.
0
1.11
d
0
..
0
03
LL
Y�
co ,{-
IJ
JI
�
o-
aff
L- J
C
0
mr0
7
■ O
et
CL
LL
#
L
CD
SUJOAOO A
. M
i
I
m
IL � 0 cu
°
CL
a
cd
co
cy)
CO
W5..d'.{
CL
ee
•.
0
d
..
boo
Y�
co ,{-
IJ
JI
�
. M
i
I
m
IL � 0 cu
°
CL
CL
ee
0
boo
0
mr0
et
LL
#
L
CD
0
cuee�
LO
CL
0
CL
'Zo
CD
T—
� arp
r s
a� ��Q��
g
'161"
MEMPER
LL
■
t!
4� •Cpm'
■ e.e�
P
CD
I -L-
CL
E
U.IO PUIJ''YL
W
141
po.j
0
CD
73
w
�m
u
�PRIME
C)
tD
.0
LL
L3
r
to
00
LO
W
0
0
0
Lo
�I
II
�I
II
Co.:
.
W
141
po.j
0
CD
73
w
�m
u
�PRIME
J
Q
0)
0
C)
tD
.0
LL
L3
r
to
00
LO
W
0
J
Q
0)
0
C)
tD
.0
LL
L3
r
to
00
LO
W
0
0
Lo
�I
II
co
Co.:
.
is
fl
l�
II
dl
10
J
Q
0)
0
UJOAO PUI
C)
tD
0
LL
L3
r
00
LO
0
Lo
CD
co
Co.:
.
is
fl
UJOAO PUI
a
+1-- 4—Jr r
L
! J �
ul
acn
L)
10
J
.
6
r
—2
tD
0
LL
L3
r
LO
CD
co
Co.:
.
is
fl
l�
II
dl
CU
m
0
a
+1-- 4—Jr r
L
! J �
ul
acn
L)
10
J
.
6
r
—2
0
LL
L3
CD
.
is
fl
l�
a
+1-- 4—Jr r
L
! J �
ul
acn
L)
10
J
.
6
r
—2
L)
E
m I KPI I us
0 00
V- Lf)
+i
ON
0
UJO P U r
vWMEW.
L'1
In
cv CD
0
CO
��y
D
LL
+~~��
0
C)
41
F:
LL
L.Q
E
l
W -L r5t
a
E
CO 00
"
c �Lr):;
0 00
V- Lf)
+i
ON
0
UJO P U r
vWMEW.
L'1
0
1�
a
CL
0
F -
ca
II
z
W
In
CO
��y
D
LL
+~~��
0
C)
41
LL
L.Q
E
•V
1
W -L r5t
a
E
co
_CID
c �Lr):;
Q
OL
C)
0
„•
p F01%
%4 }
(D
CN
CD
-r--
.'
. ,•
C);•:
I
0
1�
a
CL
0
F -
ca
II
z
W
In
CO
��y
D
LL
+~~��
0
C)
41
LL
L.Q
E
•V
1
a
E
co
_CID
UJ
Q
OL
C)
0
,
CL
Cp
W
U)
D
Q)
LnM
c
i�
V-
0
sio
-
�=
0
■
L)
in
0
4 '�1
r-.
i
J
00
o
4-4
o� lei
i
yam■
® ewr
L
�■M�FR
�: cn
UJO PUr
In
CO
��y
D
LL1 .
+~~��
IL
0
j
� CD
0
LL
L.Q
a
E
co
UJ
Q
OL
C)
0
p F01%
%4 }
(D
CN
CD
-r--
Q)
LnM
c
i�
V-
0
sio
-
�=
0
■
L)
in
0
4 '�1
r-.
i
J
00
o
4-4
o� lei
i
yam■
® ewr
L
�■M�FR
�: cn
UJO PUr
loil"Mme.
In
CO
��y
D
LL1 .
+~~��
IL
0
j
� CD
loil"Mme.
In
0
LL1 .
IL
0
j
� CD
LL
_s
L.Q
loil"Mme.
CL
mm
0
LL1 .
IL
0
j
� CD
LL
_s
L.Q
a
E
co
UJ
CL
C)
0
CL
mm
LL
L.Q
a
E
co
C)
CL
mm
KING STUB CALCULATIONS
Stud Width Iii
+ + i , F Ta .q�n F
4 n
Stud De =in
L _ft
king stuck spacing_ -rft
F6 = 700psi
FE; = 850 psi
Fcper , _ 625 psi
E = 1.4n0000 psi
F = 1.1 for bending
CF = 1,05 for comp. II to grain
15.75 int
.1 in'
Dead Loads:
Roof DL = 120 plf
Floor DL = If
WDA = 136 plf
Live Loads:
Roof LL = 280.8 plf
Floor LL = 0 elf
WLR.= 280.83
Load Case 1: Gravity Loads Only
Load Combinations:
DL
DL+FLS =
DL+FLL+SL
Cc) (DL) _
CQ (DL+FLL)
CD(DL+FLL+SL)=
f = fPerp
(I �dx)
E'
KQE
FcE
F*C .�
.FcE/F C _
(1 +Fcrz/F�c)/2r,
FSC �.
Check
1 36 Pff
136 Plf
417 pif
n
1
1.15
26.S psi
27.4 j
1400000 psi
0.
M
658.3 psi
1 026 psi
0.544
0.965
0.464
476,0 psi
Bearing of stud on wall plates:
Cb = 1.083333333
F'rperp — 677 psi
Check OK
ig
Loa�'r��
Roof LL. 35 Psf
r.
JCL
TA ro o _ = {
Ta floor
Wall DL _ RT . Of
Lateral Load = 11.7 pf
Use: Use (3) 2x4 full height king studs
Load Case : Gravity Load + Lateral Load
D _
r —
Axial:
fc —
(le/dx)
cE
.F,FF _
(I + F c EIF J/2c
F'
Check _
Drub I n ed Stress
FOEX =
Interaction Formula _
Check =
1:15
8.6 p s.i
27.4 in
558.E psi
1428 psi
0.391
0-869
0.353
503.4 psi
O
556.3 psi
0.91
120.9
Of
1 -
11602.7
In+lb
fb =
122.9
psi
Fib =
1416.8
psi
Check _OK
D _
r —
Axial:
fc —
(le/dx)
cE
.F,FF _
(I + F c EIF J/2c
F'
Check _
Drub I n ed Stress
FOEX =
Interaction Formula _
Check =
1:15
8.6 p s.i
27.4 in
558.E psi
1428 psi
0.391
0-869
0.353
503.4 psi
O
556.3 psi
0.91
0
TUU WALL CALCULATIONS
in
Stud Width_ t ....
Loadin
Stud Depth _ +® in
Roof LL35 Psf
_ _
TA
6roof -- _-r9r.r:..` f#
stud spacing_ _fJJ{
_ ...
Ta floor
ft
700 r Wall DL =
_ H
0 psi
Fcperp 625 psi Lateral Load - 11.7 p f
E 1400000 psi
I for bending Use: 2 x 6 Stud Grade O.C.
F_ 1 for COMP. 11 to grain
_ 8.25 int
S T56 in'
Dead Loan!
Roof DL = 285 olf
Floor DL = 90 Plf
DL �= 575 plf
Live Loads
Roof LL = 667.0 plf
Floor LL = 360 Of
WLL= 1026.97
Load Case 1: Gravity Loads Only
Load Combinations:
LJL = 765 plf
D L+FLL- 1 If
2131 if
.
1
ISL+FLS.+L
Cc
(DL) _
in. Ib
(DL+FLL)
D
(DL+FLL+SL)=
fG _
f cper
([,/d,,)
E' -
KcE -
=
FCE
FC_
Frp/F 0
(1 +FcEJF J/2c
P -
ISI =
1400000 psi
.
-0.
Bearing of -stud on wall plates;
Cb
Flc
p e
Check
1378.6 psi
978 psi
1.410
1.506
0.795
776.9 psi
Load Case : Gravity Load + Lateral Loads
V
M
fb -
F'
Check
F,E
Fc,c/F r
(1 +F,,E/F"r,/
P =
4-
F'
Check _
orn b in e d Stress:
Fc =
Interaction Formula _
Check =
15.6
plf
1493.9
in. Ib
197.5
psi
1 288
PSI
150.7 psi
17.5 1n
1378.6 psi
1360 psi
1.014
1.259
0.696
946.1 psi
1378.6 psi
0.20
-2
POST / FOOTING / SHEAR WALL SCHEDULE
(not all are necessarily used)
Posts
Designation Post Size
P1 Double Stud (Trimmer)
P2 Triple Stud (Trimmer)
P3 4x4
P4 6xfi
PS 3 1/211 x 3 1!2" Parallam Post
PG 3 1/211 x 5 114" Parallam Past
P7 5 1/411 x 5 114" Parallam Post
P8 Four Studs (Trimmers)
Footings
Designation
Footing Size
Reinforcement
Crosswise
FT1
20 If 1Vxcont.
(2) #4 bars cont.
Non
F72 Not Used
FT3 2411x24"x 1 "
FT4 3011 X30 F1 X10 It
FT5 3611x36"x12"
FT1v 11x l .11
F77 4811x48' :12,1
Shear Walls,
(3)
#4
bars
each
way
{3}
#4
bars
each
way
(4)
#4
bars
each
way
(5)
#5
bars
each
way
(5) #5 bars each way
-20-
Spacing
Resignation
Material
mails
Edge Field
Chords
1
7116" SSS or CDX
plywood
8d
6" 12"
2 king studs
2
7/16" OSB or CDX
plywood
8d
41' 1 2"
2 king studs
3
7116" 4S8 or CDX
plywood
8d
3" 12"
2 king shads
4
112" Sheet Rock or
better
5d Gooier
7" 711
2 kind studs
-20-
Post Calculations
Example Calculations:
lb ft ft in in
Load Charts:
•
Post
Max P
f
Ie,
Iffy,,
7ft
8ft
9 ft
( 2x4
Comb.
8
440
1
0.61
26-90
6620
() 2x6
•
899.
,
- �}d-^C'J}.v>.:-,.+: r• rx.it.. �: �w�c:er:+c¢hS'?Wi_.
� _..... ,..
... .....:
- ..,,
4
2x4
5815
a
3
1
0,61
4165
3680
() 2x6
14300,
8
8
1
0,96
4A
5200
4x4
4355
8
3
1
0.61
0350:.,
112 X
6x6
11215
8
8
1
0-96
..
1/2143
1/2" 1 L P
7440
8
1
. 318L' -;:O
0-00
24355
1/ " x 5
1/4" PLP
11040
8
1860
3
0.00
.. •5 Ij 4. r
1/4""x 5
1/4" PLP
27920
4+1
_,7 05
8
0.00
5,
930
2x4
7755
8
8
1
0,61
863
0,8
2x6
190 95
220260
17600
. .
°
'1 IV 7
1/2!' LP
12230'..
i
1
, .
0.00
17810
31/8
I"r LP
14675.
8
t'.iTTr l
8.:
�+
ryy
^V
�t
26-1'60.
51/8 "iX
6" GLP
2965
�
1.
°..
O,O
18.3
118 x 7
1/211 GLP
37070
8aoo
1 889
3034
3036
Additional
Post, Calculations:
115
_4
2.0
21
12
21
369
532
1785
1964
0.6
Off,
0.00
1.15
17,5
..
3330
;.'
:.
0.61
1022
1547
1779
0.7
O.I .
0.55
1.15
0.61
Load Charts:
1/""x7 1/2 14 LP 141640 37070 32710 28866
:: e ... ...........
•
2X4
Roof Loads
2310
1890
1575
7ft
8ft
9 ft
10 ft
Comb.
O 2x4
440
3730
3155
26-90
6620
5(33 I
7
,
- �}d-^C'J}.v>.:-,.+: r• rx.it.. �: �w�c:er:+c¢hS'?Wi_.
� _..... ,..
... .....:
- ..,,
4
43
t
3 2x4
6980
5815
4895
4165
3680
.. .
3140
-15 475
014 30 il
131 915
• ° °...
... : r
4A
5200
4355
3D
3140
6X6
1
"x••11,2
0350:.,
112 X
1/2" PLP
9000
7440
0230
5275
_7
..
4:.
�
' X845 �;
..... ....•, :.,.......
Pu l l
114
.•, ....,
11,14" PL P
. 318L' -;:O
27920
24355
21300
1 30 ;
12 4
222 5 .
1860
.. ,
157
. 1-3
.. •5 Ij 4. r
(1) 2xE
51 0
4640..
4+1
_,7 05
16530 ..
¢ <..
5,
930
'6r'`'ye. }_ <,
:,.. �..� : f }••: •..
28
371
6153
862
863
0,8
OK
(4) 2x6
220260
19095
17600
115640
11-9`X-7
V-211 , IL I
7
1 2L3O.'
i
.} .
3 1 IT
9LP
17810
14675
12250
10355
•7d to }/�r'iF
.:
t'.iTTr l
_
f-{. 1 Gyy�rLj'
�+
ryy
^V
�t
26-1'60.
II
1/""x7 1/2 14 LP 141640 37070 32710 28866
:: e ... ...........
•
2X4
2840
2310
1890
1575
fc
.
:.•:
F'bx
_7
Comb.
:.2930 ...,..244
<O.M
1.151
()
2x4 ;
6620
5(33 I
7
0
582
15-51
1708
, 1 480
4
43
t
17.5
4.0
4x4
5200
4350
3680
.. .
3140
1344
1547
0.7
• ° °...
... : r
, .
. }yam:.-:....
3 1/2 ""
1/2" PLF "
X000
7440
6230
5275
i.+~
1+ L
,. '
, .. . ° il0
-_-7845
'9250.
}
itr$T'\
_7
24,75
23
19
.,
1019
1/4" 5
114" PLS'
31850,
-
27920
Z2435W
1 30 ;
.. :.. . ,
...............
1. -1),,`.
...
......»...,. .. ...
41 #i i..d�
i V'
.. •5 Ij 4. r
• •4: •1 '�s�
1 034
4)
2X6
16525
16530 ..
14855
131
FC
Fb
Fby
EX
Ey
psi
psi
psi
psi
psi
a
Cd
(le/d)x
Oe/d)
12.25
x
7
fc
Pie
F'bx
FFby
Comb.
Check
<O.M
1.151
27.4
27.4
12.25
7
7
0
582
15-51
1708
0,6
6020
0.00
1A 5
17.5
4.0
16.5
15
8
545
1013
1344
1547
0.7
OK
0.00
1.15
27.4
Z7
15.75
9
12
369
582
1735
1964
0.6
OK
101
1 . 15
17,
_7
24,75
23
19
573
1019
1547
1779
O.7
OK
0.00
1..15
27.4
3.4
1.25
7
7
356
571
1 034
1035
0.3
OK
0.00.
1.15
17,5
30x25
28
28
371
6153
862
863
0,8
OK
0-61.
1-15
3.4
27.4
12.25
7
953
3113174
1.0
OK
15
2.3
27.4
13.375
16
11
01'
953
3032
3036
1.OK
0. 92..
1.15
2,3
18.3
7, 563
24
24
1013
1 889
3034
3036
1.0
OFA
115
_4
2.0
21
12
21
369
532
1785
1964
0.6
Off,
0.00
1.15
17,5
2,0
3330
33
579
1022
1547
1779
0.7
O.I .
0.55
1.15
1.6
30.7
23.438
29
12
522
502
2181
2935
1-0
Q..55
1.15
1,3
30.7
28.125
42
15
522
802
2180
2935
1.0
OK
1,15
.0
13.7
30.75
31
26
964
1773
2184
2783
1.0OK
0,90
1 '. 15
1.6
13.7
38.438
43
33
964
1773
2184
2783
1,0
OK
161
1 . 15
27.E
27.4
12.25
7
7
0
571
1 031
1 035
0.0
OK
0.61
1,15.
27.4
27.4
12.25
7
7
0
571
1031
1035
0.0OK
6020
_ 1
1.15-27.4
.A:,'
27.4
12.25
7
7
0
5711031
""IT 0
1035
0,0
OK
Floor Loads
ft. 8 ft 9 ft 10 ft
4220
3565
3030
2595
45
6630
5565
4710
4025
1 15
i -850
12 115, .
A. 1030
4930
4160
3535
3030.
I Q
10 1.4
8600
7155
6020
5120
1272
.A:,'
823 :.-760,5,
29350
200
23000 20260
23000
""IT 0
I 1 -
" -
1 30
4640
4150
3705 .
12445
422 °
15285 , .
5370 "
13030
17155
1 1 5
1471
E
#17,
17030
14130
11855
10060
3-0425'
274
}45,5
38040
34 �0 ..
,3��� 9 0..
70
2735
2'240
1845
-1540
45
6220
5325
45060
3925 92 .
4
'060-
64930
4930
4160
..
335
3030}
7155
602D
•120 .
5.120
29350
26030
23000
20260
b0,*..
_74'x : 6285
5374 ` .
16440
15140
13785
12445
0
W
Notes: 1. Example calculations sheer posts braced
in one dlrect[on.
. Loads have been adjusted to accommodate
for the wort case of the following eccentric
Conditions: _ 175 of column thickness or. `"
-of column width.
T