Loading...
HomeMy WebLinkAboutSTRUCTURAL REVIEW - 06-00352 - Parkside Townhomes - Bldg #16 4 UnitsA 5-ft-qql 11 UO 00352 Parkside Townhomes Bldg I'll S#l6,a Ph --e 4 side Rexbur Georgetown Development) Structural Review11 Rexburg. IdahO May 9 2006 Job #2006 547 9 I'll IM �,1�Iaiakzytxeet �3Q� SPauis� F Utah �40�(� Phan, &Q�-���-Q��Ss --0-Iwm,798mm9,39,3 �.E, I. CO,usult%ng Engjneers and Surve voars, enc. 4 Engaueer's seal tQ th* -tire, catculat cr �a.�l��*�. This, pa�ket S V.QId I*f bindins��l xO-'s brayer� e�a�zneex3s or if S.C.-al gip€- V.I. . Pin -S I-uM I tot��a -�r� iu red i��.. This eng* eer* Am. .0 a fXIII ORm 109 rePort is valionly itor toe a-0 ejunt n ed b located at ]RuRding 16, Phase 4 i Park We Subdivision 1 Th�S report is, to b-die *n �ex�� -e used Only once and may not copT.I'Mie. 0 W-4111out the, written coju[s I �Onsulfin2 E Structural Review for: Location: Joh #.I Engineered by: Code: Loadin_qs Ground Snow Load: €f Snow Load Georgetown Development Rexburg,, ID 2006-547 B. Dance 2003 IBC P9= 50.7 pf Roof Dead Load: Floor Loadir; Wind Loath � 35.1 psf Mean Roof Height = [20 Wind Speed V = 90 Freight & Exposure Factor = 1 Seismic Loi: Roof diaphragm heights _ :.::: . ft Fundamental Period T = 0.175 sec. R.30 Horizontal Pressures 1.4 zone A zone B zone C zone 16.1 2.6 11.7 2.7 p, Horizontal Pressures 1.4 zone A zoneB zone 7 -on D 16.1 2.6 11.7 2.7 F= 1.4 Fv _ S%js 0. M1 0.3 SDS = --467 D1 _ 0.200 T, _ 0-0857143 sec. TS _ 0,4285714 sec. Seismic Use Group Seismic Zone Category D. Soil Beari Coq Capac1500psf �e Preface & Structural Notes This engineering report is valid only for the N-lowling plan and location.,- Parkside o ation, Parkside Townhames Phase 4 Building 16, Phase 4. Parkside SubdivisionRexburg, Idaho OT.. ToC'. - T OR.-: PLANC I A)ING-INSPIE If the above address fines not match the intended building address noti�v LEI immediately @ 801-798-0555. This engineering packet -is to be used only once for the above mentioned location and i P s not to be copied or reproduced without Tr tten consent of LEI Consulting n in e r . Structural Notes: General Notes 1 If -values and assumptions stated in this report are incorrect, or ifehan es in the field are noticed which are different from those stated in this report, the i eer must be notified In order for the necessary corrections to be made. If there are any discrepancies be en the calculations and the drawings, these calculations shall supersede. 3 This engineering: report deals only with the structural parts of the building and does not provide liability to the non-structural parts. If plans ars stamped in conjunction with this engineering packet, certification pertains only to the structural elements of the plans. Site Preparation 1 Do not place f'ootin. s or foundations on disturbed soils# undocumented fill debris, frozensoil.,. r in ponded water, All slabs on grade shall be underlain by 4 in. offree-draining ranular material such as "pea" gravel or / - I in.. minus clean gravel. Concrete I All concrete shall have a 28 day minimum strea, h = 3000 psi. Concrete Shall be properly vibrated dUFing placement. Footings shall be centered below the wall and/or column above, typical unless noted otherwise - 4 t ri or footings shall bear below the ell e uts of frost, to r footingonstrt.retior� joints from wall construction .� oin ts� aboveb at least feet. Reinforcing in continuous footings shall b oritirluous at comers ander inter -sections by provid%nproper lap lengthsand/or corner barn Continuous footings /out concrete foundation walls above shall be reinforced a min. of 244 longitudinal top bars in .addition to footing reinforcing. Interior stabs on grade shall be a ruin. of 4" thick. Place vertical reinforcing in the center of the gall (except forretaining walls or when each face is specified), to Vertical reinforcing shall be dowelled to footing r structure below and to structure above with the carne size bar and spacing, typical U.1 _0. 1 f Provide comer bars at all intersections and comers. Use same size liar .and spacing as the hon ontal r infoTeing 12 Horizontal reinforcing shall terminate at the ends of the walls, and at openings with a standard hook. 13 Provide drainage at the base of ret in i n malls. Reinforcing Steel I Reinforcing steel shall e new stock deformed ars and shall conform to TAbl� th a design yield strength o s" grade , i Reinforcing steel shall be free of loose, flaky rust, scale, grease, oil, dirt, and other materials which might affect or impair bond. Splices in continuous reinforcing shall b made on areas ofcompression and/or at points of mir,irnurn stress, t�� cal _I . . 4 Lap splices shall be 40 bar diameters or 4" long in concrete. Dowels shall have a minimum of 30 bar diameters embedment, Bends shall be made cold; do not use heat. Ido not urs -bead or re -bend a previously bent bar. Reinforcing,steel iin concrete shall be securely ancl-i r d and flied in place pr'ox- t� jplacrnr- uoncrctc and Aall bc positioned with the following ii-iin. cover: concrete cast against and prrn.anently exposed to earth = , n e rete e�r a q ad to e l rte. or �x7eather slabs on grade = center of slab tructural Steel 1 Structural steel shapes shall conform to ASTM A572 grade 50 enhancod steel. Structural steel plat -es shall confer -n to ASTM A36. Structural tube steel small conforin to A TMA 0o, grade B wl-th a m� in. veld strength F m 46 ksi. Structural pipe shall cots forx-n to ASTM A , -%Yi th a miin, yield strciigth Fy = 36 ksl'- 4 High strength bolts shall conform to ASTIR A325 all oth-cr bolts shall conform to ASTM A307 or letter. Welded anchor studs and deformed bar anchors sli.ail conform tc) the manufacturer's specs., Fabrication shall be done in an approved fabricator's shop. Use high stre. cydh (8000 psi min. at 28 days), non shrink, liquid epoxy grout beneath all stee.l. base plates and bearing plates. Bolt shall be bearing t%- eonrIeetlons U.N.O.. Steel to steel bolted connection -is shall bc. made with ASTM 3 high Aren th bolts and nU.ts, U.N.O. to All other bolted connecLi ns shall be made with bc)lts and nuts cojiformin.,to ASTIR A307 UN -0- 7 iiicluding anchor hol.ts. 11 Bolted connections shall be tightened and shall have washers as re mr- d by AISC U.N.O. 12 Enlarging of holes shall be accomplished by mcaris of rear ring. Do )lot use a torch on any bolt holes. 13 Welded connections shall be made Lising low hydrogen matching filler material electrodes, . .o. 14 Welders shall be currently certified according to AWS w/in the last year. All welding procedures shall be pre -qualified. 1 Welding anda.s cutting shall be done per .. 16 Welds shall have the slag removed, Welders shall follow welding preccftre.4�, Structural No,trs (icont); llasn. Veneer Anchor Ties 1 Masonry veneer ties shall be one of the following: a- Dovetail anchors b r X- 10 se i sm i o 01 i p interlock system by Hohmann & B ar n rd c. Engineer approved piece adjustable hot -dipped galvanized ties. Ma imurn spacing shall be 16" o.e, horizontal and vertical. Provide continuous horizontal galvanized 99 wire in center third -of mortar joints at 16" o.c. Engage wire Nvith .all anchor tie 'good Truss . I Bottom chords of trusses, acting as ce.fling members roust be able to support a 10 psf live. load per 13C requirements. The muss manufacturer shall be responsible for the deslan and fabrication of the pre-engineered trusses. The trusses shall be desired as per the attached engineering specs. 4 The trusses shall be designed to carte any additional loads due to mechanical units, overhead doors roof overbuilds, etc. The trusses shall be designed per the 2003 IBC and local ordinances. All members shall be designed for combined stresses based on the worst loading condition, The truss manufacturer shall indicate proper bracing ofcompression chord members � lora � ' � dor lor��or� as ill as bracing for truss er��tzon. All dimensions shall be Mold verified prior to fabrication, The Contractor shall be responsible for the installation of the trusses per the truss manufacturer's recommendations and specs - 10 ecs_10 web or chord members shall be modified in the field. I I The protect engineer is not responsible for the pre -engIneered trusses, nor for the instaIIat 1 on of the trusses. 12 Contractor is to verify truss layout is consistent with these plans and notify engineer of any deviations. General Framing 1 Ali joints, rafters, pests and headers shall be DF -L 42 or equal U.N.O. If"TJI's or equal are used, they must be installed per manufacturer's specs, All foists and rafters shall have solid blocking at their bearing points, All Cod umber placed onto o Derete shall be pressure treated or redwood. Verify all beam sizes with engineering specs, ll burns and headers over " shall be supported by double trimmers UNO. All over frame areas are to have full roof sheathing below, Provide squash blocking at rim joist below all posts from header or bearn point loads frorn above. Provide double floor Joists belo�v all parallel bearing ells above. lulam beams slialI be 2 4F-' 4 DF/DIF for singie spans and 24 F -V 8 DF /D F for multiple spans and cant ilevcred Spans, 10 All rafters and Joists over- 3 ft long shall be hankered if not supported by bottom bearing. I 1 A 11 hangers and other wood connections mush be desicyned to camf the ea aei o the member ' p r that t.t�eare sr�pprting, 1 No structural � ernber shall be cut r notched unless specifically shown, noted or approved by e��ir�eer, 13 Lag screws shall be inserted in. a drilled pilot hole 60 75% of the share diameter by turning ),vith a i\,-rcnc.h_ not by drivingwith hammer. 14 Nails are to be common wire `_.. 15 All bolt boles shall be drilled with a bit 1/3211 to 1/16" larger than the nominal bolt diameter. 16 All joints in v, all sheathing hall occur i�� the middle fa plate or block and nailed on each side f. the Joint w ed e naili � '� per the st�ear�� a� i schedule, 1 All over built. roof rafters shall be braced vertically to the trusses below at 4'o -c- max. 18 Double top ,platen are to have a minimum 48" lap splicekv16d nails UNO. Summary Floor Joists: Deck Joists: Roof: Other: Beams; FJ1: 2x1O DF -L#2 ar 1611 o.c, as noted on plans FJ2: Not Used 314" T&G flooring to be nailed with 10d nails @ 6 11 v.c, edge, 12" o.c. field DJI: Not Used Trusses by others 711611 roof sheathing to be nailed with 8d nails @ fi" v,c, edge, 12" o.c. field Overbuild to be 2" x $" Timber @ 2411 n.c. All bearing headers to be (2) 2x1O (DF L #2 or bitter) unless noted otherwise All exterior sheathing to he Shear Wail #1 unless noted otherwise All alularn beams are to be 24F -V4 unless noted otherwise Strap end lengths dor shear walls (see also Simpson Coiled strap specs.: CS16 � 14" CMST14 = 34"' CMSTC16= 25" Unit A Beam Number S ize hype RBS 2 2 x 12 Timber RB2 2 2 x 10 Timber MB'! 3 9 112" Microl(am MB2 2 2 x 12 Timber MB3 2 2 x $ Timber MB4 3 9X12" Microllam MB5 1 2 x 10 Timber MB6 2 2 x 10 Timber MB7 2 2 x 6 Timber MB8 2 2 x 10 Timber BBI 1 3 1/811 x 9" Glulam or 1 5 1/8" x 13 1/21t Glulam -4- Beams: Unit B Beam Number Size Type RBI 2 2 x 10 Timber MB1 2 2 x 6 Timber MB2 3 91/2" Microllam MB3 3 911211 Microllam MB4 2 117/811 Microllam M65 2 2 x 10 Timber MB6 2 2 x 8 Timber M67 1 2 x 10 Timber MBS 2 2 x 10 Timber MB9 3 2 x 10 Timber BB1 1 3 1/811 x 91$ Glulam or 1 5 1/8" x 1511' Glulam Garage Beam Number Size Type CB1 2 1'f 718" Microllam GB2 2 2 x 10 Timber F) Multi-L02ded Beams 2003 International Build i n Code (01 By: Brian Dance , LEI Consulting Engineers. 05-09-2006 Project" 2006-547- Location* FJ1 Double Summary: ( 1. i . IN x 1 . FT N 0 / - '�ui-Fir-Larh Dry Use - S tion Adequate : .1 % nt-ollin Factor: Mom .,� int f Inertia � [nth Laminations are t b fully connected t provide uniform Center Span [ *� rrr� transfer � Cid p Deflect Dead Load.- Live oad: Live Load: Tl Ld : Right Cantilever Deflections-, Dead Load: Live Loyd: Total Load: Gntr- n Lett End Reactions • Live Load- Dead oad; D d Loa Total Load: ire For U rA ft Loads (Includes oiift Factor of Bearing Len.qth Required(Beamni , UPP rt p it not checked Center Span Right End Reactions 8): Live Load: Dead Load: Total Load: Bearing Lnth Required (Beam only, support it not checked): Dead Load Uplift F.S,: Beam Data: Center Span Length} Center Span Embraced Length-Topf Beam: Center Span Embraced Length -Bottom of Basra: Right Cantilever Length: Iiia Cantilever Embraced Length -Top f Bean+ F i ht Cantilever Embraced Length -Bottom f Barn: Live Load D u mti n Factor. - Live Load Deflect. Criteria: Total Load Deflect. Criteria: Center Span L d n : Uniform Load: Live Load: Dead Load Beam Self Weight-, Total Load: Rig ht Cantilever Lodi rig . Uniform Load: Live Load: Dead Load: Beam Self Weight: Total Loyd: 'int Load 1 Live Load: Dead Load: Location (From left end span): Properties For: - Douglas -Fir -Larch ndinq Stress: Shear Stress: Modulus of Elasticity: Stress Perpendicular t Grain: Adjusted Fero p rti FW mor i n Face in Tension): dju t nt Factors; Cdr . 14 . F=1.1Cr- 1 _`� Adjustment Factors: Cd; I .00 Design Requirements: Contra llin Moment-. Over rig ht port f span (Center Span) ���tii nt rte � r�bir�in il � d Ind and live loads on span(s) 3 �tr��rn� ��hr: At distance d from left U p rt f .n(Riqht Span) Critical shear created b combining all dead loads and . ve Comparisons With Required Sections: Section Modulus(Moment): � ]Ver: 7.01.(]1 71:2:21 AM Required 9.Q1 In to all members o L D -Cent r= .�0.02 I LLD -Center= -0.07 IN TLD -Center= -0-10 IN DLD-Fight= 0.03 IN LLD -Right= 0.09 IN TLD -Right= 0.12 I LL -,n -a= 200 L D L- n-, = -67 L TL- n- = 133 L Rxn--min = -478 L L-= I 1 LL- n- - DL -n -B- TL -n -B= BL -B= FS= L= Lug -T j3' Lug -Bottom= L3= LW -Top= W3-13ottom= Cd= U L/ 2706 1195 3901 1.04 1. 10-0 0.0 10.0 2_0 0.0 2_U 1.00 480 360 LB L L I FT FT FT FT FT FT = L1 668 U1258 = =2L/389 L-= 40 PLF -= 10 PLF B= 12 PLF T, = 62 PLF L-= 40 PLF 10 PLF W= 12 PLF T- = 62 PLF PLI -= 2015 LB PDI -3= 864 L X1 -= 2.0 FT F b= F= = Fc perp; Area {Shear}: Moment of inertia (Deflection): loads on span(s) 2, 3 FI Ff= M= r q= S -=: roq= ir= 1= 901 18 #. 600000 625 1133 2956 62.31 85.56 24.63 55-50- 365.94 395.x`3 PSI PSI PSI PSI PSI PSI FT -LB LOM I I I [112 I I4 I Multi -Loaded Beam[ 2003 International Building Cade {01 NDS) I Ver 7.01.01 By: Brian Dance . LEI Cons"Ifinn Fnnininrarc nn• nr;_na_9nruz • -s a .ewz.01:? ARA U1 R!c;al 5nedr creaiep Dy cammning all dead loads and live loads on span(s) 2, 3 Comparisons Vlfith Required Sections. Section Modulus (Moment): Area (Shear): Moment of Inertia (Deflection)- Sreq= S- Areq, A= lreq= 1= -0.02 rrl t. Z _ - LO , ti n. Fjz u u i Summary: I N'� = L/1551 ( 3 ) 1.5 1 N x 9.25 IN 14.0 FT f 1 + 2 - [ l `Fir L rch. - DrV Use IN = Section Adequate . . � Controlling Factor: Moment of inertia / Depth Required � I n ,� Laminations are to be fully connected to provideuniform transfer of loads . to all members Center Span DefieGdOn IN = Dead Load: LLD -Center= Live Load: LLD -Center= Total Load: TLD-Center-- LD- ent r=Right RightCantilever Deflections: Dead Load: [QLD -Fig t= Live d: LLD -Fiat= Total Load: TLD -Rig ht= Center Span Left End Reactions (Support . Live Load: LL-Rn Dead Load: L n- Ttl. Load: TL -n-= Design For Uplift Loads (includes Urflift Factor of f t) Rxni - BearinLenqth cn1, support capacity not mol d . L Center SiDan rq ht End Reactions (Support . Live Load: LL -1 n B= Dead Load: CSL -F ri-B= Total Load: TL- - = Be .ring Length I e aired (Beam only, support capacitor not checked): L- = Dead Load Uplift FLS.: FS= Beam Dat . Center Span L n t : L2= Center Span Unbraced Length -T f Beam R Lug -Top= Center Span Unbr2ced Length -Hotton of Bean. Lir tern= iq fit Cantilever Length: L_ Right Cantilever Unbr2ced Length -Top of M: Luh -To iOt cantilever Untraced Length -Bottom f Beam: Lu - ottt m= Live Load Duration tion F ctnr: Cd - Live Load Deflect. Criteria.Lr xr+ Total Load [deflect. Criteria: L/ Center Sian Loading: Uniform Load: Live Load: L- = Bead Lad: - _ Begin Self Weight: BSW= Total Load: , T- = 1 Int Cantilever L in : Uniform Load: Live Load: L- = Dead Load,: D- = Bean Self Weight-, B SW: --- Total Load: T-= Point Load 1 Live Load: P L 1-3 = Dead Load: PD1 -3= Location (From left end of spar): X1- = Properties For: 2- Douglas -Fir -Larch Bending Stress: Fb- Shear Stress: Fv- Modulus of Elasticity: F_ Stress Perpendicular to Grain: Fc er = Adjusted Properties FW(Compression Face In Tension): F = Adjustment ent Factors. Cd ----::1.00 CI -0.99 F=1.1 r=1. 1 F7r i! dju tin nt Factors:Cd=1.00 Design Requirements: Controllinq Moment- M= Over right suPport of span 2 (Center Span) Critical moment created by combiningall dead loads and live loads on span(s) Ccs ntre lli nq Shear. = At a distance d from left support of n 3 (Richt Span). s U1 R!c;al 5nedr creaiep Dy cammning all dead loads and live loads on span(s) 2, 3 Comparisons Vlfith Required Sections. Section Modulus (Moment): Area (Shear): Moment of Inertia (Deflection)- Sreq= S- Areq, A= lreq= 1= -0.02 IN -0.09 I N'� = L/1551 -0.11 IN = U1255 0.03 I 009 IN = 2L/512 . 12 IN L/ 240 1 255 X20 0.09 1891 826 2717 . 97 1. 12,0 . 12.0 2,0 040 . 1.00 480 360 t 40 1 9 59 1 341 575 .o 900 180 1600000 625 1 125 FY+�1 -3950 42.14 64.1 16.58 41.63 278.11 296.79 LB LB L L IN LLB L LB IN FT FT FT FT FT FT PLF PAF PLF PLF PLF PLF PLF PLF LB LB FT PSI PSI PSI PSS P51 PSS FT -LB MV IN3 1N3 fN2 IN2 I N4 I N4 —7— r OF to �r s � IIS f -. I I I s~. LL CD a)..� I I 0. 0 V)I_,. -- `;, E �r .0 �I a) ALI o 0 110 4.4 LL C (L) II �..i t I I I ...., a .�:3� _ s � - ift LO to ;01 D -CO CO C) II - CD C °LO:.C CD CD � cl y CD 0 CIO cz W :. C13 4- 0 Cl 41 f7 : rr 0 _: °. co C) : I ImoLo - ' :: CD 0 ' C) INC .; �,.` CD CD 0 �D M ' ,,. . ; .. .. ..: ° .. �� :� �� �i.� Hifi x ■ w CD ++ •- ■ :: ° IL CA ,:- ,•—" .: s ■ . .. .. . , ° .. -, ,. • -. ". S � Vii, { �T� M1_�V ° ■��� 10 Uf { 10 s . `5C�'x�y ?......... ,..:..v.>�r•°1r'�:t�° °.. :;- ;. ,k : } -.:, °. t {x};s t { ��.x:�� •. {¢ ='::P .... ., { r 1. r., tis • fq r w�ti r}• r { i Cy R II 0 C> 0 F``�--� II II L)C-0 co II LL II rim -d .P -M CL 'C. W LL 1-42 I I II I cl y 0 11■ W C13 4- 0 Cl I F) Multi -Loaded Beam[ 2003 International Buildinq Code (01 NDS) I e'er: r . 1. 1 By: Joshua Anderson , LEI Consulting Engineers on: 05-10-2006 08§,-02:19 AM Fri t: 2006-547 - Location: M132 Summary: ( 1.75 IN x 9.5IN . FT 1.19E Microlam - Trus -,foist MacMillan Section AdeqU2te By: 31.7% Controllin.q Factor: Moment of inertia Required � L�ptl� r 8.67 In * Laminations are to be fully connected t provide uniform transfer f Center Span Deflections.- � � t orf members Lead Load; D LLQ = Live Load: LLD -Center - Total Load: TLD -Center= Center Span Left End Reactions (Support A).- LiveLoad: LIL-Rxn-A= Dead Load: L - A= Total Load: TL- _ A= Bearing Length Reaquired (Beam only, support capacity not checked): BL -A::-- Span F j ht End Reactions (Support 13): Live Load: LL -In -B= Dead Load: DL-- Totl Loads TL- i B= Bearing Length Required (Deem only, support capacity not checked): BL -B= Beam Data: Center Span Length: L -- Center Span Un traced Lengthy -Top of Beam: L Town Center Span Unbraced Length -Bottom of Beam: Lug -Butt om- Live Load Duration Factor: Live Load Deflect.ritri: Cd.. L/ Total L d Deflect. Criteria: L Center Span Loading: Uniform Load: Live Load: WL - 2= Dead Load: WD -2= Beam Self Weight: Total Load: Point Load 1 Live Load-, PL1 -2= Dead Load; PD1 -2= Location n left end of span): X1- = Fount Load 2 Live Load: PL - 2= d Load: P[_= Location (From: lift end of span): X-= Trapezoidal Load 1 Left Live Load: TFL`Left- 1 -2= Left Dead Load: T D -L eft -1-2= Fit Live Load: TSL - i _1 ght Rr ht Dead Load: TR - Rig ht- 1 -2= Load Stant Load X41 -� End. Load 1- = Lr�tl�-�, Properties_ _ �-1 -_ For: 1.9E li r l rn -Trus Joist MacMillan B ndin Stress: Fb= Shear Stress: Fv= Modulus of E l t« it : P�_ Stress Perpendicular t Grain: Fc perp - Adjusted Properties Fb' (Te nsion : = AdjustmentFhp F t r'. Cd=1.1 F=1. 0 F - Adjustment Factors: Gd=1.1 Design Requirements# Controlling Moment; N4= 4.96 Ft fro rn left s u pport of sr)an 2 (Center Span) Critical moment created by combiningall dead loads and live loads on span(s) 2 Conn o llin Shear-, = At stance d from left rt of span (Center Span) rit l shear created b Combining all dead loads , r�� �� Ind n span(s)2 Comparisons n With Required Sections: Section Modulus (Mornent)-- Area (Shear): Moment of Inertia (Deflection): S= Areq= A- lreq= f= 0.06 0.14 0.20 4301 1893 6194 1.57 4697 2061 6758 1.72 8_0 0.0 $.Q 1.15 48[3 3fi{3 380 175 0 555 1902 1 1. 1902 815 . 718 307 718 307 . . .. 2600 285 1900000 750 2990 13133 5794 52.71 78,97 26.52 49.88 rte` .1 1 IN = L/682 IN = L/474 LB L L I 1k, FT FT FT PLF P! F PLF PAF LE LB FT L8 LB FT PLF PLF PLF PLF FT FT FT PSI PSI PS! PSI PSI PSI FT -LB W. IN3 tN3 IN2 IN2 I N4 IN4 1ti-Lo d d Beam[ 2003 International Building Code 01 KIDS e'er; 7.01.01 B . Joshua r LEI nsultin Engineers on: 05-10-2006:08:06:41 AM Project: 2006-547 - Location: Summary: ( 2 ) 1.75 «l x 11.875 I N x 9.0FT / 1 .9 E Mi r l -Trus-Joist dit 1i11n Section Adequate By- 3.3% Controlling Factor: Section Modulus /Depth Required 11.68 In Laminations are t fully connected t r id uniform transfer of loads to all members Center Span Deflections: Dead Load: DLD-Center= Live Load.- LLD -Center= Total Lid: TLD -Center -- Center Span Left End Reactions (Support : Live Load: LL- _ - Dead Load: Fr� - Total L02d : TL_ _ Bearing Length Recluired (Beam onIv, support capacity not checked): - Cent r Span Dight End Peactions (Support B) -- Live zLi Load.- L L - Dead Ld Total Load: _ _ Bearing Length required (Beam only, support capacity not checked)- BL -B= Beam Data. Center Span Leri.qth: L- Center Span Untraced Length -Top of Beam: L Center Span Untraced Length -Bot f Bear: Lug - Li L �tt�= Load Duration ti Factor: d= Live Load Deflect. Criteria: L Total Load Deflect. Criteria: L Center Span Loading.- Uniform oading:Uniform Load: Live Load: L- - Deed Load: D- = Beam Self Weight: BSW= Tote I Load: Point Load 1 Live Load: P'L 1 -- Dead Load: Lo(From tinleft end f span): _ Point Load Live L PL Dead Load: PD-= Location (Fray left end of span): X- Trapezoidal Load 1 Left Live Load: TIAL -Left- 1 - 2 zz- Left Dec -:2d Load: T -Left-1- = F ip t Live Load: TRL- I Q ht -1 -2= i ht Dead Load: TPD - i - Lod Start: LoadLiA-1 -2= End- Load L n the C-1-2= Properties For: 1.9E Micro l r ' Trus -J oist MacMillan Beading Stress: Shear Stress: F= Modulus of Elasticity: F= Stress Perpendicular t r in: E= Adjusted Properties Fb' (Tension): _ Adjustment Factors: � Fh, ors: -- --1. 1- 1 . CF= 1 . F': Adjustment Factors: Cd=l..00 Design r Quir ment : Controlling moment: = 4.32 Ft from left support of span 2 (CenterSpan) Critical moment created by combiningall dead loads and live loads on span(s) 2 Controll'Inq Shear. _ t a distance d from left a port of span 2 (Center n), Critical shear created by combiningall dead roads and ComparisonsWith Recluired Sections: Section Modulus (Moment): Area Shear); Moment of Inertia (Deflection): 5081 2234 731 2•x9 5121 2248 7370 2.81 F 1.33 .0 1.00 480 360 1417 608 0.75 1417 608 3.5 718 307 718 307 3.5 • . 2600 2$5 1900000 750 2590 17185 6325 79.sz 82.26 33.29 41.56 432.50 4$8.4'i IN IN L/585 L-140,7 L LB L I L L LE FT FT FT PLF PLF PLF PLF LES LB FT PLF PLF PLF PLF FT FT FT PSI PSE PSI PSI PSI FT -LB I I 1 1N l 1 I 4 El CL BENNER If CIO CL fI� � o I I I y'" LL LL CD CD 0 o 11 rl o3 CZ NOW CL OOZ -a LL 1L. LL1 Liz . _ �I cz C3 0 03 C 0 X20 ..W J o iw ■L If L{-- cu 0 �I CL 0 Lu wo JrC LO.: .4 co co •'�' 0 CL CD wo LO.: .4 co co •'�' wo 11 •'�' 0 CL CD 4•P e ■ Q �I 0 4-5 ■ Y ,0 CL ��••�o �L LL CL r� as Cf I !LL uCZ Co a CD x„ E 00 Yi wo H II H ■� r� � II ■� IIS JQ Lam.., * � ILL Um LU 11 •'�' 0 CD e ■ Q �I ■ Y CL ��••�o 0 �L �—+ —j 0 Cf Co a CD CD •— 0) .� H II H ■� r� � II ■� IIS JQ Lam.., * � ILL Um LU 11 •'�' 0 ■ Q �I ■ Y CL ��••�o 0 �L �—+ —j 0 ladu PC SUJOAO,q PUlAA (D floUl) ..CL oil h LO 0- C.0 1 CD M I CD co oa i 1 I i I 1 1 1cD � p � 1 , dp ' f + SUJOAO,q PUlAA 11.d CL 0 cu Q) r - 0)I r 0 z .Q f� U) u7 i I oil h IN . I s � p � 1 , dp ' f J7 rf C/�y,D 10 A� 4D (D '� •' Vr _ 00 jj C) V #y V— 7-- 7—_ I ryyy---����+�, l F LCD cr) ]LyFl) 00 LO LO 00 IN CF) l CO CN CO OL C'-4 OL • i-4 • , t Nr 0",!t 11 AL�}'rtF ^iC) ( Y_L 0— it 11.d CL 0 cu Q) r - 0)I r 0 z .Q f� J' to N Y�J �u ln � U) u7 i I oil h IN . I s � p � 1 , dp ' f J7 J' to N Y�J �u ln � U) u7 L U) D PUN Lo D L IN fZ '�r-�F••�, � p � 1 , dp ' f J7 rf C/�y,D 10 A� 1 /r Lm '� •' N _ 00 Y J co V #y PUN Lo D L IN fZ '�r-�F••�, � p � 1 , dp ' f rf C/�y,D 10 A� 1 /r Lm '� •' N _ PUN Lo D CL �F fZ CL LO A� 1 /r Lm '� •' 00 �/ J�J F r V #y V— 7-- 7—_ I OL iia OL • i-4 CL �F fZ CL Lm L r V #y IJ Ado ti CL �F L) a r r•.. CO m CD Co Im <I csa Q Ito 4rJl T Q7 0 s �P yr. 4- cl co �. ti V O <I csa Q Ito C 0 m ,73 L) in 0 c Zi UJ PUJAA y q ' a 7.d 4rJl T LO 0 C 0 m ,73 L) in 0 c Zi UJ PUJAA y q ' a 7.d T C 0 m ,73 L) in 0 c Zi UJ PUJAA y q ' a 7.d 0 s �P } 4- 0 z I CO ti 00 , p., co CD M C) cv Z: CO cc CO ti 00 , p., co colco D co SUJOAO!D pUJAA 0 C c 0 0 Lm UJ C) W CL Z) 44-- 0 :3 M D D n Lo C:) Lr) c1r) C%q 0 00 mo LO Lc) tr) L() CO c C4") Lo cr) rz < �5 0 ru 0 LL LO TY C) = V-- V-- lqr tn CO W D U-) Z: CO SUJOAO!D pUJAA 0 C c 0 0 Lm UJ C) W CL Z) 44-- 0 :3 M D D n Lo C:) Lr) c1r) C%q 0 00 mo LO Lc) tr) L() CO c C4") Lo cr) rz < �5 0 ru 0 LL LO TY C) = V-- V-- lqr C) CO W D U-) 4p M C) C) CO W D U-) Z: CO cc co 00 CO 0 L) U) tu Ln r" LO 0 -0 Ab� 0 U) 4 co 4p M 't C) C) m D U-) 't C) CD, m D CL SUIDA0E) Puim a 0 0 gc--- LO co It Q) a) M cl� CU 'm CZ CL o- < 0 Cc:) u -cr- 4-0 C m D CL 0 0 _0 CO 0 L) U) tu 0 -0 Ab� 0 U) gc--- LO co It Q) a) M cl� CU 'm CZ CL o- < 0 Cc:) u -cr- 4-0 1{3j At 7t COD C'14 N E U) co . N DS Ua AO PU! 0 0 , a7- CO CO co L -D LO Lr) CNI :.... cr to CD E U) co . N DS Ua AO PU! 0 0 0 0 C) LO am L -D LO Lr) ILO } j ; /00 �1! - eY (D (D I oLJ a u ty r� 'w.� J + 4.� �l�-�� ui _-_ 0 0 C) LO am E CA co 0 UJO-O PUIAA 0 CL 0 0 Ma ■ iifi' 0 Ma 0 C) i i E +O Ef) C) LO 0 CO to co CL C) IT'" CD D Q0 f� �,i..� .. , E CA co 0 UJO-O PUIAA 0 CL 0 0 Ma ■ iifi' 0 Ma 0 C) i i E +O Ef) C) LO 0 C) Cl LO_ . •. •. - - Ln C) CD CD D Q0 f� �,i..� .. , 0 to LO LO E CA co 0 UJO-O PUIAA 0 CL 0 0 Ma ■ iifi' 0 Ma 0 C) i i E UJOAO U r U) D +O Ef) C) LO 0 C) Cl LO_ . •. •. - - Ln C) CD CD D Q0 f� �,i..� 0 UJOAO U r U) D +O Ef) C) LO 0 C) Cl LO_ 0 v C) CD CD D Q0 f� �,i..� 0 0 E E x UL fl� IL-0 UD Nr E w > CD 12 04 U) 0 E E x UL fl� IL-0 UD Nr 'SUIOAOE) PUIM CNJ >Tod, SUJOAOE) PUIM d 44- 6 6 x 6 LL LO 04 U) 0 0 C -D Q (Z:) .0 A ty) U) co c) ol: .0 00 10 L- 0 0 CZ) ITS Lo u L) 0 CO '0 uCO C), (n co Q) n IL C37 C%4 :3 C)') (3) C)7 > 0 U) 0 0 E > to U) 14 D V -- E w > 04 C) 0 LO U) m 'SUIOAOE) PUIM CNJ >Tod, SUJOAOE) PUIM d 44- 6 6 x 6 LL LO 04 U) 0 0 C -D Q (Z:) .0 A ty) U) co c) ol: .0 00 10 L- 0 0 CZ) ITS Lo u L) 0 CO '0 uCO C), (n co Q) n IL C37 C%4 :3 C)') (3) C)7 > 0 U) 0 0 E > to U) 14 D V -- 0 cq rs 0 3 C) D F9 E Lo 0 0 z CD CD CA r-- U) CIO • �C 4—J 0 0 =7 V- -17�(--) — d.�-r 0 cq rs 0 3 C) D F9 E Lo 0 0 z CD CD U) • CD ft�t Lo (D CC 'V" - Lr> 17- d) CD) 0 0 -0 M 1, 0) 0 > W V- -17�(--) — d.�-r U) UJO PUIAA 0' 0 Ic C !i CD co cn UJO PUIAA 0' 0 Ic C 0 z D !i co 0 z D E SUJaAOO PUI 3: 3: a 0 w PMEw 0 00 F= 0 { 1p 0 y i ■ 'r4 C4 T �a UlE)PU IAA r ° T ti ± .r If ICcn a 0 w PMEw 0 00 F= 0 { 1p 0 y i ■ 'r4 C4 T �a UlE)PU IAA CL j CLJ + LLJ v r 0 x 1 LL M LU bg 0 6 rF T ti ± .r { I I I m CL j CLJ + LLJ v r 0 x 1 LL M LU bg 0 6 rF *2: a U) •@ W 0 O ��--qo�� 6 +. 0 0 UIR &M 0 CL C. N W CL f� r Ula O P u lm cd (*D� cy) CO 01 Lo ol V CL CO ee 0 co cr) .,. �. CL �`'� � k �1 11 •. UIR &M 0 CL C. N W • CL f� r Ula O P u lm cd co cy) CO 01 Lo ol (Y) CL CO ee 0 6 .,. �. 0 11 •. 11 C m d CD 0 .. 0 03 LL Y� M co ,{- IJ JI ® _:. CN 0 o o- aff .-. ■ L- J C 0 mr0 7 Ln %tt m et • CL f� r Ula O P u lm cd co cy) CO 01 Lo CL o „' ee 0 LO 0 0 11 •. 11 C m d CD 0 .. 0 03 LL Y� • CL f� r Ula O P u lm cd co cy) CO Lo • CL Ula O P u lm cd co cy) CO Lo CL ee c •. ecoe 1.11 d 0 .. 0 03 LL Y� co ,{- IJ JI ® _:. r o o- aff ■ L- J C 0 mr0 7 Ln %tt et CL LL U) L CD 6 + C 0 cuee� LO N E CD CL 0 W% ee6k IOUU C CL 'Zo CD T— � arp 6 0 CD r4 ■ E CIO 0LO to r s to a� ��Q�� g '161" MEMPER Lo 1 eeee� ■ t! 4� •Cpm' ■ e.e� P CD I -L- CL .. 'C • CL a cd co cy) CO Lo CL ee •. 0 1.11 d 0 .. 0 03 LL Y� co ,{- IJ JI 0 o- aff ■ L- J C 0 mr0 7 Ln %tt et CL LL U) L CD • CL a cd co cy) CO Lo CL • SUJOAOO A CL a cd co cy) CO W5..d'.{ CL ee •. 0 1.11 d 0 .. 0 03 LL Y� co ,{- IJ JI � o- aff L- J C 0 mr0 7 ■ O et CL LL # L CD SUJOAOO A . M i I m IL � 0 cu ° CL a cd co cy) CO W5..d'.{ CL ee •. 0 d .. boo Y� co ,{- IJ JI � . M i I m IL � 0 cu ° CL CL ee 0 boo 0 mr0 et LL # L CD 0 cuee� LO CL 0 CL 'Zo CD T— � arp r s a� ��Q�� g '161" MEMPER LL ■ t! 4� •Cpm' ■ e.e� P CD I -L- CL E U.IO PUIJ''YL W 141 po.j 0 CD 73 w �m u �PRIME C) tD .0 LL L3 r to 00 LO W 0 0 0 Lo �I II �I II Co.: . W 141 po.j 0 CD 73 w �m u �PRIME J Q 0) 0 C) tD .0 LL L3 r to 00 LO W 0 J Q 0) 0 C) tD .0 LL L3 r to 00 LO W 0 0 Lo �I II co Co.: . is fl l� II dl 10 J Q 0) 0 UJOAO PUI C) tD 0 LL L3 r 00 LO 0 Lo CD co Co.: . is fl UJOAO PUI a +1-- 4—Jr r L ! J � ul acn L) 10 J . 6 r —2 tD 0 LL L3 r LO CD co Co.: . is fl l� II dl CU m 0 a +1-- 4—Jr r L ! J � ul acn L) 10 J . 6 r —2 0 LL L3 CD . is fl l� a +1-- 4—Jr r L ! J � ul acn L) 10 J . 6 r —2 L) E m I KPI I us 0 00 V- Lf) +i ON 0 UJO P U r vWMEW. L'1 In cv CD 0 CO ��y D LL +~~�� 0 C) 41 F: LL L.Q E l W -L r5t a E CO 00 " c �Lr):; 0 00 V- Lf) +i ON 0 UJO P U r vWMEW. L'1 0 1� a CL 0 F - ca II z W In CO ��y D LL +~~�� 0 C) 41 LL L.Q E •V 1 W -L r5t a E co _CID c �Lr):; Q OL C) 0 „• p F01% %4 } (D CN CD -r-- .' . ,• C);•: I 0 1� a CL 0 F - ca II z W In CO ��y D LL +~~�� 0 C) 41 LL L.Q E •V 1 a E co _CID UJ Q OL C) 0 , CL Cp W U) D Q) LnM c i� V- 0 sio - �= 0 ■ L) in 0 4 '�1 r-. i J 00 o 4-4 o� lei i yam■ ® ewr L �■M�FR �: cn UJO PUr In CO ��y D LL1 . +~~�� IL 0 j � CD 0 LL L.Q a E co UJ Q OL C) 0 p F01% %4 } (D CN CD -r-- Q) LnM c i� V- 0 sio - �= 0 ■ L) in 0 4 '�1 r-. i J 00 o 4-4 o� lei i yam■ ® ewr L �■M�FR �: cn UJO PUr loil"Mme. In CO ��y D LL1 . +~~�� IL 0 j � CD loil"Mme. In 0 LL1 . IL 0 j � CD LL _s L.Q loil"Mme. CL mm 0 LL1 . IL 0 j � CD LL _s L.Q a E co UJ CL C) 0 CL mm LL L.Q a E co C) CL mm KING STUB CALCULATIONS Stud Width Iii + + i , F Ta .q�n F 4 n Stud De =in L _ft king stuck spacing_ -rft F6 = 700psi FE; = 850 psi Fcper , _ 625 psi E = 1.4n0000 psi F = 1.1 for bending CF = 1,05 for comp. II to grain 15.75 int .1 in' Dead Loads: Roof DL = 120 plf Floor DL = If WDA = 136 plf Live Loads: Roof LL = 280.8 plf Floor LL = 0 elf WLR.= 280.83 Load Case 1: Gravity Loads Only Load Combinations: DL DL+FLS = DL+FLL+SL Cc) (DL) _ CQ (DL+FLL) CD(DL+FLL+SL)= f = fPerp (I �dx) E' KQE FcE F*C .� .FcE/F C _ (1 +Fcrz/F�c)/2r, FSC �. Check 1 36 Pff 136 Plf 417 pif n 1 1.15 26.S psi 27.4 j 1400000 psi 0. M 658.3 psi 1 026 psi 0.544 0.965 0.464 476,0 psi Bearing of stud on wall plates: Cb = 1.083333333 F'rperp — 677 psi Check OK ig Loa�'r�� Roof LL. 35 Psf r. JCL TA ro o _ = { Ta floor Wall DL _ RT . Of Lateral Load = 11.7 pf Use: Use (3) 2x4 full height king studs Load Case : Gravity Load + Lateral Load D _ r — Axial: fc — (le/dx) cE .F,FF _ (I + F c EIF J/2c F' Check _ Drub I n ed Stress FOEX = Interaction Formula _ Check = 1:15 8.6 p s.i 27.4 in 558.E psi 1428 psi 0.391 0-869 0.353 503.4 psi O 556.3 psi 0.91 120.9 Of 1 - 11602.7 In+lb fb = 122.9 psi Fib = 1416.8 psi Check _OK D _ r — Axial: fc — (le/dx) cE .F,FF _ (I + F c EIF J/2c F' Check _ Drub I n ed Stress FOEX = Interaction Formula _ Check = 1:15 8.6 p s.i 27.4 in 558.E psi 1428 psi 0.391 0-869 0.353 503.4 psi O 556.3 psi 0.91 0 TUU WALL CALCULATIONS in Stud Width_ t .... Loadin Stud Depth _ +® in Roof LL35 Psf _ _ TA 6roof -- _-r9r.r:..` f# stud spacing_ _fJJ{ _ ... Ta floor ft 700 r Wall DL = _ H 0 psi Fcperp 625 psi Lateral Load - 11.7 p f E 1400000 psi I for bending Use: 2 x 6 Stud Grade O.C. F_ 1 for COMP. 11 to grain _ 8.25 int S T56 in' Dead Loan! Roof DL = 285 olf Floor DL = 90 Plf DL �= 575 plf Live Loads Roof LL = 667.0 plf Floor LL = 360 Of WLL= 1026.97 Load Case 1: Gravity Loads Only Load Combinations: LJL = 765 plf D L+FLL- 1 If 2131 if . 1 ISL+FLS.+L Cc (DL) _ in. Ib (DL+FLL) D (DL+FLL+SL)= fG _ f cper ([,/d,,) E' - KcE - = FCE FC_ Frp/F 0 (1 +FcEJF J/2c P - ISI = 1400000 psi . -0. Bearing of -stud on wall plates; Cb Flc p e Check 1378.6 psi 978 psi 1.410 1.506 0.795 776.9 psi Load Case : Gravity Load + Lateral Loads V M fb - F' Check F,E Fc,c/F r (1 +F,,E/F"r,/ P = 4- F' Check _ orn b in e d Stress: Fc = Interaction Formula _ Check = 15.6 plf 1493.9 in. Ib 197.5 psi 1 288 PSI 150.7 psi 17.5 1n 1378.6 psi 1360 psi 1.014 1.259 0.696 946.1 psi 1378.6 psi 0.20 -2 POST / FOOTING / SHEAR WALL SCHEDULE (not all are necessarily used) Posts Designation Post Size P1 Double Stud (Trimmer) P2 Triple Stud (Trimmer) P3 4x4 P4 6xfi PS 3 1/211 x 3 1!2" Parallam Post PG 3 1/211 x 5 114" Parallam Past P7 5 1/411 x 5 114" Parallam Post P8 Four Studs (Trimmers) Footings Designation Footing Size Reinforcement Crosswise FT1 20 If 1Vxcont. (2) #4 bars cont. Non F72 Not Used FT3 2411x24"x 1 " FT4 3011 X30 F1 X10 It FT5 3611x36"x12" FT1v 11x l .11 F77 4811x48' :12,1 Shear Walls, (3) #4 bars each way {3} #4 bars each way (4) #4 bars each way (5) #5 bars each way (5) #5 bars each way -20- Spacing Resignation Material mails Edge Field Chords 1 7116" SSS or CDX plywood 8d 6" 12" 2 king studs 2 7/16" OSB or CDX plywood 8d 41' 1 2" 2 king studs 3 7116" 4S8 or CDX plywood 8d 3" 12" 2 king shads 4 112" Sheet Rock or better 5d Gooier 7" 711 2 kind studs -20- Post Calculations Example Calculations: lb ft ft in in Load Charts: • Post Max P f Ie, Iffy,, 7ft 8ft 9 ft ( 2x4 Comb. 8 440 1 0.61 26-90 6620 () 2x6 • 899. , - �}d-^C'J}.v>.:-,.+: r• rx.it.. �: �w�c:er:+c¢hS'?Wi_. � _..... ,.. ... .....: - ..,, 4 2x4 5815 a 3 1 0,61 4165 3680 () 2x6 14300, 8 8 1 0,96 4A 5200 4x4 4355 8 3 1 0.61 0350:., 112 X 6x6 11215 8 8 1 0-96 .. 1/2143 1/2" 1 L P 7440 8 1 . 318L' -;:O 0-00 24355 1/ " x 5 1/4" PLP 11040 8 1860 3 0.00 .. •5 Ij 4. r 1/4""x 5 1/4" PLP 27920 4+1 _,7 05 8 0.00 5, 930 2x4 7755 8 8 1 0,61 863 0,8 2x6 190 95 220260 17600 . . ° '1 IV 7 1/2!' LP 12230'.. i 1 , . 0.00 17810 31/8 I"r LP 14675. 8 t'.iTTr l 8.: �+ ryy ^V �t 26-1'60. 51/8 "iX 6" GLP 2965 � 1. °.. O,O 18.3 118 x 7 1/211 GLP 37070 8aoo 1 889 3034 3036 Additional Post, Calculations: 115 _4 2.0 21 12 21 369 532 1785 1964 0.6 Off, 0.00 1.15 17,5 .. 3330 ;.' :. 0.61 1022 1547 1779 0.7 O.I . 0.55 1.15 0.61 Load Charts: 1/""x7 1/2 14 LP 141640 37070 32710 28866 :: e ... ........... • 2X4 Roof Loads 2310 1890 1575 7ft 8ft 9 ft 10 ft Comb. O 2x4 440 3730 3155 26-90 6620 5(33 I 7 , - �}d-^C'J}.v>.:-,.+: r• rx.it.. �: �w�c:er:+c¢hS'?Wi_. � _..... ,.. ... .....: - ..,, 4 43 t 3 2x4 6980 5815 4895 4165 3680 .. . 3140 -15 475 014 30 il 131 915 • ° °... ... : r 4A 5200 4355 3D 3140 6X6 1 "x••11,2 0350:., 112 X 1/2" PLP 9000 7440 0230 5275 _7 .. 4:. � ' X845 �; ..... ....•, :.,....... Pu l l 114 .•, ...., 11,14" PL P . 318L' -;:O 27920 24355 21300 1 30 ; 12 4 222 5 . 1860 .. , 157 . 1-3 .. •5 Ij 4. r (1) 2xE 51 0 4640.. 4+1 _,7 05 16530 .. ¢ <.. 5, 930 '6r'`'ye. }_ <, :,.. �..� : f }••: •.. 28 371 6153 862 863 0,8 OK (4) 2x6 220260 19095 17600 115640 11-9`X-7 V-211 , IL I 7 1 2L3O.' i .} . 3 1 IT 9LP 17810 14675 12250 10355 •7d to }/�r'iF .: t'.iTTr l _ f-{. 1 Gyy�rLj' �+ ryy ^V �t 26-1'60. II 1/""x7 1/2 14 LP 141640 37070 32710 28866 :: e ... ........... • 2X4 2840 2310 1890 1575 fc . :.•: F'bx _7 Comb. :.2930 ...,..244 <O.M 1.151 () 2x4 ; 6620 5(33 I 7 0 582 15-51 1708 , 1 480 4 43 t 17.5 4.0 4x4 5200 4350 3680 .. . 3140 1344 1547 0.7 • ° °... ... : r , . . }yam:.-:.... 3 1/2 "" 1/2" PLF " X000 7440 6230 5275 i.+~ 1+ L ,. ' , .. . ° il0 -_-7845 '9250. } itr$T'\ _7 24,75 23 19 ., 1019 1/4" 5 114" PLS' 31850, - 27920 Z2435W 1 30 ; .. :.. . , ............... 1. -1),,`. ... ......»...,. .. ... 41 #i i..d� i V' .. •5 Ij 4. r • •4: •1 '�s� 1 034 4) 2X6 16525 16530 .. 14855 131 FC Fb Fby EX Ey psi psi psi psi psi a Cd (le/d)x Oe/d) 12.25 x 7 fc Pie F'bx FFby Comb. Check <O.M 1.151 27.4 27.4 12.25 7 7 0 582 15-51 1708 0,6 6020 0.00 1A 5 17.5 4.0 16.5 15 8 545 1013 1344 1547 0.7 OK 0.00 1.15 27.4 Z7 15.75 9 12 369 582 1735 1964 0.6 OK 101 1 . 15 17, _7 24,75 23 19 573 1019 1547 1779 O.7 OK 0.00 1..15 27.4 3.4 1.25 7 7 356 571 1 034 1035 0.3 OK 0.00. 1.15 17,5 30x25 28 28 371 6153 862 863 0,8 OK 0-61. 1-15 3.4 27.4 12.25 7 953 3113174 1.0 OK 15 2.3 27.4 13.375 16 11 01' 953 3032 3036 1.OK 0. 92.. 1.15 2,3 18.3 7, 563 24 24 1013 1 889 3034 3036 1.0 OFA 115 _4 2.0 21 12 21 369 532 1785 1964 0.6 Off, 0.00 1.15 17,5 2,0 3330 33 579 1022 1547 1779 0.7 O.I . 0.55 1.15 1.6 30.7 23.438 29 12 522 502 2181 2935 1-0 Q..55 1.15 1,3 30.7 28.125 42 15 522 802 2180 2935 1.0 OK 1,15 .0 13.7 30.75 31 26 964 1773 2184 2783 1.0OK 0,90 1 '. 15 1.6 13.7 38.438 43 33 964 1773 2184 2783 1,0 OK 161 1 . 15 27.E 27.4 12.25 7 7 0 571 1 031 1 035 0.0 OK 0.61 1,15. 27.4 27.4 12.25 7 7 0 571 1031 1035 0.0OK 6020 _ 1 1.15-27.4 .A:,' 27.4 12.25 7 7 0 5711031 ""IT 0 1035 0,0 OK Floor Loads ft. 8 ft 9 ft 10 ft 4220 3565 3030 2595 45 6630 5565 4710 4025 1 15 i -850 12 115, . A. 1030 4930 4160 3535 3030. I Q 10 1.4 8600 7155 6020 5120 1272 .A:,' 823 :.-760,5, 29350 200 23000 20260 23000 ""IT 0 I 1 - " - 1 30 4640 4150 3705 . 12445 422 ° 15285 , . 5370 " 13030 17155 1 1 5 1471 E #17, 17030 14130 11855 10060 3-0425' 274 }45,5 38040 34 �0 .. ,3��� 9 0.. 70 2735 2'240 1845 -1540 45 6220 5325 45060 3925 92 . 4 '060- 64930 4930 4160 .. 335 3030} 7155 602D •120 . 5.120 29350 26030 23000 20260 b0,*.. _74'x : 6285 5374 ` . 16440 15140 13785 12445 0 W Notes: 1. Example calculations sheer posts braced in one dlrect[on. . Loads have been adjusted to accommodate for the wort case of the following eccentric Conditions: _ 175 of column thickness or. `" -of column width. T