Loading...
HomeMy WebLinkAboutSTRUCTURAL CALCS - 06-00212 - 224 Seagull Dr - New SFRFor Plan #,, f Locatiaon. From: Structural Calculations Kartchner Horner Windsor C Lot #16 Block &rson Sub. +�7 William Yor any, L. C. 2329 W. Smilaiz How Road Morgan, Design Criteria IRC 20 Roof Load, Live Load (P Dead Load (I Floor Load; Live Load (PSF) Dead Load (PSF IN 10 O50(80I)876-3501 Seismic Zone: D 1 Wind Speed: 90 mph (1, 10 mph 3 second gust) Exposure: C Material Propeirt"es & AssumNions 15 Feb 2007 Concrete PSI (fc')-: 3 000 (found.), 3 000 (slabs), 4000 (susp. slabs) Concrete Reinforcement: ASTM A615 Grade 60 INGIN��aiNG SZ\Q fit A L �a 1 1AAi P ll3Tr:n 0 IF Site Conditions: Dry & Stable granular based, 1500 PSS' Bearing Capacity, Granular Based Backfill (KH -35 pef, KP=225), Slope not to exceed 20%, Minimum setback from slopes of 25' Dimensional Lumber: Hem or Doug Fir 42 & BTR Steel: ASTM A36 Use Simpson straps and tie downs., and meet nailing, reinforcement and other structural 1h requirements as noted on the drawing and within, the pages of this document. These structural calculations are based an conditions and assumptions listed above. If the conditions listed herein are not met or are different it shall be brought to the attention of the engineer. Roof Truss and beam system to"be engineered by the supplier. This engineering assumes that the building site is dry and stable, a high water table or adverse sons such as plastic clays, fills etc. could cause future flooding, settlement, site instability, or other adverse conditions. Verification of and liaNlity for the soil bearing pressure, site stability, and all other site conditions, including site engineering as required, is the responsibility of others. These calculations and engineering are for the neve building structure only and do not provide any engineering analysis of or liability/warranhT dor the non-structural portions of the building, or the site itself: William York is the structural engineer only and does not assume the role Qf "Registered D�s�gn Professional" on this project. The purpose of these calculations and engineering is to help reduce structural damage and loss of life due to seismic activity and/or high wind conditions. The contractor shall verify all conditions, dimensions and structural details of the drawing. Multiple use of these IN calculations is not permitted. 224 Seagull - Kartchner ASI exterior wads shall be sheathed with 7116" APA rated structural wood panel. Block all horizontal edges 1 1/211 nominal or wider. Sheathing shah extend continuous from floor to top place and be nailed at least 4" Q.C. along sill place. Extend sheathing over gable end to wall joints & over rim joist between floors and nail to rim and will plates 6" 0. Shear Wall Schedule tyke Sheat Nail Edi Field Anchor Bolts Typical 7/16" one side Sd 6FV O.C. 101, D.C. V211 3`21t O.C. SW -1 7116" one side 8d 41, O.C. 101, O.C. '/a" 3211 O.C. Staples may be used in place of Sd nails at '/� the spaying The following general requirements shall be followed during construction: I . Contractor to verify all dimensions, spans, & conditions and notify engineer of any errors, omissions, or discrepancies prior to construction. 2. Use Simpson A35 ties each cantileveredjoist to sill or tap plate. 3. Use Simpson H 1 or equiv. tips each end of each truss. 5. Foundation reinforcement as per Utah State Amendment 6. Use 2; 44 bars continuous for all footings 2: # 4 bars each side of openings & 2 # 4 bars top & bottom extend 3+6" beyond opening S. Use %z" x 10" J bolts 32" O.C. all foundation wads 9. If discrepancies are found, the more stringent specification shad be followed. I0. All multiple beams and headers to be nailed using 16d two rows 12" 0. C. 1 1 . Contractor shall assure that all materials are used per manufactures recommendations. 12. Geotech engineer shall verify overall global stability of the building site. 13. Cotuiect beams & headers over c5 ft., to trinimers with appropriate connectors/hangers. 14. Contractor shall assure that footings are properly drained and that soil is dry and that footings rest on undisturbed native soil 30" below finished grade and that building horizontal clearance from footings to adjacent slopes be a minimum of 25 feet and that the intent of IRC section R403.1.7.2 is met. If set back requirements of R403 . 1.7.2 can not be mei then contact engineer for further design requirements. 15. The contractor shall conform with all building codes and practices as per the 20Q3 IRC& 16. Use balloon framing method when connecting doors in split lev I designs. 1?. Nail all shear walks to fl oor joist using 2: 16 16" p.C, Add additional floor joist as regd. 18. Provide joist and rafter hangers as per manufacturers specifications. 19. Foundation steps shall not exceed 4 feet or /Z the horizontal distance between steps. Horz, rebar shall be 12" O.C. through step downs and extend 48" either side of step 20.1f garage return walls ars less than 3Z" wide then extend headers across return walls with 2 king studs an either end extending from the top of the header to the bottom plate or install (21 MST.'G straps each end of header extend across wing walls. 2 1. Use a minimum of 2-9 la" LVLs for all headers carrying girder loads. 22. Allow foundation 14 days to cure prior to backfill Z3. Use 1 118" wide timberstrand or equiv, for all rim joist 24. Provide solid blocking through structure dawn to footing for all load paths. 25. Builder shall fallow all recommendations found in all applicable Geotechnical reports. 26,,. Stacking of two sill plates is permitted with 51S" J -bolts through both plates. Stacking more than two, plates is not permitted without special engineering Plan: Wi ^ sor Date', 15 Feb 2007 ERR ERR BC1 JOISTS Span (TI) Depth Load Parameters Floor Dead Load Floor Live Load Total Floor Load Simple Span Joist Duration Increase Joist Span(ft) Joist Spacing Joist Weight (pff) Joist Loading (plf) Max Reaction (Ibs) Max Moment (FtLb/If) Max Shear Lb Determine Joist Size Max Moment 100% (ft-Ibs) _ F. S. for moment = Max Shear 100% (Ibs) _ F. S. for shear = Bearing Required (in.)= Live Load (L/360) _ Total Load (L/240) _ EI x 1 0^6 (Ib -in A 2) K x 1 0^6 (Ibs) Live Load Deflection (in) Total Load Deflection (in) Live Load F of S Total Load F of S Selection 500 191t5 11.88 10 40 50 1 19.5 1s 2.4 69 673 3283 673 4165 1.27 1625 2.41 2.00 0.65 0.98 345 7 0.54 0.70 1.21 1.40 11 7/8" 50111111110's (a) 16 " Plan Wind e Date: 15 Feb - Location: Lot #16 Bleck 6, Henderson Sub. Wind nd Load n aI ui tion using Main WindforceiReslStiing System(MWFRS) Transverse [freta Design Coefficients P'= i n d I d *exp ff* l P= De i n Pressure HorizontalWind Load (from table Wall Load f = end zone interior zone Roof Load (psf)= end zone interior zone Vertical Wind Load from table Rauf Load (psf)= end zone windward end zone fesward inferior zone windward Interior zone leeward 1609-6.2.1(1) 16Q9,6.2.1(1) 26.14 20.8 17.91 14.28 Exposure Coefficient (frog table 1609.6.2.1 1. lw=Importanoe f=actor frorn table 1604.5 1. Wind Speed 90 Roof Height 8.75 Exposure C Well Height 14.375 P --wind Ie *exp ooff*l horizontal wall interior horizontal wall end zone horizontal roof interior horizontal roof end zone vertical end zone windward vertical end zone leeward vertical interior zone windward vertical interior zone leeward Horizontal Fore end zone interior zone Vertical Force end zone interior zone Wall Diaphragm Shear Total Shear Obs) Left Wall Length Right ti1Val1 Length Critical Wall Length (ft)= Left Waif Dead load (plf)= Left Wall Critical Length (ft),= Right Wall Dead Load (plf)= Right Wall Critical Length (ft)= 20.81 26,14 14.28 `7.91 -10.04 15.85 Roof Wall Roof Walls Windward Leeward Windward Leeward 20682 4 4 346 6 346 7 Calculate Uplift , Force Req'd to Prevent OT Obs) Panel Length (ft) 2 Left 1 432 Right 1062 Shear Wall Loads (plf) Total Left= Total Right = 225 230, Width Height Wind Load Force (lbs) 8.8 17.91 470 14.375 26.14 1 127 45 875 14.28 5623 45 14.375 20.81 13461 Total 20681.644 Width Lengthy Wind Load Farce (lbs) 24.5 -10.04 -738 24.5 15.85 1165 45 24.5-8,7 -9592 45 24.513,67 15071 Total 59015 Total (p[f) .30 4 6 8 1 874 715 398 82 -235 904 745 428 112 -205 1 -522 Plan: Winds Cate: 15 Feb . Location: Lot x#16 Block 6, Henderson Sub, Wind Loading Calculations using i.ai n ndf r -ides i tin stems (MWFRS) Longitudinal Direction Wind Design Coefficients Psi nd load*exp off*.f P--zDesign Pressure Horizontal Wind Land {from table 1609.6.2.1(1} Wall Load (psf)-- end zone 23.2 interior zone 15.4 Roof Load (Psf)= ena zone 0.0 interior zone 0.0 Vertical Wind Load (from table 169,6.2.1(1) Roof load (psf)- end zone windward, 29.8 end zone leeward 15_9 interior zone windward 19A interior zone Deward 12.2 Exposure Coefficient (from table 1609.6.2.1(4) Iw=lmpartance Factor (from table 1604.5) Wind Speed = Expos u re Roof Stope = Roof Angle (deg)= P= rod load*exp o ff*l r horizontal wall interior horizontal wall end zone horizont@1 roof interior horizontal roof end zone vertical end zone windward vertical end zone leeward vertical interior zone windward and vertical Interior zone leeward End Zone Width (ft) Interior Zone Width {ft} Horizontal Farce end zone interior zone Vertical Farce . 56 15.40 23.20 0.00 0.00 . 80 15.90 19,40 12,20 Roof ''all Roof Walls end zone wiridward leeward interior zone windward leeward Null Maphragm Shear Total Shear (lbs) Prom Wall Length Back VVa I I Length Critical Wall Length (ft)- Front Wall Dead Load (plf)= Front Wall Critical Length (ft)= Bask Wall Dead Load (plf)= Back Wali Critical Length (ft) - 7318 25 28 1122 1 1096 0 Roof Height Wall Height Truss Span Sire = 0.447. 3 43 Width 3 3 4 43 Width 3 3 43 43 Height . 1 . 75 IN length 24.00 24.00 .4.00 . 00 8.75 1 35 Wind Load OM 23.20 0.00 15.40 Tota Wind Load zs.$o 15.90 19.40 12.20 Total Total (plf) Force (lbs) 0 696 0 6622 731 Force (lbs) 1 073 572 10010 6295 17951 90 CaFculate Uplift ,Force Req'd to Prevent QT (Ibs) Panel Length (ft) 2 3 4 6 8 10 12 Front -154 -671 -1187 -219 -3252 -284 -5317 Back _222 -725 -1228 -2233 -3239 -4245 -5-251 Shear Wali Loads (plf) Total Frantz 146 Total Back = 131 Plan.- Date..- Location lan.-Date ,Lt n Seismic Calculations Loading Summary Float Diad Load (psf) Fluor Live Load(psf) Walls (Ext)(psf) Walls (Int)(psf) Roof Dead Load(psf) Roof Slope Exterior Snow Load Reduction Slope Snow Pitch over 20 Rs Reduction L.L.- Reduction Total Load Roof roof wall Floor 'i Floor 2 Total Seismic Mass Total Lateral Furca Windsor 15 Feb 2007 Lot #16 Nock 6, Henderson Sub. 10 Seismic Zone E 40 20 Raaf LL(psf) 40 10 15 112 combination 40.00 55.00 ,seismic Param t r V-Cs*W/1.4 F= R S S= Sds= = j . Facto r C= 1 table 1617.6 1,772 1.77 eq. 16-16 1.18 eq 16,18 0.236 per eq. 16-49 1.4 0.16859314 Length W(psf} Lb/ft Width 51 23 1173 49 Total Mass Tributary to Roof Levels = Shear (.V)(lbs) Roof Levels Length W(psf) Iblft 51 '10 510 wall Total Mays Tributary to Floor 1= Shear (V)(Ibs) Floor levels Length W(psf) Ib1ft 5'I 10 510 Seismic Force Distribution tribut *** Roof Sections Roof Floor 1 Floor Vlsum(Ulli*Hi) _ Shear Wall Design Total Load (kips) right side left side front back Total Mass Tributary to Floor 2= Shear (V)(lbs) Floor Levefs 94631.902 15954 H (x) 14.4 2.0 0.(l Totals 0.01862 W(x)kips W(x) H(x) 57 826 15 30 a a 73 857 Total Shear (lbs) Length 45 46 25 28 M Shear Wall Critical Length, W fl DL Floor DL Front 240 500 Fuck 200 500 Right 200 50 Left 200 50 Calculate Uplift , Force Req'd to Prevent OT Obs) Paye[ Length (f#) 2 3 Front 3495 2377 Back 2937 1841 Right 2498 .2152 Left 249 2083 Width 0 F(x) 15.4 0.6 0.0 15954 W(l b) 57477 Joao E64?7 1128 W(lb) 15220 12935 2855 474.7 11U(fb) 0 0 Shear Wali Load (plf) 177 173 319 285 Roof DL DL (plf) critical I (ft) 945 122 5 945 1096 5 270 346 9 270 34s 9 4 6 8 10 12 1255 -990 -3234 -5419 -7723 746 -1445 -3536 -5828 -80 19 1806 1113 420 -272 -965 1736 1044 351 -342 -1034 Plan-, Date: Location: Micro -Lara Beam Load Parameters Floor LL (psf) Total Floor Load(psf) Floor Span (ft) Total Floor Load (plf) Wall Height (ft) Wall Weight (psf) Wall Load (plf) Roof LL (psf) Total Roof Load (psf) Roof Span (ft) Roof Load (plf) Beam Weight (plf) Live Load (plf) Total Load (plf). Reactions & Moment Duration Increase Beam Span(ft) Reaction 1 (1b) Reaction 2 (lb) Max Moment FtLb Max shear Lb Max shear Stress (psi) Determine Size Depth Estimate .(in) Width Estimate (in) Gross Area (in A 2) Max Moment 1 Oro% = Mornemt of inertia 1 Factor Of Safety -_ Max Shear 1'00% _ Factor Of Safety = Bearing Required = Load S Beam S S Factor of Safety E (psi) Deflection LL (in) L/360 LL Deflection F of S Deflection TL (in) L/240 TL Deflection F of S Wing )r —� 15 Feb 2007 Lot #16 Block 6, Henderson Sub. RB -1 RB -2 40 50 0 0 4 35 140 40 55 2 55 12 40 207 2.13 67 4.24 0.97 39 8�2 2.13 1800000 0.11 0.60 5.59 0.56 0.90 40 50 0 0 0 20 0 40 55 35 963 10 700 972 1 5 2430 2430 3038 2430 73 9. 50 3.5 33 11407 250 3.75 110 2.60 1.26 14 53 3.75 1800000 Selection 2.w 11 7/811 290 9 '/2" 0.02 0.17 7.62 0.03 0.25 8.23 Plan: W Isor Date: 15 Feb 2007 Location,,- Lot #16 Block 6, Henderson Sub. Exterior Footing Calculations back front left right Concrete Specs Density (pcf) 150 150 150 150 Strength (psi) 3000 3000 3000 3000 Clear Cover Thickness (in) 3 3 3 3 Foundation Overall Height (ft) 7.83 7.83 7.83 7.83 Height (in) 94 94 94 94 Wall Thickness (ft) 0.67 0.67 0.67 0.67 Thickness (in) g g g g Weight (kips/Ift)0.78 0.78 0.78 0.78 Footing Specs Width (ft) 2.00 2.00 1.67 1.67 Width (in) 24 24 20 20 Height (ft) 0.83 0.83 0.83 0.83 Height (in) 10 10 10 10 Weight (kips/Ift) 0.25 0.25 0.21 0.21 Area per Ift 2.00 2.00 1.67 1.67 Soil Specs, Density (pcf) 125 125 125 125 Soil Pressure (psf) 1500. 1500 1500 1500 Weight (kips/Ift) 0.65 0.65 0.49 0.49 Building Loads Roof span 35 35 10 10 Roof (kips/ift) 0.95 0.95 0.27 0.27 Wall Height (ft) 10 12 10 10 Wall Load (kips/Ift) 0.20 0.24 0.20 0.20 Floor span 20 20 2 2 Floor Loads (kips/ift) 0.50 0.50 0.05 0.05 Total (kips. Ift) 1.65 1.69 0.52 0.52 Calculations Total Weight on Soil (kips) 2.68 2.72 1.51 1.51 Soil Load (ksf) 1.34 1.36 0.91 0.91 Required Footing Width (in) 24 24 20 20 Required Footing Depth (in) 10 10 10 10 Plan.- Windso Date: 15 Feb 2007 Location., Lot #16 Block 6, Henderson Sub. 2 X Header FB -1 FB -2 RB -3 RB -4 Load Parameters Floor Live Load(psf) 40 40 40 40 Floor Total Load(psf) 50 50 50 50 Floor 1 Span(ft) 37 yg 22 24 Total Floor Load(plf) 925 725 550 60.0 Roof LL (psf) 40 40 40 40 Total Roof Load(psf) 55 55 55 55 Roof Span(ft) 0 0 0 0 Total Roof Load(plf) 0 0 0 0 Wall Height (ft) 0 0 0 0 Wall Weight (psf) 20 20 20 20 Wall Load(plf) 0 0 0 0 Beam Weight (plf) 6.5, 5.1 6.5 6.5 Total Load (plf) 931 730 556 606 Reactions & Moment Duration Increase 1 1 1 1 Beam Span(ft) 3.5 2.5 5 4 Reaction 1 (Ib) 1630 913 1391 1213 Reaction 2 (Ib) 1630 913 1391 1213 Max Moment FtLb 1426 570 1739 1213 Max Shear Lb 1630 913 1391 1213 Max Shear Stress (psi;. 50 36 43 37 Determine Beam Size Depth Estimate (in) 9.25 7.25 9.25 9.25 Width Estimate (in) 3.5 3.5 3.5 3.5 CF = 1.03 1.06 1.03 1.03 AreaA,-%32.38 25.38 32. 8 32.38 Momemt of Inertia I = 231 111 231 231 Maximum Bend Stress 343 223 418. 2g2 Factor Of Safety = 2.92 4.48 2.39 3.43 Max Shear Cap (Ibs) = 2050 1607 2050 20 50 Factor Of Safety =1.26 1.76 1.47 1.69 Bearing Required = 0.75 0.42 0.64 0.55 Load S 17 7 21 15 Beam S 50 31 50 50 S Factor of Safety 2.92 4.48 2.39 3.43 E (psi) 1600000 160:0000 160000 0 1 6 000 0 0 Deflection TL (in) 0.01 0. 0 0 0.02 0.01 L/240A r% 0 0.13 0.25 0.20 Deflection F of S 20.55 34.64 11.80 21.15 Selection 2: 2 x 10 2: 2 x 8 2: 2 x 10 2: 2 x 10