HomeMy WebLinkAboutSTRUCTURAL CALCS - 06-00212 - 224 Seagull Dr - New SFRFor
Plan #,,
f
Locatiaon.
From:
Structural Calculations
Kartchner Horner
Windsor C
Lot #16 Block &rson Sub.
+�7
William Yor any, L. C.
2329 W. Smilaiz How Road
Morgan,
Design Criteria IRC 20
Roof Load,
Live Load (P
Dead Load (I
Floor Load;
Live Load (PSF)
Dead Load (PSF
IN
10
O50(80I)876-3501
Seismic Zone: D 1
Wind Speed: 90 mph (1, 10 mph 3 second gust)
Exposure: C
Material Propeirt"es & AssumNions
15 Feb 2007
Concrete PSI (fc')-: 3 000 (found.), 3 000 (slabs), 4000 (susp. slabs)
Concrete Reinforcement: ASTM A615 Grade 60
INGIN��aiNG
SZ\Q fit A L
�a 1 1AAi P
ll3Tr:n
0 IF
Site Conditions: Dry & Stable granular based, 1500 PSS' Bearing Capacity, Granular Based
Backfill (KH -35 pef, KP=225), Slope not to exceed 20%, Minimum setback from slopes of 25'
Dimensional Lumber: Hem or Doug Fir 42 & BTR
Steel: ASTM A36
Use Simpson straps and tie downs., and meet nailing, reinforcement and other structural
1h
requirements as noted on the drawing and within, the pages of this document. These structural
calculations are based an conditions and assumptions listed above. If the conditions listed herein
are not met or are different it shall be brought to the attention of the engineer. Roof Truss and
beam system to"be engineered by the supplier. This engineering assumes that the building site is
dry and stable, a high water table or adverse sons such as plastic clays, fills etc. could cause
future flooding, settlement, site instability, or other adverse conditions. Verification of and
liaNlity for the soil bearing pressure, site stability, and all other site conditions, including site
engineering as required, is the responsibility of others. These calculations and engineering are for
the neve building structure only and do not provide any engineering analysis of or
liability/warranhT dor the non-structural portions of the building, or the site itself: William York is
the structural engineer only and does not assume the role Qf "Registered D�s�gn Professional" on
this project. The purpose of these calculations and engineering is to help reduce structural
damage and loss of life due to seismic activity and/or high wind conditions. The contractor shall
verify all conditions, dimensions and structural details of the drawing. Multiple use of these
IN
calculations is not permitted.
224 Seagull - Kartchner
ASI exterior wads shall be sheathed with 7116" APA rated structural wood panel. Block all
horizontal edges 1 1/211 nominal or wider. Sheathing shah extend continuous from floor to top
place and be nailed at least 4" Q.C. along sill place. Extend sheathing over gable end to wall joints
& over rim joist between floors and nail to rim and will plates 6" 0.
Shear Wall Schedule
tyke
Sheat Nail Edi Field Anchor Bolts
Typical 7/16" one side Sd 6FV O.C. 101, D.C. V211 3`21t O.C.
SW -1 7116" one side 8d 41, O.C. 101, O.C. '/a" 3211 O.C.
Staples may be used in place of Sd nails at '/� the spaying
The following general requirements shall be followed during construction:
I . Contractor to verify all dimensions, spans, & conditions and notify engineer of any errors,
omissions, or discrepancies prior to construction.
2. Use Simpson A35 ties each cantileveredjoist to sill or tap plate.
3. Use Simpson H 1 or equiv. tips each end of each truss.
5. Foundation reinforcement as per Utah State Amendment
6. Use 2; 44 bars continuous for all footings
2: # 4 bars each side of openings & 2 # 4 bars top & bottom extend 3+6" beyond opening
S. Use %z" x 10" J bolts 32" O.C. all foundation wads
9. If discrepancies are found, the more stringent specification shad be followed.
I0. All multiple beams and headers to be nailed using 16d two rows 12" 0. C.
1 1 . Contractor shall assure that all materials are used per manufactures recommendations.
12. Geotech engineer shall verify overall global stability of the building site.
13. Cotuiect beams & headers over c5 ft., to trinimers with appropriate connectors/hangers.
14. Contractor shall assure that footings are properly drained and that soil is dry and that footings
rest on undisturbed native soil 30" below finished grade and that building horizontal clearance
from footings to adjacent slopes be a minimum of 25 feet and that the intent of IRC section
R403.1.7.2 is met. If set back requirements of R403 . 1.7.2 can not be mei then contact engineer
for further design requirements.
15. The contractor shall conform with all building codes and practices as per the 20Q3 IRC&
16. Use balloon framing method when connecting doors in split lev I designs.
1?. Nail all shear walks to fl oor joist using 2: 16 16" p.C, Add additional floor joist as regd.
18. Provide joist and rafter hangers as per manufacturers specifications.
19. Foundation steps shall not exceed 4 feet or /Z the horizontal distance between steps. Horz,
rebar shall be 12" O.C. through step downs and extend 48" either side of step
20.1f garage return walls ars less than 3Z" wide then extend headers across return walls with 2
king studs an either end extending from the top of the header to the bottom plate or install (21
MST.'G straps each end of header extend across wing walls.
2 1. Use a minimum of 2-9 la" LVLs for all headers carrying girder loads.
22. Allow foundation 14 days to cure prior to backfill
Z3. Use 1 118" wide timberstrand or equiv, for all rim joist
24. Provide solid blocking through structure dawn to footing for all load paths.
25. Builder shall fallow all recommendations found in all applicable Geotechnical reports.
26,,. Stacking of two sill plates is permitted with 51S" J -bolts through both plates. Stacking more
than two, plates is not permitted without special engineering
Plan: Wi ^ sor
Date', 15 Feb 2007
ERR ERR
BC1 JOISTS
Span (TI)
Depth
Load Parameters
Floor Dead Load
Floor Live Load
Total Floor Load
Simple Span Joist
Duration
Increase
Joist
Span(ft)
Joist
Spacing
Joist
Weight (pff)
Joist
Loading (plf)
Max
Reaction (Ibs)
Max
Moment (FtLb/If)
Max Shear Lb
Determine Joist Size
Max Moment 100% (ft-Ibs) _
F. S. for moment =
Max Shear 100% (Ibs) _
F. S. for shear =
Bearing Required (in.)=
Live Load (L/360) _
Total Load (L/240) _
EI x 1 0^6 (Ib -in A 2)
K x 1 0^6 (Ibs)
Live Load Deflection (in)
Total Load Deflection (in)
Live Load F of S
Total Load F of S
Selection
500
191t5
11.88
10
40
50
1
19.5
1s
2.4
69
673
3283
673
4165
1.27
1625
2.41
2.00
0.65
0.98
345
7
0.54
0.70
1.21
1.40
11 7/8" 50111111110's
(a) 16
"
Plan Wind e
Date: 15 Feb -
Location: Lot #16 Bleck 6, Henderson Sub.
Wind nd Load n aI ui tion using Main WindforceiReslStiing System(MWFRS)
Transverse [freta
Design Coefficients
P'= i n d I d *exp ff* l
P= De i n Pressure
HorizontalWind Load (from table
Wall Load f =
end zone
interior zone
Roof Load (psf)=
end
zone
interior zone
Vertical Wind Load from table
Rauf Load (psf)=
end zone windward
end zone fesward
inferior zone windward
Interior zone leeward
1609-6.2.1(1)
16Q9,6.2.1(1)
26.14
20.8
17.91
14.28
Exposure Coefficient (frog table 1609.6.2.1 1.
lw=Importanoe f=actor frorn table 1604.5 1.
Wind Speed 90 Roof Height 8.75
Exposure C Well Height 14.375
P --wind Ie *exp ooff*l
horizontal wall interior
horizontal wall end zone
horizontal roof interior
horizontal roof end zone
vertical end zone windward
vertical end zone leeward
vertical interior zone windward
vertical interior zone leeward
Horizontal Fore
end zone
interior zone
Vertical Force
end zone
interior zone
Wall Diaphragm Shear
Total Shear Obs)
Left Wall Length
Right ti1Val1 Length
Critical Wall Length (ft)=
Left Waif Dead load (plf)=
Left Wall Critical Length (ft),=
Right Wall Dead Load (plf)=
Right Wall Critical Length (ft)=
20.81
26,14
14.28
`7.91
-10.04
15.85
Roof
Wall
Roof
Walls
Windward
Leeward
Windward
Leeward
20682
4
4
346
6
346
7
Calculate Uplift , Force Req'd to Prevent OT Obs)
Panel Length (ft) 2
Left 1 432
Right 1062
Shear Wall Loads (plf)
Total Left=
Total Right =
225
230,
Width
Height
Wind Load
Force (lbs)
8.8
17.91
470
14.375
26.14
1 127
45
875
14.28
5623
45
14.375
20.81
13461
Total
20681.644
Width
Lengthy
Wind Load
Farce (lbs)
24.5
-10.04
-738
24.5
15.85
1165
45
24.5-8,7
-9592
45
24.513,67
15071
Total
59015
Total (p[f)
.30
4
6
8 1
874
715
398
82 -235
904
745
428
112 -205
1
-522
Plan: Winds
Cate: 15 Feb .
Location: Lot x#16 Block 6, Henderson Sub,
Wind Loading Calculations using i.ai n ndf r -ides i tin stems (MWFRS)
Longitudinal Direction
Wind Design Coefficients
Psi nd load*exp off*.f
P--zDesign Pressure
Horizontal Wind Land {from table 1609.6.2.1(1}
Wall Load (psf)--
end
zone 23.2
interior zone 15.4
Roof Load (Psf)=
ena zone 0.0
interior zone 0.0
Vertical Wind Load (from table 169,6.2.1(1)
Roof load (psf)-
end
zone windward, 29.8
end zone leeward 15_9
interior zone windward 19A
interior zone Deward 12.2
Exposure Coefficient (from table 1609.6.2.1(4)
Iw=lmpartance Factor (from table 1604.5)
Wind Speed =
Expos u re
Roof Stope =
Roof Angle (deg)=
P= rod load*exp o ff*l r
horizontal wall interior
horizontal wall end zone
horizont@1 roof interior
horizontal roof end zone
vertical end zone windward
vertical end zone leeward
vertical interior zone windward
and
vertical Interior zone leeward
End Zone Width (ft)
Interior Zone Width {ft}
Horizontal Farce
end zone
interior zone
Vertical Farce
.
56
15.40
23.20
0.00
0.00
.
80
15.90
19,40
12,20
Roof
''all
Roof
Walls
end zone wiridward
leeward
interior zone windward
leeward
Null Maphragm Shear
Total Shear (lbs)
Prom Wall Length
Back VVa I I Length
Critical Wall Length (ft)-
Front Wall Dead Load (plf)=
Front Wall Critical Length (ft)=
Bask Wall Dead Load (plf)=
Back Wali Critical Length (ft) -
7318
25
28
1122
1
1096
0
Roof Height
Wall Height
Truss Span
Sire = 0.447.
3
43
Width
3
3
4
43
Width
3
3
43
43
Height
.
1
.
75
IN
length
24.00
24.00
.4.00
.
00
8.75
1
35
Wind Load
OM
23.20
0.00
15.40
Tota
Wind Load
zs.$o
15.90
19.40
12.20
Total
Total (plf)
Force (lbs)
0
696
0
6622
731
Force (lbs)
1 073
572
10010
6295
17951
90
CaFculate Uplift ,Force Req'd to Prevent QT (Ibs)
Panel Length (ft) 2 3 4 6 8 10 12
Front -154 -671 -1187 -219 -3252 -284 -5317
Back _222 -725 -1228 -2233 -3239 -4245 -5-251
Shear Wali Loads (plf)
Total Frantz 146
Total Back = 131
Plan.-
Date..-
Location
lan.-Date ,Lt n
Seismic Calculations
Loading Summary
Float Diad Load (psf)
Fluor Live Load(psf)
Walls (Ext)(psf)
Walls (Int)(psf)
Roof Dead Load(psf)
Roof Slope
Exterior
Snow Load Reduction
Slope
Snow
Pitch over 20
Rs
Reduction
L.L.- Reduction
Total Load
Roof
roof wall
Floor 'i
Floor 2
Total Seismic Mass
Total Lateral Furca
Windsor
15 Feb 2007
Lot #16 Nock 6, Henderson Sub.
10 Seismic Zone E
40
20 Raaf LL(psf) 40
10
15
112
combination
40.00
55.00
,seismic Param t r
V-Cs*W/1.4
F=
R
S
S=
Sds=
=
j . Facto r
C=
1
table 1617.6
1,772
1.77 eq. 16-16
1.18 eq 16,18
0.236 per eq. 16-49
1.4
0.16859314
Length
W(psf}
Lb/ft
Width
51
23
1173
49
Total Mass Tributary to Roof Levels =
Shear (.V)(lbs) Roof Levels
Length W(psf) Iblft
51 '10 510
wall
Total Mays Tributary to Floor 1=
Shear (V)(Ibs) Floor levels
Length W(psf) Ib1ft
5'I 10 510
Seismic Force Distribution
tribut
*** Roof Sections
Roof
Floor 1
Floor
Vlsum(Ulli*Hi) _
Shear Wall Design
Total Load (kips)
right side
left side
front
back
Total Mass Tributary to Floor 2=
Shear (V)(lbs) Floor Levefs
94631.902
15954
H (x)
14.4
2.0
0.(l
Totals
0.01862
W(x)kips
W(x) H(x)
57
826
15
30
a
a
73
857
Total Shear (lbs)
Length
45
46
25
28
M
Shear Wall Critical Length, W fl DL Floor DL
Front 240 500
Fuck 200 500
Right 200 50
Left 200 50
Calculate Uplift , Force Req'd to Prevent OT Obs)
Paye[ Length (f#) 2 3
Front 3495 2377
Back 2937 1841
Right 2498 .2152
Left 249 2083
Width
0
F(x)
15.4
0.6
0.0
15954
W(l b)
57477
Joao
E64?7
1128
W(lb)
15220
12935
2855
474.7
11U(fb)
0
0
Shear Wali Load (plf)
177
173
319
285
Roof DL DL (plf) critical I (ft)
945 122 5
945 1096 5
270 346 9
270 34s 9
4
6
8
10
12
1255
-990
-3234
-5419
-7723
746
-1445
-3536
-5828
-80 19
1806
1113
420
-272
-965
1736
1044
351
-342
-1034
Plan-,
Date:
Location:
Micro -Lara Beam
Load Parameters
Floor LL (psf)
Total Floor Load(psf)
Floor Span (ft)
Total Floor Load (plf)
Wall Height (ft)
Wall Weight (psf)
Wall Load (plf)
Roof LL (psf)
Total Roof Load (psf)
Roof Span (ft)
Roof Load (plf)
Beam Weight (plf)
Live Load (plf)
Total Load (plf).
Reactions & Moment
Duration Increase
Beam Span(ft)
Reaction 1 (1b)
Reaction 2 (lb)
Max Moment FtLb
Max shear Lb
Max shear Stress (psi)
Determine Size
Depth Estimate .(in)
Width Estimate (in)
Gross Area (in A 2)
Max Moment 1 Oro% =
Mornemt of inertia 1
Factor Of Safety -_
Max Shear 1'00% _
Factor Of Safety =
Bearing Required =
Load S
Beam S
S Factor of Safety
E (psi)
Deflection LL (in)
L/360
LL Deflection F of S
Deflection TL (in)
L/240
TL Deflection F of S
Wing )r —�
15 Feb 2007
Lot #16 Block 6, Henderson Sub.
RB -1 RB -2
40
50
0
0
4
35
140
40
55
2
55
12
40
207
2.13
67
4.24
0.97
39
8�2
2.13
1800000
0.11
0.60
5.59
0.56
0.90
40
50
0
0
0
20
0
40
55
35
963
10
700
972
1
5
2430
2430
3038
2430
73
9. 50
3.5
33
11407
250
3.75
110
2.60
1.26
14
53
3.75
1800000
Selection 2.w 11 7/811 290 9 '/2"
0.02
0.17
7.62
0.03
0.25
8.23
Plan: W Isor
Date: 15 Feb 2007
Location,,- Lot #16 Block 6, Henderson Sub.
Exterior Footing Calculations
back front left right
Concrete Specs
Density (pcf) 150 150 150 150
Strength (psi) 3000 3000 3000 3000
Clear Cover Thickness (in) 3 3 3 3
Foundation
Overall Height (ft) 7.83 7.83 7.83 7.83
Height (in) 94 94 94 94
Wall Thickness (ft) 0.67 0.67 0.67 0.67
Thickness (in) g g g g
Weight (kips/Ift)0.78 0.78 0.78 0.78
Footing Specs
Width (ft) 2.00 2.00 1.67 1.67
Width (in) 24 24 20 20
Height (ft) 0.83 0.83 0.83 0.83
Height (in) 10 10 10 10
Weight (kips/Ift) 0.25 0.25 0.21 0.21
Area per Ift 2.00 2.00 1.67 1.67
Soil Specs,
Density (pcf) 125 125 125 125
Soil Pressure (psf) 1500. 1500 1500 1500
Weight (kips/Ift) 0.65 0.65 0.49 0.49
Building Loads
Roof span 35 35 10 10
Roof (kips/ift) 0.95 0.95 0.27 0.27
Wall Height (ft) 10 12 10 10
Wall Load (kips/Ift) 0.20 0.24 0.20 0.20
Floor span 20 20 2 2
Floor Loads (kips/ift) 0.50 0.50 0.05 0.05
Total (kips. Ift) 1.65 1.69 0.52 0.52
Calculations
Total Weight on Soil (kips) 2.68 2.72 1.51 1.51
Soil Load (ksf) 1.34 1.36 0.91 0.91
Required Footing Width (in) 24 24 20 20
Required Footing Depth (in) 10 10 10 10
Plan.- Windso
Date: 15 Feb 2007
Location., Lot #16 Block 6, Henderson Sub.
2 X Header FB -1 FB -2 RB -3 RB -4
Load Parameters
Floor Live Load(psf) 40 40 40 40
Floor Total Load(psf) 50 50 50 50
Floor 1 Span(ft) 37 yg 22 24
Total Floor Load(plf) 925 725 550 60.0
Roof LL (psf) 40 40 40 40
Total Roof Load(psf) 55 55 55 55
Roof Span(ft) 0 0 0 0
Total Roof Load(plf) 0 0 0 0
Wall Height (ft) 0 0 0 0
Wall Weight (psf) 20 20 20 20
Wall Load(plf) 0 0 0 0
Beam Weight (plf) 6.5, 5.1 6.5 6.5
Total Load (plf) 931 730 556 606
Reactions & Moment
Duration Increase 1 1 1 1
Beam Span(ft) 3.5 2.5 5 4
Reaction 1 (Ib) 1630 913 1391 1213
Reaction 2 (Ib) 1630 913 1391 1213
Max Moment FtLb 1426 570 1739 1213
Max Shear Lb 1630 913 1391 1213
Max Shear Stress (psi;. 50 36 43 37
Determine Beam Size
Depth Estimate (in) 9.25 7.25 9.25 9.25
Width Estimate (in) 3.5 3.5 3.5 3.5
CF = 1.03 1.06 1.03 1.03
AreaA,-%32.38 25.38 32. 8 32.38
Momemt of Inertia I = 231 111 231 231
Maximum Bend Stress 343 223 418. 2g2
Factor Of Safety = 2.92 4.48 2.39 3.43
Max Shear Cap (Ibs) = 2050 1607 2050 20 50
Factor Of Safety =1.26 1.76 1.47 1.69
Bearing Required = 0.75 0.42 0.64 0.55
Load S 17 7 21 15
Beam S 50 31 50 50
S Factor of Safety 2.92 4.48 2.39 3.43
E (psi) 1600000 160:0000 160000 0 1 6 000 0 0
Deflection TL (in) 0.01 0. 0 0 0.02 0.01
L/240A r%
0 0.13 0.25 0.20
Deflection F of S 20.55 34.64 11.80 21.15
Selection 2: 2 x 10 2: 2 x 8 2: 2 x 10 2: 2 x 10