HomeMy WebLinkAboutSTRUCTURAL CALCULATIONS - 07-00149 - 226 Jill Dr - New SFR'IF -, .1000%
Structural Calculations
For: Kartchner domes
Plan #:
Location:.
From.
Aspen C
Lot #1 Blick 7, Henderson
William York
2329 W. Spri
Morgan, Ut
Design Criteria IRC 200
Roof Load,
Live Load (PS
Dead Load (P�
Floor Load;
Live Load (PSpr
Dead Load (PSF)
Seismic Zone: D I
10
5 L. Ce
vv Road
0 (801) 876-3501
Wind Speed: 90 mph (I 10 mph 3 second gust)
Exposure: C
Material Propertm
es & Assumptions
276 Jill'.-Kartchner
30 Mar 2007
ENGINEERING
Concrete PSS (fc'): 30 0 (found.), NQ[] (slabs)., 4000 (cusp. slabs
Concrete Reinforcement: ASTM A615 Grade 60
Site Conditions: Dry & Stable granular based, 1500 PSF Bearing Capacity., Granular Based
Backfill (KH=,35 pcf, KP=225), Slope not to exceed 20%, Minimum setback from slopes of 25'
Dimensional Lumber.- Hem or Doug Fir #2 & BTR
Steel: ASTM A3 6
Use Simpson straps and tie downs, and meet nailing, reinforcement and other structural
requirements as noted on the drawing and within the pages of this I'd ocument.These structural
calculations are based on conditions and assumptions listed above. If the eonditions listed herein
ars not met or are different it shah be brought to the attention of the engineer, Roof Truss and
Ob 4h
beam system to be engineered by the supplier. This engineering assumes that the building site is
dry andstable, a high water table or adverse sols such as plastic clays, fills etc. could cause
future flooding., settlement, site instability, or other adverse conditions. Verification of and
liability far the sail bearing pressure, site stability, and alI other site condii�ans, including site
erx� veering as required, is. the responsibility of others. These calculations and engineering are for
the new building structure only and do not provide any engineering analysis of or
liability/warranty for the non-structural portions sof the building, or the site itself. William York is
the structural engineer only and does not assume the role of "Registered Design Professional" on
this proj ect. The purpose of These cal cul atiQns and engineering is e-duce
stm tural
Ot
L j
damage and Toss of life due to se'smic act
iviiy and/or high wind co''
d'tio�s. ��The .cantraetor:'h
�rerify all conditions, dimensions and structural details of the draw� IUiurti�le use -o calculations is not penriit#ed.� ��e
r
A F) R &me 4 2007i
1pr 0
horizontal, edges 1 V211 nominal or wider. Sheathing shad extend continuous from favor to tap
plate and be nailed at least 411 O.C. along sill plate. Nails shah be placed, not Tess than V2" from
edge of panel and driven flush but shall not fracture the surface of the sheathing. extend
sheathing over gable end to wall joints & over rim j oYst between tloorsa�6" 0. C.
Shear Wall Schedule
e Sheathing fail Edge Field Anchor Bolts
Typical 7116" one side Sd b"` O.C. 101, D.C. %z" 3211 O.C.
SW -1 7/1611 one side 8d 41, O.C. 1011 Q.C. 1/�" 3211 O.C.
Staples may be used in place of Sd mails at %z the spacing
The following general requirements shad be followed during, construction:
I . Contractor to verify all dimensions, spans, & conditions and notify engineer of any errors,
omissions, or discrepancies prior to construction.
2. Use Simpson A35 ties each cantilevered foist to sill or top plate.
3. Use Simpson H 1 or equiv. ties each end of each truss.
5. Foundation reinforcement as per plan,
6. Use 2: #4 bars continuous for all footings
2: # 4 bars each side of openings & 2 # 4 bars top & botto xtend 3 6" beyond opening
8. Use V2" x IO" T bolts 32" O.C. all foundation walls
9. If discrepancies are found, the more stringent specification shah be followed.
10. All multiple beams and headers to be nailed using 16-d two rows 1.2" O.C.
11 . Contractor shad assure that all materials are used pear manufactures recommendaiians.
12. Site engineering and liability shah be provided by the owner/builder as required.
13. Connect beams & hewers over 6 ft.., to trimmers with appropriate connectors/hangers.
14. Contractor shad assure that footings are properly drained and that soil is dry and that footings
rest on undisturbed native soil 3 Q" below finished grade and that building horizontal clearance
from footings to adjacent slopes be a minimum of 25 feed and that the intent of SRC section
R403". 1. 7.Z is znet. If set back requirements of R403.1-7.2 can not be mei then contact engineer
for further design requirements.
15. The contractor shall conform with all building codes and practices as per the 20n3 IRC.
16. Use balloon framing method when connecting floors in split level designs.
I7. Nail all whear wall to flo or j o i st using 2: 1 6d 16 " a.C, Add additzonal floor joist as regd.
18. Provide jo o i st and rafter hangers as per manufacturers specifications.
19. Foundation steps shah not exceed 4 feet or %z the horizontal distance between step. Horz.
rebar shall be 12" O.C. through step downs and extend 48" either side of step
20.1f garage return walls are less than 32" wide then extend headers across return walls with 2
long studs an either end extending from the top of the header to the bottomlapte or install (2}
MST 3 6 straps each end of header extend across wing walls.
21. Use a rninimuixa of 2-9 fz" LVLs for all headers carrying girder Toads.
22. Allow foundation 14 days to cure prior to backfill
23. Use 1 1/8" wide timbersirarzd or equiU, for all rim joist
24. Provide solid blacking Through structure down to foot41
ing for all load paths.
25. Builder shall follow all recommendations foundin all applicable Geotechnical reports.
26. Stacking of two silk plates is permitted with 5/8" J -bolts through both plates. Stacking more
than two plates is not permittee without special engineering
Plan: As n C
Date,- 12 March 2007
Location: Lot #1, Block 7, 266 J
TJ1 Joist
Span (ft)
Depth
Load Parameters
Floor Dead Load
Floor Live Load
Total Floor Load
Simple Span Joist
Duration Increase
Joist Span(ft)
Joist Spacing
Joist Weight (plf)
Joist Loading (plf)
Max Reaction (lbs)
Max Moment (FtLb/If)
Max Shear Lb
Determine Joist Size
Max Moment 100% (ft -lbs) _
F. S. for moment =
Max Shear 100% (Ibs) _
F. S. for shear =
Bearing Required (in.)=
Live Load (L/360) _
Total Load (L/240) _
EI x 1 0^6 (lb -in A 2)
Live Lead Deflection (in)
Total Load Deflection (in)
Live Load F of S
Total Load F of S
Selection
bo
ill Drive, Rexburg
21D
18.5
11,88
10
40
50
1
18.5
16
2.8
69
643
2972
643
3620
1.22
1655
2.58
2.00
0. 62
0.93
283
0.5 4
0.70
1.15
1.32
11 7/8- 210's @ 16
"
Plan:
Date:
Location:
-Beam
Load Parameters
Floor Live Load (psf)
Total Floor Load(psf)
Floor 1 Span(ft)
Total Floor Load (plf)
Wall Height (ft)
Wall Weight (psf)
Wall Load, (plf)
Roof
Live Load (psf)
Roof
Load (psf)
Roof
Span (ft)
Total
Roof Load (plf)
Live Load (plf)
kBeam
weight (plf)
Total
Load (plf)
Reactions & Moment
Duration Increase
Beam Span(ft)
Reaction 1 (Ib)
Reaction 2 (Ib)
Max Moment FtLb
Max Shear Lb
Max Shear Stress (psi)
Select Beam Size
Suggested Height (in)
Alow Stress (psi) _
Calculate S (in A 3)=
Use Factor of Safety = '1.2
1.2 * S (in A 3)=
From Table 18, Choose
Approx width (in)=
Beam S Value (in A 3)
S Factor of Safety
Tabulated Depth =
Moment of Inertia Ix (in A 4) _
LL Deflection (in) _
Total Deflection (in) _
LLoad Def. Limit L/
LL Allowable Deflection (in)
TLoad Def. Limit L/
TL Allowable Deflection (in)
LL Deflection F/S
TL Deflection FIS
kBeam Selection
Ask, n C
12 March 2007
Lot #1, Block 7, 266 Jill Drive, Rexburg
FB -5
OPTION
40
50
22
550
0
20
0
40
55
0
0
440
15
565
1
13
3673
3673
11936
3673
311
8.06
33000
5.21
8 15
4
11.8
2.72
8.11
48
0.20
0.26
360
0.43
240
6.65
2. 13
2.48
8 15
Plan: Aspen
Date: 12 March 2007
Location: Lot 1, Block 7, 266 gill Drive, Rexburg
Wind Loading Calculations using Main Windforce-Resisfing SYstelin(M FI
Transverse Direction
Ond Design Coefficients
90
P=wind lead*exp coal
Roof Hila
P De ign Pressure
Horizontal Wind Laud (from table
1609.6.x..1(1)
Fall Load (Pf=
end zone (A.)
16.1
interior zone (C)
117
Roof Load (pf)=
enol zone (8)
2.6
interior zone D)
x.
Vertical Wind Lead (from table 1609,.6-2,1(j)
Roof Load (p-=
end zone w1ndward E)
-7.
end zone leeward (F)
Roof Angle (deg)=
interior zone windward )
interior zone leeward H)
-5.2
Exposure Coefficient (from table 1609,6-2.1(4)
i t=lmportanc Factor from table 1604.6)
Wind Speed
90
Roof Hila
6
Exposure
Wall He[ght
19
Truss Span 24
Hoof .Mope
6112
Roof Angle (deg)=
26.56
Sine = x.4472
11 n� rT� �J rYi Pressure
P,ir�d lead *eP ooeff'" I
dj u sted
horizontal wall interior
15.09
15.09
horizontal wall end zone
0.77
2077
horizontal roof i rater o r
3,48
10. o
.horizontal roof end zone
3,36
10-00
vertical end zone windward
-9.29
0.00
vertical end zone leeward
-12.64
0.00
vertical interior zone windward
-6.71
6..60
vertical interior zone leeward
-6.71
0.00
End Zeno Width (ft)
_4
2n.d storylEnd
Zone Width
(ft)
4.4
Interior Zone Width (ft)
45.2
2nd StoryInterior Zone Width (-ft)
2o.
Gable Hoof Load
Width HeIg ht
Wind Loan Force (lbs)
End
4.4
2A
20.77
19
Interior
45.2
1.94
15.09
2766
Sum =
2959.3027
Area
Hip Roof .Load
End
324
10.00
3240
Interior
0
10.00
o
Total
3240
Wall Load
Width
Height
Wired Load
Force (lbs)
�d `ter
End
4.4
1.0
20.77
183
Inferror
45,2
1,06
15.69
682
* w *
Sum _
864, 9768
Vertical Force
Width
length
Wind Load
force (lbs)
end zone windward
4
42.80
0.00
6
leeward
4
42.BQ0.00
0
interior zone windward
45
42,86
0.60
0
leeward
45
42.80
0,00
o
Floor 2 Dia phragrn Shear
Shear Wall Leads
(plf
Total Shear (lbs)
7629
Left Wall Length
28
136
Right Wall Length
28
1 36
F[Oor 1 Diaphragm Shear
Shear Wall acids '(plf)
Total Shear ([b)
17945
Left Wall Length
3B
x 36
Right VVaIJ Length
34
264
basement Diaphragm shear
Shear Wall Loads (plf)
Total Shear ( Ib)
18809
Left Wall Length
10
Not Applicable
Dight Wail Length
10
Net applicable
Critical Wall Length (ft)=
Left 'mall Dead Load (plf)=
426
Tota 1
15493
Left Wall Critical Lengthy (ft)=
6
Total (Plf)
81
Right Wall Dead Load (plf)::
373
Right Wall Critical Length (ft)=
6
Calculate Uplift, Force Req"d to
Prevent OT (lbs)
Panel Length (ft)
4
8 10
+1
Back
1071
898
726
380
34 -311
1291
1 145
999
707
414 122
-170
Pian- Asp,n
Date,, 12 March 2007
Location: Lot #1 a Block 7, 266 All Drive, Rexburg
Wird Loading Calculations using Main' indforce-F sistin start I FI
Longitudinal Direction
Wind Design Coefficients
P=wind load*exp oeff*lw
P=ig n Pressure
Horizontal 'moi rid Load from table 1609.6,2-.I(J)
Will Load (pf)=
end zone () 16.1
interior zo-ne (C) 11.7
Roof Load (psf )=
end zone (B) 2,6
interior zone (0) 23
Ver#icail Wind Load (from table 16a9.6.2.1(1)
Roof Load (POP-
end
p f -
end zone windward and (E) -7.
rid zone leeward (F) -g.
interior zone windward ) -5,2
interior zone leeward H) -&2
Exposure Coefficient (from table 1609-6.2.1(4)
lir-Importance Factor 'from table 1604.5)
Wind Speed
Expos ore
Roof Slope =
Roof Angle (deg)=
P -wird load,*exp o ff*l
horizontal wall interior
horizontal wall end zone
h . rizontal roof interior
horizontal roof end zone
verJti a l end zone windward
vertical end zone leeward
v rti al [nterior zone windward
vertical interior zone leeward
A*Hmean
.1*base
End Zone Mdth (ft)
Interior Zone Width (ft)
a bJe Roof Load
Hip hoof Load
Wall Load
Vertical Force
Floor 2 Diaphragm Shear
Total Shear (iia )
Front Wall Length
Back Fall Length
Floor I Diaphragm Shear
-Total Shear (lbs)
Front gall Length
Back Wall Length
basement Diaphragm Shear
Total Shear (lbs)
Front Wall Length
Fuck 'mall Length
1.29
1.0
0 Roof Height
Fall Height
Truss Spar
End
J nt rior
End
Interior
End
inter -10 F
end zone W-Indward
leeward
Interior zone windward
leeward
Critical Wall Length (ft)=
Front Wall Dead Lead plf)
Front Wall Critical Length =
Back Wall Dead Load PIf =
Back Wall Critic2i Length (ft)=
8523
1
0
14779
7
7
15493
10
10
•
6.00
1
4
4.4 2rid storyEnd Zone Width (ft)
35.2 2nd Storyinterior Zone Width (ft)
Width
/1
2&56
Sine= 0.4472
35.2
Minimum Pressure
20.77
Adjusted
15.00
15.09
77
20,77
3,48
10.00
3-35
10.00
-g.
0..00
-12.64
0.00
-6-71'
0.00
-6.71
0.00
End
J nt rior
End
Interior
End
inter -10 F
end zone W-Indward
leeward
Interior zone windward
leeward
Critical Wall Length (ft)=
Front Wall Dead Lead plf)
Front Wall Critical Length =
Back Wall Dead Load PIf =
Back Wall Critic2i Length (ft)=
8523
1
0
14779
7
7
15493
10
10
•
6.00
1
4
4.4 2rid storyEnd Zone Width (ft)
35.2 2nd Storyinterior Zone Width (ft)
Width
Height
4.4
2.1
35.2
1.94
Area
264
0
Wind Load
20,77
115,09
Sum =
Find Load
10-00
10.00
Total
Force (lbs)
193
2154
2347.256
Force (abs)
2640
0
2640
Width
Height
Wind Load
Force (lb)ft)
4.4
1.0
20.77
183
35.2
1.00
15.09
531
-87
-515
Sum =
714.0408
Width
length
Wind Load
Force (lbs)
4
24.80
0,00
0
4
24,80
0.00
0
35
24,80
OM
0
35
24.80
0,00
0
Shear Wall Loads (,pl
284
213
Shear Wall Loads (plf)
274
200
hear' all Loads (pif)
Not Applicable
Not Applicable
1 TOtai 18809
Total (plf
2
Calculate Uplift , Force f eq'd to Prevent OT (lbs)
Panel Length (ft)
Front 827
Back 342
4.4
31.2
2nd Story
Force (igift)
4
6
8
10
1
419
1
-803
-1618
-2434
-3249
-87
-515
-1372
-2229
-3085
-3942
Plan:. yen C
Date: 12 March 2007
Location: Lot #1, Block 7, 266 Jill Drive, Rexburg
LVL Beam FB -5 RB -6 RB -7
Load Parameters
Floor LL (psf) 40 40 40
Total Floor Load(psf) 50 50 50
Floor Span (ft) 22 0 0
Total Floor Load (plf) 550 0 0
Wall Height (ft) 0 0 2
Wall Weight (psf) 20 20 35
Wal! Load (plf) 0 0 70:
Roof LL (psf) 40 40 40
Total Roof Load (psf) 55 55 55
Roof Span (ft) 0 44 28
Roof Load (plf) 0 1210 770
Beam Weight (plf) 14.5 10 10
Live Load .(plf) 440 880 560
Total Load (plf) 564 1220 850
Reactions & Moment
Duration Increase 1 1 1
Beam Span(ft) 13 5 g
Reaction 1 (Ib) 3669 3049 3823
Reaction 2 (Ib) 3669 3049 3823
Max Moment FtLb 11924 3811 8603
Max Shear Lb 36.69 3049 3823
Max Shear Stress (psi) 74 92 115
Determine Size
Depth Estimate (in) 9.50 9.50 9.50
Width Estimate (in) 5.3 3.5 3.5
Cross Area (in A 2) 50 33 33
Allowable Bending Stress = 2684 2684 2684
Allowable Moment = 17662 11775 11775
Momemt of Inertia I = 375 250 250
Factor Of Safety = 1.48 3.09 1 .37
Allowable Sheer Stress (psi')= 2g5 285 285
Allowable Sheer Force (lb)= 9476 6318 6318
Factor Of Safety = 2.58 2.07 1.65
Bearing Required = 0.93 1.16 1.46
E i(psi) 1900000 1900000 1900000
Deflection LL (in) 0.40 0.03 0.17
LLoad Def. Limit L/ 360 360 360
Allowable Deflection (in) 0.43 0.17 0.30
LL Deflection FIS 1.09 6.40 1.72
Deflection TL (in) 0.51 0.04 0.26
TLoad Def. Limit L/ 240 240 240
Allowable Deflection (in) 0.65 0.25 0.45
TL Deflection F/S 1.28 6.93 1 .70
Selection 2, Y211
2:9 V211
Plan: A m C
date: 12 March 2007
Location: Lot #1 R10rk 7 AFF mu nri„o Qo.,h„r..
Exterior Footing Calculations I I U^ U19
back front left right
Concrete Specs
Density (pcf) 150 150 150 150
Strength (psi) 3000 3000 3000 3000
Clear Cover Thickness (in) 3 3 3 3
Foundation
Overall Height (ft) 7.83 7.83 7.83 7.83
Height (in) 94 94 94 94
Wall Thickness (ft) 0.67 0.67 0.67 0.67
Thickness (in) g g $ 8
Weight (kips/Ift) 0.78 0.78 0.78 0. 78
Footing Specs
Width (ft) 1.67 1.67 1.67 1.67
Width (in) 20 20 20 20
Height (ft)0.83 0.83 0.83 0.00ight (in) 10 10 10 10
Weight (kips/Ift) 0.21 0.21 0.21 0.21
Area per Ift 1.67 1.67 7.67 1.67
soil specs
Density (pcf) 125, 125 125 125
Soil Pressure (psf), 1500 1500 1500 1504
Weight (kips/Ift) 0.49 0.49 0.49 0.49
Building Loads
Roof span 24 24 10 10
Roof (kips/Ift) 0.65 0.65 0.27 0.27
Wall Height (ft) 16 16 16 12
Wall Load (kips/Ift) 0.32 0.32 0.32 0.24
Floor span 19 16 2 y
Floor Loads (kips/ift) 0.46 0.40 0.05 0.05
Total (kips.lft) 1.43 1.37 0.64 0.56
Calculations
Total Weight on Soil (kips) 2.42 2.36 1.63 1.55
Soil Load (ksf) 1.45 1.42 0.98 0.93
Required Footing Width (in) 20 20 20 20
Required Footing Depth (in) 10 10 10 10
Sawn Lumber
Plan: Aspen C
Date: 1March 20 1
Location: Lai #1, Bieck 7, 266 Jill Drive, Rexburg
F13-2 F13-3 F8-4
Load Parameters
Floor Live Load(psf)
Floor Total Load(psf)
Floor 1 Span(ft)
Total Floor Load(plf)
Wall Height (ft)
Wail Weight (psf)
Wall Load(plf)
Roof LL (psf)
Total Roof Load(psf)
Roof Span(ft)
Total Roof Load(plf)
Seam Weight (plf)
Lire Load (plf)
Total Load (plf)
Reactions & Moment
Duration increase
Beam Span(ft)
Reaction 1 (1b)
Reaction 2 (Ib)
Max Moment FtLb
Max Shear Lb
Determine Beam Size
Depth Estimate (in)
Width Estimate {in}
CF
Area =
Momemt of Inertia I =
Maximum Bend Stress =
Allowable bead Stress
Factor Of Safety =
Allowable Sheer Stress
Max Shear Cap (lbs) w
Factor Of Safety =
Bearing Required =
E (psi )
Deflection LL (in)
LLoad Def. Limit L1
Allowably Deflection (in}
LL Deflection FIS
Deflection TL (in)
TLoad Def. Limit Ll
APlawabie Deflection (ink
TL Deflection FJS
Selection
W0
RB -3
RB -5
40 40 40 40 40 40 40 40
50 50 50 50 50 50 50 50
16 92 23 19 0 4 0 0
404 300 575 475 D Q 0 p
9 g 0 9 0 D 0 0
20 20 20 20 2o 2.0 20 20
iso Asa o 1$a o o 0 o
40 40 40 40 40 40 40 40
55 55 55 55 55 55 55 55
2 z o s 24 s zs s
55 55 a 220 660 azo 715 22a
6.5 6.5 E.5 6.5 6.5 5.6 6.5 6.5
360 280 460 540 480 160 520 160
641 541 581 881 665 226 727 226
1 1 1 1 1 1 1 1
4 5 4 5 S 10.5 5 5
183 1354 1163 2204 1666 1184 1804 566
1283 1354 1163 2204 1666 1184 1804 566
12$3 1692 1163 2755 2083 3108 2255 708
1283 1354 1163 2204 1665 1184 1804 566
9.25 9.25 9.25 9.25 9.25 9.25 9.25 9.25
3.5 3.5 3.5 3.5 3.5 3 3.5 3.5
1.20 1.20 1.20 1.20 1.20 1.10 1.20 1.20
32.38 32.38 32.38 32.38 32.38 27.75 32.38 32.38
231 231 231 231 231 198 23� 231
308 407 280 662 501 872 542 170
1020 1020 1020 1020 1020 935 1020 1020
3.31 2.51 3.65 1.54 2.04 1.07 1,88 5.99
180 180 180 180 180 165 180 180
3885 3885 3885 3885 3885 3053 3885 3885
3.03 2.87 3.34 1.76 2.33 2.58 2.15 6.86
0.91 0.95 0.82 1.55 1.18 0.97 7.27 0.40
1300000 1300000 1300000 1300000 1300000 1300000 1300000 7300000
0.01 0.01 0.01 0.03 0.02 0.17 0.02 0.01
360 360 360 360 360 360 360 360
0.13 0.17 0.13 0.17 0.17 0.35 0.17 0.17
19,30 12.70 15.10 6.59 7.41 2.06 6.84 22.23
0.01 0.03 0,01 0.04 0.03 0.24 0.03 0.01
240 240 240 240 240 240 240 240
0.2 0.25 0.2 0.25 0.25 0.525 0.25 0.25
16.24 9.85 17.92 6.05 8.00 2.19 7.39 23.56
"-2x10
: 1 :2x10 x1 -F 2 x10 10 2.2 X 10 2:2 x 10
Plan : Aspen
Date: 12 March 2007
Location : Lot ffi, Block 71,266 Jill Drive, Rexburg
nnicro-Lam E3a
Uniform Load
Uniform Floor Span (ft)
Total Uniform Floor Load plf)
'mall He -i ht (ft)
Wall Weight (psi
Wall Load plf
Uniform Roof Span (ft)
Total Uniform Roof Load (plo
Point Loads
1 Distance from Left (ft)
1 Point Live Load (Ib)
1 Point Dead Load (1b)
Distance from Left (ft)
Point Live Load ')
Pont Dead Load (1b)
Partialy Uniform rm Loads
1 Uniform Span (ft)
1 Live Load (pl
1 Dead Load (pl
1 Distance of left side (ft)
I Distance of right side (ft)
Uniform Span (ft)
Live Load (Rl
Dead Load (p1
D [sta n co of left side ()
Distance of right side ft
Tapered Load
Tapered load left (ply
Tapered load right (plf)
Left Distance (ft)
Right Gitano (ft)
Beam Weight (plc
Reactions & Moment
Duration Increase
Beam pain()
Left Reaction (f h)
Right Reaction (1h)
Max Moment FtLb
Magic Mom dist from Left
Max Shear Lb
Max Shear Stress (psi)
D -et rmine Size
Depth Estimate (in)
Width Estimate in)
Cross area (in A
Flax Moment 100% =
omemt of Inertia I
Factor Of Safety.
Max Shear 100% g
Fatter Of Safe' _
Bearing Required
fired _
Load
Beam
Factor of Safety
E (psi)
Deflection LL (in)
U360
LL Deflection 1= of
Deflection TL ([n)
L/4o
TL Deflection F of
Selection
Glue Lamb Beam Steel 1,13eam
FB -7
FB -8
R13-1
B -
FB -9
FS -9
Uniform
Uniform Lewis
0
2
0
0
Uniform Floor Span ft
Total Uniform Floor Load plf
0
20
35
20
Wall Weight (psi
20
180
180
70
160
Wall Load (plo
160
38
0
6
6
Uniform Roof Span ft
1045
0
165
165
Total Uniform Roof Load (plf
165
Point Loads
1.5
2
2
9
1 Distance from Left (ft)
825
0
0
1826
1 Point Live Load Ili)
1326
206
0
0
457
1 Feint Dead Load 1b
457
7
1.5
6.5
9
2 Distance from Left (ft)
5520
0
0
2 Point Live Lead(b)
0
2070
0
0
2 Point Coed Load 1b)
0
PartialPartialy Uniform Loads
0
16
1 Uniform Span
1
140
0
0
320
1 Lire Lead (Rif)
320
35
0
0
30
1 Dead Load (pl`
80
0
1
1
0
1 Distance of left side (ft)
1.5
6
6
9
1 Distance of right side(ft)
0
24
38
0
2 Uniform Span ()
G
0
480
760
0
2 Live Lopid (p1
0
0
180
285
0
2 Dead Load (p1
0
8
1.
.
Distance of lift side (ft)
1
16
20.5
2 Distance of right side (
20.5
Tapered Load
0
0
0
Tapered load left (ply
0
0
0
Tapered load right (plo
0
Left Distance ()
3
8
8
8
Fight Distance )
8
9.64
9.64
16-24
29.50
Beam height (pig
35
Reactions n Moment
1
1
1
1
Duration Increase
1
33
2564.3
4402.0
1
4957.1
20.5
7724.1
Beam pan ft
Left Reaction Ib
20.5
2433.1
489'.
8990.2
5426.2
Right
7730 .
2245,6
6291.1
31151-4
38925,6
Max Moment FtLh
39210
1.5
2564.3
1,5
4897.0
9.1
8990.2
9.0
Max Mons dist from Left
9.0
77.1
147,3
160.51
7724.1
MaxShear Lb
7780.5
63.6
Marc Sear Stress (psi)
Suggested i e[ght («)
12.71
eferrire
Determine ie
9.50
9.50
16.00
Suggested Height18 ht in
12.71
.
F
#.
6.75
I.i
12
33,25
33,25
56.00
121.50
grin
11 0
11 406.60
35.5
Lead
.o���
. 50.07
g.g7
1194.67
3280_ 0
,
Lo
X3. 3
5.08
1.81
1.04
1.87
Factor Of Safety=
1.62
115.68
2.46
220-92
240.81
95.36,
Allowable Stress
20000,00
1.29
1.18
1.73
Moment if Inertia
10,36
29-04
143,78
194-63
Deflection LL in
5 , 65
52.65
149.33
364.50
U360
9.20
1.87
LL Deflection F of S
0.68
3.43
1900000
1900000
1900000
0.00
Deflection TL in
0-10
119.93
e,10
7.86
0.53
0,68
TL Deflection F of
�i . 92
1.3
0-01
0.02
0.62
0.43
Selection
12
0,15
0.15
0.180
1.03
20.28
8.22
1.29
2.14
I-Bearn
L'L
LVL
LVL
GL8
35
35