Loading...
HomeMy WebLinkAboutSTRUCTURAL CALCULATIONS - 07-00149 - 226 Jill Dr - New SFR'IF -, .1000% Structural Calculations For: Kartchner domes Plan #: Location:. From. Aspen C Lot #1 Blick 7, Henderson William York 2329 W. Spri Morgan, Ut Design Criteria IRC 200 Roof Load, Live Load (PS Dead Load (P� Floor Load; Live Load (PSpr Dead Load (PSF) Seismic Zone: D I 10 5 L. Ce vv Road 0 (801) 876-3501 Wind Speed: 90 mph (I 10 mph 3 second gust) Exposure: C Material Propertm es & Assumptions 276 Jill'.-Kartchner 30 Mar 2007 ENGINEERING Concrete PSS (fc'): 30 0 (found.), NQ[] (slabs)., 4000 (cusp. slabs Concrete Reinforcement: ASTM A615 Grade 60 Site Conditions: Dry & Stable granular based, 1500 PSF Bearing Capacity., Granular Based Backfill (KH=,35 pcf, KP=225), Slope not to exceed 20%, Minimum setback from slopes of 25' Dimensional Lumber.- Hem or Doug Fir #2 & BTR Steel: ASTM A3 6 Use Simpson straps and tie downs, and meet nailing, reinforcement and other structural requirements as noted on the drawing and within the pages of this I'd ocument.These structural calculations are based on conditions and assumptions listed above. If the eonditions listed herein ars not met or are different it shah be brought to the attention of the engineer, Roof Truss and Ob 4h beam system to be engineered by the supplier. This engineering assumes that the building site is dry andstable, a high water table or adverse sols such as plastic clays, fills etc. could cause future flooding., settlement, site instability, or other adverse conditions. Verification of and liability far the sail bearing pressure, site stability, and alI other site condii�ans, including site erx� veering as required, is. the responsibility of others. These calculations and engineering are for the new building structure only and do not provide any engineering analysis of or liability/warranty for the non-structural portions sof the building, or the site itself. William York is the structural engineer only and does not assume the role of "Registered Design Professional" on this proj ect. The purpose of These cal cul atiQns and engineering is e-duce stm tural Ot L j damage and Toss of life due to se'smic act iviiy and/or high wind co'' d'tio�s. ��The .cantraetor:'h �rerify all conditions, dimensions and structural details of the draw� IUiurti�le use -o calculations is not penriit#ed.� ��e r A F) R &me 4 2007i 1pr 0 horizontal, edges 1 V211 nominal or wider. Sheathing shad extend continuous from favor to tap plate and be nailed at least 411 O.C. along sill plate. Nails shah be placed, not Tess than V2" from edge of panel and driven flush but shall not fracture the surface of the sheathing. extend sheathing over gable end to wall joints & over rim j oYst between tloorsa�6" 0. C. Shear Wall Schedule e Sheathing fail Edge Field Anchor Bolts Typical 7116" one side Sd b"` O.C. 101, D.C. %z" 3211 O.C. SW -1 7/1611 one side 8d 41, O.C. 1011 Q.C. 1/�" 3211 O.C. Staples may be used in place of Sd mails at %z the spacing The following general requirements shad be followed during, construction: I . Contractor to verify all dimensions, spans, & conditions and notify engineer of any errors, omissions, or discrepancies prior to construction. 2. Use Simpson A35 ties each cantilevered foist to sill or top plate. 3. Use Simpson H 1 or equiv. ties each end of each truss. 5. Foundation reinforcement as per plan, 6. Use 2: #4 bars continuous for all footings 2: # 4 bars each side of openings & 2 # 4 bars top & botto xtend 3 6" beyond opening 8. Use V2" x IO" T bolts 32" O.C. all foundation walls 9. If discrepancies are found, the more stringent specification shah be followed. 10. All multiple beams and headers to be nailed using 16-d two rows 1.2" O.C. 11 . Contractor shad assure that all materials are used pear manufactures recommendaiians. 12. Site engineering and liability shah be provided by the owner/builder as required. 13. Connect beams & hewers over 6 ft.., to trimmers with appropriate connectors/hangers. 14. Contractor shad assure that footings are properly drained and that soil is dry and that footings rest on undisturbed native soil 3 Q" below finished grade and that building horizontal clearance from footings to adjacent slopes be a minimum of 25 feed and that the intent of SRC section R403". 1. 7.Z is znet. If set back requirements of R403.1-7.2 can not be mei then contact engineer for further design requirements. 15. The contractor shall conform with all building codes and practices as per the 20n3 IRC. 16. Use balloon framing method when connecting floors in split level designs. I7. Nail all whear wall to flo or j o i st using 2: 1 6d 16 " a.C, Add additzonal floor joist as regd. 18. Provide jo o i st and rafter hangers as per manufacturers specifications. 19. Foundation steps shah not exceed 4 feet or %z the horizontal distance between step. Horz. rebar shall be 12" O.C. through step downs and extend 48" either side of step 20.1f garage return walls are less than 32" wide then extend headers across return walls with 2 long studs an either end extending from the top of the header to the bottomlapte or install (2} MST 3 6 straps each end of header extend across wing walls. 21. Use a rninimuixa of 2-9 fz" LVLs for all headers carrying girder Toads. 22. Allow foundation 14 days to cure prior to backfill 23. Use 1 1/8" wide timbersirarzd or equiU, for all rim joist 24. Provide solid blacking Through structure down to foot41 ing for all load paths. 25. Builder shall follow all recommendations foundin all applicable Geotechnical reports. 26. Stacking of two silk plates is permitted with 5/8" J -bolts through both plates. Stacking more than two plates is not permittee without special engineering Plan: As n C Date,- 12 March 2007 Location: Lot #1, Block 7, 266 J TJ1 Joist Span (ft) Depth Load Parameters Floor Dead Load Floor Live Load Total Floor Load Simple Span Joist Duration Increase Joist Span(ft) Joist Spacing Joist Weight (plf) Joist Loading (plf) Max Reaction (lbs) Max Moment (FtLb/If) Max Shear Lb Determine Joist Size Max Moment 100% (ft -lbs) _ F. S. for moment = Max Shear 100% (Ibs) _ F. S. for shear = Bearing Required (in.)= Live Load (L/360) _ Total Load (L/240) _ EI x 1 0^6 (lb -in A 2) Live Lead Deflection (in) Total Load Deflection (in) Live Load F of S Total Load F of S Selection bo ill Drive, Rexburg 21D 18.5 11,88 10 40 50 1 18.5 16 2.8 69 643 2972 643 3620 1.22 1655 2.58 2.00 0. 62 0.93 283 0.5 4 0.70 1.15 1.32 11 7/8- 210's @ 16 " Plan: Date: Location: -Beam Load Parameters Floor Live Load (psf) Total Floor Load(psf) Floor 1 Span(ft) Total Floor Load (plf) Wall Height (ft) Wall Weight (psf) Wall Load, (plf) Roof Live Load (psf) Roof Load (psf) Roof Span (ft) Total Roof Load (plf) Live Load (plf) kBeam weight (plf) Total Load (plf) Reactions & Moment Duration Increase Beam Span(ft) Reaction 1 (Ib) Reaction 2 (Ib) Max Moment FtLb Max Shear Lb Max Shear Stress (psi) Select Beam Size Suggested Height (in) Alow Stress (psi) _ Calculate S (in A 3)= Use Factor of Safety = '1.2 1.2 * S (in A 3)= From Table 18, Choose Approx width (in)= Beam S Value (in A 3) S Factor of Safety Tabulated Depth = Moment of Inertia Ix (in A 4) _ LL Deflection (in) _ Total Deflection (in) _ LLoad Def. Limit L/ LL Allowable Deflection (in) TLoad Def. Limit L/ TL Allowable Deflection (in) LL Deflection F/S TL Deflection FIS kBeam Selection Ask, n C 12 March 2007 Lot #1, Block 7, 266 Jill Drive, Rexburg FB -5 OPTION 40 50 22 550 0 20 0 40 55 0 0 440 15 565 1 13 3673 3673 11936 3673 311 8.06 33000 5.21 8 15 4 11.8 2.72 8.11 48 0.20 0.26 360 0.43 240 6.65 2. 13 2.48 8 15 Plan: Aspen Date: 12 March 2007 Location: Lot 1, Block 7, 266 gill Drive, Rexburg Wind Loading Calculations using Main Windforce-Resisfing SYstelin(M FI Transverse Direction Ond Design Coefficients 90 P=wind lead*exp coal Roof Hila P De ign Pressure Horizontal Wind Laud (from table 1609.6.x..1(1) Fall Load (Pf= end zone (A.) 16.1 interior zone (C) 117 Roof Load (pf)= enol zone (8) 2.6 interior zone D) x. Vertical Wind Lead (from table 1609,.6-2,1(j) Roof Load (p-= end zone w1ndward E) -7. end zone leeward (F) Roof Angle (deg)= interior zone windward ) interior zone leeward H) -5.2 Exposure Coefficient (from table 1609,6-2.1(4) i t=lmportanc Factor from table 1604.6) Wind Speed 90 Roof Hila 6 Exposure Wall He[ght 19 Truss Span 24 Hoof .Mope 6112 Roof Angle (deg)= 26.56 Sine = x.4472 11 n� rT� �J rYi Pressure P,ir�d lead *eP ooeff'" I dj u sted horizontal wall interior 15.09 15.09 horizontal wall end zone 0.77 2077 horizontal roof i rater o r 3,48 10. o .horizontal roof end zone 3,36 10-00 vertical end zone windward -9.29 0.00 vertical end zone leeward -12.64 0.00 vertical interior zone windward -6.71 6..60 vertical interior zone leeward -6.71 0.00 End Zeno Width (ft) _4 2n.d storylEnd Zone Width (ft) 4.4 Interior Zone Width (ft) 45.2 2nd StoryInterior Zone Width (-ft) 2o. Gable Hoof Load Width HeIg ht Wind Loan Force (lbs) End 4.4 2A 20.77 19 Interior 45.2 1.94 15.09 2766 Sum = 2959.3027 Area Hip Roof .Load End 324 10.00 3240 Interior 0 10.00 o Total 3240 Wall Load Width Height Wired Load Force (lbs) �d `ter End 4.4 1.0 20.77 183 Inferror 45,2 1,06 15.69 682 * w * Sum _ 864, 9768 Vertical Force Width length Wind Load force (lbs) end zone windward 4 42.80 0.00 6 leeward 4 42.BQ0.00 0 interior zone windward 45 42,86 0.60 0 leeward 45 42.80 0,00 o Floor 2 Dia phragrn Shear Shear Wall Leads (plf Total Shear (lbs) 7629 Left Wall Length 28 136 Right Wall Length 28 1 36 F[Oor 1 Diaphragm Shear Shear Wall acids '(plf) Total Shear ([b) 17945 Left Wall Length 3B x 36 Right VVaIJ Length 34 264 basement Diaphragm shear Shear Wall Loads (plf) Total Shear ( Ib) 18809 Left Wall Length 10 Not Applicable Dight Wail Length 10 Net applicable Critical Wall Length (ft)= Left 'mall Dead Load (plf)= 426 Tota 1 15493 Left Wall Critical Lengthy (ft)= 6 Total (Plf) 81 Right Wall Dead Load (plf):: 373 Right Wall Critical Length (ft)= 6 Calculate Uplift, Force Req"d to Prevent OT (lbs) Panel Length (ft) 4 8 10 +1 Back 1071 898 726 380 34 -311 1291 1 145 999 707 414 122 -170 Pian- Asp,n Date,, 12 March 2007 Location: Lot #1 a Block 7, 266 All Drive, Rexburg Wird Loading Calculations using Main' indforce-F sistin start I FI Longitudinal Direction Wind Design Coefficients P=wind load*exp oeff*lw P=ig n Pressure Horizontal 'moi rid Load from table 1609.6,2-.I(J) Will Load (pf)= end zone () 16.1 interior zo-ne (C) 11.7 Roof Load (psf )= end zone (B) 2,6 interior zone (0) 23 Ver#icail Wind Load (from table 16a9.6.2.1(1) Roof Load (POP- end p f - end zone windward and (E) -7. rid zone leeward (F) -g. interior zone windward ) -5,2 interior zone leeward H) -&2 Exposure Coefficient (from table 1609-6.2.1(4) lir-Importance Factor 'from table 1604.5) Wind Speed Expos ore Roof Slope = Roof Angle (deg)= P -wird load,*exp o ff*l horizontal wall interior horizontal wall end zone h . rizontal roof interior horizontal roof end zone verJti a l end zone windward vertical end zone leeward v rti al [nterior zone windward vertical interior zone leeward A*Hmean .1*base End Zone Mdth (ft) Interior Zone Width (ft) a bJe Roof Load Hip hoof Load Wall Load Vertical Force Floor 2 Diaphragm Shear Total Shear (iia ) Front Wall Length Back Fall Length Floor I Diaphragm Shear -Total Shear (lbs) Front gall Length Back Wall Length basement Diaphragm Shear Total Shear (lbs) Front Wall Length Fuck 'mall Length 1.29 1.0 0 Roof Height Fall Height Truss Spar End J nt rior End Interior End inter -10 F end zone W-Indward leeward Interior zone windward leeward Critical Wall Length (ft)= Front Wall Dead Lead plf) Front Wall Critical Length = Back Wall Dead Load PIf = Back Wall Critic2i Length (ft)= 8523 1 0 14779 7 7 15493 10 10 • 6.00 1 4 4.4 2rid storyEnd Zone Width (ft) 35.2 2nd Storyinterior Zone Width (ft) Width /1 2&56 Sine= 0.4472 35.2 Minimum Pressure 20.77 Adjusted 15.00 15.09 77 20,77 3,48 10.00 3-35 10.00 -g. 0..00 -12.64 0.00 -6-71' 0.00 -6.71 0.00 End J nt rior End Interior End inter -10 F end zone W-Indward leeward Interior zone windward leeward Critical Wall Length (ft)= Front Wall Dead Lead plf) Front Wall Critical Length = Back Wall Dead Load PIf = Back Wall Critic2i Length (ft)= 8523 1 0 14779 7 7 15493 10 10 • 6.00 1 4 4.4 2rid storyEnd Zone Width (ft) 35.2 2nd Storyinterior Zone Width (ft) Width Height 4.4 2.1 35.2 1.94 Area 264 0 Wind Load 20,77 115,09 Sum = Find Load 10-00 10.00 Total Force (lbs) 193 2154 2347.256 Force (abs) 2640 0 2640 Width Height Wind Load Force (lb)ft) 4.4 1.0 20.77 183 35.2 1.00 15.09 531 -87 -515 Sum = 714.0408 Width length Wind Load Force (lbs) 4 24.80 0,00 0 4 24,80 0.00 0 35 24,80 OM 0 35 24.80 0,00 0 Shear Wall Loads (,pl 284 213 Shear Wall Loads (plf) 274 200 hear' all Loads (pif) Not Applicable Not Applicable 1 TOtai 18809 Total (plf 2 Calculate Uplift , Force f eq'd to Prevent OT (lbs) Panel Length (ft) Front 827 Back 342 4.4 31.2 2nd Story Force (igift) 4 6 8 10 1 419 1 -803 -1618 -2434 -3249 -87 -515 -1372 -2229 -3085 -3942 Plan:. yen C Date: 12 March 2007 Location: Lot #1, Block 7, 266 Jill Drive, Rexburg LVL Beam FB -5 RB -6 RB -7 Load Parameters Floor LL (psf) 40 40 40 Total Floor Load(psf) 50 50 50 Floor Span (ft) 22 0 0 Total Floor Load (plf) 550 0 0 Wall Height (ft) 0 0 2 Wall Weight (psf) 20 20 35 Wal! Load (plf) 0 0 70: Roof LL (psf) 40 40 40 Total Roof Load (psf) 55 55 55 Roof Span (ft) 0 44 28 Roof Load (plf) 0 1210 770 Beam Weight (plf) 14.5 10 10 Live Load .(plf) 440 880 560 Total Load (plf) 564 1220 850 Reactions & Moment Duration Increase 1 1 1 Beam Span(ft) 13 5 g Reaction 1 (Ib) 3669 3049 3823 Reaction 2 (Ib) 3669 3049 3823 Max Moment FtLb 11924 3811 8603 Max Shear Lb 36.69 3049 3823 Max Shear Stress (psi) 74 92 115 Determine Size Depth Estimate (in) 9.50 9.50 9.50 Width Estimate (in) 5.3 3.5 3.5 Cross Area (in A 2) 50 33 33 Allowable Bending Stress = 2684 2684 2684 Allowable Moment = 17662 11775 11775 Momemt of Inertia I = 375 250 250 Factor Of Safety = 1.48 3.09 1 .37 Allowable Sheer Stress (psi')= 2g5 285 285 Allowable Sheer Force (lb)= 9476 6318 6318 Factor Of Safety = 2.58 2.07 1.65 Bearing Required = 0.93 1.16 1.46 E i(psi) 1900000 1900000 1900000 Deflection LL (in) 0.40 0.03 0.17 LLoad Def. Limit L/ 360 360 360 Allowable Deflection (in) 0.43 0.17 0.30 LL Deflection FIS 1.09 6.40 1.72 Deflection TL (in) 0.51 0.04 0.26 TLoad Def. Limit L/ 240 240 240 Allowable Deflection (in) 0.65 0.25 0.45 TL Deflection F/S 1.28 6.93 1 .70 Selection 2, Y211 2:9 V211 Plan: A m C date: 12 March 2007 Location: Lot #1 R10rk 7 AFF mu nri„o Qo.,h„r.. Exterior Footing Calculations I I U^ U19 back front left right Concrete Specs Density (pcf) 150 150 150 150 Strength (psi) 3000 3000 3000 3000 Clear Cover Thickness (in) 3 3 3 3 Foundation Overall Height (ft) 7.83 7.83 7.83 7.83 Height (in) 94 94 94 94 Wall Thickness (ft) 0.67 0.67 0.67 0.67 Thickness (in) g g $ 8 Weight (kips/Ift) 0.78 0.78 0.78 0. 78 Footing Specs Width (ft) 1.67 1.67 1.67 1.67 Width (in) 20 20 20 20 Height (ft)0.83 0.83 0.83 0.00ight (in) 10 10 10 10 Weight (kips/Ift) 0.21 0.21 0.21 0.21 Area per Ift 1.67 1.67 7.67 1.67 soil specs Density (pcf) 125, 125 125 125 Soil Pressure (psf), 1500 1500 1500 1504 Weight (kips/Ift) 0.49 0.49 0.49 0.49 Building Loads Roof span 24 24 10 10 Roof (kips/Ift) 0.65 0.65 0.27 0.27 Wall Height (ft) 16 16 16 12 Wall Load (kips/Ift) 0.32 0.32 0.32 0.24 Floor span 19 16 2 y Floor Loads (kips/ift) 0.46 0.40 0.05 0.05 Total (kips.lft) 1.43 1.37 0.64 0.56 Calculations Total Weight on Soil (kips) 2.42 2.36 1.63 1.55 Soil Load (ksf) 1.45 1.42 0.98 0.93 Required Footing Width (in) 20 20 20 20 Required Footing Depth (in) 10 10 10 10 Sawn Lumber Plan: Aspen C Date: 1March 20 1 Location: Lai #1, Bieck 7, 266 Jill Drive, Rexburg F13-2 F13-3 F8-4 Load Parameters Floor Live Load(psf) Floor Total Load(psf) Floor 1 Span(ft) Total Floor Load(plf) Wall Height (ft) Wail Weight (psf) Wall Load(plf) Roof LL (psf) Total Roof Load(psf) Roof Span(ft) Total Roof Load(plf) Seam Weight (plf) Lire Load (plf) Total Load (plf) Reactions & Moment Duration increase Beam Span(ft) Reaction 1 (1b) Reaction 2 (Ib) Max Moment FtLb Max Shear Lb Determine Beam Size Depth Estimate (in) Width Estimate {in} CF Area = Momemt of Inertia I = Maximum Bend Stress = Allowable bead Stress Factor Of Safety = Allowable Sheer Stress Max Shear Cap (lbs) w Factor Of Safety = Bearing Required = E (psi ) Deflection LL (in) LLoad Def. Limit L1 Allowably Deflection (in} LL Deflection FIS Deflection TL (in) TLoad Def. Limit Ll APlawabie Deflection (ink TL Deflection FJS Selection W0 RB -3 RB -5 40 40 40 40 40 40 40 40 50 50 50 50 50 50 50 50 16 92 23 19 0 4 0 0 404 300 575 475 D Q 0 p 9 g 0 9 0 D 0 0 20 20 20 20 2o 2.0 20 20 iso Asa o 1$a o o 0 o 40 40 40 40 40 40 40 40 55 55 55 55 55 55 55 55 2 z o s 24 s zs s 55 55 a 220 660 azo 715 22a 6.5 6.5 E.5 6.5 6.5 5.6 6.5 6.5 360 280 460 540 480 160 520 160 641 541 581 881 665 226 727 226 1 1 1 1 1 1 1 1 4 5 4 5 S 10.5 5 5 183 1354 1163 2204 1666 1184 1804 566 1283 1354 1163 2204 1666 1184 1804 566 12$3 1692 1163 2755 2083 3108 2255 708 1283 1354 1163 2204 1665 1184 1804 566 9.25 9.25 9.25 9.25 9.25 9.25 9.25 9.25 3.5 3.5 3.5 3.5 3.5 3 3.5 3.5 1.20 1.20 1.20 1.20 1.20 1.10 1.20 1.20 32.38 32.38 32.38 32.38 32.38 27.75 32.38 32.38 231 231 231 231 231 198 23� 231 308 407 280 662 501 872 542 170 1020 1020 1020 1020 1020 935 1020 1020 3.31 2.51 3.65 1.54 2.04 1.07 1,88 5.99 180 180 180 180 180 165 180 180 3885 3885 3885 3885 3885 3053 3885 3885 3.03 2.87 3.34 1.76 2.33 2.58 2.15 6.86 0.91 0.95 0.82 1.55 1.18 0.97 7.27 0.40 1300000 1300000 1300000 1300000 1300000 1300000 1300000 7300000 0.01 0.01 0.01 0.03 0.02 0.17 0.02 0.01 360 360 360 360 360 360 360 360 0.13 0.17 0.13 0.17 0.17 0.35 0.17 0.17 19,30 12.70 15.10 6.59 7.41 2.06 6.84 22.23 0.01 0.03 0,01 0.04 0.03 0.24 0.03 0.01 240 240 240 240 240 240 240 240 0.2 0.25 0.2 0.25 0.25 0.525 0.25 0.25 16.24 9.85 17.92 6.05 8.00 2.19 7.39 23.56 "-2x10 : 1 :2x10 x1 -F 2 x10 10 2.2 X 10 2:2 x 10 Plan : Aspen Date: 12 March 2007 Location : Lot ffi, Block 71,266 Jill Drive, Rexburg nnicro-Lam E3a Uniform Load Uniform Floor Span (ft) Total Uniform Floor Load plf) 'mall He -i ht (ft) Wall Weight (psi Wall Load plf Uniform Roof Span (ft) Total Uniform Roof Load (plo Point Loads 1 Distance from Left (ft) 1 Point Live Load (Ib) 1 Point Dead Load (1b) Distance from Left (ft) Point Live Load ') Pont Dead Load (1b) Partialy Uniform rm Loads 1 Uniform Span (ft) 1 Live Load (pl 1 Dead Load (pl 1 Distance of left side (ft) I Distance of right side (ft) Uniform Span (ft) Live Load (Rl Dead Load (p1 D [sta n co of left side () Distance of right side ft Tapered Load Tapered load left (ply Tapered load right (plf) Left Distance (ft) Right Gitano (ft) Beam Weight (plc Reactions & Moment Duration Increase Beam pain() Left Reaction (f h) Right Reaction (1h) Max Moment FtLb Magic Mom dist from Left Max Shear Lb Max Shear Stress (psi) D -et rmine Size Depth Estimate (in) Width Estimate in) Cross area (in A Flax Moment 100% = omemt of Inertia I Factor Of Safety. Max Shear 100% g Fatter Of Safe' _ Bearing Required fired _ Load Beam Factor of Safety E (psi) Deflection LL (in) U360 LL Deflection 1= of Deflection TL ([n) L/4o TL Deflection F of Selection Glue Lamb Beam Steel 1,13eam FB -7 FB -8 R13-1 B - FB -9 FS -9 Uniform Uniform Lewis 0 2 0 0 Uniform Floor Span ft Total Uniform Floor Load plf 0 20 35 20 Wall Weight (psi 20 180 180 70 160 Wall Load (plo 160 38 0 6 6 Uniform Roof Span ft 1045 0 165 165 Total Uniform Roof Load (plf 165 Point Loads 1.5 2 2 9 1 Distance from Left (ft) 825 0 0 1826 1 Point Live Load Ili) 1326 206 0 0 457 1 Feint Dead Load 1b 457 7 1.5 6.5 9 2 Distance from Left (ft) 5520 0 0 2 Point Live Lead(b) 0 2070 0 0 2 Point Coed Load 1b) 0 PartialPartialy Uniform Loads 0 16 1 Uniform Span 1 140 0 0 320 1 Lire Lead (Rif) 320 35 0 0 30 1 Dead Load (pl` 80 0 1 1 0 1 Distance of left side (ft) 1.5 6 6 9 1 Distance of right side(ft) 0 24 38 0 2 Uniform Span () G 0 480 760 0 2 Live Lopid (p1 0 0 180 285 0 2 Dead Load (p1 0 8 1. . Distance of lift side (ft) 1 16 20.5 2 Distance of right side ( 20.5 Tapered Load 0 0 0 Tapered load left (ply 0 0 0 Tapered load right (plo 0 Left Distance () 3 8 8 8 Fight Distance ) 8 9.64 9.64 16-24 29.50 Beam height (pig 35 Reactions n Moment 1 1 1 1 Duration Increase 1 33 2564.3 4402.0 1 4957.1 20.5 7724.1 Beam pan ft Left Reaction Ib 20.5 2433.1 489'. 8990.2 5426.2 Right 7730 . 2245,6 6291.1 31151-4 38925,6 Max Moment FtLh 39210 1.5 2564.3 1,5 4897.0 9.1 8990.2 9.0 Max Mons dist from Left 9.0 77.1 147,3 160.51 7724.1 MaxShear Lb 7780.5 63.6 Marc Sear Stress (psi) Suggested i e[ght («) 12.71 eferrire Determine ie 9.50 9.50 16.00 Suggested Height18 ht in 12.71 . F #. 6.75 I.i 12 33,25 33,25 56.00 121.50 grin 11 0 11 406.60 35.5 Lead .o��� . 50.07 g.g7 1194.67 3280_ 0 , Lo X3. 3 5.08 1.81 1.04 1.87 Factor Of Safety= 1.62 115.68 2.46 220-92 240.81 95.36, Allowable Stress 20000,00 1.29 1.18 1.73 Moment if Inertia 10,36 29-04 143,78 194-63 Deflection LL in 5 , 65 52.65 149.33 364.50 U360 9.20 1.87 LL Deflection F of S 0.68 3.43 1900000 1900000 1900000 0.00 Deflection TL in 0-10 119.93 e,10 7.86 0.53 0,68 TL Deflection F of �i . 92 1.3 0-01 0.02 0.62 0.43 Selection 12 0,15 0.15 0.180 1.03 20.28 8.22 1.29 2.14 I-Bearn L'L LVL LVL GL8 35 35