Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
STRUCTURAL CALCULATIONS - 20-00314 - Advance Auto Parts - Remodel
Structural Calculations FOR Storage Rack Advance Auto 125 Valley River Dr. Rexburg, ID 83440 FOR Table of Contents: Design Criteria Storage Rack(s) Calculations Anchorage Calculation _________________________ Carel Stevenson, P.E. Lic.#: P-18948 Prepared By: Core States Group 4240 E Jurupa St, Suite 402, Ontario, CA, 91671 April 1, 2020 CSG Project #AAP.28855 4/1/2020 ATC Hazards by Location https://hazards.atcouncil.org/#/seismic?lat=43.8342527&lng=-111.7795014&address=125 Valley River Dr%2C Rexburg%2C ID 83440%2C USA 1/2 Hazards by Location Search Information Address:125 Valley River Dr, Rexburg, ID 83440, USA Coordinates:43.8342527, -111.7795014 Elevation:4867 ft Timestamp:2020-04-01T19:03:29.718Z Hazard Type:Seismic Reference Document: ASCE7-10 Risk Category:II Site Class:D MCER Horizontal Response Spectrum Design Horizontal Response Spectrum Basic Parameters Name Value Description SS 0.445 MCER ground motion (period=0.2s) S1 0.157 MCER ground motion (period=1.0s) SMS 0.643 Site-modified spectral acceleration value SM1 0.341 Site-modified spectral acceleration value SDS 0.429 Numeric seismic design value at 0.2s SA SD1 0.227 Numeric seismic design value at 1.0s SA Additional Information Name Value Description SDC D Seismic design category Fa 1.444 Site amplification factor at 0.2s Fv 2.172 Site amplification factor at 1.0s 4867 ft Map data ©2020 GoogleReport a map error 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Period (s) 0.00 0.10 0.20 0.30 0.40 0.50 0.60 Sa(g) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Period (s) 0.00 0.10 0.20 0.30 0.40 Sa(g) 4/1/2020 ATC Hazards by Location https://hazards.atcouncil.org/#/seismic?lat=43.8342527&lng=-111.7795014&address=125 Valley River Dr%2C Rexburg%2C ID 83440%2C USA 2/2 CRS 1.034 Coefficient of risk (0.2s) CR1 1.066 Coefficient of risk (1.0s) PGA 0.157 MCEG peak ground acceleration FPGA 1.486 Site amplification factor at PGA PGAM 0.233 Site modified peak ground acceleration TL 6 Long-period transition period (s) SsRT 0.445 Probabilistic risk-targeted ground motion (0.2s) SsUH 0.431 Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years) SsD 1.5 Factored deterministic acceleration value (0.2s) S1RT 0.157 Probabilistic risk-targeted ground motion (1.0s) S1UH 0.147 Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years) S1D 0.6 Factored deterministic acceleration value (1.0s) PGAd 0.5 Factored deterministic acceleration value (PGA) The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design. Disclaimer Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services. While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report. Core States Group 4240 E. Jurupa St. Suite 402 Ontario, CA 91761 Storage Rack 125 Valley River Dr. Rexburg, ID 83440 Date: 4/1/2020 Calculations By: JA Seismic Design Criteria: Structure Risk Category: II Table 1.5-1, ASCE 7-10 Site Class: D (Assumed)Table 20.3-1, ASCE 7-10 Ie 1.5:=Seismic Importance Factor Table 1.5-2, ASCE 7-10 Ss 0.445:=Spectral Response Acceleration Parameter (Short Period) Figure 22-1, ASCE 7-10 S1 0.157:=Spectral Response Acceleration Parameter (1-s Period) Figure 22-2, ASCE 7-10 Fa 1.444:=Short-Period Site Coefficient (at 0.2 s-period) Table 11.4-1, ASCE 7-10 Fv 2.172:=Long-Period Site Coefficient (at 1.0 s-period) Table 11.4-2, ASCE 7-10 ρ 1.0:=Redundancy Factor §12.3.4, ASCE 7-10 ap 2.5:=Component Amplification Factor Table 13.5-1, ASCE 7-10 hr 20:=Average Height of Roof z 0:=Rack Attachment Height (w/ respect to base) x 0.75:=Exponential Term per Eq. 12.8-7 Table 12.8-2, ASCE 7-10 R 4.0:=Response Modification Factor Table 15.4-2, ASCE 7-10 Ω0 1.0:=Overstrength Factor Table 15.4-2, ASCE 7-10 Cd 3.5:=Deflection Amplification Factor Table 15.4-2, ASCE 7-10 SMS Fa Ss:=SMS 0.643=Adjusted Short Period Spectral Response Parameter Eq. 11.4-1, ASCE 7-10 SM1 Fv S1:=SM1 0.341=Adjusted 1s-Period Spectral Response Parameter Eq. 11.4-2, ASCE 7-10 SDS 2 3 SMS:=SDS 0.428=Design Short Period Spectral Response Parameter Eq. 11.4-3, ASCE 7-10 SD1 2 3 SM1:=SD1 0.227=Design 1s-Period Spectral Response Parameter Eq. 11.4-4, ASCE 7-10 Table 11.6-1: Seismic Design Category (Short-Period) Table 11.6-2: Seismic Design Category (1s-Period) SDCs "A"SDS 0.167<if "B" 0.167 SDS0.33<if "C" 0.33 SDS0.50<if "D" 0.5 SDSif :=SDC1 "A"SD1 0.067<if "B" 0.067 SD10.133<if "C" 0.133 SD10.20<if "D" 0.2 SD1if := SDCs "C"=SDC1 "D"= SDC max SDCs SDC1, ( ):= Seismic_Design_Category if S1 0.75"E", SDC, ( ):=Seismic_Design_Category "D"= 1 of 19 Core States Group 4240 E. Jurupa St. Suite 402 Ontario, CA 91761 Storage Rack 125 Valley River Dr. Rexburg, ID 83440 Date: 4/1/2020 Calculations By: JA STEEL STORAGE RACK DESIGN Back of House SECTION PROPERTIES E 29000ksi:= Fy 33ksi:= Physical Dimensions: b 1.5in:=Channel Width Ly 12in:=Unbraced Length in y direction d 0.75in:=Channel Depth Lx 12in:=Unbraced Length in x direction Rc 0.188in:=Radius at Corners Lt min Lx Ly, ( ):= t 0.06in:=Channel Thickness Ky 1.7:=Effective Length Factor for y direction Sx 0.0563in3:=Section Modulus in x direction Kx 1.0:=Effective Length Factor for x direction Sy 0.0595in3:=Section Modulus in y direction Kt 0.8:= Ix 0.0489in4:=Moment of Inertia in x direction ρ 490pcf:=Density of SteelIy0.0223in4:=Moment of Inertia in y direction rx 0.4767in:=Radius of Gyration in x direction ry 0.3222in:=Radius of Gyration in y direction Ap 0.2151in2:=Full Cross Sectional Area Shelving Geometry: B 96in:=Width of Shelving Unit: Two Shelves next to each other. h 144in:=Total Height of Shelving Unit N 14:=Number of Shelves d 24in:=Depth of Shelving Unit hs h 6in-( ) N 1-( ) 10.6 in=:=Shelf Spacing LL 10psf:=Design Live Load DL 1.5psf:=Design Dead Load Wp ρ Aph8.8lbf=:=Weight of Post WtLL B dLL160lbf=:=Live Load Weight Per Shelf WtDL B dDL4 Wp N +26.5lbf=:=Dead Load Weight Per Shelf + Weight of Post 2 of 19 Core States Group 4240 E. Jurupa St. Suite 402 Ontario, CA 91761 Storage Rack 125 Valley River Dr. Rexburg, ID 83440 Date: 4/1/2020 Calculations By: JA Lateral Seismic Design Base Shear ( §15.4, ASCE 7-10) CASE 1 - 100% LOAD TOP SHELF ONLY Vt 0.4 ap( ) SDS1 2 z hr + R Ie 0.16065=:= Vt.min 0.3 SDS( )Ie( )0.19277=:= Vt.max 1.6 SDS( )Ie( )1.02813=:= Vused Vt Vt.min Vt<Vt.max<if Vt.min Vt Vt.min<if Vt.max Vt Vt.max>if := Vused 0.19277= Vtd Vused WtDLN71.5lbf=:=Seismic DL Base Shear Fd Vused WtDL5.1lbf=:=DL Force per Shelf Vtl Vused WtLL30.8lbf=:=Seismic LL Base Shear Fl Vused WtLL30.8lbf=:=LL Force per Shelf Vtotal Vtd( )Vtl( )+102.4lbf=:=Total Base Shear NP 4:=Post along Short Side Mo Vtotal 2 3 hΩ0819.1 ft lbf=:= Mres 0.9 WtDL N( )WtLL( )+d 2 478 ft lbf=:= Ev 0.2 SDSWtDL N( ) WtLL+ 4 11.4lbf=:=Tension Mo Mres-( ) NP d Ev+54lbf=:= Mt N 1-( )hsWtDLN 1-( )hsWtLL+2144.9 ft lbf=:= CV1 WtDL 0WtLL 0+( ) Mt 0=:= Ctop WtDL N 1-( )hsWtLL N 1-( )hs+ Mt 1=:= CV1 Ctop+1=Coefficients Should Total 1 Ftop Ctop Vtotal102.4lbf=:= 3 of 19 Core States Group 4240 E. Jurupa St. Suite 402 Ontario, CA 91761 Storage Rack 125 Valley River Dr. Rexburg, ID 83440 Date: 4/1/2020 Calculations By: JA Lateral Seismic Design Base Shear ( §15.4, ASCE 7-10) CASE 2 - ALL SHELVES 67% LOADED Vt 0.4 ap( ) SDS1 2 z hr + R Ie 0.16065=:= Vt.min 0.3 SDS( )Ie( )0.19277=:= Vt.max 1.6 SDS( )Ie( )1.02813=:= Vused Vt Vt.min Vt<Vt.max<if Vt.min Vt Vt.min<if Vt.max Vt Vt.max>if := Vused 0.19277= Vtd Vused WtDLN71.5lbf=:=Seismic DL Base Shear Fd Vused WtDL5.1lbf=:=DL Force per Shelf Vtl Vused WtLLN431.8lbf=:=Seismic LL Base Shear Fl Vused WtLL30.8lbf=:=LL Force per Shelf Vtotal Vtd( )0.67 Vtl( )+360.9lbf=:=Total Base Shear (ASCE 7-16 15.5.3.3.2) NP 4:=Post along Short Side Mo Vtotal 1 2 hΩ02165.2 ft lbf=:= Mres 0.9 WtDL N( )WtLL N( )+d 2 2350 ft lbf=:= Mt 11660ft lbf:= Ev 0.2 SDSWtDL N( ) WtLL N( ) + 4 55.9lbf=:= Tension Mo Mres-( ) NP d Ev+32.8lbf=:=Note: If negative, no tension force on post. 4 of 19 Core States Group 4240 E. Jurupa St. Suite 402 Ontario, CA 91761 Storage Rack 125 Valley River Dr. Rexburg, ID 83440 Date: 4/1/2020 Calculations By: JA Vertical Distribution Factors for Each Shelf CV14 WtDL 143.4in WtLL 0.67143.4in+() Mt 0.13704=:=F14 CV14 Vtotal49.5lbf=:= CV13 WtDL 132.8in WtLL 0.67132.8in+() Mt 0.12691=:=F13 CV13 Vtotal45.8lbf=:= CV12 WtDL 122.2in WtLL 0.67122.2in+() Mt 0.11678=:=F12 CV12 Vtotal42.1lbf=:= CV11 WtDL 111.6in WtLL 0.67111.6in+() Mt 0.10665=:=F11 CV11 Vtotal38.5lbf=:= CV10 WtDL 101in WtLL 0.67101in+( ) Mt 0.09652=:=F10 CV10 Vtotal34.8lbf=:= CV9 WtDL 90.8in WtLL 0.6790.8in+( ) Mt 0.08677=:=F9 CV9 Vtotal31.3lbf=:= CV8 WtDL 80.2in WtLL 0.6780.2in+( ) Mt 0.07664=:=F8 CV8 Vtotal27.7lbf=:= CV7 WtDL 69.6in WtLL 0.6769.6in+( ) Mt 0.06651=:=F7 CV7 Vtotal24lbf=:= CV6 WtDL 59in WtLL 0.6759in+( ) Mt 0.05638=:=F6 CV6 Vtotal20.3lbf=:= CV5 WtDL 48.4in WtLL 0.6748.4in+( ) Mt 0.04625=:=F5 CV5 Vtotal16.7lbf=:= CV4 WtDL 37.8in WtLL 0.6737.8in+( ) Mt 0.03612=:=F4 CV4 Vtotal13lbf=:= CV3 WtDL 27.2in WtLL 0.6727.2in+( ) Mt 0.02599=:=F3 CV3 Vtotal9.4lbf=:= CV2 WtDL 16.6in WtLL 0.6716.6in( )+ Mt 0.01586=:=F2 CV2 Vtotal5.7lbf=:= CV1 WtDL 6in WtLL 0.676in+( ) Mt 0.00573=:=F1 CV1 Vtotal2.1lbf=:= CV1 CV2+CV3+CV4+CV5+CV6+CV7+CV8+CV9+CV10+CV11+CV12+CV13+CV14+1=Coefficients Should Total 1 CASE 2 GOVERNSFtotalF1F2+F3+F4+F5+F6+F7+F8+F9+F10+F11+F12+F13+F14+360.9lbf=:= 5 of 19 Core States Group 4240 E. Jurupa St. Suite 402 Ontario, CA 91761 Storage Rack 125 Valley River Dr. Rexburg, ID 83440 Date: 4/1/2020 Calculations By: JA AXIAL CAPACITY OF POST σex π2 E Kx Lx( ) rx 1- 2 451.7ksi=:=σey π2 E Ky Ly( ) ry 1- 2 71.4 ksi=:= σe min σex σey, ( )71.4 ksi=:= Polar Radius of Gyration:ro 1.408in:= Torsion Constant:J 0.0003in4:= Warping Constant:Cw 0.0045in6:= Shear Modulus:G 11300ksi:= σt 1 Ap ro2 G Jπ2 ECw Kt Lt( ) 2 + :=xo ro 2 rx 2-ry 2--:=β 1 xo ro 2 -:= Fet 1 2 β σe σt+( )σe σt+( ) 2 4β σeσt--:= Elastic Buckling Stress: Fe if Fet σe<Fet, σe, ( )27 ksi=:= λc Fy Fe 1.1051=:= Nominal Bukling Stress:Fn if λc 1.5<0.658λc 2 Fy, Fy 0.877 λc2 , 19.8 ksi=:= ϕ 0.95:=LRFD Axial Strength:ϕPn ϕ FnAp4044.6lbf=:=LRFD 6 of 19 Core States Group 4240 E. Jurupa St. Suite 402 Ontario, CA 91761 Storage Rack 125 Valley River Dr. Rexburg, ID 83440 Date: 4/1/2020 Calculations By: JA AXIAL CAPACITY OF POST Ultimate Axial Load on Column: Pu Mo NP d 0.2SDS N( ) WtLL WtDL+( ) 4 +1.6 N WtLL 4 +1.2 N WtDL 4 +Wp+1342.7lbf=:= Bending Stresses: MsL Vtotal 2 B 2 Ly( ) 2 85.6 lbf ft=:=Ms Vtotal 6in NP 45.1 ft lbf=:= Bending Stress on Column: Mr max Ms Sx MsL Sy , 9.6 ksi=:= ϕ 0.90:= Bending Strength: ϕMn ϕ Fy29.7 ksi=:= Magnification Factor: Cm 0.85:=αx 1:= Must Be Less Than 1.0Combined Stress: Pu ϕPn Cm Mr ϕMn αx( ) +0.607= MOMENT AT BEAM CONNECTION: Total Seismic Base Shear (ASD):Vtasd Vtotal .7252.6lbf=:= Shear Force on Backside into Braces:Vb Vtasd( ) 2 126.3lbf=:= Number of Shelf Racks Supported by Braces:Nb 4:= Tension Force Into Brace:Tb Nb Vb 2 Vb h( ) B 2 +910.8lbf=:= Use: 0.75" x 14ga Straps bs .75in:=Width of Strap- Thickness of Strap:ts 0.0781in:= As bs ts0.059 in2=:=Area of Strap: ft Tb As 15.5 ksi=:=Tension Stress in Strap: Allowable Tension Stress:Ft 0.6 33ksi 19.8 ksi=:= Shear on each Screw: Vr Ms 4.625in 117lbf=:= Capacity of #14 Screw: Vs 424lbf:=Screw connection is adequate for moment connect from beam to post. 7 of 19 Core States Group 4240 E. Jurupa St. Suite 402 Ontario, CA 91761 Storage Rack 125 Valley River Dr. Rexburg, ID 83440 Date: 4/1/2020 Calculations By: JA Connection to Existing Slab: f'c 2500psi:=Assumed( )Minimum Concrete Stength:Thickness of Concrete Slab: tc 4.0in:= Allowable Soil Bearing Pressure: fsoil 500psf:= dbase 0.75in:=Factored Bearing Loads From Post: Pmax Pu 1342.7lbf=:= Required Bearing Area: Areq Pmax fsoil 386.7 in2=:=I Areq 19.7 in=:= dcrit I 2 dbase 2 -tc 2-7.5 in=:=Critical Section: ws Pmax Areq 12in 500 plf=:=Soil Pressure on Crit. Section:bo 4 tc dbase+( )19in=:=Shear Perimeter: S 12in tc2 6 32 in3=:=Plain Concrete Section Modulus: Shear Stress: Two Way Punching Shear fv Pmax bo tc 17.7psi=:= Bending Stress: fb ws dcrit2 2 S36.2psi=:= Nominal Shear Capacity: ϕFv 0.55 2.66f'c psi73.2psi=:= Nominal Moment Capacity: ϕFb 0.55 5f'c psi137.5psi=:= if fv ϕFv<"Shear Strength OK", "Shear Not Adequate", ()"Shear Strength OK"= if fb ϕFb<"Bending Strength OK", "Bending Not Adequate", ()"Bending Strength OK"= Existing concrete floor slab is adequate to support the required bearing forces. 8 of 19 Core States Group 4240 E. Jurupa St. Suite 402 Ontario, CA 91761 Storage Rack 125 Valley River Dr. Rexburg, ID 83440 Date: 4/1/2020 Calculations By: JA STEEL STORAGE RACK DESIGN Oil/Battery Rack Units SECTION PROPERTIES E 29000ksi:= Fy 33ksi:= Physical Dimensions: b 1.645in:=Channel Width Lx 21in:=Unbraced Length in x direction d 1.645in:=Channel Depth Ly 46in:=Unbraced Length in y direction Rc 0.150in:=Radius at Corners Lt min Lx Ly, ( ):= t 0.0747in:=Channel Thickness Ky 1.7:=Effective Length Factor for y direction Sx 0.221in3:=Section Modulus in x direction Kx 1.0:=Effective Length Factor for x direction Sy 0.1587in3:=Section Modulus in y direction Kt 0.8:= Ix 0.1817in4:=Moment of Inertia in x direction ρ 490pcf:=Density of SteelIy0.1469in4:=Moment of Inertia in y direction rx 0.6722in:=Radius of Gyration in x direction ry 0.6043in:=Radius of Gyration in y direction Ap 0.4022in2:=Full Cross Sectional Area Shelving Geometry: Width of Shelving Unit: Two Shelves next to each other. B 96in:= h 144in:=Total Height of Shelving Unit N 8:=Number of Shelves d 48in:=Depth of Shelving Unit hs h 6in-( ) N 1-( ) 19.7 in=:=Shelf Spacing LL 30psf:=Design Live Load DL 3psf:=Design Dead Load Wp ρ Aph16.4lbf=:=Weight of Post WtLL B dLL960lbf=:=Live Load Weight Per Shelf WtDL B dDL4 Wp N +104.2lbf=:=Dead Load Weight Per Shelf + Weight of Post 9 of 19 Core States Group 4240 E. Jurupa St. Suite 402 Ontario, CA 91761 Storage Rack 125 Valley River Dr. Rexburg, ID 83440 Date: 4/1/2020 Calculations By: JA Lateral Seismic Design Base Shear ( §15.4, ASCE 7-10) CASE 1 - 100% LOAD TOP SHELF ONLY Vt 0.4 ap( ) SDS1 2 z hr + R Ie 0.16065=:= Vt.min 0.3 SDS( )Ie( )0.19277=:= Vt.max 1.6 SDS( )Ie( )1.02813=:= Vused Vt Vt.min Vt<Vt.max<if Vt.min Vt Vt.min<if Vt.max Vt Vt.max>if := Vused 0.19277= Vtd Vused WtDLN160.7lbf=:=Seismic DL Base Shear Fd Vused WtDL20.1lbf=:=DL Force per Shelf Vtl Vused WtLL185.1lbf=:=Seismic LL Base Shear Fl Vused WtLL185.1lbf=:=LL Force per Shelf Vtotal Vtd Vtl+345.8lbf=:=Total Base Shear NP 4:=Post along Short Side Mo Vtotal 2 3 hΩ02766.2 ft lbf=:= Mres 0.9 WtDL N( )WtLL( )+d 2 3228.6 ft lbf=:= Mt N 1-( )hsWtDLN 1-( )hsWtLL+12238.4 ft lbf=:= Ev 0.2 SDSWtDL N( ) WtLL+ 4 38.4lbf=:= Tension Mo Mres-( ) NP d Ev+9.5lbf=:= CV1 WtDL 0WtLL 0+( ) Mt 0=:= Ctop WtDL N 1-( )hsWtLL N 1-( )hs+ Mt 1=:= Ftop Ctop Vtotal345.8lbf=:=CV1 Ctop+1=Coefficients Should Total 1 10 of 19 Core States Group 4240 E. Jurupa St. Suite 402 Ontario, CA 91761 Storage Rack 125 Valley River Dr. Rexburg, ID 83440 Date: 4/1/2020 Calculations By: JA Lateral Seismic Design Base Shear ( §15.4, ASCE 7-10) CASE 2 - ALL SHELVES 67% LOADED Vt 0.4 ap( ) SDS1 2 z hr + R Ie 0.16065=:= Vt.min 0.3 SDS( )Ie( )0.19277=:= Vt.max 1.6 SDS( )Ie( )1.02813=:= Vused Vt Vt.min Vt<Vt.max<if Vt.min Vt Vt.min<if Vt.max Vt Vt.max>if := Vused 0.19277= Vtd Vused WtDLN160.7lbf=:=Seismic DL Base Shear Fd Vused WtDL20.1lbf=:=DL Force per Shelf Vtl Vused WtLLN1480.5lbf=:=Seismic LL Base Shear Fl Vused WtLL185.1lbf=:=LL Force per Shelf Vtotal Vtd 0.67Vtl+1152.7lbf=:=Total Base Shear NP 4:=Post along Short Side Mo Vtotal 1 2 hΩ06915.9 ft lbf=:= Mres 0.9 WtDL N( )WtLL N( )+d 2 15324.6 ft lbf=:= Mt 36786ft lbf:= Ev 0.2 SDSWtDL N( ) WtLL N( ) + 4 182.4lbf=:= Tension Mo Mres-( ) NP d Ev+343.2-lbf=:=Note: If negative, no tension force on post. 11 of 19 Core States Group 4240 E. Jurupa St. Suite 402 Ontario, CA 91761 Storage Rack 125 Valley River Dr. Rexburg, ID 83440 Date: 4/1/2020 Calculations By: JA Vertical Distribution Factors for Each Shelf CV8 WtDL 144in WtLL 0.67144in+( ) Mt 0.24381=:=F8 CV8 Vtotal281lbf=:= CV7 WtDL 124.284in WtLL 0.67124.284in+() Mt 0.21043=:=F7 CV7 Vtotal242.6lbf=:= CV6 WtDL 104.570in WtLL 0.67104.570in+() Mt 0.17705=:=F6 CV6 Vtotal204.1lbf=:= CV5 WtDL 84.856in WtLL 0.6784.856in+() Mt 0.14367=:=F5 CV5 Vtotal165.6lbf=:= CV4 WtDL 65.142in WtLL 0.6765.142in+() Mt 0.1103=:=F4 CV4 Vtotal127.1lbf=:= CV3 WtDL 45.428in WtLL 0.6745.428in+() Mt 0.07692=:=F3 CV3 Vtotal88.7lbf=:= CV2 WtDL 25.714in WtLL 0.6725.714in( )+ Mt 0.04354=:=F2 CV2 Vtotal50.2lbf=:= CV1 WtDL 6in WtLL 0.676in+( ) Mt 0.01016=:=F1 CV1 Vtotal11.7lbf=:= CV1 CV2+CV3+CV4+CV5+CV6+CV7+CV8+1=Coefficients Should Total 1 Ftotal F1 F2+F3+F4+F5+F6+F7+F8+1171lbf=:=CASE 2 GOVERNS 12 of 19 Core States Group 4240 E. Jurupa St. Suite 402 Ontario, CA 91761 Storage Rack 125 Valley River Dr. Rexburg, ID 83440 Date: 4/1/2020 Calculations By: JA AXIAL CAPACITY OF POST σex π2 E Kx Lx( ) rx 1- 2 293.3ksi=:=σey π2 E Ky Ly( ) ry 1- 2 17.1 ksi=:= σe min σex σey, ( )17.1 ksi=:= Polar Radius of Gyration:ro 1.81in:= Torsion Constant:J 0.0009in4:= Warping Constant:Cw 0.1227in6:= Shear Modulus:G 11300ksi:= σt 1 Ap ro2 G Jπ2 ECw Kt Lt( ) 2 + :=xo ro 2 rx 2-ry 2--:=β 1 xo ro 2 -:= Fet 1 2 β σe σt+( )σe σt+( ) 2 4β σeσt--:= Elastic Buckling Stress: Fe if Fet σe<Fet, σe, ( )15.1 ksi=:= λc Fy Fe 1.4773=:= Nominal Bukling Stress:Fn if λc 1.5<0.658λc 2 Fy, Fy 0.877 λc2 , 13.2 ksi=:= ϕ 0.95:=LRFD Axial Strength:ϕPn ϕ FnAp5057.7lbf=:=LRFD 13 of 19 Core States Group 4240 E. Jurupa St. Suite 402 Ontario, CA 91761 Storage Rack 125 Valley River Dr. Rexburg, ID 83440 Date: 4/1/2020 Calculations By: JA AXIAL CAPACITY OF POST Ultimate Axial Load on Column: Pu Mo NP d 0.2SDS N( ) 0.7 WtLLWtDL+( ) 4 +1.6 N WtLL 0.7 4 +1.2 N WtDL 4 +Wp+2982.2lbf=:= Bending Stresses: MsL Vtotal 2 B( ) Ly( ) 2 8132.3 lbf ft=:=Ms Vtotal 6in NP 144.1 ft lbf=:= Bending Stress on Column: Mr max Ms Sx MsL Sy , 10 ksi=:= ϕ 0.90:= Bending Strength: ϕMn ϕ Fy29.7 ksi=:= Magnification Factor: Cm 0.85:=αx 1:= Must Be Less Than 1.0Combined Stress: Pu ϕPn Cm Mr ϕMn αx( ) +0.876= Shear on each Screw: Vr Ms 4.625in 373.8lbf=:= Capacity of #14 Screw: Vs 424lbf:=Screw connection is adequate for moment connect from beam to post. 14 of 19 Core States Group 4240 E. Jurupa St. Suite 402 Ontario, CA 91761 Storage Rack 125 Valley River Dr. Rexburg, ID 83440 Date: 4/1/2020 Calculations By: JA Connection to Existing Slab: f'c 2500psi:=Assumed( )Minimum Concrete Stength:Thickness of Concrete Slab: tc 4.0in:= Allowable Soil Bearing Pressure: fsoil 500psf:= dbase 0.75in:=Factored Bearing Loads From Post: Pmax Pu 2982.2lbf=:= Required Bearing Area: Areq Pmax fsoil 858.9 in2=:=I Areq 29.3 in=:= dcrit I 2 dbase 2 -tc 2-12.3 in=:=Critical Section: ws Pmax Areq 12in 500 plf=:=Soil Pressure on Crit. Section:bo 4 tc dbase+( )19in=:=Shear Perimeter: S 12in tc2 6 32 in3=:=Plain Concrete Section Modulus: Shear Stress: Two Way Punching Shear fv Pmax bo tc 39.2psi=:= Bending Stress: fb ws dcrit2 2 S98.1psi=:= Nominal Shear Capacity: ϕFv 0.55 2.66f'c psi73.2psi=:= Nominal Moment Capacity: ϕFb 0.55 5f'c psi137.5psi=:= if fv ϕFv<"Shear Strength OK", "Shear Not Adequate", ()"Shear Strength OK"= if fb ϕFb<"Bending Strength OK", "Bending Not Adequate", ()"Bending Strength OK"= Existing concrete floor slab is adequate to support the required bearing forces. 15 of 19 www.hilti.com Hilti PROFIS Engineering 3.0.58 Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering ( c ) 2003-2019 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan 1 Company: Address: Phone I Fax: Design: Fastening point: | Rexburg, ID - Apr 1, 2020 Page: Specifier: E-Mail: Date: 1 4/1/2020 Specifier's comments: 1 Input data Anchor type and diameter: Kwik Bolt TZ - CS 3/8 (2) Item number: not available Effective embedment depth: hef,act = 2.000 in., hnom = 2.313 in. Material: Carbon Steel Evaluation Service Report: ESR-1917 Issued I Valid: 5/1/2019 | 5/1/2021 Proof: Design Method ACI 318-14 / Mech Stand-off installation: Profile: Base material: cracked concrete, 2500, fc' = 2,500 psi; h = 4.000 in. Installation: hammer drilled hole, Installation condition: Dry Reinforcement: tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: none or < No. 4 bar Geometry [in.] & Loading [lb, in.lb] Worst shear and tension case per calculation above. www.hilti.com Hilti PROFIS Engineering 3.0.58 Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering ( c ) 2003-2019 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan 2 Company: Address: Phone I Fax: Design: Fastening point: | Rexburg, ID - Apr 1, 2020 Page: Specifier: E-Mail: Date: 2 4/1/2020 1.1 Design results Case Description Forces [lb] / Moments [in.lb]Seismic Max. Util. Anchor [%] 1 Combination 1 N = 33; Vx = 289; Vy = 0; Mx = 0; My = 0; Mz = 0; no 18 2 Load case/Resulting anchor forces Anchor reactions [lb] Tension force: (+Tension, -Compression) Anchor Tension force Shear force Shear force x Shear force y 1 33 289 289 0 max. concrete compressive strain: - [‰] max. concrete compressive stress: - [psi] resulting tension force in (x/y)=(0.000/0.000): 0 [lb] resulting compression force in (x/y)=(0.000/0.000): 0 [lb] 3 Tension load Load Nua [lb]Capacity f Nn [lb]Utilization bN = Nua/f Nn Status Steel Strength*33 4,875 1 OK Pullout Strength*33 1,475 3 OK Concrete Breakout Failure**33 1,563 3 OK * highest loaded anchor **anchor group (anchors in tension) www.hilti.com Hilti PROFIS Engineering 3.0.58 Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering ( c ) 2003-2019 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan 3 Company: Address: Phone I Fax: Design: Fastening point: | Rexburg, ID - Apr 1, 2020 Page: Specifier: E-Mail: Date: 3 4/1/2020 3.1 Steel Strength Nsa = ESR value refer to ICC-ES ESR-1917 f Nsa ≥ Nua ACI 318-14 Table 17.3.1.1 Variables Ase,N [in.2]futa [psi] 0.05 125,000 Calculations Nsa [lb] 6,500 Results Nsa [lb]f steel f Nsa [lb]Nua [lb] 6,500 0.750 4,875 33 3.2 Pullout Strength Npn,f'c = Np,2500 l a (fc'/2500)0.5 refer to ICC-ES ESR-1917 f Npn,f' c ≥ Nua ACI 318-14 Table 17.3.1.1 Variables f' c [psi]l a Np,2500 [lb] 2,500 1.000 2,270 Calculations (fc'/2500)0.5 1.000 Results Npn,f'c [lb]f concrete f Npn,f'c [lb]Nua [lb] 2,270 0.650 1,475 33 www.hilti.com Hilti PROFIS Engineering 3.0.58 Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering ( c ) 2003-2019 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan 4 Company: Address: Phone I Fax: Design: Fastening point: | Rexburg, ID - Apr 1, 2020 Page: Specifier: E-Mail: Date: 4 4/1/2020 3.3 Concrete Breakout Failure Ncb = (ANc ANc0)y ed,N y c,N y cp,N Nb ACI 318-14 Eq. (17.4.2.1a) f Ncb ≥ Nua ACI 318-14 Table 17.3.1.1 ANc see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b) ANc0 = 9 h2 ef ACI 318-14 Eq. (17.4.2.1c) y ed,N = 0.7 + 0.3 (ca,min 1.5hef) ≤ 1.0 ACI 318-14 Eq. (17.4.2.5b) y cp,N = MAX(ca,mincac , 1.5hefcac) ≤ 1.0 ACI 318-14 Eq. (17.4.2.7b) Nb = kc l a √f' c h1.5 ef ACI 318-14 Eq. (17.4.2.2a) Variables hef [in.]ca,min [in.]y c,N cac [in.]kc l a f' c [psi] 2.000 ∞1.000 4.375 17 1.000 2,500 Calculations ANc [in.2]ANc0 [in.2]y ed,N y cp,N Nb [lb] 36.00 36.00 1.000 1.000 2,404 Results Ncb [lb]f concrete f Ncb [lb]Nua [lb] 2,404 0.650 1,563 33 www.hilti.com Hilti PROFIS Engineering 3.0.58 Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering ( c ) 2003-2019 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan 5 Company: Address: Phone I Fax: Design: Fastening point: | Rexburg, ID - Apr 1, 2020 Page: Specifier: E-Mail: Date: 5 4/1/2020 4 Shear load Load Vua [lb]Capacity f Vn [lb]Utilization bV = Vua/f Vn Status Steel Strength*289 2,337 13 OK Steel failure (with lever arm)*N/A N/A N/A N/A Pryout Strength**289 1,683 18 OK Concrete edge failure in direction **N/A N/A N/A N/A * highest loaded anchor **anchor group (relevant anchors) 4.1 Steel Strength Vsa = ESR value refer to ICC-ES ESR-1917 f Vsteel ≥ Vua ACI 318-14 Table 17.3.1.1 Variables Ase,V [in.2]futa [psi] 0.05 125,000 Calculations Vsa [lb] 3,595 Results Vsa [lb]f steel f Vsa [lb]Vua [lb] 3,595 0.650 2,337 289 www.hilti.com Hilti PROFIS Engineering 3.0.58 Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering ( c ) 2003-2019 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan 6 Company: Address: Phone I Fax: Design: Fastening point: | Rexburg, ID - Apr 1, 2020 Page: Specifier: E-Mail: Date: 6 4/1/2020 4.2 Pryout Strength Vcp = kcp [(ANc ANc0)y ed,N y c,N y cp,N Nb ] ACI 318-14 Eq. (17.5.3.1a) f Vcp ≥ Vua ACI 318-14 Table 17.3.1.1 ANc see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b) ANc0 = 9 h2 ef ACI 318-14 Eq. (17.4.2.1c) y ed,N = 0.7 + 0.3 (ca,min 1.5hef) ≤ 1.0 ACI 318-14 Eq. (17.4.2.5b) y cp,N = MAX(ca,mincac , 1.5hefcac) ≤ 1.0 ACI 318-14 Eq. (17.4.2.7b) Nb = kc l a √f' c h1.5 ef ACI 318-14 Eq. (17.4.2.2a) Variables kcp hef [in.]ca,min [in.]y c,N 1 2.000 ∞1.000 cac [in.]kc l a f' c [psi] 4.375 17 1.000 2,500 Calculations ANc [in.2]ANc0 [in.2]y ed,N y cp,N Nb [lb] 36.00 36.00 1.000 1.000 2,404 Results Vcp [lb]f concrete f Vcp [lb]Vua [lb] 2,404 0.700 1,683 289 5 Combined tension and shear loads bN bV z Utilization bN,V [%]Status 0.022 0.172 5/3 6 OK bNV = bz N + bz V <= 1 www.hilti.com Hilti PROFIS Engineering 3.0.58 Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering ( c ) 2003-2019 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan 7 Company: Address: Phone I Fax: Design: Fastening point: | Rexburg, ID - Apr 1, 2020 Page: Specifier: E-Mail: Date: 7 4/1/2020 6 Warnings • The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2018, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility! • Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs. • Refer to the manufacturer's product literature for cleaning and installation instructions. • For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/ • Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-14, Section 17.8.1. Fastening meets the design criteria! www.hilti.com Hilti PROFIS Engineering 3.0.58 Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering ( c ) 2003-2019 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan 8 Company: Address: Phone I Fax: Design: Fastening point: | Rexburg, ID - Apr 1, 2020 Page: Specifier: E-Mail: Date: 8 4/1/2020 7 Installation data Anchor type and diameter: Kwik Bolt TZ - CS 3/8 (2) Profile: - Item number: not available Hole diameter in the fixture: - Installation torque: 300 in.lb Plate thickness (input): - Hole diameter in the base material: 0.375 in. Hole depth in the base material: 2.625 in. Drilling method: Hammer drilled Minimum thickness of the base material: 4.000 in. Cleaning: Manual cleaning of the drilled hole according to instructions for use is required. Hilti KB-TZ stud anchor with 2.31252 in embedment, 3/8 (2), Carbon steel, installation per ESR-1917 7.1 Recommended accessories Drilling Cleaning Setting • Suitable Rotary Hammer • Properly sized drill bit • Manual blow-out pump • Torque controlled cordless impact tool • Torque wrench • Hammer Coordinates Anchor in. Anchor x y c-x c+x c-y c+y 1 0.000 0.000 ---- www.hilti.com Hilti PROFIS Engineering 3.0.58 Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering ( c ) 2003-2019 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan 9 Company: Address: Phone I Fax: Design: Fastening point: | Rexburg, ID - Apr 1, 2020 Page: Specifier: E-Mail: Date: 9 4/1/2020 8 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.