Loading...
HomeMy WebLinkAboutSTRUCTURAL CALCULATIONS - 16-00576-577 - 117 S 2nd E - Mattson Apts - Bldg B NO 23 UnitsMattson Appartments Structural Calculations Engineer's seal applies to this entire calculation packet. This packet is void if binding seal is broken or if engineer's seal is not an original signature in red ink. This engineering report is valid only for the aforementioned building located at 1 at South and 2nd East, Rexburg, Idaho. This report is to be used only once and may not be copied or reproduced without the written consent of LEI Engineers and Surveyors, Inc. 16-00 s -+b ENGINEERS SURVEYORS PLANNERS 3302 N. Main Street Spanish Fork, UT 84660 Phone: 801.798.0555 Fax: 801.798.9393 office@lei-eng.com www.lei eng.coni 2016-2850 Location: Rexburg, Idaho Date: 10/18/2016 Engineered by: J. Miller 9634 10/19/2016 7 APPLIES TO PAGES 1-168 Structural Review for: Mattson Appartments Location: Rexburg, Idaho Job #: 2016-2850 Engineered by: J. Miller Code: 2015 IBC Loadings Risk Category: 11 Ground Snow Load: Elevation = 4862 it County= Madison A.= 6.2 S = 63 Po= 50 Pa= 50.0 psf Roof Snow Load: C,= 1.1 Roof Exposure Ce= 0.9 Full 1= 1.0 Pr= 34.7 psf Roof Dead Load: DL= 16.9 pelf Floor Loadings: Dead Load = 23.4 psf Light Weight Storage = 125 psf Live Load = 40 psi Wind Loading: (Envelope Procedure Chapter 281 Rooting Material = Shingle/Tile Roof Pitch = 0.25/12 Roof Angle = 1.2 degrees Exposure Category = C Mean Roof Height = 50 p Horizontal Pressures p,,,, Wind Speed V = 115 zone A zone 8 zone C zone D C&C Parapet 32.6 0.0 21.6 0.0 33.9 76.4 Height &Exposure Factor 1, = 1.56 Seismic Loading: (Equivalent Lateral Force Procedure - see attached) Soil Bearing Capacity: 4500 psf Eagle Rock Engineering Pro. 16116 Page 1 of 168 Snow Drift Calculations Roofing Material = Shinglefrile Ground Snow Load pg = 50 psf Flat Roof Snow Load pr = 35 pst Roof Pitch = 0.25 Angle = i C5= 1.00 Sloped Roof Snow Load p, = 35 psf R = 20.50 Height of normal Snow Load hp = 1.69 ft Total load (psf)= 92 87 72 124 69 Siesmic Weight Additional Seismic Weight 0.0 psf Total Seismic Weight 16.9 psf Page 2 of 168 Drift #1 Drift #2 Drift #3 Drift #4 Drift #5 Winward Winward Winward Leeward Leeward Roof Height Difference It. (ft)= 3.75 3.75 3.75 14 24 Does Drift Exist (klhp <.2)? Yes Yes Yes Yes Yes Length of upper roof 1„ (ft)= 128 68 36 117 19 Height of Drift ho (ft)= 2.8 2.5 1.8 4.4 1.7 W (ft)= 11 10 7 17 7 Max drift width (ft)= 30 30 30 112 192 Drift tapers to zero @ w (ft)= 11 10 7 17 7 Drift Load pa (psf)= 58 52 38 89 35 Total load (psf)= 92 87 72 124 69 Siesmic Weight Additional Seismic Weight 0.0 psf Total Seismic Weight 16.9 psf Page 2 of 168 Dead Loads Material Weight (psf) 1 -ply rolled membrane roof 1 7/16° OSB sheathing 1.5 Joist framing @ 24' o.c. 3 Insulation (0.3 psf/in X 18 in) 5.4 Drop Ceiling 0 Sprinklers 3' Misc. (lighting, etc.) 3, Material Weight (psf) 1 1/2" gyperete 1 1/4" sound board 1 3/4" OSB floor sheathing Floor Joists @ 16" o.c. Drop Ceiling Misc. (lighting etc.) Page 3 of 168 Wind Loads ASCE 7-10 Envelope Procedure Part 1 (Chapter 28) Building Category It (Table 1.5-1) V Basic Wind Speed: 115 mph (Figure 26.5-1) Ka = 0.85 (Table 26.6-1) Exposure = C (Section 26.7) K,= 1 (Figure 26.8-1) Enclosed Structure (Figure 30.4-1) (Section 26.10) GC,, = 0.18 (fable 26.11-1) -0.18 MWFRS Roof Pitch = 0.25/12 Roof Angle = 1.2 degrees Mean Roof Height = 50 ft Kp= 1.09 (Table 28.3-1) qh = 31.4 Ib/(t` (Equation 28.3-11) Load Case A Wind Pressure Roof Angle 1 2 3 4 0-5 12.55 -21.64 -11.61 -9.10 Wind Perpendicular to the Ridge Wall End Roof End Wall Int. Roof Int. 32.62 0.71 21.64 0.42 Parapet Top of Parapet Elevation = 50 If Kp= 1.09 (Table 28.3-1) qp = 31.4 Ib/fe (Equation 28.3-1) GCpp = 2.50 pp = 78.4 Ib/ft` Components and Cladding Walls (Figure 30.4-1) GC, = -1.26 p = -33.88 Ib/ft` Page 4 of 168 1E 2E 19.13 -33.56 Preface & Structural Notes This engineering report is valid only for the following plan and location: Mattson Appartments 1 at South and 2nd East, Rexburg, Idaho NOTE TO PLAN CHECKER AND BUILDING INSPECTOR: If the above address does not match the Intended building address, notify LEI Immediately 0 801-798-0555. This engineering packet is to be used only once for the above mentioned location and is not to be copied or reproduced without written consent of LEI Consulting Engineers. Structural Notes: General Notes 1 It values and assumptions staled in this report are incorrect, or it changes in the field are noticed which are different from those slated in this report, the engineer must be notified in order for the necessary corrections to be made. 2 If there are any discrepancies between the calculations and the drawings, these calculations shall supercede. 3 This engineedng report deals only with the structural parts of the building and does not provide liability to the non-structural parts. 4 If plans are stamped in conjunction with this engineering packet, certification pertains only to the structural elements of the plans. 5 The general contractor is responsible for the method, means, and sequence of all structural erection except when specifically noted otherwise on the drawings. He shall provide temporary shoring and bracing as his method of erection requires to provide adequate vertical and lateral support during erection. This shoring and bracing shall remain in place until all permanent members are placed and all final connetions are completed Including all roof and floor attachments. Site Preparation 1 Do not place footings or foundations on disturbed soils, undocumented fill, debris, frozen soil, or in ponded water. 2 All slabs on grade shall be underlain by 4 in. of free -draining granular material such as 'pea' gravel or 314 - 1 in. minus clean gravel. 3 Footings, foundations, excavations, grading and fill shall be performed as per the geotechnical report. Concrete 1 All concrete footings and slabs on grade shall have a 28 day minimum strength = 2500 psi. 2 All concrete foundation walls and retaining walls shall have a 28 day minimum strength = 3000 psi. 3 Concrete shall be thoroughly consolidated by suitable means during placement. 4 Footings shall be centered below the wall and/or column above, typical unless noted otherwise. 5 Exterior footings shall bear below the effects of frost. 6 Stagger footing construction joints from wall construction joints above by at least 6 feet. 7 Reinforcing in continuous footings shall be continuous at corners and/or intersections by providing proper lap lengths and/or corner bars. 8 Interior slabs on grade shall be a min. of 4' thick. 9 Place vertical reinforcing in the center of the wall (except for retaining walls or when each face is specified). 10 Vertical reinforcing shall be dowelled to footing or structure below and to structure above with the same size bar and spacing, typical U.N.O. 11 Provide corner bars at all intersections and corners. Use same size bar and spacing as the horizontal reinforcing. 12 Horizontal reinforcing shall terminate at the ends of the walls and at openings with a standard hook. 13 Provide drainage at the base of retaining walls. Reinforcing Steel 1 Reinforcing steel shall be new stock deformed bars and shall conform to ASTM A615, grade 60, with a design yield strength = 60 ksi. 2 Reinforcing steel shall be free of loose, flaky rust, scale, grease, oil, dirt, and other materials which might affect or impair bond. 3 Splices in continuous reinforcing shall be made on areas of compression and/or at points of minimum stress, typical U.N.O. 4 Lap splices shall be 40 bar diameters or 24' long in concrete. Dowels shall have a minimum of 30 bar diameters embedment. 5 Bends shall be made cold; do not use heat. Do not un -bend or re -bend a previously bent bar. 6 Reinforcing steel in concrete shall be securely anchored and tied in place prior to placing concrete and shall be positioned with the following minimum cover: concrete cast against and permanently exposed to earth = 3" concrete exposed to earth or weather = 1 1/2" slabs on grade = center of slab Structural Steel 1 Structural steel W -shapes shall conform to ASTM A992 grade 50 enhanced steel. Structural steel plates shall conform to ASTM A36. 2 Structural steel HSS -shapes shall conform to ASTM A500, grade B, with a min. yield strength Fy = 46 ksi (rectangular) or Fy = 42 ksi (round). 3 Structural pipe shall conform to ASTM A53, with a min. yield strength Fy = 36 ksi. 4 High strength bolts shall conform to ASTM A325, all other bolts shall conform to ASTM A307 or better. 5 Welded anchor studs and deformed bar anchors shall conform to the manufacturers specs. 6 Fabrication shall be done in an approved fabricators shop. 7 Use high strength (8000 psi min. at 28 days), non shrink, liquid epoxy grout beneath all steel base plates and beadng plates. 8 Bolt shall be beadng type connections U.N.O. 9 Steel to steel bolted connections shall be made with ASTM A325 high strength bolts and nuts, U.N.O. 10 All other bolted connections shall be made with bolts and nuts conforming to ASTM A307 U.N.O., including anchor bolts. 11 Bolted connections shall be tightened and shall have washers as required by AISC U.N.O. 12 Enlarging of holes shall be accomplished by means of reaming. Do not use a torch on any bolt holes. 13 Welded connections shall be made using low hydrogen matching filler material electrodes, U.N.O. 14 Welders shall be currently certified according to AWS within the last year. All welding procedures shall be pre -qualified. Welders shall follow welding procedures. 15 Welding and gas cutting shall be done per AWS. 16 Welds shall have the slag removed. Page 5 of 168 Structural Notes (cont): Masonry Veneer Anchor Ties 1 Masonry veneer ties shall be one of the following: a. Dovetail anchors b. DX-10 seismic clip interlock system by Hohmann & Bernard c. Engineer approved 2 piece adjustable hot-dipped galvanized ties. 2 Maximum spacing shall be 16" o.c. horizontal and vertical. 3 Provide continuous horizontal galvanized 119 wire in center third of mortar joints at 16' o.c. Engage t)9 wire with all anchor ties in seismic zone category E. Wood Truss I Bottom chords of trusses, acting as ceiling members must be able to support a 10 psi live load per IBC requirements. 2 The truss manufacturer shall be responsible for the design and fabrication of the pre-engineered trusses. 3 The trusses shall be designed as per the attached engineering specs. 4 The trusses shall be designed to carry any additional loads due to mechanical units, overhead doors, roof overbuilds, etc. 5 The trusses shall be designed per the IBC and local ordinances. 6 All members shall be designed for combined stresses based on the worst loading condition- 7 The truss manufacturer shall indicate proper bracing of compression chord members ®6' long (or longer), as well as bracing for truss erection. 8 All dimensions shall be field verified prior to fabrication. 9 The contractor shall be responsible for the installation of the trusses per the two manufacturer's recommendations and specs. 10 No web or chord members shall be modified in the field without approval from the two engineer. 11 The project engineer is not responsible for the pre-engineered trusses, nor for the installation of the trusses. 12 Contractor is to verify truss layout is consistent with these plans and notify engineer of any deviations. General Framing 1 All joists, rafters, posts and headers shall be DF-L #2 or equal U.N.O. If TJI's or equal are used, they must be installed per manufacturer's specs. 2 All joists and rafters shall have solid blocking at their bearing points. 3 All woodAumber placed onto concrete shall be pressure treated or redwood. 4 Verify all beam sizes with engineering specs. 5 All beams and headers over 6'-0" shall be supported by double trimmer studs U.N.O. 6 All headers over 8'-0' shall shall have double king studs at each end U.N.O. 7 All over frame areas are to have full roof sheathing below. 8 Provide solid blocking and continuous bearing to foundation at all bearing point loads from above. 9 Provide double floor joists below all parallel bearing walls above. 10 Glulam beams shall be 24F-V4 DF/DF for single spans and 24F-VB DF/DF for multiple spans and cantilevered spans. 11 Microllam beams shall be Laminated Veneer Lumber (LVL) with the following minimum design values: E=1,900,000 psi, Fb=2,600 psi, Fv=285 psi 12 Parallam beams shall be Parallel Strand Lumber (PSL) with the following minimum design values: E=2,000,000 psi, Fb=2,900 psi, Fv=290 psi. 13 TimberStrand beams shall be Laminated Strand Lumber (LSL) w/ the following minimum design values: - 1-1/4" wide (rim board): E=1,300,000 psi, Fb=1,700 psi, Fv=425 psi. - 1-3/4' wide: E=1,550,000 psi, Fb=2,325 psi, Fv=310 psi. 14 All rafters and joists over 3 it long shall be hangered if not supported by bottom bearing. 15 All hangers and other wood connections must be designed to carry the capacity of the member that they are supporting. 16 No structural member shall be out or notched unless specifically shown, noted or approved by engineer. 17 Lag screws shall be inserted in a drilled pilot hole 60 - 75% or the shank diameter by turning with a wrench, not by driving with a hammer. 18 Nails are to be common wire U.N.O. 19 All bolt holes shall be drilled with a bit 1/32" to 1/16" larger than the nominal bolt diameter. 20 All joints in wall sheathing shall occur in the middle of a plate or block and nailed on each side of the joint w/ edge nailing per the shearwall schedu 21 All over built roof rafters shall be braced vertically to the trusses below at 4' o.c. max. 22 Double top plates are to have a minimum 48" lap splice w/ (8) 16d nails U.N.O. 23 All fasteners and connectors in contact with treated lumber shall be galvanized G90 or better. Page 6 of 168 Summary Floor Joists: FJ1: 11 7/8" TJI/210 @ 16' o.c. as noted on plans FJ2: 11 7/8" TJI/360 @ 12" o.c. as noted on plans FJ3: (2) 200 DF -L#2 ® 19.2" o.c. as noted on plans FJ4: 2x10 DF -L#2 @ 16' o.c. as noted on plans 3/4" APA rated T8G flooring to be nailed with 10d nails 0 6" o.c. edge, 12" o.c. field Deck Joists: DJl: Not Used Roof: Other: RRI: 11 7/8" TJI/210 @ 24" o.c. as noted on plans RR2: 11 7/8" TJI/210 ® 12' o.c. as noted on plans Use 5/8° APA rated OSB sheathing w/ 10d nails @ 6" o.c. edge, 12' o.c. field Overbuild to be 2" x 6" Timber @ 24° o.c. All bearing headers to be (2) 2x10 (DF L #2 or better) unless noted otherwise All exterior sheathing to be Shear Wall 41 unless noted otherwise All glulam beams are to be 24F -V4 unless noted otherwise Strap end lengths for shear walls (see also Simpson Coiled strap specs.): CSI = 14" CMST14 = 34" CMSTCI6 = 25' Page 7 of 168 Beam Schedule Desig. I Desig. Ot . Size Type Trimmers lKin Stud RBI 2 2x6 Timber(1) (1) (1) (1) RB2 1 13/4" x 11 7/8" Microllam (2) NIA RB32 1 3/4" x 11 7/8" 2x8 Timber (2) (1) 554 1 1 3/4" x 11 7/8" Microllam (2) N/A Page 7 of 168 Beam Schedule Desig. I Oty. I Size Type Trimmers In Stud FBI 2 2x6 Timber (1) (1) FB2 1 1 1/4" x 117/8" Rim Board N/A N/A FB3 2 1 3/4" x 11 7/8" Microllam (2) N/A F64 4 1 3/4" x 11 7/8" Microllam See Plans FB5 2 1 3/4" x 11 7/8" Microllam (2) N/A FB6 2 2 x 10 Timber See Plans FB7 2 2x8 Timber (2) (1) FB8 2 1 3/4" x 11 7/8" Microllam (2) NIA FB9 - Not Used - - - FB10 2 2 x 10 Timber (2) N/A FB1I 2 2x8 Timber (1) (1) FB12 1 1 3/4" x 11 7/8" Microllam (2) N/A FB13 2 2 x 8 Timber (2) (1) F814 1 1 3/4" x 11 7/8" Microllam (2) N/A FB15 1 1 3/4" x 11 7/8" Microllam (2) N/A FB7 -17 2 2 x 10 Timber (2) N/A FB 1 W6 8 x10 A992-50 See Plans Page 7 of 168 Page 8 of 168 Beam Schedule Desi t . Size I Type Trimmers lKing Stud MBI 2 2 x 8 Timber (2) (1) MB2 2 1 3/4" x 11 7/8" Microllam (2) N/A MB3 2 13/4" x 11 7/8" Microllam See Plans M84 2 2x6 Timber MB5 3 1 3/4" x 11 7/8" Microllam See Plans MB6 5 1 3/4" x 117/8" Microllam See Plans MB7 2 1 3/4" x 11 7/8" Microllam (2) (1) MBB 2 13/4" x 11 7/8" Microllam (2) N/A MB8 5 0 Microllam See Plans MB10 2 2 x 12 Timber (2) (1) MB11 2 2 x 10 Timber (2) N/A MB12 3 2 x t0 Timber (2) N/A MB13 2 13/4"x91/2" Microllam (2) (2) MB14 2 2 x 8 Timber (2) (i MB15 2 2 x 6 Timber (2) (1) M816 2 1 3/4" x 9 1/4" Microllam (2) N/A MB17 2 1 3/4" x 9 1/4" Microllam (2) N/A MB782 2 x 10 Timber (2) N/A MB79 2 2x6 Timber (2) (1) MB20 2 2x8 Timber (2) (1) Page 8 of 168 Page 9 of 168 Beam Schedule Desig. Oty. Size ype Trimmers King Stud TBt 2 2x6 Timber (1) (1) TB2 2 1 3/4" x 117/8" Microllam (2) N/A TB3 3 1 3/4" x 117/8" Microllam See Plans T84 2 2x8 Timber (2y (1) TB5 4 13/4" x 11 7/8" Microllam See Plans TB6 1 1 1/4" x 11 7/8" Rim Board See Plans T87 2 1 3/4" x 11 7/8" Microllam (2) 1N/A TB8 2 1 3/4" x 11 718" Microllam See Plans TB9 2 2 x 8 Timber (2) (1) T810 2 2 x 10 Timber (2) N/A TB11 2 2 x 6 Timber (2) (1) TB12 2 2x6 Timber (1) (1) TB13 2 13/4" x 9 1/2" Microllam (3) (1) TB14 3 13/4" x 11 7/8" Microllam N/A N/A TB15 2 1 3/4" x 11 7/8" Microllam N/A N/A TB16 3 1 3/4" x 11 7/8" Microllam N/A N/A TB17 2 13/4" x 11 7/8" Microllam TB18 1 W 10 x 88 A992-50 See Plans T819 1 W 10 x 77 A992-50 See Plans TB20 1 W lox 100 A992-50 See Plans TB21 i W 10 x 15 A992-50 See Plans TB22 1 W 10 x 17 A992-50 See Plans TB23 1 W 10 x 54 A992-50 See Plans TB24 2 1 3/4" x 11 7/8" Microllam See Plans TB25 1 2 1 3/4" x 11 7/8" Microllam N/A N/A TB26 2 13/4"x91/2" Microllam (2) (1) TB27 2 2 x 10 Timber (2) N/A TB28 3 2x-10 Timber (3) N/A TB29 2 13/4"x91/4" Microllam (2) N/A TB30 2 1 3/4" x 9 1/4" Microllam (2) N/A TB31 2 2 x 6 Timber (2) (1) TB32 3 1 3/4" x 9 1/2" Microllam (2) (2) T833 2 2x6 Timber (1) (1) T834 1 5 1/8" x 22 1/2' Glulam I See Plans Page 9 of 168 Beam Schedule Desig. I al. Ize Type Trimmers lKing Sludi SBI 2 2x6 Timber (1) (1) S62 2 2x6 Timber (2) (1) SB3 2 1 3/4" x 9 1/4" Microllam (2) N/A SB4 2 13/4" x 9 114" Microllam See Plans SB5 2 2 x 10 Timber See Plans SB6 2 13/4"x91/2" Microllam (2) (1) SB7 3 2 x 10 Timber (2) (1) SBUE23 2x-10 Timber (2) (1) 2x10 Timber (2)2x10 Timber (2) N/A 1 3/4" x 9 1/4" Microllam (2) N/A 2x10 Timber (2) N/A 1 3/4" x 11 7/8" Microllam See Plans Page 9 of 168 TORTEMEMBER REPORT Level, RRI PASSED 1 piece(s) 117/8" T]I@ 360 @ 24" OC Overall Sloped Length: 17'1 5/16" 4 0 W 6" N a ocations are measured from the outside face of left support (or left cantilever end).AII dimensions are horizontal. 3si n Results Actual Locaeon I Allowed I Result LDF I toad: Combination (Pattern) tuber Reaction (lbs) 854 @ 2 1/2" 1731(3,50") Passed (49%) 1.15 1.0 D + 1.0 S All Spans ear (Ibs) 825 @ 16' 9 1/2" 1961 Passed (42%) 1.15 1.0 D + 1.0 5 (AII S ns mend(R-lbs) 3472 @ 8' 6 1/2" 7107 Passed (49%) 1.15 1.0 D + 1.0 S (All Spans) e Load Dell. (in) 0.334 @ 8'6 112" 0.556 Passed (1.1599) -- 1.0 D + 1.0 S (All Spans) WI Load Den. (in) 0.477 @ 8'6 1/2" _ 0.834. _ PassedL/( 419)_ -- _ 1.0 D + 1.0 S All Spans) eflectlon otters: LL (1/360) and TL (4240). racing (W): All compression edges (top and bottom) must be braced at 4' 4 3/4" o/c unless detailed otherwise. Proper attachment and positioning of lateral racing is required W achieve member stability. A2iWb10Required Dead Snow Tota 1.75" 2S6 598 854 Beveled Plate - SPF 1 3.50" I 3.50" 1 1.75" 1 256 I 598_1. 854 [Blocking I locking Panels are assumed to carry no loads applied directly above them and the full bad Is applied b one member being designed. Dead I Snow ads I is Unilam (PSF) Oto Mitunr wr warrants that the siring of Its prod" will be in accordance with Weyerhaeuser product design oiterla and published design values. Mrhaeuser expressly ddsdalms any other warranties related to Bre software. Refer to current Weyerhaeuser literature for Installation detalls. m.woodbywy.com) A essories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this sonvasm is net intended to umvent the reed for a design Professional as delermined by the authority having Jurisdiction. The designer of record, Insider or framer Is responsible to ire Brat this calculation Is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third -parry certified to sustainable soy standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR -1153 and ESR -1387 aid/or tested cmrdance withapplicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.comis CeV cDdeReporls.avx, product application, input design loads, dimensions and support Information have been provided by Forte Software Operator As Software Operator Job Notes ck Miller iI Consulting Engineers anti Sumayor5 01)836.7833 ;k si le,mg spm Page 10 of 168 System : Roof Member Type : 3olst Budding Use: Residential Building Code : MC Design M¢tisodology, : ASB Member Mich: 0.25/12 QSUSTAINA&E FORESTRY INITIATIVE 10/18.2016 12:03:51 PM Forte v.5.0, Design Engine: V6.4.0.40 2016-2850.4fe Page 1 of 1 :. F O R T E MEMBER REPORT Leve( RR1 w/duff 1 piece(s) 117/8" T]I@ 210 @ 24" OC Overall Sloped Length: 17' 1 5/16" 0 r i to 6" ' R P All locations are meaSured from the outside face of left Support (or left mntilever end).AII dimensions are horizontal. Design Results Actual ®Location Allowed Reston LOP Loads Combination (Pattern) Member Reaction Ibs) 1069 @ 16' 101/2° 1679 (3.50") Passed (64%) 1.15 1.0 D + 1.0 S (AII Spares) Shear (Ibs) 1025 @ 16'9 1/2a 1903 Passed (54a/o) 1.15 1.0 D + 1.0 S All Spans) Moment Ft -lbs 3905 @ 8' 115116- 4364 Passed (89%) 1.15 1.0 D + 1.0 S All Spare) 1)ve load Dell. In 0.507 @ 8'7 15/16' 0.556 Passed ([/394) 1.0 D + 1.0 S (Ail Spans Total load DeB. (in) 0.6910 8'7 9/16" 0.834 Passed (/289) 1.01) + 1.0 S �All Spans) • t enecoon cnrena: atwitnt) aro re(yew). • Bracing (W): All compression edges (hop ant bottom) most be braced at X2 1111W o/c unless detailed otherwise. Proper attachment and positlonlrg of lateral bracing Is required to achieve member stability. r Blocking Panels are assumed W carry no bads applied directly above Mem and the full lead is applied to the member helm desimed Bearing Length mads to supports (lbs) � Supports Total Available Required Dead Snow Total Aupl sodes 1 - Beveled Mate - SPF 3.50" 3.50' 1.75° 256 649 905 Blockhg 2 -Beveled Mate -SPF 3.50^ 1 3.50" 1 175" 1 256 1 813 1069 Bidding r Blocking Panels are assumed W carry no bads applied directly above Mem and the full lead is applied to the member helm desimed Weyerhaeuser Notes - Weyerhaeuser warrant that Me dxing of Its Products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer W current Weyerhaeuser literature for installation details. (www.woodbvwy.mm) Accessories (Rim Board, BlocNrg Panels and Squash Blocks) are not designed by this software. Use of this software Is not Intended to circumvent the need for a design professional as determined by the au8wnty having ju isdrodon. The designer of record, Weber or framer is responsible to assure that this calculation is compudble, with the ovnmll project Products manufactured at Weyerhaeuser facilities are third -party redirect to sustainable f ineshy standards, Weyerhaeuser Engineered Lumlxx Products have been evaluated by ICG ES under technical reports ESR -1153 and ESR -1387 and/or tested In accordance with applicable ASTM standards. PorcuamtmdeevalwUonmpoMrefuWhttp://www.wwdbywy.coftVseMmlCode eWrt,.aspx. The product application, Input design bads, downslons and support Information have been provided by Forte Software Operator Forte Software Operator Jack 10i1101 LEI consulting Engineers anti Surveyors (Bot) 836 7833 lack`r,ei erg com PASSED System : Roof Member Type : lois[ Building Use : Residential Building Code :IBC Design Methodology, : ASB Member Mich: 0.25112 0 SUSTAIWLE TORE5TW INITIATIVE Job Notes 1011812016 1 2:04:18 PM Forte v5.0. Design Engine: V6.4.0.40 2016-2850.4/e Page 11 of 168 Page 1 of i Dead Snow Loads Location sparing (0.90) (3,35) i Comments 1 - Uniform (PSF) b lT 1° 212L' 24" 15.0 35.0 Roof 2 -Tapered (PLP) 6'915J16't1. o lT N/A - 0.0 to 52.0 Weyerhaeuser Notes - Weyerhaeuser warrant that Me dxing of Its Products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer W current Weyerhaeuser literature for installation details. (www.woodbvwy.mm) Accessories (Rim Board, BlocNrg Panels and Squash Blocks) are not designed by this software. Use of this software Is not Intended to circumvent the need for a design professional as determined by the au8wnty having ju isdrodon. The designer of record, Weber or framer is responsible to assure that this calculation is compudble, with the ovnmll project Products manufactured at Weyerhaeuser facilities are third -party redirect to sustainable f ineshy standards, Weyerhaeuser Engineered Lumlxx Products have been evaluated by ICG ES under technical reports ESR -1153 and ESR -1387 and/or tested In accordance with applicable ASTM standards. PorcuamtmdeevalwUonmpoMrefuWhttp://www.wwdbywy.coftVseMmlCode eWrt,.aspx. The product application, Input design bads, downslons and support Information have been provided by Forte Software Operator Forte Software Operator Jack 10i1101 LEI consulting Engineers anti Surveyors (Bot) 836 7833 lack`r,ei erg com PASSED System : Roof Member Type : lois[ Building Use : Residential Building Code :IBC Design Methodology, : ASB Member Mich: 0.25112 0 SUSTAIWLE TORE5TW INITIATIVE Job Notes 1011812016 1 2:04:18 PM Forte v5.0. Design Engine: V6.4.0.40 2016-2850.4/e Page 11 of 168 Page 1 of i iI F O R T E MEMBER REPORT Level, RR2 PASSED 1 piece(s) 11 7/8" TJI@ 210 @ 12" OC Overall Sloped Length: 17' 1 5/16" We' a a locations are measured from the outside face of left support (or left cantilever end).AN dimensions are horizontal. ell n Results Actual ® Loratian Allowed Restdt LDF load[ Combination (Palbarn) ember Reaction (lbs) 914 @ 2 1/2" 1679 3.50" Passed (54%) 11.15 1.0 D + 1.0 5 (All Spans hear Ibs) 883 @ 31/2" 1903 Passed (46%) 11.15 1.0 D + 1.0 5 (All Spans) oment (Ft -lbs) 3715 @ R' 6 1/2" 4364 Passed 'a 1.15 1.0 D + 1.0 5 (All ns) ve Load Defl. (in) 0.565 @ 8'15 1/2" 0.556 Passed 11354 - 1.0 D + 1.0 S (AII ns 1tal Load Defl. (In) 0.657 @ 8'6 1/2" _ 0.834 Passed (11305) 1.0 D + 1.0 5 (AII Slums)_ Deflection criteria: LL (11360) and TL (11240). Bracing (W): All compression edges (top and bottom) must be braced at 3' 3 11/16' o/c unless detailed otherwise. Proper attachment and positioning of ateal tracing Is required to achieve member stability. Total Beveled Plate - SPF I 3.58' 1 3.50" 1 1.75" 1 128 1 786 1 914 18bcMrg I -Beveled Mate - SPF I 3.50' ( 3.50' 1__-_175" 128 l 786 1 914 1abiding Blacking Panels are assumed to carry no loads applied directly above them and the full load Is applied to the member being designed. Location Notes Dead I snow Roof .ryerhaeuser warrants that the Siang of its products will be In accordance with Weyerhaeuser product design criteda and published design values. .ryerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details. ww.woodbywy.com) Accessories (ilio Board, Budding Panels and Slriash Blacks) are not designed by this software. Use of this Software is rot intended to winvent the need for a design professional as determined by the authority hating jurisdiction. The designer of record, builder or framer Is responsible m :me that this cakdation is compatible with the overall project Products manufactured at Weyerhaeuser facilities are Inlmparty certified to sustainable esby standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR -1153 and ESR -1387 and/or tested accordame with applicable ASTM standards. For current code eva[wUm reports refer to http://www.woDdbywy.mm/seMceyS CodeRepDrts.aspx. e product application, input design loads, dimensions and support Information have been provlded by Porte Software Operator Otte Software Operator Job Notes rack Millet EI Consulling Engineers and Surveyors 101)838.7833 ick r, Int -ung com Page 12 of 16E system: Roof Member TYpe: lolst funding Use : Residential Building Code : RIC Design Methodology : ASD Member Pitch: 0.25/12 l SUSTAINABLE FORESTRY INUMME 10/18/2016 12:04:33 PM Forte v5.0, Design Engine: V6.4.0.40 2016-28$0.4te Page 1 of 1 :I F O R T E MEMBER REPORT Leve( RR3 PASSED 1 piece(s) 117/8" T310 210 @ 16" OC 0 Overall Sloped Length: 17' 15/16' 19 H All locations are measured from the outside face of left support (or left cantilever end).AII dimensions are horizontal. 0 Design Results Actual 0 Location Allowed Result LVF Load: Combination (Pattern) Member Reaction (Ibs) 1072 @ 16'10 1/2' 1679 (3.50") Passed 54%) 1.15 1.0 D + 1.0 S (Alf Spans) shear (Ibs) 1027 @ 16'9 1/2" 1903 Passed 54%) 1.15 1.0 D + 1.0 5 All Spam) Morren[ rt -lbs 3631 @ V 13/16" 4364 Passed (88%) 1.15 1.0 D + 1.0 S All Spalls) Uw Load Dell. (in) 0.552 @ Bill 3/8" 0.556 Passed 1/363 - 1.0 D + 1.0 5 (All Spans Total Load DSO. In 0.674 @ B^8= 0.834 Passed 1/297) - 1.0 D + 1.0 S (All Spares) • D2mection Criteria: IL (U360) and TL (4240). • Bracing (Lu): All compression edges (tap and bottom) must be braced at T3 1/16' o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability. Bbcung Panels are assumed to carry no bads applied directly above diem and the full bad is applied to the number being designed. — LOad3 8eadng Length leads to Supports Obs) Snow (1.15) comments; Supports Total Available Required Dead Snow Total Accessories 1 -Beveled Plate - SPF 3.50" 3.50" 1.75" 171 639 805 Blocking L - Beveled Plate - SPF 3.50" 3.50' 1.75° I Bbcmrg Bbcung Panels are assumed to carry no bads applied directly above diem and the full bad is applied to the number being designed. — LOad3 --- Location Spacing Dead (0.90) Snow (1.15) comments; 1 - UnBorm (PBF) 0 to 17'1' 1 16" 15.0 35.0 Roof 2 - Tepared (PLF) 6' b 17' 1' I N/A 0.0 to 89.0 Weyerhaeuser Notes Weyerhaeuser warrants Burt the siring of Its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser espressly disclaims any other warranties related to the software. Refer b content Weyerhaeuser literature for Insblladon details. (www.mDdbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blacks) are net designed by this software. Use of this software is net Intended to urcumvent Bre need for a design professional as determined by Bre authority having Jurisdiction. The designer of record, Wilder or framer Is responsible to assure that this Calculation is Compatible with the ow•nll pmi Products manufactured at Weyerhaeuser facilities are third -party calmed In sustainable forestry standards. Weyedweuser Engineered Writer Products have been evaluated by ICC ES under technical reports ESR -1153 and ESR -1387 and/or tested in acmrdance withapplicable ASTM sandards. For current code evaluation reports refer to http-.//www,woodbywy.com/wMcesls_CodeRepo .aspx. The productapplicatIon, Input design loads, dimensions and support Information have been provided by Forte Software Operator System : Roof Member Type: best Building Use: Residential Building Cade : IBC Design Methodology : ASD Member Pitch: 0.25/12 0 W51NNMLE FORESTRY INIFIATNE Forte Sonware operator Job Notes 10/18/2016 12:04:44 PM .ark Millar Forte v5.0, Design Engine: V6A.0A0 LEI Consulting Engineers and Surveyors 2016-2850.4te (Wit 8367633 jackt, C -eng corn Page 13 of 168 Page 1 of 1 1 F O R T E MEMBER REPORT Leve( FJ2 1 pieces) 117/8" T3I0 360 @ 12" OC Overall Length: 31'2 1/4" n u u n u u n 14' 14'6" 1'64 0 0 0 orations are measured from the outside face of left support (or left cantilever ead).AII dimensions are horizontal. Bsl n Results Actual @ Location Allowed Result LIN load: Combination (Dattnm) !tuber Reaction (Ibs) 2094 @ 29' 5 1/2" 3000 (5.25') Passed 70%) 1.00 1.0 D + 1.0 L (Ad) Spans ear (lbs) 1514 @ 29' 81/4" 1705 Passed (89%) 1.00 1.0 D + 1.0 L (All Spans orient(R-lbs) -2045 @ 29' 5 1/2" 6180 Passed (33%) 1.00 1.0 D + 1.0 L (At Spans) e Load Dell. (in) 0.060 @ 31'2 1/4" 0.200 Passed (2L/694) — 1.0 D + 0.75 L + 0.75 S Alt Spans) tal Load Dell. In 0.102 @ 31'2 1/4" 0.200 Passed 21!406 1.0 D + 0.75 L + 0.75 S (Alt Spans) -Proo' Rating 56 40 Passed -- -- )en¢chon criteda: LL (L/480) and TL (1/240). Nerhatg deflection criteria: LL (0.2") and Il (0.2"). Wading (Lu): All compression edges (top and bottom) mug be braced at T 5 7/8" o/c unless delayed otherwise. Proper attachment and positioning of lateral racing 15 renpnired W achieve member stability. L structural analysis of the deck has not been Performed, )enectlon analysis is based on composite action with a 4ogle laver of 23/32" Weyerhaeuser Edge`" Panel (24' Span Raring) that is glued and nailed down. ddibonal considerations for the T) -Pro" Rating Include: None lpports Total Bearing Length Available Required Dead Loads to Supports (lbs) Fluor Snow Total - Acceiforla Stud wall - SPF 3.50" 2.25' 1.75" 148 276/-36 10 434/-36 1 1/4" Rim Board Beam - SPF 5.25" 5.25' 3.50" 315 732 -57 1047/-57 Blocking stud wall - SPF 5.50" 5.50' 3.50" 1045 1049 459 2598 8bcking Iim Board is assumed to carry all bads applied directly above It° bypassing the member being designed. 4ocldng Panels are assumed In curry no loads applied directly above them and me full bad is applied to the member being designed. Dead I Floor Live I Snow IBd3 location SDeCing (0.90) (1.OD) (1.I3) Commenb Uniform (PSF) 0 b 3]' 2 //4° 12" 23.4 40,0 Resldentlal -Areas Uving Point(PLF) 30'10" 12" 1 779.0 640.0 1 407.0 yerhaeuser warrants that the sizing of Is products will be In accordance with Weyerhaeuser product design criteria and Published design values. yerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for Installation details. vw.woodbywy.com) Accessories (Rim Board, Blocking Pawls and Squash Blocks) are not designed by this software. Use of this software Is not Intended to vmvent the need for a desgn professional as determined by the authority having Jurisdiction. The designs of record, Wider or framer Is responsible to ore that his calculation Is compatible with the overall prolect. Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable stay standards. Weyerhaeuser Engineered Lumber Products have been evaluated by LCC ES under technical reports ESR -1153 and ESR 1387 and/or tested rcordance with applicable ASPM standards. For current code "luabon reports refer to http://www.woodbM.wm/wNice5/s_CedeReparta.aspx. i product application, Input design loads, dimensions and support Information have been provided by Forte Software Operator me Software Operator Job Notes ick Miller J Consulting Engineers and Smvayors 01)8367833 oka Is, ang cnm Page 14 of 168 PASSED System: Four Member Type: 3014 Building Use: Residential Building code: 19C Design Wthaddcgy: ASD PSUSTAINABLE EeRESTRY INITIATIVE 10/18/2016 12:04:57 PM Forte v5.0, Design Engine: V6.4.0.40 2016.2850.41e Page 1 of 1 Project- 2016-2850 Location: FJ2 Floor Joist [2015 International Building Code(2012 NDS)] 1.51N x 9.251N x 7.5 FT @16 O.C. #2 - Douglas -Fir -Larch - Dry Use Section Adequate By: 4.1% Controlling Factor Moment DEFLECTIONS Conter Live Load 0.06 IN U1400 Dead Load 0.04 in Total Load 0.11 IN U838 Live Load Deflection Criteria: U480 Total Load Deflection Criteria: U360 REACTIONS A B Live Load 410 Ib 410 Ib Dead Load 268 Ib 268 Ib Total Load 678 Ib 678 Ib Bearing Length 0.72 in 0.72 in SUPPORTLOADS A B Live Load 308 pif 308 plf Dead Load 201 pB 201 pif Total Load 509 pit 509 pif #2 - Douglas -Fir -Larch Base Values Adjusted Bending Stress: Fb = 900 psi Fb' = 1139 psi Cd=1.00 CF=1.10 Cr -1.15 Shear Stress: Fv = 180 psi FV = 180 psi Cd=1.00 Modulus of Elasticity: E = 1600 ksl E'= 1600 ksi Comp. -L to Grain: Fc -1= 625 psi Fe -1' = 625 psi Controlling Moment: 1949 ft -Ib 3.75 Ft from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Controlling Shear: -615 Ib At a distance d from right support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Comparisons with required sections: Recd Provided Section Modulus: 20.55 in3 21.39 in3 Area (Shear): 5.12 in2 13.88 int Moment of Inertia (deflection): 42.48 in4 98.93 in4 Moment: 1949 ft -Ib 2029 ft -Ib Shear: -616 lb 1665 lb ®3302 Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork, Utah ®mm® 10/1812016 12:03:29 PM Span Length 7.5 it Unbraced Length -Top 0 it Unbraced Length -Bottom 0 it Floor sheathing applied to top of joists -top of joists fully braced. Floor Duration Factor 1.00 Uniform Floor Loading Live Load LL= 40 psi Dead Load DL= 23.4 psi Total Load TL = 63.4 psi TL Adj. For Joist Spacing wT = 84.5 pif Wall Loading Wall One Live Load(J-to Joists): L1= 315 pif Dead Load (-L to Joists)Dl = 227 pif Page 15 of 168 ct: 2016-2850 ion: F,12 -check Joist International Building Code(2012 NDS)] x 9.251N x8.0 FT @16 O.C. louglas-Fir-Larch - Dry Use an Adequate By: 28.2% olling Factor: Moment LECTIONS Center Load 0.10 IN U989 J Load 0.02 in I Load 0.12 IN L1833 Load Deflection Criteria: 0480 Total Load Deflection Criteria: LI360 9mQd-a A R Load 667 Ib 667 Ib I Load 125 Ib 125 Ib I Load 792 Ib 792 Ib ring Length 0.84 in 0.84 in PQRTLOADS A B Load 500 pif 500 pit J Load 94 pit 94 plf I Load 594 pit 594 plf 'ERIAL PROPERTIES Douglas -Fir -Larch ling Stress: Base Fb = Values 900 psi Ad]u% Fb' = 1139 psi Cd=1.00 CF=1.10 Cr -1.15 sheathing applied to top of joists -top of joists fully braced. ar Stress: Fv = 180 psi Fv' = 180 psi Cd=1.00 psf Dead Load DL = 23.4 psf ulus of Elasticity: E = 1600 ksi E'= 1600 ksi rp.1 to Grain: Fc --L= 625 psi Fc -1' = 625 psi trolling Moment: 1583 ft -Ib Ft from left support of span 2 (Center Span) gated by combining all dead loads and live loads on spools) 2 trolling Shear: -64916 a distance d from right support of span 2 (Center Span) rated by combining all dead loads and live loads on span(s) 2 iparlsons with required sections: Read Provided ion Modulus: 16.68 in3 21.39 in3 r (Shear): 5.41 in2 13.88 in2 rent of Inertia (deflection): 47.99 in4 98.93 in4 rent: 1583 ft -Ib 2029 ft -Ib ar: -649 lb 1665 lb ®Jack Miller o LEI Surveyors and Engineers 3302 North Main Street a Spanish Fork, Utah f [Qf C7YZ�S G36'] OX78P7:7 A 8 f 8 T DATA Canter Length 8 ft aced Length -Top 0 ft aced Length -Bottom 0 ft [Floor sheathing applied to top of joists -top of joists fully braced. r Duration Factor 1.00 JOIST LOADING Uniform Floor Loading Center Live Load LL = 125 psf Dead Load DL = 23.4 psf Total Load TL = 148.4 psf TL Adj, For Joist Spacing wT = 197.9 pif Page 16 of 168 Project: 2016-2850 Location: FJ3 Floor Joist 12016 International Building Code(2012 NDS)] ( 2 ) 1.51N x 9.251N x 7.5 FT @19.2 O.C. #2 - Douglas -Fir -Larch - Dry Use Section Adequate By: 8.1% Controlling Factor: Moment '_Properly connect sheathing to double joists/rafters or fully laminate to transfer DEFLECTIONS Center - Live Load 0.05 IN U1850 Dead Load 0.03 in Total Load 0.08 IN U7154 Live Load Deflection Criteria: U480 Total Load Deflection Criteria: U360 REACTIONS A_ B Live Load 744 Ib 744 Ib Dead Load 448 Ib 448 Ib Total Load 1192 Ib 1192 Ib Bearing Length 0.64 in 0.64 in SUPPORT LOADS A Jg Live Load 465 pit 465 pit Dead Load 280 pit 280 pit Total Load 745 plf 745 pit #2 - Douglas -Fir -Larch ®Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork, Utah ... •,sir: . PM A zs n B Controlling Moment: 3755 ft -Ib 3.75 Ft from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Controlling Shear: 1116 lb At a distance d from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Comparisons with required sections: Redd Section Modulus: Base Values Arflusted Area (Shear): Span Length 7.5 it Bending Stress: Fb = 900 psi Fb' = 1139 psi 3755 fl -Ib Unbraced Length -Top 0 it Shear: Cd=1.00 CF=1.10 Cr -1.15 5 IN ABOVE BASE Moment of Inertia (deflection): Unbraced Length -Bottom 0 ft Shear Stress: Fv = 180 psi Fv' = 180 psi pit Floor sheathing applied to top of joists -top of joists fully braced. 384 Cd=1.00 Load Location Xi = 3.75 ft Sheathing/sheetrock applied to bottom of joists -bottom of joists fully braced. Modulus of Elasticity: E = 1600 lust E'= 1600 ksi Floor Duration Factor 1.00 Comp.-Lto Grain: Fc -1= 625 psi Fc - -L'= 625 psi Controlling Moment: 3755 ft -Ib 3.75 Ft from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Controlling Shear: 1116 lb At a distance d from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Comparisons with required sections: Redd Section Modulus: 39.58 tn3 42.78 in3 Area (Shear): 9.3 in2 27.75 in2 Moment of Inertia (deflection): 79.65 in4 255.21 in4 Moment: 3755 fl -Ib 4059 ft -Ib Shear: 1116 lb 3330 lb Decking Information Plywood Thickness: T= 3/4 in Plywood Is Glued: 40 psi Moment of Inertia Calculations For Glued Floor: Joist Area: A -joist= 27.751N2 Plywood Area: A -ply= 2.51N2 Section Centroid: C = 5 IN ABOVE BASE Moment of Inertia (deflection): I -comb = 255 IN4 Uniform Floor Loading Center Live Load LL = 40 psi Dead Load DL = 23.4 psi Total Load TL= 63.4 psi TL Adj. For Joist Spacing wT = 101.4 plf Wall Loading Wall One Live Load (-Lto Joists): Li = 630 pit Dead Load (-L to Joists)D7 = 384 plf Load Location Xi = 3.75 ft Page 17 of 168 rct: 2016-2850 tion: FJ4 r Joist 5 International Building Code(2012 NDS)j N x9.251N x7.5 FT @16 O.C. Douglas -Fir -Larch - Dry Use on Adequate By: 4.1 % rolling Factor: Moment FLECTIONS Center t Load 0.06 IN U1400 id Load 0.04 in al Load 0.11 IN U838 r Load Deflection Criteria: U480 Total Load Deflection Criteria: U360 sPMANC A R r Load 410 Ib 410 Ib id Load 268 Ib 268 Ib al Load 678 Ib 678 Ib tring Length 0.72 in 0.72 In r Load 308 pif 308 pit id Load 201 pif 201 plt al Load 509 pif 509 pit TERIAL PROPERTIES Douglas -Fir -Larch Base Values Adjusted iding Stress: Fb = 900 psi FW= 1139 psi Cd=1.00 CF=1.10 Cr -1.15 tar Stress: Fv = 180 psi Fv' = 180 psi Cd=1.00 lulus of Elasticity: E = 1600 ksi E'= 1600 ksi np.J-to Grain: Fc -1= 625 psi Fc -1'= 625 psi strolling Moment: 1949 ft -ib 75 Ft from left support of span 2 (Center Span) Bated by combining all dead loads and live loads on span(s) 2 strolling Shear: -615 Ib a distance d from right support of span 2 (Center Span) eated by combining all dead loads and live loads on span(s) 2 nparisons with required sections: Recd :tion Modulus: 20.55 in3 21.39 In3 a (Shear): 5.12 int 13.88 in2 hent of Inertia (deflection): 42.48 in4 98.93 In4 hent: 1949 ft -Ib 2029 ft -Ib rar: -615 ib 1665 Ib ®Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork, Utah a®ar®® 10/18/2016 12:04:05 PM Cage JOIST DATA Center Span Length 7.5 ft Unbraced Length -Top 0 ft Unbraced Length -Bottom 0 ft Floor sheathing applied to top of joists -top of joists fully braced. Floor Duration Factor 1.00 Uniform Floor Loading Cents Live Load LL = 40 psf Dead Load DL= 23.4 psf Total Load TL= 63.4 psf TL Adj. For Joist Spacing wT = 84.5 pif Wall Loading Wall One Live Load (J- to Joists): L1 = 315 plf Dead Load (J- to Joists):D1 = 227 pif Page 18 of 168 Ledger L7 Calculations Loads/Reactions Dead Load: 23.4 psi Live Load: 60 psf Span length of rafter/truss: 10 ft Roof rafter/truss spacing: 1.33 ft Uniform load on rafter/truss: 110.9 plf End reaction on rafter/truss: 554.6 lbs Ledger loading: 417 pit Number of Required Screws per Stud in Wall SDWS2240ODB Wood Screw= 285 (per Simpson) CD= 1.00 SDWS2240ODB Wood Screw= 285 Ib Number of required screws: 1.5 screws/ft Stud wall spacing: 1.33 ft Required screws at each stud : 1.9 Use 2 SDWS2240ODB wood screws minimum at each stud Use 2 x 10 ledger Page 19 of 168 !0\ 4()§ \\§§§:§ „K� ra§«§§;�»2|!, jaO� ;„ G[;§§W; e;! | !§ °2`§■22§!E�!`!�§0 'No)E§0cj!moo §5§,� 7 k :°§a:F§§!$B!§§2§§;�®§°®-m`"R2® \ne, , |7§`|�»5�| §/ | §®@l0,:/:N§ E| f.:°ee} t 2C ! it it 2� _ -�!; i2.$ �# a|f{ ,,«' �� r,—t ) $\{k {$ /Z36 ; ©0 i ;!!! =#}§t!;#t.l l;AAit *, 2!I °I§1| m)]!J!!!r,.5'C 77!!Iz!|! ; !|!!!J| to 0 _L! |!|2 ' L D M W y O h N Y O fM g N wow N � O In g .o np O r m N L O M M N 00 CN Q O q O O O O C pN 0O 0O m d N mO I0O hm O(OJ WN h NYI Y d N OM O O 0 0 0 0 O O O W E 0W 1� O f` m O V W d Y O N 0 ' M 4y1 00 W y m Y M VY! NN ^ O O N V Y O W M Y O pp N 00 00 M d N d N C] ] M PI l7 N M O O O m N n N d" m O O N O O O O p Y N O h N O d q O Q O N� � p p p o O O O �• N LLN 'L W g 00 N O n 0 0 Ypl O m ] 0 0 0 0 O ?O{ 0 N M N ¢ II II II II C .C�.. 11 y�y O C UGU O C N 6 II 11 � � •� � 1 II � � L 'J 1 '� 1 yLLvL?q. E y o pDo ILp1 C9 F� c co V.E uP m c > 030 N II N Co - O 11 C T C J F- O U m yp 9 O w �, � N> q N Ay c L$°; IL C T `5_ yA II gi d d y E C6 m._ �' 9£�d� C� C iJ q q m¢ O� 5 O1 Qm y II pC yQg p Oc1a a....95 i �i ¢t«cq.. l�'` E c c II oA C II 'N 6'N ; O ;- p •i+ OI II U~ O O y O m O .m. m¢¢ C U MW W 2 fi LL J F H "j 3 3 6 N d a s ag¢> J > O m O L IL Nm R= Lew M N W G YYYe 21 o b� xl: 2016-2850 tion: FB4 with drift load -Loaded Multi -Span Beam i International Building Code(2012 NDS)] 1.75 IN x 11.875 IN x 12.0 FT Microllam - iLevel Trus Joist on Adequate By: 1.4% rolling Factor. Moment ®Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork, Utah •.iri StruCalc Version 9.0.2.5 10/18/2016 12:03:34 PM JTIONS iminations are to be fully connected to provide uniform transfer of loads to all members TE—CTIONS Center LOADING DIAGRAM r Load 0.34 IN 0418 id Load 0.15 in aI Load 0.49 IN L1291 i Load Deflection Criteria: U360 Total Load Deflection Criteria: U240 kCTIONS A 11 ;Load 7464 He 9051 Ib rd Load 3731 Ib 3462 to •, al Load 11195 Ib 12513 Ib wing Length 2.13 in 2.38 in 9N1.PATA Center in Length 12 If iraced Length -Top 0 8 A 12H g rcaced Length -Bottom 12 ft P Load Duration Factor 1.00 UNIFORM LOADS Center ch Depth 0.00 TERIAL PROPERTIES Uniform Live Load 300 pit Microllam - iLevel Trus Joist Uniform Dead Load 256 plf Base Values Adjusted Beam Self Weight 26 pit iding Stress: Fb = 2600 psi Fb' = 2604 psi Total Uniform Load 582 plf Cd=1.00 CF=1.00 POINT LOADS CENTER SPAN rar Stress: Fv = 285 psi Fv' = 285 psi - Load Number QN Cd=1.00 Jules of Elasticity: E = 1900 ksi E'= 1900 ksi np.1to Grain: Fc -1= 750 psi Fc-�-'= 750 psi Live Load 788 Ib Dead Load 461 Ib Location 2.5 ft TRAPEZOIDAL LOADS Load Number Left Live Load Left Dead Load Right Live Load Right Dead Load Load Start - CENTER OM 572 plf 279 plf 572 plf 279 pif 0 ft SPAN I= 0 pif 0 pif 957 pif 0 plf 1 it strolling Moment: 35210 ft -Ib 12 Ft from left support of span 2 (Center Span) eated by combining all dead loads and live loads on span(s) 2 itrolling Shear: -10259 Ib a distance d from right support of span 2 (Center Span) eared by combining all dead loads and live loads on span(s) 2 nparisons with required sections: 22" Provided lion Modulus: 162.28 in3 164.52 in3 Load End Load Length 12 it 12 ft 12 ft 11 It a (Shear): 53.99 int 83.13 int vent of Inertia (deflection): 840.5 in4 976.83 in4 vent: 35210 ft -Ib 35696 ft -Ib rar: -10259 lb 15794 Ib Page 22 of 168 d m N o o n o M m m m m o m O O O f N h �T N N m M m o 0 M o�'ll m m m m m o o m �' m M M M rn O rn b m Y O n M Y M m� O r y M � C �' M M] J m m q tNp r pOi O p N? O m N O f 11 d C 9 6 N W $ p 0 0 66 0 mb N N � LNO 4 A r c a U `o u- $ c sy�i O d S d O LL 3_ 0O- !� n O nj N O m o O Wo II 11 II O N> Y>@ yyyyyy 6 'C C L N m� II L" :=g V LL L L O k If gal `p d II d O O O g d 6 6 :.I O O O ,c 1.O g :.I g 'O O O C Or LL M I�r Y ac-. I� •� 6'N - d U W R IL IL J (- (- �> "y $$ a m a a a; jW.:;2 O �! rld> O m 9 m �L S j N 00 N m V N m' m mO O! N fV Vml 0 0^ N b t! O VI m_ O V m y O b M Y O O' M m Y ON' Iq GCd O V ' fV j yN m h V N V O n O N N O C O O a ' N 02N O m W O O O O p NL L y ¢¢U d b N O O m r O M O O m O O M O N b O O n N Cm') p N N mO O N N N O N O O O m O O O N O N O O V y� M b M N M O O M mm Y p O O N Y O O m M O y m O O O O N N m O m N O � O O OOi O O O O h O N O N 0 = O O OO OO 0 Ly LL m �j m ON OO o m n p N m O m O N f0 W m �- j N n n mO N S O m E N^ n f m N ow m^ O O O N C O N ` N Q g N 00 O M V N Rj m b� m N � (£q IW 10 N N N O O N N m uj O m a O O m O h m c O- ? = OO O O O c rn Q u f Iml M IA m N p 00 M V N' M V V b m N, m O m 0< O m O o O N V N M N M h^ O M N Q 0.0 m O h O b N ci M N O O w d p q 0 0 0 0c p To m d a3sn ION 1 � C 11 d C 9 6 N W II II N C '1' ^ 4 ^I `$ n o_o c 9 > S c o A r c a U `o u- $ c d S d O LL 3_ m Ol pl Wo II 11 II O N> Y>@ yyyyyy 6 'C C L N m� II L" :=g V LL L L O k If gal `p d II d O O O g d 6 6 :.I O O O ,c 1.O g :.I g 'O O O C Or E C C II E ii L '.:.:_. it I�r Y ac-. I� •� 6'N m m¢ a d U W R IL IL J (- (- �> "y $$ a m a a a; jW.:;2 O �! rld> O m 9 m �L y 0 K LL DL N N W IL r ct: 2016-2850 ion: FB17 Loaded Multi -Span Beam i International Building Code(AISC 14th Ed ASD)) -50 W8x10 x 8.0 FT on Adequate By: 97.4% rolling Factor. Moment LLECTIONS Center Load 0.06 IN U1551 it Load 0.05 in sl Load 0.11 IN U838 Load Deflection Criteria: U360 Total Load Deflection Criteria: U240 ICTIONS A a Load 1500 Ib 1500 Ib it Load 1290 Ib 1290 Ib it Load 2790 Ib 2790 Ib ring Length 0.51 in 0.51 in IM DATA Center n Length 8 ft raced Length -Top 0 It raced Length -Bottom 8 It (10 - A992-50 parties !Id Stress: Fy = xfulus of Elasticity: E = pth: d = zb Thickness: tw = urge Width: bf = urge Thickness: if = rtanoe to Web Toe of Fillet: k = sment of Inertia About X -X Axis: Ix = ction Modulus About X -X Axis: Sx = istic Section Modulus About X -X Axis: Zx = .ign Properties per AISC 14th Edition Steel Manual: urge Buckling Ratio: FBR = owable Flange Buckling Ratio: AFBR = :b Buckling Ratio: WBR = owable Web Buckling Ratio: AWBR = strolling Unbraced Length: Lb = niting Unbraced Length - for lateral -torsional buckling: Lp = urinal Flexural Strength wl safety factor: Mn = Controlling Equation: F3-1 ab height to thickness ratio: hltw = niting height to thickness ratio for eqn. G2.2: hltw-limit = Factor: CV = Controlling Equation: 132-2 aminal Shear Strength wl safety factor: Vn = 50 ksi 29000 ksi 7.89 in 0.17 in 3.94 in 0.21 in 0.51 in 30.8 in4 7.81 in3 8.87 in3 9.61 9.15 40.47 90.55 0 It 2.97 It 21870 ft -Ib 40.47 53.95 1 26826 Ib strolling Moment: 11080 ft -lb Ft from left support of span 2 (Center Span) sated by combining all dead loads and live loads on span(s) 2 strolling Shear: -2790 Ib right support of span 2 (Center Span) Dated by combining all dead loads and live loads on span(s nparisons with required sections: Redd Provided nent of Inertia (deflection): 8.82 in4 30.8 In4 nent: 11080 ft -Ib 21870 ft -lb :ar -2790 lb 268261b ®Jack Miller LEI Surveyors and Engineers 3302 North Main Street_ Spanish Fork, Utah 9.0.2.5 101182016 12:04:00 PM UNIFORM LOADS Center Uniform Live Load 0 pif Uniform Dead Load 0 plf Beam Self Weight 10 pit Total Uniform Load 10 pit POINT LOADS •CENTER Load Number QO SPAN Live Load 3000 Ib Dead Load 2500 Ib Location 4 ft Page 24 of 168 00 SM V N N W W (7nmrO!(00 OW ONS d �m ��ONOdM�OOO f mfVOON'--0$�omOO N N CO 00 N A II 8 '� d O II 11 II O A { LCA. .2 O nl' IIC �d M ad "# 5 �•` m SNy or. 0.9 O N O ON (V O xu•"'E x C c� pVVVVVV�� ttDD O O W u II C? 6 � 0 AA LC EILI E C_6 d w N V Qpp yey$ N.zv If 11 11 �LL ees, Q yyW O :A.I O, LL F Exxll.sax A A �'` O �' N A dy B. N NO dl O C N N N O N S NN m Om MN O OOmWW OENCN ` ON Nn O O O VW O Y zm 'G O O d E G O N O 0 L' L' A W v� 'L L' y �/1 W .52 y0 0 0 O m 6� U W 6LLLLJrr 3 3 3 3a Aa VY aad2Q8250 JJ V M4. L grc_LLfl0 W(L.F JaJar A N N O O N 1� O M^ ONO O r NO 00 00 m d N w [O O 0 0 0 Q O,Q� W 0 M m �O+l � l www 0 W m m I(j r N r N N N O O N O m N d S O 0m 00000 O N N N O O N � O M M O N O O O W N N O O O N N N N N O O O '-' N m N M O f0 O O •- d Y O O O Y O O W � Op m r Yo �- O g W- O^ O O O O O p S Ip OOO OO L0 d rn W YL L O d O o O CNJ V MT O O d m^ N W N m S ' W O O O EN^ O n lN0 N d l9 O [[YYCii' VV .20 O O O G N O M N M O N O N" N N O O O 1� f` n W ( dO O _N E N N O N N V O N \C O�md Nyj NW m]WNNd Nd dN dN N SScN W26N tW+l OhO O OO 0 00S �[ W d NO N SO SO mN Od Nm m W O N SO mN ah N N WO O O W W W N pp pp N " �NO M N m NM 8 N M W OY 0O hN O-OY "O N O0 �!0 O0 OY O o O O C C O Y 2x A II 8 '� II 11 II O A { LCA. .2 O nl' IIC ad "# 5 �•` m SNy or. 0.9 '� a— xu•"'E x C c� x= C it C ,v O.c `u a I o$ o 'I33 '� O II u II C? 6 2 0 3 J '_ C AA x$i i> oy o °- EILI E C_6 d w N V Qpp yey$ N.zv If 11 11 �LL ees, Q V O O A ASK L'W O :A.I O, LL F Exxll.sax A A �'` O �' N A dy B. N NO dl O C V V 11 W O g p a s vd .�J s O U '� 'C N O II R C fix. y' O .. v zm 'G O O d E G O N O 0 L' L' A W v� 'L L' y �/1 v 0' .52 y0 0 0 O m 6� U W 6LLLLJrr 3 3 3 3a Aa VY aad2Q8250 JJ V M4. L grc_LLfl0 W(L.F JaJar 610>OM d I° N pp O b F O N b O 1° O O lO V f0 h b O � Op V_ N N b OI O d O E b b O M M O M OI b y b O Y b M epp�}i M 0 O O M^ O N b' yj N °� N V CI mO� n r p m O O O Oj !� N d. O m N� M O N N O N N N N O C O^ d� N Ol v a h " C� Not C° O O O O ^ n O Yy VVV11! y. LpYI �y b Ob OO E b b0 N Q M Q OI N Y W O Y O N m (O N b O h ^ C y ^ N 41 N^OOb;:ON6C; N`C)NMOO 66O O OO OO OO G b C 00 00 O gg W1.2 O 0^ OI O �^ C; v o' �3 c N d b N O O I°OM Vb b M 0I� N^OOM 0 b M O O bVO OtO b N b b b O8 Y E bI� ONM OM M O 10 tN Mh Mh N 0 0 0 0 C Q 8 O Q O b O O N O 4--0 c t`TAya1 yW 0 0 0 0 N C L O 01 �oom� a c�M o a o�2 o0o a a m mmmm���o$ ^ NN NM Lq 6—mc1 OOT 04ga m' o N O^ O O ^^ b ] 0 0 0 `T O--- Of d O^ O� T d O O^ O a N O N O OC (V C �jja q C O O 0' O c d bN O L` o" O O C4 0' O O O II II C II C II 2 O u C w p yOtu —°��da n 'mcia9 nc3�E 2nJ g,�•._. 'c 3 v m I I ° ° c o cl A e m° d O° p�° i c� i .2 o F �YY0-0y Sc i i o o•� E t 3 d m m X m n u n 11 m t u m Yr d l° a s LL c s 3 II = x°' v E ^ma c 6p n �p . o fr a e 3 n n ;i 11 A. 3 i ap m~ c c° 'c 9 n 'c IL y v'n ° b n g_ I 0 cpQ�jsl ° z ° O yy C J .O 9 9 9 0 _O pi ;aQ E H ° ° v I^ .' n a O IS m m m QU W m IL J! -F �i 3 3 36 Ad a a ice. AA> Omam Lm m IL �I.)lif/1 W It.,: 'a a k 11 11 !{ #0 « { $f \ f{{\ ! i{ \)2\k { §k!�{�#�k-/�'s-E= -il 4�{«,k(!§�aC .2 20 m (§2)): : „ , ! „ „ ,®|)r20 § �,_ \ �,..®0 k 11 11 !{ #0 « { $f \ f{{\ ! i{ \)2\k { §k!�{�#�k-/�'s-E= -il 4�{«,k(!§�aC E O f O O N o 0 0 0 � e ,, F O$ E t ONj' n V m O 8 N Q O N a O O Cl a N g N O O O OO CN O O j W OC ONp Y E O f O S N .r- N O N O LY N a C O ME p y F (O N N N O O O N N 0OI O m O O N Cl a x$ g n Y 9$ S$ 9 Y ' n N N 00 ROI 0 pp O O o8 -0.78C5 $ LLp OOO OO 0 g N N N O Q l' ' O l7 N O O O m m f0 R) .. N N N I. 1� S$$ E ro g n N V °O', 8� ,',� � o�� CJ O g a'j W 'a m O OI N O Z'j (V b r�pp ttpp 1p N IIVV ' u O O O O ¢pyc Y N00 NN cq N�-0� EN10N �OtiapO p<N(O N 0Y pO NNOI[ N 0y, ]] a c$ o 0 0 0 N mN a E ] mNNV0$�m$pagSo'-oo`8 b"o 0000 < O x x II II C t�. 'I it ` iOY n o ° 2 i. L0 ° N G It 11 < Y II 6 & A a s x�' -� a cg E. 3 Yo 1 IL atl 9 ti `o �r t;_ m 3 °° Y o ; O c g 6` c g c Y Y L W N y O V II P$ 0 y O J F O U O A O Y u J _Y ~ E �a u g9=vtGactrg [� II ,I Y Y Y�¢aPELL E °SAA n `cA I'°orn It 1.5 ny`o o a'coa9— �.ti gd otL ;xp 2�n�� g m ¢¢ Qc (rS In X w f 1 ; 3 3 3 a Ya�aa'¢> 3�ti>O m aau°IG`u'iu0 N W L� �a �a1b- Page 28 of 168 mN 00N VNNNWNV (WM (VlyO0 OW bb WN OOENNO1[IOdOdWW YOyn O'NOn O {p V1 O N O0 0ON NN^O OO p O ^ V f V O OS a 0 0 0 0 m N fl1 suoaelnalea pepeae eaS yNy� N N< O O O E W n qr N d 11 m S D N W 0 O N 0 W N 7 N 0 d E a^^^ ]] d d N0 ^^ N N W [ O g 0 0 0 p s N q •- ypQO W ® d1 C N m N N !rS V t0 n G O OO OO O C Op O C! n O N W O W O O N m N N^ N j j o N a 0 0 0 E W W n ClO N N N O 8 N N O ^ N 0 0 '0 OO O ffVV 1NA `�' pO q O O 0' 0' L' W O O 0 Y O C F N p p ppp O OO O pp G � N eO0 L SSpy pp y� ppp pppp � p " & I E YO O dXi c g m N N p n p. W O N O O W O d d mO app ONS q N p N, O an d O p O N W N W W W p o W Y O o O Y O p O OB N W N O^ 00 N V N S O N (O ^ O m N Cl 0 O W h 0 O N Y W cooO 0 a " d o 6 6 o c c g' m d 4 N /O� p pp yy yy S^^ W. pp pp pp aa�� O W m m S O N 0 8 W N Q 1n 0 0 0 0 P O^ WW d ffVV ^ N ^ 2^ O O O O C m N N 11 II II I� II � J O c I n�CI p 11 J a '� onoo Q. IL �.a Bioco E �Yo8 °i Sc fi`o `�O 'e ha= n 8 8 3a o71- c'� o.l-i nLL v. kF w m x�'� �x 2e n n u Ep .Eaanul: ca eW cg 3ui c°n n vdi u ca w s?v av5c' S��^i ; OQrcn o u ° E AA n ca 1 .�I x 'g qq Ny OI II rl O O Y C C i 0 Y Y ''ypC O O 01 E O E.9 O�J yqy yAy l ti IS IE aR IG S K a I W O" J f f �r '.�. S; O. W L a a a J R> J i N O m y G fi 0 6_ IL IL N Vl W IL w� J a J a 12 Page 29 of 168 U: 2016-2850 ion: TB16 Loaded Multi -Span Beam Interna0onal Building Code(2012 NDS)j 1.751N x 11.875 IN x 12.0 FT Microllam - iLevel Trus Joist )n Adequate By: 18.9% oiling Factor: Shear Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork. Utah StruCaic Version 9.0.2.5 10/16/201612:03:41 PM lTloao minations are to be fully connected to provide uniform transfer of loads to all members 76.35 in3 1ECTIDNS Center Load 0.19 IN U751 i (Shear): LOADING DIAGRAM 62.34 int d Load 0.13 in 387.31 M4 732.62 in4 lent: iI Load 0.32 IN U454 26772 ft -Ib ar: -99661b Load Deflection Criteria: L/360 Total Load Deflection Criteria: U240 Load 2969 Ib 10218 Ib d Load 1908 He 7214 Ib it Load 4875 Ib 17432 Ib ring Length 1.24 in 4.43 in IM-QA79 Carte n Length 12 R ,__ _ _,._. -. ._ ... raced Length -Top 0 R A r�r' B raced Length -Bottom 12 R Load Duration Factor 1.00 :h Depth 0.00 UNIFORM LOADS Uniform Live Load Center 440 pif IERIAL PROPERTIES Microllam - iLevel Trus Joist Uniform Dead Load 258 plf Base Values Adiusted Beam Self Weight 19 pif ding Stress: Fb = 2600 psi Fb' = 2604 psi Total Uniform Load 717 pif POINT LOADS CENTER SPAN Cd --1.00 CF=1.00 ar Stress: Fv = 285 psi Fv' = 285 psi - Load Number Qua TWO Cd=1.00 Live Load 2690 Ib 5217 Ib ulus of Elasticity: E = 1900 ksi E'= 1900 ksi Dead Load 1312 Ib 4478 Ib ip.1 to Graln: Fc -1= 750 psi Fc -1' = 750 psi Location 11.5 It 11.5 It trolling Moment: 16565 ft -Ib 4 Ft from left support of span 2 (Center Span) sated by combining all dead loads and live loads on span(s) 2 trolling Shear: -9966 lb a distance d from right support of span 2 (Center Span) rated by combining all dead loads and live loads on span(s) 2 1parlsons with required sections: Read lion Modulus: 76.35 in3 123.39 in3 i (Shear): 52.45 int 62.34 int lent of Inertia (deflection): 387.31 M4 732.62 in4 lent: 16565 ft -Ib 26772 ft -Ib ar: -99661b 11845 lb Page 30 of 168 Project: 2016-28W Location: TB17 Multi -Loaded Multi -Span Beam [2015 International Building Code(2012 NDS)] (2) 1.75 IN x 11.875 IN x 8.0 FT 1.9E Microllam - iLevel Trus Joist Section Adequate By: 8.7% Controlling Factor. Moment uniform transfer of loads to all DEFLECTIONS Center Base Fb = Live Load 0.10 IN L/922 Adiusted Fb' = Dead Load 0.07 in 41.56 in2 Total Load 0.18 IN U545 Live Load Deflection Criteria: L/360 Total Load Deflection Criteria: U240 REACTIONS A a Live Load 4480 Ib 2403 Ib Dead Load 3345 to 1647 Ib Total Load 7825 Ib 4050 Ib Bearing Length 2.98 in 1.54 in BEAM DATA Center Span Length 8 It Unbraced Length -Top 0 0 Unbraced Length -Bottom 8 ft Live Load Duration Factor 1.00 Notch Depth 0.00 1.9E Microllam - iLevel Trus Joist Bending Stress: Base Fb = Values 2600 psi Adiusted Fb' = 2604 psi 41.56 in2 Cd=1.00 CF=1.00 488.41 1n4 Moment: Shear Stress: Fv = 285 psi Fv' = 285 psi 3.5 ft Cd=1.00 Modulus of Elasticity: E = 1900 ksi E'= 1900 ksi Comp. 1 to Grain: Fc -1= 750 psi Fc -1'= 750 psi Controlling Moment: 16416 ft -Ib 3.52 Ft from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Controlling Shear: 6116 lb At a distance d from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Comparisons with required sections: Reo'd Section Modulus: 75.66 in3 82.26 in3 Area (Shear): 32.19 int 41.56 in2 Moment of Inertia (deflection): 215.26 in4 488.41 1n4 Moment: 16416 ft -Ib 17848 ft -Ib Shear: 6116 lb 7897 lb ®Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork, Utah '. P.I;t ✓'i. I age v aft B Uniform Live Load 100 pit Uniform Dead Load 59 pit Beam Self Weight 13 pit Total Uniform Load 172 pit Load Number QM Live Load 3073 Ib Dead Load 1798 Ib Location 3.5 ft Load Number 46e Left Live Load 860 pit Left Dead Load 748 pit Right Live Load 860 pit Right Dead Load 748 pit Load Start 0 ft Load End 3.5 It Load Lenoth 3.5 ft Page 31 of 168 CL 2016-2850 lion: TB18 -Loaded Multi -Span Beam i International Building COde(AISC 14th Ed ASD)) -50 W 10x88 x 22.0 FT on Adequate By: 21.3% rolling Factor: Deflection :LECTIONS Center Load 0.53 IN U495 id Load 0.37 in it Load 0.91 IN U291 Load Deflection Criteria: U360 Total Load Deflection Criteria: LI240 ICTIONS A a Load 9905 Ib 13171 Ib d Load 7382 Ib 9293 Ib il Load 17287 Ib 22464 Ib ring Length 1.49 in 1.49 in IM DATA Center n Length 22 ft raced Length -Top 0 it raced Lenclh-Bottom 22 It )x88 - A992.50 parties :Id Stress: Fy = lulus of Elasticity: E _ pth: d = ib Thickness: tw = Inge Width: bf = Inge Thickness: If = dance to Web Toe of Fillet: k = anent of Inertia About X -X Axis: Ix = ction Modulus About X -X Axis: Sx = istic Section Modulus About X -X Axis: Zx = ign Properties per AISC 14th Edition Steel Manual: Inge Buckling Ratio: FBR = owable Flange Buckling Ratio: AFBR = it, Buckling Ratio: WBR = owable Web Buckling Ratio: AWBR = strolling Unbraced Length: Lb = iifing Unbraced Length - for lateral -torsional buckling: Lp = minal Flexural Strength wl safety factor: Mn = Controlling Equation: F2-1 rb height to thickness ratio: h/lw = siting height to thickness ratio for eqn. G2-2: h/tw-limit = Factor: Cv = Controlling Equation: G2-2 minal Shear Strength w/ safety factor: Vn = 50 ksi 29000 ksi 10.8 in 0.61 in 10.3 in 0.99 in 1.49 in 534 In4 98.5 In3 113 in3 5.2 9.15 12.93 90.55 Oft 9.29 It 281936 ft -Ib 12.93 53.95 1 130680 Ib trolling Moment: 180982 ft -Ib 0 Ft from left support of span 2 (Center Span) sated by combining all dead loads and live loads on span(s) 2 trolling Shear: -22464 Ib right support of span 2 (Center Span) fated by combining all dead loads and live loads on span(s 1parlsons with required sections: .RReq-d Provided lent of Inertia (deflection): 440.05 In4 534 In4 lent: 180982 ft -Ib 281936 ft -Ib ar: -22464 Ib 130680 lb ®Jack Miller Ila— Utah LEI Surveyors and Engineers3302 North Main Street .,•iii. Version 9.0.2.5 10/182016 12:03:45 PM UNIFORM LOADS Center A 22 it B UNIFORM LOADS Center Uniform Live Load 40 plf Uniform Dead Load 24 pit Beam Self Weight 88 plf Total Uniform Load 152 pit POINT LOADS -CENTER Load Number QOM SPAN I= Live Load 10218 Ib 11978 Ib Dead Load 7214 Ib 7007 Ib Location 11 It 14 ft Page 32 of 168 Project: 2016-2850 Location: TB19 Multi -Loaded Multi -Span Beam [2015 International Building Code(AISC 14th Ed ASD)] A992-50 W 10x77 x 22.0 FT Section Adequate By: 21.8% Controlling Factor. Deflection DEFLECTIONS Centsr Live Load 0.53 IN U498 Dead Load 0.37 in Total Load 0.90 IN U292 Live Load Deflection Criteria: L/360 Total Load Deflection Criteria: L/240 REACTIONS A a Live Load 7541 Ib 13346 Ib Dead Load 5652 Ib 10427 Ib Total Load 13193 Ib 23773 Ib Bearing Length 1.37 in 1.37 in If = 0.87 in BEAM DATA Span Length Center 22 ft Unbraced Length -Top 0 ft Unbraced Length -Bottom 22 It W10x77 - A992-50 Properties: Yield Stress: Fy= 50 ksi Modulus of Elasticity: E = 29000 ksi Depth: d = 10.6 in Web Thickness: tw= 0.53 in Flange Width: bf= 10.2 in Flange Thickness: If = 0.87 in Distance to Web Toe of Fillet: k = 1.37 in Moment of Inertia About X -X Axis: Ix = 455 in4 Section Modulus About X -X Axis: Sx = 85.9 in3 Plastic Section Modulus About X -X Axis: ZX = 97.6 in3 Design Properties per AISC 14th Edition Steel Manual: Flange Buckling Ratio: FBR = 5.86 Allowable Flange Buckling Ratio: AFBR = 9.15 Web Buckling Ratio: WBR= 14.83 Allowable Web Buckling Ratio: AWBR = 90.55 Controlling Unbraced Length: Lb = 0 ft Limiting Unbraced Length - for lateral -torsional buckling: Lip = 9.18 it Nominal Flexural Strength w/ safety factor: Mn = 243513 ft -Ib Controlling Equation: F2-1 Web height to thickness ratio: h/tw = 14.83 Limiting height to thickness ratio for eqn. G2-2: h/tw-limit = 53.95 Cv Factor: Cv = 1 Controlling Equation: G2-2 Nominal Shear Strength w/ safety factor: Vn = 112360 Ib Controlling Moment: 169421 ft -Ib 14.08 Ft from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Controlling Shear: -23773 Ib At right support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s Comparisons with required sections: Read Provided Moment of Inertia (deflection): 373.65 in4 455 in4 Moment: 169421 ft -Ib 243513 ft -Ib Shear: -23773 lb 112360 lb ®Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork. Utah ....•,iii Version 9.0.2.5 Uniform Live Load 40 plf Uniform Dead Load 23 plf Beam Self Weight 77 plf 10/18/2016 12:03:48 PM 22 n Load Number One Two Three Live Load 9455 Ib 3789 Ib 5803 Ib Dead Load 5531 Ib 2216 Ib 3395 Ib Load Number One Left Live Load 120 plf Left Dead Load 341 plf Right Live Load 120 plf Right Dead Load 341 plf Load Start 14 It Load End 22 ft Page 33 of 168 scL 2016-2850 Ilion: TB20 FLoaded Multi -Span Beam 5 International Building Code(AISC 14th Ed ASD)) 2-50 WlOx100 x 26.0 FT ion Adequate By: 182% Tolling Factor. Deflection FLECTIONS Cents 3 Load 0.66 IN U474 3d Load 0.44 in at Load 1.10 IN U284 3 Load Deflection Criteria: U360 Total Load Deflection Criteria: L1240 ACTIONS A 11 3 Load 7911 Ib 13381 Ib ;d Load 5928 Ib 9128 Ib at Load 13839 Ib 22509 Ib )ring Length 1.62 in 1.62 in NUM Center ;n Length 26 R )raced Length -Top 0 It )raced Length -Bottom 26 It 0x100 - A992-50 Iperties old Stress: Fy = Ddulus of Elasticity: E = 3pth: d = 'eb Thickness: tw = ange Width: bf = ange Thickness: U = stance to Web Toe of Fillet: k = oment of Inertia About X -X Axis: Ix = ection Modulus About X -X Axis: Sx = astic Section Modulus About X -X Axis: ZX = ;Ign Properties per AISC 14th Edition Steel Manual: ange Buckling Ratio: FBR = lowable Flange Buckling Ratio: AFBR = eb Buckling Ratio: WBR = lowable Web Buckling Ratio: AWBR = )ntrolling Unbraced Length: Lb = niting Unbraced Length - for lateral -torsional buckling: Lp = )minal Flexural Strength w/ safety factor. Mn = Controlling Equation: F2-1 eb height to thickness ratio: h/tw = niting height to thickness ratio for eqn. G2.2: h/tw-limit = i Factor: Cv = Controlling Equation: (32-2 )mina) Shear Strength w/ safety factor: Vn = 50 list 29000 ksi 11.1 in 0.68 in 10.3 in 1.12 in 1.62 in 623 in4 112 in3 130 in3 4.6 9.15 11.56 90.55 Oft 9.36 R 324351 ft -Ib 11.56 53.95 1 150960 Ib strolling Moment: 194103 ft -Ib i.6 Ft from left support of span 2 (Center Span) Bated by combining all dead loads and live loads on span(s) 2 strolling Shear: -225091b right support of span 2 (Center Span) Bated by combining all dead loads and live loads on span(s nparisons with required sections: Reed Provided ,hent of Inertia (deflection): 527.25 in4 623 in4 nent: 194103 ft -Ib 324351 ft -Ib ear: -22509 lb 1509601b ®Jack Miller LEI Surveyors and Engineers 3302 North Main Street a Spanish Fork, Utah late8➢ai01][1® 9.0.2.5 10/18/2016 12:03:50 PM UNIFORM LOADS • 260 40 pit UNIFORM LOADS Center Uniform Live Load 40 pit Uniform Dead Load 23 plf Beam Self Weight 100 plf Total Uniform Load 163 plf POINT LOADS - CENTER Load Number QN SPAN in Live Load 12063 Ib 8189 Ib Dead Load 7057 Ib 4791 Ib Location 15.5 ft 18 It Page 34 of 168 Project: 2016-2850 Location: TB21 Multi -Loaded Multi -Span Beam [2015 International Building Code(AISC 14th Ed ASD)] A992-50 W10x15 x 7.5 FT (5+ 2.5) Section Adequate By: 57.8% Controlling Factor: Moment DEFLECTIONS Center 13W Live Load -0.02 IN U3691 0.06 IN 21./942 Dead Load -0.01 in 0.05 in Total Load -0.03 IN 02042 0.11 IN 20522 Live Load Deflection Criteria: U360 Total Load Deflection Criteria: U240 REACTIONS A 1i Live Load -2284 Ib 7539 Ib Dead Load -1834 Ib 6404 Ib Total Load -4118 Ib 13943 Ib Uplift (1.5 F.S) 4118 Ib 0 Ib Bearing Length 0.00 in 0.57 in BEAM DATA Cents Right Span Length 5 ft 2.5 ft Unbraced Length -Top 0 ft 0 It Unbraced Length -Bottom 5 ft 2.5 ft W1 Oxl 5 - A992-50 Properties Yield Stress: Fir 50 ksi Modulus of Elasticity: E = 29000 ksi Depth: d = 10 In Web Thickness: tw= 0.23 in Flange Width: bf= 4 i Flange Thickness: if = 0.27 in Distance to Web Toe of Fillet: k = 0.57 in Moment of Inertia About X -X Axis: lx= 68.9 in4 Section Modulus About X -X Axis: Sx = 13.8 in3 Plastic Section Modulus About X -X Axis: Zx = 16 in3 Design Properties per AISC 14th Edition Steel Manual: Flange Buckling Ratio: FBR = 7.41 Allowable Flange Buckling Ratio: AFBR = 9.15 Web Buckling Ratio: WBR = 38.52 Allowable Web Buckling Ratio: AWBR = 90.55 Controlling Unbraced Length: Lb = 5 ft Limiting Unbraced Length - for lateral -torsional buckling: Lp= 2.86 ft for Eqn. F2-2: Lr = 8.61 ft Nominal Flexural Strength w/ safety factor: Mn = 34034 ft -Ib Controlling Equation: F2-2 Web height to thickness ratio: h/tw = 38.52 Limiting height to thickness ratio for eqn. G2-2: h/tw-limit = 53.95 Cv Factor: Cv= 1 Controlling Equation: G2-2 Nominal Shear Strength w/ safety factor: Vn = 46000 Ib Controlling Moment: -21572 ft -Ib Over right support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2, 3 Controlling Shear: 9433 Ib At left support of span 3 (Right Span) Created by combining all dead loads and live loads on span(s Comparisons with required sections: Redd Provided Moment of Inertia (deflection): 31.64 in4 68.9 in4 Moment: -21572 ft -Ib 34034 ft -Ib Shear: 9433 Ib 46000 lb pag^ ®Jack Miller LEI Surveyors and Engineers / 3302 North Main Street Spanish Fork, Utah --- Version 9.0.2.5 10/1811016 12:04:14 PM Uniform Live Load 40 pif 230 A sn B -zsn Uniform Live Load 40 pif 230 pif Uniform Dead Load 24 pif 398 pit Beam Self Weight 15 pff 15 pg Total Uniform Load 79 off 643 elf Load Number QU Live Load 4480 Ib Dead Load 3345 Ib Location 2.5 ft Page 35 of 168 d: 2016-2850 on: TB22 .oaded Mufti -Span Beam International Building Code(AISC 14th Ed ASD)) 50 W 10x17 x 7.5 FT (5 + 2.5) .n Adequate By: 2.2% tiing Factor: Moment LECTIONS Center Rtehl Load -0.03 IN L/2345 0.10 IN 20590 ILoad -0.02 In 0.07 in Load -0.04 IN U1385 0.18 IN 2L/342 Load Deflection Criteria: U360 Total Load Deflection Criteria: U240 CTION A B Load -4143 Ib 14229 Ib ILoad -2460 Ib 11672 Ib Load -6603 Ib 25901 It, t(1.5 F.S) -6603 Ib 0 Ib ing Length 0.00 in 0.63 in M DATA Center Rioht i Length 5 ft 2.5 ft aced Length -Top 0 ft 0 ft aced Length -Bottom 5 It 2.5 It viii N��. erfles: $'tgttt Uniform Live Load 40 d Stress: Fy = 50 ksi lulus of Elasticity: E = 29000 ksi tth: d = 111 in b Thickness: tw= 0.24 in ige Width: bf= 4.01 in ige Thickness: if = 0.33 In tance to Web Toe of Fillet: k = 0.63 in rent of Inertia About X -X Axis: Ix= 81.9 in4 lion Modulus About X -X Axis: Sx = 16.2 1n3 stic Section Modulus About X -X Axis: Zx = 18.7 1n3 gn Properties per AISC 14th Edition Steel Manual: ige Buckling Ratio: FBR = 6.08 wattle Flange Buckling Ratio: AFBR = 9.15 It Buckling Ratio: WBR = 36.83 wable Web Buckling Ratio: AWBR = 90.55 trolling Unbraced Length: Lb = 5 It siting Unbraced Length - for lateral -torsional buckling: Lp = 2.98 ft for Eqn. F2.2: Lr = 9.15 ft nine] Flexural Strength w/ safety factor: Mn = 40658 ft -Ib Controlling Equation: F2-2 It height to thickness ratio: Whir = 36.83 siting height to thickness ratio for eqn. G2-2: h/tw-limit = 53.95 Factor: Cv = 1 Controlling Equation: G2.2 ninal Shear Strength w/ safety factor: Vn = 48480 Ib trolling Moment: -39785 ft -Ib !r right support of span 2 (Center Span) aled by combining all dead loads and live loads on span(s) 2, 3 trolling Shear: 16591 Ib eft support of span 3 (Right Span) gated by combining all dead loads and live loads on span(s iparisons with required sections: Recd Provided lent of Inertia (deflection): 57.37 in4 61.9 in4 lent: -39785 ft -Ib 40658 ft -Ib it: 16591 Ib 484801b ®Jack Miller v LEI Surveyors and Engineers 3302 North Main Street m Spanish Fork, Utah Version 9.0.2.5 10/16/2016 12:04:19 PM UNIFORM LOADS ptnter $'tgttt Uniform Live Load 40 pit 40 pit A pit 23 pit Beam Self Weight 17 pif 17 sit B It UNIFORM LOADS ptnter $'tgttt Uniform Live Load 40 pit 40 pit Uniform Dead Load 24 pit 23 pit Beam Self Weight 17 pif 17 pit Total Uniform Load 81 pit 80 pit Load Length RIGHT SPAN 5 It Load Number POINT LOADS - RIGHT Load Number One SPAN 7sys 120 pit Live Load 2403 to 6483 to Right Live Load Dead Load 1647 Ib 4704 ib 341 pit Location 2.5 ft 2.5 ft Load End TRAPEZOIDAL LOADS Load Number - CENTER SPAN O0a Left Live Load 120 plf Left Dead Load 341 pit Right Live Load 120 pit Right Dead Load 341 pit Load Start 0 It Load End 5 It Load Length RIGHT SPAN 5 It Load Number One Left Live Load 120 pit Left Dead Load 341 pit Right Live Load 120 pit Right Dead Load 341 pit Load Start 0 ft Load End 2.5 ft Load Length 2.5 ft Page 36 of 168 N N N O O N OW N N nO WN N E�SOMhN6 1 OONNW N O C V mmpOO E N N ON dN OQdQl O NN O][ 0 N n pJ 2Q O A e .2 o d d a ad Q B d O O OO p O N ,o` g�A` w e g�g'� 2 Itmo OOOi 46 ca T3'�c�d E co«° 3" 7 f o't � 5O1 3B $; q18 H v yrY2' n e u n Q� cna�¢n numOC �s o� 3 u mm n �.R Ai r•il om m m N p O CI S N d O N O N m O N N pOp d d d N d O S y N M N M fm0 S t� H m Q S 0' O S O Y C1 d�W 'X' � ro m m� U c m LL ri J F F 3 3 — �25' Ooeo 4 m m_ a' IL N N W IL J Q J a f N C(wj W !L`ate ® N m m O p0 00 I(1 h 00 N NO, O N O CS N IO R. I� ^ d t'n S O 0 V E M N M p C1 C j M d N M "' N 8 M C g u •- L 'SSU ME g w N N p Op O N n O M O O N O �Ow < E N N O O N N ID 1OO O N O d O E N N O N d lQ O d OI N �[ O N N ON O O O M N ON m� N 0 O q O O lc; q O� 0' Q OOi R m �y � NW N y N GS e 00 O M O N 10 T Qj mm N O O GG d' Op - O O {V d' [V d' Q; N O OI d' fp O O W wI O O N me O (V 0 c; O O O C O W S = Q N N O N n M O O N O O N O N N pO M ( My M O N O N M M N p O p Op O N p y O O O O O p N H y � 0N YO Et N VNI O O O O 8 •- m H N y YI 41 suopepoleo peyoepe eeS n • Q `• A e .2 o A a it .2 v g g Am z U V E � e ,o` g�A` w e g�g'� 2 Itmo L B u 46 ca T3'�c�d E co«° 3" 7 f o't � 5O1 3B $; q18 H v yrY2' n e u n Q� cna�¢n numOC �s o� 3 u mm n �.R Ai r•il om m ca 1 E c GO111 o' cc w' �¢ ¢ova �S O O O tG W E A,l1 0; m 'q LL E n EAA O.XK V O _ x n gYY w? E! E E y m E O � O O� V v� 1 11 aA 1" wry VC 1 w •` i.. '�, g"w wa 9 a ; O ff. O ro m m� U c m LL ri J F F 3 3 3 3 6 W n Q Q a JO m> J $• N> O m 9 n 4 m m_ a' IL N N W IL J Q J a f Page 37 of 168 t 2016-2850 on: TB25 -oaded Multi -Span Beam International Buifding Code(2012 NDS)] 751N x 11.875 IN x 8.0 FT dicrollam -iLevel Trus Joist ,n Adequate By: 0.3% riling Factor: Shear ®3302 Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork, Utah StruCalc Version 9.0.2.5 10/18/2016 12:04:11 PM TIONS ninations are to be fully connected to provide uniform transfer of loads to all members 1 J LECTIONS Center LOADING DIAGRAM Load 0.12 IN U824 I Load 0.09 in Load 0.21 IN 0457 Load Deflection Criteria: L1360 Total Load Deflection Criteria: U240 t MONA 6 El 2 Load 6483 Ib 6483 Ib I Load 4704 Ib 4704 Ib Load 11187 Ib 11187 Ib ing Length 4.26 in 4.26 in M DATA Center i Length 8 It aced Length -Top 0 ft A en B aced Length -Bottom 8 R Load Duration Factor 1.00 I Depth 0.00 UNIFORM LOADS Uniform Live Load Center 100 plf ERIAL PROPERTIES Microllam - iLevel Trus Joist Uniform Dead Load 59 plf Base Values Adj su ted Beam Self Weight 13 pit ling Stress: Fb = 2600 psi Fb' = 2604 psi Total Uniform Load 172 pit Cd=1.00 CF=1.00 POINT LOADS CENTER SPAN v Stress: Fv = 285 psi FV = 285 psi - Load Number Onfl IWQ Cd=1-00 Live Load 3073 Ib 3073 Ib flus of Elasticity: E = 1900 ksi E'= 1900 ksi Dead Load 1798 Ib 1798 Ib I J1 to Grain: Fc --L= 750 psi Fc - -L' = 750 psi Location 0,5 f1 7.5 It TRAPEZOIDAL LOADS - CENTER SPAN rolling Moment: 16474 ft -Ib Ft from left support of span 2 (Center Span) Load Number one ated by combining all dead loads and live loads on span(s) 2 Left Live Load 860 pit rolling Shear: 7872 Ib Left Dead Load 748 pit distance d from left support of span 2 (Center Span) Right Live Load 860 pit ated by combining all dead loads and live loads on spans) 2 Right Dead Load 748 pit Load Start 0.5 It parisons with required sections: Recd Provided Load End 7.5 It on Modulus: 75.93 in3 82.26 in3 Load Length 7 ft (Shear): 41.43 int 41.56 in2 ant of Inertia (deflection): 256.23 in4 488.41 in4 ant: 16474 ft -Ib 17848 ft -Ib r: 7872 lb 7897 Ib Page 38 of 168 suollelroluo Peyoeus eeg d Ill N O Q M r 10 N M O Vl O gg M l7 lV [V O O N M M nUlj' [O', O O" N M N M� N O O� h YO QQ OM O Y h N O� (0 Y wMw m tD lrLl{ m N y f M H N 11 .LI. it ts 1 II Ccc C O f. 9I ,II, 22 a iinnn - 5 m 1 � yy II O C O .P U U W v a C O d O~ t �y y N 6aq yyy O yp C a O d It waau —vtda E'trE � Nw w arca oz w l- 1 e ;.I. � 0, 00 nox v90drn Eyo�W``a'W �c Ib'4�8 14_09 3wnaaa._Irc> w> oA vn it. oi¢= w .oia of Page 39 of 168 ct 2016-2050 ion:TB34 Loaded Multi -Span Beam International Building Code(2012 NDS)] IN x 22.51N x 9.0 FT F4 -Visually Graded Western Species - Dry Use rn Adequate By: 19.0% oiling Factor: Shear LEgJIM Center Load 0.03 IN U3771 J Load 0.02 in I Load 0.05 IN U2154 Load Deflection Criteria: 0360 Total Load Deflection Criteria: L/240 ,CTIONS 9 j3 Load 4229 Ib 10930 Ib I Load 3760 Ib 7680 Ib I Load 7989 Ib 18610 Ib ring Length 2.40 in 5.59 in 1 Length 9 If raced Length -Top 0 ft raced Length -Bottom 9 It Load Duration Factor 1.00 fiber Adj. Factor 1 fiber Required 0.02 PROPERTIES V4 - Visually Graded Western Species Base Values pit ling Stress: Fb = 2400 psi pit Fb_cmpr= 1850 psi Cd=1.00 E0e rr Stress: Fv = 265 psi 7 Ib Cd=1.00 7 ft ulus of Elasticity: E = 1800 ksi ip.-Lto Grain: Fc -1= 650 psi Adiusted Controlled by: Fb' = 2400 psi FV = 265 psi E' = 1800 ksi Fc -1'= 650 psi trolling Moment: 35405 ft -ib 3 Ft from left support of span 2 (Center Span) rated by combining all dead loads and live loads on span(s) 2 trolling Shear: -17115 Ib R distance d from right support of span 2 (Center Span) :aced by combining all dead loads and live loads on span(s) 2 Iparisons with required sections: EQ" Provided ion Modulus: 177.03 in3 432.42 in3 i (Shear): 96.88 int 115.31 int rent of Inertia (deflection): 542.13 in4 4864.75 in4 rent: 35405 ft -Ib 86484 ft -Ib rr:-171151b 20372 lb ®Jack Miller o LEI Surveyors and Engineers 3302 North Main Street w Spanish Fork, Utah 10/18/2016 12:04:07 PM A_ 9n B UNIFORM LOADS Center Uniform Live Load 344 pit Uniform Dead Load 462 pit Beam Self Weight 25 pit Total Uniform Load 831 pit E0e Ib =Load 7 Ib 7 ft Page 40 of 168 In W N O�. �:. r d t4'i o a oo. N w N oa .. M e $ o 0 0 0 e L tl) N O N N N`Y g Sl7r SNNON O g N O N YI �J 0b Nt01 t8 U� k OSq S~NDl d O d - OOi NS OO) YO Op Orr OyO N00000o Yg O N �• m q 0000 Q A a N g Fa M S N N O O O Q N r rn 0 t0 OO 0 Nt7 Nnl O S0 0N 0 O d o066Y0 m L py IO N .Y f N m S oS p m V N .!- O N O S S tU N i(I C' fn OOi Oi S W Q O O m N N O N m N V O O Q W d O o 00 N d m u� N N Obm' g 0 0 g N N N 00 00 N r O (7 N O N O O m d f0 r N y spi o OO d7 N N fpOI O B O E 6N rO NIA ' UW N Nd ONN(O 0YO SgS N� NO OY111gppp pN NO NO ON6 c g a NN ro oowoo d In u> oom omcp�ppp 1pI�po mRE Q n In d pm8 pm��n qy y� Q�pDom�n N O M tO Dd N O `i N O O S N m a N O p Y4' N N N In N N O N m C N a S 4 60 0 0� 0? N N N Ly gb 3 d N N p Q N r O N 4 o VI 0 0 IO N N O O O O O" YI W YI pi IO tp pO O �- C') Y p Op O (7 dg Y F o O8 o g o 0 0 0 O 0 N N E O ry S O N O N O S^ j j T N ON S O O V N N ND N O d ' O O r 0 O W O ON ' O O .0 m q f S LL0 6 0 0c g n i C L d L02 e 3 U b c m m 9 0 NN a5 @ u n iI a$ '2 d m y a�,ll,O n u LL c g F a v a s- a Fn 3 non E J 13¢ a u a E n A n ,� ii Y, k-u� 1l 9 ry g $I u r ^tea 8 8 ry c c f o r d g o .r m �a? E, o e p' c p� yQ e i .5 ° $ •• �' �i S� _o A m 6KQU W 6LL Ii.Jf H 3 3 36 W p8aa.�2> J 2N>•OOaLfLm6� li LLNN Page 41 of 168 rC4- lK)!®§7.80 j C !;m-®®§§KKq^|§§§E5=R2[;§q;2222`OR§RR2§ |\ ~ k� :§2;m§�0!00 §§§§® |\ ` �8 � k F§G§(6(82q®?W 2§§/§20 k { A ƒ �{ `��)�JL �{ {! |f/�� %. !|!/.2 kk €,)2 !�- .6 to -| |�|!!`,;` £!!§,�|/o�/& +| ,!= 222 |cE ��#�_- J „)■|�±��- |,;tf.f, 'IF!- !2|I;�|| �{!£$$?2) "!!,!!)])!°]l;=2!mit : f !]!|! Page 42me Project: 2016-2850 Location: 5813 Multi -Loaded Multi -Span Beam (2015 International Building Code(2012 NDS)] (3) 1.751N x 11.875 IN x 12.0 FT 1.9E Microllam - iLevel Trus Joist Section Adequate By: 33.7% Controlling Factor: Moment CAUTIONS Laminations are to be full DEFLECTIONS Center Live Load 0.28 IN U506 Dead Load 0.10 in Values Total Load 0.38 IN U375 Live Load Deflection Criteria: U360 Total Load Deflection Criteria: 0240 REACTIONS A B Live Load 5288 Ib 5286 Ib Dead Load 1927 Ib 1959 Ib Total Load 7215 Ib 7245 Ib Bearing Length 1.83 in 1.84 in BEAM DATA Center Span Length 12 ft Unbraced Length -Top 0 If Unbraced Length -Bottom 12 ft Live Load Duration Factor 1.00 Notch Depth 0.00 MATERIAL PROPERTIES 1.9E Microllam - iLevel Trus Joist Controlling Moment: 20027 ft -Ib 6.36 Ft from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Controlling Shear: -6059 Ib At a distance d from right support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Comparisons with required sections: Reed Section Modulus: Base Values Adjusted Bending Stress: Fb = 2600 psi Fb' = 2604 psi 732.62 in4 Cd=1.00 CF=1.00 26772 ft -Ib Shear Stress: Fv = 285 psi Fv' = 285 psi 208 plf Cd=1.00 plf Load Start Modulus of Elasticity: E = 1900 ksi E'= 1900 ksi Comp. J­toGrain: Fc - -L= 750 psi Fc -1'= 750 psi Controlling Moment: 20027 ft -Ib 6.36 Ft from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Controlling Shear: -6059 Ib At a distance d from right support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Comparisons with required sections: Reed Section Modulus: 92.3 in3 123.39 in3 Area (Shear): 31.89 in2 62.34 in2 Moment of Inertia (deflection): 521.54 in4 732.62 in4 Moment: 20027 ft -Ib 26772 ft -Ib Shear: -6059 Ib 11845 lb ®Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork, Utah 12 ft Uniform Live Load 550 plf Uniform Dead Load 129 plf Beam Self Weight 19 plf Total Uniform Load 698 pit 12:03:53 PM Load Number Q= jyyg Live Load 832 Ib 832 Ib Dead Load 324 Ib 324 Ib Location 3 11 8 It Load Number One TWO Left Live Load 330 plf 330 plf Left Dead Load 208 pit 208 pit Right Live Load 330 pit 330 plf Right Dead Load 208 plf 208 plf Load Start 0 ft a It Load End 3 ft 12 If Load Length 3 ft 4 ft Seismic Weights Roof Roof DL= 16.9 psf Exterior Wall DL= 10 psf Exterior Brick DL = 40 psf Interior Wall DL = 6 psf High Roof Area = 11150 ft -2 Exterior Wall Length = 510 ft Wall Length with Brick = 0 it Trib. Exterior Wall Height= 9 It Interior Wall Length = 522 it Trib. Interior Wall Height= 4.5 It Exterior Wall Area = 4590 ftA2 Interior Wall Area = 2349 ftA2 Roof Weight= 188435 lb Wall Weight= 59994 lb Total Weight = 2484291b Level 5 Floor Living DL = 23.4 psf Exterior Wall DL = 10 psf Exterior Brick DL = 40 psf Interior Wall DL= 6 psf Living Area = 11422 ftA2 Exterior Wall Length = 510 It Wall Length with Brick = 0 ft Trib. Exterior Wall Height = loft Interior Wall Length = 530 If Trib. Interior Wall Height = 4.5 If Exterior Wall Area = 5100 ftA2 Interior Wall Area = 2385 ftA2 Floor Weight = 267374.8 Ib Wall Weight= 65310 Ib Total Weight = 332684.8 Ib Level 4 Floor Living DL = 23.4 psf Exterior Wall DL = 10 psf Exterior Brick DL = 40 psf Interior Wall DL= 6 psf Living Area = 11686 ftA2 Exterior Wall Length = 530 It Wall Length with Brick = 116 ft Trib. Exterior Wall Height= loft Interior Wall Length = 530 It Trib. Interior Wall Height = 4.5 ft Exterior Wall Area = 5300 ftA2 Interior Wall Area = 2385 ftA2 Floor Weight = 273552.4 Ib Wall Weight= 90510 lb Total Weight = 364062.4 Ib Page 44 of 168 Level Floor Living DL = 23.4 psf Exterior Wall DL= 10 psf Exterior Brick DL = 40 psf Interior Wall DL = 6 psf Living Area = 11686 ftA2 Exterior Wall Length = 530 it Wall Length with Brick = 188 it Trib. Exterior Wall Height = 10 it Interior Wall Length = 530 ft Trib. Interior Wall Height = 4.5 it Exterior Wall Area = 5300 ftA2 Interior Wall Area = 2385 ftA2 Floor Weight = 273552.4 Ib Wall Weight= 142510 lb Total Weight = 416062.4 Ib Level 2 Floor Living DL = 23.4 psf Roof DL = 16.9 psf Exterior Wall DL = 10 psf Exterior Brick DL = 40 psf Interior Wall DL= 6 psf Living Area = 1221 ftA2 Low Roof Area = 100 psf Exterior Wall Length = 56 it Wail Length with Brick = 26 it Trib. Exterior Wall Height = 4.5 it Interior Wall Length = 8 It Trib. Interior Wall Height = 4.5 ft Exterior Wall Area= 252 ftA2 Interior Wall Area= 36 ftA2 Floor Weight = 29562.8 Ib Roof Weight= 1690 lb Wall Weight= 7416 lb Total Weight = 38668.8 Ib Page 45 of 168 Seismic Distribution Numeric Gridlines (Alpha Gridlines) Total Area 11686 ftA2 Total Area 11686 ftA2 CO Gridline 1 2319 11^2 Z Gridline 2 4575 ftA2 m Gridline 3 2876 1l^2 .' Gridline 4 1196 ftA2 I`— Gridline 5 720 ftA2 Sum: 11686 ftA2 (Alpha Gridlines) Total Area 11686 ftA2 Page 46 of 168 Gridline A 2253 ftA2 CO Gridline B 2827 ftA2 Gridline C 792 ftA2 COa Gridline D 3332 ftA2 Gridline E 1753 ftA2 Gridline F 465 ftA2 Gridline G 264 ftA2 Sum: 11686 ftA2 Page 46 of 168 Title Block Line 1 You can change this area using the'Sellings' menu hem and then using the 'Printing & Title Block' selection. Title Block Line 6 ASCE Seismic Base Shear Mattson Appartments Risk Category Project Title: Engineer: Project Descr. Project ID: Prinks M OC.T2016.1211P6' File= t0ruduraP2016 SWdmal,lobsWl6-2MJJA Marson ApermengM16-2e56.ec6 Risk Category of Building or Other Structure: 'I': Buildings and other structures that represenla low hazard to human life in the event of failure. Seismic Importance Factor 1 USER DEFINED Ground Motion Max. Ground Motions, 5%DampFg: SS = 0.4430 g. 0.2 sec response Si = 0.1560 g, 1.0 sec response Site Class, Site Coeff. and Design Category Site Classification 'D': Shear Wave Velocity 600 to 1,200 8/sec = D Site Coefficients Fa & Fv (using straight-line interpolation from table values) Maximum Considered Earthquake Acceleration Design Spectral Acceleration Fa = 1.45 Fv = 2.18 Sus=Fa'Ss = 0.640 SMI=Fv"St = 0.339 S 0.EF S KW" = 0.427 Sofs Mi2/3 = 0.226 Calculations per ASCE 7-10 ASCE 7-10, Page 2, Table 1.5.1 ASCE 7-10, Page 5, Table 1.5-2 ASCE 7-10 11.4.1 ASCE7-f0 Table20.3.1 ASCE 7-10 Table 11.4-1 & 11,4.2 ASCE7-10 Eq. 11.4-1 ASCE7-10 Eq. 11.4-2 ASCE 7-10 Eq. 11.43 ASCE7-10 Eq. 11.4-4 Seismic Design Category D ASCE7-f0 Table 11.6.1 & .2 Resisting System ASCE 7-10 Table 122-1 Basic Seismic Force Resisting System... Bearing Wall Systems Light -framed walls sheathed wlwood structural panels rated for shear resistance or steel sheets, Response Modification Ccefficient'R' = 6.50 Building height Limits: System Overstrength Factor *We' = 2.50 Category'A & B' Llmil: No Limit Deflection Amplification Feeler 'Cd' = 400 Category'C' Limit: No Limit Calegory'D"Unit: Limit =65 NOTEt See ASCE 7-10 for all applicable footnotes. Category'E'Limit: Limit =65 Calegory'F'Limit: Limit=65 LateralForce Procedure ASCE 7.10 Section 12.8.2 1 Equivalent Lateral Force Procedure The 'Equivalent Lateral Force Procedure' is being used according to the provisions of ASCE 7.10 12.8 Determine Building Period Use ASCE 12.8.7 Structure Type for Building Period Calculation: All Other Structural Systems Cl, value = 0.020 'hn': Height from base to highest level= 50.0 It 'x'value = 0.75 'To ° Approximate fundamental period using Eq. 12.8-7 : Ta = Ct' (hn ^ x) = 0.376 sec 'TL" : Lang -period transition period per ASCE 7-10 Maps 22-12 -> 22.16 8.000 see Building Period' TaCalculated from Approximate Method selected 0.376 see " Cs " Response Coefficient S cs: Short Period Design Spectral Response ' R' : Response Modification Factor ' I' : Seismic Importance Factor Seismic Base Shear Cs = 0.0657 from 12.8.1.1 = 0.427 From Eq. 12.8.2, Preliminary Cs = 6.50 From Eq, 12.8-3& 12.8.4, Cs need not exceed = 1 From Eq. 12.8.5 & 12.8-6, Cs not be less than Cs : Seismic Response Coefficient = W(eee Sum Wi below) = 1,399.91 k Seismic Base Shear V= Cs' W = 91,95 k Page 47 of 168 ASCE 7-10 Section 12.8.1.1 0.066 0.093 0.019 0.0657 ASCE7-10 Section 12.8.1 Title Block Line 1 You can charge this area using the 'Settings* menu item and then using the 'Printing 6 Title Block' selection. Title Block Line 6 ASCE Seismic Base Shear Vertical Distribution of Seismic Forces " k': hx exponent based on To = 1.00 Table of building Weights byF1wLevel.. Level B Wi: Weight 5 248.43 4 332.69 3 364.06 2 416.06 1 38.67 Sum Wil 1,399.91 k 10,921.86 Project Title: Engineer: Project Descr. Protect ID: Pm 18MI 201612a1FM Fde = LASVuckudOI6 stmekxal Jobs1E016-MOLKA Manson Apalenent51201 G2Mec6 ENERCALC. WC. 1983-2016. eued:6.16.72t. Vec6.16.721 ASCE 7-10 Section 12.8.3 HI: Height (Wi - Hi) Ak Cvx Fx=Cvx' V Sum Story Shear 50.00 12,421.45 0.2738 25.18 25.18 40.00 13,307.40 0.2934 26.98 52.16 30.00 10,921.86 0.2408 22.14 74.30 20.00 8,321.24 0.1835 16.87 91.16 10.00 386.69 0.0085 0.78 91.95 Sum Wi' Hi = 45,358.64 k -h Total Base Shear = 91.95 k Base Moment Diaphragm Forces: Seismic Design Category "B" to "F" Level H Wi Fl Sum Fi Sum Wi Fpx : Calcd Fpx : Min 5 248.43 25. 18 25.18 248.43 25.18 21.21 4 332.69 26.98 52.16 581.11 29.86 28.41 3 364.06 22.14 74.30 945.18 28.62 31.09 2 416.06 16.87 91.16 1,361.24 27.86 35.53 1 38.67 0.78 91.95 1,399.91 2.54 3.30 Wpx .......................... Weight at level of diaphragm and other structure elements attached to it. Fi ............................ Design Lateral Force applied at the level. Sum Fi ....................... Sum of "Let, Force" of current level plus all levels above MIN Req'd Force @ Level ......... 020' S DSI' Wpx MAX Req'd Force ® Level ........ 0.40' S DSI' Wpx Fpx : Design Force @ Level ....... Wpx `SUM(x->n) Fi / SUM(x.>n) wi, x = Current level, n = Top Level Page 48 of 168 Fpx : Max 42.43 56.81 62.17 71.05 6.60 Sum Story Moment = 0.00 251.80 773.36 1,516.33 2,427.98 3,347.5 k-8 ASCE 7.10 12.10.1.1 Fpx .................. Dsgn. Force 25. 18 25.18 29.86 29.86 31.09 31.09 35.53 35.53 3.30 3.30 f !!§ r!) 888 ) § !! § %°§n! ! wE§!! >|§ :k) c ! G !~� �!■®§ )N !k § � !! § ) a ( § ! ^ ! kk\\\\k\\k( k\\kk\kkk14 ! « e168 \ \ \ \\ a ( § § | | / � ! kk\\\\k\\k( ! « e168 § | 4£ Y r uni � N N 5 N m O 0 O p L J `• � J n yT w w u O g p � J U c w w p s 3 o L 8 U r € II 0 S S z O 22 y S n N N L T II $ II II II a >� 3 g o w p v drat 8 g N M m E E E E � G y o] a O of r N O > h$ as m o E€ O p pEv 0 V L S g J S w 60 N Q py pW� a 11 • ¢ O 6 F q t F ryC �Opv W N O r r N � m e o n r 2 j O o n E Q 13 r F m x E } a N q ^ � c ay aw vt o w o m Z b N N O FS gg m t _ q o C W N N EEE w 3 � N N N O O E H � II • N W q w > N g e �Air .. L 7 N a p > 4 r 2 9 'O ¢ d c 0 r o L ¢ 6 r O G r n 2 r _ n ui W L N 10 y u n II u m L J C N N N 10 Y N b n W w '% S E E n yy5� m c L 6 Eqq. N m A o m c c L 9v 1 o1168 0 o 0 z N y D 3IMt F L w u 0 za Page , n mm N O 0 O p � J U c w w p s 3 o L 8 r € II n N N L T a >� 3 g o w v drat 8 g N M m E E E E y a a m O p pEv 0 S N J w 60 N Q py pW� a 11 • 6 F ryC �Opv W N O r N m e o n r 2 j O o n E Q 13 r F a N o � NNNj ay aw <.9i .a7 N O FS m t _ q o C W N N EEE N N O O H � II • N W � o� g N 9 0 o L 6 O G r 2 r n _ L N 10 y Y 11 I 11 L J C N N O N 1O n W W F a �En m c L N m A o L 9v 1 o1168 0 o 0 z IN aoK�a2q�$I3 N K1 n o a n a Page 5 $io 8 P d N N L J 1pi n 9 O L � N 3 my � E ¢ O $ 3 N � A _ N N Page 5 $io 8 w g 0 j d N N J 1pi n 9 O > a > � 3 N E ¢ O $ 3 N N N N N Q O N 5 ^ r m N r a N w g 0 ! ! ]# \�\ | kJ ƒ §/ , kaaaa a a ! |||| f Page ! K0 / a 8 1 O Page ° P C o $ N N g m 3 U � N Q p Cry N I V r 8 . N N d E E N E n u 8 1 O Page ° P C o $ N $ n m 3 U � L (: N V J 2 8 1 O Page ° 8 O c o $ j $ n o s g p n yy n - u pE 0 Ch 8 8 'm c .. n y G > m n v v w$ o F cc d f c LL N ;O yNq� N r O O a ^ O C N tO W0z 4--� r a p O c N In pm Cm n n V Fisi�ii y) Z W C 3 12 o 0 0 m n o m N m p J i -i 0Z g 8 C e = vi ci m tp 'm r N m O N W d m 10 1� W m p I^ jI r E E E E aaaoaa�aaa� m L p L1¢y1 4 of 168 O J w .- 8 O %■■ ! | | .k!! 2 ) § , 5 168�� ! IQ 9 »| :5) !k [ E EE kkkkkk\\#k( ! t||r ! ~ !~ ®;J§ ;$�}i |.• §s � !ƒ j &| § ■o J w | ) ! | | 2 ) § , 5 168�� IQ 9 kii4J ® E EE kkkkkk\\#k( ! t||r ! J w | ) ! | | 2 ) § , 5 168�� J w | ) � b w ae�'w, bsb r J P1 J Q yG n w w > " 0 O A J g o L U L w w o �� s o88 r i�o¢�'. w y - m � IIp d L II 11 II 11 J >A N N q G >? v n C u m n h r E E E $ P y F 11 a w C a o v 1 O j F 3 M m q 00 9F ~ N n a o o O« O_ N N > m o 6 c Ih N O N m 3 @ffi zz yy yy yy �' j W tRw U iu J w w w Z- U 3 o .$ 8 W 14 p> y ; O A y F Al O p i o �` c ` F > � . ¢ o o c ��pp�p N C1 h 9y �mA OI pJ q p E - N n55 vyy yym55 m r m w y5 2 E Eg y cy w c K � 8 y O ° A Y 9 d Page r m 5 of 168 w Anchor DesignerTIA Software Version 2.4.5673.270 1.Prolecl Information Customer company: Customer contact name: Customer e-mail: Comment: 2. Input Data & Anchor Parameters General Design method:ACI 318-08 Units: Imperial units Anchor Information: Anchor type: Cast -in-place Material: AB H Diameter (inch): 0.625 Effective Embedment depth, he (inch): 6.000 Anchor category: - Anchor ductility: Yes In.,,, (inch): 8.13 Cim (inch): 1.25 S� (inch): 2.50 Company: Date: 10!17(2016 En ineer: Pa e: 1/4 Project: Address: Phone: E-mail: Load and Geometry Load factor source: ACI 316 Section 9.2 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: Not applicable Strength reduction factor for brittle failure, ¢v: 1.0 Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No Z Project description: HDU5 interior Location: Gridline 5 Fastening description: Base Material Concrete: Normal -weight Concrete thickness, In (inch): 10.00 Stale: Cracked Compressive strength, f, (psi): 2500 4),v: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No Ignore Edo requirement: Yes Build-up grout pad: No <Figure 1> 5466 Ib 0 Ib Y Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.mm Page 57 of 168 ,Figure 2> Anchor Designer TM Software Version 2.4.5673.270 Company: Date: 10/17/2016 Engineer: I Page: 1214 Project: Address: Phone: E-mail: Recommended Anchor Anchor Name: PAB Pre -Assembled Anchor Bolt - PABSH (5/8"0) Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3671 www.shonglie.com Page 58 of 168 t�ler� I� Anchor Designer T"" Software Version 2.4.5673 270 Company: Date: 10/17!2016 Engineer: Page 314 Project: Address: Phone: E-mail: 3. Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear bad combined, Nua (lb) V. (1h) Vu.y (Ib) J\. W.)4(Vuay)s (lb) 1 5466.0 0.0 0.0 0.0 Sum 0.0 Maximum concrete compression strain (%o): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 5466 Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'N. (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 4. Steel Strength of Anchor in Tenslon(Sec D 5 11 N.. (lb) d ^. (Ib) 27120 0.75 20340 6, Concrete Breakout Strength of Anchor in Tension (Sec D 5 2) Na = kdJf<kr' ° (Eq. D-7) k. A F. (psi) ho (in) Ne (Ib) 24.0 1.00 2500 6.000 17636 0.0 0.750n¢N6 = 0.750u¢ (AN./Anew) Wm,N'&NTmNNS (Sec. D.3.3.3, D.4.1 R Eq. D-4) Aft (ins) Ay (in' Wee.N Kiv Wow Nn (ib) d 0.7501 (lb) 340.31 324.00 1.000 1.00 1.000 17636 0.70 9725 6. Pullout Strength of Anchor in Tension (Sec. D.5.31 0.75OaONm = 0.75®a¢Y`,PNv = 0.75OdOV'.P8Abmfe (Sec. D.3.3.3, 0.4.1, Eq. D-14 8 D-15) '7'o,P A" (ins) f. (psi) d 0.75OdONp, (Ib) 1.0 1.94 2500 0.70 20404 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560 9000 Fax: 925.847.3871 wwvi.strongfie.com Page 59 of 168 Anchor Designet-T"' Software Version 2.4.5673.270 a 11. Results Company: Dale: 10/17/2016 Engineer: Page: if 4/4 Project: Address: Phone: E-mail: Tension Factored Load, Nv, (lb) Design Strength, ONS (lb) Ratio Status Steel 5466 20340 0.27 Pass Concrete breakout 5466 9725 0.56 Pass (Governs) Pullout 5466 20404 0.27 Pass PAI35H (518"0) with hell = 6.000 inch meets the selected design criteria. 12. Warnings - Minimum spacing and edge distance requirement of 6da per ACI 318 Sections D.8.1 and D.8.2 for torqued cast -in-place anchor is waived per designer option. Per designer input, ductility requirements have been determined to be satisfied — designer to verify. Designer must exercise own judgement to determine if this design is suitable. Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strong8e.wm Page 60 of 168 -N I \ § i .1 ( ! _ !ff{\� !a \ {/ !! ! § @ ! ! r !2 ! � ; � | !! ! § , ; | | } > S : � - 2(${J k > S Ge a , ! | ( § f : � 2(${J §!_! Ge a , ! | ( § f | ; ml ! �{(\J ^ � | ! � , /E 0 .! ml ;! ]® � {; E �{(\J /E 0 .! k \{° 16§J°| !!. �!°|! % 2.�;, °{» $;;; 1 mi ! t||! ! -ii ! (((( a168 ! ! [iEE. �! \ ;! ]® � {; E !!. �!°|! °{» $;;; 1 mi ! t||! ! -ii ! (((( ;! ]® � {; E ! § ■ !!. �!°|! °{» $;;; mi ! t||! ! \ ) � a168 ! ! ! § ■ | ( .9 ` t ! a « \ \ } \\ � (� E�� ( .9 Page ` t ! a « of 1680 � (� E�� Page ` t ! a « of 1680 (� E�� Page § ] \ \ ! ` t ! a « of 1680 § ] \ \ ! S N N Q m $ m $ U � m H> p; p ❑ W> p > j p$ ❑ a o O �' O ❑ O; ❑ it Z> c F ❑ Z j ° Q c P! 1ryo pj 1 CL II II II W II CL II II J1 4 p W J I C J p g 9 J I p ar E > Fn $ o G d~ o E F a 9 p a II j p i. -I o oN (3 > ¢ _ � m � � a fad 2 ty�� 1w p 11 a 3 V% L II II 11 IIy j II y tl% L It II II tl po �•fv 3 �+ 25 on E �o �{N 3 (' o nt- x a �i' 3 pi �� oao 3 o a o N II • N =1 'I E n g n m => o� o E 8 L $ o E a o p o �i It N N N O z N F p¢ F ¢ L f > p 2 g ry t N $ It 11 II W y II M II P tlrl n N y g rn J o ✓rpi E U v i E x N m v N N N m C~ o a y m v N m r m m Ir au .- o y v v v a d 5 Eq. E E E y E S v 'g 3 E E N o a c $ L 6 e a m e7 N z Page A of 168 u z :F. 2016-2850 ion: P8 International Building Code(AISC 14th Ed ASD)] i x 5 x 5/16 x 9.0 FT /ASTM A500-GR.B-46 rn Adequate By: 20.8% ®Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork, Utah StruCalc Version 9.0.2.5 10/18/2016 12:03:55 PM 'TIONS s column has been designed as a cantilever. a that the length of the column inputed should include the portion of the column LECTIONS rction due to lateral loads only: Dell = 0.5 IN = U217 Load Deflection Criteria: U180 Trrer waerTinus Load: Vert-LL-Rxn = 10576 Ib I Load: Vert-DL-Rxn = 4091 Ib I Load: Vert-TL-Rxn = 14667 Ib IZONTAIL REACTIONS I Reaction at Top of Column: TL-Rxn-Top = 0 It, I Reaction at Bottom of Column: TL-Rxn-Bottom = 652 Ib UMN DATA I Column Length: 9 it aced Length (X -Axis) Lx: 9 ft aced Length (Y -Axis) Ly: 9 It mn End Condtion-K (e): 2.1 5 x 5 x 5/16 - Square 1 Yield Strength: Fy = 46 kst flus of Elasticity: E = 29 ksi mn Section: dx = 5 in dy = mn Wall Thickness: t = 0.291 in of Gyration: A= 5.26 in 5 In lent of Inertia (deflection): Ix = 19 in4 ly = 19 in4 ion Modulus: SX = 7.62 in3 Sy = 7.62 in3 to Section Modulus: ZX = 9.16 in3 Zy = 0 in3 of Gyration: rx = 1.9 in ry = 1.9 in imn Compression Calculations: Ratio: KLxlm= 119.37 KLy/ry= 119.37 rolling Direction for Compr. Calcs: (Y -Y Axis) rral Buckling Stress: Fcr = 17.62 ksi Controlling Equation F7-1 inal Compressive Strength: Pc = 55 kip imn Bending Calculations per AISC 14th Edition Steel Manual: rolling Load Case: Axial Total Load and Lateral Loads (D + 0.75[L + W]) �ntrlcity Moment: Mx -ex = 0 fl -Ib My-ey = 0 ft -It ,at Moment + Eccentricity: Mrx = 4401 ft -Ib Mry = 0 Ili )a Buckling Ratio: FBR = 14.18 t. Flange Buckling Ratio: AFBR = 28.12 o. FBR for Non -Compact: NC = 35.15 Buckling Ratio: WBRX= 14.18 WBRY= 0 r. WBR for Eqn. F7-5: AWBR= 60.76 ase LOADING DIAGRAM 9R A I. Flex. Sir. w/ Silty Factor: Mcx = 21 8 -kip Mcy = 21 ft -kip Controlling Equation 177-1 177-1 �bined Stress Calculations: a Controls : 0.40 Live Load: Dead Load: Column Self Weight: Total Load: LATERAL LOADING Uniform Lateral Load: Point Load: Live Load: 66 of 168 PL = 10576 It, PD= 3918 Ib CSW = 173 Ib PT= 14667 It, (Dy Face) wL-Lat= 0pit QM 652 Ib Anchor Designer TM Software Version 2.4.5673.270 1.Prolect Information Customer company: Customer contact name: Customer e-mail: Comment: 2. Input Data & Anchor Parameters General Design melhod:ACI 318-08 Units: Imperial units Anchor Information: Anchor type: Cast -in-place Material: AB_H Diameter (inch): 0.625 Effective Embedment depth, her (inch): 6.000 Anchor category: - Anchor ductility: Yes hmm (inch): 8.13 C.� (inch): 1.25 S.h (inch): 2.50 Company: Date: 10/17/2016 Engineer: Page: 1/5 Project: Address: Phone: E-mail: Project description: Cantilevered Columns Location: Gridline G Fastening description: Base Material Concrete: Normal -weight Concrete thickness, h (inch): 24.00 State: Cracked Compressive strength, fc (psi): 2500 Wcv: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No 1,247 Ib O Ib Y 5868 ft -Ib Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925 847.3871 www.strongtie corn Page 67 of 168 Base Plate Load and Geometry Length x width x Thickness (inch): 10.00 x 10.00 x 0.75 Load factor source: ACI 318 Section 9.2 Yield stress: 36000 psi Load combination: not set Seismic design: No Profile type/size: HSS5X5X1/4 Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No Z <Figure 1> 1,247 Ib O Ib Y 5868 ft -Ib Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925 847.3871 www.strongtie corn Page 67 of 168 EMSM Anchor DesignerM Software Version 2.4.5673.270 s <Figure 2> Company: Date: 10117/2616 Engineer: Page: if 215 Project: ---_ Address: Phone: E-mail: in nn Recommended Anchor Anchor Name: PAB Pre -Assembled Anchor Bolt - PAB5H (5/8"0) Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 wwwatrong8e.com Page 68 of 168 �71r1 Anchor DesignerTM Software Version 2.4.5673.270 Company: I Date: 10/17/2016 Engineer: I Page: 3/5 Project: Address: Phone: E-mail: 3. Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, N.. (lb) Vu.x (lb) V,,.r (to) 0 ... )'4(V.y)' (Ib) 1 2847.7 163.0 0.0 163.0 2 2847.7 163.0 0.0 163.0 3 0.0 163.0 4 0.0 163.0 0.0 0.0 Sum 6695.4 652.0 0.0 Maximum concrete compression strain (%o): 0.18 <Figure 3> Maximum concrete compression stress (psi): 785 Resultant tension force (Ib): 5695 Resultant compression force (Ib): 12942 Eccentricity of resultant tension forces in x-axis, e'Nx (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Nr (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'W (inch): 0.00 4. Steel Strength of Anchor in Teneton(Sec. 0.5 11 N. (Ib) 0 ^. (lb) 27120 0.75 20340 5 Concrete Breakout Stronoth of Anchor in Tension (Sec D 5 2) No = k�AOP hwi 5 (Eq. D-7) k� d f�(psi) Nt(in) No (lb) 24.0 1.00 2500 3.000 6235 163.0 163.0 652.0 01 o2 Y X 04 03 ONwe =0 (Ards/Arra) Y.,,N Y'm,N'1 4N W..NNn (Sec. D.4.1 & Eq. 0-5) ANc(In') AN (In2) Y4c,N 'PdN P"N Yyy.N N& (11 0 OlVog(lb) 158.50 81.00 1.000 1.000 1.00 1.000 6235 0.70 8541 6. Pullout Strength of Anchor in Tension fSec. D.5.31 ONm = OK^ = OW,rBAm¢l'� (Sec. D.4.1, Eq. D-14 & D-15) KP A" (in') G (psi) 4 ONm (lb) 1.0 1.94 2500 0.70 27205 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 wwwstronglie.com Page 69 of 168 X7(19 • Anchor Designer"m Software Version 2.4.5673.270 $ Steel Strength of Anchor In Shear (Sec. D.6.11 V. (lb) OWW 0 4woVaa (lb) 16270 1.0 0.65 10576 Company: I Dale: 110117/20 6 Engineer: I Page: 1415 Project Address: Phone: E-mail: g Concrete Breakout Stronath of Anchor in Shear (Sec. D.8 2) Shear perpendicular to edge in x -direction: Vm = 7(1a1da)02Vdai4fcoerr5(Eq. D-24) k (in) d. (in) t fc (psi) car (in) Vo. (lb) 5.00 0.63 1.00 2500 11.50 16356 gtiVcbaa = 16(Avc1AVm)Y'c.v Pw..vV4,v%vVb. (Sec. D.4.1 & Eq. D-22) Aw (ins) Arm (ins) Wmy %d,V %.V Ye,v Vb. (Ib) 0 01/cba. (lb) 276.00 595.13 1.000 0.778 1.000 1.000 16356 0.70 4132 Shear parallel to edge in x -direction: Vbr = 7(181 de)d Nd.AJfco.,r s (Eq. D-24) 4 (in) d. (in) A fa (psi) car (in) Vbr (lb) 5.00 0.63 1.00 2500 4.50 4004 QVwQ. = 0(2)(Aw/Arm) V'-.vY'"vY'avKvVbr (Sec. D.4.1, D.6.2.1(c) & Eq. D-22) Avv(in') Av. (in s) Yec,v V'ad,V %v Vqv Vbr(Ib) d QVag.(Ib) 108.00 91.13 1.000 1.000 1.000 1.000 4004 0.70 6643 10 Concrete Pryout Strength of Anchor in Shear (Sec. D.6.31 OVcK=OkwNceV=Okcp(ANc7AN) N nd.N%NY4nNNb(Eq. D-31) kc,, AN, (ins) An. (ins) 'K'N 'Pkiv Ye.N Yep,N Nb (Ib) 0 OWN (Ib) 2.0 256.00 81.00 1.000 1.000 1.000 1.000 6235 0.70 27590 if(I:ZFirl(>•i Tension Factored Load, N.. (lb) Design Strength, oNn (Ib) Ratio Status Steel 2848 20340 0.14 Pass Concrete breakout 5695 6541 0.67 Pass (Governs) Pullout 2846 27205 0.10 Pass Shear Factored Load, Via (lb) Design Strength, oVn (lb) Ratio Status Steel 163 10576 0.02 Pass T Concrete breakout x+ 662 4132 0.16 Pass (Governs) 11 Concrete breakouty- 326 6643 0.05 Pass (Governs) Pryout 652 27590 0.02 Pass Interaction check N..1ONd V„doya Combined Ratio Permissible Status Sec. D.7.1 0.67 0.00 66.7% 1.0 Pass PAB5H (5/6"0) with hef = 6.000 inch meets the selected design criteria. Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong die Company Inc 5956 W Las Positas Boulevard Pleasanton, CA 94568 Phone: 926 560.9000 Fax: 925.847.3871 www.stronglie.com Page 70 of 168 ratty Anchor Designer TM Software Version 2.4.5673.270 Company: Date: 10117/2016 Engineer: Page: 515 Project: Address: Phone: E-mail: 12. Warninas - Minimum spacing and edge distance requirement of 6da per Act 318 Sections D.8.1 and D.8.2 for torqued cast -in-place anchor is waived per designer option. Designer must exercise own judgement to determine if this design is suitable. Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5958 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax 925.847.3871 www.strongtle.com Page 71 of 168 m.72 of k§§§■§!m!m§■@§! ! ) ! — k ! >| eG) k� 1 !k § | cc\� \ /::;olFit;;;itFA; 2 § �\\\k\kkkkkkk\} m.72 of ! ) ! — k m.72 of k . f{^ Page 73w_ /2l:;=■§:m:@■£§;: k;»!w!!§!§!«4■!!! !' lam .............. ! weer§§r«§§§§!§§!§ �■! ee) k�� !§ Eff§! /B !k ( &k k ■, 2 §§!§!!§!!!§f!!!!) |!§014 N. §....C4 2 | k . f{^ Page 73w_ Page 74me §r9Fr1!pI?§PP / - | !k!!§!§K§§r■;;B!§# I! ! ! ! .......... w§§§ t2 w— §§§§§!§ ')K eG) §5 §! ! �e | !§!!!§f!§!§!!§!!) |!§§§§§§§§§§§§§]§§k 2 | ;2 !!!k##!#!!!!E!|E$ Page 74me / - | I! ! m ! Page 74me .............. P P P P P P m P m P P P P P P P P P P �Si88R 888885 -O F ?Y898A > � a � N C q n C 0 o $ � q N 3 _ q C N 6 O " O o r$ E O N A N C N F C Y 00 Y 9 L C f AO 0 0 � q M ry3j N ¢J 3 \ d n V o a F > F 7 7 m r a 0 J u G6�6��6�ee�a�O��roP u 8888 A88°�8$8�8880 mld� o E O O O m N> 7 0o mo m q oqq. m or7 mm m i N N N N N N N N N N N N N N 1- N 8 0 -13 -I;I 1 I8 N N 0 {{yy {{rr�� II 11 II Yy L N 7 d �5 N Cgl d of z a pp- O N5 t7 Q N �5D IL C F frEgi E m a N 3 A g �N z Page 75 of 168 8 O D � C qC y II 11 11 9 nP m io J I q N M Q5 E 3 y E m v a n n n u S 6 Egg m C L _N p L O � M 3 - r O J C t a i i g G Page 7 Jn 11 OO y >Y seg mvo gc m m m n a o m 4 � r U L m m m g o c y N a n W> N N F j O Q L p S g E 0O I II y d 11 M zq O y n n r n U J n O Oo� U g m m m m m > N W m J 2 p > y� o C c g N F a E E u N m M P Q e Y $ o 0 0 0 0 � u :9NNY O OI W S � y � o a F N O F N� is ClV w> O r �j f0 N F Z o� 3 f a r ¢ O N qV a ISI] 'y m N�¢ n 3` L N IA �'• N II 4 11 4 L J .J yy yy yy TCT U OI V v o E E 0 N � Nh `NO fCV � J O N N n 0 O N G N W> g O O O r ? N D � C qC y II 11 11 9 nP m io J I q N M Q5 E 3 y E m v a n n n u S 6 Egg m C L _N p L O � M 3 - r O J C t a i i g G Page 7 N N r g 0 g d 8 O i Jn 11 OO y >Y o m 4 � r � N � N a n F II y d o m _ app VOA g m m m m m 3 N .Y ? O O O O O W; m M P Q e ¢ L o 0 0 0 0 N N r g 0 g d 8 O i ion 7 m m Y1 9.9. w C P P P P m m m P m U c w m w m w w m P P pygg�gg8gggg8 > v II Jn }� o Y $ m _ g m c �A9 lYl m 3' ¢ r v e a 3 r v v � r F II yy d ` 3 w r > $ O w m m m - w 3 � 88$8$8888 of m N > O 0 6 '.W vi rn m m IR u. m r 2 j ¢ t o o c o o d o c c v ffi 8 0 N It II �I n O_I U 0 0 0 D TT .L i p m e '1 m C tta _ m N n E o g � N L C > O O J D o E E u r r% yEy N £ ` H o �I> PILI I I u u c u 0 0 0 '1 � 6 _ m N n E o n `aim P+ `epi@'{xin I`9i nE n 0 It) (G N Ifl m N N J r fV LL .2 Gq e C _ N w a N m e m m nC m I� ry r g' E E E E m a b p 8 N O O S u 5 N z Page 7 0 0 8 O 0 0 0 '1 J azo £ E A S g � N L C > O o E E D r r% 0 0 8 O 0 0 0 '1 J £ f N r z> > O o D r r% m Y O N yx p' L V E e— J I g _ E 0 0 8 O a!@§§■ 'k§ ek)§ >2 : ! IE ` : f ® °)° ! ®8888, •n;a;; 2 §§§§! \ K \ a Page \ \ \ \\ af@§@§9@e§§! >| a Page a ! ! af@§@§9@e§§! >| eG) E !! !\^§ f! !k § a ! ! ,1111!■#§1111■! ,=Zrr:■;rF! ) !2 § | � ! ~ ° ! ) \kms§ E |! JE Rio min §; -)r q l,rrrar�r,er. .'WI | §1111!!!§§!§§§2 ! ` Oi HIIH H-H,H! Page 79,11 f | � ! Page 79,11 o i o m q n mircy is8 $coi 233 i[t-m�8�+m gi W � n m m 8 3 P A 5 O Y a m o L l0 L IL/I Z p� C 11 11 I I G P P P P P P P w W P P P W P W P x L U c m P w P m W w w P P m m w m W m j 0 p p Q N N N N N R R R R R N N N N N N n � � O 1'I � > m N N O II J O > d � m 21q Fon O� N N B N J N p N¢ Q op m n 9 N N f F N m o N Y m v{ O < m > F 7 m N f F' pp (qO yy CC pp pp mm m H y E 8��88W8�83�8�m�m$ 0 0 o c� � 3mm me mo{o mIq d my<nmRm Op C yU� Od V n m d P d P r d n d d d d N o i o m W � n m m 8 3 P A 5 O Y a m o L l0 CO) U� IL/I Z o i o E 8 VW > O Y a 3 5 l0 p� C 11 11 I I ro m W J 2 q o o j n � � O 1'I � W > N O m F Page 80 of 168 s O L P x g p s NN lmV N 0 N (mV 5: N 2 J N m _ o 3 J C 3 0 _ �Jp L O d 7 y C P P P P P P P m P P P P P P x p S O II q L P P P P 0 P P P P P P P P m RRRRRRRRRRRRRR > w o m g m ctl u e > � e o N m N o � 8 m a o s" F C F m N II 'y P N Q F F $mm28m�8�a$Sd�$f 6 0 6 O O O O G O 0OIN oe m oo'i�oa rimF S (V fJ (J Cl P x 5 C qq�� C C C yy5 22 n a i° 8 n s O L P x P ~ @o i a N m _ o 3 J C 3 0 _ V L O d 7 N O J N s O L II II II U fr rn� n ~ @o Ep EE N N s O J 3 0 Jy f o } o Np p S O II q Page 81 of 168 E U S i 0 IO 0 m L m d y d � a � w IO 0 YJ• n d a o n y Y m m n i o 0 L � J o t e 8 € o c 0 g Q � n u S II R n n a Fn k m < 0 11 • O N N p� O N 11 VI N J ~ 7 O O O @ m e n $ O {V {y L � O F �N m Zm l•1 3 L 11 11 11 11 q y � L N 11 II 11 Ry Ny = Sym �11yy V• V { Y O y� N pq O J N= OP V N O N Z Lp� 31 Y N uS O (,j N O J 2 E E v o a o o s o h DoE N > O N > N II �^ S O ~ 0 0 3 ' 3� r ' O i 0 4 3 2> 2� F Q L� o o � 2 > T L g a 11 II 11 a j2ci dNN(�55gEEu E i �� E mqdmau n F N M Q Q0 2 M a s C N 8 � •a a a t g a > > m Page ` 82 of 1aJ m O z IO 0 L W m W 0 i G L GF mN c m m W I1 SoY ? > 0c Nm Nm Z Z4 00 F 00 0- lei - n N w g 3 Nf E C y J L$ 8 Q a V J O 1 W Y W p V ybl J rn > m -' Ccm > N O N .z .- N (� S > 0 O a c `v;^ 3 la C N 5 �, W E y a �y $ E E E ie p N n N f0 N lO % q N N NI u 4 z c s p Fn 8i 0 a E 7 0¢& q Q o qC o a n o $g N d p 3 G i0 N J ¢ o � J f�W. 824 Ng v � �n>0f upWi4.-1- N mN N S > ¢ F = N N C GZ NOm C y 11 z yF N' In y II II I{ Y 11 A� 0_ iV P II N y j m D -J � .7. V Ern Epi E g u m m OOInW N E> llio J N `l i N W ; N N >£ y> F Z �o mi>kpa ¢ aN > ¢ L m yC II ppII II N G EL II 011 II P N N N d t y N N d N f0 f` W W I!y & Fb ci r N CI d N f0 1� W W y lir f p E E Eo E E c a o d �' zo Page 83 of 16� \E,E7•eE ; o§§!!!!§ _§ 85) ^ i) �6 &\\ §® �k | !§|f§§§ § dJ § § ({\{/ \k\k\\\kkk\ t | m z Page « m\k n QA 1n. fns N N N y� 1N. �Np qV T O 0 a m b OI O 3 O fl J n c m m m w w m w N q ; . g o > m II >tj @e b a m3 m m w w w m m C O y p y y o r E u A m E � y O H> D N Q A 8880888 m>mpt g m C s m ~ O n N E$E N 8 6 d > ` 3 n n � c N $ Fn mrnU � y y O A Q 6~ O A fD N O O f mb N N e m a of C O� O a N N n 0 j off gg ,�,i m z F 7 $ w O i. -I b N y m lV §£ b b g It J 'I 8'68 c p o; C;C5 r Oo o r- C 0' nN m m ei m Nb z> N OO lV N r �' Q 8 d • `a w `a ` m - CR N m a mg m n m m o �� w a N u C N � W Page 85 of 16H N N fl � n c & > m II >tj @e b a m3 LLC N U u E u A m E � �X N Q A m g F s m ~ O n N E$E N � d > ` 3 n • `a w `a ` m - CR N m a mg m n m m o �� w a N u C N � W Page 85 of 16H Date: 10/18/2016 12:05 PM stem: English is: T\Structurat12016 Structural Jobst2016.28.50_HA Mattson AparlmentslGridlie 5.etz\ w mxsa tv roxs8 - vi mssi - w�loxsd Page 86 of 168 ' r Page 86 of 168 Current Date: 10/18/201612:05 PM Units system: English File name: T:1.Structura1\2016 Structural Jobs\2016-2850 HA Mattson Apartments\Gridlie 5.etz\ Geometry data GLOSSARY X Cb22, Cb33 : Moment gradient coefficients Cm22, Cm33 : Coefficients applied to bending term In Interaction formula d0 : Tapered member section depth at J end of member DJX : Rigid end offset distance measured from J node in axis X DJY : Rigid end offset distance measured from J node in axis Y DJZ : Rigid end offset distance measured from J rode in axis Z DKX : Rigid end offset distance measured from K node in axis X DKY : Rigid and offset distance measured from K node in axis Y DKZ : Rigid end offset distance measured from K node In axis Z dL : Tapered member section depth at K end of member Ig factor : Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members K22 : Effective length factor about axis 2 K33 : Effective length factor about axis 3 L22 : Member length for calculation of axial capacity L33 : Member length for calculation of axial capacity LB pos : Lateral unbraced length of the compression flange in the positive side of local axis 2 LB nag : Lateral unbraced length of the compression flange in the negative side of local axis 2 RX : Rotation about X RY : Rotation about Y RZ : Rotation about Z TO : 1 = Tension only member 0 = Normal member TX : Translation in X TY : Translation in Y TZ : Translation in Z Nodes Node X Y Z Rigid Floor ..........................................._.._........................................................ Ift] IN [it) ..._._._ 1 0.00 9.00 0.00 0 2 6.00 0.00 0.00 0 3 6.00 9.00 0.00 0 4 24.60 0.00 0.00 0 5 24.00 9.00 0.00 0 6 42.00 0.00 0.00 0 7 42.00 9.00 0.00 0 8 .................................................................................................................... 48.00 9.00 0.00 0 Restraints Node TX TY TZ RX RY RZ ..................... 2 ............. .............................. 1 1 1 ._.._...................... 0 0 0 4 1 1 1 0 0 0 6 1 1 1 0 0 0 Page 0o8% Members Member NJ NK Description Section Material do dL Ig factor [in] __.___................................ [in] ........... .................................. 1 1 3 _._._....................................................................................................... Beam W 10X54 A992 Gr50 0.00 0.00 0.00 2 3 5 Beam W 10X54 A992 Gr50 0.00 0.00 0.00 3 5 7 Beam W 10X54 A992 Gr50 0.00 0.00 0.00 4 7 8 Beam W 10X54 A992 Gr50 0.00 0.00 0.00 5 2 3 Column TUBE 10x6x5_8 A500 GrC rectangular 0.00 0.00 0.00 6 4 5 Column TUBE 1044_8 A500 GrC rectangular 0.00 0.00 0.00 7 .................................................................................._............._.........._.......__....._.__....._................................................_.............. 6 7 Column TUBE 10x6x5_8 A500 GrC rectangular 0.00 0.00 0.00 Orientation of local axes Member Rotation Axes23 NX NY NZ [Deg] .............. ............................ 5 90.00 __ .................... 0 .................................................. 0.00 0.00 0.00 6 90.00 0 0.00 0.00 0.00 7 90.00 0 0.00 0.00 0.00 Page M8 n Current Date: 10/18/201612:05 PM Units system: English File name: T:\Siructural\2016 Structural Jobs\2016-2850_HA Mattson Apanments\Gridlie 5.etz\ Comb : Indicates if load condition is a load combination Load conditions Condition Description DL Dead Load LL Live Load SL Snow Load Wx Wind in EQx Seismic in X D1 1 ADL D2 1.2DL+1.6LL D3 1.2DL+0.5SL D4 1.2DL+1.6LL+0.5SL D5 1.2DL+1.6SL D6 1.2DL+0.5Wx D7 1.2DL+1.6SL+LL D8 1.2DL+1.6SL+O.SWx D9 I.2DL+Wx D10 1.2DL+Wx+0.5SL D11 1.2DL+Wx+LL 012 1.2 DL+W x+LL+0.5S L D13 1.2DL+0.2SL D14 1.2DL+EQx D75 1.2DL+LL+0.2SL D16 1.2DL+EQx+0.2SL D17 1.2DL+EQx+LL D18 1.2DL+EQx+LL+0.2SL D19 O.gDL+Wx D20 0.9DL+EQx 81 OL 82 DL+LL S3 DL+SL S4 DL+0.75LL S5 DL+0.75SL S6 DL+0.75LL+0.75SL S7 DL+0.6Wx S8 DL+0.7EQx S9 DL+0.75LL+0.45Wx+0.75SL S10 DL+0.525EQx Sit DL+0.75SL S12 DL+0.525EQx+0.75SL S13 0.6DL+O.6Wx S14 0.6DL+0.7EQx Load data Page 90048 Comb. No No No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Category DL LL SNOW WIND EQ Distributed force on members V2 L d1 12 Condition Member Dirt Valt Va12 Disl1 % DIst2 % .......................... .................................................... Y [Klp/111 [Kip/11] . .............................................................. I11] 1111 -0.856 DL 1 Y -0.748 -0.748 0.D0 Yes 5.00 No -8.458 6.00 Y -0.059 -0.059 0.00 Yes 100.00 Yes Y 2 Y -0.748 -0.748 2.00 No 6.00 No Y -0.059 -0.059 0.00 Yes 100.00 Yes Y -0.023 -0.023 6.00 No 100.00 Yes 3 Y -0.748 -0.748 12.50 No 16.50 No Y -0.059 -0.059 0.00 Yes 100.00 Yes Y -0.023 -0.023 0.00 No 12.50 No 4 Y -0.748 -0.748 1.00 No 100.00 Yes Y -0.059 -0.059 0.00 Yes 100.00 Yes LL 1 Y -0.525 -0.525 0.00 Yes 5.00 No Y -0.088 -0.088 0.00 Yes 100.00 Yes 2 Y -0.525 -0.525 2.00 No 6.00 No Y -0.088 -0.088 0.00 Yes 100.00 Yes Y -0.04 -0.04 6.00 No 100.00 Yes 3 Y -0.525 -0.525 12.50 No 16.50 No Y -0.088 -0.088 0.00 Yes 100.00 Yes Y -0.04 -0.04 0.00 No 12.50 No 4 Y -0.525 -0.525 1.00 No 100.00 Yes Y -0.088 -0.088 0.00 Yes 100.00 Yes SL 1 Y -0.26 -0.26 0.00 Yes 5.00 No 2 Y -0.26 -0.26 2.00 No 6.00 No 3 Y -0.26 -0.26 12.50 No 16.50 No 4 Y -0.26 -0.26 1.00 No 100.00 Yes Wx 1 X -0.0462 -0.0462 0.00 Yes 100.00 Yes 2 X -0.0462 -0.0462 0.00 Yes 100.00 Yes 3 X -0.0462 -0.0462 0.00 Yes 100.00 Yes 4 X -0.0462 -0.0462 0.00 Yes 100.00 Yes EQx 1 X -0.0462 -0.0462 0.00 Yes 100.00 Yes 2 X -0.0462 -0.0462 0.00 Yes 100.00 Yes 3 X -0.0462 -0.0462 0.00 Yes 100.00 Yes 4 X -0.0462 -0.0462 0.00 Yes 100.00 Yes Concentrated forces on members f P1 ('P2 1� 11 (J di lK) d2 Condition Member Dirt Valuei DIstl % .............................................................. [Kip] 1ft] _....... DL 1 Y _........... -0.678 _.................... 5.00 No Y -0.856 0.00 Yes 2 Y -0.678 2.00 No Y -8.458 6.00 No Y -14.229 14.00 No 3 Y -0.678 16.50 No PagepdR?368 Self weight multipliers for load conditions Self weight multiplier Condition Description Comb. MuItX MultY Mult2 DL Y -6.458 12.50 No 0.00 I Y -14.229 4.00 No 4 Y -0.678 1.00 No 0.00 Y -0$56 100.00 Yes LL 1 Y -0.903 5.00 No Seismic In X Y -0.275 0.00 Yes 2 Y -0.903 2.00 No 0.00 I - --- Y -6.248 6.00 No 0.00 Y -9.036 14.00 No 3 Y -0.903 16.50 No Yes Y -6.248 12.50 No 1.2DL+1.6SL Y -9.036 4.00 No 4 Y -0.903 1.00 No 0.00 Y -0.275 100.00 Yes SL 1 Y -0.393 5.00 No 0.00 Y -0.161 0.00 Yes 2 Y -0.393 2.00 No 1.2DL+Wx+0.5SL Y -2.733 6.00 No D11 Y -2.636 14.00 No 3 Y -0.393 16.50 No 0.00 Y -2.733 12.50 No 0.00 Y -2.636 4.00 No 4 Y -0.393 1.00 No ........... ---.-....................................................................................... Y -0.161 100.00 Yes Self weight multipliers for load conditions Self weight multiplier Condition Description Comb. MuItX MultY Mult2 DL Dead Load No 0.00 0.00 0.00 I LL Live Load No 0.00 0.00 0.00 SL Snow Load No 0.00 0.00 0.00 Wx Wind In No 0.00 0.00 111 0.00 EQx Seismic In X No 0.00 0.00 0.00 i D1 1ADL Yes 0.00 0.00 0.00 I - --- D2 1.2DL+1.6LL Yes 0.00 0.00 0.00 i D3 1.2DL+0.5SL Yes 0.00 0.00 0.00 i D4 1.2DL+1.6LL+0.5SL Yes 0.00 0.00 0.00 i D5 1.2DL+1.6SL Yes 0.00 0.00 0.00 . D6 1.2DL+0.5Wx Yes 0.00 0.00 0.00 D7 1.2DL+1.6SL+LL Yes 0.00 0.00 0.00 D8 1.2DL+1.6SL+0.5Wx Yes 0.00 0.00 0.00 D9 1.2DL+Wx Yes 0.00 0.00 0.00 D10 1.2DL+Wx+0.5SL Yes 0.00 0.00 0.00 D11 1.2DL+Wx+LL Yes 0.00 0.00 0.00 D12 1.2DL+Wx+LL+0.5SL Yes 0.00 0.00 0.00 - -- - _- - - D13 1.2DL+0.2SL Yes 0.00 0.00 0.00 D14 1.2DL+EQx Yes 0.00 0.00 0.00 D15 1.2DL+LL+0.2SL Yes 0.00 0.00 0.00 D16 1.2DL+EQx+0.2SL Yes 0.00 0.00 0.00 D17 1.2DL+EQx+LL Yes 0.00 0.00 0.00 - D18 1.2DL+EQx+LL+0.2SL Yes 0.00 0.00 0.00 D19 0.9DL+Wx Yes 0.00 0.00 0.00 D20 0.9DL+EQx Yes 0.00 0.00 0.00 S1 DL Yes 0.00 0.00 0.00 Page 0e368 S2 DL+LL S3 DL+SL 94 DL+0.75LL S5 DL+0.75SL S6 DL+0.75LL+0.75SL S7 DL+0.6Wx S8 DL+0.7EQx 89 DL+0.75LL+0.45Wx+0.75SL S70 DL+0.525EQx S71 DL+0.75SL S12 DL+0.525EQx+0.75SL S13 0.6DL+O.6Wx S14 0.6DL+0.7EQx ................. _.._..... ._.._................................................... '............................................................ Earthquake (Dynamic analysis only) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 _._............... 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Condition a/g Ang. Damp. [Deg] _ [%] ................................................. DL ..................... 0.00 0.00 - 0.00 LL 0.00 0.00 0.00 SL 0.00 0.00 0.00 Wx 0.00 0.00 0.00 EQx 0.00 0.00 0.00 D1 0.00 0.00 0.00 D2 0.00 0.00 0.00 D3 0.00 0.00 0.00 D4 0.00 0.00 0.00 I D5 0.00 0.00 0.00 D6 0.00 0.00 0.00 D7 0.00 0.00 0.00 D8 0.00 0.00 0.00 D9 0.00 0.00 0.00 D10 0.00 0.00 0.00 D11 0.00 0.00 0.00 D12 0.00 0.00 0.00 D13 0.00 0.00 0.00 D14 0.00 0.00 0.00 D15 0.00 0.00 0.00 D16 0.00 0.00 0.00 D17 0.00 0.00 0.00 D18 0.00 0.00 0.00 D19 0.00 0.00 0.00 - D20 0.00 0.00 0.00 S1 0.00 0.00 0.00 S2 0.00 0.00 0.00 S3 0.00 0.00 0.00 S4 0.00 0.00 0.00 - - 85 0.00 0.00 0.00 S6 0.00 0.00 0.00 S7 0.00 0.00 0.00 s8 0.00 0.00 0.00 S9 0.00 0.00 0.00 - S70 0.00 0.00 0.00 911 0.00 0.00 0.00 S12 0.00 0.00 0.00 Page A%?168 S13 0.00 0.00 0.00 S14 0.00 0.00 0.00 Page 3aa a se j Current Date: 10/18/201612:06 PM Units system: English File name: TAStructural\2016 Structural Jobst2016-2850 NA Mattson Apartments\Gridlie 5.etz\ Analysis result Translations Condition SL=Snow Load 1 0.00048 0.01063 Translations lint 0.00000 0.00000 Rotations [Rad] 2 0.00000 Node TX TY TZ RX RY RZ ...._................._............._..............................................._.......-......................................................................--.. Condition DL -Dead Load 0.00000 0.00000 -0.00034 4 0.00000 0.00000 1 0.00109 0.03973 0.00000 0.00000 0.00000 -0.00048 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00058 3 0.00109 -0.00349 0.00000 0.00000 0.00000 -0.00121 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00005 5 0.00070 -0.00715 0.00000 0.00000 0.00000 0.00007 6 0.00000 0.00000 0.00000 0.00000 0-00000 -0.00056 7 0.00034 -0.00356 0.00000 0.00000 0.00000 0.00112 8 0.00034 0.03297 0.00000 0.00000 0.00000 0.00038 ...... ........ ....................................................................................................................................._.................._. Condition LL=Live Load 0.00200 5 -0.14857 0.00000 0.00000 0.00000 1 0.00102 0.04270 0.00000 0.00000 0.00000 -0.00056 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00049 3 0.00102 -0.00271 0.00000 0.00000 0.00000 -0.00101 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00004 5 0.00069 -0.00504 0.00000 0.00000 0.00000 0.00006 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00047 7 0.00039 -0.00277 0.00000 0.00000 0.00000 0.00094 8 0.00039 0.03729 0.00000 0.00000 0.00000 0.00049 Condition SL=Snow Load 1 0.00048 0.01063 0.00000 0.00000 0.00000 -0.00013 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00016 3 0.00048 -0.00110 0.00000 0.00000 0.00000 -0.00034 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00002 5 0.00037 -0.00146 0.00000 0.00000 0.00000 0.00003 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00015 7 0.00027 -0.00112 0.00000 0.00000 0.00000 0.00030 8 0.00027 0.00802 0.00000 0.00000 0.00000 0.00010 .......... ......................... .......................•---------------...................................................................._._............_....... Condition Wx=Wind in X 1 -0.14661 -0.02972 0.00000 0.00000 0.00000 0.00041 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00185 3 -0.14859 -0.00012 0.00000 0.00000 0.00000 0.00041 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00200 5 -0.14857 0.00000 0.00000 0.00000 0.00000 0.00011 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00185 7 414858 0.00012 0.00000 0.00000 0.00000 0.00041 8 -0.14861 0.02973 0.00000 0.00000 0.00000 . ................................... 0.00041 ....................................................... Condition EOX=Seismic In X ..... . ..................................... _........... ..................... 1 -0.14861 -0.02972 0.00000 0.00000 0.00000 0.00041 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00185 3 -0.14859 -0.00012 0.00000 0.00000 0.00000 0.00041 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00200 5 -0.14857 0.00000 0.00000 0.00000 0.00000 0.00011 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00185 7 -0.14858 0.00012 0.00000 0.00000 0.00000 0.00041 8 -0.14861 0.02973 0.00000 0.00000 0.00000 0.00041 Page OAS Condition DWADL 0.00217 0.06492 0.00000 0.00000 0.00000 1 0.00156 0.05571 0.00000 0.00000 0.00000 -0.00067 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00082 3 0.00156 -0.00488 0.00000 0.00000 0.00000 -0.00169 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00007 5 0.00102 -0.01001 0.00000 0.00000 0.00000 0.00010 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00076 7 0.00051 -0.00499 0.00000 0.00000 0.00000 0.00156 8 0.00051 0.04623 0.00000 0.00000 0.00000 0.00054 .......................................................... Condition 02=1.2DL+1.6LL .-..... _.............. _................ ........ ... ................. ........................... ............ 1 0.00318 0.11662 0.00000 0.00000 0.00000 -0.00148 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00149 3 0.00318 -0.00652 0.00000 0.00000 0.00000 -0.00308 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00012 5 0.00220 -0.01665 0.00000 0.00000 0.00000 0.00018 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00144 7 0.00127 -0.00870 0.00000 0.00000 0.00000 0.00285 8 0.00127 0.09969 0.00000 0.00000 0.00000 0.00125 ........................ _................. _.......... Condition D3=12DL+O.SSL -............................................................. 0.00000 _.._........................ _............. ......... 1 0.00159 0.05308 0.00000 0.00000 0.00000 -0.00064 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00078 3 0.00159 -0.00474 0.00000 0.00000 0.00000 -0.00162 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00007 5 0.00107 -0.00931 0.00000 0.00000 0.00000 0.00010 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00075 7 0.00058 -0.00484 0.00000 0.00000 0.00000 0.00149 8 0.00058 0.04364 0.00000 0.00000 0.00000 0.00051 .................................... ................................................. Condition D4=1.2DL+1.6LL+0.5SL _..__.._ ........................................................ _........... _-.. 1 0.00347 0.12205 0.00000 0.00000 0.00000 -0.00155 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00157 3 0.00347 -0.00907 0.00000 0.00000 0.00000 -0.00325 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00013 5 0.00243 -0.01739 0.00000 0.00000 0.00000 0.00019 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00151 7 0.00146 -0.00926 0.00000 0.00000 0.00000 0.00300 6 0.00146 0.10378 0.00000 0.00000 0.00000 0.00130 Condition D5=1.2DL+I.BSL 1 0.00217 0.06492 0.00000 0.00000 0.00000 -0.00079 I 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00096 3 0.00217 -0.00594 0.00000 0.00000 0.00000 -0.00199 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00009 5 0.00153 -0.01092 0.00000 0.00000 0.00000 0.00013 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00092 7 0.00094 -0.00607 0.00000 0.00000 0.00000 0.00182 8 0.00094 0.05256 0.00000 0.00000 0.00000 0.00062 ................ Condition _....................................................................................... 06=1.2DL+O.SWx _._..................................... 1 -0.07742 0.03200 0.00000 0.00000 0.00000 -0.00035 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00168 3 -0.07741 -0.00425 0.00000 0.00000 0.00000 -0.00123 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00101 5 -0.07787 -0.00858 0.00000 0.00000 0.00000 0.00014 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00031 7 -0.07831 -0.00421 0.00000 0.00000 0.00000 0.00156 8 -0.07832 0.05531 0.00000 0.00000 0.00000 0.00068 Page Pg T68 CondlUon D7-1.2DL+1.6SL+LL -0.15616 0.01629 0.00000 0.00000 0.00000 1 0.00336 0.10805 0.00000 0.00000 0.00000 -0.00136 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00145 3 0.00336 -0.00865 0.00000 0.00000 0.00000 -0.00301 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00013 5 0.00240 -0.01597 0.00000 0.00000 0.00000 0.00019 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00140 7 0.00150 -0.00884 0.00000 0.00000 0.00000 0.00276 8 0.00150 0.09016 0.00000 0.00000 0.00000 0.00111 .......................... _..................... Condition D8=1.2DL+I.BSL+0.5Wx ....................................... _....... _............ .-............ _........................................... _......................................................... 1 -0.07623 0.04890 0.00000 0.00000 0.00000 -0.00056 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00196 3 -0.07822 -0.00601 0.00000 0.00000 0.00000 -0.00177 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00100 5 -0.07885 -0.01092 0.00000 0.00000 0.00000 0.00019 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00009 7 -0.07945 -0.00601 0.00000 0.00000 0.00000 0.00204 8 -0.07946 0.06858 0.00000 0.00000 0.00000 0.00084 Condition D9=1.2DL+Wx 1 -0.15616 0.01629 0.00000 0.00000 0.00000 -0.00014 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00267 3 -0.15614 -0.00431 0.00000 0.00000 0.00000 -0.00102 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00207 5 -0.15660 -0.00858 0.00000 0.00000 0.00000 0.00020 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00130 7 -0.15704 -0.00415 0.00000 0.00000 0.00000 0.00177 8 -0.15707 0.07103 0.00000 0.00000 0.00000 ....... ......... 0.00090 ._........... _ ................ Condition ................................................ D70=1.2DL+Wx+0.5SL ............ _......................................................... _.... .... 1 1 -0.15692 0.02147 0.00000 0.00000 0.00000 -0.00020 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00276 3 -0.15690 -0.00486 0.00000 0.00000 0.00000 -0.00118 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00208 5 -0.15741 -0.00931 0.00000 0.00000 0.00000 0.00021 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00123 7 -0.15790 -0.00471 0.00000 0.00000 0.00000 0.00193 8 -0.15793 0.07526 0.00000 0.00000 0.00000 0.00095 Condition D71=1.2DL+Wx+LL 1 -0.16106 0.05815 0.00000 0.00000 0.00000 -0.00069 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00324 3 -0.16103 -0.00702 0.00000 0.00000 0.00000 -0.00202 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.60212 5 -0.16182 -0.01363 0.00000 0.00000 0.00000 0.00026 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00090 7 -0.16257 -0.00691 0.00000 0.00000 0.00000 0.00273 8 -0.16259 0.10969 0.00000 0.00000 0.00000 0.00140 ................................................................. Condition _................. D12=1.2DL+Wx+LL+0.5SL .............................................................. _.... ................... 1 -0.16188 0.06335 0.00000 0.00000 0.00000 -0.00075 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00333 3 -0.16186 -0.00757 0.00000 0.00000 0.00000 -0.00218 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00212 5 -0.16270 -0.01436 0.00000 0.00000 0.00000 0.00027 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00083 7 -0.16349 -0.00747 0.00000 0.00000 0.00000 0.00289 6 -0.16351 0.11397 0.00000 0.00000 0.00000 0.00146 Page 9gV68 Condition 013=1.20L+0.2SL 0.09288 0.00000 0.00000 0.00000 -0.00117 1 0.00143 0.04986 0.00000 0.00000 0.00000 -0.00060 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00073 3 0.00143 -0.00441 0.00000 0.00000 0.00000 -0.00152 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00006 5 0.00094 -0.00888 0.00000 0.00000 0.00000 0.00009 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00070 7 0.00049 -0.00450 0.00000 0.00000 0.00000 0.00140 8 0.00049 0.04121 0.00000 0.00000 0.00000 0.00048 ... ................ _............................................... Condition D14=1.2DL+EQx - .......... ............................................. 0.00000 ............................................. -0.00016 1 -0.15616 0.01629 0.00000 0.00000 0.00000 -0.00014 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00267 3 -0.15614 -0.00431 0.00000 0.00000 0.00000 -0.00102 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00207 5 -0.15660 -0.00858 0.00000 0.00000 0.00000 0.00020 6 0.06000 0.00000 0.60000 0.00000 0.00000 0.60130 7 -0.15704 -0.00415 0.60000 0.00000 0.00600 0.60177 8 -0.15707 0.07103 0.00000 0.00000 0.00000 0.00090 Condition D75=1.2DL+LL+0.2SL 1 0.00257 0.09288 0.00000 0.00000 0.00000 -0.00117 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00123 3 0.00257 -0.00711 0.00000 0.00000 0.00000 -0.00254 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00010 5 0.00176 -0.01392 0.00000 0.00000 0.00000 0.00015 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00118 7 0.00100 -0.00727 0.00000 0.00000 0.00000 0.00234 8 0.00100 0.07874 0.00000 0.00000 0.00000 0.00097 ...................... _._.... _..................................................................... Condition D16=1.2DL+EQx+0.2SL .....-......-_.... _............................................... 1 -0.15646 0.01836 0.00000 0.00000 0.00000 -0.00016 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00270 3 -0.15644 -0.00453 0.00000 0.00000 0.00000 -0.00108 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00207 5 -0.15692 -0.00888 0.00000 0.00000 0.00000 0.00021 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00127 7 -0.15739 -0.00437 0.00000 0.00000 0.00000 0.00183 8 -0.15741 0.07272 0.00000 0.00000 0.00000 0.00092 ........................................................................................................................................................................... Condition D17=1.2DL+EQx+LL 1 -0.16106 0.05815 0.00000 0.00000 0.00000 -0.00069 2 0.00000 0.00000 0.00000 O.000DO 0.00000 0.00324 3 -0.16103 -0.00702 0.00000 0.00000 0.00000 -0.00202 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00212 5 -0.16182 -0.01363 0.00000 0.00000 0.00000 0.00026 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00090 7 -0.16257 -0.00691 0.00000 0.00000 0.00000 0.00273 8 -0.16259 0.10969 0.00000 0.00000 0.00000 0.00140 .........................................................................................................._....._........................................................ Condition D78=1.2DL+EQx+LL+0.2SL 1 -0.16138 0.06023 0.00000 0.00000 0.00000 -0.00072 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00327 3 -0.16136 -0.00724 0.00000 0.00000 0.00000 -0.00208 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00212 5 -0.16217 -0.01392 0.00000 0.00000 0.00000 0.00026 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00087 7 -0.16294 -0.00714 0.00000 0.00000 0.00000 0.00279 8 -0.16296 0.11140 0.00000 0.00000 0.00000 0.00143 p,,,p9R,%9168 Condition D79=O.9DL+Wx 1 -0.15419 0.00477 0.00000 0.00000 0.00000 0.00000 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00246 3 -0.15417 -0.00326 0.00000 0.00000 0.00000 -0.00066 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00205 5 -0.15451 -0.00644 0.00000 0.00000 0.00000 0.00018 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00143 7 -0.15485 -0.00308 0.00000 0.00000 0.00000 0.00143 8 -0.15487 0.06065 0.00000 0.00000 0.00000 0.00077 Condition D20=0.9DL+EQX 1 -0.15419 0.00477 0.00000 0.00000 0.00000 0.00000 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00246 3 -0.15417 -0.00326 0.00000 0.00000 0.00000 -0.00066 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00205 5 -0.15451 -0.00644 0.00000 0.00000 0.00000 0.00018 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00143 7 -0.15485 -0.00308 0.00000 0.00000 0.00000 0.00143 8 -0.15487 0.06065 0.00000 0.00000 0.00000 0.00077 Condition SUDL 1 0.00109 0.03973 0.00000 0.00000 0.00000 -0.00048 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00058 3 0.00109 -0.00349 0.00000 0.00000 0.00000 -0.00121 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00005 5 0.00070 -0.00715 0.00000 0.00000 0.00000 0.00007 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00056 7 0.00034 -0.00356 0.00000 0.00000 0.00000 0.00112 8 0.00034 0.03297 0.00000 0.00000 0.00000 0.00038 Condition S2=DL+LL 1 0.00221 0.08268 0.00000 0.00000 0.00000 -0.00104 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00107 3 0.00221 -0.00620 0.00000 0.00000 0.00000 -0.00223 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00009 5 0.00149 -0.01220 0.00000 0.00000 0.00000 0.00013 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00103 7 0.00082 -0.00633 0.00000 0.00000 0.00000 0.00206 8 0.00082 0.07045 0.00000 0.00000 0.00000 0.00088 ........................................................................................................................................................................... Condition S3=DL+SL 1 0.00161 0.05045 0.00000 0.00000 0.00000 -0.00061 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00074 3 0.00161 -0.00459 0.00000 0.00000 0.00000 -0.00154 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00007 5 0.00111 -0.00862 0.00000 0.00000 0.00000 0.00010 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00071 7 0.00065 -0.00469 0.00000 0.00000 0.00000 0.00142 8 0.00065 0.04106 0.00000 0.00000 0.00000 0.00048 Condition S4=DL+0.75LL 1 0.00192 0.07193 0.00000 0.00000 0.00000 -0.00090 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00095 3 0.00192 -0.00552 0.00000 0.00000 0.00000 -0.00197 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00008 5 0.00129 -0.01093 0.00000 0.00000 0.00000 0.00012 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00091 7 0.00069 -0.00564 0.00000 0.00000 0.00000 0.00182 8 0.00069 0.06107 0.00000 0.00000 0.00000 0.00075 Page 999f i68 CondiOon S5=DL+0.75SL 0.02105 0.00000 0.00000 0.00000 -0.00022 1 0.00148 0.04777 0.00000 0.00000 0.00000 -0.00058 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00070 3 0.00148 -0.00431 0.00000 0.00000 0.00000 -0.00146 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00006 5 0.00101 -0.00825 0.00000 0.00000 O.00DDO 0.00009 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00067 7 0.00057 -0.00440 0.00000 0.00000 0.00000 0.00134 8 0.00057 0.03903 0.00000 0.00000 0.00000 0.00046 ............... ...................................................... Conditon S6=DL+0.75LL+0.75SL 0.01794 _..... ...... _................................................. 0.00000 ...... _.............. ............... 1 0.00233 0.08001 0.00000 0.00000 0.00000 -0.00100 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00107 3 0.00233 -0.00634 0.00000 0.00000 0.00000 -0.00222 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00009 5 0.00161 -0.01203 0.00000 0.00000 0.00000 0.00014 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00103 7 0.00095 -0.00648 0.00000 0.00000 0.00000 0.00205 8 0.00095 0.06716 0.00000 0.00000 0.00000 0.00083 Condition 87=DL+0.6Wx 1 -0.09247 0.02105 0.00000 0.00000 0.00000 -0.00022 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00175 3 -0.09245 -0.00356 0.00000 0.00000 0.00000 -0.00095 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00122 5 -0.09284 -0.00715 0.00000 0.00000 0.00000 0.00014 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00061 7 -0.09321 -0.00349 0.00000 0.00000 0.00000 0.00137 8 -0.09322 0.05165 0.00000 0.00000 0.00000 0.00064 - -- ..................................................__......-.-......-..-....-.......-.-........-....._._..-.___.--.--._............................................. Condition SB=DL+0.7EOx 8 -0.07192 0.08168 0.00000 0.00000 1 -0.10806 0.01794 0.00000 0.00000 0,00000 -0.00017 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00195 3 -0.10804 -0.00357 0.00000 0.00000 0.00000 -0.00091 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00143 5 -0.10843 -0.00715 0.00000 0.00000 0.00000 0.00015 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00080 7 -0.10880 -0.00347 0.00000 0.00000 0.00000 0.00142 8 -0.10881 0.05477 0.00000 0.00000 0.00000 0.00068 Condition S9=DL+0.75LL+0.45Wx+0.75SL 1 -0.07054 0.06549 0.00000 0.00000 0.00000 -0.00080 2 0.00000 0.00000 0.00000 0.00000 0.00000 _ 0.00198 3 -0.07053 -0.00640 0.00000 0.00000 0.00000 -0.00202 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00090 5 -0.07124 -0.01203 0.00000 0.00000 0.00000 0.00019 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00012 7 -0.07191 -0.00642 0.00000 0.00000 0.00000 0.00225 8 -0.07192 0.08168 0.00000 0.00000 0.00000 0.00103 -..._..--..._ Condition .................................................. S10=DL+0.525EDx ................................................. ... ...... ..................... ..... _......... .... _ -- - - _-- 1 -0.08077 0.02339 0.00000 0.00000 0.00000 -0.00025 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00160 3 -0.08076 -0.00355 0.00000 0.00000 0.00000 -0.00096 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00106 5 -0.08115 -0.00715 0.00000 0.00000 0.00000 0.00013 - 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00046 7 -0.08151 -0.00350 0.00000 0.00000 0.00000 0.00134 8 -0.08153 0.04932 0.00000 0.00000 0.00000 0.00061 Page D068 Condition S71=DL+0.75SL 0.00547 0.00000 0.00000 0.00000 -0.00003 1 0.00148 0.04777 0.00000 0.00000 0.00000 -0.00058 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00070 3 0.00148 -0.00431 0.00000 0.00000 0.00000 -0.00146 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00006 5 0.00101 -0.00825 0.00000 0.00000 0.00000 0.00009 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00067 7 0.00057 -0.00440 0.00000 0.00000 0.00000 0.00134 8 0.00057 0.03903 0.00000 0.00000 0.00000 0.00046 .... . ................................................. _..... _............................... Condition S12=DL+0.525EOx+0.75SL ....................... .................................................. 0.00000 0.00000 1 -0.08118 0.03128 0.00000 0.00000 0.00000 -0.00035 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00174 3 -0.08116 -0.00438 0.00000 0.00000 0.00000 -0.00123 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00106 5 -0.08163 -0.00825 0.00000 0.00000 0.00000 0.00015 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00036 7 -0.08207 -0.00434 0.00000 0.00000 0.00000 0.00157 6 -0.08208 0.05552 0.00000 0.00000 0.00000 0.00068 Condition S13=D.6DL+0.6Wx 1 -0.09111 0.00547 0.00000 0.00000 0.00000 -0.00003 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00149 3 -0.09109 -0.00217 0.00000 0.00000 0.00000 -0.00047 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00121 5 -0.09132 -0.00429 0.00000 0.00000 0.00000 0.00011 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00081 7 -0.09155 -0.00206 0.00000 0.00000 0.00000 0.00092 8 -0.09156 0.03809 0.00000 0.00000 0.00000 _ 0.00048 ................................. ........ ....................................... Condition S14=0.6DL+0.7EQx _.._................................................ ......... ................ .......... 1 -0.10640 0.00242 0.00000 0.00000 0.00000 0.00001 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00168 3 -0.10638 -0.00218 0.00000 0.00000 0.00000 -0.00043 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00142 5 -0.10661 -0.00429 0.00000 0.00000 0.00000 0.00012 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00100 7 -0.10684 -0.00205 0.00000 0.00000 0.00000 0.00096 8 -0.10685 0.04114 0.00000 0.00000 0.00000 0.00053 Reactions Y rmy -9 t FY Mx Fx �} Fz��� i 4- R Idz� Direction of positive forces and moments Page fo%go1168 Page POYof"168 Forces (Krol Moments flgWffl Node FX FY FZ MX MY MZ ........................... _................ Condition DL-Dead Load _.... ....... .................................... ..... _..... ... _....._. ... .................... 2 0.82722 16.37105 0.00000 0.00000 0.00000 0.00000 4 -0.05520 33.57046 0.00000 0.00000 0.00000 0.00000 6 -0.77202 16.71599 0.00000 0.00000 0.00000 0.00000 ._....... ........... _._............................. SUM 0.00000 _.... _....................................................................................................... 66.65750 0.00000 0.00000 0.00000 ... 0.00000 Condition LL--Live Load 2 0.69398 12.72273 0.00000 0.00000 0.00000 0.00000 4 -0.04262 23.66781 0.00000 0.00000 0.00000 0.00000 6 -0.65135 12.99347 0.00000 0.00000 0.00000 0.00000 ........................... .............. .................... SUM 0.00000 _..................................................................... 49.38400 0.00000 0.00000 ....................... 0.00000 ............. 0.00000 Condition SL-Snow Load 2 0.22902 5.16423 0.00000 0.00000 0.00000 0.00000 4 -0.02015 6.86779 0.00000 0.00000 0.00000 0.00000 6 -0.20887 5.27998 0.00000 0.00000 0.00000 0.00000 ............................ .......... _........................................... SUM 0.00000 17.31200 .......................................................................... 0.00000 0.00000 0.00000 _..... ...-... 0.00000 Condition Wx=Wind In X 2 0.66811 0.55433 0.00000 0.00000 0.00000 0.00000 4 0.87973 0.00014 0.00000 0.00000 0.00000 0.00000 6 0.66975 -0.55447 0.00000 0.00000 0.00000 0.00000 ...........--............................................................................................................................................................ SUM 2.21760 0.00000 0.00000 0.00000 0.00000 0.00000 Condition EDx=Seismic In X 2 0.66811 0.55433 0.00000 0.00000 0.00000 0.00000 4 0.87973 0.00014 0.00000 0.00000 0.00000 0.00000 6 0.66975 -0.55447 0.00000 0.00000 0.00000 0.00000 ............................................................................._.............................................................._............................ SUM 2.21760 0.00000 0.00000 0.00000 0.00000 0.00000 Condition D7=1.4DL 2 1.15665 22.91831 0.00000 0.00000 0.00000 0.00000 4 -0.07711 47.00083 0.00000 0.00000 0.00000 0.00000 6 -1.07954 23.40136 0.00000 0.00000 0.00000 0.00000 .._....................................................................................................................................................................... SUM 0.00000 93.32050 0.00000 0.00000 0.00000 0.00000 Condition D2=1.2DL+1.6LL 2 2.09276 39.99330 0.00000 0.00000 0.00000 0.00000 4 -0.13334 78.16858 0.00000 0.00000 0.00000 0.00000 6 -1.95942 40.84152 0.00000 0.00000 0.00000 0.00000 ..............._........................................--.....................................--........_........_..................................................... sl1M 0.00000 159.00340 0.00000 0.00000 0.00000 0.00000 Condition D3=1.2DL+O.SSL 2 1.10569 22.22618 0.00000 0.00000 0.00000 0.00000 4 -0.07614 43.72067 0.00000 0.00000 0.00000 0.00000 6 -1.02954 22.69814 0.00000 0.00000 0.00000 0.00000 ........................................................................................................................................................................... sl1M 0.00000 88.64500 0.00000 0.00000 0.00000 0.00000 Page POYof"168 Condition 04=1.20L+1.6LL+0.5SL 2 2.20542 42.57389 0.00000 0.00000 0.00000 0.00000 4 -0.14321 81.60526 0.00000 0.00000 O.00DDO 0.00000 6 -2.06220 43.48025 0.00000 0.00000 0.00000 0.00000 ........... ...................................................... SUM 0.00000 167.65940 ............... ... .-- 0.00000 .................... _ 0.00000 ............ _.............. 0.00000 _._..... _... 0.00000 Condition D5=1.2DL+1.6SL 2 1.35533 27.90498 0.00000 0.00000 0.00000 0.00000 4 -0.09806 51.27866 0.00000 0.00000 0.00000 0.00000 6 -1.25727 28.50456 0.00000 0.00000 0.00000 0.00000 ..................................... ........ SUM 0.00000 ............. ........... 107.68820 ...................................... 0.00000 ....... ..-................................................ 0.00000 0.00000 0.00000 Condition D6=1.2DL+0.5Wx 2 1.33023 19.93655 0.00000 0.00000 0.00000 0.00000 4 0.36614 40.28551 0.00000 0.00000 0.00000 0.00000 6 -0.58757 19.76694 0.00000 0.00000 0.00000 0.00000 ....................... _..... .......................................................... SUM 1.10880 79.98900 .................... 0.00000 ----_............................... 0.00000 _.... 0.00000 _................. 0.00000 Condition D7=1.2DL+1.6SL+LL 2 2.04231 40.62200 0.00000 0.00000 0.00000 0.00000 4 -0.13994 74.95705 0.00000 0.00000 0.00000 0.00000 6 -1.90237 41.49315 0.00000 0.00000 0.00000 0.00000 ........................................................................................................................................................................... SUM 0.00000 157.07220 0.00000 0.00000 0.00000 0.00000 Condition D8=1.2DL+1.6SL+0.5Wx 2 1.69379 28.20223 0.00000 0.00000 0.00000 0.00000 4 0.33385 51.27867 0,00000 0.00000 0.00000 0.00000 6 -0.91884 28.20730 000000 0.00000 0.00000 _ .... _.................. _..... _._.............................................................. --------- SUM 1.10880 --------.---Y 107.68820 0.00000 0.00000 ------.--•--•--0.00000 0.00000 0.00000 Condition D9=1.2DL+Wx 2 1.66799 20.22830 0.00000 0.00000 0.00000 0.00000 4 0.79845 40.28560 0.00000 0.00000 0.00000 0.00000 6 -0.24884 19.47510 0.00000 0.00000 0.00000 0.00000 ........................................................................................................................................................................... SUM 2.21760 79.98900 0.00000 0.00000 0.00000 0.00000 Condition D70=1.2DL+Wx+0.5SL 2 1.78180 22.81308 0.00000 0.00000 0.00000 0.00000 4 0.78823 43.72078 0.00000 0.00000 0.00000 0.00000 6 -0.35243 22.11114 0.00000 0.00000 0.00000 0.00000 _._ ..................... ................................................. SUM 2.21760 88.64500 ........ .......... ............................................................................. 0.00000 0.00000 0.00000 0.00000 Condition D11=1.2DL+Wx+LL 2 2.36129 32.96681 0.00000 0.00000 0.00000 0.00000 4 0,74810 63.96097 0.00000 0.00000 0.00000 0.00000 6 -0.89179 32.44522 0.00000 0.00000 0.00000 0.00000 ................................................................................. SUM 2.21760 129.37300 _........................................................................................ 0.00000 0.00000 0.00000 0.00000 Page POPot9t 68 Condition D12=1.20L+Wx+LL+0.5SL 2 2.47452 35.55135 0.00000 0.00000 0.00000 0.00000 4 0.73787 67.39706 0.00000 0.00000 0.00000 0.00000 6 ............................. -0.99480 ............................................. 35.08057 0.00000 0.00000 0.00000 0.00000 SUM - 2.21760 138.02900 .__....._-................. 0.00000 ... ...................... 0.00000 ................... 0.00000 .................... 0.00000 Condition D13=1.2DL+0.2SL 2 1.03751 20.67734 0.00000 0.00000 0.00000 0.00000 4 -0.07016 41.65954 0.00000 0.00000 0.00000 0.00000 6 .............................................................................._.-.._..................._...._......................._.._......._..........._....._.... -0.96735 21.11451 0.00000 0.00000 0.00000 0.00000 SUM 0.00000 83.45140 0.00000 0.00000 0.00000 0.00000 Condition D14=1.2DL+EOx 2 1.66799 20.22830 0.00000 0.00000 0.00000 0.00000 4 0.79845 40.28560 0.00000 0.00000 0.00000 0.00000 6 .._... . -0.24884 ................... 19.47510 0.00000 0.00000 0.00000 0.00000 ................ SUM 2.21760 ...................... ....... 79.98900 ........ _..................................................................................... 0.00000 0.00000 0.00000 0.00000 Condition D15=1.2DL+LL+0.2SL 2 1.72623 33.39581 0.00000 0.00000 0.00000 0.00000 4 -0.11222 65.33531 0.00000 0.00000 0.00000 0.00000 6 -1.61401 34.10429 0.00000 0.00000 0.00000 0-00000 ............................. SUM _........ _......................................................................... 0.00000 132.83540 0.00000 ......................................................... 0.00000 0.00000 0.00000 Condition D16.1.2DL+EOx+0.2SL 2 1.71353 21.26222 0.00000 0.00000 0.00000 0.00000 4 0.79436 41.65965 0.00000 0.00000 0.00000 0.00000 6 -0.29029 20.52953 0.00000 0.00000 0.00000 0.00000 ........................................................................................................................................................................... SUM 2.21760 83.45140 0.00000 0.00000 0.00000 0.00000 Condition D17=1.2DL+EOx+LL 2 2.36129 32.96681 0.00000 0.00000 0.00000 0.00000 4 0.74810 63.96097 0.00000 0.00000 0.00000 0.00000 - 6 ........................................................................................................................................................................... -0.89179 32.44522 0.00000 0.00000 0.00000 0.00000 sum 2.21760 129.37300 0.00000 0.00000 0.00000 - 0.00000 Condition D18=1.2DL+EOx+LL+0.2SL 2 2.40660 34.00063 0.00000 0.00000 0.00000 0.00000 4 0.74401 65.33539 0.00000 0.00000 0.00000 0.00000 6 ........................................................................................................................................................................... -0.93300 33.49938 0.00000 0.00000 0.00000 0.00000 SUM 2.21760 132.83540 0.00000 0.00000 0.00000 0.00000 Condition D79=0.9DL+Wx 2 1.41863 15.31004 0.00000 0.00000 0.00000 0.00000 4 0.81886 30.21318 0.00000 0.00000 0.00000 0.00000 6 -0.01989 14.46853 0.00000 0.00000 0.00000 0.00000 ........................ SUM .......... ............... 2.21760 ................................................... 59.99175 0.00000 ............................... 0.00000 ........ ....... ........................ 0.00000 0.00000 Pag IMP168 Condition D20=0.9DL+EOx 2 1.41863 15.31004 0.00000 0.00000 0.00000 0.00000 4 0.81886 30.21318 0.00000 0.00000 0.00000 0.00000 6 -0.01989 14.46653 0.00000 0.00000 0.00000 0.00000 ----------------- _-.----.-.-.---_----- _------------- SUM 2.21760 -.... ____... 59.99175 .............................. 0.00000 ................................................................... 0.00000 0.00000 0.00000 Condition SI -DL 2 0.82722 16.37105 0.00000 0.00000 0.00000 0.00000 4 -0.05520 33.57046 0.00000 0.00000 0.00000 0.00000 6 -0.77202 16.71599 0.00000 0.00000 0.00000 0.00000 .._........................................._....-_..........-_.........................................................................---.........................._ SUM 0.00000 66.65750 0.00000 0.00000 0.00000 0.00000 Condition S2=DL+LL 2 1.51702 29.09040 0.00000 0.00000 0.00000 0.00000 4 -0.09738 57.24458 0.00000 0.00000 0.00000 0.00000 6 -1.41965 29.70651 0.00000 0.00000 0.00000 0.00000 .................................................. SUM 0.00000 ........................ 116.04150 _... .......................................................................... 0.00000 0.00000 0.00000 ................. 0.00000 Condition S3=DL+SL 2 1.05471 21.53405 0.00000 0.00000 0.00000 0.00000 -_ 4 -0.07518 40.44054 0.00000 0.00000 0.00000 0.00000 6 -0.97954 21.99492 0.00000 0.00000 0.00000 0.00000 ........................................................................................................................................................................... SUM 0.00000 83.96950 0.00000 0.00000 0.00000 0.00000 Condition S4=DL+0.75LL -_ 2 1.34489 25.91082 0.00000 0.00000 0.00000 0.00000 4 -0.08686 51.32557 0.00000 0.00000 0.00000 0.00000 6 -1.25802 26.45910 0.00000 0.00000 0.00000 0.00000 ........................................................................._....................................................................._...................._... SUM 0.00000 103.69550 0.00000 0.00000 0.00000 0.00000 Condition S5=DL+0.75SL 2 0.99788 20.24333 0.00000 0.00000 0.00000 0.00000 4 -0.07019 36.72295 0.00000 0.00000 0.00000 0.00000 - 6 -0.92769 20.67521 0.00000 0.00000 0.00000 0.00000 ........................................ _...... sum 0.00000 _........................................................................................................ 79.64150 0.00000 0.00000 0.00000 ................. - 0.00000 Condition S6=DL+0.75LL+0.75SL 2 1.51485 29.78253 0.00000 0.00000 0.00000 0.00000 - 4 -0.10178 56.47911 0.00000 0.00000 0.00000 0.00000 6 -1.41307 30.41785 0.00000 0.00000 0.00000 0.00000 ........................................................................................................................................................................... SUM 0.00000 116.67950 0.00000 0.00000 0.00000 0.00000 Condition S7=DL+0.6Wx 2 1.23217 16.71812 0.00000 0.00000 0.00000 0.00000 4 0.46516 33.57050 0.00000 0.00000 0.00000 0.00000 6 -0.36677 16.36888 0.00000 0.00000 0.00000 0.00000 ...................... .................................................. SUM 1.33056 66.65750 _............... _................................................................................ 0.00000 0.00000 0.00000 0.00000 Page pWSA8 Condition SB=DL+0.7EOx 2 1.29960 16.77596 0.00000 0.00000 0.00000 0.00000 4 0.55188 33.57051 0.00000 0.00000 0.00000 0.00000 6 -0.29917 16.31102 0.00000 0.00000 0.00000 0.00000 ...................... .................................................... SUM 1.55232 66.65750 _...................................... 0.00000 ........ ................................................. 0.00000 0.00000 0.00000 Condition S9=DL+0.75LL+0.45Wx+0.75SL 2 1.82017 30.95171 0.00000 0.00000 0.00000 0.00000 4 0.28560 56.47911 0.00000 0.00000 0.00000 0.00000 6 -1.10786 30.14868 0.00000 0.00000 0.00000 0.00000 ........................... __......................... SUM 0.99792 _......................... 116.67950 ........................................................................................ 0.00000 0.00000 0.00000 0.00000 Condition S70=DL+0.525EOx 2 1.18158 16.67474 0.00000 0.00000 0.00000 0.00000 4 0.40011 33.57049 0.00000 0.00000 0.00000 0.00000 6 -0.41746 16.41227 0.00000 0.00000 0.00000 0.00000 - ........................ _............................................ SUM 1.16424 66.65750 ...... _......................... 0.00000 _........................................................ 0.00000 0.00000 .......... 0.00000 Condition S11=DL+0.75SL 2 0.99788 20.24333 0.00000 0.00000 0.00000 0.00000 - 4 -0.07019 38.72295 0.00000 0.00000 0.00000 0.00000 6 -0.92769 20.67521 0.00000 0.00000 0.00000 0.00000 ........................... ........................................................... SUM 0.00000 79.64150 _............... 0.00000 _............................................. 0.00000 ..................... 0.00000 0.00000 Condition S12=DL+0.525EOx+0.75SL 2 1.35237 20.54963 0.00000 0.00000 0.00000 0.00000 4 0.38495 38.72297 0.00000 0.00000 0.00000 0.00000 6 -0.57308 20.36889 0.00000 0.00000 0.00000 0.00000 .......................................................................................-........._..._.................................................................. SUM 1.16424 79.64150 0.00000 0.00000 0.00000 0.00000 Condition S13-0.6DL+0.6Wx 2 0.90030 10.16425 0.00000 0.00000 0.00000 0.00000 4 0.49025 20.14138 0.00000 0.00000 0.00000 0.00000 _ 6 -0.05999 9.66887 0.00000 0.00000 0.00000 0.00000 ............. _...................................................................................... SUM 1.33056 39.99450 0.00000 ........... ......... .................................................. 0.00000 0.00000 _ 0.00000 Condition 514=0.6DL+0.7EOx 2 0.96747 10.22110 0.00000 0.00000 0.00000 0.00000 4 0.57749 20.14140 0.00000 0.00000 0.00000 0.00000 6 0.00736 9.63200 0.00000 0.00000 0.00000 0.00000 - .................. .......... ................................................ SUM 1.55232 39.99450 _._..................................... 0.00000 ............. 0.00000 ...-............................... 0.00000 ..... 0.00000 Page P090f& Current Date: 10/18/201612:06 PM Units system: English File name: TAStructurah2016 Structural Jobs\2016-2850HA Mattson Apanments\Gridlie 5.etz\ Report: Summary- Group by description Load conditions to be included in design D7=1.4DL D2=1.2DL+1.6LL D3=1.2DL+0.5SL D4=1.2DL+1.6LL+0.5SL 05=1.2DL+1.6SL D6=1.2DL+0.5Wx D7=1.2DL+1.6SL+LL D8=1.2DL+1.6SL+O.SW x D9=1.2DL+Wx D10=1.2DL+Wx+0.5SL D11=1.2DL+Wx+LL D1 2=1.2DL+Wx+LL+0.5SL D13=1.2DL+0.2SL D14=1.2DL+EQx D15=1.2DL+LL+0.2SL D16=1.2DL+EQx+0.2SL D17=1.2DL+EQx+LL DI 8=1.2 DL+EQx+LL+0.2S L D19=0.9OL+Wx D20=0.9DL+EQx Description Section Steel Code Check Member Ctrl Eq. Ratio Status Reference Beam W 10X54 _ 2 D4 at 100.00% 0.56 OK Eq. H1 -1b Column TUBE 1Ox6x5 6 5 012 at 100.00% 0.19 OK Eq. H1 -1b Page O TT68 Anchor DesignerTM Software Version 2.4.5673.270 a 1.Prolect Information Customer company: Customer contact name: Customer e-mail: Comment: 2. Inuut Data B Anchor Parameters General Design method:ACI 318-08 Units: Imperial units Anchor Information: Anchor type: Cast -in-place Material: ABH Diameter (inch): 0.625 Effective Embedment depth, he (inch): 6.000 Anchor category: - Anchor ductility: Yes hmm (inch): 8.13 Cn* (inch): 1.25 Sm,r (inch): 2.50 Company: Date: 1 0/1 812 01 6 Engineer: Page: 1/4 'Project: Address: Phone: E -mail - Project description: BP1 Location: Gridline 5 Fastening description: Base Material Concrete: Normal -weight Concrete thickness, In (inch): 24.00 State: Cracked Compressive strength, F. (psi): 2500 4''v: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No O lb Y 0 ft -Ib Input dale and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.90D0 Fax 925.847.3871 www.saongtie.00m Page 107 of 168 Base Plate Load and Geometry Length x width x Thickness (inch): 11.00 x 12.00 x 0.75 Load factor source: ACI 318 Section 9.2 Yield stress: 36000 psi Load combination: U = 0,9D+ 1.0E + 1.6H Seismic design: Yes Profile type/size: HSS10X6X518 Anchors subjected to sustained tension: Not applicable Strength reduction factor for brittle failure, mv: 1.0 Apply entire shear load at front row: No Z Anchors only resisting wind and/or seismic loads: No <Figure 1> 1$668 Ib O lb Y 0 ft -Ib Input dale and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.90D0 Fax 925.847.3871 www.saongtie.00m Page 107 of 168 <Figure 2> Anchor Designer TM Software Version 2.4.5673.270 Company: Date: 10/18/2016 Engineer Page: 1214 Project: Address: Phone: E-mail: Recommended Anchor Anchor Name: PAB Pre -Assembled Anchor Bolt - PABSH (5/8"0) Input data and results must be checked for agreement vdih the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.647.3871 vrxw.seonglie.com Page 108 of 168 Anchor Designer""' Software Version 2.4.5673.270 R. Company: Date: 10/18/2016 Engineer: I Page: 1314 Pr 'ect Address: Phone: E-mail: 3. Resulsing Anchor Forces Anchor Tension load, Shear bad x, Shear load y, Shear load combined, Nm (Ib) Vw. (lb) Vwy (Ib) 4(VY..)2-(Vas,)' (Ib) 1 0.0 418.8 0.0 418.8 2 0.0 418.8 0.0 418.8 3 0.0 418.8 0.0 418.8 4 0.0 418.8 0.0 418.8 0.0 Maximum concrete compression strain (%a): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 0 Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'Nx (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00 8. Steel Strength of Anchor in Shear (Sec D.6.11 Vas (lb) 0"W d Og aw Vse (lb) 16270 1.0 0.65 10576 9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.21 Shear perpendicular to edge in x-directlon: Vb. = 7(la/ d.)e 24dad4racaP 5 (Eq. D-24) <Figure 3> b (in) da (in) d ra (psi) cat (in) Vw (lb) 5.00 0.63 1.00 2500 12.00 17434 1675.0 01 02 Y x 04 c3 0.75401/co . = 0.75¢dd (Awl Avao)W..v Pwv y',,vWkvVb. (Sec. D.3.3.3, D.4.1 & Eq. D-22) Avd (int) Avco (ins) y;.,v WegV Na,v 9'h.v Vb. (lb) 4 0.750doVabs. (Ib) 288.00 648.00 1.000 0.758 1.000 1.000 17434 0.70 3085 Shearparallel to edge /n x -direction: Vby = 7(1a7ds)024da.i4r cd 5 (Eq. D-24) /. (in) da (in) d Fa (psi) cat (in) Vey (Ib) 5.00 0.63 1.00 2500 3.50 2746 0.750dmVabv. = 0.750dO (2)(Avb/Avm)'P a.vWedv'/¢vWhvVny (Sec. D.4.1, D.6.2.1(e) & Eq. D-22) Av (ins) Avo(tn2) Wao,V Wad,v Wr,v Wn.v Vby(lb) 0 0.75¢4OVabvx (Ib) 84.00 55.13 1.000 1.000 1.000 1.000 2746 0.70 4394 lii -LII- ciu l•III63TfTiLTiWICTM TAft - 0.750dit Vass=0.760ddlkacNwo=0.75OdOkoa(Arm/ANaa) WocN Wa.NWaN'K NNb(Eq. D-31) kat, ANc (int) AN. (Ins) P.,,N Wm,N K..N W.p.N Nb (Ib) d 0.75OdOVary (lb) 2.0 256.00 81.28 1.000 0.933 1.000 1.000 6252 0.70 19287 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925,560.9000 Fax: 925.847.3871 www.strongtie.00m Page 109 of 168 Anchor Designer TM y . l Software Version 2.4.5673.270 Company: Date: 1 011 812 01 6 Engineer: Page: 4/4 Project: Address: Phone: E-mail: Interaction of Tensile and Shear Forces fSec D.7 Shear Factored Load, V_ (lb) Design Strength, oW (Ib) Ratio Status Steel 419 10576 0.04 Pass T Concrete breakout x+ 1675 3085 0.54 Pass (Governs) 11 Concrete breakout y- 838 Pryoul 1675 4394 0.19 Pass (Governs) 19287 0.09 Pass PAB5H (518"0) with her = 6.000 inch meets the selected design criteria. 12. Warnings - Minimum spacing and edge distance requirement of 6da per ACI 318 Sections D.8.1 and D.8.2 for torqued cast -in-place anchor is waived per designer option. - Per designer input, ductility requirements have been determined to be satisfied - designer to verity. - Designer must exercise own judgement to determine if this design is suitable. Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong Tie Company Inc 5956 W Las Positas Boulevard Pleasanton, CA 94588 Phone: 925 560.9000 Fax 925 847,3871 www.stmngtie.com Page 110 of 168 71P1I Anchor Designer TM Software Version 2.4.5673.270 1.Prolect Information Customer company: Customer contact name: Customer e-mail: Comment: 2. Input Data & Anchor Parameters General Design melhocI ACI 318-08 Units: Imperial units Anchor Information: Anchor type: Cast -in-place Material: AB_H Diameter (inch): 0.625 Effective Embedment depth, he (inch): 6.000 Anchor category: - Anchor ductility: Yes hmx (inch): 8.13 Cm (Inch): 1.25 Smn (inch): 2.50 Load and Geometry - Load factor source: Act 318 Section 9.2 Load combination: U = 1.2D + 1.6(Lr or S or R) + 1.01. Seismic design: No Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No Z <Figure 1> Company: JDate, 10/14/2016 Engineer: I Page: 1/4 Project: Address: Phone: E-mail: 7655 Ib Project description: BP2 Q TB22 Location: Gridline 5 Fastening description: Base Material Concrete: Normal -weight Concrete thickness, It (inch): 24.00 State: Cracked Compressive strength, fc (psi): 2500 grav: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout In shear: No Ignore Edo requirement: Yes Build-up grout pad: No Base Plate Length x Width x Thickness (inch): 6.00 it 12.00 x 0.75 Yield stress: 36000 psi Profile typeisize: HSS5X5X1/4 A Olb 0 ft -Ib Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.947.3871 wwwslronglie.com Page 111 of 168 Anchor Designer TM Software Version 2.4.5673.270 <Figure 2> Company: Dale: 110114EO16 Engineer: Page: 1214 Project: Address: Phone: E-mail: 17 nn Recommended Anchor Anchor Name: PAB Pre -Assembled Anchor Solt - PAB5H (518"0) 0 cYi 0 M Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strong9e.com Page 112 of 168 IIliCZ'1�� Anchor Designer TM Software Version 2.4.5673.270 Company: Dale: 10/14/2016 Engineer: Page: 3/4 Pro ect: Address: Phone: E-mail: 3. Resulting Anchor Anchor Forces Tension bad, Shear load x, Shear load y, Shear load combined, N.. (lb) V.. (Ib) Vwr (lb) 4(V..F)z+Naar)' (lb) 1 1913.8 0.0 0.0 0.0 2 1913.8 0.0 0.0 0.0 3 1913.8 0.0 0.0 0.0 4 1913.8 0.0 0,0 0.0 Sum 7655.0 0.0 0.0 0.0 Maximum concrete compression strain (%.): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 7655 Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, am (inch): 0,00 Eccentricity of resultant tension forces in y-axis, e'Nr (inch): 0.00 4. Steel Strength of Anchor In Tenston(Sec, D.6.11 N.. (lb) 4 ^. (lb) 27120 0.75 20340 S. Concrete Breakout Strength of Anchor In Tension (Sec D 5 21 Ne = k.ddf�ho'' (Eq. D-7) k. rt r. (psi) he (in) Nn (lb) 24.0 1.00 2500 6.000 17636 <Fgure 3> 01 Y 02 04 X 03 ONac =d (ANt7Am. )7 ',Ny'.gN%u4N''F mNh (Sec. D.4.1 & Eq. D-5) Aft (inr) Ar (in°) Pe,,N VON TC.N '7`4.N Nb (lb) d ONaa(lb) 298.13 324.00 1.000 0.817 1.00 1.000 17636 0.70 9277 ¢Nr„ = 07f pNp = Q''KPBAwaf. (Sec. D.4.1, Eq. D-14 & D-15) 'Y.P Awe (in°) rc (psi) 0 QNm (Ib) 1.0 1.94 2500 0.70 27205 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 wwwatrongtie.com Page 113 of 168 Anchor Designer TM Software Version 2.4.5673.270 h. Company: Date: 110114r20116 Engineer: Page: 4f4 Project: Address: Phone: E -mail - 1111. Results Interaction of Tensile and Shear Forces (Sec. D.7t Tension Factored Load, N. (lb) Design Strength, oN. (lb) Ratio Concrete breakout 7655 Pullout 1914 Status 9277 0.83 Pass (Governs) 27205 0.07 Pass PAB5H (518"0) with het = 6.000 Inch meets the selected design criteria. 12. Warnings - Minimum spacing and edge distance requirement of Bids per ACI 318 Sections D.8.1 and D.8.2 for torqued cast -in-place anchor is waived per designer option. - Designer must exercise own judgement to determine if this design is suitable. Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Pashas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com Page 114 of 168 •� Anchor Designel-T"' Software Version 2.4.5673.270 Prolecl Ind Customer company: Customer contact name: Customer e-mail: Comment: 2. Input Data & Anchor Parameters General Design methodACI 318-08 Units: Imperial units Anchor Information: Anchor type: Bonded anchor Material: F1554 Grade 36 Diameter (inch): 0.625 Effective Embedment depth, he (inch): 6.000 Code report: ICC -ES ESR -2508 Anchor category: - Anchor ductility: Yes It , (inch): 9.13 c ,, (inch): 12.85 Cd (inch): 1.75 S, (inch): 3.00 Load and Geometry Load factor source: ACI 318 Section 9.2 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: No Strength reduction factor for brittle failure, ¢d: 1.0 Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No <Figure 1> Company: Date: 10'1712016 Engineer: Pa e: 1/4 Project: Address: Phone: E-mail: Project description: HDUS interior Location: Gridline 5 Fastening description: Base Material Concrete: Normal -weight Concrete thickness, It (inch): 10.00 State: Cracked Compressive strength, fr. (psi): 2500 W..v: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No Hole condition: Dry concrete Inspection: Continuous Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable Build-up grout pad: No Z 4655 Ib 0 Ib Y Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.8000 Fax: 925.847.3871 wixw.strongtle.com Page 115 of 168 <Figure 2> Anchor DesignerT"t Software Version 2.4.5673.270 Company: Dale: 1101117r20116 Engineer: Page: 1214 Project: Address: Phone: E-mail: Recommended Anchor Anchor Name: SET -XP®- SET -XP w1518"0 F1554 Gr. 36 Code Report: ICC -ES ESR -2508 a Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 w stronglie.com Page 116 of 168 F711'( Anchor Designer"m Software Version 2.4.5673.270 Company: Data: 10/17/2016 Engineer. Page: 3/4 Project: Address: Phone: E-mail: 3. Resultinn Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, N.. (Ib) V. (lb) Vo.y (m) J(Vw.)'+(V..k)d (lb) 1 2655.0 0.0 0.0 0.0 Sum 2655.0 0.0 Maximum concrete compression strain (°b.): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 2655 Resultant compression force (Ib): 0 Eccentricity of resultant tension forces in x-axis, e'9. (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'rw (inch): 0.00 4. Steel Strength of Anchor in Tenston(Sec. D.6.11 Nk. (Ib) 0 ^. (lb) 13110 0.75 9833 S. Concrete Breakout Strength of Anchor in Toulon (Sec. D.5.2) Na = k,,NF l.r" (Eq. D-7) kc .t fd (psi) Ira (in) Nb (lb) 17.0 1.00 2500 6.000 12492 0.750doNw = 0.750no (Ark/Arc ) Y'aNYoN Yrv.NNb (Sec. D.3.3.3, D.4.1 & Eq. D-4) Aix (in') Arc (ino YLdrc 71'. N PMN Na (Ib) d 0.76*ONcb (Ib) 324.00 324.00 1.000 1.00 1.000 12492 0.65 6090 6. Adhesive Strength of Anchor in Tension IAC308 Sec. 3.31 rk, = rk, fmw.i lK6a om.,f U'. (psi) f~4... Km arcxr. rk,n(Psi) 855 1.00 1.00 1.00 655 Na = rkasd.her(Eq. D -16Q rk,o(psi) d. (in) her (in) N.o(lb) 855 0.63 6.000 10073 0.750doN. = 0.7500 (Am 1 Amo)Y'aN. P,,mN.o (Sec. D.3.3.3, DAA & Eq. D -16a) Ane (in 2) Arca (Inr) Y'aN. 'fbN. N.o (lb) 9 0.75mdON. (Ib) 223.60 223.60 1.000 1.000 10073 0.65 4910 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W Las Pestles Boulevard Pleasanton, CA 94586 Phone: 925.560.9000 Fax: 025.647 3871 wwwatrongtie.com Page 117 of 168 �{j j►� Anchor DesignerT"" Software Version 2.4.5673.270 Company: Date: 10/17/2016 Engineer: Page: 414 Project: Address: Phone: E-maif: 11. Results Interaction Tensile and Shear Forces D.71 of Tension (Sec. Factored Load, Nua (Ib) Design Strength, oN„ (lb) Ratio Status Steel 2655 9833 0.27 Pass Concrete breakout 2655 6090 0.44 Pass Adhesive 2655 4910 0.54 Pass (Governs) SET -XP w/ 518"0 F1664 Gr. 36 with het = 6.000 inch meets the selected design criteria. 12. Warnings - When cracked concrete is selected, concrete compressive strength used in concrete breakout strength in tension, adhesive strength in tension and concrete pryout strength in shear for SET -XP adhesive anchor is limited to 2,500 psi per ICC -ES ESR -2508 Section 5.3. - This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes. - Minimum spacing and edge distance requirement of 6da per Act 318 Sections D.8.1 and D.8.2 for torqued cast -in-place anchor is waived per designer option. - Per designer input, ductility requirements have been determined to be satisfied — designer to verify. - Designer must exercise own judgement to determine if this design is suitable. - Refer to manufacturer's product literature for hole cleaning and installation instructions. Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong Tic Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925 560.9000 Fax: 925.847.3871 www strongtie.com Page 118 of 168 C � m U 3 rn N Y Y r p m N 00 m O N Y O J O c A O yuu C 1•! � N W m N � O N x p C M N d O II II e a N g O D > vai to m N N Z N N v C m N U D o H m m m O N m N u - 6 � M M V E y M O N u O O m m C5 y a � M LL N R o O p N E m U C N n r p m N O m O N Y O J O 0 a A O yuu C 1•! � N W « � O N x p C a m > II II e a N II O D > vai 0 N N Z d v C m N � D o H m m N u m � m O V E L N M O N N O O N C5 y o rn � LL N R o O y E w a O r m lL M co O1 m m m D Q` O p M N O m ry v d d L O• N m d C N C O o Nm Y O mo ° 0 N E N II II i 3 0 N m m 9 V a N II m P~ o p y p y F� C y d o u « N o d v c < E 0 U v m E °i rn N a ° n mo — Eo U a rr L'3 >o II II � II II II a w C It 3 3 a L 0 W22 O y d a F s, M m 3 - F gg to 8 LL « in ¢r d 3 a C V a r n n z a E y ° o ° _ E v c M O O a m t� N a II II q II II II a .E N o > > E m U C N m r C L O F N L y E 0 a A O yuu C 1•! � N W « U q d O 9 0 c7 J N x m r m L N Q a m v Y c 0 v w 2 ° J gage ti`19 6f 168 3 iii N N m U C N p 2d2 C y F a � d C M N 0 N � p C n e a N Y O 0 N > 11 II C m N H m m � m O w M U O m N C5 U u •Y a � LL O O d � C U O Y O E II II O p M N m ry v N L O• N m C N � Nm ° mo E N i 3 N > N m C _ II L o Q o p y > C y d o u « N 0 3 M v C Q < E 0 U v m E °i rn N a N 0 � n M m M U a m IL II II � II II II a 3 3 a y H O > m K v L y C a � v Y C M 0 c 3 u aE C 20 3 'm 0 C E 3 m > n N a c m y o N o D J p N m 0 a m > u II II j J N N N Z d 7 m � N w it m U N O o v N N y N G w y V F C Y O U O - E II II O 0 n rn o r .D A r n a m c O L O 01 i p E V tnO t 3 w C A M la -y F >Y5 r N i oW m yy y u O N d 0 O a 1- F i n a£ y O N m m m a 0 A N O Q II II q II II II - R 3 3 0 > E rn c rn c rn c t y d o L E L A gE y L A N •0 a C N p IM C N M C V c > 2 c y p c 2 c7 m L 2. "Page f20 -6f 168 3 N m N Sao Z EII II a� y a U li y n O q N n w � c v a e > II N M l0 c > o n_ d U w U O M C N N 10 L � r G II eD p Q N M Y J N O F N� Obi m O O a W � a > u c u II > N N N L Z ro n gage Y24of 168 d 7 � n n � w V IL O) •O1 � M m s O v N O v W L a N p ¢ N o 2 o r Q O v 'd m 3 C Q m N Sao Z EII II a� Y O O O a@) Y U li y n O L ; o - n w � c v c D > II N M l0 c > o n_ d U w U O M C N N 10 L N r G Q o E V _ E N� Obi E � ¢ O 'O W a a c u m �C O Fo- L W N ro gage Y24of 168 J 7 7 u u a E E u 3 0 �p m L a Y U li y n O o - n v c D > II N D > o n_ d U w O M U N LL N Q G N o L o � ¢ O 'O W IM° a c u m �C O Fo- L O i0 ro gage Y24of 168 J m m n n L O O) •O1 � m s w c c u W L a 0 t c O m 3 0-0 a E ;; m o E u a to a J II 11 v Oi ro ro C 33'e N N p 7 7 O E m L m C m L l`0 L L L L ro u V G = L > L gage Y24of 168 J N Z ) .E ! % »� .e !% :M / o / ! - t 0 $7 )\ _ _ - « ! ,!.$ 168 r — N wL a NI la ml O 3 N 3 n u r Y Y n II g C v O OO O m a@J w•r C C) c — W � u L X Y L 3 c U 00 000 y � C � 3 ` u C y d m LL d m w co m � c O m o 'a E W E "' m c W m amo u Y II 11 II d O 0 > m N o 0 c> o c 2 c7 J N = >j _g= "pagee 23 of 168 O J y ; N M M y � m U E m A O n II g C v O OO O m a@J w•r C C) c — W � c L 3 c w 01 C H y � C � 3 ` u C y d m LL d � Cn v c O 0 n n n E W E "' m E tLo m cW.l 0 a a II 11 II a t a o c> o c 2 c7 J N = >j c c c L u d v 0 A O y 0 A y 0 y o c> o c 2 c7 J N = _g= "pagee 23 of 168 O J y ; u 9 E C L 3 m M � � o 2 9 E C V 3 m N M M •p m c a_ YII m c 8 N r � m t > m n u > n N N v N a C N J � C O r ¢ O C a {YJ p w u m N OPagoi2?rof 168 J N IL N O o O E20 LL v O a c ti 0 v Y O F =0 U ' U O i0 m E HU ¢ W C p L •O O)0 r E O C_ 11 m $ 0 3 N 3 $ c V m � � o N O IL o D Q F O 0 L E m U E U Q S'v m M ry II J a 7 O E m c m c m c 0O N p m t m V O Y W N N C N J O C O r ¢ O C a {YJ p OPagoi2?rof 168 J N IL El c 10 L c L 10 N •$ Q W R c y fN V c N d Y O y LL vB R p Y o a _ d d 2 v n a Q J O a a C � > > m N u m w U e LL � m N o _ 0 e r m o CI LL o V m � w a C O b Y O F V O m � N N n c v Y t o m O t 3 m E y N j N m w C N N A L 3 F F C N O }qq gc C O 3 O d a F E; A V Q C m n N w a d J Ip 11 11 _Q r J p t\•'1 m � c > > O c N d N O y LL vB R p Y o a _ d d 2 v E N m u O O c u c w S u Ti N £ m c a U A F N m t r � W Q N LL q a Y N N O Q 4 > g c 0 O ro 3 'M N d' m a m 0 N O 3 'm N a U F N m O rn a N N a m 0 O ro Y II 0 0 V' Y II V U U r N m O U n N m O Q J O Q Za v > m N 'N Z a 7 Mm 2 7 � O w U N U N N N O w O N M O N O N o a N o a N .- ¢ o U OI ro LL m ro u m N O) m OI W a m 012 o M 07 v Q m O v O) d ~ -6 u Q o O w a u II O w a II u O <D a� <,� m 9� ¢ N rn z~ ,p@ O o O q L M~ R_ L W ~ N_ C L Co C O a •" C O a " C L D 0 L D p L D O) O .0)0 O) O w � � > to 0 3 0 N 9 9 C N Fa- F O N LL a 3 = O LL aaC C > m F m a O C- C O CN o EnE0 0 ELmvN £ m E o o m£ m n m n M �a m Afa'�a a a a � a J II 11 N II II II � a J II II N II II 11 � a 3 3 0 » o rn m c c L L d d N v N LL N Yu LL � y C N'J > > 00 C V > > c J NPagA28-o1168 m t O O Y U > > d E 3N 00 m in M N m N ro n c V Od Y O u to d ry v E .O u d d E y- O p Y U > � > d E 3N 00 m m O') N V1 n uNi c O d Od O u N Cdd N m C_ O o m O N E OI L> p O Y U E > u 9 E 3iii 00 OI .n M N N Oml � c Od Y O _V N Zp• C_ O u 41 3F N > N N a C > N LL C > LL R 6 y Q u v a ^ Y II my m Y II a m o d U(.i m C1 IJ f� n N m U O J O $ Q J O 4 p a a a a a a N > II ^I II IJ If Z C m j It N If N II Z C >> m > II N II N II Z C v > of d > d m N N IL N U LL M U N LL N U n m O y O N N O O N O N Q p d r _ � Ip LL m 0 07 R LL N m N LL m m 171 m o ¢` m ¢ m o w R - d C U Y C O N d C U F p Y O F O Y O H p Y O E II II O (p E If II O (O E II II O (p a m o F Z N 9 N LF 1- N (O R F' ry O C d « C 0110, C r C Cm 0 d r C O O �+ m 0 C II �,r II 11 cn Ov N OC O N u O O N O n I- FQQ3Y ULLv E .ac Q m D v t E• N^ EyE O E A F- L E N I(l E d M E A L. N N m OI N m N O J L N •0 Q• J L 'C a J L N '0 Q II 11 N II 11 11 � Q II II N II II II � Q II II N II II II � Q R R C vf0 t0 d� vCi R R C v� O 7 7 O 1 O > E m c o c 1�0 i 0. t L d b d N L m 9 V) 9 L N O y .o .c `o D v� 2 o c o c c R c Page 1'ZI of 168 y c_ y c u N Y Y s Y Y r Y Y O O O O O O O O c E c E c m in o n m m n r m m y m N N 0 C t> M N w O C L> M N V Y g u Q G g Q Q O M IMO a > N mu�i > N V a y n n > Ian a n c > � n c > m n _ c II m Y u v v Y n N Y N f M J N y O J O J O z O O_ a a a a $ n M> II II n C y> II n n C m> II n u C > N N J Z > N N N Z > ma N J Z 7 N u D U D O^ n D j V to A w U O y w U O N w y 11 UMj U N t U in N O M O M O 1n to o m N o m N o m N ¢ O E r N ¢ o n d ¢ E d b LL m M N IL ^ LL y 0 M N D an y O a 0 O) O a n d m •- G U m G Q p Y O p Y O U U- U U U U- m E II II 0m E u n 0 n E n u O io m °� a� m a m� .0 12 m y 3r aq` L N O U C Q W C O N y C p L D p L D On O pl O Ol O pl > o E 0 n to e o C C w C 11 ♦.r N r c II �,r y L _ c p It « v O l e p y v c 0 3 y y V C 0 3 y y 3 Q Q X$ L 3 a a '� > w c H p N o LL 2 U) F 00I P V O LL o w OO M 0 O r- 0 O (l D O D O O O DL E; E O a O E Wit. W W (O E y L N N p E t N E r In n a O N m ^ N E m N N N O FT N ^ N E y M r M A O C c n M U Q II II F II II II � Q II 11 ry II II II � Q II II R II II II �a is 33 � dv 33.E wm 33.E vv E y m rn c c c IL .�.. V' y O J N m Page 128 of 168 E am LD W c U > u C E 3v, Y Y 0 0 N M N m a �p MG v c , o Y p d O d N v y O a V n y d a E m t> A Y i U b > U C E 3in Y X 0 0 m N M N m N c o 0 O U u pC p_ G E 3C a E m Z 4 Q U m U 1 j 3£ o 9 E � u 3 w 0 0 m N M N M yNj � M c o u 0 p O y y C d u G ter-, > A N O N In A 0. N > m p c > m c n nto M U II v a N N N Y II a m n' f Y II a () N V J O 1p O J O E N m O J p m O 0 m > II N II !J II Z y C m > n II N II N II Z C v > N II N II fJ II Z C D, > v > N a > m m a v N C N o u o u m E y LL M M U E N LL m N O N �- N N w U O W O fn N O 4 m y N o m fV o m cli N W O.N M dr � M O U .. n N LL W mly6 OI N LL O O Oi N LL m O IN0 d a m O an d a m O N m m ' v C U m�T d p U m `O u d OI C U I -U o U O 10- O Y0 O Y O O O- UU- U O - d E u u to m E n 11 O to m n u O io a I� N E c •� F « F q p a L C p Q m O Of p O Of 0 p t >> r 3 E M ? > N> N > a > m m N w C w C w i cy o a N c d o 3 W N c 0 3 M m N 3 Q Q r- L 3 a a f .c H 3 v > u y �gg >$ > d w —0a aUc NVa0A+ wEU vg 0 Fa O¢ aVu y lW- 1- t nma rnh y ama <£ a D E O O E aO Q0•-' Mm O0 EOO J J m J U Q II II N II II II O Q II II A II 11 II � Q II II 4 10 Q O 3 � � � II II II Q (�`l N N v N 33'a yup 33 NUOI 33 d am p 1 1>> o p 1 1>> o m 7 £ rn c m c c N c c c L y N 1O N v^ L w g L y E N � •- A � Y $ N c N N � $ Y ¢ N A Y T- a J N LL J N page 119 of 168 u u u o f a E a E 3 N 3 n Sin M bl (' uai' I>1M N I I I N '>I� M Y O Y 333 Y N N y O O U 00 U 00 N c o E�'j rn ry c o .� rn M c o .� M N t> N N H V N'0 O O O x L O O n> of a M O M bl (' uai' I>1M N I I I N '>I� M O 333 Y a y ry N ry N �p N M O H V O+ O x L > of a n O -✓+ c .0 13 ' V II a y N 0^ N Y 11 M O N N Y N II a W N Y J O 4 y O J O y O J O M O a a a .0 a 'a o> II n II c> II n u c > n II II c > n N N z ? > m N IV Z > m N N Z N N N L M- u 13 co rn V y LL O U N Lr N U N LL N U O N O fn o a, N o m N o y N 0 @ LL M O 01 @ lL M O O) @ LL M M d l0 O W 10 N W d (O rn D a� � Q� � � a� F 6.Y O F -6 Y O 10- 6 Y O U II II U {p @ U II V- 11 <p @ U II II V- O ID O N m 5 H _O d q 3~ L Q r O� � ~ � � ~ m � •N N 7 •{0 F- m 7 •f0 O m "" C O d �' C p v '•' C O 0 p� 0 0) .0)0 > V > d > V > N > N > V = = = 01 11 l7 N � 11 NZ II (O a o " M C a o a `" y A c a o 3 c y 4) 3 a A L 3 a •� .c 3 a •� t F- F- > W C y I- F > u C y F F- > m C y y 4 2 W in Oq 4 N M in G o U) ra V C OO - n O m O V Q ¢ o- n O vm m E V v y a E A o m E t FT m M M 'o O r Oi (7 M Oi �O m '^ O r OI A M Waya r va r -0 II II q 11 11 Il a II II ry 11 11 Il a II II ry 11 11 11 (a a - aD m a. - m v� m .a..go 3 3 c W W 3 3 v W N 3 3 W W c c c t w y y N N E N N O Y IJ .O C M O C N V O y 0 O C C (J J N IL J y page 136 168 of J N = v u u u C m C O [ y 3m 3 3! vi n (Q VI I lul it I'I(Q nl I I�I dl I �I (MO N >a U a y > a d N U 0 LL O O (i 00 U O O o, In N c o E y m I rn In N c c E [1—� m m ,� 0 N c o Q O C D y 0 O n> M 2 0 L> W O (Q VI I lul it I'I(Q nl I I�I dl I �I (MO N >a a C > a C N LL O N O D M O O D > Q O C D _ V O M' Y M Cl Y 11 p N O' W () O o N y O J c O N N f0 Q J f N N W O 0 O 8 a a 8 D N 7 11 11 II C N � II II II G N j II II II C > V N N Z O > cii N N Z o �, > ci a N jy 2 v 7 u N O O w N w N LL rn U N LL U y LL O O M O o y N o y N o a N N r d N ti LL v in 01LL m a v o1 m LL a v y' m a W O N 0 N 2 a 0 O N p ' cap N T, M U N d C U m C V ~ u O ~ Uo o— V U O ro II II 2(D .2 ro II II E Oro m II II O w m m o a m n P r a � a n y N C N L Qt N N c N L OI V1 n N L pl y N •� C « G D m C O N G o O L 9 MO r a O O)o o p Oto M M d� M e M N� M =_ M •N tD E b L 3 > M E M L 3 > M E M L 3 a> G C w G _ pa II N c R 33 O (II c R O 3 V 8 N C ➢ 0 3 V p N 41 i s a �> •� L 3 add a '� L 3 dd a a R$ w L H F- d C N 1- F> O G N 1- f- > v C N jI c W m 8 g c$ N OM LLD in rC LLO: VW (m% p 3! O M O 0 a Ov a a O •O a o O D SD y J L .0 a II II ry II II 11 � Q II 11 N II II II � Q II II N II 11 II � Q J D � 3� I- a J D 0 ?� � I-• � a J D 0 3�� ro ro a ro ro m v� ro y v� � » v � o o » o E m rn m C C C l0 L L C L CI b 10 L N O G N O L Vl D O M 10 Y M q d y M q Y N d V {yu� O C M O C N p `OO 2 8 c 9> 2 8 c v V 2 °o S (9 J N IL �. (9 J N Page 1'=37 of 168 0 J N LL .�_. p U u o n v H o f 3m 3y Sin Y Y 00 E m c l0 L L � L at L N y ^ 9 Q a � y $ O 2 l7 � in z a n n~ c e V A L Y y II n v � y d Y U n O J 0 O a a n > v > m a a u > II a II C O m > LL >^ n O N N z v > h o N O � ro ¢ O m a d d Q m u y N C V LL N Y O U N LL OI 2(o � @) w 0 Q y o p ~ N o p L 0 C ¢ o z n > o ro M w C LL Q a W v Q N m m u O1 c ti m C O F $ O } U F Ev ,y E II II O FD ro U a A d J � II II Q 3 3 � 7 O n O L O � C 11 Y L w 3 H u c 0 00 m F 0.0 p E N N m E A Fa- la- r u II II ry 11 II 11 � a II 11 —10 J n m -T 3 3 W N 3 3 O > > O E m c l0 L L � L at L N y ^ 9 Q a � y $ O 2 l7 � in z a t A L Y y II y v � U U O J 0 O a a n > v > m ! u m O U N LL O d m y o N O � ro ¢ O m a d d Q m C V m Y O F U_ 2(o � @) w 0 Q y y i •y ~ M L C > 75 tm M > M w C O � C O $ O } O Q Ev r E U a d J � II II 3 3 � 7 O c r N L y y d N Y u v_ > 2 o° J y Page 1'T2 of 168 c t A L y d ry y v � u u C N C N 3vi 3w 3 E m E O r y R 6 L y N N p d N y n A O J UO c F3 a m Y u u 3 6 v U L y j y R Y Y 11 U n A O J o g F3 a C n > > m � u m N 6 d y N o ;y o � ¢ o D m C u ro �[ O Fo- O {p m m y y n N r ~ r C t "O O O L 3 > o e o — tm N > m w c y L 3 F F C y d m O ch O D F Q E w E L UQ c w IL m r CO J D 3 3 N N a 7 � O In c_ U L y j y R Y c 3 > M M Y O o y 6 U) d C y � > O M L L s E u u p m ry y g F N N d Y > fay Q C C > YMI q yQ y O � 9 Q N C O L O Ol Ian € lao •� r L U r a N N m O U n J O w C O J O a a M > II II II C m m L 3 ra- > d C N la- > d F 0> LL y •O 4 0 a n r0 G U N N O U N N ll b m r U LL ubi N O u Q Tn C N V M U L 17 0' J II II ry 11 11 II � a II II N LL vl N_ � ro o d M o Q m Q c 3 E O m Y O o c l0 O L L s E u u p m N o g F N N d Y N d G C N V q yQ y a F n Q N C O L O Ol Ian € lao •� r L lao E ran w C m L 3 ra- > d C N la- d F O LL w (n 4 0 a n r0 G �aaEw O b m r M V N O u Q Tn C N V M U L 17 0' J II II ry 11 11 II � a II II o > > o E m c l0 L L s d m � o Q N N d Y N M G C v_ > V o C m c L d N a b q d Y C N Q d > O J rn Page IN of 168 STUD WALL CALCULATION 5 Floor Wall Location = Exterior Species = DF -L Stud Stud Width= 1.5 in Stud Depth IQ = 5.5 in L = 9 It stud spacing = 1.33 it Fb = 700 psi Fe = 850 psi F�L = 625 psi E = 1400000 psi Em„ = 510000 psi CF = 1.00 for bending CF = 1.00 for comp. II to grain A = 8.25 in` S = 7.56 in' Deed Loads: 0.609 Roof DL = 135.2 pit Floor DL = 0 pit WDL = . 215.2 pit Live Loads: Roof LL = 382.1 pit Floor LL = 0 pit Wu= 382.12 Load Case 1: Gravity Loads Only Load Combinations: D = 286 lbs D+L = 286 lbs O+S = 794 lbs D+0.75(L)+0.75(S) = 667 Ibs Cc (D) = 0.9 CD (D+L) = 1 Co (D+S) = 1.15 CD (D+0.75(L)+0.75(S)) = 1.15 fb=fb.= 96.3 psi (Ijd),= 19.6 in E'"„ = 510000 psi C = 0.8 Fo = 1087.2 F = 978 psi F.E/F.= 1.112 psi (1+FIE/F b)/2c = 1.320 Cb = 0.726 P = 710.1 Check= OK psI Bearing of stud on wall plates: Cb = 1.25 F', = 781 Check= OK psi Loadings Roofing Material = ShinglefTle Roof Pitch= 0.25 Angle = 1.2 Cs = 1.000 Increase for Drift= 1.378 Effective snow load = 48 psi Roof dead load = 17 psi Floor live load = 40 psi Floor dead load = 23 psi Trib. Area,b,r 8 fl Trib. Area= Oft Add. Uniform Load = 80 pit Lateral Load = 47.05 psi Use: 2x6 DF -L Stud Grade @ 16" O.C. Load Case 2: Gravity Loads + Lateral Loads Co - 1.6 C, = 1.35 W = 62.6 pit M = 7603.3 in.lb fb = 1005.4 psi F'b = 1512.00 psi Check = OK Axial: Check = (I./d.) = 19.6 In E'N. = 510000 psi C = 0.8 F, = 1087.2 psi F � = 1360 psi Fc /F*. = 0.799 (1+FSE/F.)/20= 1.125 Cb = 0.609 P = 828.7 psl f� = 80.9 34.7 psi Check = OK OK Combined Stress: F.E. = 1087.2 1087.2 psi Interaction Formula= 0.55 0.69 Check = OK OK Page 135 of 168 STUD WALL CALCULATION 2 Floor Wall Location = Exterior Species = DF -L Stud Stud Width = 1.5 in Stud Depth IQ = 5.5 in L = 9 ft stud spacing = 1.33 It Fp = 700 psi F. = 850 psi FAL = 625 psi E = 1400000 psi E,,,,, = 510000 psi CF = 1.00 for bending CF = 1.00 for comp. II to grain A = 8.25 in` S = 7.56 in' Dead Loads: 0.609 Roof OL = 135.2 plf Floor DL = 602.55 pit wDL = 1187.75 pit Live Loads: Roof LL = 382.1 pit Floor LL = 1030 pit Wri= 1412.12 Load Case 1: Gravity Loads Only Load Combinations: D = 1580 lbs D+L = 2950 lbs D+S = 2088 lbs D+0.75(L)+0.75(S) = 2988 lbs CD (D) = 0.9 CD (D+L) = 1 CD (D+S) = 1.15 CD (D+0.75(L)+0.75(8)) = 1.15 f. = fp. = 362.2 psi (IQ/d), = 19.6 in E',,:, = 510000 psi c = 0.8 F.E = 1087.2 F *� = 978 psi F..E/F o = 1.112 psi (1+F�E/F,)/2c= 1.320 Co = 0.726 F'� = 710.1 Check = OK psi Bearing of stud on wall plates: Ce = 1.25 F'�E = 781 Check = OK psi Loadings Roofing Material = Shinglarrile Roof Pitch = 0.25 Angle = 1.2 Gs= 1.000 Increase for Drift= 1.378 Effective snow load = 48 psi Roof dead load = 17 psi Floor live load = 40 psi Floor dead load = 23 psi Trib. Area,.(-- Bit Trib. Area mom 25.75 it Add. Uniform Load = 450 plf Lateral Load = 47.05 psi Use: 2x6 DF -L Stud Grade @ 16" o.c. Load Case 2: Gravity Loads + Lateral Loads CD = 1.6 Cr = 1.35 W = 62.6 plf M = 7603.3 in.lb fs = 1005.4 psi F'p = 1512.00 psi Check = OK Axial: Check = (IEIdj 19.6 in E'min = 510000 psi C = 0.8 FSE = 1087.2 pal F o = 1360 psi F,/F, = 0.799 (1+F,E/F,)/2c= 1.125 Co = 0.609 F'� = 828.7 psl f� = 362.2 191.5 psi Check = OK OK Combined Stress: F�& = 1087.2 1087.2 psi Interaction Formula = 0.94 0.86 Check = OK OK Page 136 of 168 STUD WALL CALCULATION 2nd 8000r Interior bearing Well Location = Interior Loadings 1.15 Species = DF -L k2 Roofing Material = Shingle/Tile Stud Width = 1.5 in Roof Pitch = 0.25 Stud Depth (rix) = 3.5 in Angle = 1.2 L = 9 it Cs= 1.000 stud spacing = 0.667 it Increase for Drift= 1.000 Ft = 900 psi Effective snow load = 35 psi Fp = 1350 psi Roof dead load = 17 psi FAL = 625 psi Floor live load = 40 psi E = 1600000 psi Floor dead load = 23 psi E.0 = 580000 psi Trib. Area ,�= 14.5 It Cr = 1.10 for bending Trib. Area,q = 43.5 it Cr = 1.05 for comp. II to grain Add. Uniform Load = 270 pit A = 5.25 in` F -pi = 781 S = 3.06 In' Lateral Load = 5.00 psi Dead Loads: Roof DL = 245.05 plf Floor DL = 1017.9 pit woL = 1532.95 pit Live Loads: 1.15 Roof LL = 502.4 pit Floor LL = 1740 pit W,= 2242.43 Load Case 1: Gravity Loads Only Load Combinations: Check = D = 1022 lbs D+L = 2183 Ibs D+S = 1358 Ibs D+0.75(L)+0.75(S) = 2144 lbs Co (D) = 0.9 Co (D+L) = 1 Co (D+S) = 1.15 Co (D+0.75(L)+0.75(8)) = 1.15 fp=fpL= 415.8 psi (I./d).= 29.6 in E,.b = 580000 psi C = 0.8 F.E = 545.2 F � = 1418 psi Fp,/F. = 0.385 psi (1+FpE/F p)/2c = 0.865 Cp = 0.348 P, = 492.7 Check = OK psi Bearing of stud on wall plates: Cb = 1.25 F -pi = 781 Check = OK psi Use: (2) 2x4 DF -L #2 Grade @ 16" o.c. Load Case 2: Gravity Loads + Lateral Loads C, = 1.6 C, = 1.15 W = 3.3 pit M = 372.1 in.lb fb = 121.5 psi Pb = 1821.60 psi Check = OK Axial: (Ip/dx) = 29.6 In Pmn = 580000 psi C = 0.8 FcE = 545.2 psi F p = 2268 psi FcE/F p = 0.240 (1+FcE/F p)/2C = 0.775 Co = 0.227 F.p 514.9 psi Check = Combined Stress: F.Ex = Interaction Formula = Check = Page 137 of 168 18.4 194.8 psi OK OK 545.2 psi 0.25 OK STUD WALL CALCULATION 4th floor interior bearing Wall Location = Interior Loadinas Species = DF -L 42 Roofing Material = ShingleRle Stud Width = 1.5 in Roof Pitch = 0.25 Stud Depth (d,) = 3.5 in Angle = 1.2 L = 9 it Cs = 1.000 stud spacing = 1.33 it Increase for Drift= 1.000 Fp = 900 psi Effective snow, load = 35 psi F. = 1350 psi Roof dead load = 17 psi F,,i = 625 psi Floor live load = 40 psi E = 1600000 psi Floor dead load = 23 psi E„ 560000 psi Tdb. Area,= 14.5 8 CF = 1.10 for bending Trib. Area.= 14.5 it CF= 1.05 for comp. II to grain Add. Uniform Load = 80 pit A= 5.25 in` S = 3.06 in' Lateral Load = 5.00 psi Dead Loads: Roof DL = 245.05 pit Floor DL = 339.3 pit WeL= 664.35 pit Use: 2x4 DF -L #2 Grade @ 16" o.c. Live Loads: Roof LL = 502.4 pit Floor LL = 580 pit W n L= 1082.43 Load Case 1: Gravity Loads Only Load Case 2: Gravity Loads+ Lateral Loads Load Combinations: Ca = 1.6 D = 884 lbs C, = 1.15 D+L = 1655 lbs W = 6.7 pit D+S = 1552 lbs M = 742.0 in.lb D+0.75(L)+0.75(S)= 1963 lbs 16= 242.3 psi Cc (D) = 0.9 Pb = 1821.60 psi Co (D+L) = 1 Check = OK - Co (D+S) = 1.15 Axial: Co (D+0.75(L)+0.75(S)) = 1.15 (Idd,) = 29.6 in I. = f�L = 374.0 psi E'mfn = 580000 psi (I.Id), = 29.6 in c = 0.8 E'.h = 580000 psi F.E = 545.2 psi C = 0.8 F � = 2268 psi F.E= 545.2 F.E/F<= 0.240 F.= 1630 psi (1+F�E/F J/2c = 0.775 - FcE/F = 0.334 psi CP = 0.227 (1+F,E/F,)/2c= 0.834 F = 514.9 psi Cp= 0.307 D+0.75(W)+0.76(L)+0.76(S) D+W F', = 500.8 374.0 168.3 psi Check = OK psi Check = OK OK Bearing of stud on wall plates: Combined Stress: - Ce = 1.25 F,. = 545.2 545.2 psi F'�, = 781 Interaction Formula = 0.85 0.30 Check = OK psi Check = OK OK - Page 138 of 168 Project: 20162850 Jack Miller Location: Stair studs LEI Surveyors and Engineers / Mufti-Loaded Multi-Span Beam 3302 North Main Street (2015 International Building Code(2012 NDS)) Spanish Fork, Utah —" 1.5 IN x 7.25 IN x 13.5 FT(9+4.5) �,;,,t ft. #2 - Douglas-Fir-Larch - Dry Use Section Adequate By: 61,50/6 Controlling Factor: Moment DEFLECTIONS Center RON rua c ersion ...5 10/19/2016 9:02:36 AM Live Load 0.05 IN U2044 0.08 IN 2U1416 Dead Load 0.00 in 0.00 in Total Load 0.05 IN U1973 0.08 IN 2U1368 Live Load Deflection Criteria: U120 Total Load Deflection Criteria: L1120 REACTIONS A B Live Load 221 Ib 664 Ib Dead Load 8 Ib 24 Ib Total Load 229 Ib 688 Ib Bearing Length 0,24 in 0.73 in BEAM DATA Centsr i ht Span Length 9 ft 4.5 ft`- UnbracedLength-Top 0 ft 0 ft 9k • 46k Unbraced Length-Bottom 9 ft 4.5 ft G Live Load Duration Factor 1.60 Notch Depth O.DO MATERIAL PROPERTIES UNIFORM LOADS Center Bim lf #2 - Douglas-Fir-Larch Uniform Live Load 66 plf 66 p Uniform Dead Load 0 pit 0 plf Base Values AdFusted Beam Self Weight 2 plf 2 plf Bending Stress: Fb = 900 psi Fb' = 1015 psi Cd=1.60 CI=0.59 CF=1.20 Total Uniform Load 68 plf 68 plf Shear Stress: Fv = 180 psi FV = 288 psi Cd=1.60 Modulus of Elasticity: E = 1600 ksi E'= 1600 ksi Comp.-Lto Grain: Fc -1= 625 psi Fc --L'= 625 psi Controlling Moment: -688 ft -Ib Over right support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2, 3 Controlling Shear: -346 lb At a distance d from right support of span 2 (Center Span) Created by combining all dead loads and live loads on spen(s) 2, 3 Comparisons with required sections: Reo d Provided Section Modulus: 8.14 in3 13.14 in3 Area (Shear): 1.8 int 10.68 in2 Moment of Inertia (deflection): 4.18 in4 47.63 in4 Moment: -688 ft -Ib 1111 ft -Ib Shear: -346 lb 20881b FORTE MEMBER REPORT Leve%Wam..---ftid PASSED 1 piece(s) 11/2" x 7 1/4" 1.5E TimberStrand@ LSL @ 16" OC I `'111111 V /s conceptual Wall Height: 28' 9" Member Height: 28' 4 1/2" O. C. Spacing: 16.00" Design Results Actual Allowed Result LDF Load: Combination Slenderness 40 50 Passed (80%) Canpresslon (Ibs) 676 4197 Passed 16%) 1.15 1.0 D+ 1.0 S Plate Bearing (lbs) 676 5777 Passed (12%) •• 1.0 D + 1.0 S lateral Reaction bs 247 - 1.60 1.0 D. 1.0 W Lateral Shear (lbs) 236 5858 Passed (4%) 1.60 1.0 D + 1.0 W Lateral Moment (ft -lbs) 1750 0 mkFspan 4190 Passed (42%) 1.60 1.0 D+ 1.0 W lateral Deflection (in) 2.50 0 mid -span 2.84 Passed (V136) 1.0 D + LOW Bending/Compression 1 0.50 1 1 1 Passed (50%) 1 1.60 1 1.0 D + 1.0 W • lateral deflection criteria: Wind (1/120) • Audal load eccentricity for ads design is 1/6 of appicahle member side dimension. • Applicable calculations are based on NDS. • A bearing area factor of 1.25 has been applied to base plate bearing capacity. • A 4% Increase in he moment capacity has been added to account for repetitive member usage. supports Type Material System: Wall To Db12X S ce-Pine-Fir Member Type: Stud Base 12X I Spruce -Pine -Fir Building Code :IBC Max Unbraced Length Comments Design Methodology : ASD 1' oral Load I Location I SDadnu 1 [1.601 1 Comments iniform (PSF) I Full Length 1 16.00" 1 13.0 1 1 CE/SEI 7-05 Sec. 6.S.IL9.1: Exposure Category (B), Mean Roof Height (33), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (g0 mph), Importance Factor (1.0), rupancy Category (11), Hurricane Prone Region (No), Effective Wind Arca determined using full member span and bib. width. 091BC Table 1609.3. footnote f: Deflation tucks are ocdorlsled usim 7D% of this lateral wind load. maeuser warrants that the sizing of Its products will be in accordance with Weyerhaeuser product design criteria and published design values. rhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details. r.woodbywy.com) Accessories (Rim Board, Bloddng Panels and Squash Blocks) are not designed by this software. lice of this software Is not Intended to oven the need for a design professional as determined by Bre authority having Jurisdiction. The designer of record, builder or framer Is responsible to e that this calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third -party certined to sustainable ry standards. Weyerhaeuser Engineered Wmber Products have been evaluated by ICC ES under technical reports ESR -1153 and ESR -1382 and/or tested ordance with applicable ASTM standard, For cument code evaluation reports refer to hftp://www.woodbM.coon/NNcesls_CodeReWrts.aspx. roduct application, Input design loads, dimensions and support Information have been provided by Forte Software Operator . Millar Duneulling Eng,"c'S and Surveyors 18369833 4lebeng mm Page 140 of 168 p5 .TAINABLE IORESTRY INITIATIVE 10/19/2016 9:02:39 AM Forte v5.0, Design Engine Ver: V6.4.0.40 2016-2850.4fe Page 1 of 1 KING STUD CALCULATION Len study Species= DF -L Stud Stud Width = 6 in Stud Depth IQ = 5.5 In L= 9 i opening width= 9.5 ft stud spacing = 5.42 it Fb = 700 psi Fc = 850 psi Fb. = 625 psi E = 1400000 psi E� = 510000 psi CF = 1.00 for bending CF= 1.00 for comp. II to grain A = 33 in` S = 30.25 in" Dead Loads: (Ic/d). = Roof DL = 84.5 pit Floor OL = 117 pit wog = 281.5 pit Live Loads: 1.2 Roof LL = 173.3 pit Floor LL = 500 pit Wry= 673.25 Load Case 1: Gravity Loads Only Load Combinations: Floor live load = D = 1526 IN D+L = 4236 lbs D+S = 2465 Ib: D+0.75(L)+0.75(5) = 4262 IbE Co (D) = 0.9 Cc (D+L) = 1 Co (D+S) = 1.15 Co (D+0.75(L)+0.75(S)) = 1.15 fc = f�L = 129.2 psi (Ic/d). = 19.6 In E-, = 510000 psi C = 0.8 FcE = 1087.2 Fc= 978 psi FcE/F'c= 1.112 psi (1+FcE/F.)/2c= 1.320 CP = 0.726 Pc = 710.1 Check = OK psi Bearing of stud on wall plates: Cb = 1.06 F',i = 664 Check = OK psi Loadings Roofing Material = ShingleTle Roof Pitch = 0.25 Angie = 1.2 Cs= 1.000 Increase for Drift= 1.000 Effective snow load = 35 psi Roof dead load = 17 psf Floor live load = 100 psi Floor dead load = 23 psi Tdb. Area rm= 5 it Tdb. Area � = 5 ft Add. Uniform Load = 80 pit Lateral Load = 20.33 psi Use: (2) 2x6 Full Height King Studs Load Case 2: Gravity Loads + Lateral Loads Co = 1.6 C, = 1.15 W = 110.2 pit M = 13385.4 in.lb fb = 442.5 psi F'b = 1288.00 psi Check= OK Axial: 19.6 In E'min = 510000 psi c = 0.8 FcE = 1087.2 psi F c = 1360 psi FcE/F c = 0.799 (1+FcE/F c)/2c = 1.125 CP = 0.609 F'c = 828.7 psi Tc = Check = Combined Stress: FSE. = Interaction Formula = Check = Page 141 of 168 D+W 46.2 psi OK 1087.2 1087.2 psi 0.32 0.36 OK OK KING STUD CALCULATION Len Exersice Species = DF -L Stud Stud Width = 7.5 in Stud Depth (d,) = 5.5 in L= 98 opening width = 19 it stud spacing = 10.17 it Fs = 700 psi Fc = 850 psi Fes. = 625 psi E = 1400000 psi E,,,;, = 510000 psi CF = 1.00 for bending CF = 1.00 for comp. II to grain A = 41.25 in` S = 37.81 in" Dead Loads: (le/d)„ = Roof DL = 50.7 pit Floor DL = 140.4 pit WM = 271.1 pit Live Loads: 1.2 Roof LL = 104.0 pit Floor LL = 240 pit WLL= 343.95 Load Case 1: Gravity Loads Only Load Combinations: Floor live load = D = 2757 lbs D+L = 5198 lbs D+S = 3814 lbs D+0.75(L)+0.75(S) = 5381 lbs Co (D) = 0.9 CD(D+L)= 1 CD (D+S) = 1.15 CD (D+0.75(L)+0.75(S)) = 1.15 f.=Ice= 130.4 psi (le/d)„ = 19.6 in E'm;,, = 510000 psi C = 0.8 F.E = 1087.2 F c = 978 psi FSE/F . = 1.112 psi (1+FSE/F`J/2c = 1.320 Cp = 0.726 P� = 710.1 Check = OK psi Bearing of stud on wall plates: Co = 1.05 F-�L = 656 Check = OK psi Loadings Roofing Material = Shingle/Tile Roof Pitch = 0.25 Angle = 1.2 Cs = 1.000 Increase for Drift= 1.000 Effective snow load = 35 psi Roof dead load = 17 psi Floor live load = 40 psi Floor dead load = 23 psi Tdb. Area,= 3 it Tdb. Area= bit Add. Uniform Load = 80 pit Lateral Load = 20.33 psi Use: (2) 2x6 Full Height King Studs Load Case 2: Gravity Loads + Lateral Loads CD = 1.6 C, = 1.15 W = 206.7 pit M = 25116.2 in.lb fe = 664.2 psi F'e = 1288.00 psi Check = OK Axial: (le/d„) = 19.6 in P., = 510000 psi C = 0.8 FcE = 1067.2 psi F , = 1360 psi FoE/F'� 0.799 (1+FcE/F c)/2c = 1.125 CP = 0.609 Fc= 828.7 psi D+0.75(W)+I i, = Check = Combined Stress: F.F. = Interaction Formula = Check = Page 142 of 168 6.8 psi OK 17.2 1087.2 psi ).46 0.56 OK OK k J � © §§ ElaQMCo rm�«@ „ q0 -M -N § { ) k © E=e=CO2§2§§m „ 204w- -+gt 2 \ ) ( k _=__m � Page 143me , ( � [ke8.\§2§)2 �: 4Ek\;\\ § z E !{ ® [ § SIR, - } ) \k \ 0 E ! •_ a— )�}))} ! § 207!)}70/jC?a:CL o Page 143me , Use menu item Settings> Printing & Title Block Title FT1C- FW10 Page: 1 to set these five lines of information Job # : Dsgnr: J. Miller Date: 18 OCT 2016 for your program. Description.... Cantilevered walls for basement Fhis Wall in File: 0stmcturah2016 Criteria 6,251 lbs Retained Height = 10.008 Well height above soil = 0.00 ft Slope Behind Wall = 0.00 Height of Soil over Toe 6.00 in Water height over heel = 0.0 It Surcharge Loads Surcharge Over Heel = 50.0 psf Used To Resist Sliding & Overturning Surcharge Over Toe = 0.0 psi Used for Sliding & Overturning Axial Load Applied to Stem Axial Dead Load = 690.0 lbs Axial Live Load = 857.0 lbs Axial Load Eccentricity = 0.0 In Design Summary Wall Stability Ratios Overturning = 1.74 OK Slab Resists All Sliding I Total Bearing Load 6,251 lbs ...resultant ecc. = 12.89 In Soil Pressure @ Toe = 3,544 psi OK Soil Pressure @ Heel = 0 psf OK Allowable - 4,500 psf Soil Pressure Less Than Allowable ACI Factored @ Toe = 4,962 psi ACI Factored 0 Heel = 0 psf Fooling Shear 0 Toe = 22.9 psi OK Footing Shear 0 Heel = 20.6 psi OK Allowable = 75.0 psi Hiding Cates Lateral Sliding Force = 2,096.0 lbs /ertical component of active lateral soil pressure IS 40T considered in the calculation of soil bearing Load Factors 0.0 #/ft Building Code IBC 2012,ACI Dead Load 1.200 Live Load 1.600 Earth, H 1.600 Wind, W 1.000 Seismic, E 1.000 Cantilevered Retaining Wall Soil Data 0.0 #/ft Allow Soil Bearing = 4,500.0 psi Equivalent Fluid Pressure Method Active Heel Pressure = 32.0 psf/ft Passive Pressure = 250.0 psi/ft Soil Density, Heel = 110.00 pct Soil Density, Toe = 0.00 pcf FootingIlSal Friction = 0.400 Soil height to ignore Rebar Placed at = for passive pressure = 12.00 in Lateral Load Applied to Stem Lateral Load = 0.0 #/ft ...Height to Top = 0.00 ft ...Height to Bottom = 0.00 It Load Type = Wind (W) Design Method = (Service Level) Wind on Exposed Stem = 0.0 psf (Service Level) If 5 Stem Construction 2nd Footing Width = Stem OK Design Height Above Ftg ft= 3.00 Wall Material Above 'Ht' = Concrete Design Method = LRFD Thickness = 10.00 Reber Size = If 5 Rebar Spacing = 12.00 Rebar Placed at = Edge Design Data - psi = fb/FB+fa/Fa = 0.324 Total Force 0 Section Service Level lbs= = Strength Level Ibs= 1,417.3 Moment.... Actual Service Level ft•#= psf = Strength Level ft-#= 3,497.1 Moment..... Allowable ft-#= 10,783.7 Code: IBC 2012,ACI318-11,ACI530-11 Adjacent Footing Load Adjacent Footing Load = 0.0 lbs Footing Width = 0.00 It Eccentricity = 0.00 in Wall to Ftg CL Dist 0.00 It Footing Type Line Load Base Above/Below Soil _ at Back of Wall - 0.0 ft Poisson's Ratio = 0.300 Service Level psi= Strength Level psi= 14,4 Shear..... Allowable psi= 67.1 Anet(Masonry) In2= Reber Depth 'd' in= 8.19 Masonry Data I'm psi = Fs psi = Solid Grouting = Modular Ralio'n' _ Well Weight psf = 125.0 Short Term Factor = Equiv. Solid Thick. Masonry Block Type Masonry Design Method Concrete Data Pc psi= 2,000.0 Fy Bottom Stem OK 0.00 Concrete LRFD 10.00 # 5 6.00 Edge 0.478 2,792.7 9,697.0 20,291.7 c Medium Weight = ASD psi= 60,000.0 Page 144 of 168 28.4 67.1 8.19 125.0 2,000.0 60,000.0 LRFD Use menu item Settings > Printing & Title Block Title FT1C - FW70 Page: 2 to set these five lines of information Job If : Dsgnr: J. Miller Date: 18 OCT 2016 for your program. Description.... Cantilevered walls for basement This Wall in File: MstructuraMl6 structural jobs12016-2850_ha mattson apartments\2016.2850.rpx RetainPro (c)1997-2016, Build 11.16.07.15 License: Kw -06060294 _ _ Cantilevered Retaining Wall Code: IBC 2012,ACI 318-11,ACI 530-11 Concrete Stem Rebar Area Details Vertical Reinforcing 2nd Stem Vertical Reinforcing Horizontal Reinforcing As (based on applied moment) : 0.0988 in2/ft 0.3651 in2/ft (4/3)' As: 0.1317 in2/ft Min Stem T&S Feint Area 1.680 in2 200bdRy : 200(12)(8.1875u60000 : 0.3275 in2/ft Min Stem T&S Reinf Area per 1t of stem Height: 0.240 in2/ft 0.0001bh : 0.0001(12)(10) : 0.012 in2/11 Horizontal Reinforcing Options : One layer of : Two layers of: Required Area: One layer of: Two layers of Required Area: 0.1317 in2/ft #40 10.00 in #40 20.00 in Provided Area: 0.31 in2/ft #5U 15.50 in #50 31.00 in Maximum Area: 0.8873 in2/11 #6@ 22,00 In #60 44.00 in Bottom Stem Vertical Reinforcing Horizontal Reinforcing As (based on applied moment) : 0.27391n2/ft 4.50 (4/3)' As: 0.3651 in2/ft Min Stem T&S Reinf Area 0.720 in2 200bd/fy : 200(12)(8.1875)/60000: 0.32751n2/ft Min Stem T&S Rein[ Area per 1t of stem Height : 0.240 in2/ft 0.0001bh :0.0001(12)(10): 0.012 in2/ft Horizontal Reinforcing Options : 60,000 psi Footing Concrete Density = One layer of : Two layers of: Required Area: 0.3275 in2/ft #40 10.00 in #4@ 20.00 in Provided Area: 0.62 in2/ft #50 15.50 in #5® 31.00 in Maximum Area: 0.8873 in2/ft #60 22.00 In #6@ 44.00 in Footing Dimensions & Strengths Toe Width = 1.25 ft Heel Width = 3.25 Total Footing Width = 4.50 Footing Thickness = 12.00 In Key Width = 0.00 in Key Depth = 0.00 in Key Distance from Toe = 2.00 ft fc = 2,500 psi Fy = 60,000 psi Footing Concrete Density = 150.00 pc[ Min. As % = 0.0018 Cover ® Top 2.00 @ Btm� 3.00 in Footing Design Results Other Acceptable Sizes & Spacings Toe: #4U 9.26 in, #50 14.35 in, #60 20.37 in, #7@ 27.78 in, #80 36.57 in, #9U 46 Heel: #4@ 9.26 in, #5@ 14.35 in, #6@ 20.37 in, #7@ 27.78 In, #8@ 36.57 in, #9@ 46 Key: No key defined Min footing T&S reinf Area Min footing T&S reinf Area per foot If one layer of horizontal bars: #40 9.26 in #5@ 14.35 in #6@ 20.371n Page 145 of 168 1.17 in2 0.26 in2 M If two layers of horizontal bars: #4R 18.52 in #5@ 28.70 in #6@ 40.74 in TOO Heel Factored Pressure = 4,962 0 psi Mu': Upward 3,419 706 ft -9 Mu': Downward = 192 4,614 ft-# Mu: Design 3,227 3,908 it-# Actual 1 -Way Shear 22.91 20.63 psi Allow 1 -Way Shear = 75.00 75.00 psi Toe Reinforcing = # 5 @ 6.00 in Heel Reinforcing = If 5 U 12.00 in Key Reinforcing = None Spec'd Other Acceptable Sizes & Spacings Toe: #4U 9.26 in, #50 14.35 in, #60 20.37 in, #7@ 27.78 in, #80 36.57 in, #9U 46 Heel: #4@ 9.26 in, #5@ 14.35 in, #6@ 20.37 in, #7@ 27.78 In, #8@ 36.57 in, #9@ 46 Key: No key defined Min footing T&S reinf Area Min footing T&S reinf Area per foot If one layer of horizontal bars: #40 9.26 in #5@ 14.35 in #6@ 20.371n Page 145 of 168 1.17 in2 0.26 in2 M If two layers of horizontal bars: #4R 18.52 in #5@ 28.70 in #6@ 40.74 in Use menu item Settings > Printing & Title Block Title FT1C - FW70 Page: 3 to set these five lines of information Job #: Dsgor: J. Miller Date: 18 OCT 2016 for your program. Description.... Cantilevered walls for basement This Wall in File: tAstructurah2016 structural jobs12016-2850_ha mattson apartments12016-2850.rpx RolainPro (c) 1987-2016, Build 11.16.07.15 License: KW -06060294 , Cantilevered Retaining Wall Code: IRC 2012,ACI 318-11,ACI 530-11 of Item Heel Active Pressure Surcharge over Heel = Surcharge Over Toe = Adjacent Footing Load Added Lateral Load = Load @ Stem Above Soil = ng & Resisting Forces & Moments .....OVERTURNING..... Force Force Distance Moment lbs It ft-# 1,936.0 3.67 7,098.7 160.0 5.50 880.0 Total 2,096.0 O.T.M. 7,978.7 Resisting/Overturning Ratio = 1.74 Vertical Loads used for Soil Pressure = 6,251.2 Ibs Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance. Tilt Horizontal Deflection at Top of Wall due to settlement of soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 250.0 pci Horizontal Dell @ Top of Wall (approximate only) 0.219 in Ih,: .q,.. :,1 �,.&, in the -a .. i1 ..u,nlu;,, _. .... I because the wall would then tend to rotate into the retained soil Page 146 of 168 Force Distance Moment Ibs It K-# Soil Over Heel = 2,658.3 3.29 8,750.3 Sloped Soil Over Heel = Surcharge Over Heel = 120.8 3.29 397.7 Adjacent Footing Load = Axial Dead Load on Stem= 690.0 1.67 1,150.0 • Axial Live Load on Stem = 857.0 1.67 1,428.3 Soil Over Toe = 0.63 Surcharge Over Toe = Stem Weight(s) = 1,250.0 1.67 2,083.3 Earth @ Stem Transitions= Footing Weight = 675.0 2.25 1,518.8 Key Weight = 2.00 Veil. Component = Total = 5,394.2 Ibs P.M.= 13,900.2 • Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation. Tilt Horizontal Deflection at Top of Wall due to settlement of soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 250.0 pci Horizontal Dell @ Top of Wall (approximate only) 0.219 in Ih,: .q,.. :,1 �,.&, in the -a .. i1 ..u,nlu;,, _. .... I because the wall would then tend to rotate into the retained soil Page 146 of 168 Strip Footing Uplift Capacity - FT2B wwnuele = 150 pCf bfw""g= 16 in dfwhv = 12 in L = 10 it Wsfab= 2 it tslab — 4 in As = 0.4 inA2 PUP = 2665 lbs M = 6662.315 Ib -ft Ma = 10659.7 Ib -ft Mum= 13600 lb -ft OK wfwlkV = 2250 Ib Wslab = 1000 Ib Wow = 3250 Ib OK 1. Determine the effective length of footing that can be used to resist the uplift forces based on the capacity of the footing to act as a beam. This can be done in EnerCalc or with the allowable moment above (they give about the same answer). 2. If the uplift is too high for the footing, try increasing the rebar, the width or the finally the depth. If there is only one or two, use a spot footing to resist any load beyond the capacity of the strip footing. If you have more than that, use a larger strip footing before using spot footings. Page 147 of 168 Title Block Line 1 You can change this area using the'Setlings' menu item and then using the 'Printing & Title Block' selection. Tile Block Line 6 Beam on Elastic Foundation Description : CODE REFERENCES Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used: IBC 2015 Material Properties Pc - 3.0 ksi fr= Pc 12 ' 7.50 = 410.792 psi W Density = 145.0 pct Jt, U Wt Factor = 1.0 Elastic Modulus = 3,122.0ksi Soil Subgrade Modulus = Load Combination IBC 2015 Project Title: Engineer: Project Descr. Protect ID: Pliucd-1] OGI M16 I UPY File= L\SlnxxelaP2016 Structural Jo651201 rr2e50_HA Matism Apa"enIMI6-2e50.ec6 ib Phi Values Flexure : 0.90 Shear: 0.750 01 = 0.850 250.0 psi / (inch deflection) fy - Main Rebar = 60.0 ksi Fy- Stirrups 40.0 ksi E - Main Reber 29,000.0 ksi E - Stirrups =29,000.0 ksi Stirrup Bar Size # = # 3 Number of Resisting Legs Per Stirrup 2 learn is supported on an elastic foundation. W(-5.466) 18"wx10"h Span=8.0 It Cross Section & Reinforcing Details Rectangular Section, Width =18.0 in, Height =10.0 in Span #1 Reinforcing.... 244 at 3.0 in from Bottom, from 0.0 to 8.0 ft in this span Applied Loads Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load: D =1.234, L =1.080, S = 0.3150 k/ft, Tributary Width =1.0 it Point Load: W=-5.466k®4.0it DESIGN SUMMARY 18N Service loads entered. Load Factors will be applied for calculations. Maximum Bending Stress Ratio = 0.975: 1 Maximum Deflection Section used for this span Typical Section Max Downward L+Lr+S Deflection 0.000 in Mu : Applied -4.805 k - ft Max Upward L+Lr+S Deflection 0.000 in MnPhi : Allowable 4.929 k -ft Max Downward Total Deflection 0.046 in Load Combination +1.20D+0.50L+0.50S+W+1.6 Max Upward Total Deflection -2.689 in Location of maximum on span 4.047 It Span If where maximum occurs Span # 1 Maximum Soil Pressure = 1.664 ksf at 4.00 If LdComb: +D+L+H Allowable Soil Pressure = 4.50 ksf OK Shear Stirrup Requirements Entire Beam Span Length : Vu < PhiVr/2, Regd Vs = Not Reqd, use stirrups spaced at 0.000 In Maximum Forces & Stresses for Load Combinations Load Combination Location (#) Bending Stress Results (k -ft) Segment Length Span # in Span Mu: Max Phi'Mnx Stress Ratio AAX#num Bending Envelope Span # 1 1 7.906 -0.00 11%bla 148 of 188D0 0.40+1.601-1 Span If 1 1 7.906 -0.00 12.13 0.00 Title Block Line i You can change tllis area using the 'Settings' menu item and then using the 'Printing & Title Block' selection. Title Block line 6 Beam on Elastic Foundation Project Title: Engineer: Project Descr. File =Mrudure82u16 Saudurd Jobs12DI62850 HA Maue ENERCALC. INC. 1983-2016.a Description: FI -2 -Check Mex.'+'De9 Location In Span -2.6894 Load Combination Comment Location(Ig Bender Stress Results (k -ft) Segment Length Span # n Span Mu: Max Phi'Mnx Stress Ratio +1.200+0.50W1.601 -0.60H d'VulMu Phi'Vc Load Combination Number (t) Span If 1 1 7.906 -0.00 12.13 0.00 +1.20D+1.60L+0.50S+1.60H 0.00 7.00 0.17 0.17 0.00 Span # 1 1 7.906 -0.00 12.13 0.00 +1.20D+1.60Lr+0.50L+1.60H 0.18 0.00 1.00 10.58 +1.20D+0.50L+0.50S-W+1.601 Span It 1 1 7.906 -0.00 12.13 0.00 +1.20D+l.60Lr+0.50W+1.60H 10.58 +1.20D+0.50L+0.50S-W+1.601 1 0.28 7.00 Span If 1 1 7.906 -0.00 12.13 0.00 +1.20D+1.60Lr-0.50W+1.60H 0.38 TOD 0.32 0.32 0.03 Span If 1 1 3.953 2.40 12.13 0.20 +1.20D+0.50L+1.60S+1.60H 0.37 0.05 1.00 10.58 +1.20D+0.50L+0.50S-W+1.601 Span 11 1 7.906 -0.00 12.13 0.00 +1.20D+1.60S+0.50W+1.60H 10.58 +1.20D+0.50L+0.50S-W+1.601 1 0.66 7.00 Span # 1 1 7.906 -0.00 12.13 0.00 +1.20D+1.60S-0.50W+1.60H 0.75 7.00 0.52 0.52 0.14 Span # 1 1 3.953 2.40 12.13 0.20 +1.20D+0.50Lr+0.50L+W+1.60H 0.57 0.18 1.00 10.58 +1.20D+0.50L+0.50S-W+1.601 Span # 1 1 7.906 -0.00 12.13 0.00 +1.20D+0.50Lr+0.50L-W+1.60H 10.58 +1.20D+0.50L+0.50S-W+1.601 1 1.04 7.00 Span # 1 1 3.953 4.80 12.13 0.40 +1.20D+0.50L+0.50S+W+1.60H 1.13 7.00 0.74 0.74 0.32 Span # 1 1 7.906 -0.00 12.13 0.00 +1.20D+0.50L+0.50S-W+1.60H 0.79 0.38 1.00 10.58 +1.20D+0.50L+0.50S-W+1.601 Span # 1 1 3.953 4.80 12.13 0.40 +1.20D+0.50L+0.708+E+1.60H 10.58 +1.20D+0.50L+0.50S-W+1.601 1 1.41 7.00 Span # 1 1 7.906 -0.00 12.13 0.00 +1.20D+0.50L+0.70S.E+1.60H 1.51 7,00 0.97 0.97 0.59 Span # 1 1 7.906 -0.00 12.13 0.00 +0.90D+W+0.90H 1.03 Pag%6%49 of A9 10.59 +1.20D+0.50L+0.508.W+1.601 1 Span # 1 1 7.906 -0.00 12.13 0.00 +0.90D-W+0.90H Span 4 1 1 3.953 4.80 12.13 0.40 +0.90D+E+0.90H Span It 1 1 7.906 -0.00 12.13 0.00 +0.90D.E+0.90H Span # 1 1 7.906 -0.00 12.13 0.00 Overall Maximum Deflections - Unfactored Loads Load Combination Span Max.'-' Dell Location In Span Load Combnation 1 0.0000 0.000 Span 1 Detailed Shear Information Mex.'+'De9 Location In Span -2.6894 4.000 Comment Phi'Vs Spacing (in) Span Distance 'd' Vu (k) Vu <PhiVcl'2 Mu d'VulMu Phi'Vc Load Combination Number (t) (in) Actual Design (k -ft) 0.00 (k) +1.20D+1.601.+0.505+1.601-1 1 0.00 7.00 0.17 0.17 0.00 1.00 10.58 +1.20D+0.50L+0.50S.W+1.601 1 0.09 7.00 0.18 0.18 0.00 1.00 10.58 +1.20D+0.50L+0.50S-W+1.601 1 0.19 7.00 0.22 0.22 0.01 1.00 10.58 +1.20D+0.50L+0.50S-W+1.601 1 0.28 7.00 0.27 0.27 0.02 1.00 M58 +1.20D+0.50L+0.S0S-W+1.601 1 0.38 TOD 0.32 0.32 0.03 1.00 10.58 +1.20D+0.50L+0.56S-W+1.601 1 0.47 7.00 0.37 0.37 0.05 1.00 10.58 +1.20D+0.50L+0.50S-W+1.601 1 0.56 7.00 0.42 0.42 0.08 1.00 10.58 +1.20D+0.50L+0.50S-W+1.601 1 0.66 7.00 0.47 0.47 0.11 1.00 10.58 +1.20D+0.50L+0.50S-W+1.601 1 0.75 7.00 0.52 0.52 0.14 1.00 10.58 +1.20D+0.60L+0.50S-W+1.601 1 0.85 7.00 0.57 0.57 0.18 1.00 10.58 +1.20D+0.50L+0.50S-W+1.601 1 0.94 TOD 0.63 0.63 0.22 1.00 10.58 +1.20D+0.50L+0.50S-W+1.601 1 1.04 7.00 0.68 0.68 0.27 1.00 10.58 +1.20D+0.50L+0.50S-W+1.601 1 1.13 7.00 0.74 0.74 0.32 1.00 10.58 +1.20D+0.501-4.5084+1.601 1 1,22 7,00 0.79 0.79 0.38 1.00 10.58 +1.20D+0.50L+0.50S-W+1.601 1 1.32 7.00 0.85 0.85 0.45 1.00 10.58 +1.20D+0.50L+0.50S-W+1.601 1 1.41 7.00 0.91 0.91 0.52 1.00 10.58 +1.20D+0.50L+0.50S-W+1.601 1 1.51 7,00 0.97 0.97 0.59 1.00 10.58 +1.20D+0.50L+0.50S-W+1.601 1 1.60 7.00 1.03 1.03 Pag%6%49 of A9 10.59 +1.20D+0.50L+0.508.W+1.601 1 1.69 7,00 1.10 1.10 0.76 1.00 10.58 Project ID: P..W VOMDIG 135Ph." Mex.'+'De9 Location In Span -2.6894 4.000 Comment Phi'Vs Spacing (in) (k) Reqd Suggest Vu <PhiVcl'2 Not Reqd 0.00 0.00 Vu <PhiVcl2 Not Reqd 0.00 0.00 Vu<Phlva Not Reqd 0.00 0.00 Vu < PhiVc72 Not Reqd 0.00 0.00 Vu<PhiVcl2 Not Reqd 0,00 0.00 Vu<PhiVd2 Not Reqd 0.00 0.00 Vu<PhiVd2 Not Reqd 0.00 0.00 Vu<PhIVcl2 Not Reqd 0.00 0.00 Vu<PhiW2 Not Recd 0.00 0.00 Vu < PhiVcf2 Not Reqd 0.00 0.00 Vu < PhiVM2 Not Reqd 0.00 0.00 Vu < PhiVo12 Not Reqd 0.00 0.00 Vu < PhiVG2 Not Reqd 0.00 0.00 Vu<PhiVG2 Not Reqd 0.00 0.00 Vu<PhiVcf2 Nol Reqd 0.00 0.00 Vu<PhiVc12 Not Reqd 0.00 0.00 Vu<PhiW2 Not Reqd 0.00 0.00 Vu<PhiVc/2 Not Reqd 0.00 0.00 Vu<PhiVd2 Not Reqd 0.00 0.00 Ole Block Line 1 Project Title: ou can change this area Engineer: Project ID: sing the'Seaings' menu item Project DescF nd then using the'Prinfing & d'Vu/Mu itle BloW selection. Comment Ole Black Line 6 N"w r7 xi M16 rwaM _ Seam on Elastic Foundation F9e=[>.51ruGwaM12olfi Slnchxal Jo6s12016-2850_FU kla. Fparl1.nl,2016-2e50.ec6 �,�,,..,,, „„. „�,,,,, e,,,w<.F,,. „,..,,, FT2-Chock Detailed Shear Information Span Distance 'd' Vu (k) Mu d'Vu/Mu P1d'Vc Comment Phi'Vs Spacing (n) ad Combination Number (8) (m) Actual Design (k-9) (k) (k) Reqd Suggest 1.2U0+0.50L+0.50S-W+1.601 1 1.79 7,00 1,16 1.16 0.85 1.00 10.58 Vu<PhVd2 NotReqd 0.00 0.00 120D+0S9L+0.50S-W+1.601 1 1,88 7.00 1.23 1.23 0.95 1.00 10.58 Vu<PhVd2 Not Regd 0.00 0.00 1.20D+0.50L+0.50S-W+1.601 1 1.98 7.00 1.29 1.29 1.06 1.00 10.58 Vu<PhVd2 Not Regd 0.00 0.00 120D+O.50L+0.50S-W+1.601 1 2.07 7.00 1.36 1.36 1.17 1.00 10.58 Vu<PhVd2 NotReqd 0.00 0.00 1.20D+0.50L+0.50S-W+1.601 1 2.16 7.00 1.42 1.42 1.28 1.00 10.58 Vu<PhVd2 Not Regd 0.00 0.00 1.20D+0.50L+0.50S-W+1.601 1 226 7,00 1.49 1.49 1.41 1.00 10.58 Vu <PhiVd2 Not Regd 0.00 0.00 1.20D+0.50L+0.50S-W+1.601 1 2.35 7,00 1,56 1.56 154 1.00 10.58 Vu<PhVd2 Not Regd 0.00 0.00 l.20D+0.50L+9.50S-W+1.601 1 2.45 7.00 1.63 1.63 1.67 1.00 10.58 Vu<PhVd2 Not Regd 0.00 0.00 1.20D+0.50L+0.50S-W+1.601 1 2,54 7,00 1,70 1.70 1.82 1.00 10.58 Vu<PhlVd2 NotReqd 0.00 0.00 1.20D+0S0L+0.50S-W+1.601 1 2.64 7.00 1.78 1.78 1.97 1.00 10.58 Vu <PhiVc12 Not Regd 0.00 0.00 120D+0.50L+0.50S-W+1.601 1 2.73 7.00 1.85 1.65 2.12 1.00 10.58 Vu<PhiVd2 Not Regd O.DO 0.00 120D+0.50L+0.505-W+1.601 1 2.82 7.00 1.92 1.92 2.29 1.00 10.58 Vu<PhiVd2 Not Reqd 0.00 OAO 1.200+0.501-+0.508-W+1.601 1 2,92 7.00 2.00 2.00 2.46 1.00 10.58 Vu < PhlVd2 Not Reqd 0.00 0.00 1.200+0.50L+0.505 -W+1.601 1 3.01 7.00 2.07 2.07 2.64 1.00 10.58 Vu <PhNd2 Not Reqd 0.00 0.00 1.200+0.50L+0.505 -W+1.601 1 3.11 7.00 2.15 2.15 2.82 1.00 10.58 Vu < PhiVd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S-W+1.601 1 320 7.00 2.22 2.22 3.01 1.00 10.58 Vu<PhVd2 NotReqd 0.00 0.00 1.20D+0.50L+0.50S-W+1.601 1 3.29 7.00 2.30 2.30 3.21 1.00 10.58 Vu<PhVd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S-W+1.601 1 3.39 7.00 2.38 2.38 3.42 1.00 10.58 Vu <PhiVd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S-W+1.601 1 3.48 7.00 2.45 2.45 3.63 1.00 10.58 Vu <PhiVc12 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S-W+1.601 1 3.58 7.00 2.53 2.53 3.85 1.00 10.58 Vu <PhiVc/2 Not Reqd 0.00 0.00 1.20D+D.50L+0.505-W+1.601 1 3.67 7.00 2.61 2.61 4.08 1.00 10.58 Vu <PhVc/2 Nol Reqd 0.00 0.00 1.20D+O.5014.50S-W+1.601 1 3.76 7.00 2.69 2.69 4.31 1.00 10.58 Vu<PhiVd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S-W+1.601 1 3.86 7.00 2,77 2.77 4.55 1.00 10.58 Vu<PhVd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S-W+1.601 1 3.95 7.00 2.84 2.84 4.80 1.00 10.58 Vu<PhWo2 Not Reqd 0.00 0.00 1.20D+0.50L+0.505+W+1.60 1 4.05 7.00 2.77 2.77 4.80 1.00 10.58 Vu < PNW2 Not Reqd 0.00 0.D0 1.20D+0.50L+0.50S+W+1.60 1 4.14 7.00 2.69 2.69 4.55 1.00 10.58 Vu<PhVd2 Not Reqd 0.00 O.Do 1.20D+0.S0L+0.505+W+1.6C 1 4.24 7.00 2.61 2.61 4.31 1.00 10.58 Vu < PhVc/2 Not Reqd 0.00 0.00 1,20D+O.50L+0.50S+W+1.6C 1 4,33 7.00 2.53 2.53 4,08 1.00 10.58 Vu<PhVd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.505+W+1.60 1 4.42 7.00 2.45 2.45 3.85 1.00 10.58 Vu < PhIV62 No[Reqd 0.00 0.00 1.20[)+0.50L+0.50S+W+1.6C 1 4,52 7.00 2.38 2.38 3.63 1.DO 10.58 Vu<PhlVd2 Not Reqd 0.00 0.00 120D+0.50L+0.50S+W+1.60 1 4.61 7.00 2.30 2.30 3.42 1.00 10.58 Vu<PhVd2 Not Reqd 0.00 0.00 120D+0.50L+0.505+W+1.6C 1 4.71 7.00 2.22 2.22 3.21 1.00 10.58 Vu<PhVd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.505+W+1.6C 1 4.80 7.00 2.15 2.15 3.01 1.00 10.58 Vu<PhiVd2 Not Reqd 0.00 0.00 1.200+0.50L+0.50S+W+1.60 1 4,89 7.00 2.07 2.07 2.82 1.00 10.58 Vu<PhiVd2 Not Reqd 0.00 0.D0 1.20D+0.50L+0.50S+W+1,6C 1 4,99 7.00 2.00 2.00 2.64 1.00 10.58 Vu<PhiVd2 Nat Reqd 0.00 0.00 1200+0.50L+0.50S+W+1.6C 1 5.08 7.00 1.92 1.92 2.46 1.00 10.58 Vu<PhVd2 Not Reqd 0.00 0.00 120D+0.50L+0.50S+W+1.6C 1 5.18 7.00 1.85 1.85 2.29 1.00 10.58 Vu<PhlVd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S+W+1.6C 1 5.27 7.00 1.78 1.78 2.12 1.00 10.58 Vu<PhiVd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S+W+1.6C 1 5.36 7.00 1.70 1.70 1.97 1.00 10.58 Vu<Ph1Vd2 Not Reqd 0.00 0.00 1.200+0.50L+0.50S+W+1.60 1 5.46 7.00 1.63 1.63 1.82 1.00 10.58 Vu<PhVd2 Not Reqd 0.00 0.00 1.201)+0.50L+0.505+W+1.60 1 5.55 7.00 1.56 1.56 1.67 1.00 10.58 Vu<PhVd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S+W+1.60 1 5.65 7.00 1.49 1.49 1.54 1.00 10.58 Vu<PhVd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S+W+1.60 1 5.74 7.00 1.42 1.42 1.41 1.00 10.58 Vu < PhlVd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.505+W+1.60 1 5.84 7.00 1.36 1.36 1.28 1.00 10.58 Vu<PhVd2 Not Reqd 0.00 0.00 1200+0.50L+0.505+W+1.60 1 5.93 7.00 1.29 1.29 1.17 1.00 10.58 Vu<PhIVd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S+W+1.6C 1 6.02 7.00 1.23 1.23 1.06 1.00 10.58 Vu<PhVd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.505+W+1.60 1 6.12 7.00 1.16 1.16 0.95 1.00 10.58 Vu < PhiVd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S+W+1.6C 1 6.21 7.00 1.10 1.10 0.85 1.00 10.58 Vu<PhiVd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.505+W+1.60 1 6.31 7.00 1.03 1.03 0.76 1.00 10.58 Vu < PI Vd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S+W+1.6C 1 6.40 7.00 0.97 0.97 0.67 1.00 10.58 Vu < PhiVd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.505+W+1.60 1 6.49 7.00 0.91 0.91 0.59 1.00 10.58 Vu < PhVd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.505+W+1.6C 1 6.59 7.00 0.85 0.85 0.52 1.00 10.58 Vu < PhiVc/2 Not Reqd 0.00 0.00 1.20D+0.50L+0.508+W+1.60 1 6.68 7.00 0.79 0.79 Pagg.4§0 of 1% 10.58 Vu <PhNd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S+W+1.6C 1 6.78 7.00 0.74 0.74 0.38 1.00 10.58 Vu<RhVd2 NotRegd 0.00 0.00 Title Block Line 1 You can change this area using the'Setfings' menu item and then using the 'Printing & Title Block' selection. Title Black Line 6 Beam on Elastic Foundation Project Tille: Engineer: Project Descr: Project ID: R.rce 17 P:7 M16 IMM He=1:\SlnMurdQ016 Suu*ral Jobs12616-2850_HA Marrs Apamwrsr206-Mo.ec6 Description: FT2-Check Detailed Shear Information Span Distance 'd Vu (k) Mu d'VulMu Phi'Vc Comment Ph'Vs Spacing (in) Load Combination Number (k) (in) Actual Design (k-8) (k) (k) Req'd Suggest +120D'O.66L+o.50s+w+1.6c 1 6.87 7.00 0.68 0.68 0.32 1.00 10.58 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.20D+0.50L+0.50S+W+1.60 1 6.96 7.00 0.63 0.63 027 1.00 10.58 Vu <PhrVd2 Not Reqd 0.00 0.00 +1.20D+0.50L+O.SOS+W+1.60 1 7.06 7.00 0.57 0.57 0.22 1.00 10.58 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.20D+O.SOL+0.50S+W+1.60 1 7.15 7.00 0.52 0.52 0.18 1.00 10.58 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+0.5OL+0.50S+W+1.60 1 7.25 7.00 0.47 0.47 0.14 1.00 10.58 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+0.50L+0.505+W+1.60 1 7.34 7.00 0.42 0.42 0.11 1.00 10.58 Vu < PhiVd2 Not Reqd 0.00 0.00 +1.20D+0.50L+0.50S+W+1.60 1 7.44 7.00 0.37 0.37 0.08 1.00 10.58 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+0.50L+0.50S+W+1.60 1 7.53 7.00 0.32 0.32 0.05 1.00 10.58 Vu<Ph07d2 NotReqd 0.00 0.00 +1.20D+0.50L+0.505+W+1.60 1 7.62 7.00 0.27 0.27 0.03 1.00 10.58 Vu <PhiVd2 NotReqd 0.00 0.00 +1.20D+0.50L+0.50S+W+1.60 1 7.72 7.00 0.22 0.22 0.02 1.00 10.58 Vu <PhiVc12 NotReqd 0.00 0.00 +1.20D+0.5OL+0.50S+W+1.60 1 7.81 7.00 0.18 0.18 0.01 1.00 10.58 Vu<Ph0/W2 NotReqd 0.00 0.00 +1.20D+1.60L+0.505+1.60H 1 7.91 7.00 0.17 0.17 0.00 1.00 10.58 Vu<PhUc12 Not Reqd 0.00 0.00 Page 161 of 168 Title Block Line 1 You can change this area using the 'Settings* menu item and then using the'Pnnting & Title Block' selection. Title Block Line 6 General Footing Description: FT4 0.750 Code References Min Steel % Bending Reinf. Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used: IBC 2012 Min Allow %Temp Reinf. General Information when fooling base is below Material Properties = 1.0 :1 fc : Concrete 28 day strength = 2.50 ksi fy : Rebar Yield = 60.0 ksi Ec: Concrete Elastic Modulus = 3,122.0 ksi Concrete Density 145.0 pcf Ip Values Flexure 0.90 Project Title: Engineer: Protect Descr. He = IASbucbmN2016 Structural Jobs12016-2850_M ENERCALC. INC, 1983 Soil Design Values Allowable Soil Bearing Increase Beadng By Footing Weight Soil Passive Resistance (for Sliding) Soil/Concrete Friction Coeff. Shear = Analysis Settings 0.750 Increases based on fooling Depth Footing base depth below soil surface Min Steel % Bending Reinf. = Allow press. increase per foot of depth Min Allow %Temp Reinf. = 0.00180 when fooling base is below Min. Overturning Safety Factor = 1.0 :1 Min. Sliding Safety Factor = 1-0:1 Increases based on footing plan dimension Add Fig Wt for Soil Pressure Yes Allowable pressure increase per foot of depth Use fig wt for stability, moments & shears Yes when max. length or width is greater than Add Pedestal Wt for Soil Pressure No Use Pedestal wt for stability mom & shear No 7.44e,,, Dimensions Width parallel to X -X Axis 3.50 it Length parallel to Z -Z Axis = 3.50 it Footing Thickness = 12.0 in Pedestal dimensions px : parallel to X -X Axis = 12.0 in pz : parallel to Z -Z Axis = 12.0 in Height = 30.0 in Rebar Centedine to Edge of Concrete... at Bottom of footing 3.0 in Protect ID: F"e V MT r16. 1' 15N.V 4.50 ksf No 250.0 pcf 0.30 2.50 ft ksf it ksi it Reinforcing 316 - a Bars parallel to X -X Axis Number of Bars = 7.0 Reinforcing Bar Size = # 4 Bars parallel to Z -Z Axis _. Number of Bars = 7.0 Reinforcing Bar Size = # 4 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a 7.44e,,, It Bars required within zone n/a x # Bars required oneach side ofzone n/a ""£ "°^�°°^��•� `" `-- -z= �a+^+d'+x-"-- --' Applied Loads D Lr L S W E H P: Column Load = 23.960 19.230 7.230 k OB: Overburden = ksf M-xx = k -ft M-zz = k -ft V -x = 0.880 0.880 k V -z = k Page 152 of 168 Title Block Line 1 Project T91e: You can change this area Engineer: Project ID: using ttle'Seftings' menu item Protect Descr. and then using the'Prinling & Title Block' selection. Title Block Line 6 rRaro 17OCT 2Gt6. 11ISM1 General Footing Fie=1.1swawaII2016 Summal iob512016.2e50_NA Marian AparW ig12p16-2850ec6 ENERCALC. INC. 18812016, 13416.16.7.21, Ver.6.16.7.21 Description: FT4 DESIGN SUMMARY . Min. Ratio Item Applied Capacity Governing Load Combination PASS 0.910 Soil Bearing 4.095 ksf 4.50 ksf +D+0.750L+0.750S+0.5250E about Z -Z a PASS r1/a Overturning -X-X 0.0k -ft 0.0k-11 No Overturning PASS 13.438 Overturning - Z -Z 2.156 k -ft 28.972 Wl +O.60D+0.70E PASS 10.904 Sliding - X -X 0.6160 k 6.717 k +0.60D+0.70E PASS rva Sliding - Z -Z 0.0 k 0.0 k No Sliding PASS We Uplift 0.0 k 0.0 k No Uplift PASS 0.2613 Z Flexure (+X) 4.012 k -ft 15.353 k -ft +1.20D+1.60L+0.50S PASS 0.2613 Z Flexure (-X) 4.012 k -ft 15.353 k -ft +1.20D+1.60L+0.508 PASS 0.2613 X Flexure (+Z) 4.012 k -ft 15.353 k -fl +1.20D+1.60L+0.50S PASS 0.2613 X Flexure (-Z) 4.012 k4t 15.353 k -ft +1.200+1.60L+0.50S PASS 0.3330 1 -way Shear (+X) 24.975 psi 75.0 psi +1.20D+1.60L+0.50S PASS 0.3330 1 -way Shear (-X) 24.975 psi 75.0 psi +1.20D+1.60L+0.505 PASS 0.3330 1 -way Shear (+Z) 24.975 psi 75.0 psi +1.20D+1.60L+0.505 PASS 0.3330 1 -way Shear (-Z) 24.975 psi 75.0 psi +1.200+1.60L+0.50S PASS 0.4163 2 -way Punching 62.438 psi 150.0 psi +1.20D+1.60L+0.50S Detailed Results Soil Bearing Rotation Axis & Xecc Zecc Actual Soil Bearing Stress Q Location Acluai / Allow Load Combination.., Gross Allowable Cn) Bottom, -Z Top, +Z Left, -X Right, +X Ratio X -X. D Onlv 4.50 n/a 0.0 2.252 2.252 n/a Na 0.500 X -X. +D+L 4.50 n/a 0.0 3.822 3.822 Na n/a 0849 X -X. +D+S 4.50 Na 0.0 2.843 2.843 We Na 0.632 X -X. +D+0.750L 4.50 rva 0.0 3.430 3.430 Na We 0.762 X -X. +D+0.750L+0.7505 4.50 Na 0.0 3.872 3.872 We we 0.860 X-X.+D+0.60W 4.50 n/a 0.0 2.252 2.252 n/a n/a 0.500 X-X.+D+0.70E 4.50 Na 0.0 2.252 2.252 n/a n/a 0.500 X-X.+D+0.750L+0.45OW 4.50 n/a 0.0 3.430 3.430 n/a We 0.762 X-X.+D+0.750L+0.7505+0.45OW 4.50 n/a 0.0 3.872 3.872 We n/a 0.860 X-X.+D+0.750L+0.750.S+0.5250E 4.50 n/a 0.0 3.872 3.872 n/a n/a 0.860 X-X.+0.60D+0.60W 4.50 n/a 0.0 1.351 1.351 n/a We 0.300 X-X.+0.60D+0.70E 4.50 rJa 0.0 1.351 1.351 Na Na 0.300 Z -Z. D Onlv 4.50 0.0 n/a n/a Na 2.252 2.252 0.500 Z -Z. +D+L 4.50 0.0 n/a n/a rl/a 3.822 3.822 0.849 Z-Z.+D+S 4.50 0.0 n/a n/a n/a 2.843 2.843 0.632 Z -Z. +D+0.750L 4.50 0.0 n/a n/a n/a 3.430 3.430 0.762 Z -Z. +D+0.750L+0.750S 4.50 0.0 Na n/a n/a 3.872 3.872 0.860 Z-Z.+D+O.60W 4.50 0.8037 n/a We n/a 1.998 2.507 0.557 Z-Z.+D+0.70E 4.50 0.9376 Na n/a n/a 1.956 2.549 0.566 Z -Z. +D+0.750L+0.45OW 4.50 0.3959 We n/a Na 3.239 3.621 0.805 Z -Z. +D+0.750L+0.7505+0.45OW 4.50 0.3506 We Na n/a 3.682 4.063 0.903 Z-Z.+D+0.750L+0.750S+0.5250E 4.50 0.4090 We n/a n/a 3.650 4.095 0.910 Z -Z. +0.60D+O.60W 4.50 1.339 Na n/a n/a 1.097 1.606 0.357 Z -Z. +0.60D+0.70E 4.50 1.563 We n/a Na 1.055 1.648 0.366 Overturning Stability Rotation Axis & Load Combination... Overturning_ Moment Resisting Moment Stability Ratio Status X -X, D Onlv None 0.0 k -ft Infinity OK X-X.+D+L None 0.0k -ft Infinitv OK X-X.+D+S None 0.0 Wt Infinitv OK X-X.+D+0.750L None 0.0k -ft Infinity OK X-X.+D+0.750L+0.750S None 0.0k -fl Infinitv OK X-X.+D+0.60W None O.OWl Infinitv OK X-X.+D+0.70E None 0.0 Wt Infinitv OK X-X.+D+0.750L+0.45OW None 0.0k -ft Infinitv OK X-X,+D+0.750L+0.750S+0.45OW None 0.0Ot Infinitv OK X-X.+D+0.750L+0.750S+0.5250E None 0,0 Wt Infinitv OK X-X.+0.60D+0.60W None 0.0Wl Infinitv OK X-X.+0.60D+0.70E None O.Ok-ft Infinitv OK Page 153 of 168 Title Block Line 1 Project Tille: You can change this area Engineer: Project ID: using the 'Settings' menu item Project Descr: and then using the 'Printing & Title Block' selection. Title Black Line 6 P, I.-7 acrsor6.11iaaw File = Mtrudurar201e S Wdural Jobs1212e5a_HA Mattson ApaNnesM 16-205eec6General Footinq Qal`,OW1MI.%.L e,e]9. V-.1.„1 Description : FT4 Overturning Stability Rotation Axis & Load Combination... Overturning Moment Resisting Moment Stability Ratio Status Z -Z. D Only None 0.0 k -ft Inlinity OK Z-Z.+D+L None 0.0k4t Infinitv OK Z-Z.+D+S None 0.0k -ft Infinity OK Z-Z.+D+0.750L None 0.0k -ft Infinity OK Z-Z.+D+0.750L+0.750S None 0.0k4t Infinity OK Z-Z.+D+0.60W 1.848 k -ft 48.287 k -ft 26.129 OK Z-Z,+D+0.70E 2.156 k -ft 48.287 Wt 22.397 OK Z-Z.+D+0.750L+0.450W 1.366 k4t 73.526 k -ft 53.049 OK Z -Z. +D+0.750L+0.750S+0.450W 1.386 Wt 83.016 jr-ft 59.896 OK Z -Z. +D+0.750L+0.750S+0.5250E 1.617 k -ft 83.016 k -ft 51.339 OK Z-Z,+0.60D+0.60W 1.848k -ft 28.972k -ft 15.678 OK Z -Z. +0.60D+0.70E 2.156 k -ft 28.972 k -ft 13.438 OK Sliding Stability All units It Force Application Axis Load Combination... Sliding Force Resisting Force Stability Ratio Status X -X. D Only 0.0 k 10.028 k No Slidina OK X-X.+D+L 0.0 k 15.797 k No Sliding OK X-X.+D+S 0.0k 12.197k NoSlidino OK X-X.+D+0.750L 0.0k 14.355k NoSlidino OK X-X.+D+0.750L+0.750S 0.0k 15.981k NoSlidino OK X -X. +D+0.60W 0.5280 k 10.028 k 18.992 OK X -X. +D+0.70E 0.6160 k 10.028 k 16.279 OK X -X, +D+0.750L+0.450W 0.3960 k 14.355 k 36.249 OK X -X. +D+0.750L+0.7505+0.450W 0.3960 k 15.981 k 40.357 OK X -X. +D+0.750L+0.750S+0.5250E 0.4620 k 15.981 k 34.591 OK X -X. +0.60D+0.60W 0.5280 k 6.717 k 12.721 OK X -X. +0.60D+0.70E 0.6160 k 6.717 k 10.904 OK Z -Z. D Onlv 0.0 k 10.028 k No Sliding OK Z -Z. +D+L 0.0 k 15.797 k No Sliding OK Z -Z. +D+S 0.0 k 12.197 k No Slidina OK Z -Z. +D+0.750L 0.0 k 14.355 k No Sliding OK Z -Z. +D+0.750L+0.750S 0.0 k 15.981 k No Slidina OK Z -Z, +D+0.750L+0.7505+0.5250E 0.0 k 15.981 k No Slidina OK Z -Z. +0.600+0.60W 0.0 k 6.717 k No Slidina OK Z -Z, +0.60D+0.70E 0.0 k 6.717 k No Slidina OK Z -Z. +0+0.60W 0.0 k 10.028 k No Sliding OK Z-Z.+D+0.70E 0.0k 10.028k No Slidina OK Z-Z,+D+0.750L+0.450W 0.0k 14.355k No Slidina OK Z-Z.+D+0.750L+0.750S+0.450W 0.0k 15.981k No Slidina OK Footing Flexure Flexure Axis 8 Load Combination Mu Side Tension As Req'd Gvrn. As Actual As Phl'Mn Statue k -k Surface In -2 In^2 IM2 k -h X -X. +1.40D 2.124 +Z Bottom 0.2592 Min TemD % 0.40 15.353 OK X-X.+1.40D 2.124 -Z Bottom 0.2592 Min Temo% 0.40 15.353 OK X-X.+120D+1.60L 3.782 +Z Bottom 0.2592 Min TemD% 0.40 15.353 OK X -X. +1.20D+1.60L 3.782 -Z Bottom 0.2592 Min TemD % 0.40 15.353 OK X -X. +1.20D+1.60L+0.50S 4.012 +Z Bottom 0.2592 Min TemD % 0.40 15.353 OK X -X. +1.20D+1.60L+0.50S 4.012 -Z Bottom 0.2592 Min Tema % 0.40 15.353 OK X-X.+1.20D+0.50L 2.433 +Z Bottom 0.2592 Min Temo % 0.40 15.353 OK X -X. +1.20D+0.50L 2.433 -Z Bottom 0.2592 Min TemD % 0.40 15.353 OK X -X. +1.20D+0.50W 1.820 +Z Bottom 0.2592 Min Two % 0.40 15.353 OK X -X. +1.20D+0.50W 1.820 -Z Bottom 0.2592 Min Two % 0.40 15.353 OK X -X. +1.20D+0.50L+1.60S 3.171 +Z Bottom 0.2592 Min TemD % 0.40 15.353 OK X -X. +1.20D+0.50L+1.60S 3.171 -Z Bottom 0.2592 Min Term) % 0.40 15.353 OK X -X. +1.20D+1.60S+0.50W 2.558 +Z Bottom 0.2592 Min TemD % 0.40 15.353 OK X -X. +1.20D+1.608+0.50W 2.558 -Z Bottom 0.2592 Min Two % 0.40 15.353 OK X -X. +1.20D+0.50L+W 2.433 +Z Bottom 0.2592 Min Temp % 0.40 15.353 OK X -X. +1.20D+0.50L+W 2.433 -Z Bottom 0.2592 Min Temo % 0.40 15.353 OK X -X. +1.20D+0.50L+0.50S+W 2.664 +Z Bottom 0.2592 Min Two % 0.40 15.353 OK X -X. +120D+0.50L+0.50S+W 2.664 -Z Bottom 0.2592 Min TemD % 0.40 15.353 OK Page 154 of 168 Title Block Line 1 Project Title: You can change this area Engineer: Protect ID: using the'Settings' menu item Project Descr: and then using the 'Printing & Title Block' selection. Footing Flexure Title Block Line 6 N.nen v oc:r Footing File=\n2168tuM0_NA212eGeneral ENERCALC.INC.1983-DI6 BWWlds.16.7.21 Description: FT4 Footing Flexure Flexure Axis &Load Combination Mu Side Tension As Beq'd Gvrn. As Actual As PhPMn Status k-0 Surface in^2 W2 in^2 k - ft X-X.+1.20D+0.50L+0.70$+E 2.756 +Z Bottom 0.2592 Min Temo% 0.40 15.353 OK X-X,+120D+0.50L+0.70S+E 2.756 -Z Bottom 0.2592 Min Temo % 0.40 15.353 OK X -X, +0.90D+W 1.365 +Z Bottom 0.2592 Min Temo % 0.40 15.353 OK X -X, +0.90D+W 1.365 -Z Bottom 0.2592 Min Temo % 0.40 15.353 OK X -X. +0.90D+E 1.365 +Z Bottom 0.2592 Min Temo % 0.40 15.353 OK X -X. +0.90D+E 1.365 -Z Bottom 0.2592 Min Temo % 0.40 15.353 OK Z -Z, +1.40D 2.124 •X Bottom 0.2592 Min Temo % 0.40 15.353 OK Z-Z.+1.40D 2.124 +X Bottom 0.2592 Min Temp % 0.40 15.353 OK Z-Z.+1.20D+1.60L 3.782 -X Bottom 0.2592 Min Temo % 0.40 15.353 OK Z -Z. +1.20D+1.60L 3.782 +X Bottom 0.2592 Min Temo % 0.40 15.353 OK Z -Z. +1.20D+1.60L+0.505 4.012 •X Bottom 0.2592 Min Temo % 0.40 15.353 OK Z -Z, +1.20D+1.60L+0.505 4.012 +X Bottom 0.2592 Min Two % 0.40 15.353 OK Z -Z, +1.20D+0.50L 2.433 -X Bottom 02592 Min Temo % 0.40 15.353 OK Z -Z. +1.20D+0.50L 2.433 +X Bottom 0.2592 Min Temo % 0.40 15.353 OK Z -Z, +1.20D+0.50W 1.692 -X Bottom 0.2592 Min Temo % 0.40 15.353 OK Z -Z. +1.20D+0.50W 1.949 +X Bottom 0.2592 Min Temo % 0.40 15.353 OK Z -Z. +1.20D+0.50L+1.60S 3.171 -X Bottom 0.2592 Min Temo % 0.40 15.353 OK Z-Z.+1.20D+0.50L+1.60S 3.171 +X Bottom 0.2592 Min Temo % 0.40 15.353 OK Z -Z. +1.20D+1.605+0.50W 2.430 -X Bottom 0.2592 Min Temo % 0.40 15.353 OK Z-Z,+1.20D+1.60.S+0.50W 2.686 +X Bottom 0.2592 Min Two % 0.40 15.353 OK Z-Z.+1.20D+0.50L+W 2.177 -X Bottom 0.2592 Min Temo% 0.40 15.353 OK Z-Z.+1.20D+0.50L+W 2.690 +X Bottom 0.2592 Min Temo % 0.40 15.353 OK Z-Z.+1.20D+0.50L+0.50S+W 2.407 -X Bottom 0.2592 Min Temp % 0.40 15.353 OK Z -Z. +1.20D+0.50L+0.50S+W 2.920 +X Bottom 0.2592 Min Two % 0.40 15.353 OK Z -Z. +1.20D+0.50L+0.705+E 2.499 -X Bottom 0.2592 Min Temo % 0.40 15.353 OK Z -Z, +1.20D+0.50L+0.70S+E 3.012 +X Bottom 0.2592 Min Temo % 0.40 15.353 OK Z-Z.+0.90D+W 1.109 -X Bottom 0.2592 Min Temo% 0.40 15.353 OK Z -Z, +0.90D+W 1.622 +X Bottom 0.2592 Min Temo % 0.40 15.353 OK Z -Z, +0.90D+E 1.109 -X Bottom 0.2592 Min Temo % 0.40 15.353 OK Z -Z. +0.90D+E 1.622 +X Bottom 0.2592 Min Temo % 0.40 15.353 OK One Way Shear Load Combination... Vu @ •X Vu @ +X Vu @ -Z Vu 0 +Z VU:Max Phi Vn Vu / Phi'Vn Status +1 40D 13.219 D,si 13.219 osi 13.219 osi 13.219 psi 13.219 osi 75 osi 0.1763 OK +1.20D+1.60L 23.54 osi 23.54 osi 23.54 osi 23.54 osi 23.54 osi 75 osi 0.3139 OK +120D+1.60L+0.505 24.975 osi 24.975 osi 24.975 osi 24.975 osi 24.975 osi 75 osi 0.333 OK +1.20O+0.50L 15.146 osi 15.146 osi 15.146 osi 15.146 psi 15.146 osi 75 osi 0.202 OK +120D+0.50W 10.44 osi 12.221 psi 11.331 osi 11.331 osi 12.221 osi 75 oat 0.163 OK +1.20D+0.50L+1.605 19.737 psi 19.737 psi 19.737 osi 19.737 psi 19.737 osi 75 osi 0.2632 OK +120D+1.608+0.50W 15.031 osi 16.812 osi 15.921 osi 15.921 osi 16.812 osi 75 osi 0.2242 OK +1.20D+0.50L+W 13.365 psi 16.927 osi 15.146 osi 15.146 psi 16.927 osi 75osi 0.2257 OK +120D+0.50L+0.50S+W 14.8osi 10.362osi 16.561 psi 16.581 psi 18.362 osi 75 osi 0.2448 OK +1.20D+0.50L+0.70S+E 15.374 psi 18.936 osi 17.155 psi 17.155 osi 18.936 osi 75 osi 0.2525 OK +0.90D+W 6.717 osi 10,279 osi 8.498 osi 8.498 osi 10.279 osi 75 osi 0.1371 OK +0.90D+E 6.717 psi 10.279 Dal 8.498 psi 8.498 osi 10.279 psi 75 osi 0.1371 OK Punching Shear All units k Load Combination... Vu Phi'Vn Vu/PhPVn Status +1.40D 33.049 osi 150Dsi 0.2203 OK +1.20D+1.60L 58.051 osi 150osi 0.3923 OK +1.20D+1.60L+0.50S 62.438 osi 150Dsi 0.4163 OK +1.20D+0.50L 37.866 osi 150osi 0.2524 OK +120D+0.50W 28.327 osi 150os1 0.1808 OK +1.20D+0.50L+1.605 49.342 osi 150Dsi 0.3289 OK +120D+1.60S+0.50W 39.804 osi 150Dsi 0.2654 OK +120D+0.50L+W 37.866 psi 1500si 0.2524 OK +1.20D+0.50L+0.50S+W 41.452 psi 15008i 0.2763 OK +1.20D+0.50L+0.705+E 42.887 psi 1500si 0.2859 OK +0.900+W 21.246 osi 150Dsi 0.1416 OK +0.900+E 21.246 osi 150Dsi 0.1416 OK Page 155 of 168 rifle Block Line 1 fou can change this area (sing the'Seflirgs' menu item and then using the 'Printing & We Block' selection. rifle Block Lira: 6 General Footing Description: FT5 0.750 Code References Analysis Settings Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used: IBC 2012 = General Information Min Allow %Temp Reinf. Material Properties when rooting base is below fc : Concrete 28 day strength = 2.50 ksi fy: Reber Yield = 60.0 ksi Ec : Concrete Elastic Modulus = 3,122.0 ksi Concrete Density = 145.0 pcf Ip Values Flexure = 0.90 Project Title: Engineer: Protect Deem Fh Soil Design Values Allowable Soil Bearing Increase Bearing By Footing Weight Soil Passive Resistance (for Sliding) Soil/Concrete Friction Coeff. Shear = 0.750 Increases based on footing Depth Analysis Settings Number of Bars = Footing base depth below soil surface Min Steel %Bending Reinf. = Allow press. increase per foot of depth Min Allow %Temp Reinf. 0.00180 when rooting base is below Min. Overturning Safety Factor = 1.0 :1 Bandwidth Distribution Check (ACI 15.4.4.2) Min. Sliding Safely Factor 1.0 : 1 Increases based on footing plan dimension Add Fig Wt for Soil Pressure Yes Allowable pressure increase per foot of depth Use fig wt for stability, moments & shears Yes Add Pedestal Wt for Soil Pressure No when max. length or width is greater than Use Pedestal wt for stability. mom & shear No Dimensions Width parallel to X -X Axis = 3.50 It Length parallel to Z -Z Axis = 2.0 it Fooling Thickness = 12,0 in Pedestal dimensions px : parallel to X -X Axis = 12.0 in pz : parallel to Z -Z Axis = 12.0 in Height = 30.0 in Rebar Centerline to Edge of Concrete... at Bottom of footing = 3.0 in Reinforcing Z Bars parallel to X -X Axis Number of Bars = 3 Reinforcing Bar Size = If 4 Bars parallel to Z -Z Axis Number of Bars 5 Reinforcing Bar Size = # 4 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation ig Z -Z Axis # Bars required within zone 72.7% # Bars required on each side of zone 27.3% Applied Loads 0 Project ID: R.,,.a I?CrT O`6 Il W 4.50 ksf No 250.0 pcf 0.30 = 2.50 it ksf it I -• I _ 3 _u_ _ I Mw.l M a m C0 ksf ft D Lr L S W E H P: Column Load = 3.918 10.576 k OB: Overburden = ksf M-xx = k -ft M-zz = 5.868 2.178 k -ft V -x = 0.6520 0.2420 k V -z = k Page 156 of 168 Z I -• I _ 3 _u_ _ I Mw.l M a m C0 ksf ft D Lr L S W E H P: Column Load = 3.918 10.576 k OB: Overburden = ksf M-xx = k -ft M-zz = 5.868 2.178 k -ft V -x = 0.6520 0.2420 k V -z = k Page 156 of 168 Title Block Line 1 You can change this area using the 'Settings' menu item and then using the 'Printing & Title Block' selection. Title Block Line 6 General Footing Project Title: Engineer: Project Descr: Project ID: hi 170GT2016 1,,eeM Fiie= tehidura1120165Vuclural Jdrs=6-2650_ HA Mattson Pp nnwas12016-2650.ew Description: FT5 DESIGNSUMMARY . • Min. Ratio Item Applied Capacity Governing Load Combination PASS HIM% Soil Bearing 3.085 ksf 4.50 ksf +0.60D+0.60W about Z -Z axis PASS r1/a Overturning -X-X 0.0k -fl 0.0k -ft No Overturning PASS 1272 Overturning -Z-Z 4.890 k4t 6.219 k -ft +0.600+0.60W PASS 5.282 Sliding - X -X 0.3912 k 2.066 k +0.60D+0.60W PASS Na Sliding -Z-Z 0.0 k 0.0 k No Sliding PASS Na Uplift 0.0 k 0.0 k No Uplift PASS 0.2159 Z Flexure (+X) 2.521 k-9 11.674 k -fl +0.90D+W PASS 0.2048 Z Flexure (-X) 2.390 k -ft 11.674 k -R +1.20D+1.60L PASS 0.03435 X Flexure (+Z) 0.3826 k-8 11.139 k-8 +120D+1.60L PASS 0.03435 X Flexure (-Z) 0.3826 k -ft 11.139 k -ft +1.20D+1.60L PASS 0.2967 i-wayShear(+X) 22.249 psi 75.0 psi +0.90D+W PASS 0.1984 1-way8hear(-X) 14.879 psi 75.0 per +120D+1.60L PASS n/a 1 -way Shear (+Z) 0.0 psi 75.0 psi Na PASS n/a 1 -way Shear (-Z) 0.0 psi 75.0 psi We PASS 0.1071 2 -way Punching 16.059 psi 150.0 psi +120D+1.60L Detailed Results Soil Bearing Rotation Axis & Xecc Zecc Actual Soil Bearing Stress Q Location Actual /Allow Load Combination... Gross Allowable _ (in) Bottom, -Z Top, +Z _ Left, -X Right,+X Ratio X -X. D Only 4.50 n/a 0.0 0.8461 0.8461 Iva Na 0.188 X -X. +D+L 4.50 n/a 0.0 2.357 2.357 n/a We 0524 X-X.+D+0.750L 4.50 We 0.0 1.979 1.979 n/a Na 0.440 X-X.+D+0.60W 4.50 n/a 0.0 0.8461 0.8461 n/a n/a 0.188 X -X. +D+0.70E 4.50 n/a 0.0 0.8461 0.8461 n/a Na 0.188 X-X.+D+0.750L+0.450W 4.50 n/a 0.0 1.979 1.979 n/a Iva 0.440 X -X. +D+0.750L+0.5250E 4.50 Na 0.0 1.979 1.979 n/a rJa 0.440 X-X.+0.60D+0.60W 4.50 Na 0.0 0.5077 0.5077 n/a We 0.113 X-X.+0.60D+0.70E 4.50 rda 0.0 0.5077 0.5077 n/a n/a 0.113 Z -Z, D Only 4.50 0.0 n/a n/a n/a 0.8461 0.8461 0.188 Z-Z.+D+L 4.50 0.0 n/a We n/a 2.357 2.357 0.524 Z-Z,+D+0.750L 4.50 0.0 n/a We n/a 1.979 1.979 0.440 Z-Z,+D+o.60W 4.50 9.907 We n/a n/a 0.0 2.113 0.470 Z-Z.+D+0.70E 4.50 4.290 n/a n/a Na 0.3362 1.356 0.301 Z-Z,+D+0.750L+0.450W 4.50 3.176 nig n/a n/a 1.096 2.862 0.636 Z-Z,+D+0.750L+0.5250E 4.50 1.376 n/a n/a n/a 1.597 2.362 0.525 Z -Z, +0.60D+0.60W 4.50 16.512 n/a n/a nla 0.0 3.085 0.686 Z -Z, +0.60D+0.70E 4.50 7.150 n/a Na Ma 0.0 1.018 0.226 Overturning Stability Rotation Axis & Load Combination... Overturning Moment Resisting Moment Stability Ratio Status X -X. D Only None 0.0 k -ft Infinity OK X-X,+D+L None 0.0kd1 Infinity OK X-X.+D+0.750L None 0.0kd1 Infinity OK X-X.+D+0.60W None 0.0k -fl Infinity OK X-X.+D+0.70E None 0.0kdl Infinity OK X-X.+D+0.750L+0.450W None 0.0k-8 Infinity OK X-X.+D+0.750L+0.5250E None 0.0 k4t Infinity OK X-X.+0.600+0.60W None 0,0k41 Infinity OK X-X.+0.60D+0.70E None 0.0k -ft Infinity OK Z -Z. D Only None 0.0 k - ft Infinity OK Z-Z.+D+L None 0.0k -ft Infinity OK Z-Z,+D+0.750L None 0.0k -ft Infinity OK Z -Z. +D+0.60W 4.890 k -ft 10.365 k -ft 2.120 OK Z-Z,+D+0.70E 2,118Wl 10.365k -ft 4.895 OK Z-Z.+D+0.750L+0.450W 3.668 k-8 24.246 k -fl 6.611 OK Z-Z,+D+0.750L+0.5250E 1.588 k-8 24.246 k -ft 15.267 OK Z -Z, +0.60D+0.60W 4.890 k4t 6.219 k -ft 1.272 OK Z -Z. +0.60D+0.70E 2.118 k4t 6.219 k -fl 2.937 OK Page 157 of 168 Title Block Line 1 Project Title: You can change this area Engineer: Protect ID: using the 'Settings' menu item Project Descr. and then using the 'Printing & Title Block' selection. Title Block Line 6 P,�: n OCT R I6. I.WM File = VSlWhffat,2016 SInclu,al J0bMl6-2W_jiA Mattson Apart nenlw%W-M.ec6 General Footing Description : FT5 Mu Side Tension As Req'd Sliding Stability Actual As WWI Status All units k Force Application Pods Surface InV in^2 Load Combination... Sliding Force Resisting Force Stability Ratio Status X -X. D Oniv 0.0 k 2.777 k No Slidinq OK X-X.+D+L 0.0k 5.950k No Slidina OK X-X.+D+0.750L 0.0k 5.157k No Slidina OK X -X. +D+0.60W 0.3912 k 2.777 k 7.098 OK X -X. +D+0.70E 0.1694 k 2.777 k 16.393 OK X-X.+D+0.750L+0.450W 0.2934k 5.167k 17.575 OK X-X.+D+0.750L+0.5250E 0.1271 k 5.157 k 40.586 OK X -X. +0.60D+0.60W 0.3912 k 2.066 k 5.282 OK X-X.+0.60D+0.70E 0.1694k 2.066k 12.197 OK Z -Z, D Only 0.0 k 3.527 k No Slidina OK Z -Z, +D+L 0.0 k 6.70 k No Slidina OK Z -Z. +D+0.750L 0.0 k 5.907 k No Slidina OK Z-Z.+D+0.60W 0.0k 3.527k No Slidina OK Z-Z.+D+0.750L+0.5250E 0.0k 5.907k No Slidina OK Z -Z, +0.600+0.60W 0.0 k 2.816 k No Slidinq OK Z -Z. +0.60D+0.70E 0.0 k 2.816 k No Slidina OK Z-Z.+D+0.70E 0.0k 3.527k No Slidinq OK Z-Z.+D+0.750L+0.450W 0.0k 5.907k No Slidina OK Flexure Axis &Load Combination Mu Side Tension As Req'd Gvrn. As Actual As WWI Status k -ft Surface InV in^2 W2 k -ft X-X.+1.40D 0.09383 +Z Bottom 0.2592 Min Term) % 0.2857 11.139 OK X-X.+1.40D 0.09383 -Z Bottom 0.2592 Min Term) % 0.2857 11.139 OK X-X.+1.20D+1.60L 0.3826 +Z Bottom 0.2592 Min Term) % 0.2857 11.139 OK X -X. +1.20D+1.60L 0.3826 -Z Bottom 0.2592 Min Tomo % 0.2857 11.139 OK X -X. +1.20D+0.50L 0.1749 +Z Bottom 0.2592 Min Term) % 0.2857 11.139 OK X -X. +120D+0.50L 0.1749 -Z Bottom 0.2592 Min Term) % 0.2857 11.139 OK X -X. +1.20D+0.50W 0.08042 +Z Bottom 0.2592 Min Term) % 0.2857 11.139 OK X•X.+1.20D+0.50W 0.06042 -Z Bottom 0.2592 Min Temo% 0.2857 11.139 OK X -X. +1.20D+0.50L+W 0.1749 +Z Bottom 0.2592 Min Term) % 0.2857 11.139 OK X -X. +1.20D+0.50L+W 0.1749 -Z Bottom 0.2592 Min Term) % 0.2857 11.139 OK X -X. +1.20D+0.50L+E 0.1749 +Z Bottom 0.2592 Min Term) % 0.2857 11.139 OK X -X. +1.20D+0.50L+E 0.1749 Z Bottom 0.2592 Min Temo % 0.2857 11.139 OK X-X.+0.90D+W 0.06032 +Z Bottom 0.2592 Min Temo% 02857 11.139 OK X -X. +0.90D+W 0.06032 -Z Bottom 0.2592 Min Temo % 0.2857 11.139 OK X -X, +0.90D+E 0.06032 +Z Bottom 0.2592 Min Temo % 0.2657 11.139 OK X -X, +0.90D+E 0.06032 -Z Bottom 0.2592 Min Temo % 0.2657 11.139 OK Z -Z. +1.40D 0.5862 •X Bottom 0.2592 Min Term) % 0.30 11.674 OK Z -Z. +1.40D 0.5862 +X Bottom 0.2592 Min Term) % 0.30 11.674 OK Z -Z. +120D+1.60L 2.390 X Bottom 0.2592 Min Temo % 0.30 11.674 OK Z -Z. +1.20D+1.60L 2.390 +X Bottom 0.2592 Min Temo % 0.30 11.674 OK Z -Z. +120D+0.50L 1.092 -X Bottom 02592 Min Temo % 0.30 11.674 OK Z -Z. +1.20D+0.50L 1.092 +X Bottom 0.2592 Min Term) % 0.30 11.674 OK Z -Z. +120D+0.50W 0.09130 -X TOD 0.2592 Min TemD % 0.30 11.674 OK Z -Z. +1.20D+0.50W 1.096 +X Bottom 0.2592 Min Temp % 0.30 11.674 OK Z -Z. +1.20D+0.50L+W 0.08198 -X TOD 0.2592 Min Term) % 0.30 11.674 OK Z -Z. +1.20D+0.50L+W 2.287 +X Bottom 0.2592 Min Term) % 0.30 11.674 OK Z -Z. +1.20D+0.50L+E 0.6516 -X Bottom 0.2592 Min Term) % 0.30 11.674 OK Z -Z. +1.20D+0.50L+E 1.533 +X Bottom 0.2592 Min Temo % 0.30 11.674 OK Z -Z. +0.90D+W 0.2179 •X Too 0.2592 Min Term) % 0.30 11.674 OK Z -Z. +0.90D+W 2.521 +X Bottom 0.2592 Min Temo % 0.30 11.674 OK Z -Z. +0.90D+E 0.06392 -X Too 0.2592 Min TemD % 0.30 11.674 OK Z -Z. +0.90D+E 0.8176 +X Bottom 0.2592 Min TemD % 0.30 11.674 OK One Way Shear Load Combination... Vu @ -X Vu @ +X Vu @ -Z Vu 0 +Z Vu:Max Phi Vn Vu / Phi'Vn Status +1.40D 3.649 osi 3.649 Dsi 0 Dsi 0 0sl 3.649 osi 75 osl 0.04865 OK +120D+1.60L 14.879 osi 14.879 osi 0 osi 0 osi 14.879 osi 75 pet 0.1984 OK +120D+0.50L 6.8 Dsi 6.8 osi 0 osi 0 Dsi 6.8 osi 75 osi 0.09066 OK +120D+0.50W 0.996 osi 7,251 Dsi goal 0 osi 7.251 osi 75 osl 0.09668 OK +120D+0.50L+W 1.32 osi 15.104 Dsi 0 osi 0 osi 15.104 osi 75 osi 0.2014 OK Page 158 of 168 Title Block Line 1 You ran charge flds area using the 'Settings' menu item and then using the'Prinfing 6 Tale Black' selection. Tiae Black Line 6 General Footina Description: +1.20D+0.50L+E Project Title: Engineer: Project Descr. 3.739osi 9.861 osi 0 osi Page 159 of 168 Project ID: P.W II OCI 2016 I1 M MM16 SW*rd Jo1.1201b2650}IA Mammm ApadmeNs1 I6-265aec6 I ENENCALC, INC. 1963-2016, n17dE.16.7.21, Vec6.16.721 0 psi 9.861 psi 75 osi 0.1315 OK ille Block Line 1 ou can change this area sing the 'Settings' menu item nd then using the 'Truing & ills Block' selection. itle Block Line 6 3eneral Footing Description : FT5 One Way Shear Load Combination +0.90D+W +0.90D+E Punching Shear Load Combination... +1.40D +1.20D+1.60L +1.20D+0.50L +1.20D+0.50W +120D+0.50L+W +1.20D+0.50L+E +0.90D+W +0.90D+E Project Title: Engineer: Project ID: Protect Descr. PrNe0. �) DDi tet6 I:t6FN File =ciStnxlutWM16 Vu @ -X Vu @ +X Vu 0 -Z Vu @ +Z Vu:Max Phi Vn Vu / Phi'Vn Status 1.356 osi 22.249 Dsi 0 Dsi 0 Dsi 22.249 Dsi 75 Dsi 02967 OK 0.7154 psi 5.407 Dsi 0 osi 0 Dsi 5.407 Dsi 75 Dsi 0.07209 OK All units k Vu Phi'Vn VuIPhi'Vn Status 3.938 psi 150osi 0.02626 OK 16.059 Dsi 150osi 0.1071 OK 7.339 osi 1500si 0.04893 OK 3.376 psi 150Dsi 0.02251 OK 7.372 psi 150Dsi 0.04915 OK 7.339 osi 150osi 0.04893 OK 4.102 Dsi 150Dsi 0.02735 OK 2.532 psi 1500si 0.01688 OK Page 160 of 168 Post Calculations Example Calculations: Ib Post Max P (2)2X4 3725 (2) 2x6 8990 (3)2x4 5805 (3)2x6 14295 (4)2x4 7745 (4) 2x6 19080 (5)2x4 9680 (5)2x6 23860 44 4340 6x61111200 3 1/2" x 31/2' PLP 7440 3 1/2" x 5 1/4' PLP 11035 5 1/4' x 5 1/4' 3 1/8" x 7 1/2' 3 1/8" x 9" 5 118'x 6' 5 1/8' x 7 1/2' 5 1/8" x 9" Additional Pos Load Charts: 11495 13790 26595 33240 8 8 8 8 8 8 8 8 8 B 8 8 8 8 8 8 8 8 F, Fm Fq E, E, 11 it in in 2'-4' Thick 5'x5'and L rger 0.00 1.15 Timber OF -L#2 Timber DF -L#2 Parallam IGIulm Comb s4 1350 700 2500 2100 900 750 2400 1900 900 750 2400 2200 1600000 1300000 1600000 1900000 1600000 1300000 1800000 1900000 8 1 0.61 0.00 1.15 27.4 4.0 10.5 6 5 355 582 1551 1708 0.6 6 1 0.96 0.00 1.15 17.5 4.0 16.5 15 8 545 1013 1344 1547 0.7 8 1 0.61 0.00 1.15 27.4 2.7 15.75 9 12 369 582 1785 1964 0.6 8 1 0.96 0.00 1.15 17.5 2.7 24.75 23 19 578 1019 1547 1779 0.7 8 1 0.61 0.00 1.15 27.4 2.0 21 12 21 369 582 1785 1964 0.6 8 1 0.96 0.00 1.15 17.5 2.0 33 30 33 578 1022 1547 1779 0.7 8 1 0.61 0.00 1.15 27.4 1.6 26.25 15 33 369 582 1785 1964 0.6 8 1 0.96 0.00 1.15 17.5 1.6 41.25 38 52 578 1023 1547 1779 0.7 8 1 0.61 0.00 1.15 27.4 3.4 12.25 7 7 354 571 1034 1035 0.7 8 1 0.96 0.00 1.15 17.5 2.2 30.25 28 28 370 663 862 863 0.8 1 8 0.00 0.61 1.15 3.4 27.4 12.25 7 7 607 953 3171 3174 1.0 1 8 0.00 0.61 1.15 2.3 27.4 18.38 16 11 601 953 3032 3036 1.0 1 8 0.00 0.92 1.15 2.3 18.3 27.56 24 24 1013 1889 3034 3036 1.0 1 8 0.00 0.55 1.15 1.6 30.7 23.44 29 12 490 802 2181 2935 0.9 1 8 0.00 0.55 1.15 1.3 30.7 28.13 42 15 490 802 2180 2935 0.9 1 8 0.00 0.90 1.15 2.0 18.7 30.75 31 26 865 1773 2184 2783 0.8 1 8 0.00 0.90 1.15 1.6 18.7 38.44 48 33 865 1773 2184 2783 0.6 1 8 0.00 0.90 1.15 1.3 18.7 46.13 69 39 865 1773 2103 77x.3 n a OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK V 5 5 5 u.51 u.61 1.15 21.4 27.4 12.25 7 7 0 571 1031 1035 0.0 ON 0 8 8 8 0.61 0.61 1.15 27.4 27.4 12.25 7 7 0 571 1031 1035 0.0 OK 0 8 8 6 0.61 0.61 1.15 27.4 27.4 12.25 7 7 0 571 1031 1035 00 OK Roof Loads n tun (1) 2 X 4 2215 1855 1570 1340 (1) 2 x 6 5150 4630 4140 3695 (2) 2 x 4 4450 3725 3150 2690 (2) 2 x 6 9535 8990 8325 7430 (3) 2 x 4 6960 5805 4890 4160 (3) 2 x 6 15165 14295 13180 11720 (4) 2 x 4 9290 7745 6520 5550 (4) 2 x6 20245 19080 17580 15630 (5) 2 x 4 11615 9680 8150 6935 (2) 2 x 4 2905 2350 1930 1605 (2) 2 x 6 4670 3775 3095 2570 (3) 2 x 4 6605 5590 4750 4065 (3) 2 x 6 11575 9985 8575 7380 (4) 2 x 4 9290 7745 6520 5550 (4)2 x 6 18155 16500 14830 13245 (5) 2 x 4 11615 9680 8150 6935 (5) 2 x 6 23935 22215 20425 18635 4 x4 5185 4340 3670 3135 6 x 6 12040 11200 10330 9460 3 1/2'x 3 1/2' PLP 9000 7440 6225 5270 3 1/2' x 5 1/4' PLP 13330 11035 9245 7840 5 114"x 5 1/4" PLP 31850 27915 24355 21295 31/8'x71/2' 13795 11495 9680 8245 3 1/8' x 9' 16555 13790 11620 9895 5 1/8" x 6" 29565 26595 23720 21095 51/8"x71/2" 36955 33240 29650 26370 Floor Loads 1 11 Olt Jn I0., 2100 1775 1505 1290 4695 4270 3855 3470 0 4215 3560 3025 2595 8500 8080 7615 6970 p 6620 5560 4710 4025 13510 12845 12105 11020 O 8830 7415 6280 5365 18035 17145 16155 14700 y�y 21 11035 9265 7850 6710 12 in 2800 2285 1885 1575 4500 3670 3025 2525 6205 5310 4550 3915 10745 9405 8170 7090 8830 7415 6280 5365 16425 15120 13760 12425 0 11035 9265 7850 6710 21465 20125 18695 17235 0 4915 4145 3525 3025 10790 10130 9430 8720 8595 7155 6015 5115 p 12720 10600 8930 7800 E 29340 26080 23000 20250 13115 11005 9320 7970 15735 13205 11185 9565 26900 24510 22110 19840 33625 30640 27640 24805 Page 161 of 168 Notes: 1. Example calculations show Posts braced In one direction. 2. Loads have been adjusted to accommodate for the worst case of the following eccentric conditions:.175 of column thickness of.175 Of column width. : 20162850 Jack Miller / n: P5 @ T63 with loads above LEI Surveyors and Engineers t 3302 North Main Street « ntemational Building Code(2012 NDS)] Spanish Fork, Utah i IN x 5.51N x 9.0 FT .,.: •,t t r uglas-Fir-Larch - Dry Use i Adequate By: 4.6% Slrui Verson 9.0.2.5 10/182016 12:03:38 PM ]ON5 inafions to be nailed toaelher Der National Desion Specifications for Wood Construction Section 15.3.3.1 ICAL REACTIONS oad: Vert-LL-Rxn = 18035 Ib Load: Vert-DL-Rxn = 10630 Ib Load: Vert-TL-Rxn = 28665 Ib MIN DATA ,olumn Length: 9 ft ced Length (X -Axis) Lx: 9 it ced Length (Y -Axis) Ly: 9 It in End Condtion-K (e): 1 -oad Duration Factor 1.00 ouglas-Fir-Larch in Calculations (Controlling Case Only): tiling Load Case: Axial Total Load Only (L + D) Compressive Stress: Base Values Admitted able Compressive Stress: ressive Stress: Few 1350 psi Fc' = 728 psi Mx -ex = tricily Moment (Y -Y Axis): Cd=1.00 CFI.10 Cie -0.49 nt Due to Lateral Loads (X -X Axis): ig Stress (X -X Axis): Fbx = 900 psi Fbx' = 1346 psi MY= ig Stress Lateral Loads Only (X -X Axis): Fbx = Cd=1.00 CF=1.30 Cr -1.15 Fbx' _ 1g Stress (Y -Y Axis): Fby = 900 psi Fby = 1346 psi ible Bending Stress (Y -Y Axis): Fby'_ Cd=1.00 CF=1.30 Cr -1.15 CSF = us of Elasticity: E = 1600 ksi E'= 1600 its! in Section (X -X Axis): fix = 5.5 in in Section(Y-Y Axis): dy= 7.5 in A = 41.25 in2 n Modulus (X -X Axis): Sx = 37.81 in3 n Modulus (Y -Y Axis): Sy = 10.31 in3 arness Ratio: Lextdx = 19.64 Leyi = 14.4 in Calculations (Controlling Case Only): tiling Load Case: Axial Total Load Only (L + D) Compressive Stress: Fc = able Compressive Stress: Fc = tdcity, Moment (X -X Axis): Mx -ex = tricily Moment (Y -Y Axis): My-ey = nt Due to Lateral Loads (X -X Axis): Mx= nt Due to Lateral Loads (Y -Y Axis): MY= ig Stress Lateral Loads Only (X -X Axis): Fbx = ible Bending Stress (X -X Axis): Fbx' _ ig Stress Lateral Loads Only (Y -Y Axis): Fby = ible Bending Stress (Y -Y Axis): Fby'_ tried Stress Factor: CSF = 695 728 0 0 0 0 0 1346 0 1346 0.95 psi psi ft -Ib ft -Ib ft -Ib It -lb psi psi psi psi 11 Oft A%IAL LOADING Live Load: PL = 18035 Ib Dead Load: PD = 10550 Ib Column Self Weight: CSW = 80 Ib Total Load: PT= 28665 Ib Page 162 of 168 Project: 2016-2850 Location: P10 Column [2015 International Building Code(AISC 14th Ed ASD)] HSS 5 x 5 x 1/4 x 9.0 FT /ASTM A500-GR.BA6 Section Adequate By: 78.8% VERTICAL REACTIONS Live Load: Vert-LL-Rxn = 13746 Ib Dead Load: Vert-DL-Rxn = 6595 Ib Total Load: Vert-TL-Rxn = 20341 Ib COLUMN DATA Total Column Length: 9 It Unbraced Length (X -Axis) Lx: 9 ft Unbraced Length (Y -Axis) Ly: 9 0 Column End Condtion-K (e): t COLUMN PROPERTIES HSS 5 x 5 x 1/4 - Square Steel Yield Strength: Fy = 46 ksi Modulus of Elasticity: E = 29 ksi Column Section: dx= 5 in Column Wall Thickness: l= 0.233 in Area: A= 4.3 in Moment of Inertia (deflection): lx= 16 in4 Section Modulus: Sx= 6.41 in3 Plastic Section Modulus: ZX = 7.61 in3 Rad. of Gyration: rx = 1.93 in Column Compression Calculations: KUr Ratio: KLx/rx= 55.96 Controlling Direction for Compr. Calcs: (Y -Y Axis) Flexural Buckling Stress: For = 37.26 ksi Controlling Equation F7-1 Nominal Compressive Strength: Pc = 96 kip Combined Stress Calculations: Ht -1a Controls: 0.21 comomea acress rector: o.c i dy= 5 i ly = 16 in4 Sy = 6.41 in3 Zy= 0 in3 ry= 1.93 in KLylry= 55.96 ®Jack Miller LEI Surveyors and Engineers o/ 3302 North Main Street Spanish Fork, Utah Version 9.0.2.5 10/182016 12:03:58 PM 9 ft A Live Load: PL = 13746 Ib Dead Load: PD= 6453 Ib Column Self Weight: CSW = 142 Ib Total Load: PT= 20341 Ib ;: 2016-2850 ion: PI I International Building Code(2012 NDS)] I x 9.251N x9 FT Parallam - iLevel Trus Joist m Adequate By: 23.9% :TICAL REACTIONS Load: Vert-LL-Rxn = 13056 Ib J Load: Vert-DL-Rxn = 7729 Ib ILoad: Vert-TL-Rxn = 20785 Ib UMN DATA 1 Column Length: 9 ft aced Length (X -Axis) Lx: 9 ft aced Length (Y -Axis) Ly: 9 ft mn End Condtion-K (e): 1 1 Load Duration Factor 1.00 Parallam - iLevel Trus Joist imn Calculations (Controlling Case Only): rolling Load Case: Axial Total Load Only (L+ D) al Compressive Stress: Base Values Ad -lusted psi pressive Stress: Fc = 2900 psi Fc' = 843 psi psi :ntricily Moment (X -X Axis): Cd=1.00 Cp=0.29 0 ft -Ib ling Stress (X -X Axis): Fbx = 2900 psi Fbx' = 2985 psi With lent Due to Lateral Loads (X -X Axis): C6=1.00 CF=1.03 0 ft -Ib ling Stress (Y -Y Axis): Fby = 2900 psi Fby = 2985 psi ft -Ib ling Stress Lateral Loads Only (X -X Axis): Fbx = Cd=1.00 CF=1.03 psi +able Bending Stress (X -X Axis): ulus of Elasticity: E = 2000 ksi E'= 2000 ksi ling Stress Lateral Loads Only (Y -Y Axis): mn Section (X -X Axis): 0 dx = 9.25 in mn Section (Y -Y Axis): 2985 dy = 3.5 in CSF - 0.76 A= 32.38 int ion Modulus (X -X Axis): Sx - 49.91 In3 ion Modulus (Y -Y Axis): Sy = 18.89 in3 derness Ratio: Lex/dx = 11.68 Ley/dy = 30.86 imn Calculations (Controlling Case Only): rolling Load Case: Axial Total Load Only (L+ D) al Compressive Stress: Fc = 642 psi cable Compressive Stress: Fc' = 843 psi :ntricily Moment (X -X Axis): Mx -ex = 0 ft -Ib intdcity Moment (Y -Y Axis): My-ey = 0 With lent Due to Lateral Loads (X -X Axis): Mx= 0 ft -Ib gent Due to Lateral Loads (Y -Y Axis): MY= 0 ft -Ib ling Stress Lateral Loads Only (X -X Axis): Fbx = 0 psi +able Bending Stress (X -X Axis): Fbx' = 2985 psi ling Stress Lateral Loads Only (Y -Y Axis): Fby = 0 psi cable Bending Stress (Y -Y Axis): Fby' = 2985 psi ibined Stress Factor: CSF - 0.76 Jack Miller / LEI Surveyors and Engineers 3302 North Main Street a Spanish Fork, Utah ... .Fir. 9 rt A 10/1812016 12:04:02 PM LOADINGad: PL = 13056 Ib oad: r PD= 7638 Ib Self Weight: CSW = 91 Ib oad: PT= 20785 lb Project: 2016-2850 Location: P12 Column 12015 International Building Code(2012 NDS)] 3.51N x 7.O IN x 9 FT 1.8E Parallam Column - il-evel Trus Joist Section Adequate By: 23.8% VERTICAL REACTIONS Live Load: Vert-LL-Rxn = 8874 Ib Dead Load: Vert-DL-Rxn = 5261 Ib Total Load: Vert-TL-Rxn = 14135 Ib COLUMN DATA in Total Column Length: 9 It Unbraced Length (X -Axis) Lx: 9 ft Unbraced Length (Y -Axis) Ly: 9 ft Column End Condtion-K (e): 1 Axial Load Duration Factor 1.00 COLUMN PROPERTIES 14.29 1.8E Parallam Column - !Level Trus Joist Slenderness Ratio: Base Values Ad usted Compressive Stress: Fc = 2500 psi Fc' = 757 psi Bending Stress Lateral Loads Only (X -X Axis): Fbx = Cd=1.00 Cp=0.30 Bending Stress (X -X Axis): Fbx = 2400 psi Fbx' = 2548 psi Fbx' = Cd=1.00 CF=1.06 Bending Stress (Y -Y Axis): Fby = 2400 psi Fby' = 2548 psi Fby = Cd=1.00 CF=1.06 Modulus of Elasticity: E = 1800 ks! E'= 1800 lest Column Section(X-X Axis): dx= 7 in Column Section (Y -Y Axis): dy = 3.5 in Area: A= 24.5 tn2 Section Modulus (X -X Axis): Sx = 28.58 in3 Section Modulus (Y -Y Axis): Sy = 14.29 in3 Slenderness Ratio: Lex/dx = 15.43 ft -Ib Bending Stress Lateral Loads Only (X -X Axis): Fbx = Ley/dy= 30.86 Allowable Bending Stress (X -X Axis): Column Calculations (Controlling Case Only): Controlling Load Case: Axial Total Load Only (L+ D) Actual Compressive Stress: Fc = 577 psi Allowable Compressive Stress: Fc' = 757 psi Eccentricity Moment (X -X Axis): Mx -ex = 0 ft -Ib Eccentricity Moment (Y -Y Axis): My-ey = 0 ft -Ib Moment Due to Lateral Loads (X -X Axis): Mx= 0 ft -Ib Moment Due to Lateral Loads (Y -Y Axis): My = 0 ft -Ib Bending Stress Lateral Loads Only (X -X Axis): Fbx = 0 psi Allowable Bending Stress (X -X Axis): Fbx' = 2548 psi Bending Stress Lateral Loads Only (Y -Y Axis): Fby = 0 psi Allowable Bending Stress (Y -Y Axis): Fby' = 2548 psi Combined Stress Factor: CSF = 0.76 ®Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork, Utah Dead Load: Column Seg Weight: Page 165 of 168 E I i 9 f PL = 8874 Ib PD = 5192 Ib CSW = 69 Ib PT = 14135 Ib 10/18/2016 12:04:16 PM " V rifle Black Line 1 rou can change this area ising the 'Settings' menu item and then using the 'Printing & Fitle Block' selection. rille Block Line 6 Steel Base Plate Description: Project Title: Engineer: Project Descr: Proiect ID: emwr1e0:r2016 ie16AA1 Fee=LAStruGuaa2016 Stuchoal Job512616-2a50J1A treason ,We References Calculations per AISC Design Guide # 1, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: IBC 2012 General Information Material Properties AISC Design Method Load Resistance Factor Design 4) c : LRFD Resistance Factor Steel Plate Fy - 36.0 ksi Concrete Support Pc — 3.0 ksi Assumed Bearing Area :Full Bearing Allowable Bearing Fp per J8 Column & Plate Column Properties SleelSection: HSS10x6x5/8 Depth 10 in Area 16.4 inA2 Width 6 in Ixx 201 inA4 Flange Thickness 0.581 in lyy 89.4 1nA4 Web Thickness 0 in Plate Dimensions Support Dimensions N : Length 12.0 in Width along 'X' B: Width 13.0 in Length along'Z' Thickness 0.750 in Column assumed welded to base plate Applied Loads 12.0 in 13.0 in 0.60 2.550 ksi GOVERNING DESIGN LOAD CASE SUMMARY NY V•Z M•X D: Dead Load....... 23.960 k 0.0 k 0.0 k -k L: Live....... 19.230 k 0.0 k 0.0 k -t Lr: Roof Live......... 0.0 k 0.0 k 0.0 k -k S: Snow ................ 7.230 k 0.0 k 0.0 k•k W: Wind ................ 0.0k 0.0k 0.0 k -ft E: Earthquake .............. 0.0 k 0.0 k 0.0 k-6 H: Lateral Earth......... 0.0 k 0.0 k 0.0 k -g P'= Gravity load,"+"sign isdownward. V' Moments create higher soil pressure at+Z edge. Y Shears push plate towards+Z edge. 0.60 2.550 ksi GOVERNING DESIGN LOAD CASE SUMMARY Mu: Max. Moment ..................... Plate Design Summary fb: Max. Bending Suess ............... Design Method Load Resistance Factor Design Fb : Allowable: Governing Load Combination +1.20D+1.60L+0.50S+1.60H Fy' Phi Governing Load Case Type Axial Load OnlV Bending Stress Ratio Design Plate Size V -O" x 1'•1" x 0.3/4" Pu: Axial ......... 63.135 k to: Max. Plate Bearing Stress.... Mu: Moment........ 0.000 k -k Fp: Allowable: mN( 0.85Tc'sgrt(A2IA1),1.7' fe)'Phi Bearing Stress Ratio Page 166 of 168 2.696 loin 19.171 ksi 32.400 ksi 0.592 Bending Stress OK 0.405 ksi 1.530 ksi 0.265 Bearing Stress OK Title Block Line 1 You can change this area using the 'Settings' menu dem and then using the 'Printing It Title Block' selection. Title Block Line 6 Steel Base Plate Description: BP2 Code References Project Title: Engineer: Project Descc He = C1,SoudueM12016 SMIwal Calculations per AISC Design Guide N 1, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: IBC 2012 General Information Material Properties AISC Design Method Load Resistance Factor Design Steel Plate Fy = 36.0 ksi Concrete Support ft — 3.0 ksi Assumed Bearing Area :Full Bearing Column & Plate q) c : LRFD Resistance Factor Allowable Bearing Fp per J8 Column Properties 6.453 k 0.0 k Steel Section: HSS5x5x1/4 L : Live ....... Depth 5 i Area 4.3 in42 Width 5 in Ixx 16 inA4 Flange Thickness 0.233 in lyy 16 inA4 Web Thickness Din W: Wind ................ Plate Dimensions 0.0k Support Dimensions N: Length 6.0 in Width along 'X' 12.0 in B: Width 12.0 in Length along *Z 13.0 in Thickness 0.750 in 'P'= Gravity load,'+'sign Column assumed welded to base plate. at+Z edge Applied Loads NY j V -Z M -X D: Dead Load ....... 6.453 k 0.0 k 0.0 k -ft L : Live ....... 10.642 k 0.0 k 0.0 k -ft Lr: Root Live......... 0.0 k 0.0 k 0.0 k -ft S: Snow ................ 3.104 k 0.0 k 0.0 k -n W: Wind ................ 0.0k 0.0k 0.0k-0 E: Earthquake .............. 0.0 k 0.0 k 0.0 k -ft H: Lateral Earth......... 0.0 k 0.0 k 0.0 k-6 'P'= Gravity load,'+'sign isdownward. T' Moments create higher soil pressure at+Z edge '+^ Shears push plate towards+Z edge. GOVERNING DESIGN LOAD CASE SUMMARY Mu : Max. Moment ..................... Plate Design Summary fb : Max. Bending Stress ............... Design Method Load Resistance Factor Design Fb: Allowable: Governing Load Combination +1.20D+1.60L+0.508+1.60H Fy' Phi Governing Load Case Type Axial Load Only Sending Stress Ratio Design Plate Size 6" x V-0" x 0 -3/4" Pu: Axial ......... 26.323 k to : Max. Plate Bearing Stress .... Mu: Moment ........ 0.000 k -ft Fp: Allowable: min(0.85'fc'sgn(A21A1), 1.7'fc)'Phi Bearing Stress Ratio Page 167 of 168 Project ID: PrMed 14MI MIG 1057M 0.60 2.763 ksi 2.402 k -in 17.081 ksl 32.400 ksi 0.527 Bending Stress OK 0.366 ksi 1.658 ksi 0,221 Bearing Stress OK POST/ SHEAR WALL/FOOTING/FOUNDATION WALL SCHEDULE aldr„wrwceaawlyuaeq Post Schedule eed makwo liedst sh. PI e2x P2 2)2x P3 Pipe P4 (4)2x PS (5)2x P6 4.4 P7 6x6 PB LISSv x5' Y Ul 6' A500 Gr.B P9 HSS 10' x 6' x 5/6' MAX) GcB P10 HSS S'•5'x t/ 4' A500 0c8 Pit 312' x 91/4" Palallam Post PI2 1312' x 7- Palelbm Post day: a oslaaaie darade—IOantere. when'ect. el Neaad NloNerposl�la'yna9onsrderblul n.YJ11 higslWSUNO 2 Yaky(116Mmor Yudsa(U hsgmW cam sae of each openhgUNO. 3 lardoll )Vimds ner pooath sYkor ylw apenhsy�oa Sangn 6'wity'UNO 4 Ynla1(21 hY19 aUNs ea:h abed Opvnhga glaalerlhan 9-0'UNO 5. 2a il'. aloodstiaull NbeO 6 le0tFpladi2xibuYUVN DoaassnWe wlpgdlM1nofiNa ®e w6dol Fc aNmr,cUNO PoWIMI ere nd Uemed wMnadW wallaMtlbe IXazeawiM1 BL or AC poAraDeM PO yaW pool Ueee UNO Shear Wall Schedule''' lye 1cma.N.pin 3d Napa Capacity Desgnetign 6kreriel Note Ea Field Edge Field Wind Seismic 1 7/1 6' OSB or COX plywood 3/' 12° 6' 12' 350 260 zee 2 1/t S' We or COX Ayeood 530 350 2.aa 3 T/16' OSB re CDX plywood fitly 690 4 7/15'058 or CDX 2' 12 695 —F4— ad 40N 2 Und Slnaer liesmebasMa AF&PASDPWST.M1e43A(IBC2 3) 3 Usa(2)khW sludamweh emld dlwrPalrob (Slieu Wal Gweda)U.N O. 4 AITA 3D PWS 43 7.1 be blxketlwdU 2 FM romndol vAJedramhgwiT aapo naing'tell euppollS aMpenal edgof U NO. note 1) laWMreymrob at,..embe.be,UdM1 leceedawellmN reiaPacngklesa Nan a'oc w�oMer elM, penal iOYns alNll be alladb llmtillarenl Umniymla 6 army. Naie m e bealby al saMNae# UMa Mrelasa died MAPASDPWS4371nde3 Foundation Wall Schedule Size Reinforcement FWU -3' Foundalidn Wall 14 MI5 @ 24° o.P. vedkal, 3 44 bars holNontal FW3S- 3' Foundation Wall (12' Ihclh 14 bray; e24"o.c. veltical,1#4 here hodlenlei2) mats FW4- 4'Foumfafion Wall 14 here 024-o. c. vo?cal 4 04 ham lWdzonlal FW 10-1D Focal Well e5 here 012'oc.Vertical. Y5 them 012' o.b hodzonlai Sea Detail 13IS 1.1 FW 14 -14' Foundation Wall Y5 bare D 12' o c vesical AS bars 41 12' o.o Md7-111 See Detail 14/S 1.1 ea 1. brY' aMv[IwaMa 011 o<.M9'[f'YIH'1g 22g'I areaet". Y4uweml Y.dwwna UNO 2 fc=3,gpJ yW, ly=fin,Wgpsl N. sp-tal usVoclim requlrad a Piece H) M Uar bebwaW wi oaah abe al va0lmpeuhpoM 12) Pd ben above wch op.nhp OalasM1ell bn placed w4Nn 2' o1IM1e ,didid 5 red.O.M 24' beyoM Ne.dile 0th....nog; vod sl ben may terminate T 1. the top d the concrete 0penF9 nrydear alfa h eddden w 4cadade.11 rehlpnemenl 4 Top met bad. Uon cell be wind 4-ol It,. lop and Weer In. wall 5 Place reinf.l.—Id in.Mler d well U O. Page 168 of 168 Footing Schedule Designation Len Ih Width 9 9 Depth p LenglM1wiee Reinforcement Crosswise Reinforcement Gt. Sbe Length achy OI . Size Len m S cin Capacity Note FTIA Corn. 20" 2 14 Conl. EQ- 1500 PLF FTi9 Con[ 54" 6 14 Cc 1. EQ. YS 48" 12"o.c. 20'!511 PLF FT2A Cont IB" 2 44 Cool. EQ 6750 PLF FT2B Cool. 16' 2 14 Coil. E0. 6750 PLF Gotepl2)WIlme FT3 30' 30' LIZ' 3 Y4 2, EO 3 14 24' ED. 20125 LBS FT4 42' 42' 4 84 36° E6 4 94 38' EQ. 55125 LBS FTS 42' 2d' 3 14 36° EQ5 Y4 16' EQ. 31500 LBS R6 166' 132" Ii IS 162° EO. 14 p5 126' CO. 69:1000 LBS ebe'c=25W W4 Y=6y.IMp PaI spec., nspedm na'. 2 foot qa Yiell Lear onuMisluAed nolrve wJaor str.0 Lmmpwledld(95%compac,on),s,ecliM and lasted by. reg,slered nwhred a ..aid. r 3 All Ioofngs aMybwr bebw Ne Imsl lined The Ncaldy C0 -U N O) Proexle IT Jumeler swm lube al eNe(gl opollooLLWs PorJaWO20I501 4 PlouilaJ ben 10 ma 1M wntal fwadd yai wall reca"Grenl with 24' mYimom lap spire hdu louNslbn wall 5. Cenlerlooln mda hamd.fnn wall U NO Foundation Wall Schedule Size Reinforcement FWU -3' Foundalidn Wall 14 MI5 @ 24° o.P. vedkal, 3 44 bars holNontal FW3S- 3' Foundation Wall (12' Ihclh 14 bray; e24"o.c. veltical,1#4 here hodlenlei2) mats FW4- 4'Foumfafion Wall 14 here 024-o. c. vo?cal 4 04 ham lWdzonlal FW 10-1D Focal Well e5 here 012'oc.Vertical. Y5 them 012' o.b hodzonlai Sea Detail 13IS 1.1 FW 14 -14' Foundation Wall Y5 bare D 12' o c vesical AS bars 41 12' o.o Md7-111 See Detail 14/S 1.1 ea 1. brY' aMv[IwaMa 011 o<.M9'[f'YIH'1g 22g'I areaet". Y4uweml Y.dwwna UNO 2 fc=3,gpJ yW, ly=fin,Wgpsl N. sp-tal usVoclim requlrad a Piece H) M Uar bebwaW wi oaah abe al va0lmpeuhpoM 12) Pd ben above wch op.nhp OalasM1ell bn placed w4Nn 2' o1IM1e ,didid 5 red.O.M 24' beyoM Ne.dile 0th....nog; vod sl ben may terminate T 1. the top d the concrete 0penF9 nrydear alfa h eddden w 4cadade.11 rehlpnemenl 4 Top met bad. Uon cell be wind 4-ol It,. lop and Weer In. wall 5 Place reinf.l.—Id in.Mler d well U O. Page 168 of 168