Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
STRUCTURAL CALCS - 19-00154 - 1450 N 2nd E - Walmart - Grocery Pickup Addition
WAL.I.1lIART SPECIAL PROJECT (STORE #1878.237) REXBURG, IDAHO PROJECT NO. 1910047 STRUCTURAL. CALCULATIONS 2019.03.15 08:19:03-05'00' CARRIE J. JOHNSON, P,E, ENGINEER OF RECORD Wallace Engineering Structural Cons0ants, Inc. 200 East hlMhQw Bract? 41jeet Tulsa, Oklahoma 74103 91&584,58K Fax 918.584.8589 r,; r•a.tirafiac�sc.com CODE CHECK DATE: 8/9/18 TO: Building and Safely 35 North 1st East Rexburg, ID 83440 PHONE: 208.359.3020 FAX: M ATN: Porter EMAIL: PROJECT: # 1811438 Walmart Special Projects (Store #1878.233) -- Rexburq, Idaho BY: PHONE X VISIT OTHER TIME: 4:OOp ITEM DESCRIPTION 1. GOVERNING CODE A. Local Building Code: B. Local Amendments: C. Do State Building Code Requirements Differ? D. Structural Observations Required? E Special Inspections Final Report Required for Cerlifir,ate of nxn-n rnancv? 2. ROOF LIVE LOAD A. Minimum Roof Live Load: 3. SNOW LOAD RESPONSE 2015 IBC -- International Building Code 20 psf A. Ground Snow Load, Pg: 50 psf B. Can the roof snow be reduced below Pg as allowed by code?: *Yes 4. WIND LOAD A. Design Wind Speed: 115 ml B. Risk Category II 5. SEISMIC LOAD A. Mapped Spectral Response Acceleration, Ss: 0.442 B. Mapped Spectral Response Acceleration, St: 0.156 6. FROST DEPTH A. Minimum Bearing Depth: 36 in. REMARKS: *Minimum roof load = 35 psf Please notify, the undersiqned if the above information is incorrect or incomplete. FROM: Kayla Buster CC: (short period, 0.2s) (long period, 1.0s) Wallace Engineering Structural Consultants, Inc. 200 East Mathew Bad? Street Tulsa, Oklahoma 74103 918.584.5858, Fax 918.583.8689 vnrcrv_tallacesccoin ATC Hazards by Location ILNTC Hazards by Location Search Information Address: Rexburg, ID, USA Coordinates: 43.82310959999999,-111.79242369999997 Elevation: 4867 it Times to mp: 2019-03-05T13:50:38.40OZ Hazard Type: Seismic Reference IBC -2015 Document: 0.34 Risk Category: III Site Class: D MCER Horizontal Response Spectrum sa(g) 0.60 0.50 0.40 0.30 0.20 0.10 0.00 ~ �' 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Period (s) Basic Parameters Page 1 of 2 nsloio� 4867 ft i Fed Ftg . (haul Nalio. n;gr. { Virini Tutcmvola (d } Idaho Fulls azc , n�90'� lE o bnm,nn MaP d@t9�i?AAB,fao¢91e Design Horizontal Response Spectrum Sa(g) 0.40 0.30 0.20 0.10 0.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Period (s) Name Value Description Ss 0.442 MCER ground motion (period=0.2s) S, 0.156 WEI, ground motion (period=l.Os) SMS 0.639 Site -modified spectral acceleration value Sr,u 0.34 Site -modified spectral acceleration value Sos 0.426 Numeric seismic design value at 0.2s SA Sm 0.226 Numeric seismic design value at 1.0s SA Additional Information Name Value Description SDC D Seismic design category F, 1.446 Site amplification factor at 0.2s F, 2.175 Site amplification factor at 1.0s CRs 1.035 Coefficient of risk (0.2s) CRr 1.067 Coefficient of risk (1.0s) littps:Hhazards.atcotmcil.org/ 3/5/2019 VIALUCE DESIGN PROGRAM "RoFs�me COV/ Bre®lls Oats 3152019 Sheet No. Job Redoing, ID SEISMIC LOAD SUMMARY Lateral Force Risildng System, is Special Reinforced Masonry Shear Walls,lT.Y. 122-1) px, redundancy In x -i ir= ( Redundancy is oi0er i.0 or U) , i015 IBC (Ch: 16) and ASCE 7-10 (Ch: 11 to 13) py, redundancy in y-dv= I Rodundancy is either i.0 or 1.3) 1.90 (ASCE 7 Secton 12 34) 1. Input Refer to ASCE 740 Chapter 22 maps Is Structure regular with a period <.5 sec7 Yac; ryas or Na, ASCE ]Section 12,8 1,3) Is Structure shod period with a rigid diaphragm? or maps at httpd/ Is StmClWe shod period wl flexbb diaphragm 8 vertical elements of selsmlC fIXMreslsting system spaced YOs:(Yes or No, ASCE 7 Sccfgn 116) Spectral Response Ameferatlonfor Short Porkds,Ss earthquake.uags.gov/deslgnmaps, or - 0412, Si. Wal Respenso AccebfEron for l -second Periols hlip:pcontentsomatitule.org. c. Vertical Seismic Load Component, Section 12.4.2.2: Site C!assiTMaliM (AB, D,D,E,F)= DONOTuse NSHMP Its...d Jmro Ev=0.2 this D= D.(ASCE7Ch2OTWc203D Risk Category = else. fit, (I3C Table 16045 8 ASCE Table I a -D Bask Structural System :BEARING WALL SYSTEMS,(Table 122-1) Lateral Force Risildng System, is Special Reinforced Masonry Shear Walls,lT.Y. 122-1) px, redundancy In x -i ir= ( Redundancy is oi0er i.0 or U) , 1.00. (ASCE 7 Section 12.3.4) py, redundancy in y-dv= I Rodundancy is either i.0 or 1.3) 1.90 (ASCE 7 Secton 12 34) p, =1.0 for Solar is Design Category B and C, RE: ASCE. 7 Section 12.3A.1 for addiTenal exceptions. Is Structure regular with a period <.5 sec7 Yac; ryas or Na, ASCE ]Section 12,8 1,3) Is Structure shod period with a rigid diaphragm? No; (Yes or Na, ASCE 7 Soctdn I lan Is StmClWe shod period wl flexbb diaphragm 8 vertical elements of selsmlC fIXMreslsting system spaced YOs:(Yes or No, ASCE 7 Sccfgn 116) Does Struciwo have a flexible diaphragm? _ Yas ryes e, No. ASC E 7 Sccl'on 11.6) (For Wall anchorage requbemenls per Sedion 12.11.2.1) Span lergih of flexb:o dbphragm -x dr. _ Span length of flexible diaphragm -y-du. _ 2. Determine Design Spectral Response Accelerations and Seismic Design Category, Section 11.6: Response Modification Fader, R= Overstrorgth Facto, 4c= (refer to footnote g for.5 red W ion for Flexb's Diaphragms) Deflecten Amplification Factor, Cd= Acceleration for Si ort Period Site CoefOcient, Fa = Site Aduste l Spearal Response Acceleration for Shod Periods, Sms = Accaleration far ISecond Period Site Coefficient, Fv = Site Adjusted Spectral Response Acceleration for l -second Periods, Sot = Design Spears] Response Acceleration for Sled Periods, Sds = Seismic Design Category based an short period= Design Spectral Response Acceleration fair 1 -second Pistols, So = Seismk Design Category based on i -second period= 550. feet (input 0 for rigid fatilvagm) M fast 5 (Table 122-1) If Venues are NIA, verify selection of Basic 2 (Tab'. 122-1) Structure] System and then 3.6 (Taub 122-1) Lateral Force pestering System 1.45 (IBC Table 1613.3311)) 0.639 (IBC Secton 16133 3, ASCE 7 section 11.4 3) 2.18 (IBGTabb 161333(2)) 0.339 0.426 (IBC Secton 16133 4 and ASCE 7 Section 1144) C 0.226 D Design Response SpecWm, Ts per 11.4.5= 0.531 seconds Can the Seismic Design Category W based on the short period If lite Seismic Design Category Yes OBC Secton 1613.3.5, ASCE 7 Section 11.6) is A use the Seismic Design Seismic Des;gn Category for design= Category A tab summary C(Mosleevera case aswpt as cloned by Sen flat sheet. 3. Seismic Base Shear for the Lateral Force Resisting System using the Equivalent Lateral Force Procedure, Section 12.8: a. Calculation of Seismic Base Shear Coefficient: Seismk Importance Fader, Is= 1,25 (ASCE 7 Table 1.5-2) Strergt1(1.gE) 'ASD(0.7E) Cs=(Sds/(RID 0.107 0.075(Equaten 12.8-2) For is one story buiki;rg, Fpx= e. For collector elements In Seismic Design Categories C through F: Emh= 0.107W 0.075 W 0.213 W 0.124W Notes: 1.A ho Ming that is low rise (one or hvo story) bu ldi g with a shod period is assumed for calculal'lon of Seismic Response Coeffeient, Cs, 2. The values for design spectral response acceleration assume a regular sltudure of 5 stories or loss with a period, T < D5 seconds 3. The vetoes for design forces for the ofaphragm assume no offsets or changes in the stiffness of the vertical components 4. Section 1613.1 of 2012116 IBC xcodas the detailing requ fomea s of Chapter 14 and Appends I IA of ASCE 7. The collector elements (drag struts) for the b. Horizontal Seismic Load, Section 12.4.2.1= diaphragm shall be designed using the Fa the Xdirect ri Fh= stength toad combinations. if the collector is 0.107W 0.075W Far the Y-deed.Eh= designed using ASD methods, an allowable 0.107 W 0.076W - stress increase of 1.2 may be used. c. Vertical Seismic Load Component, Section 12.4.2.2: Ev=0.2 this D= 0.085D 0.060D For design of fooMatlens using ASD am whore Sds<0.125, vertical force may be taken as zero. (Saction12.4.2.2) d. Find the Design Seismic Shear for the Diaphragm, Section 12.10.1.): SOenglb(1.OE) ASD(0.7E) Face shall nal be less Than QZ'le'Sds = 0.107W 0.076 W but need ret exmod 0.410Sds = 0.213 W 0.149 W For is one story buiki;rg, Fpx= e. For collector elements In Seismic Design Categories C through F: Emh= 0.107W 0.075 W 0.213 W 0.124W Notes: 1.A ho Ming that is low rise (one or hvo story) bu ldi g with a shod period is assumed for calculal'lon of Seismic Response Coeffeient, Cs, 2. The values for design spectral response acceleration assume a regular sltudure of 5 stories or loss with a period, T < D5 seconds 3. The vetoes for design forces for the ofaphragm assume no offsets or changes in the stiffness of the vertical components 4. Section 1613.1 of 2012116 IBC xcodas the detailing requ fomea s of Chapter 14 and Appends I IA of ASCE 7. Nemoar 7/14/fl, Came) moa COPiri9hio Date 352019 _Shoot No. of Job Subject SEISMIC LOAD SUMMARY 2012/15 IBC (Ch: 16) and ASCE 7-10 (Ch: 11 to 13) 4. Minimum Continuous Load Path, Interconnection and Connection to supports, Section 12.1,3 and 12.1.4: a. Continuous Load Path and Interconnection: Strength(1,UE) ASD (03E) 0.1 min = FConnec3on Per 12.11.2.2, the strength 0.071 Wp 0.050 Wp (se<tbn x2.1.3) to Sur.OSwp b. Connection Sup ports, Section 12.1.4: design lements for steeleptiono with with the exception ith the ex aocher Fp- .05'dead+rho reaGbn = and reinforcing aleol shall steel shall 0.050 RtlN 0.036 RtlN (seaon 12.1.4) be Increased by 1.4 linos. S. Structural Walls and Anchorage, Section 12.11 Strength (1.OE) ASD (0.7E) a. Minimum Dut-of-Plano Forces on Structural Walls, Section 12.11: Fp= 0A0 Is Sds wp or. 10wp m in.= 0,213 Win 0.149 Wp b. Minimum anchorage connection of structural walls to supporting construction, Section 12.11.21 and 12.111: For load ng in 0na x dreaon: Strength(1.OE) ASD (0.7E) ka=1.0+L1/700 or max 2.0 = 2.00 Fp= 0.4ka Sds wp or. 2 ka rry min.= 0.400 Wp 0.2aO Wp Fp' 1.4 for steel elements per 12.11.2.2.2 0.560 Win 0.392 Wp For leadi q in 0na y-drection'. ka= 1.0+1_1/100 or max 2-0 = 2.00 Fp= 0.4ka Sd"p or 2 ka mop min= 0.400 Wp 0.280 Wp Fp - 1.4 for sleet e:ements p«1211.222 0.560 Wp 0.392 Wp The minimum wall anchorage load for concrete or masonry walls Is 0.2' the wall weight or 5 Pat per 1.4.5. 6. Horizontal Seismic Design Force on Nonstructural Architectural Components, Section 13.3: For lip, =l.0 For p- 1.6 Fp max =1.6 Sas Ip Wh= 0.682 Wp 1.023 Wp(Equacbn 133-2) Fp mm = 0.3 Sets Ip Wp= 0.128 Wp 0.192 Wp (Equaton 13.3-3) The Seismic Design Form is based on Equation 13.3A, with the minmum and maximum Imus noted abpva. Fp= 0.4 cep Sds Wp (1 +2 rlh)((Rpllp) Seismic Design Force Summary on Architectural Components ap= Rp= Ip= Lh= Itrwgih(1.OE) ASD (01E) 1.Contravened (Unbraced) parapets and Chimneys 2.50 2.50 1.00 1.00 0.611 Wp 0.358 Wit(Table 135-1) 2. Braced Interior Nonmasomry watts and partitions Fp at floor= 1.00 2.50 1.00 0.00 0.128 Wp 0.090 Wp (Tab's 1361) Fp at rmf= too 2.60 1.00 1.00 0.205 W P 0J43Wp P (Teb:e 1351) Fp average at roof and iboc 0.186 Wp 0.116Wp 3, Braced Interior Unrelnfwced masonry walls and partitions Fp at lbw= 1.00 1.60 1.00 0.00 0,126 Wp 0.090 WP (Table 13 5i) Fp at roof= 1.00 1.50 1.00 1.00 0.341 Wp 0.239 WP (Table 1360 Fp average at roof and iboc 0.234 Wp 0.164 Wp 4.Cantilevered(Unbraced) Interior Nonstruclural waas 2.50 2.60 1.00 0.00 0.170Wp 0.119 Vdp(TeV.a 13 51) 5. Braced Parapets and Gnormays 1.00 2.50 1.00 1.00 0.205 Wp 0.143 Wp (Table 13.61) 6 Exterior Nonimchnal Wali Elements Fie at floor= 1.00 2.60 1.00 0.00 0.128WP 0.090 WP(Tob!e 1351) Fp at roof= 1.00 2.50 1.00 1.00 0.206 Wp 0.143 Win (Table 1351) Fp avorago at roof and fbor. 0.166 Wp 0.116 Wp For 01e Body of 61a Wal I Parcel Connection' Fp at limon= 1.00 250 1.00 0.00 0.128 Wre 0.090 Wfe CTOWO 13 5-1) Fp at rmf= 1.00 2.50 1.00 1.00 0.205 Wp 0.143 Wp (Table 13 61) For the fasteners of the corm ing system'. Fp at floor= 1.25 1.00 1.00 0.00 0.213 W P 0.149 W p (Teb'e 13.51) FP at roof= 1.26 1.00 1.00 1.00 0.639 Wp 0.448 WP (table 13 61) 7. Appendages and Omamenlallon 2.50 250 1.00 1.00 0.611 Wp 0.358 Win(Tab!e 1351) Notes: 1. Refor to Section 13.4.1 for additional noturemenls for arnbors in concrete and masonry. 2. Section 1613.1 of MI2/151BC oxciodas the detailing rewrements of Chapter 14 and Appendix I IA of ASCE 7. WALLACE DESIGN PROGRAM RQWsIxr Jf3 , erne risen Copfrightlb Date 3/52019 Sheet No: of _ Job Sugect SEISMIC LOAD SUMMARY 2012115 IBC (Ch: 16) and ASCE 7-10 (Ch: 11 to 13) Table 11.4.1 and IBC 1613.3.3(l) Site Coefficlont, Fa Sit. IAapp.d Spectral Response Acce'oration at Start Po(Ws(Ss) Distance Class_ Ss1=0.25 0.5 0.75 _ 1 Ss,i.25 V_alu. _ A 0.60 0.80 0.80 0.60 0.80 _ 0.80 B 1.00 1.00 1.00 1.00 1.00 1.00 C 1.20 1.20 1.10 1.00 i.W 1.20 D 1.60 1.40 1.20 1.10 1.00 1.45 E 2.b0 1.70 1.20 0.90 0.90 1.89 F Table 11.4-2 and IBC 1613.3.3(2) Site Coefficient, Fv Site btapped Spectral Response Accelaration at 1 Secant Pxiod (S1) Distanco Class S11=0.1 0.2 0.3 0.4 S1>=0.5 Value A 0.60 0.80 0.80 0.60 oao 0.80 B 1.00 1.00 1.00 1.W 1.00 i.00 C 1.70 1.60 I'm 1.40 1.30 1.69 D 2.40 2.00 7.60 1.60 1.50 2.18 E 3.50 3.20 2.80 2.40 2.40 3.33 IBC Table 1613.3.5(1)and 11.6-1 lismic Design Category based on Short Period Response Accelefat c Vallo of Occupancy Category D.sign So. I a II _ __III _ N _ Cam Category Sds<=0.161 A A A A C 0.167 <= Sao - 0 33 8 B C e 0.33<=See , OS C C D C 0.5 r_ See D D D D S1>=0.75 E E F E Table 1613.3.5(2) and 11.6-2 mle Design Ca_te_gory based on 1 -Second Pedod Response Aceeleai VaWo of Occupancy Category D.sign Shc _ lorll III _ IV _ _ Category Category Sdt <=0.067 A A A A D 0.067 r_ Sol< 0.133 13 B C B 0.133<=Sol <0.2 C C D C 0<=Sol D D D 1) S7>=0.75 E E F E WALLACE DESIGN PROGRAM _ Resised: 14-&W13 -- _- Author Nor. FaWkrw/ WINO ANALYSIS: ANALYTICAL - ALL HEIGHTS METHOD ASCE ]-f0, Chapters 2] aM 30 i.InpW a° eIs e Roofvie �rnS W REFER TO FIGURE 27.44 2D Role ko,11<tha1101 Gate 37572019 _&beet _ __ of Job Subject main b#g _ ., _ _ Design Parameters Bask Wad Speed, V = Expomw Celogory (13 C. ar D)- w1dirg Risk Category (I II, III, IV) _ 120. rl (Secten 26 6. P;g. IA -IG) C_ lSectan 26d) If (lab.o 1.S I, Tsble 1.52) Eavo Helghl If. - ZI M feet Mox BWk:ng Hcghtcr Fidge Helghtebow grourb level,H, "24,76,feet Heght Parapet Heghl above grourk lsval, kip= --.:230fool BuKrg Atom, PoryendcWar to Wok, B -613.33 foal (mak bldg am) BIAISN Width Parallel to Wnd, L 1.00 Figure 2631 Encl0sad or Parbeity Enclosed Bultldg = : IEE or P (SOUbn 26.10) GaV.d, MuWgspan, Momoslcl or Sm Loom Roef = M5, (G, MG, IAS, or S) Argo of Plow of Reef From f Wnzontal, B = 1.06, degrees TribWary Area for Wag Comp Wens, 1 - TdbWary Area for Wait Components, 2 = TdbWary Area for Wal Components, 3 = TneeRry Area for Parapet Components. 1 = Tributary Area for Parapet ComemenH, 2= Tributary Noa for Roof Components, 1 = Tdbulary Area for Roof Components, 2 - TdbWary Area for Roof ComPolmms,3= Tributary Nea for 0,00 borgs or Calaples, i = Tributary Area for O.omsrgs or Cm apes, 2 = Is bull g on or near a K1i, Olga, W escupment7 Hosght of IBI W Esta Tenant relative to ugMM tonal,, H = Holz. Dist. UpMrk to Pont W1mro Elevaton = IW, M = Host. IML fwm Gast to BW'Qrsg Sdo, x = 2D Ridge, 20 Escarpment or Adsymmetrical H01= Is Ne bWUN SIO WW d ordVATAtirk el the crest! 2. Caiculetlons - Mefn Wind Force Resisting System Equivalent Nominal Design WM Speed, Vasd = REFER TO FIGGBB 26 e-1 Memo roof h0ght h = Kz, ve:Wily pressure exposure coaff4ent at hs = 24.75f1= Kz, wlouty pressure oxposmo coef c ant at M = 21.33ft = Kz, wkxty pressure exposvm coeKchmil at hp = 28ft= Mjopographic NEW at hz = 24.75f1= M,toPograpbk factor at M = 2IMft= KzµopagrepNc factor at hp = 28ft= Kd, wirk ormcbsna5iy factor= G, gust fact"= as, veleuty pressure at hz = 24]511= qh, velecity Pressure at M = 21.33ft= me. "'elc5ty prosswo at hp = 28f1= Walls: P=q(GCpi-GCpi) Eqn. 27.41 W mf,wE Pressure Lennard Pressure SiderNall pressure Inlemal Pressure JLONW = (1.0)(W9l6nard + Leeward Prossuro) _ (0.6)W-(0.6NW d,md+ Leonard Prossuro)- Parapets: Pp-gplGCPn) Eq.. 27.4-4 "lr ,vard parapet pressure Leonard parapet pressures Wlrknard+ Lea,vard Pressure Roof Normal to Ridge (0x10 degrees) WW,,ard Pressure easel .so ii Lennard Pressure Roof All Otho(Conddlems For Oto 1u2=0 itte 10,67 it h72 to h=10.67 it to 21.330 h to 2h=21.33 it to 42660 4h =>4266 It Reef Overhangs Socilon 27.4.4 Maximum Pressures 400 square feet 200, square fast 160_ square foot r, 100.aquare foot 6g. square foot 1 W.4qu-w fact 30 square loot 3, square fest 100. square feet 6D Square feet tai (Y or N) (Socr m 26.8) 10.00 fast (Seclkn 26.8 Pg26.81) 10.00, fest (Section 2U a, Fg268-1) =J0.00 fast (Section 26.8, Fg. 268-1) OONtiN(up, dawn) 8295 mph (MC 2012, 1609.3. 1) 21.33 feet (1.0)P 0.94 Table 27.3-1 (use with qz) 0.91 Tab!o 27.3-1 (use with qh) 0.96 Talmo 27.3-1 (use with qp) 1.00 Figure 2631 (use with qs) 1.00 Figure 26.8-1 (use Kith qh) 1.00 Flume 268-1 (u. fth of) 0.85 Table 264-1 28.51 0.85 Sscfon 26.9 .1 22.1 psf 29AS Pat (Eq. 27.81) 28.61 psf(Eq. 27.&1) 30.08 psf (Eq_ 21.3-1) qz GCp GCPI (1.0)P 10:6)V__ 29.45 088 20 psf ..-_ 12 psf qh GCp GCPI T.0)P (0.61P 2851 -0.43 -12.1 psf -7.3 pat 28.51 -0.60 0.18 22.1 psf .113 ps( 28.51 0.18 5.1 psf 3.1 psf 20.03 psf +12.12 pat= 32.1 Pat 0.77 12.02 lost +A27 pat- 19.3 pa( 2651 qP GCp, T.0)Pp (0,6)Pp 30.09 1.5 45.1 psf 27.1 psf 30.08 .1.0 -30.1 psf -18 psf 30.08 2.50 75.2 Psf 45.1 Pat qh GCp GCpi (LINP 10,61P 28,51 060 0.18 .22.1 poll -13.3 psf 28.51 -0.15 0.18 -9.5 ps( .5.7 Ps( 28.51 -0.26 018 .12.4 psf .7A psf qh GCp GCPI _ (LNP _ (0.BIP 28.51 0.77 0.18 .26.9 psr .16.2 Pat 2651 -077 0.18 .26.9 psf -16.2 psf 2651 043 0.18 47.3 psf -10.4 psf 2651 -0.26 Me 42.4 psf .7.4 psf qh GCP GCpi (t A)P (ISIP 2861 4)]7 088 -41.2 pat -24.1 psf WALLACE DESIGN PROGRAM Raused: IMW013 Author Katie Faulkner WING ANALYSIS: ANALYTICAL -ALL HEIGHTS METHOD REFER TO FIGURES 30.4-1 AND MA -28 Parapets: area, Area = 10 sqIT qp GCp GIO (lG)P (06)P 26.19 0.9 -13 7O7 psf 42.4 psf 26.16 0.9 -10 707 psf 42.4 psf 26.19 00 -0.9 49.5 psf 29.7 psf 26.19 0.9 -1.26 56.6 psf 33.9 psf Data 3152019 Sheet of Job Rexburg ID Sub)ecl main b'dg 3. Calculations - Component and Cladding Eloments Ka, solacity Wassure exposure coeffident at M=21.33R= 0.91 Table 303-1 (use with qh) <a, velocity Vass.. expos.. ca efficient at hp=28ft= 0.96 Tabb 30.3-1 (use vidh qp) K Uopog.plvc factor at M=21.33ft= 1.00 Figure 26.8-1 (use with qh) Kzi.tapo9raphao factwai he=28ft= 1.00 Fg. 268-1 (us. with qp) Kd, vdld drectlonaily factor= 0.86 Tab. 26.81 G, gust factor= 0.86 Secton 26.9.1 qh, No" wesswe at M=2Tnft= 28.61 psf (Eq 30.3-1) op. velocity pressure at hp = 28ft= 30.08 psf (Eq.30.3-1) Wall a: tab. Area =400 act, ft, qh GCp GCPI II.OIP (0.6)P Zone4 Interior Zone 28.51 0.74 0.18 .26.1 pat .15.7 psf Zono5 End Zone 28.51 -0,75 0.18 .26.5 psf -16.9 psf Z..4 and 5 28.51 0.65 -0.18 23.6 psf 14.1 psf Walls: itlb. Area =200 sq. R, an GCp GCpi (1.0)P (0.6)P Z.4 Interior Z. MST -078 0.18 .27.6 psf -16.6 par Z.5 End Zone 2851 -0,85 0.18 .29.3 psf -17.6 psf Zona4 aM 28.51 069 -0.18 24.9 pat 14.9 psf Walls: tab. Area =100 sq, it. qh GCp GCpi (1.0)P (0.6)P Z.4 Int.r Zone 2851 -0.63 0.18 -288pa( -17.3 paf Z.5 End Zone 28.51 -0.94 0.18 42 psf 49.2 psf Zono 4 ands 2851 074 -0.18 26.1psf 15.epsf Parapets: irib. Area =100 sq. R. qp GCp GCpi (1.G)P (0.6)P Case Zone4 Interiw Zone 30.08 0.74 -1.10 65.4 psf 33.2 psf Zone5 EM Zone 3008 074 -1.10 65.4 pat 33.2 psf Cos.B Z.4 Interior Zona 3008 0.74 -083 47.3 pat 28.4 psf Z.5 EM Z.. 30.06 074 -094 50.6 psf 30.4 psf Parapets: tab. Area =50 sq. ft qp GCp GCPI (I.0)P (0.6)P CaseA Zono4 Interiw Zone 30W 0.79 -1.31 U.2pef 07.9psf Zone5 End Zone 30.06 0.79 -1.31 63.2 psf 37.9 psf Case Zone Intefiw Zona 30.06 0,79 4188 60.2 par 30.1 psf Zo 5 End Zone 30.06 0,79 -104 55 psf 33 par Roofs: trib. Area =100 sq. R. qh GCP GCpi (1.0)P (0.6)P Z. t Interiw Zone 28.51 -0.90 0.18 -308 psf 48.6 psf Z.2 End Zone 28.51 -MO 0.18 -36.5 ps( .21.9 psf Zono3 Owner Zone 28.51 -1.10 0.18 -36.6 psf .21.9 psf Zows 1, 2, and 28.51 020 4118 16 psf 9.6 psf Roofs: lab. Area =30 sq. g, qh GCp GCPI (I.G)P (0.6)P Zone1 Interior Zone 28.51 -0.95 GAS .32.3 psf _ .19.4 psf Zone EM Zone 28.51 -1.47 0.18 .46.9 psf .28.2 psf Z.3 C".' Zone 28.51 -1A7 0.18 46.9 par .28.2 psf Z. 1, 2, and 28.51 025 -0.18 16 psf 9.6 psf Roofs: trile, Area =3 sq. ft. qh GCP GCpi (1.0)P (0.6)P Zone InteriorZurne 2851 -1.00 0.18 43.6 psf .20.2 psf Zone2 Ertl Zone 28.51 -1.80 0.18 .56.6 psf 43.9 psf Z.3 Canner Zone 28.51 -I'M 0.18 .56.5 psf 43.9 psf Z. i, 2, and3 28.51 0.30 -0.18 16 psf 9.6 psf Overhangs: lab. Ames =100 sq, ft. qh GCpn (I.0)Pp (0.6)Pp Z.1 Intortor Zww 2851 AM 46.6 Psf -27.OPsf Zone2 End Zona 28.51 -T60 46.6 psf .27.4 psf Zone Corner Zone 28.51 -0.80 .22.8 psf .13.7 psf Overhangs: tab. Am=60 sq. R. qh GCpnI1.0)Pp (0.8)PP Zoe i Interiw Zai 28.51 -1.63 .46.6 psf .27.9 psf Z.2 EM Zona 2851 -1.63 .46.6 pat .27.9 psf Z.3 Carver Zono 2851 -1.40 .40 psf .24 psf a, end zone mirth =fAln. of l0% L and.411 but not <4%L or 3'= 15.6 fest IF, 30.4-1) Nates: 1. The gust factor of 0 85 is based on a bWdug with a natural frequwwy of> 1 Hz Porotber buntings, the gust faUw must be cafc.lated 2. If a parapet equal to 3 fl w kgher U proJded around the peameterof a ro0haith a slope of<]°, the roof comer zones maybe iroated as eM zonos. (FS. MA 2A, Footnote 5) WALLACE DESIGN PROGRAM Revised 7112116, Carrie Johnson CopynghtO 10/1953 ROOF SNOW DRIFT -Joists Parallel C Wb1 _ Wb2 T.O.W. J.R.E. Configuration Pm Snow Drift hr he I hd hb St 1 82 1 33 1 84 # # k V N 0 N O O O O am Date 3/5/2019 _ _ Sheet No.-, of Project Rexburg, ID- _ Subject 1. Input Code = 7.05 ASCE Dead Load = f 16; psf Roof Live Load = 20 psf Pg, Ground Snow Load = : 50 psf Drift for parapet, projection, or upper roof? U (P), (PR) or (U) I, Importance Factor = - 1.0 Ce, Exposure Factor = 0.7 Ct, Thermal Factor = - 1.0 Use Pg minimum for drift tales (Pf = Pg)? N (Y or N) Geometry T.O.W., Top of Upper Roof Elevation 26,00, ft J.B.E., Joist Bearing Elevation = 12.001 it td, Thickness of Joist, Dock, and Insulation = 4.00:-- inches Wb1, length of upper roof = 576.00it Wb2, length of lower roof = `:+'20.00 it x, Joist #1 dist. from wall = "''r3.33 ft S1, First Joist Spacing = 3.88' ft S2, Second Joist Spacing = 3.88. ft 33, Third Joist Spacing = 3,88 ft S4, Fourth Joist Spacing = 3.88' ft S5, Fifth Joist Spacing = 0.00 it 2. Balanced Snow Load Check Pf = 0.7 Ce Ct Is Pg = 24.50 psf Pf = Is Pg = 20.00 psf Rain on snow surcharge = 0.00 psf Pmin = 24.50 psf 3. Drifted Snow Load Check Pf = 0.7 Ce Ct Is Pg = 24.50 psf D = 0.13 Pg + 14.0:- 30 pcf = 20.50 pcf lib = Pf/D = 1.20 ft Wb = 575.00 ft hd = 0.43 Wb1A1/3 (Pg+10)"1/4 - 1.5 = 8.43 ft lid +hb= 9.63 it hr = 13.67 It hc=hr -hb= 12.47 ft Wd = 4 hd or 4 I hd42/(hr-hb)) s 8 (hr-hb) = 33.72 fl Pmax-=D(lid +hb)sDhr= 197.33 psf ^�b�4;k Pd =D hd 5 D he = 172.83 psf 4. Uniform Load Summary Drifted Snow Load Snow Total w, wall 321.4 346.4 pit * w, Joist #1 646.9 700.9 plf *'' w, Joist #2 w, Joist #3 621.9 545.2 680.1 plf * 603.4 * �; w, Joist #4 468.1 pit 526.3 pit * Y w, Joist #5 205.1 234.2 pit * Balanced Load Check Pmin (24.5 psf) Total w, wall 40.8 65.8 pit w, Joist #1 88.3 142.3 pit w, Joist#2 95.0 153.2 pif w, Joist #3 95.1 153.3 pit w, Joist #4 95.1 153.3 plf w, Joist #5 47.5 76.6 pit * indicates controlling load (drifted vs. undrifted) vW r . ,�.. Maximum Sheet Length 42'-0 Extra charge for lengths under 6'.0 IGC ER -3415 Factory Mutual Approved' Dock typo & gauge — Max. dock span 1.5622, 1.513122 ...................6'-0" 1.51320, 1,56120 ...................6'-6" 1.5618, 1.513118 ................... T-5" FM Approvals No, OC8A7.AM & OG1 A4 -AM __6•__ -._ 21. _ 12� 1.5616, 1.56116 ................... 9',4" FM Approvals No, 3029240 ' Acoustical peck is not approvod by Factory PAutuat OR SECTION PROPERTIES W11 Intorlocking lido lap is not drawn to show actual dolall. ACOUSTICAL INFORMATION 40ik A650iptlon GGoofllcidni_ � hblso netlucllon tYPo -_- l2fi 26Q u0 1400 2000 4000 eooliicionl' �1.58A, 1,SelA ,1�1 ��9- �60 1.02 0'131 0.33 � 0,60_ ' Spurca: Riminvik AccUsOcal I-abomlorlea. Test teas candti0lad wth 1,50 pct fiberglass baits and 2Inch pply15ocyanurate Win insulation for the SDI. VERTICAL LOADS FOR TYPE 1.55 Type 6 (Inde rib) deck prolMos okcellonl alructural load carrying capaaly pot pound of sloe! ONO, and its noslad6 dc5igrl ofainoles Tho Dead for di0-set ands. V or Mra riga oblation is required Ix Tow B deck Acoustical de -k (Type BA, BIN Is porticu'sdy 5taiablo in stachnits shit es atl6106WIS, 6010015, and Theatres vAwlo SW oantfol Is deslfade. Awuslb podoraroru wo hated in the witigl v;ebs a iwro Via bad carlyng Wfliti6os aro IaJOy 6lfOod Qoss Ulan 6%). Lxui, rion-wolid, (f'.ass Aber sound absobng We oroDlap�0 in ftrib operings to absorb up to W/, of the soceld shici g ifw dock, Balls are field Inskaliud and may rc'nuve soparo5ITI. Doo n Ilex• T section Properties No.of - Ouck Deck lhkkness W V. FY �- �� `—' - _Sc-- _ In Sp type in. Psf Writ kil _Tin at In°/ft Win _ (Ant_ . B O 7 _ _ 7-@_ 60 a-6 624 0.0239 1.40 0.107 0.120 0.136 _ 0.131 _ 2634 GO B22 0.0205 1.78_ 0JU 0.188 0.183 0.102 1818 33 020 0.0350 2.14 0.201 0.234 --T222 —' 0.247 -�- 2103 33 819 —7R16 0.0419 249 0.240 0.277 0.200 0.280 2548 3) 80/11 0.0474 2,82 0289 0.318 0.205 i _ 0.327 28YO 37 016 _ 0.0590 3.64 0.373 �. OY408 0,373_ v._ DAll 3579 A p3 __ ACOUSTICAL INFORMATION 40ik A650iptlon GGoofllcidni_ � hblso netlucllon tYPo -_- l2fi 26Q u0 1400 2000 4000 eooliicionl' �1.58A, 1,SelA ,1�1 ��9- �60 1.02 0'131 0.33 � 0,60_ ' Spurca: Riminvik AccUsOcal I-abomlorlea. Test teas candti0lad wth 1,50 pct fiberglass baits and 2Inch pply15ocyanurate Win insulation for the SDI. VERTICAL LOADS FOR TYPE 1.55 Type 6 (Inde rib) deck prolMos okcellonl alructural load carrying capaaly pot pound of sloe! ONO, and its noslad6 dc5igrl ofainoles Tho Dead for di0-set ands. V or Mra riga oblation is required Ix Tow B deck Acoustical de -k (Type BA, BIN Is porticu'sdy 5taiablo in stachnits shit es atl6106WIS, 6010015, and Theatres vAwlo SW oantfol Is deslfade. Awuslb podoraroru wo hated in the witigl v;ebs a iwro Via bad carlyng Wfliti6os aro IaJOy 6lfOod Qoss Ulan 6%). Lxui, rion-wolid, (f'.ass Aber sound absobng We oroDlap�0 in ftrib operings to absorb up to W/, of the soceld shici g ifw dock, Balls are field Inskaliud and may rc'nuve soparo5ITI. -. .....,..,.„,.,,�.wm worry �., xjunayovw n ,.w muses. mnwiann mtetxu uC,LIlMd Iingtn lCn W W IS U.co'Kne5, If These aJn4num ten0lhs aro not ntnddod,1114 cfippgrg must be checked. Ilex• T P-- �Nlp'na6ta T IIP. FI/ y-atl xusr D Rc noltR40 nt i rlt Pafl' "---^—_ . --�- No.of - Ouck SDI C051 _ - _ in tL.l Lctr�.flCPl = sJa >)Mile �. - —DVD �B,Q_ans _ yp�_ __,.Soon - 5a Q4 _S _ . B O 7 _ _ 7-@_ 60 a-6 9-0 .__t0.0 024 4'-8 115/50 95/12 BD/32 68/26 69/20 51/17 _ 45/14 40(11 35/10 _-_ 32/8 _- 2017 022 61•7 DB/81 811 Qi 68147 58/37_ 50130 44/2438!20 34117 Olt 2]/12 25/10 4 1320 6'-5 1231705 102179 80/11 73/40 6'3/38 65/31 48/26 43/21 38/18 34/15 31/73 T-1 140/120 121197 lot! 6 aO6j69 _ 74/47 65/:1867/31 461_2_ as to 610 7•8 1001152 138/114 116/08 99/69 65/55 ]4145 65/37 _51/2x,. 68/31 52/26 -_40/I9 46/22 42/10 816 61•13 216/796 778/tA% Ma/113127/89 110 71 9 /68 84/48 74/40 _ 60/34 5A/74 024 51-00 124/153 1031116 861H 74/70 04/66 50145 49737 43/31 39/26 -x'29 35/22 31/ID B22 0'-11 -M-21L tr3-f- 1_ ] 12 69707 / IS 45/03 39162 6/43 31/37 28131 20/27 2 026 T•9 128/267 708/207 891155 701122 60197 67/70 51/65 46/54 40/46 36139 32133' 019 ^010 8l-5-5_ I$E320_ INN V0 I /I S 9/7 G 77/110 91195 _ 59/]D 52 /tnF_ 4776 4 /47 32140 9'•1 1001359 1401277 118/213 10111130 -87/134. 76/104! 0710 59/75 53103 45161 43/40 UY-3 1 -3 1 x/354 j49/273 1271214 110/172 95/14004 115 _-7 /96 _ 66/61 60169 4/59 1124 51•10 1641120 1261 DO 103/69 02155 79/44 60/]5 01129 64/24 40121 43117 39/15 n22 6'-11 _1241167 103/126 87/9774/70 04 / at _601 0 9141 43104 39/211 x/24 1 21 7 820 7'.9 1507200 1321157 111/121 05105 82176 72162 03/F1 - 50/4;i _ 50/30 45/31 401'2.0 160 25 _ 1647186 jW1145 117/111 g1 84/7/. 7A/ 1 05161. $8143 62/37. 7/31 018 0'.1 216/289 174/217 147/iW 1251182 100/106 96/Aa 83/71 74/61 168/50 69/31 64136 618 117.3 2644309 219!9.77 185/214 160/10'7 136/135 11911119 105/90 93/75 83/03 14/64 61/46 -. .....,..,.„,.,,�.wm worry �., xjunayovw n ,.w muses. mnwiann mtetxu uC,LIlMd Iingtn lCn W W IS U.co'Kne5, If These aJn4num ten0lhs aro not ntnddod,1114 cfippgrg must be checked. £)c t3 ,�tq'l Pry Ai,l-(}V/AIII-11 11111TOiNJ LOA08 6' r-1 1 1/2" Height1112In- Fy pninimum) , $3 ksi `i6 Modulus of ElasIdly 29500 ksi ;iLGf1ON VnO11rufIB Qss Fy°ight , ��-� �p � .'_(PSQ.. @oJff} (1�[It} 0a90fflo" &n) °Opttt}'i- iC.295 (¢ead+Live Va(fprm 1.83 0.177 0.189 0.19820 02 858 Q8a° � 1.86 0.213 0.235 0.2-07�'r18'5S474 an 0 in }; � 2.57 0.290 0.315 0.316 'SPi!n ?� - NlowaGle�Tatai (¢ead+Live Va(fprm t0ay (PSQ - t M$X ConBlr°� CoriQjgoll Q8a° � �= ' �- Cypnler la Cealar=5 an 0 in }; � _=Span 22 91 71 57 47 40 34 30 27 24 22 5.8 Single 20 - 111 86 69 56 47 40 35 31 27 25 6 , 7 18 156 119 94 76 63 53 46 40 35 31 ': 6- 2 $2 107 88 74 63 54 47 42 37 33 30 6 -8 " 6oubfe 40 - 133 110 92 79 68 59 52 46 41 37 7 -19 '. ,18 170 140 118 101 87 76 66 59 53 47 = 9.- 8. - 22 133 110 83 79 68 59 50 44 38 3-1. 6 . 9 ,Ttipto 20 - 1�6 137 115 98 84 70 69 51 45 39 7."ij 18 r: 213 176 146 125 107 03 78 67 58 51 Notes 1. Section properties are calculated using the AISI Cold Formed Steel Design Specifications, 1996 Edition. 2. Loads and maximum construction spans are based on the SDI Design Manual for Composite Decks, Form Decks and Roof Decks, Publication No. 30. 3. Maximum cantilever spans are based on SDI criteria and are sensitive to adjacent spans. For this table, adjacent span Is assumed to be at least 1.5 limes longer than the cantilever span. 4. Minimum end bearing length shall be 1 1/2". 5. Loads shown in RED are governed by the live load deflection not in excess of 1/240 of span. 10 psf dead load has been Included, 6. Perforations which are placed in the vertical ribs of type BA deck reduce the strength less than 5%. Type B deck provides the best balance of strength and economy of all the 1 1/2" deep roof decks. 1" (minimum) rigid roofing insulation is required to be used with type B deck. Available with nested side laps only. Available as an acoustic deck. Type BA deck is manufactured with perforations in the vertical ribs, having a NRC rating of 0.60 with 1 1/2" (minimum) rigid roofing insulation. Available as a vented deck. Type BV deck is manufactured with slot vents In the bottom flutes. The openings equal 0,5% of total surface. Type BV deck Is to be specilied when venting Is required for comentltious Insulation fills. Type BV deck is manufactured at our Lake City, FL facility only. FAOI ORt' MUWAI, SPA Ga 0 _;_Max CIr. to 4lr Span (fi: irr 22:'::- 6 .0 - `....` X20 -'.: 6-6 X18-' 7-5 i:ANI 11 t -VO? =)pith, MPt3manl= 7 Ga ° CspWever Spon, (It-In)1- 22 ' 2-0-0 "207-:: 2-4 =,.18'J' 2-8 Type B deck is Factory Mutual approved. Type BA and BV decks are not Factory Mutual approved. Type B, BA and BV decks are manufactured from steel conforming to ASTM A1008-00 Grades C, D or E or from A653/A653M-00 structural quality grade 8033 or higher. The minimum yield strength used by NMBS is 33 KSI. Minimum attachment to supporting structural members requires connections at all side lap ribs plus a sufficient number of Interior ribs to limit the spacing between connections to 18". Side laps are to be fastened together between supports, at a maximum spacing of 36" o.c, whenever the dock span exceeds 5'-011. Connections can be made either by welding using a minimum 5/8" diameter puddle weld or properly designed mechanical fasteners. WALLACE DESIGN PROGRAM RI _Date 3/5/2019 Sheet No. _ of Job Rexburg, ID Subject gravity -roof beam anion v2, load = 0.00 pit 1 a2,distance from left end = 0.00 feet P I 1. Input 0.00 feet Parameters i L, total length = 18.33 feet Lb, unbraced length = 3.88 feet a_ b c Cb= 1.0 _ _ - Fy, yield stress = 50 ksi E, modulus of elasticity = 29000 ksi _; W Minimum actual depth = 15 inches - - -REm.E- . Maximum actual depth = 17 Inches Exclude shapes 7 Y (y) or (n) _d e _ _f_ _ Limit deflection, A to U 240 Beam size W16x40 (leave blank for auto size) Uniform Loads 11.09 feet Wrnax '�? „_ vr1, load = 0.00 pit a1, distance from left end = 0.00 foot g h bt, length of load = 0.00 feet Mall = Mn/4e = 182.1 ft -kip > 120.79 ft -kips O.K. Ix = 518.00 in. -4 Deflection, A = 0.46 < 0.92 inches O.K. v2, load = 0.00 pit a2,distance from left end = 0.00 feet P I b2, length of load = 0.00 feet Triangular Load i vrmax, load = 0.00 pit maximum on left or right? L (L) or (R) Rr d, distance from left and = 0.00 foot e, length of load = 0.00 feel Point Loads P1, load = 12267.50 lbs 91, distance from left end 3.33 feet P2, load = 11917.50 IDS g2, distance from left end = 7.21 feet P3, load = 10570.00 lbs g3, distance from left end = 11.09 feet P4, load = 9213.75 lbs 94, distance from left end = 14.97 feet P5, load = 0.00 lbs g5, distance from left end = 0.00 feet 2, Calculations Reactions Shear at left end, RI = 23.50 kips Shear at right end, Rr = 21.20 kips M, Moment = 120.79 ft -kips Beam Size W16x40 Depth, d = 16.00 inches Width of flange, bf = 7.00 inches Mall = Mn/4e = 182.1 ft -kip > 120.79 ft -kips O.K. Ix = 518.00 in. -4 Deflection, A = 0.46 < 0.92 inches O.K. WALLACE DESIGN PROGRAM Revised 10/07/16 Kenna Chapin Date 3/5/2019 _Sheet No. of Job Rexburg, Subject uplift - roof beam _- SIMPLE SPAN BEAM DESIGN 7fSCT3fPi Eiflffxn--- . ASD Design 1. Input a b c a W RI Rr Parameters L, total length = 18.33 feet Lb, unbraced length = 18.33 feet Cb = 1.0 Fy, yield stress = 50 ksi E, modulus of elasticity= 29000 ksi Minimum actual depth = 15 inches Maximum actual depth = 17 inches Exclude M shapes ? Y (y) or (n) Limit deflection, A to L/ 240 Beam size W16x40 (leave blank for auto size) Uniform Loads wl, load = 297.50 pit a1, distance from left end = 0.00 feet bl, length of load = 18.33 feet w2, load = 0.00 pit a2,distance from left end = 0.00 feet b2, length of load = 0.00 feet Triangular Load Wmax, load = 0.00 pit maximum on left or right? L (L) or (R) d, distance from left end = 0.00 feel e, length of load = 0.00 feet Point Loads P1, load = 0.00 lbs gt, distance from left end 0.00 feet P2, load = 0.00 lbs g2, distance from left end = 0.00 feet P3, load = 0.00 lbs 93, distance from left end = 0.00 feet P4, load = 0.00 lbs 94, distance from left end = 0.00 feel P5, load = 0.00 lbs g5, distance from left end = 0.00 feet 2. Calculations Reactions Shear at left end, RI = 3.09 kips Shear at right end, Rr= 3.09 kips M, Moment = 14.17 ft -kips Beam Size W16x40 Depth, d = 16.00 inches Width of flange, bf = 7.00 inches Mall = Mnl4b = 90.1 ft -kip > 14.17 ft -kips O.K. Ix= 518.00 in.M Deflection, A = 0.06 < 0.92 inches O.K. WALLACE DESIGN PROGRAM Rawsed M2I2008 Kenna Chopin----�-^ -- -- ------ Cop7n9hf HSS COLUMN AND RASE PLATE DESIGNLRFD ..____ (wNh p4ued buses) Loa] CwM'nMxlas ConslEw4U: I. 1.43 2. 1.2D+1.6U 06(11 41691 R) 3. 1.41+1 U Or6ar R)+ 1RI 4. 1.20 n 6 tt+ 1.611, or S 4r R) 6. 1.23 r 0 5L+0.6Nw9 4, R) r f.6W 6. 1.23060' r 0 5 • 0]S,+ 1.43[ Roto31WO19 Sheet No. of JDb - ReXburq,ID ---- SVb�oG ____typ whrmn Per RISC SpobfdmUon 1. Input dated March 9, 2X5 Mal Ed acal COIOmn Mark it hk Gly Column Input: Lps In slps in LDs Dead Load, D= 5,12 20.48 0.00 Flow Llym Load, L •- 0.00 0,00 9.00 Roof Live Load, Lr Of flan 9.92 39.67 O,QQ Hoof Srov Load, S = 24.88 00.63 0,00 YJmd, W= 0.00 0.00 0.00 Spismb. f: 9.00 0.00 0.0 A1ghl0er for film live bads, fl= 0.69 (.6 or 1.0) Fer LRFD Oomb'+wlbna Murtil for for and leads, 12i 0.70(.201.7) For LRVD CornbNatPons Are soismb loads input as strength of allowable stress? ASI)EpFD er ASD) Destro shortpara d spa lrel acr laretion, Sat, 0,15 KLx, unbroNd Wool = 17.67 foot KLy, wabraced lomglh = 17.67 feat Cmx= 1.00 Section C2 of Croy' 1.00 AISC 13th Old. Is On w main part of o UnVmwd ppomony Frell N (Y or N) Typo (Square, RoUanoular, pearl Or Plpo) S S, It, Rd a P huminvm and maxintan fofwgth, b= 6,Q0 8.00 idea actual dauir Dna Minimum and maximum for depth, h= 6.00 6.00 luchcs Mu mum wall thickness, 1 0.260p mcho3 Conan SILO = l0eve blank to mail size Lase Plate Input: 8 (corrospwNing to b) = h, leave blank to N (corresponding to d) = In. a0P51ID to, concrete strength = 3 ksi Fy, base plate steel yield strarglh = 36 ksi A2, area of cor¢ralo support = 670 sq. in. 0.fuAmum base pato th'cknors= 0.76 in 2. Column Design Coition Praponles - Fy, ylald Was, = 46 ksi h area of cross suction of cokenn = 6.24 sq. in Sx, asUbn ill with respect to x axis = 0.64 an in Sy,sOCi%xl modules wait respect to y axis= 9.64 w. in rx, radius of gyration about x axis = 2.34 In. ry, um ms of gyration about y axis = 2.34 n Zx, soction modules with respect to x axis = 11,20 an In Zy, section mo}ulus with fespoet to y axis= 11.20 w. in. Ultimate I.eods (Controlling Case- 1.21)+ LO(Lror S of R) * 0,81h Pu, uelmato factored comp'ossort load l: 45.96 kips Mux,allm.to factored momonl abo:A x axis= 103.81 It -kips Muy, ultimate factored mol about y axis= 0.00 a kips Allowable Stresses - I, wag thkkfera = 0.2330 etches wan slenderness road, VA - ' 22.76 wall stondoomes ratio, hill - 22.76 - For Compression' Ianhbda(p), comprossnn ratio for compact socidns= 20,12 compact lambda((rj,compress'dn retro for non compeect rectums= 35.16 lambda(c), cdnprossion rata= 36.16 Q, compression factor = Loo 91x= 1.34 61y= 1.34 Fw, c Vcal compressive stress= 24AS ksi CC Pa aligmWecomp'ossko 6lrerka, 124.87 kips For Pbxurd m xdr.: lambda(p),Oonaai ratio for web for compact 4eacns= 60.76 compact lambda(r), flexural ratio for wit for am compact srclians= 143.12 Fw Floxwe in yd,.: Ob Idris, nnawebie flexural strength = 463.68 a,. kin. compact Ob Play, allowable fiaxurol strength= 463.68 at -kips lawaction Check Fquabo0 N7-ta = 0,84 s 1.00 -QX USE: 1155 (illi 3. Rase Plato Design Pu, uitonalo faclemd compress" bad = 46.96 kips RO: AISC 6laaual At=1/A2(Pu /(0 D85 re)1"2 L Pur( o 1.7 fc)= 15.02 sq. in. (144 to 148) A=(0.95 al 4, 95 b)/2= 0.00 In. N. roxWod=sgll(Al)aA 3.88 use 12 L,. d=6,X L, natural-A1/N= 3.88 use 12 in. b=a00 A1, area of Plato = R x N = 144 sq. in A2, area of concrete support= 676 sq, in. m=IN-0.95d)/2 3.15 inches n=(D•0.95b)12= 3.15 Inches ra=sent to b 114= 1.60 "as o Pp = e 0.85 fo At sgd(A2 /At) = 440M kips > 46 O,K. %=(4d b/[O.OP2)(Pu/a Pp )= 0.10 lamoda = 2 *mi 11 + sgnll-x) I = 0.33 lambda ri = 0.60 Mites Fy, base plate steel )mij sItimig h = 36 kat Ip rax.= max .Va. A lainda n')' sad l 2 Pit I{0.9 Fy 13 NII - 0.44 in5hos in = max_IP min .1d tp art, 0,75 mems USE: 0.76"x12"x1'-0" WALLACE DESIGN PROGRAM REOSED 2/17114, Kenna Chapic Copyright Dale 3/512019 Sheet No. o_f. _ Job Rexburg, ID Subject CMU addition _ WORKING STRESS WALL ANALYSIS_ _ IBC-12/ACI 530-11 1. Input 2. Summary of Calculations xdng ACI-11(ACI-1 1, IBC -2012) #6@48 2000 psi Steel Grade = 49 hes) i '.',;. Y, iY or N per IBC 2107 2.1) 3.81 )er sq.ft. (estimated) 10.75 Load Dead _ Live ,1000 #1 0 0 23.1 _ 4.88 4.88 __ _ A.88 23.1 #2 100 100 23.1 12.63 10.93 11.23 11.68 23.1 #3 400 400 23.1 24.4 31.5 _ 45.1 21.4 23.1 #4 1000 1000 23.1 Wall Height, H = Parapet Height, Hp = Weight of Concrete Block = Nominal Wall Thickness, T Eccentricity, a = Clear Dist. for Reinforcing = Running or Stacked Bond Solid or Partial Grout .'6.00)feet 103' (103, 115, 135) pcf '7 8,(6", 8", 10" or 12") Aiinchos 2;73 inches _- R_(R or S) R IS or P) Applicable Code for laps = ACI-11(ACI-1 1, IBC -2012) Comm. Strength, fm = 2000 psi Steel Grade = !Grade 60 (Grade 40, 50, 60) Limit Is to 80%? i '.',;. Y, iY or N per IBC 2107 2.1) Reduce Fs to 24000 psi? ,y. Y;.. (Y or N, for 48 db laps for Grade 60 steel p Steel Stress, Fs design = 19200 psi (calculated per input above) Axial Loads (Unfactored) Reinforcing - #, Size, and # Try. 1 ALLOWABLE WIND PRESSURE, 0.6W (PSF) [ALLOWABLESEISMIC PRESSURE, 0.7E'(PSF) - input numbers only) O.C. O.C. O.C. O.C. O.C. w, wind = 20 psf (100 sq ft) w, soislnic: = 6,3,ps( #6 40 Dead Live Pf, Case#1 0 -. Oplf Pf, Case#2 -' 100 100`plf Pf, Case #3 b '400 '400tplf Pf, Case #4 ,1000 1000; pit Reinforcing - #, Size, and # Try. 1 ALLOWABLE WIND PRESSURE, 0.6W (PSF) [ALLOWABLESEISMIC PRESSURE, 0.7E'(PSF) - input numbers only) O.C. O.C. O.C. O.C. O.C. w, wind = 20 psf (100 sq ft) w, soislnic: = 6,3,ps( #6 40 3ps 37.1 #5@32 its 24 #5@16 2-#5 46 2-#5@40 2-#5@32 2-95@24 2-#5@16 2-45@16 50 _ 52 55 60 49 50 52 55 60 60 3.81 _ 3.81 _ __ _ 3.81 3.81 4.88 -11.56 _ 4.88 4.88 __ _ A.88 4.88 _ 4.83 _ 11.00 11.03 12.63 10.93 11.23 11.68 12.43 __ 13.94 13.04 27.2 24.4 31.5 _ 45.1 21.4 25.2 30.8 40,0 58.2 +'. 27,2 24;4 37.5 _ ' 46.1 214 25,2, 30.8 40.0 ,I 58,2 _58.2 56.2 '+ 27.2 24.4 31.5 45.1 21.4 -' 25.2 30.8 40.0 58.2 58.2 :-1;27,2 2414 31.5 ` 45.1 is 21A ;25.2 3018: ' 40.0 d. 58.2 :.662 r_ 27.2 244 31.5 45.1 21-4 _ _ 252 - 30.8 40.0 58.2 58.2 127,2 .24:4 31.b '_± 45.1 ; :_.21,4' 25.2 730.8. 40.0 z 58.2 58.2 . 27.2 24A 31.5 45.1 21.4 25.2 30.8 40.0 68.2 58.2 =127,2 :24:4 37.6 46 1 '? 21.4 -25.2 40.0 - 58.2 :151 37.1 19.5 _ 79.5 19.5 28.0 28.0 28.0 28.0 28.0 28,0 49 db 31 db 31 db 31 db 45 db 45 db 45 db 45 db 45 db 1 45 db 3ps 37.1 49 db ro n prangTs-no owed by a', the a Imva a omen s less an et 2. If bar laps aro <(Ilo required min. (re: code), the allowable steel stress should be reduced propoNonalll 3. The'12 MC allows for a standard lap If steel stress is limited to 80%, otherwise Increase laps 50% cruse ACI 530 laps- 10C 2107.2. 4. For checking parapets, Input a height hvico the height of the parapet. The program assumes a simple span oondtior 5. AllovaWe lateral pressure tabulated in charts are allowable stress design values equal to OkW or 0.7E WALLACE DESIGN PROGRAM REVISED 2117114, Kenna Chapir: ---- -" Copyright Date _31512019 Sheet No. of Job Rexburg, l0 -- '-- 3ubjact CMU addition -parapets ____=_____-__ WORKING STRESS WALL ANALYSIS 1. Input Input Wall Height, If = Parapet Height, Hp = Weight of Concrete Block = Nominal Wall Thickness, T = Eccentricity, e - Clear Dist. for Reinforcing = Running or Stacked Bond Solid or Partial Grout 10.00ifect 0,00' feet 103i(103, 115, 136) pcf "'- 8i(6 8", 10" or 12") r' 4'.Inches 2176': inches Applicable code for laps= , -ACI1T(ACI-11, IBC -2012) Comp. Strength, fm =20,0(Fpsi PL Case#1 Steel Grade= pradoBO'(Gmde 40, 50, 60) Limit Fs to 80%? "<_�y(Y or N per IBC 2107.2.1) Reduce Fs to 24000 psi? 9 (Y or N, for 48 dle laps for Grade 60 steel p Steel Stress, Fs design = 19200 psi (calculated per input above) Axial Loads (Unfaclored) Reinforcing - #, Size, and Spacing # Size Spacing (Note: input numbers only) Try' _ 1 , #E 6 Q 4B:!, ±O.C. O.C. O,C. O.C. O.C. 2. Summary of Calculations ALLOWABLE WIND PRESSURE, 0.6W (PSF) W, wind - 33 psf (100 sq ft) jALLOWABLEISEISMIC PRESSURE, 0.7E1(PSF) w, Soismic p 30.072 psf Reinforcin #6@48 ' 116 rr 40 Dead Live PL Case#1 - '0 -:-:0`, pit Pf, Case#2 .'- 100„-100;plf 2-#5 16 __ 60 _ Pf, Case 113 'r 400 - 400'plf Pr, Case #4 11.03 -.._ 11.66 Reinforcing - #, Size, and Spacing # Size Spacing (Note: input numbers only) Try' _ 1 , #E 6 Q 4B:!, ±O.C. O.C. O,C. O.C. O.C. 2. Summary of Calculations ALLOWABLE WIND PRESSURE, 0.6W (PSF) W, wind - 33 psf (100 sq ft) jALLOWABLEISEISMIC PRESSURE, 0.7E1(PSF) w, Soismic p 30.072 psf Reinforcin #6@48 ' 116 rr 40 #5@32 __ 52 3.81 #5-24 _ 55 3.81 #5@16 60 --3.81---__ 2-it5 048_ -40 4.88 2-#5@40 50 _ 4.88 2-#5@32 67- _ 4.88 2-#5 24 55 4.88 2-#5 16 __ 60 _ 2-#5 1 60 _ - 4.88 __ Density {psf) 49 50 d(inchos) -- 3.81 3.81 Cost par sq.(i. (estimated) 10.75 11.00 11.03 -.._ 11.66 - 12.63 _ 10.93 ___-. 11.23 ---- 11.68 ----- 12.43 ---- __4.88 13.94 ------ - 94 ---- Axial -___- Axial Load Dead Livo Case#1 0 0 52.6 62.1 55.5 72.2 104.4 48.7 57.4 70.5 82.1 134.8 134.8 526 = =ff2.1 X5,5 - .72.2 ` '104.4 -48.7 47..4 '70,5?, 92.1 1134.8 Case fl2 100 190 52.6 62.1 56.6 72 2 - 104 4 48.7 67.4 70.5 02.1 134.8 ;134.8 134.8 52.6 :62.1 -65'3;" 72.2 - 104.4 ,'.:10.7 $7.4 70.5 ' " 92.1 =134.8 13.4.8 J Case#3 400 400 526 621 65.5 722 _ 48.7 57.4 70.5 92.1 134.8 134.8- 626 =1621;G¢',6 -62.1 `,72.2 X0:5 '- =02,1 j1148', ..134.8Case #4 1000 1000 52.6 55.5 '72.2 48.7 57.4 70.5 92.1 134.0.26 X62.1.' 50:5 '72.2 s_ jp :48-7 `:67x4- --_70.6-=+ 92.T' -:13A:8_134.8laps37.1 37.1 125 195 2.8.0 28.0 28.0 200 28.0 28.0 49 db 48 db 31 db 31 db 45 tlb 46 db 45 db 45 db 45 db 46 Re e; re n er no s 0lowed by n •. rho -Orwn n mnnt , n«, db 2. If bar laps are <the roqulred min. (fe: coda), the allowable sloeI stress should be roduwd propor8onel4 3. The'1210C allows for a standard lap nsteal stress Is limited to 80%, othervAse Increase laps 50% or use ACI 630 hips. 160 2107,2. 4. For chocking parapets, Input a height lyrics the height of the parapet. The program assumes a simple span conditior 5. Allowallo lateral pressure tabulated In dyads aro alfowaWe stross dosign valuas equal to O.eW or0.7E WALLACE DESIGN PROGRAM REVISED 10/2212014, Kenna Chapin -- Page 1 Ce YnghM BLOCK LINTELS AND JAMBS ACI 630.11/ 2012 IBC Reinforcing Diagram It Hrv.H ♦ e > rI was 51iopen Walls FELF-1 s kno) UiRW-11 �._v�• + D O11W.. o s 5sepoung,'AYall Is 16 inches rocla,r,�ularytlashetl dashed We/all rne) Wtlead end vmva are app'ed. -! .5 Booeninq `T f Wlaterel Load Diagram Lintel Section Date 3/5/2019 Sheot No. of 7oii----- FiexTiwgT --- - .—,_--- Eujbecl__._ 7�oponl �T nonloadbeari __-- 1. Input Loads/Configuration: Opening Width, B opening = Opening Height, If = Roof Bearing Elevation, Hw = Nominal Will Thickness, T = Overall Wall Weight, Wry = Lintel and Jamb Weight, W Is Grout In Wall Solid or Partial? Lateral Load, W lateral = Dead Load, W dead = Live Load, W live = Eccentricity (Dead/Live Loads), o = Alloviables: Applicable code for lops = Limit steel stress to 80% of Fs ? Limit Fs to 24000 psi? Masonry Comp, Strength, fin = Steel Grade Lintel Input .*.7,00?fuel 7.33; foot 12:00; foot ,.li (6", 8", 10" or 12") „6& psf 64: Psf .-1$:90; psf (Input 0.6W or 0.7E load; $fi;09! pit 90AR pin 0: Inches 2012 IBC(ACI-11 or 20121BC) f Y ;y(Y or N per IBC 2107.2. 1) (Y or N par IBC 2107.2. 1) 2040::psi IGpide_60:- Grade 40, 50, 60 Nominal Lintel Depth, D = 16 Inches Top bars (H -size) _ - _.:> . _ ,,.. `•'Ab, Bottom bars (#-size) Jamb Input: -- Jamb Width, B jamb (grouted cells) _ 16 inches Bars per cell (#-size) - 1 45; Wall Reinforcing Spacing, S = -'40 Inches Distance from Opening to C.J. _1'241 inches Continue first bar to roof helghl7 Y (Y or N) Clear distance for Jamb reinforcing q:00;InGles Allowable Stresses: Masonry, Em = 1.800E+6 psi (ACI 530-11, 1.8,2.2) ratio ESIEm, n = 16,11 Allow, Bending Stress, Fb = 900 psi (ACI 530-11, 2.3.4.2.2) Allow. Steel Stress, Fs = 26600 psi (ACI 530-11, 2.3.3 and IBC Allow. Shear Stress, Fv= 60.3 psi (ACI 530-11, 2.3.6.1) Moment -Mx (Gravity Loads): Hw - H = 4,67 feet Mx= 28.7 in -kips dx = 12.126 Inches (rho)x= 0,003 k = 0,279 J = 0,907 fbx' - 209.2 psis Fb = 900 psi fax = 8707.1 psi S Fs = 25600 psi Moment -My (Lateral Loads): My' 7.9 lmkips dy = - 3.813 inches (rho)y = 0.005 k= 0,334 J = 0.889 fby = 236.4 psi s Fb = 900 psi fay = 7668.3 psi 5 Fs = 25600 psi Combined Stresses: fbx/Fb + fbylFb = 0.49 5 1.00 OX fsx/Fs + fsy/Fs = 0,64 s 1.00 O.K. Shear, Vx = 1282.8 his VY = 378.0 lbs fv = Vx/(dx + Vy/ddy = 20.2 psi < 50,3 No Stirrups Req'd Deflection: Deflection Limit = L/600 = 0.140 inches Ax, gravity Wad defection = 0.006 inches < 0.14 OX Use 16" Deep Lintel with 146 Bottom Required development = 40" for straight bars and 31" for hookod bars Estimated Cost = $22T94 WALLACE DESIGN PROGRAM REVISED 10122/2014, Kenna Chapin _ cwynghlo LINTELS AND JAMBS Y/ lateral D.L.+L.I_n n Vhnf H Vice Loading on Jamb am I. B Iamb F S Jamb Section Below Top of Door B err 5 2 Axial Load: 48 Inches Tributary Width = 6.60 feet I11 1414.3 in.A4 w, lateral load = 99.0 plf V, shear = 694.0 lbs =�I 1s11il Section Properties: I. B Iamb F S Jamb Section Below Top of Door B err 5 2 Axial Load: 48 Inches Tributary Width = 6.60 feet Lateral Loading! 1414.3 in.A4 w, lateral load = 99.0 plf V, shear = 694.0 lbs Below Top of Door Section Properties: 2190.207 lbs Number of reinforced colts, n = 2 berf = 24 inches ill 142.0 sq. In. ON 796,9 In ^4 B openin9/2 - B jamb IX S Jamb Section Above Door Dale _3/5/2019 Sheet No. of _Job Rexburg, 10 Subject _ _Topening in nonload,bearing 3. Jamb Design 2 Axial Load: 48 Inches Tributary Width = 6.60 feet Lateral Loading! 1414.3 in.A4 w, lateral load = 99.0 plf V, shear = 694.0 lbs Below Top of Door Section Properties: 2190.207 lbs Number of reinforced colts, n = 2 berf = 24 inches A9 - 142.0 sq. In. Ig = 796,9 In ^4 Sg = 209.0 in "3 r= 2,37 inches Axial Load: 0.62 sq. in. P = 2649.5 Ibs is = 18.7 psi h/r = 60.79 s 99 Fa = 406.7 psi (unreinforced) fa/Fa= 0.06 s 1.00 O.K. Moment: 245.3 psi < 900 psi My, max. below top of door = 22.5 in -kips As = 0.62 sq. In. dy = 3.813 Inches (rho)y = 0.0068 k = 0.373 kd = 1.421 > ir= 1.25 j = 0,879 Ib = 400.2 psi < 900 psi is = 10848,4 psi < 25600 psi fslFs= 0.42 s 1.00 O -K. Combined Stresses (ACI 2.3.4.2.2) (fa+fb/Fb)= 0.47 s 1.00 O.K. Above Top of Door Section Properties: Number of reinforced cells, n = 2 beff = 48 Inches A9 = 202,0 sq. in. Ig = 1414.3 in.A4 Sg = 371.0 In "3 r= 2.66 inches Axial Load: P = 2190.207 lbs is = 10.8 psi Wr = 54.42 599 Fa = 424.4 psi (unreinforced) fa/Fa= 0.03 s 1.00 O.K. Moment: My, max. above top of door = 21,7 In -kips As = 0.62 sq. in. dy= 3.813 inches (rho)y = 0.0034 k = 0.280 kd= 1.069 sif=1.25 j = 0.907 fb = 245.3 psi < 900 psi is = 10147.2 psi < 25600 psi fs/Fs= 0.40 s 1.00 O.K. Combined Stresses (ACI 2.3.4.2.2) : (fa+fb/Fb)= 0.28 5 1.00 O.K. Use 16" Wide Jamb with 145 Bars in Each Cell Required lap splice = 40" Estimated Cost = $128.42 WALLACE DESIGN PROGRAM REVISED 10/22/2014, Kenna Chapin - Page 1 Copy,ght® Date 3/5/2019 Sheet No. of _Rexburg_TD__________ Subject 7 0o g nnlonarTng - -- BLOCK LINTELS AND JAMBS ACI 530-Il/2012IBC --- Reinforcing Diagram It "': H r D Wdead 5nopen'�9.,We I Is n �] If 1f' -tar laodvii cnxrNng, Wh•:a9ls redargNar (dashed Wwall Ino) end Wdead and — —f ,5 Bopeci0q WAve aro appked Wlateral Load Diagram Lintel Section 1. Input Loads/Configuration: Opening Wdlh, B opening = Opening Height, If = Roof Bearing Elevation, ft = Nominal Wall Thickness, T = Overall Wall Weight, Wu = Lintel and Jamb Weight, WI = Is Grout in Wall Solid or Partial? Lateral Load, W lateral = Dead Load, W dead = Live Load, W live = Eccentricity (Dead/Live Loads), e = Allowables: Applicable code for laps = Limit steel stress to 80% of Fs ? Limit Fs to 24000 psi? Masonry Comp, Strength, fm = Steel Grade Lintel Input ':7:00; feet 7.30; feel 12;00; feet 8j (6" 8", 10" or 12") 561 psi ;..' '84 Psf ;.I SorP 18 fid: psi (input 0.6 W or 0.7E load. "262:60; pit ,1312,60; plf 4.00. inches 2012IBC, (ACI -11 or 2012 IBC) Y ,(Yor N per IBC 2107.2.1) N (Y or N par IBC 2107.2.1) 2006 psi Grade 60.": Grade 40, 50, 60 Nominal Lintel Depth, D = --24'. inches Top bars (/t -size) = - 1 ; #6 Bottom bars (if -size) = 1 #s' Jamb Input: Jamb Width, B jamb (grouted cells) _ -i 16! inches Bars per cell (N -size) Wall Reinforcing Spacing, S - ' 40 inches Distance from Opening to C.J. _ -24; Inches Continue first bar to roof height? -:.Y, (Y or N) Clear distance torjamb reinforcing 4001nches Allowable Stresses: Masonry, Em = 1.80011+6 psi (ACI 530-11, 1.8.2,2) ratio Es/Em, n = 16.11 Allow. Bending Stress, Fb = 900 psi (ACI 530-11, 2.3.4.2.2) Allow. Steel Stress, Fs = 25600 psi (ACI 530-11, 2.3.3 and IBC Allow, Shear Stress, Fv = 50.3 psi (ACI 530-11, 2.3.6.1) Moment -Mx (Gravity Loads): Hvr - H= 4.67 feet Mx= 139.1 in -kips dx = 20.125 inches (rho)x = 0.003 k = 0,261 1= 0.913 fbx = 377.7 psi 5 Fb = 900 psi fsx = 17207,1 psi 5 Fs = 25600 psi Moment -My (Lateral Loads): MY= 7.9 In -kips dy = 3.813 inches (rho)y = 0.010 k = 0.425 I = 0.868 fby = 126.7 psi 5 Fb = 900 psi fey = 2756.9 psi 5 Fs = 25600 psi Combined Stresses: fbx/Fb + fby/Fb = 0.56 5 1.00 O.K. fsx/Fs + fsy/Fs = 0.78 5 1.00 O.K. Shear: VX = 6427.8 lbs VY = 378.0 lbs tv = Vx/tdx +Vy/ddy = 46.1 psi < 50.3 No Stirrups Req'd Deflection: Deflection Limit = U600 = 0.140 inches Ax, gravity load defection = 0.007 inches < 0.14 O.K. Use 24" Deeo Lintel with 1-#6 Too and 1-M6 Bottom Requhed devefolement = 48" for straight bars and 37" for hooked bars Estimated Cost = $329.58 WALLACE DESIGN PROGRAM REVISED 1022/2014, Kenna Chapin Copvriefil® BLOCK LINTELS AND JAMBS w lateral Pa= Vhnt N Vlore on Jamb A wff Jamb Section Below Top of Door B off 1151 t- B ope7ngi2 B Jamh Jamb Section Above Door Date 3/5/2019 Sheet No. of _ _ Job Rexburg, ID- SubJect 7' opening in load bearing 3. Jamb Design 2 Axial Load: 48 inches Tributary Width = 5.50 feet Lateral Loading: 1414.3 in "4 w, lateral load = 99.0 pit V, shear = 594.0 lbs t- B ope7ngi2 B Jamh Jamb Section Above Door Date 3/5/2019 Sheet No. of _ _ Job Rexburg, ID- SubJect 7' opening in load bearing 3. Jamb Design 2 Axial Load: 48 inches Tributary Width = 5.50 feet Lateral Loading: 1414.3 in "4 w, lateral load = 99.0 pit V, shear = 594.0 lbs Below Top of Door Section Properties: 10276.21 lbs Number of reinforced cells, n = 2 beff= 24 inches Ag = 142,0 sq. In. Ig = 796.9 In."4 Sg = 209.0 in.^3 r= 2.37 inches Axial Load: 0.62 sq. in. P = 10734.6 Ins is = 75.6 psi h/r = 60.79 599 Fa = 405,7 psi (unreinforced) fa/pa= 0.19 5 1.00 O.K. Moment: 468.1 psi < 900 psi My, max. below top of door = 38.7 in -kips As = 0.62 sq, in. dy = 3.813 inches (rho)y = 0.0060 k = 0.373 kd= 1.421 > if = 1.25 J = 0.879 in = 687.3 psi < 900 psi fs = 18631.2 psi < 25600 psi fs/Fs= 0.73 s 1.00 O.K. Combined Stresses (ACI 2.3.4.2.2) (fa+fb/Fb)= 0.85 s 1.00 O.K. Above Top of Door Section Properties: Number of reinforced cells, n = 2 beff= 48 inches Ag = 262.0 sq. In. Ig = 1414.3 in "4 SO = 371.0 in.43 r - 2,66 Inches Axial Load: P = 10276.21 lbs fa = 50.9 psi h/r = 64.42 599 Fa = 424.4 psi (unreinforced) fa/Fa= 0.12 5 1.00 O.K. Moment: My, max. above top of door = 41.5 in -kips As = 0.62 sq. in. dy = 3.813 Inches (rho)y = 0.0034 k = 0.280 kd = 1.069 5 if = 1.25 J = 0.907 fle = 468.1 psi < 900 psi is = 10366.7 psi < 26600 psi fs/Fs= 0.76 s 1.00 O.K. Combined Stresses (ACI 2.3.4.2.2) : (fa+(b/Fb)= 0.68 5 1.00 O.K. Use 16" Wide Jamb with 145 Bars in Each Cell Required lap splice = 40" Estimated Cost = $128.42 � \ /\\ ) { !200 «J)1®\ nN 3 s 3 _C � s � .ps opo Hui 2 ADaD n Pp LL 0 rciw` <.Un � §} J! { # § \{\| \ / !!/! \\ ()\) {\/k\ �\\ { f {) § \2 \ / \\ \ �\\ § \2 a \ \\ \ § \2 a \ \ �\\ f {) � )/ WALLACE DESIGN PROGRAM____ Revised 04103112 Side Lap Zonel Side Lap Zone 2 DIAPHRAGM DESIGN FOR STEEL DECKS Date 3/5/19 _. Sheet No. _ of Job Rexburg, ID - Design based on the Steel Deck Institute: Diaphragm Design Manual, Third Edition 4.0 4.25 1. Panel Information: Span (ft) 5.5 6.0 6.6 Deck Profile = 1.6" B deck (WR) K4 = 3.78 Dock Yeild Strengh, Fy = 33 ksl Fu = 45 its] Deck Gage = 18 GA t = 0.0474 in # of Spans = 3 span w = 36 in 2. Structural Connection: ',342 404 468____ 527 582 2320 379 437 _49_6 548 _. ___. 0.510 Support Fastener = Hiftt X-EDN19. or X.EDNK22 t1/8">t>3/8" thick su Or= 2,348 kips Fastener Pattern (End/Perimtor) = 3617 Sr= 0.0057 in 3. Sidolap Connection: _1008_ 963 __ 846 Sidelap Fasteners = #10 Screws Os = 1.018 kips __0.261 0.233 _ 7 Ss = 0.0138 In 4. Resistance Factors I Safely Factors: 837 ___710 766 _ 686 Design Approach = ASD Connection Saftey Factor = 2,35 Load Type = Wind Panel Buckling Factor = 2.00 820 _ 736 Tension Salley Factor= 3.00 9 5. Uplift for Shear/Tonsion Interaction Chock Required Uplift, T = 32.0 nsf Nom. Tensile Strength, Tn 1.719 kips Conn. Pattern Factor, (i = 2.000 6. Design Shear Strength: Donlon Shear Rtrnnntli haend nn ShnadToncinn Int--finn torn Stitch Conn per Span 4.0 4.25 5.0 Span (ft) 5.5 6.0 6.6 7.0 K1 0 499 - 468 _ _ 395` 1355 310 _:280 z'.262 0.669 1 597 689 _776 868 _ 936 565 653 ___737 _ 817 892 482 563 639 -__.._ 711 780 434 513 564 _650 775___ --.-- 39D. 460 __ 530 - 592 651 ',342 404 468____ 527 582 2320 379 437 _49_6 548 _. ___. 0.510 2 O.412 0.345 _ 3 4 0.297 _ 5 _ 6 _ _1008_ 963 __ 846 778 __ 634 _ 598 __0.261 0.233 _ 7 1075 ----_1137 1020 --�-109_1_ 908_ 837 ___710 766 _ 686 048 8 _ - ---_ 988 895 - 820 _ 736 696_ _ _0.210 0.191 9 1195_ 1025 -_� 940 872 --785 742 0.175 10 12 _49 _1149 _ _ 1203 1078 1001 922 831 7 87 _ -6 O.1 2 _ 1051__ 969 876 830 _ 0.151 12 7344 -1W-1220 1299 1176 _ 919 872 0.141 13 7386 _ __1097 1141 __101b 1058 _ 960 911 0.132 14 _ 1425 7382 _ _ 1261 ___ _1183 __ 1099 099 950 0.124 15_ 1461 1419 1300 1223 7137 1038 987 0.178 i nu snduw vawus no no wnlpry wan trio minimum spacing recut rem ants for side -lap connections 7. Design Shear Strength due to Panel Buckling: Moment of Inertia (in") 4.0 0.284 1 3655 8. Shear Stiffness: Ki = RE: table Design Shear Strength (pif) Span (ft) .1933 _ 1e24 _ 1323 K2 = 1398 kiplln D = 63 ft G 3.78 + 0.3(D/Span) + 3(Kl)(Span) kip/in WALLACE 14SItl_N PROORA_M__ Rowsgd 0410$112 t-. Side Lap Zone Dats __ x/5/19 JotRoxbur�l[?---- Shoot No - Side Lop Zone 2 _DIAPHRAGM DESIGN FOR STEEL DOCKS - Design dosed on Ihu Sleol Dock Institule; Diaphregnt Dosign Manual, Third Edition 1. Panel Information: Deck Profile = 1.6" D dock (WR) K4 R 3.78 Deck Yelld Strongh, Fir - 33 ksl Fu x 46 ksl Dock Gage a 10 GA I = 0.0474 In # of Spans = 3 span v/ < 30 In 2. Structural Connection: Support Fastoner 010r#14 TE CSS sgrovsa Fastener Pattern (End/Podridor) = 36t7 C, = S, 1.633 kips 0.0000111 3. Sidolap Connection: Sidelop Fasteners = 010 Amin- Qs = 1.018 kips a, Rosislango Factors I Safety PaeWrs: Ss- 0,QI3B In Design Approach= ASD Connection Saftey Factor= 2.35 Load Type a Wind Panel Duckling Factor - 2.00 Tension Salley Factor- 3.00 6. Uplift forShear/Tonalmt Interootion Check; Required Uplift, T 32,0 mf Nqm. Tensile Strength, T„ 1.260 kips G. Design Shgar Strength: Conn. Pattern Factor, p a 2.00o Design Shoar Strength hased on Shear/Tonsion intoraction (pi() Slllcn Conn - _ Span (to - -per Span 4.0 4.3- 6A '6.6 6.0 6.6 7.0 Kt ... 0 347 32111 --415 ----348 _- _306 273 ,, til �g37��-^107 0.696 4 _ _ _5 G 7571 8 -8 — _- 40 _ 4. 99 -914 678 _ 0$8 6_50 756 -.. 716 _612 810 776 _ 829 919 877 ---962- 418.- 48-1__ 552 067 719 7(ifi__--700 374__ 337 438 395 497 460 554 502.., 606 562 655 598 ---642 294 349---- 398---_ 446_--- M191-_- 53M1__ 576 --- 274 326 374 479 _ 462 503 _ _0_595 _ ___0.352 _0.393 _0.422 0.265 - _ 0.23G 0.212 -- -614 921---809 _ _ 742_ 580 - - -_1000 0.177 _983 _ _ _ £160 84$__ 782 720 - --- 660--0.164 _11 12 13 -- _14_, _-15 _ _1034 _ 995--684 1065 1029--_—y17 _ —1092 1064 -_— 947 _�_ _817 __756 --084 $51 _ _789 _ -- 881 _ - -819 -- - 715 746 ---648 _ _ 879 799 Q.152 --_-_0.133 0.1_42 _ __ 1116 _1079 974 909_ _ 847 --774 736 1138 1102 990 934 873- 799-762 0.125 "Tho shaded values do no comply with the minimum spacing requirements for side lap connections _0.118 7. Design Shear Strength duo to Panel Duckling Dosign Shear 8trongth (pip Momont of Span (ft) 6logiasin°) 4.0 4,3 8.0 55 4.2843556 3237 2339 1933 8. Shear Stiffness: - Kt a RE: table K2 4 1388 kip/In D = 63 ft -- ----------- K2 klpAn 3.78 + 0.3(D/Span) + 3(Kt)(Span) WALLACE DESIGN PROGRAM _ Revised 04103112 Side Lap Zone 1 Side Lap Zone 2 DIAPHRAGM DESIGN FOR STEEL DECKS Date 3/5/19 Sheet No. of _ Job Rexburg, - Design based on the Steel Deck Institute: Diaphragm Design Manual, Third Edition 4.0 1. Panel Information: 6.0 Span (ft) 6.5 6.0 Deck Profile = 1.5" B deck (WR) Kt Kr = Deck Yeild Shengh, Fy = 33 ksi 444 Fu = Deck Gage = 18 GA '305 t = # of Spans = 3 span 625 712 795 876 w = 2, Structural Connection: 433_ 503 573_ 5 63 _386 449 _512 574 364 424 483 542 Support Fastener= 6/" uddlowold 0.391 Qi= Fastener Pattern (End/Perimter) = 3617 d S, _ 3. Sidelap Connection: _ 1002 952 825 Sidelap Fasteners = #10 Screws _ 631 Qa = 0.263 6 - -� 1077 Ss = 4. Resistance Factors i Safety Factors: _ 755 684 Design Approach = ASD Connection Salley Factor = 2.35 Load Type = Wind Panel Buckling Factor = 2.00 738 702 Tension Salley Factor= 2.50 5. Uplift for Shear/Tension Interaction Check: Required Uplift, T = 32.0 osf Nom. Tensile Strength, Tn 1.633 kips Conn. Pattern Factor, 13 = 1.900 6. Design Shear Strength: Desion Shear Strenath based on ShoarlTenslon Interaction loll) 3.78 46 ksl 0.0474 in 36 In 2.710 kips 0.0053 in 1.018 kips 0.013810 Stitch Conn per Span 4.0 4.3 6.0 Span (ft) 6.5 6.0 6.6 7.0 Kt 0 565 520 444 ; 400:-=363 ` -323 '305 0.615 1 662 754 840 _ __ 923 625 712 795 876 529 611 _ 685 756 476 553 625 691 433_ 503 573_ 5 63 _386 449 _512 574 364 424 483 542 0.478 2 0.391 3 _ 0.330 d _ 0.286 5 _ 1002 952 825 _ - 755 696 _ 631 599 0.263 6 - -� 1077 1025 892--�---819 _ 755 684 _651 _ 0.226 - -----7- 1147 1093 -- --955 _ --� 879 812 738 702 0.204 8 1159 1017 937 868 790 752 0.187 9 _ _1213 _ 1275 1220 993 921 840 801 0.172 10 1333 1277 _1075 1131 _ - 1047 972 889 847 0.159 11_ 1387_ 1332 1184 1099 1023 936 893 0.148 12 1438 _ _1486 1529 __1383 1430 1475 _ 1235 1283 1327 1148 1195 1240 1071 1116 116_1 982 1026 1068 938 981 102.3 0.138 _ 13 _ 14 0.130 0.122 16 1570 1517 1371 1283 1203 1110 10641____0.116 'The shaded values do no comply with the minimum spacing requirements for side -lap connections 7. Design Shear Strength due to Panel Buckling: Design Shear Strength (pit) Moment ofI Span (6) Inertia (in") 4.0 4.3 6.0 6.5 6.0 6.6 7.0 0.284 1 3655 3237 2339 1033 1624 1323 1193 8. Shear Stiffness: K1 = RE: table K2 = 1398 kip/in D = 63 it G 3.78+0.3(D/Span)+3(K1)(span) kipin WALLACE DESIGN PROGRAM ---------------- Revised04/03/12. Side Lap Lano 1 Side Lap -Lone 2 DIAPHRAGM DESIGN FOR STEEL DECKS Date _ 3/6/19 ShoeJNo. of JobRexburg, ID Mice( - Design based on the Steel Dock Institute: Diaphragm Design Manual, Third Edition 1. Panel Information; - 4.3 6.0 Span (ft) 5.6 Dock Profile = 1,0" U dock (WR) K4 = 3.78 Deck Yolid Shengh, Fy - 33 ksi Fu = 45 list Dock Gage = 18 GA 1 = 0,0474111 X of Spans = 3 spoil 1°I = 36 In 2. Structural Connection: _ _869 ._ 691 778 � fl36T890 _ 1008 1Q75 _ 1137 _— G54 737 815 961838 1027 1088 Support Fastener= Pnoutok �4UK03-s�rtos G"> >. 6�' tillck suunoi Q, - 2A03 kips Fastener Pattern (End/Perimtor) = 3617 Sr = 0,0130 In 3. Skelop Contraction: __ 0.292 _ 0.257 0,229 7 _ 8 , Sidelap Fasteners = X90 Serews Q, = 1,018 kips 1014 939 S,, 0.013810 4. Resistance Factors 1 Safety Factors: 0.207 10 __ Design Approach = ASD Connection Salley Factor= 2,36 _ 990 Load Type = Wind Panel Buckling Factor = 2.00 _ 0.1$9 Tension Salley Factor = 3,00 6. Uplift for Shoar/Tonsion Interaction Check; Required Uplift, T = 32 0 prif Nom. Tensile Strength, T. 1,628 kips Conn. Pattern Factor, p = 2.000 6. Design Shear Strength: 'Deakin Shoar Sfranoth hannd nn 5hna111r.,,Onn hJnrnnrin, 1N!f Stitch Conn _per Span 4.0 - 4.3 6.0 Span (ft) 5.6 610 6.6 7.0 Kt 10 _ 503 861 .—: 471 567 3951: 480 - X50 432 - .524 -"_- 303; X288 , '-360 _ 271 "'33Q 1,606 9 _ 0,918 6.642 _ _ 0.494 9.401 0.338 2 _ _869 ._ 691 778 � fl36T890 _ 1008 1Q75 _ 1137 _— G54 737 815 961838 1027 1088 _ 561 634 705 -_— 773 - 900 969 —_—_ 509 U-9-532 -_-G45 _ _ 709 —_ 770 329 .885 —_ 463 ,593 653 711 766 820 413-- . 475 _ _ 536_ 691 696 _ 696_ 747 390 _ 449 507 661 _ - 613 _663 711 3 - ---- 4. _ 6 — �-6-.---_ __ 0.292 _ 0.257 0,229 7 _ 8 , .9 .1195-__..1146 1014 939 872 795. 758'_ 0.207 10 __ 1248 9209--_1067 _ 990 _ 921 842 804 _ 0.1$9 - ,15 - —_ 12fl9 1249 1117_ _ - 1039 _ 84$ 0.174 12 1344 ---1340_-- 1296 _ 1164 _ __ 1086 _969 1014_ _SG8 fl32 -- 899 0.161 _13 _ 1386 1208 __ _ 1129 1_068 973 -- —Q32 __ 9.149_ 14 1420 1380 1250 1171 ----- 1099 _-- 1013 - 972 0.140 _15 ___ 1462_ 1416 1288 1210___ 1138 _1062__ _ 1000 _ 0.131. „. —. —1— , wuryiy .rnn ,ne nnnimmn bpaang ragwnmanS for siae-lap connections 7. Design Shear Strength due to Panel Buckling: Moment of Inertia (In4) 0.284 8, Shear Stiffness: Design Shear Strength (plf) Span (ft) 6.0 5.6 K1 = RE: tablo K2 = 1390 kip/in D = 63 it G'= K2 kipfin 3.78 + 0.3(0/Span) + 3(Kt)(Span) WALLACE DES Revised 04/03/12 Date_ 3/5/19 _Shoot No. o_f____ e. Side Lap Zone 1 Job - Rexburg, ID Side Lap Zone 2 Subject DIAPHRAGM DESIGN FOR STEEL DECKS - Design based on the Steel Deck Institute: Diaphragm Design Manual, Third Edition 4.0 4.3 1. Panel Information: Span (ft) 5.5 6.0 0.6 7.0 Deck Profile = 1.6" B dock (WR) _ 537 Kt = 3.78 Deck Yeild Strength, Fy = 33 kid ,..%305 Fu = 46 ksl Deck Gage = 18 GA 002 690 775 _855 932 _ t = 0.0474 fn # of Spans = 3 span 404 ___ 463 522 578 w = 36111 2. Structural Connection: _ 3 0.257 4 ___ 0.229 Support Fastener= IIH ti X_ENP -19 P114" thick supr stool Q, = 2.529 kips Fastener Pattern (End/Perirntor) = 36/7 __ _ 746 Sr = 0,0034 fn 3. Sidolap Connection: 1122 1073 _ _ _ _ 945 Sidelap Fasteners = #10 Screws 720 Qs = 1.08 kips 1187 _. ---120-1198-1066 _ 1137 Ss = 0.0138 in 4. Resistance Factors I Safety Factors: 772 729 --0.1 0.161 _ 9 Design Approach = ASD Connection Salley Factor = 2.35 989 -912 Load Type= Wind Panel Buckling Factor= 2.00 10 _1_304 _1254 Tension Salley Factor = 3.00 865 5. Uplift for Shoar/Tenslon Interaction Chock; Required Uplift, T = 32.O Pat Nom. Tensile Strength, T„ 1.613 kips Conn. Pattern Factor, (1 = 2.000 6. Design Shear Strength: Daainn ghnar gtrwnnth haenrt Stitch Conn per Span 4.0 4.3 6.0 Span (ft) 5.5 6.0 0.6 7.0 K7 0 _ 537 504 425! :385 `347 ,..%305 :286_ 0_.401 1 636 728--n-5671 - 816 _ _ _ 900 979 002 690 775 _855 932 _ 512 5_95 671 744 814_ 464 _ 542 __ ___, 615 ._683 749 419' 490 _ _ 561 _624 686 -.368;3_46 431 __ 494 __ 556 613 404 ___ 463 522 578 0.338 2 0.292 _ 3 0.257 4 ___ 0.229 _ 6 1053 _ 1005 _ 881 813 __ _ 746 ___ 867 ___0.207 0.1_89 1122 1073 _ _ _ _ 945 _ 874_ __ 804 720 _630 080 0.174 1187 _. ---120-1198-1066 _ 1137 _ 100_6____ _ fl33 __ 859 772 729 --0.1 0.161 _ 9 __ 1248 ___ 1198 __1066 989 -912 821 ---777 _ 6.149 10 _1_304 _1254 1120 __ 1043_ 865 _ 870 823 _ 0.140 17 _ 1357 7307 1173 1095 1014 916 868 0.131 12 1M106 -7451 1356_ _ 1222 _ 1144_ 1062 fl61 911 0.124 _ 13_-- _ 1402 1269 __ 1190 1107 - 100M1 964 0.117 __ 1M1 ____ 1493 __ 1445 _ 1048__ 995 0.111 15 1532 1485 __1313 1355 _1235 1277 __1751 ___ 1192 1086 1033 _ 0.705 jio srauuu vamob no no compry wan me minimum spacing requirements for side -lap connections 7. Design Shear Strength due to Panel Buckling: Moment of Inertia (In") 4.0 0.284_ _ 3655 U. Shoar Stiffness: K1 = RE: table Design Shear Strength (pif) Span ((t) _6.0 _ 5.6 6.0 3237 K2 = 1388 kiplift D = 63 it G 3.78 + 0.3(D/Span) + 3(K1)(Span) kipAn AGI 530-12 PLATE SI of I half Elevation Lb e2 P V T h Headed Stud Anchor (Fy =60 ksi), Bent Bar Anchors (Fy = 36 ksi), or Plate Anchors (Fy = 36 ksi) Date 3/52019 Type 2 of P.O. 1 1. Input Design Values: Masonry comp. strength, Yin= 2000 psi Balt stool yield strength, Fy = 50 ksi Plate steel yield strength, Fy = 36 ksi Plato Dimenslons: Plate height, h = 10.00 Inches Plate Width, b = 10.00 Inches Plato thickness, l= 0.38 inches Strength Design (Factored)Lo ds: Axial load, Pu = 1080.25 lbs Eccentricity, of = 0.00 Inches Eccentricity, o2= 0.00 inches Shear load, Vu= 1,426,90 Ibs Tension load, TO = 1,820.00 Ibs Bolls: Headed Stud(HS)Or Bonl Bar(BB)= HS Bolt diameter, Db= 0.5 inches Bolt embedment, Lb= 5.00 Inches Balt Hook length, fb= 0.00 Inches Bolt edge distance, Lbol = 48.00 Inches Bolt edge distance, Lira= 4.00 Inches Number of spaces horizontal, m = 1 0 for single row Boil spadnghorizonlal,sl= 7.00 inches Number of spaces vertical, n= 1 Boll spacing Verficat, s2 = 7.00 inches Inted"Bolts? N (V or N) 2. Bolt Calculations Area of 0011, All 0.20 sq. In. Total Numberof Bolts, n1 = 4 Projected Area or Cone (Tension), Apt= 50.27 sq. in. Projected Area of Cone (Shear), Apv = 25.13 sq. In. 3. Compression FIS =.33 Pm (max.) = 666.67 psi Moment, kill = I'We2 = 0.0 in-Ibs k= 0AO Solve fork at j=1 -k/3= 1.00 Fb max. de, Plate Edge Distance = 1.60 Inches d=h - de= 8.50 inches kd= 0.00 inches 4. Tension ACI 3.1.6.3.1 Design Tensile Strength Reduction for Ovedap= 0.949 Masonry breakout strength, B, -s= 4264.9 Ibsibolt Eq.(3-3) Anchor bolt pulloul, a„= -.- Ibslboll Eq. (3-4) Balt steel yielding B,_ 8035.7 Ibsftll Eq. (3-5) Controlling Tension= 4264.9 Im1tholt Date _3!52019 Sheet No. of Job.- SubJecl Nmv Embeds FronMtaok Wali CMU CONNECTION PLATE ACI 530-08 Section 3.1.6 Page 2 Design Tension on Bolls Moment, Min =Pu'e2= 0.0 P -lbs From axial load, Tp=Md/Fd"2= 0.0 lbs/bolt From Whelan load, Tl = TIP i = 455.0 Ibsrbolt Sure =To+T1= 455.0 <4264.90.K. 5. Shear ACI 3.1.6.3.2 Design Shear Strength Reduction for Overlap= 0.949 Redudlon for Lbal or Lbe2 <12Db= 0.60 jfv�j Masonry break out strength, B..a= 1279.5 Ibsnooll Eq.(3-6)Masonry cashing sbenght, R_ 2337.1 Ibsboll Eq. (3-7) Anchor Dolt pryout, Bs,r= 5529.9 IbsNolt Eq. l3-8) Bolt shear strength, B„„= 5301.4 Ib17uoll Eq.(3�9) s Controlling Shear= 1279.5 Ibslboit "f {" Design Shearon Bolts Vy = Mx/X&2 = 0.0 Ibwoolt Vp = Pin l = 297.1 Ibsrbalt Area Vx=Myl d'2= 0.0 Ibarboll Vs = VM I = 366.5 Ibslboll V=sgn((Vy+Vp)^2. r(Vx+Vs)"2)= 464.0 <127050.K. 6. Combined Stresses ACI 3. L6.3.3 Masonry, TlBt+Vf Bv<1.0 0.32 <1.0 O.K. Steel, TAR +V1BV 51.0 0.14 <1.0 O.K. Use 10' x 10' Plate V41h 4-112°dl x5"Wits