Loading...
HomeMy WebLinkAboutSTRUCTURAL CALCULATIONS - 17-00637 - 290 Baldwin Dr - New SFRYork Engineering Structural Design (801) 876-3501 Structural Calculations Bainbridge Block 8 Lot 5 Rexburg Idaho, 83440 Prepared For: KARTCHNER H O M E S Kartchner Homes 601 West 1700 South, Building B Logan, UT 84321 10/9/2017 10/9/2017 STRUCTURAL CALCULATIONS For: Kartchner Homes Plan #: Bainbridge Location: Block 8 Lot 5 From: York Engineering Inc. 2329 West Spring Hollow Road Morgan, Utah 84050 (801) 876-3501 Design Criteria 2015 IBC: Roof Loads: Roof Snow Load (psf): Roof Dead Load (psf): Floor Loads: Floor Live Load (psf): Floor Dead Load (psf): Seismic Design Category: Wind Speed: Material Properties: Concrete (f,'): Concrete Reinforcement: Site Conditions: Backfill: Dimensional Lumber: Posts and Timbers: Steel: 40 15 40 12 D 115 mph for Exposure C 3000 psi (foundation) to 4000 psi (suspended slab) ASTM A615 Grade 60 Dry & stable granular based, 1500 psf bearing capacity, granular based KH = 35 pcf, slope not to exceed 20%, setback from slopes is min. 25' Doug Fir #2 or better Doug Fir #1 or better ASTM Grade 50 Use straps and tie downs, and meet nailing, reinforcement and other structural requirements as noted on the drawing and within the pages of this document. These structural calculations are based on conditions and assumptions listed above. If the conditions listed herein are not met or are different it shall be brought to the attention of the engineer. Prefab roof trusses to be engineered by the supplier. This engineering assumes that the building site is dry and stable, a high water table or adverse soils such as plastic clays, fills etc. could cause future flooding, settlement, site instability, or other adverse conditions. Verification of and liability for the soil bearing pressure, site stability, and all other site conditions, including site engineering as required, is the responsibility of others. These calculations and engineering are for the new building structure only and do not provide any engineering analysis of or liability/warranty for the non-structural portions of the building, or the site itself. York Engineering Inc. does not assume the role of "Registered Design Professional in Responsible Charge" on this project. The purpose of these calculations and engineering is to help reduce structural damage and loss of life due to seismic activity and/or high wind conditions. The following general requirements shall be followed during construction: 1. Contractor to verify all dimensions, spans, & conditions and notify engineer of any errors, omissions, or discrepancies prior to construction. 2. If discrepancies are found, the more stringent specification shall be followed. 3. All 2 -ply and 3 -ply beams and headers to be nailed using 16d two rows @ 12" O.C. 4. Contractor shall assure that all materials are used per manufactures recommendations. 5. Site engineering and liability shall be provided by the owneribuilder as required. 6. Contractor shall assure that footings are properly drained, soil is dry, footings rest on undisturbed native soil, building horizontal clearance from footings to adjacent slopes be a minimum of 25 feet, and that the intent of IRC Section R403.1.7.2 is met. If setback requirements of R403.1.7.2 cannot be met then contact engineer for further design requirements. 7. The contractor shall conform to all building codes and practices as per the 2015 IRC 8. Use balloon framing method when connecting floors in split level designs. 9. Provide solid blocking through structure down to footing for all load paths 10. Builder shall follow all recommendations found in all applicable geotechnical reports. 11. Stacking of two sill plates is permitted with 5/8" J -Bolts through both plates. Stacking more than two plates is not permitted without special engineering. 12. Minimum strength requires 2,500 PSI concrete; however, as per IRC 402.2 3,000 PSI comete shall be used. 13. All exterior walls shall be sheathed with 7/16" APA rated structural wood panel. 14. Block all horizontal edges 1 1/2" nominal or wider. 15. Sheathing shall extend continuous from floor to top plate and be nailed at least 4" O.C. along sill plate. Nails shall be placed not less than 1/2" from edge of panel and driven flush but shall not fracture the surface of the sheathing. Extend sheathing over gable end to wall joints and over rim joist between floors and nail to rim and wall plates at 6" O.C. York IEngineering Table of Contents Snow Calculation 5 Footings 6 Seismic 7 Shear 8 FTW 9 FTW (2) 10 Wind (Left & Right Loading) 11 Wind (Front & Back Loading) 12 Joists 13 Beam Schedule 14 Beams 15 Beams (2) 16 Beams (3) 17 Posts 18 Spot Footings 19 Plan: Bainbridge Date: 9/11/2017 Location: Block 8 Lot 5 LOCATION Back Front Left Right Interior FS: 1.61 FS: 1.87 FS: 1.67 FS: 1.36 FS: 1.36 SOIL SPECS Density (pcf) 125 125 125 125 125 Soil Pressure psf 1500 1500 1500 1500 1500 Weight (k/Ift) 0.04 0.04 0.04 0.03 0.03 BUILDING LOADS Roof Span (ft) 10 10 26 28 28 Floor Span (ft) 23 15 4 4 4 Wall Height (ft) 20 20 20 20 20 Suspended Slab Span (ft) 0 0 0 0 0 Total Load (k/Ift) 1.27 1.07 1.22 1.27 1.27 FOOTING SPECS Footing Width in 20 20 20 16 16 Footing Width (ft) 1.67 1.67 1.67 1.33 1.33 Footing Height (ft) 0.83 0.83 0.83 0.67 0.67 FOUNDATION Height Above Grade (in) 8 8 8 8 8 Wall Thickness (in) 8 8 8 8 8 Weight (k/lft) 0.07 0.07 0.07 0.07 0.07 CONCRETE SPECS Density (pcf) 150 150 150 150 150 Strength (psi) 2500 2500 2500 2500 2500 Clear Cover Thickness (in) 3 3 3 3 3 CALCULATIONS Total Weight on Soil (k) 1.55 1.34 1.49 1.47 1.47 Soil Load (ksf) 0.93 0.80 0.90 1.11 1.11 FOOTING SELECTION F-20 F-20 F-20 F-16 F-16 5 Footings Pan: Bainbridge Dale: all 151017 Location: BIO48Lot5 Raaf Live Load(psfl: Roof CeadLoad(psl): Floor Live Load his): Floor Dead Loatl(ps¢ Ecamor Well Dead Load (10: Interior wall Dead Load (pe¢ Suspended Slab David Loatl(, Roof Slape(W12): Roof Pi ch (0): SEISMIC LOAD PAMMETER Site Class: Fe: R: Ss: Sef See: Cs: RedundahW Factor, p: ASD Load Comdris6an Factor: Base Shear Farce Ib: Floor 1 Laaral Force to Floor Lateral Force D: Raaf Lateral Faro b: Roof 2).905 34170 28,370 3].050 50.540 Seismic SEISMIC FORCE DISTRIBUTION Ha (ft) Wx IMF) H,w, % Force TOMI SM1ear(klp) Fr VK Roof 23.17 37.05 950 57% 6.62 6.62 6.32 Floor 10.00 50.54 644 43% 11.59 4.97 11.59 Floor 1 1.00 0.00 0 0% 41.69 0.00 11.59 TOTALS 0.01 95.59 I'Suz 11,507 3].050 50.540 Seismic wan: Bainbridge Data 9111/2017 L.redon. Block 8 Lot 5 Shear wall Allowable Loads (plp Selemi.(klps) Wind (kip.) seismic wind total IBNdght honll 2nd Floor 6.6 kips 4.9 6.1 SW-1 350 490 let Floor 5.0 kips 9.4 7.0 SW-2 450 630 Basement 0.0 kips 5.2 44 SW-3 SM 819 Location Bad 64 Bed Flex Beck Left Wall Bed N2 Flex Flex 2car 3rd car Backwall 3rd car Front side Fronlaide Fronlside Backside Left to. Rigmside Rightaide From aide Frantsid. Frontaide Seaside Beck side Floor 2 2 2 2 2 2 2 1 1 1 1 1 Lines up col none none none nonennone none second floor second floor none second oor d fl WIdN 12 8.5 8.5 29 41 16 24 20 22 14 42 n14 Depth 42 40 36 41 29 25 29 52 45 24 42 24 Area(ei 252 170 153 Si 566.5 200 318 520 495 168 926 168 Force (1b) 1471 992 893 3306 3306 1167 2031 1148 1064 361 1991 361 Mi. Force 1461 986 887 3285 M65 lies 2087 1134 1080 366 2020 366 %of Beer 22% 15% 13% 50% 51% 18% 31% 23% 22% 7% 41% 7% Fift, Diaphragm 441 297 260 NU 1045 358 624 342 326 0 609 0 Trimasked Force: 0 0 0 0 0 0 0 0 0 0 0 0 areas from Upper 0 0 0 0 0 0 0 2M7 007 0 3285 0 Total Seismic 1461 966 867 3205 3365 1188 2067 36,111 2023 366 5411 366 Wind(to) 1347 BOB 818 3027 2455 867 1508 1588 1510 513 2025 543 Adj. Force 1338 903 812 3008 2499 882 15M 1610 1532 520 2886 520 %of total 22% 15% 13% 50% 51% 18% 31% 23% 22% 7% 41% 7% Total Wnd 1330 903 812 3000 2499 SM 1535 3860 2345 520 5874 520 Shear Wall 7 FTW FM 20 26 12 24 0.5 portal portal 19.58 14 Aspect Ratio 0.86 hn 1 1 1 1 0.96 1 1 PSW Adl.Ca 0.77 1 1 1 1 0.83 0.79 1 Sets Lead (pin 209 164 129 99 88 1 420 ' 276 26 Wind Lead (1 191.1 150.4 98.1 73.5 64.0 j 453.0 3W.0 37.1 Sheer Wall Mi SW4 SW4 Si SW-1 SW-3 SW-1 Mi Uplift %Force on pier 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% Well Length (In 12 FIV FIV 20 26 12 24 14.5 Portal pedal 33.5 14 Wall Height in 8 8 8 8 0 8 8 9 9 9 9 8 Floor Span do 0 0 0 0 0 0 0 11 15 15 0 0 Roof Span dn) 4 4 24 10 4 28 4 10 10 10 25 10 Wall Lead (pin 180 160 160 180 180 160 160 340 IN 180 180 180 Total DL(PIU 114 114 204 141 114 222 114 2881 207 207 220.5 153 Sels.Uplift(Ibs) 377 - - 0 0 0 0 202 - - 0 0 Wind Uplift (lost 270 0 0 0 0 358 0 0 STHDIO HIM HITS Location Left Wall 3rd car M. Bedroom A A A A A A A A A Leflske Right side Right side Left side Left aide Leftside Lei Losses Left side Left side Left aide Left side Floor 1 1 1 1 1 1 1 1 1 1 1 1 Linesapwr second floornone second s nd Poor none none onne none none mine e none Width 47 24 47 0 0 0 0 0 0 a e 0 0 Depth 42 14 42 0 0 0 0 0 0 0 0 0 Ar.. U,fl 987 166 1155 0 0 0 0 0 0 0 0 0 Force g1s) 2122 361 2483 0 0 0 0 0 0 a 0 0 Mi. Force 2122 361 2483 0 0 0 0 0 0 0 0 0 %of floor 43% 7% 50% 0% 0% 0% 0% 0% 0% 0% 0% 0% Fir. Diaphragm 640 0 749 0 0 0 0 0 0 0 0 0 -ransfered Forces 0 0 0 0 0 0 0 0 0 0 a 0 orces from Upper 3310 0 3310 0 0 0 0 0 0 0 0 0 Total Seismic M82 361 5852 0 0 0 0 0 0 0 0 0 Wirof(Ib) 3999 681 46M 0 0 0 0 0 0 0 0 0 Mi. Force 40M 681 4681 0 0 0 0 0 0 0 0 0 %oftotal 43% 7% 50% 0% 0% 0% 0% 0% 0% 0% 0% 0% Tolel Wind 6458 691 7139 0 0 0 0 0 0 0 0 0 Shear Wall 24 8 21.33 10 10 10 10 10 10 10 10 10 Aspen Rall. 1 1 1 1 1 1 1 1 1 1 1 1 PSW MI. Ca 1 1 1 1 1 1 1 1 1 1 1 1 Sets Lead (PIU 228 45 274 0 0 0 0 0 0 0 0 0 Wind! Lead (pin 269.1 85.1 334.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Shear Wall SM Mi SW-1 SW4 SW-1 SW4 SW4 SWA SW-1 SW4 SW4 SW4 Uplift %Fan, an pier 100% 100% 48% 100% 100% 100% 100% 100% 100% 100% 100% 100% Wall Lenldn 24 8 10.33 10 10 10 10 10 10 10 10 10 Wall Height(ft) 9 9 9 9 9 9 9 9 9 8 9 9 Floor Spen in 4 0 0 4 4 4 4 4 4 4 4 4 Roof Span(fl) 4 4 4 28 28 20 20 28 28 28 28 20 Well Lead W 340 180 100 180 180 180 180 180 180 180 180 180 Tell DL (pin 236A 128 128 248A 248.4 248.4 248.4 248.4 248A 248.4 248A 248.4 Sets .Uplift (lost 0 0 1818 0 0 0 0 a 0 0 0 0 Wind Uplift(Ibs) 0 262 2361 0 0 0 0 0 0 0 0 0 HIM Shear Plan: Balnbddge Date: 9/112017 Location: Block 8 Lot 5 Seismic SlrengN (Ib/ft): Edge Nailing (in o.c.) Field Nailing (in c.c.) Seismic FS Wind FS ASPECT RATIO Left Aspect Ratio: Right Aspect Ratio: Stress (psi): F'T (psi) Stud FS: Seismic: Wne: Flex FORCE TRANSFER WALL FTW Shear Wall: SWA-4' Edge Nalling and 12' Field Nailing Tie -Down: CS16%42 Straps: CS16--Nails to Connect Bolts: 12' Bolts @ 32" O.C. Studs: 2x4 Studs FTW Dolt Spacing (in ox.): Plan: Balnbddge SW -I-- 4Edge Nailing and 12' Field Nailing Dolt Capacity RIO: Bolt FS 3.52 2x4 626 Tie -Down: Straps: Bolls: CS16X42 CS16—Nails to Connect 1/2' Bolts ® 32" O.C. Data 91112017 Stress (psi): 127 Studs: 21el Studs F't (Pat) 920 Location: Block 8 Lot 5 Stud FS: 7.23 Hex LOAD PARAMETERS 887 FORCE TRANSFER WALL Seismic Load (Ib): Wind Load (lb): 8122 222 0 SHEAR WALL SELECTION SW -1 350 m 4 221 All Units lblft unless specified 221 Shear Wall Ceiloub Seismic Strength(IbRt): Edge Naling (in o.c.) 4 Field Nailing (in e.c.) 12 =.iib 1,43 Ib Seismic FS 1.58 Wind FS 2.42 2 .1 222 0 ASPECT RATIO 2.01 4 2 LeftAspect Ratio: 100% o_._._.-_-_-_ 8.01 ..--._-_ Right Aspect Ratio: 100% Dead Load Resistance It CONNECTORS Internoor Seismic: 502 Load San Location Wall Load 160 Uniform Seismic: 502 Force -Transfer Wall Location: Tie-Oown: CS18142 2.78 Wind: 427 Fbor 0 Uniform Roof 0 Uniform Wind: 427 TleAown Seismic FS Tlii Wind FS 3.27 Point Load 0 0 Dolt Spacing (in ox.): 32 390 Shear Wall: SW -I-- 4Edge Nailing and 12' Field Nailing Dolt Capacity RIO: Bolt FS 3.52 2x4 626 Tie -Down: Straps: Bolls: CS16X42 CS16—Nails to Connect 1/2' Bolts ® 32" O.C. Stud Size: Tension (lb): Stress (psi): 127 Studs: 21el Studs F't (Pat) 920 Stud FS: 7.23 9 FTW(2) Plan: Bainbridge Zone Zan02 Erpmure/ Date: 911141917 E.4 .11.0 27 Location: Bbarhel 8 7.9 LEFT AND RIGHT Wind Loading Calculations using Main WlndforceAesisting System (MWFRS) Lower Roof (pan Longitudinal Direction (helght) Lead Casal Table 27.54 Steps to Determine MWFRS Loads Enclosed Simple Diaphram Buildings .10.4 Risk Category 11 T2081.577 7.6 5.0 Wind speed 115 Figure 26.&t AA orC A° Exposure Category C Semon 26.7 Length Now (ft)Hotlzomal LB upper A. 1.45 8.33 29.00 211.0 LBmatnflom 0.80 Lower Roof Load 261 2903.6 Roof Height 8.33 N 357.9 No Mean reef Height 23.2 261 1370.8 2nd Floor Diaphragm Shear Truss Span 25 Roof Slope 8112 Total Shear deal 4916 Roof Angle(dag) 33.69 Blue =0.5547 Lower Truss Span 42 Right Well Length 0 Lower rear Slope 8112 Lower mot Angle(degl 33.69 Sino =0.5547 Land co nterw ou factor 0.6 (ASCE 7.102.4.11 let Floor Diaphragm Shear Upper Haar. or 26.5 Table 27.8-1 Upper flan, Pe 28.1 Table 27.8-1 Talbot Shear than) 14277 Main Air." 28.1 Main Air, pe 28.0 Right Wall Length 0 Basement Agar, p„ 28.0 Basement fiow, pe 27.8 0 Upper Floor (pan Palau. positioning Net Pressure 16.4 Windward 11.1 Left 7.9 Leeward 5.3 Right 7.9 Main Floc. (pan Net Pressure 16.8 WMwbord 10.4 Left 9.1 Leeward 6.4 Right 9.1 Basement Floor (pan Left Well LengM 0 Net Pressure 16.7 WMwed 109 Left 9.1 Base Wind Shear Leeward 6.4 Right 9.1 Roof(psn Zone Zan02 Erpmure/ Load Co.1 E.4 .11.0 27 Load Caret 7.9 d.3 Lower Roof (pan (helght) (helght) Lead Casal B.0 .10.4 Basement Load Case 7.6 5.0 2nd floor Roof Load A° force(lbs) Raaf Height Length Now (ft)Hotlzomal Force that 8.33 29.00 211.0 2779 Lower Roof Load 261 2903.6 LeewaM Low Roof Height Upper Length Lower length Law Roof Lengm(M Ama(tt2) Horizontal Forest jibs) 14.0 29 513 27 200.0. - 2508.0 (helght) (helght) (height) Wall Load Basement 1 let Boor 10 2nd floor 9 A° force(lbs) h° force (IM) W rorce (Ilan WndwaM Be 576.7 me 5642.8 261 2903.6 LeewaM N 357.9 No 3590.4 261 1370.8 2nd Floor Diaphragm Shear Total Shear deal 4916 Right Well Length 0 Left Wall Length 0 let Floor Diaphragm Shear Talbot Shear than) 14277 Right Wall Length 0 Left Well Length 0 Basement Diaphragm Shear Total Shear (hs) 19461 Right Wall Length 0 Left Well LengM 0 Base Wind Shear 19929 Hurricane Ties Factors of Safety Uplift (Ile) Hf H2.5 Rool(per Wss) .7.6 47.36 .79.34 Lewroof(per Wee) a.8 .16.82 -17.15 Lateral (the) H1 112.5 Roof(per Wss) 2.4 320AS 167.37 Low near (par trues) 1.1 323.14 377.69 10 Wind (Left and Right Loading) Plan: Bainbridge Data: Lttr.017 RWf(par Wss) Location: Bbck6Lnts FRONT AND BAC Wind Loading Calmdation. using Main WlndforceResisting System (MWFRS) Transverse Direction Feet hour Was) 69.6 Table 27.5.1 Steps to Determine MWFRS Loads Enclosed Simple Dlaphmm Building. Risk Category II Table l.5-1 Wind speed 115 Figure 2.11AAorC Exposure CategoryC Section 26.7 111 upperfloa 0.69 LAB main floor 1.24 Roof Height an Mean roof Heght 24.2 Truax Span 25 Raaf Slope 8112 Raaf Angle lost) 33.69 Sind =0.5542 Lower Truss Span 62 Loxrerraof Slope 8/12 Lowermof Mgle(deg) 33.69 Sir. =0.5542 Load combination factor 0.6 (ASCE 7.102A.1) Upper, floe, p. 28.2 Table 27.6-1 Upper flea, pe 22.2 Table 27.6.1 Main naor,pn 22.2 Main food, he 22.1 Basement door, p, 22.1 Basement doa,po 28.7 Upper Floor(p l) R.Wtive positioning Net Pressure 16.6 WndwaN 10.2 Led 9.1 Leeward 6.4 Right 9.1 Main Floor (paf) Net Pressure 16.3 Wndward 10.5 Led 0.4 Leeward 5.8 Right 0.4 Basement Floor(p.9 Net Pressure 16.1 Wnl 10.4 Led 8.4 Leeward 5.2 Right 8.4 Roof(psfl Zoned Zone Exposure MI. Fads 1.000 Load Case 41.4 41.1 Load Cese2 2.9 5.3 Lower ROOf(p8g Load Case 1 8.0 .10.4 Lead Case 7.6 S.0 Roof Load Roof Height Length ,da(82) HodmnWl Force(lbs) 8.33 42.00 220 2921 Lower Roof Load Lowar ROOFHeghl Upper Length Lower length Low Roof Length(h) Area(d2) Horizontal Fome(Ibs) 14.0 42 45 3 10 125.4 (height) (M1ei9bt) (height) Wall Load Basement 1 tat floor 10 2nd floor 9 as to. flus) 0 force(Ihs) d2 to. (the) Wndward 45 462.4 465 4890.1 378 3848.8 Leeward 45 258.1 :465 2676.2 378 2430.4 Intl Floor Diaphragm Shear Fund Shear (lb.) Nei Front Wall Length 0 Back Well Langth 0 1st Floor Diaphragm Shear Total Shear(Ibs) 13109 Front Wall Length 0 Back Wall Length o Basement Diaphragm Shear Total Shear(Ibs) 12255 Front Well Length a Back Wall Ler,,ih 0 Base Wind Shear 9618 Hurricane Ties Uplift pbs) RWf(par Wss) d] Low mof fear thus.) -34.8 Lateral (tbs) Feet hour Was) 69.6 Lav rool(eer Ws.) 2.8 Factors of Safety H1 H25 -102.96 -105.49 -16.82 -12.25 H1 H25 1139 5.69 281.70 147.13 11 Wind (Front and Bad Loading) Plan: Bainbridge Date: 911112017 Joist Series: Joist Depth (h): Joist Span (fl): LOAD PARAMETERS Floor Dead Load 12 12 12 Floor Live Load 40 40 40 Total Floor Load 52 52 52 SIMPLE SPAN JOIST Duration Increase 1 1 1 Joist Weight(pin 3.1 3.1 2.8 Joist Loading (pin 86 55 86 Max Reaction Via) 820 634 68B Max Moment (ft -lb) 3884 3643 2752 JOIST DETERMINATION Max Moment 100%(flbb) 4490 4490 3795 Moment FS 1.15 1.23 1.38 Max Shear 100% (lb) 1945 1945 1655 Shear FS 2.37 3.07 2.41 Beanng Requlred(in) 2.00 2.00 2.00 Live Load Deflection Limit 360 360 360 Live Load Deflection (in) 0.45 0.59 0.34 Allowable Live Load Deflection (In) 0.63 0.77 0.53 LL Deflection FS 1.41 1.31 1.59 Total Load Deflection Limit 240 240 240 Total Load Deflection (in) 0.61 0.81 0.45 Allowable Total Load Defledlon (In) 0.95 1.15 0.80 TL Deflecgon FS 1.58 1A3 1.77 13/4' Allowable Reaction (0) 1005 1005 1005 3112' Allowable Reaction (to) 14W 1460 1460 12 Joists Plan: Bainbridge Date: 9/11/2017 Location: Block 8 Lot 5 Beam Page 1 RB -1 LVL (2) 14" RB -2 LVL (2) 9 1/2" RB -3 Sawn (2) 2X10's RB -4 Sawn (2) 2X10's RB -5 Sawn (2) 2X10's RB -6 LVL (2) 9 1/2" RB -7 LVL (2) 9 1/2" RB -8 Sawn (2) 2X10's RB -9 Sawn (2) 2X10's RB -10 Sawn (2) 2X10's RB -11 Sawn (2) 2X10's RB -12 LVL (2) 11 7/8" 2.0E 2600 Fb 2.0E 2600 Fb DF #2 DF #2 DF #2 2.0E 2600 Fb 2.0E 2600 Fb DF #2 DF #2 DF #2 DF #2 2.0E 2600 Fb FB -1 FB -2 FB -3 FB -4 FB -5 FB -6 FB -7 FB -8 FB -9 FB -10 FB -11 Beam Paget GLB 6 3/4"x 19.5'24F -V4 Sawn (2) 2X10's DF #2 Sawn (2) 2X1 O's DF #2 Sawn (2) 2X10's DF #2 LVL (3) 9 1/2" 2.0E 2600 Fb Sawn (2) 2X10's DF #2 LVL (2) 9 1/2" 2.0E 2600 Fb LVL (2) 9 1/2" 2.0E 2600 Fb LVL (2) 9 1/2" 2.0E 2600 Fb LVL (2) 117/8" 2.0E 2600 Fb LVL (1) 14" 2.0E 2600 Fb 13 Beam Page 3 FB -12 LVL (1) 14" 2.0E 2600 Fb FB -13 LVL (2) 14" 2.0E 2600 Fb FB -14 Sawn (2) 2X10' DF #2 MFB-1 Sawn (2) 2X8's DF #2 MFB-2 LVL (2) 7 1/4" 2.0E 2600 Fb MFB-3 LVL (2) 7 1/4" 2.OE 2600 Fb MFB4LVL (2) 7 1/4" 2.0E 2600 Fb MFB-5 LVL (1) 11 7/8" 2.0E 2600 Fb Schedule 14 M..m RB.1 Md RH RBd Pxd P6d Pbp R6A0 pB.11 PB.1] ].OIXO PMANflE0.a LVL LN Ym Sam Bam LK lK Bwn exn awn 6avn LK flm LhaLUE(mfl b u w 10 w a0 nealaw Laenml �o u u s u xowu+welval Ia .a a4. 4 �n40 R lae wn ss u m u u ss u l WYLWd xelytl)A BEM EvemFreb]Ime x0 x0 z0 x0 x0 A A z0 z0 M Pmmawnlnl 1 1 ] mWegNlgO IISI PY SA aSf SSS a61 B.Y 555 335 535 5.55 1x.M lV BILXO am MON1F1 Is 1A !]s px5 %am NseYJNegM ]d Af 3 1 ] UXIFORY L010pE fpw6pal Ralagn%1 1 x]41 41 WW XepX11Xl 0 PWIUNam Faw oI 1 0 T�lI Flea Lred(01 lgn .,U 0.WIunEorm PoalL«a Wrl 1. 1 1 142.1 ]+s ]o a1 weFLae1JR Ia a b rMnuLr uxxoRx LaXExE Im E E E Im E Im o E PeNN/UWmm Letll qwl _ _ _ I6grv]IMx1e 1111 1]0 0 0 0 0 0 0 0 Ivn wm%1 es 0 0 0 0 o E YdnI 1X1 O 0 00 0 PeNp'NttrvmLMlpXI Ia]b 0 0 0 0 PamM/bN>rn zsgrvfleMlMj%1 0 0 0 0 0 0 0 zsw Pw11n1 0 0 0 0 O 3)m PMmal oe 0 0 o O o xsw P.rtxluwom Loan mll 0 0 0 0 0 0 gnmepElN o O a 0 inl 0 0 o 0 0 0 0 0 Jm(, w aiom 0 O 0 a 0 0 0 0 P.rcW Nilorm LoaetVFl E E a o e o 0 c E 0 0 fiam Iq 0 0 0 0 0 0 0 eld Lmflal 0 0 0 0 o�mam %1 o E a B vE v R ziaal<aal¢1 ala] 0 0 E _ o 0 eL l 0 0 0 0 0 0 0 ]EM Lxiro) 0 0 0 0 0 0 0 0 0 0 0 0 *cMna�e OmDna aOmip9w ml 0 0 0 0 0 LpMLaae Fmp Pwlml a 0 0 0 E ixeM Lae+eu11W1 0 0 0 0 0 0 0 ]name Lae+Fm o E c ReunoxsaxoxEM OinalMniw.zx 1 Nl ID]x 1]]6 411tsm INB ]]3 Ib0 RpMxdEm Peaula lAl 1]]8 1&8 ]33 Nea Namam Wq 1., IN1B 1131 1466 1141SYp y36Q1 IY] &z IIBa I1 Nv 60w1R1 1»6 411 II36 ]Y9 IBIS411 1]fix 333 IIa C. i[O ILO Idl iW I.W 1➢] .W 1.W Nf G 1] 0 1 1.10 I.W Nx ]mal IBW 3315 x 11 z>.]5 y15 » ]5 31]5 za.]5 Y58 weal M'1 b] 3W 196] xf0 IN 4. ea11M1 I]]8 555 e6 Ibaada BaneinO Sveu IXAI 35K fiW 3N1 }MI Bp] 11x59 ]SR 1»5 I2,01 ]SN 35A MOMENTN3meml6X1 NOMEXif3 1., xb Lb1. NixW Snea8ueulpl 1IB3 Navenunelw GpetirylR) ]330 W1e 33N ]3N ]3y 1. eHEM FE ).]3 ]]1 Ib3 x1] IA7 1A] "ryRpJM Ib3 I,Ia O55 0. 13] zA] Jua1�12..I.MI,fO] IOA1bx I.6W,N0 1 IbN,1 LXeLM 0aF+6an@y 031 1 OW OA1 005 0.03 OA3 0,01 0.(tl 0.01 0.x] LM LeM0Ma4allnH ltl 3.W b0 Si0 ]M 6q ]!0 ]M 3W 3b Abases Lh Lal Ml 053 a10 0.10 Ta NFS FB 1]e M}0 1>Y ]Sf >.xl 10.4 ]0!00 ]I19e ]]9 .LOMOette r.1 iaalLa]pnwtinrol O.Y ab OAx 0011. a01 OLO OAI i[W LMMMHnum31 x10 zw 3w .0 &0 xw idx LaalWMSt1 (nl Ib9 0A 0]0 O.N O.A p15 0]0 .L WAO 1466 11.10 3.a1 11]8 ]OA9 1411 xA] .l.l.IO0FSllGMINPo 6ELEE3pX a. W Wm 9wn Baan)arm aem Sian LN Izl Ielelrz' IZIxxlva 131 xxIm Rlxxlm Ixlez Ixlalm Izlxxma 1313%Icx p12x n. IA xxly. IZU1]4� 14 M..m TOW Ur. 1. LOW In Plsn spinMEga <3[ 590 10 70 0 31} 5. 103 dib 70 1. LM. LOW(ID Geu. B/11R0 3W 9W 60 W 0 }a0 IW NO ]}0 60 1. urio,m RW LOetl IPll Loracon. Bba 6 Ill s }M 0 770 a IIN z]s 215 0 115 TWI I.R LnW (pYl OLB 6314'.ler Senn (213%10'. 3..11131]%1Pa ..1(713%10'2 LVL 13191/1' as- 0)z%Itla 1VL(2191/e' LVLILIe V! LW 13191/! LN(2)117M' LVL111 N' TWI UxNrm V]an Lnae 0M) 0 ,2 chFB. 65 , 3,13 ]leer I. at 5... -], 160 S v3 SMar.]2? SYear 303 l 'r C L,5'4 eFBA1 Nemo FBd FSJ iBd FH FBS) FB'a FB9 F8.10 GrH]e GLB Bavm Sawn awn LW Sawn LVL LN LW LVL LW LO ING PMIIMETERS ] 0 0 0 90 0 10 0 0 0 F LM.0,I) a0 20 m W 60 a 211 40 60 .10 m M-m"Lm819.F1 53 s3 53 az 53 53 63 53 53 !3 5] RW. LOW INI 40 40 40 40 10 0 20 a0 60 40 10 Pm lLON 1Mf1 65 55 55 as 55 ]5 55 as SS Ss 55 .1L-dOe0 N i0 30 Sl 30 A Im A M 30 N BEAM SPECIFICATIONS 0 0 0 0 0 0 0 0 0 0 0 Bmm sWn(0) 21.5 ] ] 1 iS i 8 S 1 S 18 Brom Mp hta X) 3Iaa 5.55 555 555 1496 555 B86 aG 381 13,0$ 1.11 SEAM$RWG Ml _ BNm Imsm On) 183 9.21 9]5 9i5 as 5.25 9.a S5 aS 11,08 16 eaam Iamu IFM a.3a ] i ] SIS ] as 2.5 se S.5 1.10 TOW Ur. 1. LOW In 0 <3[ 590 10 70 0 31} 5. 103 dib 70 1. LM. LOW(ID 0 3W 9W 60 W 0 }a0 IW NO ]}0 60 1. urio,m RW LOetl IPll 605 }M 0 770 a IIN z]s 215 0 115 TWI I.R LnW (pYl aa0 0 500 0 6W zp3 zW 0 20] o TWI UxNrm V]an Lnae 0M) 0 IW 0 100 100 IW 160 IW 0 za0 0 PARTIALLY UNEORM WAOINO P.Dy LJr..I Fbx RpY t39aMMgM(a) ] 0 0 0 90 0 10 0 0 0 1man Pdnt sm 0 0 0 0 2 0 0 0 0 0 0 1EM P..(1) 0 0 0 0 !S 0 a 0 0 0 0 1T"Pv84 Um"m L -I IWO 18z 0 0 0 ]]0 0 0 0 0 0 0 Pa., Un. 1.2 ROM _ }9peMlagell6l 19 0 0 0 0 0 0 0 0 O 2 tam Pdn1181 0 0 0 0 0 0 0 0 0 0 0 }EM Pdm(0) 9 0 0 0 0 0 0 0 0 p 0 } TWI W.e, Ur. Lutl 0 )9].5 0 0 0 0 0 0 0 0 0 0 PdWM UM. L.a Ml _ 33pamm.19M(a) 6 0 0 0 0 0 0 0 0 0 0 3meml Prvm(6) 0 0 0 0 0 0 0 0 0 0 0 JEM Pdm la) 9 0 0 0 0 0 0 0 0 0 0 a TWI P.* U.. LfsB(ptll IW 0 0 0 0 0 0 0 0 0 0 POIMTLOAO6 P.m .I FW i.. ml 0 o a o z 0 0 0 o a u 1 TOW Lw6061 0 0 0 0 me 0 0 0 o a 95) P.1t.2 _ _ 2Lasamlal 0 0 0 0 0 0 0 0 0 a 0 2. Laa6061 0 0 0 0 0 0 0 0 0 a 0 PomL.3 a=. lnl 10 0 o a 0 0 0 0 0 a aI. Load Pe) 0 0 0 0 a 0 0 0 0 a 0 TAPENEO LOAD! TagrM LW0$W Pti 181 0 0 0 0 0 0 0 0 0 0 0 Tam. L.I Mm P.,(m 0 0 0 0 0 0 0 0 0 0 0 Is""'1"', 0 0 0 a 0 0 0 0 a a 0 T rM Lmaa EN 0 0 a a 0 0 0 0 a a 0 REF MN3 L MMIEM O ,..l -so 1 I 1 1 I 1 1 1 1 I 1 LM RaxIIm IW) 14955 IJ19 PoS Is30 4. 1000 Y2]0 a12. 22W J]]} 1212 PIJIIfle¢[Iun 0E1 6N[ 1]19 9M ISM 6150 1880 }3]0 ]1x0 2}03 3])2 1X1 May M.-teamBA59 W9 6]9 1140 )695 1424 K92 2Ma mw]IQS ] I'm.aSn[v 0s) 149Y 1319 WS le" 61W less Y!]0 3128 210 3])2 13 At G 1.W f.M 1M 1.W IM 1W I.W 1.0 IW 1. IM 110 tm lea LW 1.1.L00 LM 1. 1. Im gru(oTl 131.61 3].]5 2])5 z],]5 49. 2)]5 .335 u's 9335 41.58 3450 Mprwl IXlrer88115"1 41]1 1% 190 198 3]5 196 250 250 250 489 40 ManmumB rpa-.0sal 1]08 2)8 las ]A mag ]99 ]]6 1069 503 IIp] 1711 Nbresla sxgv0348ss1O01 240 990 ass 960 zW me YBBJ 2. 2W ]IN x510 NbredaMmMI11681 BSSM 9529 35X 1]802 35A 11]]8 I"'m 11]]5 1]W2 I21M MOMEW F9 i]6 3.61 SM 3.10 3.30 2A251 !.M 1.37 9A9 NbuaslasharsLuelFvl 286 100 1!0 285 IPo 2.x65 285 285 20 Matlmum Near GpHtlly(0) 2]2N 9J90 9330 3]30 8178 3aW 6318 WIB 6310 7W3 4e55 ase. B 9.55 ].59 3.80 2.19 IN 1,)5 2]0 3.0 28] se. DA2 BwNO Rpp9e6 9A1 1.08 0.)5 1]s 1M 1.56 ORB 1.19 ON 1Aa IM Elaalk akEJw l}W) I,BIp,WJ 1.EW.IXO f.8W,K0 1,&.am 2WN 20301 1.Og,W] 2fW,0.tl LM Lm]Oeae[A'n On) 0.4fi 0.0 00 001 O.W O.N O.M OLt 360 ]BO 300 ass 360 360 9!A 3W 3W 390 980 3W ... L. L. O. MI 0.0 0.10 o..1 022 Ola 0.x0 o9 0.ss 0.69 LWELOMMFLOeMGbn LNE LOA00EFLE60) 1.. 1.58 ]1.09 2].14 BS] ]1.50 ).)3 Me 1],65 asseas 0A] TWI LOW O0n1 0.89 021 I'M 0.01 ooz 0.01 2.04 (I. ON 001 0.09 040 Dsffs TOM1ILOW Mn lire L9M 2aa 20 za0 zw x40 220 zd0 240 1. 220 NlwaLM I. 140 0.15 0..4 a.te els O.,a 0as am 0A 0.40 0.95 o EFLEs IONInnl TOTAL LOAOOEFLEC1pH F3 1.56 41,14 }SAS 0.90 20X 6.]l 689 11.81 A48 950 lELECTpN GLB 82.11 $a- 8mm &awn sen LUL LK LK LV[ LK )2.1. RI2XItla 121 z%iM , 1319 V! (2).101 12191(1' (2191? (2)91/C (x111 ]IB' 11114' 15 Beams (2) Plan: Bainbridge Dale: 911112017 16 Beams (3) LVL (1114 LVL (2)14- Sawn (ZlsRlu"s Sawn I.)..ae LVL(2)7114- LVL(2)7W LVL (2)T 114" LVL(1)117/8' Shea, 4.86Monan!:2`c 6lomen1: 2.18 Shaa,2.89 Shear: 1.37 Mooaml: 1.14 MamxnL 3.15 Stan,609 Name FB -12 FB -13 FB -14 MFB4 MFB-2 MFB3 MFB4 MF84 Grade LVL LVL Sawn Be" LVL LVL LVL LVL LOADING PARAMETERS Floor Live Load (pan 40 40 40 40 40 40 40 40 Floor Total Load (Pan 52 52 52 52 52 52 52 52 Rauf Live Load (pan 40 40 40 40 40 40 40 40 Roof Total Lead (pan 55 55 55 55 55 55 55 55 Wall Load (pan 20 20 20 20 20 20 20 20 BEAM SPECIFICATIONS Beam Span (In 6 16 5 3 6 6 6 B Beam Welgi 7.11 14.21 5.55 4.35 7.36 7.36 7.36 6.03 BEAM SIZING Beam Depth (In) 14 14 9.25 7.25 7.25 7.25 7.25 11.88 Beam WdlhMleighl 1.7$ 3.5 3 3 3.5 3.5 3.5 1.75 UNIFORM LOADING Floor SPan IS) 12 3 3 23 23 14 19 6 Raaf Span gIn a 4 10 0 0 0 0 0 Wall Height (it) a 8 8 0 0 0 0 0 Total Uniform Floor Load (pit) 312 78 78 598 598 364 494 156 Total Live Floor Load (pin 240 fie 60 460 460 280 380 120 Total Uniform Roof Load (pin 0 110 275 0 0 0 0 0 Total Live Roof Load (pin 0 80 200 0 0 0 0 0 Tafel Uniform Wall Load (pit) 0 160 160 0 a 0 0 0 PARTIALLY UNIFORM LOADING Partially Uniform Load 1 - -- Floor Floor 1SpanMeight gn 0 0 0 0 23 28 0 0 1 Start Point(In 0 0 0 0 3 3.5 0 0 1End Point go 0 0 0 0 6 6 0 0 1 Total Partially Uniform Load (pit) 0 0 0 0 $98 676 0 0 Partially UnNorm Load 2 -- - Wall Wall --- -- 2 SpanMeight (In 0 0 0 0 8 8 0 0 2 Stan Point(8) 0 0 0 0 3 3.5 0 0 2 End Point (ft) a 0 0 0 6 6 0 0 2 Total Partially Uniform Load (pit) a 0 0 0 180 160 0 0 Partially Uniform Load 3 - _ - - 3SpanMeight(0) 0 0 0 0 0 0 0 0 3Stan Point on 0 0 0 0 0 0 0 0 3 End Point (in 0 0 0 0 0 0 0 0 3 Total Partially Uniform Load (pit) 0 0 0 0 0 0 0 0 POINT LOADS Point Load - - -- -- --- Floor - - i Location (ft) 0 0 0 0 0 3.5 0 0 1 Total Load (Ib) 0 0 0 0 a 2203 0 0 Point Load - -- -- -- -- --- -- _ 2 Location (ft) 0 0 0 0 0 0 0 p 2 Total Load (Ib) 0 o 0 0 0 0 0 0 Point Load - - -- --- - 3 Location (8) 0 0 0 0 0 0 0 0 3Total Load (to) 0 0 0 0 0 0 0 0 TAPERED LOAD$ Tapered! Load Starting Pohl (8) 0 0 0 0 0 o 0 0 Tapered Load Ending Point (ft) 0 0 0 0 0 0 0 0 Tapered Load at Stant (pit) 0 0 0 0 0 a 0 0 Tapered Load at End p1l) 0 0 0 0 0 0 0 0 REACTIONS 8 MOMENT Duration In... 1 1 1 1 1 1 1 1 Left Reaction (Ib) 957 2898 1296 904 2305 2468 1504 648 Right Reaction (to) 957 2898 1296 904 3522 4054 1501 648 Max MOment gla-0) 1436 11591 1620 678 4548 6252 2258 1296 Max Shear(Ib) 957 2898 1296 90.1 3522 4054 1604 me C, 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 G 1.00 1.00 110 1.20 1.00 1.W 1.00 1.00 Area 0nl) 24.50 49.00 27.75 21.75 25.38 25.38 25.38 20.79 Moment of heft. I no') 400 800 198 SS 111 111 111 245 Maximum Bending Sasso (lb -ft) 301 1217 455 309 1780 2447 883 378 Mlowable Bantling SVeaa gb-ft) 2546 2540 990 1080 2784 2784 2784 2604 Allowable Moment( Ib -ft) 12129 24258 3529 2365 7115 7115 7115 8931 MOMENTFS 8.45 2.09 2.18 3.49 1.56 1.14 3.15 6.89 AllowabM Shear Sir. (pan 285 285 180 180 205 285 205 285 Maximum Shear Capacity gb) 4655 9310 3330 2610 4821 4821 4821 3950 SHEAR FS 4.86 3.21 2.57 2.89 1.37 1.19 3.21 6.09 Bearing Required 0.73 1.10 1.07 0.74 1.34 1.54 0.57 0.49 Elastic Modulus (psi) 2,000,000 2,000.000 1,60'000 1,600,000 2,000,000 2,000,000 2,000,000 2,000,000 Live Load Canadian hn) 0.01 0.13 0.01 0.01 0.09 0.12 0.05 0.02 Live Load Defledan Limit 360 360 360 380 380 360 360 360 Allowable LMe Load Collection (in) 0.20 0.53 0.17 0.10 0.20 0.20 0.20 0.27 LNE LOAD DEFLECTION FS 22.65 4.09 14.29 18.00 2.19 1.66 3.97 11.68 Total Load De0ection (in) 0.01 0.34 0.02 0.01 0.13 0.17 0.07 0.03 Talar Load De0ection Limit 240 240 240 240 240 240 240 240 Allowable Tarsal Load Deflection (in) 0.30 0.80 025 0.15 0.30 0.30 0.30 0.40 TOTAL LOAD DEFLECTION FS 25.55 2.37 10.75 20.62 2.30 1.82 4.52 12.97 SELECTION LVL LVL Sawn Sawn LVL LVL LVL LVL (1)14' (2)14' (2)2X10'. (2)2XVs (2)7114' (2)7114' (2)7114' (1)11718' 16 Beams (3) Plan: Bainbridge Date: 9/1112017 Location: Block 8 Lot 5 17 Posts (4) 2x4 FS: 1.15 Location: --- --- COLUMN DIMENSIONS: Total Column Length (fl): 9 9 X-Unbraced Length (8): 9 9 Y-Unbraced Length (ft): 0 0 MATERIAL SPECS: Material: Doug Fir#2 Doug Fir#2 Depth -x (in): 3.5 5.5 Width-y(in): 1.5 1.5 # Members 4 3 Area (in'): 21.00 24.75 Axial Load: 8,401 10 MATERIAL PROPERTIES: F, 1,350 1,350 E 1,600,000 1,300,000 Em;,, 580,000 470,000 Lex/dx 30.86 19.64 Ley/dy 0.00 0.00 FACTORS: Cd 1 1 Cf 1.15 1.1 Ke 1 1 Fc' 1,553 1,485 Fce 501 1,002 Cp 0.30 0.54 Pc 462 809 Allowable Load 9,694 20,013 17 Posts Plan: Bainbridge Date: 9/11/2017 Location: Block 8 Lot 5 FS: 1.13 FS'. 1.12 INPUT Calloul SPECS Soil Bearing Pressure last) 1500 1500 Footing WidthlDiameter(in) 48 30 Footing LengthlDiameter(in 48 30 Footing Depth (in) 12 10 CALCULATIONS Area Required (ft') 14.19 5.60 Area Provided (ft2) 16.00 6.25 48" Square by 12" Deep 30" Square by 10" Deep Concrete Footing with (6) Concrete Fooling with (3) 44 Bars Each Wav 44 Bars Each Wav 18 Spot Footings