Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
STRUCTURAL CALCULATIONS - 17-00551 - 58 E 2nd N - Addition
September 1, 2017 Re: Memmott House Remodel 58 East 2nd North Rexburg, Idaho 83440 Dear Mr. Tom Mounts, I have designed the lateral force resisting system and the window and door headers for the above referenced residence. The design is to the 2015 International Building Code (IBC) with 115 mph ultimate wind speed (90 mph nominal) and exposure B, and seismic design category D. The roof and floor dead loads are 20 psf. The floor live load is 40 psf, and the roof snow load is 40 psf. The footings were checked for the building loads and no changes to the plans are required. No other aspects of the structure except those mentioned above were checked, and liability is limited to $600.00. Sincerely, L. Flamm, PE CS 15 Ver 2016.10.02 JOB TITLE Memmott Remodel JOB NO. CALCULATED BY RF CHECKED BY STRUCTURAL CALCULATIONS FOR Memmott Remodel Rexburg, Idaho SHEET NO. DATE DATE www.struware.com Company JOB TITLE Memmott Remodel Address 58.0 ft City, State JOB NO. SHEET NO. Phone CALCULATED BY RF DATE Parapet ht above grd CHECKED BY DATE www.struware.com Code Search Code: International Building Code 2015 Occupancy: Occupancy Group = R Residential Risk Category & Importance Factors: Risk Category = II Wind factor = 1.00 Snow factor = 1.00 Seismic factor = 1.00 Type of Construction: Fire Rating: Roof = 0.0 hr Floor = 0.0 hr Building Geometry: Roof angle (6) 8.00/12 33.7 deg Building length (L) 58.0 ft Least width (B) 44.0 ft Mean Roof Ht (h) 17.5 ft Parapet ht above grd 0.0 ft Minimum parapet ht 0.0 ft Live Loads: Roof 0 to 200 sf: 16 psf 200 to 600 sf: 19.2 - 0.016Area, but not less than 12 psf over 600 sf: 12 psf Floor: Typical Floor 40 psf Partitions N/A Partitions N/A Partitions N/A Partitions N/A Company JOB TITLE Memmott Remodel Address 89.1 mph City, State JOB NO. SHEET NO. Phone CALCULATED BY RF DATE Enclosure Classif. CHECKED BY DATE Wind Loads: ASCE 7- 10 Ultimate Wind Speed 115 mph Nominal Wind Speed 89.1 mph Risk Category II Exposure Category B Enclosure Classif. Enclosed Building Internal pressure +/-0.18 Directionality (Kd) 0.85 Kh case 1 0.701 Kh case 2 0.601 Type of roof Gable TopoaraDhic Factor (Kzt Topography Flat Hill Height (H) 80.0 ft Half Hill Length (Lh) 100.0 ft Actual H/Lh = 0.80 Use H/Lh = 0.50 Modified Lh = 160.0 ft From top of crest: x = 50.0 ft Bldg up/down wind? downwind H/Lh= 0.50 K, = 0.000 x/Lh = 0.31 K2 = 0.792 z/Lh = 0.11 K3 = 1.000 At Mean Roof Ht: 0.30 9Q, 9V = Kzt = (1 +Kj K2K3)^2 = 1.00 Gust Effect Factor h= 17.5 ft B = 44.0 ft /z (0.6h) = 30.0 ft Riaid Structure e = 0.33 £ = 320 ft Zmin = 30 ft C = 0.30 9Q, 9V = 3.4 Lz = 310.0 ft Q = 0.90 Iz = 0.30 G= 0.87 use G=0.85 ESCARPMENT V(z) I x(downwind) 2D RIDGE or 3D AXISYMMETRICAL HILL Flexible structure if natural frequency < 1 Hz (T > 1 second). However, if building h/B < 4 then probably rigid structure (rule of thumb). h/B = 0.40 Rigid structure G= 0.85 Using rigid structure default Flexible or Dvnamicallv Sensitive Structure Natural Frequency (qj) = 0.0 Hz Damping ratio (R) = 0 /b = 0.45 /a = 0.25 VZ = 74.1 Nj = 0.00 Rn = 0.000 Rh = 28.282 n = 0.000 RB = 28.282 n = 0.000 RL = 28.282 n = 0.000 9R = 0.000 R = 0.000 G = 0.000 h= 17.5 ft Company Address City, State Phone JOB TITLE Memmott Remodel JOB NO. CALCULATED BY RF CHECKED BY Enclosure Classification Test for Enclosed Building: A building that does not qualify as open or partially enclosed. SHEET NO. DATE DATE Test for Open Building: All walls are at least 80% open. Ao >_ 0.8Ag Test for Partially Enclosed Building: Input Test Ao 100000.0 sf Ao >_ 1.1Aoi YES Ag 0.0 sf Ao > 4' or 0.01Ag YES Aoi 0.0 sf Aoi / Agi <_ 0.20 L NO Building is NOT Agi 0.0 sf Partially Enclosed ERROR: Ag must be greater than Ao Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following: Ao >_ 1.1 Aoi Ao > smaller of 4' or 0.01 Ag Aoi / Agi <_ 0.20 Where: Ao = the total area of openings in a wall that receives positive external pressure. Ag = the gross area of that wall in which Ao is identified. Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including Ao. Agi = the sum of the gross surface areas of the building envelope (walls and roof) not including Ag. Reduction Factor for large volume partially enclosed buildings (Ri) : If the partially enclosed building contains a single room that is unpartitioned , the internal pressure coefficient may be multiplied by the reduction factor Ri. Total area of all wall & roof openings (Aog): 0 sf Unpartitioned internal volume (Vi) : 0 cf Ri = 1.00 Altitude adjustment to constant 0.00256 (caution - see code) : Altitude = 0 feet Average Air Density = 0.0765 Ibm/ft3 Constant = 0.00256 Company Address City, State Phone JOB TITLE Memmott Remodel JOB NO. CALCULATED BY RF CHECKED BY Wind Loads - MWFRS h560' (Low-rise Buildings) Enclosed/partially enclosed only SHEET NO. DATE DATE Kz = Kh (case 1) = 0.70 Edge Strip (a) = 4.4 ft Base pressure (qh) = 20.2 psf End Zone (2a) = 8.8 ft GCpi = +/-0.18 Zone 2 length = 22.0 ft Wind Pressure Coefficients Ultimate Wind Surface Pressures (psf) 1 CASE A -5.4 -12.7 2 CASE B -10.3 -17.5 3 8 = 33.7 deg -3.8 -11.1 4 -3.8 -11.1 Surface GCpi w/-GCpi w/+GCpi 11.7 4.4 GCpf w/-GCpi w/+GCpi 1 0.56 0.74 0.38 -6.0 -13.3 -0.45 -0.27 -0.63 2 0.21 0.39 0.03 -7.1 -14.3 -0.69 -0.51 -0.87 3 -0.43 -0.25 -0.61 15.9 8.7 -0.37 -0.19 -0.55 4 -0.37 -0.19 -0.55 -0.45 -0.27 -0.63 5 0.40 0.58 0.22 6 -0.29 -0.11 -0.47 1E 0.69 0.87 0.51 -0.48 -0.30 -0.66 2E 0.27 0.45 0.09 -1.07 -0.89 -1.25 3E -0.53 -0.35 -0.71 -0.53 -0.35 -0.71 4E -0.48 -0.30 -0.66 -0.48 -0.30 -0.66 5E 0.61 0.79 0.43 6E I 1 1 -0.43 -0.25 -0.61 Ultimate Wind Surface Pressures (psf) 1 14.9 7.7 -5.4 -12.7 2 7.9 0.6 -10.3 -17.5 3 -5.0 -12.3 -3.8 -11.1 4 -3.8 -11.1 -5.4 -12.7 5 11.7 4.4 6 1 -2.2 -9.5 1E 17.5 10.3 -6.0 -13.3 2E 9.1 1.8 -17.9 -25.2 3E -7.1 -14.3 -7.1 -14.3 4E -6.0 -13.3 -6.0 -13.3 5E 15.9 8.7 6E -5.0 -12.3 Parapet Windward parapet = 0.0 psf (GCpn = +1.5) Leeward parapet = 0.0 psf (GCpn = -1.0) Horizontal MWFRS Simple Diaphraqm Pressures (Ps Transverse direction (normal to L) Interior Zone: Wall 18.8 psf Roof 12.9 psf End Zone: Wall 23.6 psf Roof 16.1 psf Longitudinal direction (parallel to L) Interior Zone: Wall 13.9 psf End Zone: Wall 21.0 psf Windward roof overhangs = 14.1 psf (upward) add to windward roof pressure NDWARD OVERHANG WINDWARDROOF LEEWARD ROOF VERTICAL a O E�12- 2 g x TRANSVERSE ELEVATION WINDWARD ROOF LEEWARDROOF Iii 111111 i VERTICAL zLIZ or ZONE 2 0 x 1. LONGITUDINAL ELEVATION Company JOB TITLE Memmott Remodel Address City, State JOB N0, SHEET NO. Phone CALCULATED BY RF DATE CHECKED BY DATE Location of MWFRS Wind Pressure Zones 4 V 3E r.� 2 �E e E ZONE 2: lessor of 0.5 B or 2.5 h If 2 is negative CASE A Xj >1-D DIRECTION RANGE NXT-ND DIRECTIONN RAN -GE NOTE: Torsional loads are 25% of zones 1 - 6. See code for loading diagram. ASCE 7 -99 and ASCE 7-10 (& later) 711 3 E `f 2 E p,. ZOITE 2. lessor of 0.5 B or 2.5 h If 2 is negati, 9 lE NXT'DDREC ION CASE B Tran sv erse Direction Longitudinal Direction NOTE: Torsional loads are 25% of zones 1 - 4. See code for loading diagram. ASCE 7 02 and ASCE 7-0-6 1 STPD DIRE TION, Company JOB TITLE Memmott Remodel Address City, State JOB NO. SHEET NO. Phone CALCULATED BY RF DATE CHECKED BY DATE Seismic Loads: IBC 2015 Risk Category: II Importance Factor (1) : 1.00 Site Class : D Ss (0.2 sec) = 44.50 %g S1 (1.0 sec) = 15.70 %g Fa = 1.444 Sms = 0.643 SDs = 0.428 Fv = 2.172 Sm1 = 0.341 SD1 = 0.227 Seismic Design Category = D Number of Stories: 1 Structure Type: All other building systems Horizontal Struct Irregularities: No plan Irregularity Vertical Structural Irregularities: No vertical Irregularity Flexible Diaphragms: Yes Building System: Bearing Wall Systems Seismic resisting system: Light frame (wood) walls with structural wood shear panels System Structural Height Limit: 65 ft Actual Structural Height (hn) = 24.8 ft See ASCE7 Section 12.2.5 for exceptions and other system limitations DESIGN COEFFICIENTS AND FACTORS Response Modification Coefficient (R) = 6.5 Over -Strength Factor (.0o) = 2.5 Deflection Amplification Factor (Cd) = 4 SDs = 0.428 SD1 = 0.227 Seismic Load Effect (E) = p QE +/- 0.23DS D Special Seismic Load Effect (Em) = IZo QE +/- 0.25DS D PERMITTED ANALYTICAL PROCEDURES Simplified Analysis - Use Equivalent Lateral Force Analysis Equivalent Lateral -Force Analysis Building period coef. (CT) = Approx fundamental period (Ta) = User calculated fundamental period (T) = Long Period Transition Period (TL) = Seismic response coef. (Cs) = need not exceed Cs = but not less than Cs = USE Cs = Model & Seismic Response Analysis ALLOWABLE STORY DRIFT Strength Level Forces Design Category = C Design Category = D p = redundancy coefficient = p QE +/- 0.086D QE = horizontal seismic force = 2.5 QE +/- 0.086D D = dead load - Permitted 0.020 Cu = 1.47 CThn^ = 0.222 sec x= 0.75 Tmax = CuTa = 0.327 0 sec Use T = 0.222 ASCE7 map = 6 SDSI/R = 0.066 Sd1 I /RT = 0.157 0.044Sdsl = 0.019 0.066 Design Base Shear V = 0.066W - Permitted (see code for procedure) Structure Type: All other structures Allowable story drift = 0.020hsx where hsx is the story height below level x Project Designed By U;c C -(-C, Project No. Date pJ - ZZo2 ej 2`6�9�� V�MiIbtU p N (S -j '. �3' x loo, - R r7, - Li , C, S Li,C, 1I 3 OJ X q ,(s.; x I i.�l r Si 1' t r y y �i Y q. Z�/ )� -7 I 2%t -0o -f Cns--4 1'Sl1, }--}►9 : S°/SZ if Sheet Ul�iw�a�� (9 IVovN',w� I kool 1 •3 ,�s 11.1 Curl (2,J Itibr 7une Its x 14.2 316. sl?�� � I�.��b� : WGo' pJ - ZZo2 ej 2`6�9�� V�MiIbtU p N (S -j '. �3' x loo, - R r7, - Li , C, S Li,C, 1I 3 OJ X q ,(s.; x I i.�l r Si 1' t r y y �i Y q. Z�/ )� -7 I 2%t -0o -f Cns--4 1'Sl1, }--}►9 : S°/SZ if Sheet Project Project No. Date Designed By Sele- (e-0,Adik3 vurc,-s +v CYL-V E = 1.3 x o. o(,(, x (Zo t- o'?-/Llo) = ?,S' a 15'3" 4�3' 2 _ ' M 7-71 U, * SL,)rvoa 28"' a I� 3e ��`�1� xL�i' + Zo' X11' Cti 1X22 , 2625 14 q Sheet Project Project No. Date Designed By In�1�e nvr 1�1a�VrUoar., U, Vl F+ 2- (Ub" 'ZYUo" -33' 1301l" --Z%O* lIZsn" 194' �1, IqlI -JW' `sl n►� ZsZ 3 Iles ,1„ U,C. �lGt',IINq ls' d� �b &G(,k; t IS4 0IVVo,( ,l -'A\\ D YN��J CI1ti Z �z 145 0 ftv; ) ,tel CMU, ec,yt�wq 3U n�� NO 31OC'k-t ` lUS3 I1�5 r►e Nol�owh � I,y�s�?ox�6� IU�U71�r�) 3v �I� 'No ►31a�.lk�c� 3�� it7, N� NolJown `sl n►� ZsZ 3 Iles ,1„ U,C. �lGt',IINq ls' d� �b &G(,k; t IS4 0IVVo,( ,l -'A\\ D YN��J CI1ti Z �z 145 0 ftv; ) ,tel CMU, ec,yt�wq 3U n�� �G � J►o C.I� �`"� Sheet Project Designed By Project No. l\ex, AecS U�pc� 6'y 5�un 330 pit OL C9(9() SL uc bo MC6VI D" S(x" 1-0 vile vOL N0 ntf SL (J'O" sOc�n 1-10 vi\V OL 140 x,1(- SL. CIO oil Y) - (C,� ►LAU �� 1 -5 o n I� 5 L 7,20 O, 1,L J 2,6., Spa,\ 'YO yqIG L Date 3-9,/7- LvL or 3.7x+2 2. 2x(o Z- Z,-8 2 - ZK U LJ�\ Ik> � GL� V✓� 2- 2xt, Sheet COMPANY PROJECT WoodWorks' Sep. 1, 2017 15:44 Beaml SOFnVAREFON W Design Check Calculation Sheet Wood Works Sizer 10.0 Loads: Load Type Distribution Pat- Location [ft] Magnitude Unit fv = 101 Capacity Beam tern ata rt End Start End 5273 Loadl Dead Full UDL fb/Fb' = 0.42 Beam 330.0 plf Loa d2 Snow Full UDL 1 1 660.0 plf Self -wet ht Dead Full UDL 1.21'* 1.21** 14.4 plf Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) : 8'-6- Unfactored: Den d1463 a now 2805 1463 2805 Factored: Total 4268 4268 Bearing: fv = 101 Capacity Beam 5906 5906 Supports 5273 5273 Anal/Des = 3172 fb/Fb' = 0.42 Beam 0.72 0.72 Support 0.81 0.81 Load comb #2 #2 Length1.50* = L/290 1.50* Min req'd 1.21'* 1.21** Cb 1.00 1.00 cb min 1.00 1.00 Cb support 1.07 1.07 Fc su 625 625 *Minimum bearing length selling used: 1-1/2- for end supports **Minimum bearing length governed by the required width of the supporting member. LVL n -ply, 1.8E, MOM, 1-3/4"x9-1/2", 3 -ply (5-1/4"xg-1/2") Supports: All - Timber -soft Beam, D.Fir-L No.2 Total length: W-6.0% Lateral support: lop= at supports, botlom= at supports; Repetitive factor. applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2012: Criterion !Analysis Value Desin Value Anal sis/Desi Shear fv = 101 Fv'= 328 fv/Fv' = 0.31 .ending(+) fb = I. Fb' = 3172 fb/Fb' = 0.42 Live Defl'n 0.11 = L/936 0.28 = L/360 0.38 Total Defl'n 0.19 = L/525 0.42 = L/290 0.46 Additional Data: FACTORS: F/E(psi)CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 285 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2600 1.15 - 1.00 0.989 1.03 - 1.04 1.00 - - 2 FcI, 750 - - 1.00 - - - - 1.00 - - - E'1.6 million - 1.00 - - - - 1.00 - - 2 Eminy' 0.93 million - 1.00 - - - - 1.00 - - 2 CRITICAL LOAD COMBINATIONS: Shear LC #2 = D+S, V = 4194, V design = 3348 lbs Bending(+): LC #2 = D+S, M = 8756 lbs -ft Deflection: LC #2 = D+S (live) LC #2 = D+S (total) D=dead1=1ive S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's a e listed in the Analysis output Load combinations: ASCE 7-10 / IHC 2012 CALCULATIONS: Deflection: EI = 225e06 lb-int/ply "Live" deflection = Deflection from all non -dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1. Wood Works analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. System factor KH may not apply to field -assembled multi -ply beams. 4. SCL-BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 5. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 6. BUILT-UP SCL-BEAMS: contact manufacturer for connection details when loads are not applied equally to all plys. 7. FIRE RATING: Joists, wall studs, and multi -ply members are not rated for vire endurance. COMPANY PROJECT WoodWorksO Sep.1,201715:44 Beaml WI Design Check Calculation Sheet Wood Works Sizer 10.0 Loads: Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) : 2,-g. Unfactored: Dead Snow Type Distribution Pat- Location [ft] Magnitude Unit fv 9 Capacity Beam tern Start End Start End 3164 �11'd ) Dead Full UDL fb/Fb' = 0.06 Beam 90.0 plf Support snowFull UDL Load comb k2 80.0 pl-wei ht Dead Full UDL 0.09 0.09 3.9 if Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) : 2,-g. Unfactored: Dead Snow 6060 110 110 Factored: Total 170 170 Bearing: fv 9 Capacity Beam 2812 2812 Supports 3164 3164 Anal/Des = 1395 fb/Fb' = 0.06 Beam 0.06 0.06 Support 0.05 0.05 Load comb k2 N2 Length 1.50* 1.50' Min req'd 0.09 0.09 Cb 1.00 1.00 Cb min 1.00 1.00 Cb support 1.13 1.13 Fcp up 625 625 'Minimum bearing length selling used: 1-1/2" for end supports Lumber n -ply, D.Fir-L, No.2, 2x6, 2 -ply (21"x5-1/2") Supports: All - Timber -soft Beam, D.Fir-L No.2 Total length: 2'-9.0'; Lateral support: lop= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2012: Criterion - Anal s s Value !Design Value Anal sis/Desi Shear fv 9 207 fv/Fv' = 0.04 Bending(+I Is = 17 Fb' = 1395 fb/Fb' = 0.06 Live Doll'n 0.00 = <L/999 0.08 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.13 = L/240 0.02 Additional Data: FACTORS: F/E(psi)CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 1B0 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC R2 = D+s, V = 155, V design = 98 Its Bending(+): LC q2 = D+S, M = 97 lbs -ft Deflection: LC R2 = D+S (live) LC 92 = D+S (total) D= ad L=live S=snow W=wind =impact Lr=roof live L-ncentrated E=earthquake All LC's a e listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2012 CALCULATIONS: Deflection: EI = 33e06 lb-int/ply "Live" deflection = Deflection from all non loads (live, wind, ...I Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1. Wood Works analysis and design are In accordance with the ICC International Building Cade (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 4. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member (that Is, no bull joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally lop -loaded. Where beams are side -loaded, special fastening details may be required. 5. FIRE RATING: Joists, wall studs, and multi -ply members are not rated for fire endurance. COMPANY PROJECT WoodWorks Sep. 1, 201715:45 Beaml SOFTWAREFOR WOOD DESIGN Design Check Calculation Sheet Wood Works Sizer 10.0 Loads: Load Type Distribution Pat- Location Eft] Magnitude Unit fv = 70 Capacity teen start End start end fb = Load! Dead Full UDL 4570 Anal/Des 170.0 plf Lo d2 snow Full UDL Support 0.53 340.0 plf Self-wei ht Dead Full UDL 1.50* 1.50* 9.9 P1f Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) : g' -3- Unfacto red: Dead831 5nou 1573 831 1573 Factored: Total 2404 2404 Bearing: fv = 70 Capacity 201 fv/Fv' = 0.34 Beam4219 fb = 4219 Supports 4570 4570 Anal/Des 0.11 = L/997 Beam 0.57 0.57 Support 0.53 0.53 Load comb #2 #2 Length 1.50* 1.50* Min ceq'd 0.85 0.85 Cb 1.00 1.00 Cb min 1.00 1.00 cb support 1.08 1.09 Fc s fi25 625 -minimum oeanng -ij sew ng useu: '- ". un euu supywm I Lumber n -ply, D.Fir-L, No.2, We, 3 -ply (4-1/2"x9-1/4") Supports: All - Timber -soft Beam, D.Fir-L No.2 Total length: g'-3.0'; Lateral support: top= at supports, bottom= at supports; Repetitive factor. applied where permitted (refer to online help); Analvsis vs. Allowable Stress (Dsi) and Deflection (in) using NDS 2012 Criterion lAnalysis Value Desi Value Anal sis/Desi n Shear fv = 70 Fv'n= 201 fv/Fv' = 0.34 Bending(+) fb = 1000 Fb' = 1296 fb/Fb' = 0.77 Live Defl'n 0.11 = L/997 0.30 = L/360 0.36 Total Defl'n 0.20 = L/556 0.45 = L/240 0.43 Additional Data: FACTORS: F/E (psi)CD CH Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 0.990 1.100 1.00 1.15 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Fain' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: shear LC #2 = D+s, V = 2358, V design = 1939 lbs Bending!+): LC #2 = D+S, M = 5347 lbs -ft Deflection: LC #2 = D+S (live) LC #2 = D+s (total) D=dead L=1ive s=snow W=wind I- impact: Lr -roof live Lc=concentrated E=earthquake All LC's a e listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2012 CALCULATIONS: Deflection: EI = 158006 lb-in2/ply "Live" deflection = Deflection from all non -dead loads (live, wind, n s ow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1Woodworks analysis and design am In accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement. iPlease verify that the default deflection limits are appropriate for your application. 3. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 4. BUILT-UP BEAMS: it Is assumed that each ply is a single continuous member (that Is, no bulljolnls are present) fastened together securely at Intervals not exceeding 4 times the depth and that each ply is equally top -loaded. Where beams are side -loaded, special fastening details may be required. 5. FIRE RATING: Joists, wall studs, and multi -ply members are not rated for fire endurance. COMPANY PROJECT WoodWorks ° Sep. 1, 2017 15:45 Beamt SOFIIPAREFOR WOOD DFS/CN Design Check Calculation Sheet Woodworks sizer 10.0 Loads: Load Type Distribution Pat- Location Ift] d Magnitue Unit fv = 85 Capacity Beam tern Start End Start End 3164 Load( Dead Full UDL fb/Fb' = 0.88 Beam0.57 170.0 plf Load2 Snow Full UDL Load comb 42 340.0 plf Self -wet i" Dead Full UDL 0.86 0.86 5.2 if Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) : M -N Unfactored: Dead Snow 547 1062 547 1063 Factored: Total 1609 1609 Bearing: fv = 85 Capacity Beam 2812 2812 Supports 3164 3164 Anal/Des = 1227 fb/Fb' = 0.88 Beam0.57 0.07 = 0.57 Support 0.51 0.51 Load comb 42 #2 Length 1.50' 1.50+ Min eq'd 0.86 0.86 Cb 1.00 1.00 Cb min 1.00 1.00 Cb support 1.13 1.13 Fc s 625 625 Minimum bearing length selling used: 1-1/2' for end supports Lumber n -ply, D.Fir-L, No.2, 2x8, 2 -ply (3"x7-1/4") Supports: All - Timber -soft Beam, D.Fir-L No.2 Total length: V-35% Lateral support: top= at supports, bottom= at supports; Repetitive factor: applied where permilled (refer to online help); Analvsis vs. Allowable Stress (psi) and Deflection (in) usina NDS 2012: Criterion Anal sis value Des Value Anal sis/Desi shear fv = 85 Fv'n= 201 fv/Fv' = 0.41 Bending(l) fb = 1084 Fb' = 1227 fb/Fb' = 0.88 Live Def l'n 0.07 = <L/999 0.20 = L/360 0.34 Total Defl'n 0.12 = L/602 0.30 = L/240 0.90 Additional Data: FACTORS: F/E(psi)CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 0.988 1.200 1.00 1.00 1.00 1.00 - 2 Fop' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = D+S, V = 1569, V design = 1239 lbs Bending(+): LC #2 = D+S, M = 2374 lbs -ft Deflection: LC #2 = D+S (live) LC 92 = D+S (total) D=dead L=live S=snow 11=wind I=impact Lr -roof live Lc=concentrated E=earthquake All Lc's are listed in the Analysis output Loadcombinations: ASCE 7-10 / IBC 2012 CALCULATIONS: Deflection: EI = 76:06 lb-in2/ply "Live" deflection = Deflection from all non -dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1. Wood Works analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 4. BUILT-UP BEAMS: it is assumed that each ply Is a single continuous member (that is, no bull joints are present) fastened together securely at Intervals not exceeding 4 times the depth and that each ply Is equally lop -loaded. Where beams are side -loaded, special fastening details may be required. 5. FIRE RATING: Joists, wall studs, and multi -ply members are not rated for fire endurance. COMPANY PROJECT WoodWorks ° Sep. 1, 2017 15:46 Beaml SO"WARE FOR WOOD DESIGN Design Check Calculation Sheet Wood Works Sizer 10.0 Loads Load Type Distribution Pat- Location (ft) Magnitude Unit fv 72 Capacity Beam tern Start End Start End 3164 Loadl Dead Full UDL fb/Eb' = 0.98 Beam 330.0 plf Loa d2 Srtow Full UDL Load comb #2 660.0 plf Self-wei ht Dead Full UDL 0.73 0.73 3.9 if Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) : Y-9, Unfa'tored: Dead snow 459 908 459 908 Factored: Total 1366 1366 Hearing: fv 72 Capacity Beam 2812 2812 Supports 3164 3164 Anal/Des = 1395 fb/Eb' = 0.98 Beam 0.49 0.49 Support 0.43 0.43 Load comb #2 92 Length1.50* = L/240 1.50* Min req'd 0.73 0.73 Cb 1.00 1.00 Cb min 1.00 1.00 Cb support 1.13 1.13 Fc s 625 625 *Minimum bearing length selling used: 1-112' for end supports Lumber n -ply, D.Fir-L, No.2, 2x6, 2 -ply (3"x5-1/2") Supports: All - Timber -soft Beam, D.FIr-L No.2 Total length: 2'-9.0'; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2012: Criterion Anal s s Value Desi n Value Anal sis/Desi n Shear fv 72 Fv' = 207 fv/Fv' = 0.35 Bending(+) fb = 646 tb' = 1395 fb/Eb' = 0.98 Live Defl'n 0.01 0.09 = L/360 0.11 Total Defi'n 0.02 = -4:l 0.13 = L/240 0.13 Additional Data: FACTORS: F/E(psi)CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LCI{ Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 FI, 900 1.15 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - -- 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC H2 = D+S, V = 1273,V design = 787 its Bending(+I: LC #2 = D+S, M = 815 lbs -ft Deflection: LC p2 = D+S (live) LC 02 = D+S (total) D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake A11 LC .5 a e listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2012 CALCULATIONS: Deflection: EI = 33e06 lb-int/ply "Live" deflection = Dn eflection from all non -dead loads (live, wind, snow.) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1. Wood Works analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement. 2. Please verify [hal the default deflection limits are appropriate for your application. 3. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 4. BUILT-UP BEAMS: it is assumed that each ply is a single Continuous member (that is, no bull Joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally lop -loaded. Where beams are side -loaded, special fastening details may be required. 5. FIRE RATING: Joists, wall studs, and multi -ply members are not rated for fire endurance. Project Designed By l;:O r� G� %10 Y') ( / S V 0 rl y � ) � 6 o + 4cio p\(- f,)\— Project No. Date ✓JLC 5 L 1 \Sll r;1� 4L4 Vll (LL IyL-) 1225 `SIF Coit IS Y" use I'`/ @ rc�, I�lys �r rJ/Ip� �14t ` �U�L(UOlu / OUr6 Z 5D '� 0 L �SZoLL I �'66) ` �, L QL-4 L(- = o'� r3L-k y„ = 2,�' alow� S�riP�— OKAY Sheet [hU\[[ f | § ƒ \ /\ �E y ƒ _ (D® `� *`��£ _ C j `\ q &, 27 9 Oo r , P-1 y---------------------- S S : \ 1'71 5 ;• . \ { .. % � m r /� ? - �O %f / \ \� �v �~$ / »w� 9« �\ /\� s/® �\ /£\ f` } / \ f 3 / \ \ / . �... \ 7 f G : ■ \\ of | d[MM/ƒƒ �| i f §/\/[R | D ` � [hU\[[ f | MEMMOTT T ; 0 0�_ ie-;- ��€ f D 01 MEMMOTT HOUSE REMODEL & 0 # t � § $ $ z CL Ln c 8 / / � k CY ai C: § e § / f _ an o « / » 0 ± 5 0 C / §u un j u ) 0 \ 2 } k 5 u cu $ / \ � 2 / � kƒ § CO g = s \ / / f % k E # E °rH M § f U) 0 E Ln ƒ Q) :3 CL m c E£ G o g CL / / / \ E — -2 e ° o _r_ \ ) § 2 ƒ W 2 f t / k 0 k / / _ aai 3 0 aic:ai ƒ @ c� \ % $ @ : - \ 2 § \ r / \ m m 2 k 7 k ° k tn- Z 0 a J 'O V O E o U O LL ax E oc E cn 6 t TA 4— co N r C (6 L y co N 0 O C 4- Q Q Q a O cri m z z = O O O rN p O O O .— r- ` O O Lo 0 0 00 00 O O Lo N 00 CL (D— N r r II II II II II II O O 'O L N N N O O O iT cU0 (U6 N 4—`4� p LL m O v— va) N ((00 � O0 C O U)Sd� Grp 7..CO.. 2 N 0 o `v m m m c o Q C C C Q) ) , 0 OD o J �I L! I- 0_ 0_ 0_ 0 m �9 m �00Lo— r a� :3—co0 0 9 o00�cq R U + 0 O (7 n u "O U) = Y CO U> Ln 0 N O N CL N N 0 7to N v - O C O D U O ` U N CL Via= 0o=C o ILo000Lnoo O O O 000 o CO L C 0 O N O O O O O o n O O 0 0 u u u u Y Y v N Y Y Y NI Y 2 O 4- � ch o O O O 0 II II II C J N J_ Q v Ln N .0 J LL ij A X- ID.r— CL ,j id C.1 VA .n 2 0 L 0 0 0 O O O U N 7 O O O ai w O O O � � O II II II Fv a b of > c c c N m co '� w 2 7 9 to Lu W I I (7 N O LO J I Q —_ d LL m O O I— O 6 O D m �00Lo— r a� :3—co0 0 9 o00�cq R U + 0 O (7 n u "O U) = Y CO U> Ln 0 N O N CL N N 0 7to N v - O C O D U O ` U N CL Via= 0o=C o ILo000Lnoo O O O 000 o CO L C 0 O N O O O O O o n O O 0 0 u u u u Y Y v N Y Y Y NI Y 2 O 4- � ch o O O O 0 II II II C J N J_ Q v Ln N .0 I I E X- 0 m a 2 c � 0 L 0 0 0 O O O U N 7 O O O ai w O O O � � O II II II Fv a b of > c c c N m co '� w 2 7 9 to 9 v ca ca LLNN o a) N O LO LO r- O O N N N 0 0 0 Q —_ d N O N N N 0 0 0 m O O I— O 6 O D O O N N N O O O N w 0 O N V O C r m II � (] 11 II II II II II II II II II II II II a) O U (0 � X c •L- X49 ro a) m N b0 O a ® ro ILL 2 II L*o LO CR O 11 (D a) rn O In 0 0 L- M O O M C,) O O CM Co O O O U '4: 0 U O M M O O d• M L M .5 d +'j e 1.1,1 II II II ©= II II II II II II II II II L m id) w e U p� J I3 N (D N M E N O c) I \ o\ 0 / < < 2 / 7� \ \� a � = c� ) �E 0 / m Q §\ 0 2 7 E f %»\ �£ 0 7 ®� k7 § ƒW $ ' �M \ 2\ % / y c 7 § ) ƒ "0 E \ os m/=� 0 " 0 ® a fgJ3 \§M= Cl) $ e§�f \� k 0 _ \\ < « _ _ _. q 0 »_ E§/ a g � ; =a 0� /\ < Co » &_ G ®/E% � � / ƒ \o \ a«mco e &§$§G y ° c ƒ g \a 2\% /f2\\v 41 e%\0 \- e m a� 7 ®G\§ m® ^D 0 c o 2«<�//£a o om ¥ ƒa 0 \ /ii,i \§2 4k¢\7 I \ o\ 0 / / � ƒ „ m ) 0 �o %»\ U $\ 0C� $ ' E m =c= \ \ 0 " 0 ®- a i $ / k E§/ et to LO / ,cq ewe . Co _£ 7 d 41 &fes ± 3 a U m 0 >02 § ƒa 0 \§2 2 0§ _ > e 5 k 2 o f \ \ 0 vo® a2 ® m C: c = o » m g \\e e/ \ f § ® && /\ k I \ o\ 0 ( j M I-- Lo co N I� c0 00 LO M N d: M LO r (9 M— M N r M V (fl U M co d: r N O 0 r o 0 Or Lri — M Ln r N ti to (O — I� (O r Ln O N a a O NLC)—NLnrMaOLhM�N O O LO O M M U O O O O p O 0 0 0 0 p 0 Ln r r 0 d LI) M 1 r 0 M — 0 O C- LO O O d: (O M 'd: N 00 i` M 00 r M 't O Ln d: (O d: CV000000O—OooO a u; L L Jr r H G CL 0 -in 1 1 1 1� 1� 1 1 CD ®000(9— p�OO 0 Cl Ec6 cN- N(.6 co — N U 0 00M r LO MO(DLO — m r (9 mom ` p p 0 0 p p 0 O rn m• r- V 0 Ln 0 M" — ti Ln U! l O co M M t C6 u CO 0 . C) CD 0 0 0 0 II CD U Q Q m m E y_ (9 LO N d: M M00 (9 N m d. Vo 0 0 0 0 0 0 0 fy > a e a U °�W `!=—N Ce) d Lc)(9W W W W WW r. Ln r f� Ln M N Cl) M M NI�rN�p�TL()d'M~N N M co d: r N O 0 r o 0 Or Lri — M Ln r N ti to (O — I� (O r Ln O N a a M r I� Cq M M M M o d' CO ci I` O r r 1 i r r r r i 1 0 p) 0 00 Ln r r 0 d LI) M 1 r 0 M rNMd l()(9W W W W WW r N Cl) 'Rt Ln (9 a) L r I u n C C N O N a a n UU \ I \ ly O cj Q O N a u; L L Jr r H G CL 0 -in QQQQ \ 00 ®000(9— p�OO 0 Cl Ec6 cN- N(.6 co — N Soo \ r' \ 0 \ L`Ln Q U IL! U Q Q m m E H \W (� C C N C C Q Q d v 6 a`)N N ANN fy > a e a L m-0 a)W °�W CJ {m C 0 \ ON .9- > 1'rLhlCflR10H fdLhdC2fy0H m oz I I ISI '11VA No il'dh1 Ln o r u n C C N a a n UU O N to 1 N (n N Ul N U) ® CLO_ CL 0 -in QQQQ 00 ®000(9— p�OO 0 Cl Ec6 cN- N(.6 co — N Soo C 20 0 0 `- 41 U-- s L 0LL Q Q m m E L6 N (� C C N C C Q Q d v 6 a`)N N ANN fy > a e a L m-0 a)W °�W CJ {m C 0 tJ U h U ❑ 00 1 - Nd N O O II II 0 0 C/) CO ((q M O O II II E U) U) � O) 0 0 I,-: LO r I I U a) Cl) O I& d• r r (V m a� c U 0 M N E 'V U a) – i�: E @ E � N rn � .U) U N ti N N U m: U) M N N t r 0 O .00O ® O 0 M II II II C – U -0 7 m U to II U sm. c O II w II .a II � U N x a) m fn LO E U) N E a) m ❑ ❑ a N w O) @ (n O •O O C N fn O O rn II Q LO > O i + + ® r N o c a> C r Q m LL. CJ 0 X o OD L U) U O. «) °' Qzz a) a) �m�toNin Z IZ m Q m a I I E E II II (n aa)i aa)) CA —I 0 u) m 7 m 3 m L in U) t t (a U � I-- W a7 C LO 0 m ..m) Q .� LLJ 0)O) N o E in O m a� :� 'v, m m LL LL Q O LL U ❑❑ ` N `2 C LL_ _ U _ L to O ,°� m N U) E m � U � � L In N `O _ Q u V- 'O (c CL > U) m a� U C O 41 u - 'V U i�: E (D .U) U N ti N N U m: M N C C N r 0 O .00O II II II C – U -0 7 m U II U a� II w II II o -CJ ❑ x m E � ❑ ❑ a co co O O O O O II Q LO > O i + + C; CJ 0 X L U) U O. «) a) a) a) NU U N II II (n w m -O D) N O (0 (0 I-- W a7 C LO 0 m ..m) T 0 N O Q O 0 0 0 0❑ ❑❑ co U In N `O O V- 'O (c CL f� m a) CD E to – a0 h LO �• N N } W •� O U U (n V N O N 0 0 0 U Q O W d Q O C N II II II II II II II ww � j II II N II II II II II II to N to UUU (q �CUt�vi LUw y,U t`v~IJ�U v c w RD oo m O (1) ca g� Y❑ °� "" w ? .0 U m � cc LL LL W [m d O_La a o ii � o (o0 oc n� CO a) • oc oN c C rn m .O J Q N ! 1 a) O O �tq a E m EU o N oE E aa > Q x • 0�o m to :5;O 0 cao Z n, o m �U1 ea •� n 0 Q In LU U O O_ a) En ❑ O- LU J a) � 0� - Z) m O LP N LIP s cy C-0 INJ Js O LP N C-0 INJ Js O LP N d— (3- VIQ I 2� IQ O LP N %I cl\ � Lko ly) jl � U S I ✓1 Jo 4� -IT s c� �1• z 0 _ N 3 S C(7 I lo T M � � U S I ✓1 Jo 4� -IT s c� �1• z y _ N 3 S C(7 Jo 4� -IT s c� �1• z y L 4 J J V3 n j S' vi ,P J CIA1 4 J J V3 vi ,P J 57 V J a D c E rn N Z E � J N N N N Z ❑ E arvrvlrvry Y LLnT x c o U�IIII � ry U I I w e W m u..0001� N"sm o Eom@ IIII �' a o> n .��i va U�aUEc aUG aEm uE E R °E o � ry o.00 `m �mNn I oa° bl l l l l Z.1 y� O noo As�u�9moEovl u': o`o¢n u no our°— MNZ cv o" oig3 co � o �ulm Doom mUaaaaZ'J O ❑.. n4 N vv >U(7 �lYry Nrflo ¢O �o .o %1Q o�w 0 ;�'� :E'N J ± a Z `ug u�¢ y i.U4cv ma ujo �. 'OF -+u yF-api cw D -1'o "o N '"U rl ❑[C �wt't°woi r5 VvLimo o�a Vo=F Nei ci <NN6 /A Q �N mII� v v u v u o a uhouw up°o.�m�m m� �n� ?Ovoi IUF vU mv�iamvl .�.la�U U V W c E rn N Z E � J N N N N Z ❑ E arvrvlrvry Y LLnT x c o U�IIII � ry U I I w e W m u..0001� N"sm o Eom@ IIII �' a o> n .��i va U�aUEc aUG aEm uE E R °E o � ry o.00 `m �mNn I oa° bl l l l l Z.1 y� O noo As�u�9moEovl u': o`o¢n u no our°— MNZ cv o" oig3 co � o �ulm Doom mUaaaaZ'J O ❑.. n4 N vv >U(7 �lYry Nrflo ¢O �o .o %1Q o�w 0 ;�'� :E'N J ± a Z `ug u�¢ y i.U4cv ma ujo �. 'OF -+u yF-api cw D -1'o "o N '"U rl ❑[C �wt't°woi r5 VvLimo o�a Vo=F Nei ci <NN6 /A Q �N mII� \ | ) � 2 � / 7 - I \ _ \ \ �ci / - \ oj -66 -„ i - \ Z--3 % ! R 2= E 7' )|; 3 0 \ .E \ Imre];�\\\„;§�§ \}§}.\\\®\\} ) \�k§= - -]l,2 }�' / U. ° $ («}\a}\)\ \J\)\2) ( ) \ \ 20 >R§! G#�E,E # E2I k\� [ `lEEf! !!r!]7 §ll; `�»!§= --E c(!7[I§ §/«2#/ A;ww�;a ] , # ( ) \ \ 20 >R§! G#�E,E # E2I k\� [ `lEEf! !!r!]7 §ll; `�»!§= --E c(!7[I§ §/«2#/ A;ww�;a m \ , o )Ei tE ] )I!)/]}!f)! G ])a,au m ,,o. o, /!!)Z/}I#/!#!])a,w£ v., f l �C H 6 C 1� Q v� �1 cv) V ' v., f l �C H Ims O O 14EW FlP\5T FLOOR MN --CD wa R I Cy :n"� �A, L 1W M7is FATO f1,14 M A onv (w ap*ok WOW ": "n " v O D Exyl Fm w"—wd— --1 Wl 7- _U, 6, 0 MCI, P41 0, 0 sL <�> —mm, cy 'A 7 — ---- -- -- -------- --- O 7 WWI Z Y ox O O 14EW FlP\5T FLOOR MN --CD wa R I Cy :n"� V LOOP, PLAN Sw1 km -,4 J LLI O R/ O w 1110 PROJECT LOOK E40 S0 FLOOR PLAN NISCHEDULE 108/24/2017 AG WWDOW SCHEDULE r:Gr o:53r.�cv a.o seF o� Oasn,G e+vo:.i O S.iCJ:GGLLSi :'.rpJ.'.' 5ocx�•-on ODOLRU IwI. re',DO:t OD DxR�wnGvre4roa z6r.x 9.m1 + O 97J2L"XlSffi r.iaO.:' 3-0::YSAX 7 O 5JG61;L 2-L V; R 2O4 ,OX O `" 9.5.." O X � Or:lE7C: DDG^5ic0.�i'nx�rv:'lii,lf 0."m i J LLI O R/ O w 1110 PROJECT LOOK E40 S0 FLOOR PLAN NISCHEDULE 108/24/2017 AG DOOR SCHEDULE lue o-etc�ra: a:D_+r: oa Oc�snu Dr=luF .�w O uli:,x nPJ3,F Graz 6'4�/l6:bW Of1l[FAC, GOP: Ornf�a�oocn Or.tfet�Da.r, Otf?'Oi D]GI: OP.l[rF[Da.P,`FiG16VEiiaY. , Or:lE7C: DDG^5ic0.�i'nx�rv:'lii,lf 0."m i J LLI O R/ O w 1110 PROJECT LOOK E40 S0 FLOOR PLAN NISCHEDULE 108/24/2017 AG