Loading...
HomeMy WebLinkAboutSTRUCTURAL CALCULATIONS - 14-00258 & 1400259 - 859 W Main St - MaverikStructural Calculations WCA Project #14082 14-00258 & 14-00259 Maverik Building & Site Plan Office Copy 1 of 2 Maverik, Inc. 845 W. Main Street Rexburg, ID 83440 Dixon + Associates 833 South 200 East Salt Lake City, Utah 84111 W0A VMU0MM MGINWHNG INC. 11MStructural Engineeringl... 442 North Main Street, Suite 200 Bountiful UT 84010 801.298.1118 Fax 801.298.1122 Structural Calculations WCA Project #14082 Moverik, Inc. 845 W. Main Street Koxburg, ID 83440 -C-LENT-1 NOR T N: Dixon + Associates 833 South 200 East Salt Lake City, Utah 84111 Structural Engineering Inc. 442 North Main Street, Suite 200 Bountiful UT 04010 801.298.1118 Fax 801.298.1122 WCA Structural Engineering, Inc. 442 North Main Street, #200 Bountiful, Utah 84010 Phone: (801) 298-1118, Fax: (801) 298-1122 email: wca@wcaeng.com Code Search Code: International Building Code 2012 Occupancy: Occupancy Group = M Mercantile Risk Category & Importance Factors: Risk Category = II Wind factor= 1.00 Snow factor= 1.00 Seismic factor= 1.00 Type of Construction: Fire Rating: Roof = 0.0 hr Floor= 0.0 hr Building Geometry: Roof angle (0) 0.25/12 1.2 deg Building length (L) 99.0 ft Least width (B) 52.0 ft Mean Roof Ht (h) 17.0 ft Parapet ht above grd 20.0 ft Minimum parapet ht 3.0 ft JOB TITLE Mavenk -Type IV Rexburg, ID Maverik JOB NO. 14082 SHEET NO. CALCULATED BY JC DATE 4/24/14 CHECKED BY JC DATE Live Loads: Roof 0 to 200 sf: 20 psf 200 to 600 sf: 24 - 0.02Area, but not less than 12 psf over 600 sf: 12 psf Floor: Typical Floor N/A Partitions N/A Storage Shelf 125 psf WCA Structural Engineering, Inc. JOB TITLE Maverik - Type IV __ _ 442 North Main Street, #200 Rexburg, ID Maverik Bountiful, Utah 84010 JOB No. 14082 SHEET No. Phone: (801) 298-1118, Fax: (801) 298-1122 CALCULATED BY JC DATE 4/24/14 email: wca@wcaeng.com CHECKED BY JC DATE Wind Loads: ASCE 7- 10 Ultimate Wind Speed 115 mph Nominal Wind Speed 89.1 mph Risk Category II Exposure Category C Enclosure Classif. Enclosed Building Internal pressure +/-0.18 Directionality (Kd) 0.85 Kh Case 1 0.872 Kh case 2 0.872 Type of roof Monoslope T000araohic Factor (Kzt Topography Flat Hill Height (H) 80.0 ft Half Hill Length (Lh) 100.0 ft Actual H/Lh = 0.80 Use H/Lh = 0.50 Modified Lh = 160.0 ft From top of crest: x = 50.0 ft Bldg up/down wind? downwind H/Lh= 0.50 Kt = 0.000 x/Lh = 0.31 K2 = 0.792 z/Lh = 0.11 K3 = 1.000 At Mean Roof Ht: G= 0.88 use G=0.85 Rn = Kzt = (1+KIK2K3)A2 = 1.00 Gust Effect Factor h = 17.0 ft B = 52.0 ft /z (0.6h) = 15.0 ft Rigid Structure e = 0.20 t = 500 ft zmin = 15 ft C = 0.20 goy 9v = 3.4 LZ = 427.1 ft Q = 0.91 Iz = 0.23 G= 0.88 use G=0.85 LQ) Speedupx(upwind),jx(dawnwnd) H 2D RIDGE or 3D AXISYMMETRICAL HILL Flexible structure if natural frequency < 1 Hz (T > 1 second). However, if building h/B < 4 then probably rigid structure (rule of thumb). h/B = 0.33 Rigid structure G = 0.85 Using rigid structure default Flexible or Dvnamicallv Sensitive Structure Natural Frequency (rlr) = 0.0 Hz Damping ratio (p) = 0 /b = 0.65 /a = 0.15 VZ = 97.1 Nt = 0.00 Rn = 0.000 Rh = 28.282 q = 0.000 Ra = 28.282 r1 = 0.000 RL = 28.282 r) = 0.000 9R = 0.000 R = 0.000 G = 0.000 h= 17.0 ft W WCA Structural Engineering, Inc. 442 North Main Street, #200 Bountiful, Utah 84010 Phone: (801) 298-1118, Fax: (801) 298-1122 email: wca@wcaeng.com JOB TITLE Maverik - Type IV Rexburg, ID Maverik _ JOB NO. 14082 SHEET NO. _ CALCULATED BY JC DATE 4/24/14 CHECKED BY Wind Loads - MWFRS h560' (Low-rise Buildings) Enclosed/partially enclosed only DATE Kz = Kh (case 1) = 0.87 Edge Strip (a) = 5.2 It Base pressure (qh) = 25.1 psf End Zone (2a) = 10.4 It GCpi = +/-0.18 Zone 2 length = 26.0 ft Wind Pressure Coefficients Ultimate Wind Surface Pressures (psf) 1 CASE A -6.8 5.8 2 -12.8 -21.8 CASEB -12.8 -21.8 3 -4.8 -13.8 e = 1.2 deg -4.8 -13.8 4 -2.8 -11.8 -6.8 -15.8 Surface GCpi w/-GCpi w/+GCpi 6 GCpf w/-GCpi w/+GCpi 1 0.40 0.58 0.22 2E -0.45 -0.27 -0.63 2 -0.69 -0.51 -0.87 4E -0.69 -0.51 -0.87 3 -0.37 -0.19 -0.55 6E -0.37 -0.19 -0.55 4 -0.29 -0.11 -0.47 -0.45 -0.27 -0.63 5 0.40 0.58 0.22 6 -0.29 -0.11 -0.47 1E 0.61 0.79 0.43 -0.48 -0.30 -0.66 2E -1.07 -0.89 -1.25 -1.07 -0.89 -1.25 3E -0.53 -0.35 -0.71 -0.53 -0.35 -0.71 4E -0.43 -0.25 -0.61 -0.48 -0.30 -0.66 5E 0.61 0.79 0.43 6E 1 -0.43 -0.25 -0.61 Ultimate Wind Surface Pressures (psf) 1 14.5 5.5 17.3 psf -6.8 5.8 2 -12.8 -21.8 26.1 psf -12.8 -21.8 3 -4.8 -13.8 -4.8 -13.8 4 -2.8 -11.8 -6.8 -15.8 5 14.5 5.5 6 -2.8 -11.8 1E 19.8 10.8 -7.5 -16.6 2E -22.3 -31.4 -22.3 -31.4 3E -8.8 -17.8 -8.8 -17.8 4E -6.3 -15.3 -7.5 -16.6 5E 19.8 10.8 6E -6.3 -15.3 Parapet Windward parapet = 38.9 psf (GCpn = +1.5) Leeward parapet = -26.0 psf (GCpn = -1.0) Horizontal MWFRS Simple Dianhraam Pressures Ips Transverse direction (normal to L) Interior Zone: Wall 17.3 psf Roof -8.0 psf ** End Zone: Wall 26.1 psf Roof -13.5 psf ** Longitudinal direction (parallel to L) Interior Zone: Wall 17.3 psf End Zone: Wall 26.1 psf ** NOTE: Total horiz force shall not be less than that determined by neglecting roof forces (except for MWFRS moment frames). The code requires the MWFRS be designed for a min ultimate force of 16 psf multiplied by the wall area plus an 8 psf force applied to the vertical projection of the roof. Windward roof overhangs = WINDWARD OVb NG 17.6 psf (upward) add to windward roof pressure TRANSVERSE ELEVATION Krtn �V aF LEEWARDRODF !!! ! i t t i i i I -i -f' -I I t I- I VERTICAL L0140MMI TALELEVATI014( V WCA Structural Engineering, Inc. JOB TITLE Maverik - Type IV 442 North Main Street, #200 Rexburg, ID Maverik Bountiful, Utah 84010 JOB NO. 14082 SHEET NO. Phone: (801) 298-1118, Fax: (801) 298-1122 CALCULATED BY JC DATE 4/24/14 email: wca@wcaeng.com CHECKED BY JC DATE Wind Loads - Components & Claddina : h <= 60' Kh (case 1) = 0.87 h = 17.0 ft Base pressure (qh) = 25.1 psf a = 5.2 ft Minimum parapet ht = 3.0 It GCpi = +/-0.18 Roof Angle (6) = 1.2 deg Type of roof = Monoslope Roof Area Negative Zone 1 Negative Zone 2 Negative Zone 2 Positive Zone 1 Positive Zones 2 & 3 Overhang Zone 1&2 Overhang Zone 3 Parapet Ultimate Wind Pressures GCp +/- GCpi Surface Pressure (psf) User input 10 sf 50 sf 100 sf 10 sf 50 at 100 sf 75 at 500 sf -1.18 -1.11 -1.08 -29.6 -27.8 -27.1 -27.4 -27.1 -1.98 -1.49 -1.28 -49.7 -37.4 -32.1 -34.3 -32.1 -1.98 -1.49 -1.28 -49.7 -37.4 -32.1 -34.3 -32.1 0.48 0.41 0.38 16.0 16.0 16.0 16.0 16.0 1.08 0.97 0.92 27.1 24.3 23.1 23.6 20.3 -1.70 -1.63 -1.60 -42.6 -40.9 -40.1 -40.4 -27.6 -1.70 -1.63 -1.60 -42.6 -40.9 -40.1 -40.4 -27.6 Negative zone 3 = zone 2, since parapet >= 3ft. Overhang pressures in the table above assume an internal pressure coefficient (Gcpi) of 0.0 Overhang soffit pressure equals adjacent wall pressure reduced by internal pressure of 4.5 psf qp = 26.0 psf CASE A = pressure towards building (pos) CASE B = pressure away from bldg (neg) Walls Area Negative Zone 4 Negative Zone 5 Positive Zone 4 & 5 'olid Parapet Pressure Surface Pressure sf User input 10 at I 100 sf 1 500 sf 1 40 at ;ASE A : Interior zone: Corner zone: 70.1 70.1 47.8 47.8 44.9 44.9 56.7 56.7 :ASE B : Interior zone: Corner zone: -49.1 -56.1 -40.8 -43.7 -35.0 -35.0 -44.1 -48.6 GCp +/- GCpi 11 Surface Pressure (psf) I User Input 10 sf 100 at 500 sfr10f 100sf 500 sf 96 sf 50 sf -1.17 -1.01 -0.9029.3 -25.4 -22.6 5:4 -26.6-1.44 -1.12 -0.9036.1 -28.1 -22,6 -28.3 -30.51.08 092 0.8127.1 23.1 20.3 .2 24.3 Note: GCp reduced by 10% due to roof angle <= 10 deg. \i4kt� f- WCA Structural Engineering, Inc. 442 North Main Street, #200 Bountiful, Utah 84010 Phone: (801) 298-1118, Fax: (801) 298-1122 email: wca@wcaeng.com Seismic Loads: IBC 2012 Risk Category : II Importance Factor (1) : 1.00 Site Class : D Ss (0.2 sec) = 43.60 %g S1 (1.0 sec) = 15.50 %g Fa = 1.451 Fv = 2.180 JOB TITLE Maverik - Type IV Rexburg, ID Maverik _ JOB NO. 14982 SHEET NO. CALCULATED BY JC DATE 4/24/14 CHECKED BY JC DATE Strength Level Forces Sms = 0.633 SDs = 0.422 Design Category = C Smt = 0.338 Sol = 0.225 Design Category = D Seismic Design Category = D Number of Stories: t Structure Type: All other building systems Horizontal Struct Irregularities: 2) Reentrant Corners Vertical Structural Irregularities: No vertical Irregularity Flexible Diaphragms: No Building System: Bearing Wall Systems Seismic resisting system: Light frame (cold -formed steel) walls with wood panels or steel sheets System Structural Height Limit: 65 ft Actual Structural Height (hn) = 17.0 ft 0.207 See ASCE? Section 12.2.5 for exceptions and other system limitations 7=N[H1![01014aa1:031=1.Yd-77a11!U]y_To1101:4' See ASCE? Sect 12.3.3.4 Response Modification Coefficient (R) = 6.5 . Over -Strength Factor (Do) = 3 Deflection Amplification Factor (Cd) = 4 SDs = 0.422 Sol = 0.225 p = redundancy coefficient Seismic Load Effect (E) = P QE +/- 0.2SDs D = p QE +/- 0.084D QE = horizontal seismic force Special Seismic Load Effect (Em) = Ro QE +/- 0.2SDs D = 3.0 QE +/- 0.084D D = dead load PERMITTED ANALYTICAL PROCEDURES Simplified Analysis - Use Equivalent Lateral Force Analysis Equivalent Lateral -Force Analysis - Permitted Building period coal. (CT) = 0.020 Cu = 1.47 Approx fundamental period (Ta) = CTh; = 0.167 sec x= 0.75 Tmax = CuTa = 0.247 User calculated fundamental period (T) = 0 sec Use T = 0.167 Long Period Transition Period (TL) = ASCE7 map = 6 Seismic response coef. (Cs) = SDSI/R = 0.065 need not exceed Cs = sdt I /RT = 0.207 but not less than Cs = 0.044Sdsl = 0.019 USE Cs = 0.065 Design Base Shear V = 0.065W See ASCE7 Sect 12.3.3.4 for 25% connection increase Model & Seismic Response Analysis - Permitted (see code for procedure) ALLOWABLE STORY DRIFT Structure Type: All other structures Allowable story drift = 0.020hsx where hsx is the story height below level x WCA Structural Engineering, Inc. JOB TITLE Maverik -Type IV 442 North Main Street, #200 Rexburg, ID Maverik Bountiful, Utah 84010 JOB NO. 14082 SHEET NO. Phone: (801) 298-1118, Fax: (801) 298-1122 CALCULATED BY JC DATE 4/24/14 email: wca@wcaeng.com CHECKED BY JC DATE Seismic Loads - cont.: Strength Level Forces Seismic Design Category (SDC)= D I = 1.00 CONNECTIONS Sds = 0.422 Force to connect smaller portions of structure to remainder of structure Fp = 0.133Sdswp = 0.056 wp or Fp = 0.05wp = 0.05 wp Use Fp = 0.06 wp wp = weight of smaller portion Beam, girder or truss connection for resisting horizontal force parallel to member Fp = no less than 0.05 times dead plus live load vertical reaction Anchorage of Structural Walls to elements providing lateral support Fp = 0.20Ww = 0.20 Ww or See ASCE7 Sect 12.11.2.1 for flexible diaphrams Fp=0.4SdslWw = 0.169 Ww (for rigid diaphragm) Fp = 0.2 Ww but Fp shall not be less than 5 psf MEMBER DESIGN Bearing Walls and Shear Walls (out of plane force) Fp = 0.4SdslWw = 0.169 ww but not less than 0.10 ww Use Fp = 0.17 ww Diaphragms Flo = (Sum Fi/Sum Wi)Wpx+Vpx = (Sum Fi/Sum Wi)Wpx+Vpx need not exceed 0.4 Sdsl Wpx + Vpx = 0.169 Wpx + Vpx but not less than 0.2 Sdsl Wpx + Vpx = 0.084 Wpx + Vpx ARCHITECTURAL COMPONENTS SEISMIC COEFFICIENTS Architectural Component : Cantilever Elements (Unbraced or Braced to Structural Frame Below Its Center of Mass): Parapets and cantilever interior nonstructural walls Importance Factor (Ip) : 1.0 Component Amplification Factor (ad = 2.5 h= 17.0 feet Comp Response Modification Factor (Rp) = 2.5 z= 17.0 feet z/h = 1.00 Fp = 0.4apSdslpWp(1+2z/h)/Rp = 0.506 Wp not greater than Fp = 1.6SdslpWp = 0.675 Wp but not less than Fp = 0.3SdslpWp = 0.127 Wp use Fp = 0.506 Wp MECH AND ELEC COMPONENTS SEISMIC COEFFICIENTS Mech or Electrical Component : Elevator and escalator components. Importance Factor (Ip) : 1.5 Component Amplification Factor (ap) = 1 h= 17.0 feet Comp Response Modification Factor (RP) = 2.5 z= 17.0 feet z/h = 1.00 Fp = 0.4apSdslpWp(1+2z/h)/Rp = 0.304 Wp not greater than Fp = 1.6SdslpWp = 1.012 Wp but not less than Fp = 0.3SdslpWp = 0.190 Wp use Fp = 0.304 Wp WCA Structural Engineering, Inc. 442 North Main Street, #200 Bountiful, Utah 84010 Phone: (801) 298-1118, Fax: (801) 298-1122 email: wca@wcaeng.com Snow Loads : ASCE 7-10 Roof slope = 1.2 deg Horiz. eave to ridge dist (W) = 52.0 ft Roof length parallel to ridge (L) = 99.0 ft Type of Roof Monoslope Ground Snow Load Pg = 50.0 psf Risk Category = II Importance Factor 1 = 1.0 Thermal Factor Ct = 1.00 Exposure Factor Ce = 1.0 Pf = 0.7*Ce*Ct*I*Pg = 35.0 psf Unobstructed Slippery Surface no Sloped -roof FactorCs = 1.00 Balanced Snow Load _ Ps = 35.0 psf Rain on Snow Surcharge Angle 1.04 deg Code Maximum Rain Surcharge 5.0 psf Rain on Snow Surcharge = 0.0 psf Ps plus rain surcharge = 35.0 psf Minimum Snow Load Pm = 20.0 psf Uniform Roof Design Snow Load = 35.0 psf Upwind fetch lu = 46.0 ft\ Projection height In = 8.0 ft Snow density g = 20.5 pcf Balanced snow height hb = 1.71 It hd = 2.14 ft he = 6.29 It he/hb >0.2 = 3.7 Therefore, design for drift Drift height (hd) = 2.14 ft Drift width w = 8.55 ft Surcharge load: pd = y*hd = 43.8 psf Balanced Snow load: - 35.0 psf 78.8 psf Windward Snow Drifts 2 -Against walls, parapets, etc> 15' r Upwind fetch lu = 99.0 It Projection height In = 3.0 ft Snow density g = 20.5 pcf Balanced snow height hb = 1.71 ft hd = 3.03 ft he = 1.29 If he/hb >0.2 = 0.8 Therefore, design for drift Drift height (hc) = 1.29 ft Drift width w = 10.34 ft Surcharge load: pd = y*hd = 26.5 psf Balanced Snow load: - 35.0 psf 61.5 psf JOB TITLE Maverik - Type IV Rexburg, ID Maverik JOB NO. 14082 SHEET NO. CALCULATED BY JC DATE 4/24/14 CHECKED BY JC DATE Nominal Snow Forces NOTE: Alternate spans of continuous beams and other areas shall be loaded with half the design roof snow load so as to produce the greatest possible effect - see code. than 15' Ion � '.' W� (P- �� e � I �0 i. 11 Surcharge Load Due to Drilling Lu Balanced Snow Load WCA Structural Engineering, Inc. JOB TITLE Maverik - Type IV 442 North Main Street, #200 Rexburg, ID Maverik Bountiful, Utah 84010 JOB NO. 14082 SHEET NO. Phone: (801) 298-1118, Fax: (801) 298-1122 CALCULATED BY JC _ DATE 4/24/14 email: wca@wcaeng.com CHECKED BY JC DATE Roof Design Loads Items Description Multiple psf (max) psf (min) Roofing Single ply 1.0 0.7 Decking Metal Roof deck, 1.5, 20 ga. 2.5 2.0 Framing Steel roof joists & girders 3.0 2.0 Insulation Styrofoam, per 1" thk x 4.0 0.8 0.8 Ceiling Suspended acoustical tile 1.8 1.0 Mech & Elec Mach. & Elec. 2.0 0.0 Misc. Misc. 0.5 0.0 0.0 0.0 Actual Dead Load D 11.6 J 6.5 Use this DL instead • 20.0 • 9.0 Live Load 20.0 0.0 Snow Load 35.0 0.0 Ultimate Wind (zone 2 - 100sf) 23.1 -32.1 ASD Loading D+S 55.0 - D + 0.75(0.6*W + S) 56.6 - 0.6*D + 0.6*W - -13.9 LRFD Loading 1.21) + 1.6 S + 0.5W 91.6 - 1.2D + 1.OW + 0.5S 64.6 - 0.9D+1.0W - -24.0 Roof Live Load Reduction Roof angle 0.25 / 12 1.2 deg 0 to 200 sf: 20.0 psf 200 to 600 sf: 24 - 0.02Area, but not less than 12 psf over 600 sf: 12.0 psf 300 sf 18.0 psf 400 sf 16.0 psf 500 sf 14.0 psf User Input: 450 sf 15.0 psf LOA WCA Structural Engineering, Inc. JOB TITLE Maverik - Type IV 442 North Main Street, #200 Rexburg ID Maverik _ Bountiful, Utah 84010 JOB NO. 14082 SHEET NO. Phone: (801) 298-1118, Fax: (801) 298-1122 CALCULATED BY_JC DATE 4/24/14 email: wca@wcaeng.com CHECKED BY JC DATE CODE SUMMARY Code: International Building Code 2012 Live Loads: Roof 0 to 200 sf: 20 psf 200 to 600 sf: 24 - 0.02Area, but not less than 12 psf over 600 sf: 12 psf Typical Floor N/A Partitions N/A Storage E 125 psf Dead Loads: Floor 0.0 psf Roof 20.0 psf Wind Design Data: Ultimate Design Wind Speed 115 mph Nominal Design Wind Speed 89.08 mph Risk Category II Mean Roof Ht (h) 17.0 ft Exposure Category C Enclosure Classif. Enclosed Building Internal pressure Coef. +/-0.18 Directionality (Kd) 0.85 Roof Snow Loads: Design Uniform Roof Snow load = 35.0 psf Flat Roof Snow Load Pf = 35.0 psf Balanced Snow Load Ps = 35.0 psf Ground Snow Load Pg = 50.0 psf Importance Factor I = 1.00 Snow Exposure Factor Ce = 1.00 Thermal Factor Ct = 1.00 Sloped -roof Factor Cs = 1.00 Earthquake Design Data: Risk Category = II Importance Factor I = 1.00 Mapped spectral response acceleratic Ss = 43.60 %g S1 = 15.50 %g Site Class = D Spectral Response Coef. Sds = 0.422 Sdt = 0.225 Seismic Design Category = D Basic Structural System = Bearing Wall Systems Seismic Resisting System = Light frame (cold -formed steel) walls with wood panels or steel shee Design Base Shear V = 0.065W Seismic Response Coef. Cs = 0.065 Response Modification Factor R = 6.5 Analysis Procedure = Equivalent Lateral -Force Analysis 6 WCA Structural Engineering, Inc. 442 North Main Street, #200 Bountiful, Utah 84010 Phone: (801) 298-1118, Fax: (801) 298-1122 email: wca@wcaeng.com J08 TITLE Maverik - Type IV Rexburg ID Maverik _ JOB NO. 14082 _SHEET NO. CALCULATED BY JC DATE 4/24/14 CHECKED BY JC DATE CODE SUMMARY- continued Component and cladding ultimate wind pressures Roof I Surface Pressure (psf) 10 sf F100sf Areal 10 sf 1 50 sf 1 100 at 47.8 47.8 Negative Zone 1 -29.6 -27.8 -27.1 Negative Zone 2 -49.7 -37.4 -32.1 Negative Zone 3 -49.7 -37.4 -32.1 Positive Zone 1 16.0 16.0 16.0 Positive Zones 2 & 3 27.1 24.3 23.1 Overhang Zone 1&2 -42.6 -40.9 -40.1 Overhang Zone 3 -42.6 -40.9 40.1 Overhang soffit pressure equals adjacent wall pressure reduced by intemal pressure of 4.5 psf Parapet Area Solid Parapet Pressure (psf) 10 sf F100sf 500 at CASE A: Interior zone Corner zone 70.1 70.1 47.8 47.8 44.9 44.9 CASE B: Interior zone Corner zone -49.1 -56.1 -40.8 -43.7 -35.0 -35.0 Wall I Surface Pressure (psf) Areal 10 at 1 100 sf 1 500 at Negative Zone 4 -29.3 -25.4 -22.6 Negative Zone 5 -36.1 -28.1 -22.6 Positive Zone 4 & 5 27.1 23.1 20.3 10 r.. 22 USGS Design Maps Summary Report User -Specified Input Report Title Rexburg, ID Maverik Thu April 24, 2014 1.6:59:13 UTC Building Code Reference Document 2012 International Building Code (which utilizes USGS hazard data available in 2008) Site Coordinates 43.825810N, 111.808370W Site Soil Classification Site Class D - "Stiff Soil" Risk Category I/II/III 2nli 5000m I n Voar City maRquest USGS-Provided Output Ss = 0.436 g S, = 0.155 g Hrl 0 AM EN I CTS fq, 020141 0 MapQuest SMs = 0.633 g S0e = 0.422 g Sn, = 0.338 g So, = 0.225 g For information on how the SS and SS values above have been calculated from probabilistic (risk -targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document. MCER Response Spectrum Design Response Spectrum 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1,60 2.00 0.00 0,20 0.40 0,60 0.80 1.00 1.20 1.40 1.60 1.20 7.00 Period, T (sec) Period, T (sec) '0Q) ;M1+� Structural Engine ering inc. 442 NofIb Main Srtci,1 0nnliful, llmh 89010 801.298-1118 Office 801.298.1122 Fox %vC3 wcec0g.cum b,/4 Li S Is5 � •ZZS PROJECT: H4,Jd `i �L 24,Pa IV Pilarcra:1�8Z G.\TE: TOPIC::� L41,y 1p�L ` 1�qr) k l� EHGMrER; ss o.u�y sem:= ...Y•L�.C�.nAT/T fL OF .P-16,ODJYry .. s. .. .... ... .... l r 9- .:w ra " \r4A �s R ..:Plywo,rJ.:.2iask.. :......... :..:..: I .......... a ..:. �!�.� .. �,�u.� tL sk�d}� � • VAI tti\O b�fu>'}(L ... `�t�lA�- ,T��� `• .N �; Ili �� _ � �� 22 1. ......p :.....:.....:. 1}: 61 �g 4� F 01 ...Y•L�.C�.nAT/T fL OF .P-16,ODJYry .. s. .. .... ... .... l r 9- .:w ra " \r4A �s R ..:Plywo,rJ.:.2iask.. :......... :..:..: I .......... a ..:. �!�.� .. �,�u.� tL sk�d}� � • VAI tti\O b�fu>'}(L ... `�t�lA�- ,T��� Ao oma,.' : 22 1. ......p :.....:.....:. 1}: 61 �g 4� AM Structural PROJECT M (� i C l/ L 1 E- ) PROJECT p. Engineering Inc, CEIENT-Aon! Mraycr DATE: I 1 442 Nonh Main Steel, Bountiful. Utah 84010 801-298-11 I8 Office 801-298-1122 Fax TOPIC: ✓-P-Ci� "/al\ (1'i�\1 C 1!' ENGINEER: o .: rnv:c•e_ . �\�a:�.. -4'\1.x.. S�ta,�u�,Gl� .:.... . b� . U�ZS$rva�ri�t, aS si,ee.` .�kG,k iS L\L 0.,� ms. lel. C:•P •P 2.(� �7EG W1. Ci luSa� Anc� cir� US.i,n'ol.'p?or0ACA GXJs +t_� T =:_� -T ? I.Z4 -1- 1.44 zzoz) _ UOsUS' �.............. .... .................... `l 354 EI bc1z�i� 77-0,04 eACe.I� .,� ....... fad;�,"�'�� Sq.Q��, wat15',n o.� (•»,c, fl gau�jt:.Gu: IoP� 3r. orn Hca_ z �B )P v! !fir Aic�o�'��itr I�qa¢ CICU�ISvz:. D, bns',� . V �� K 3.54 4g .... H`bQc; ...... :..:. 2O'% 1 a9Y,4it0,�s?( 4;-, 4a Structural AM Engineering inG. 447 NORTH MAIN STREET, BOUNTIFUL, UTAH 84010 801-299-1113 OFFICE 801-298-1122FAX wca©wcaeng.com Seismic & Wind Lateral Force Calculations: IBC/ASCE 7 PROJECT: Meverik (Type IV) PROIECTa CLIENT: TOPIC: Lateral Calculations DATE: 11' ENGINEER: W Building Geometry Parameters: (Inputis required for yellow boxesJ Building length: L:= 99ft Diaphragm seismic weight: Building width: W:= 52ft (the factor multipling the 4602ft2 Height of Analyzed diaphragm: Wd;a [20 + [0.2-(35)]]psf 9 9 I-Id;a:= 17ft diaphragm weight is L- W adjusting for the actual sgft Parapet heights: Hpar := 3ft of the roof as the program 2 assumes a box) 4602ft = 0.894 L- W Walls weights: (weights should be averaged for brick veneer, gable walls, etc.) and Percent of wall & parapet that is solid for seismic mass, (value should be entered as a % or a decimal): (percent of wall masses affect the shear wall calculations only) WfF := 15psf Wb, := 15psf Wle := 15psf Wli := 15psf %fl:= 100% 0/06a 100% %IE:= 100% %I; 100% Seismic design data: (see Code Search program sheets) Design short period spectral response acceleration: SOS := 0.422 Response modification factor R:= 6.5 Seismic importance factor I 1.0 E �_ Seismic response coefficient: Cs:= 0.065 Wind design pressures data: (see Code Search program sheets, the minimum loads are also in following calculations) (code calculated values that are negative, should be input as neg.) Wind loads, ASD or Ultimate: UltImateu Edge strip: a:= 5.2ft Longitudinal Wall pressures: End zone: WaIIEZL 26.1psf Longitudinal parapet pressures: Windward: PWPL;= 38.9psf Transverse Wall pressures: End zone: WaIIEZT:= 26.lpsf Transverse parapet pressures: Windward: PWPT;= 38.9psf Seismic Design: Seismic mass breakdown: Roof mass: Wruof Wdfa'L- W Edge zone: 2•a = 10.4ft Interior zone: WaiIIZL:= 17.3psf Leeward: PLPL:=—26.Opsf Interior zone: ' WaIIIZT:= 17.3psf Leeward: PLPT :=—26.Opsf Iidia Front wall mass: Wfnwall1= WR'L'(%fr)'I I/2 +HparJ\I Back wall mass: Wba.wall Wba'L,(%b% )''I H2" + HparJ windmin = 16•psf Wroof = 124.3 -kip WG.wall = 17.1 -kip Wba.wall = 17.1 -kip Left wall mass: Right wall mass: Total building mass Vb_Seismic:= Cs'\Wtotal �F1dia Wle.wall l= Wle'W' %le' 2 '} Hpar/ l Wri.wall := Wrn W'(%ril�• 2 Hdia + Hp. Wtotal Wroof + Wfr.wall + Wba.wall + Wle.wall + Wri.wall Diaphragm force distribution: ASCE 7 Eq. 12.10-1 Fpx = EFI'Wpx/Ewl reduces to Fpx = SDs'IE/R for single story structures (see IBC design manual, vol. 1 for example) Fp. 0.4•SDS•IE if 0.4•SDS•IE < SDS IE R S R IE SD if 0.2•SDS•IE < RS IE < 0.4•SDS•IE 0.2•SDS•IE if 0.2•SDS•IE> SDS•IE R = 0.08 Wle.wall = 9 -kip Wri.wall = 9 -kip Wtotal = 176.35 -kip orb Seismic= 11.46 -kip 0.7• Vb Seismic = 8 kip Diaphragm distribution forces at the top of wall: (diaphragm forces include the mass of the diaphragm and mass of walls perpendicular to direction of force, walls parallel for direction of force carrytheir 2 their own mass.) µ'EPL:= Fp4Wdia'(L) + (Wle+ Wri). Hdia + 1-61)]a = 230.79•plf rr `r 11 WF.pT = Fpx'LWdia'(W) 16a + HparJJ = 135.05•plf 2 Unit diaphragm shears: W µF.pL'2 vL L UL = 60.6•plf I/ L WF.pT'I 2 UT:= W Wind Design: Shear wall force distribution: vT= 128.6•plf Uniform loads at the top of wall (use weighted average of End and Inter. zones with half the building length/width): Transverse direction (front to back) Longitudinal direction (side to side) WaIIEZL'(2•a) + WaII1ZL-[(W•0.5) - (2a)] Hdia WL.wall •— = 176.97•plf (W-0.5) 2 WL.par = (PWPL+ IPLPLI 'Hpar= 194.7•plf AO WL.min I windmin' l6al + (windmin'Hpar) = 184•plf WL.W maCWL.wall + WL.par)l WL.minn] Wal'EZT•(2•a) + WaIIIZT-[(L 0.5) — (2-a)] H& WT.mll := •— = 162.77-plf (L•0.5) 2 WT.par l= (PWPT + I PUT )'Hpar = 194.7•plf WT.min I windmin' lidiaJ + (windmin'Hpa) = 184-plf WT.W ma f(WT.wall + WT.par), WT.min� Wind base shear forces: VL.w WL.w' W VT.w WT.w'L WL.w = 371.7-plf WT.w = 357.5•plf VL.w= 19.3 -kip 0.6 (VL.w) = 11.6kip VTw = 35.4 -kip 0.6'(VT.w) = 21.2kip I'7 r 7 Weld Pattern at Supports Button Punch or 11/2' Top Seam Weld Primer Painted or Galvanized Allowable Diaphragm Shear Values, q (plf, kN/m) and Flexibility Factors, F ((in.11b)x106, (mm/N)x106) SIDELAP SPAN (ft -in., mm)..... ATTACH- 4'-0" 5,.0 6'-0 ,..0„ 81.0.1 _. 91:01, 101-01, 11..0:. 12'•0 _. GAGE MENT 1,220 1,520 1,830 2,130 2,440 2,740 3,050 3,350 3,660 623 598 522 458 397 360 322 q 9.09 8.73 7.62 6.68 5.79 5.25 4.70 BP @ 24 4.1+70R 4.9+56R 6.1+47R 7.5+40R 9.3+35R 11.3+31R 13.9+28R F 23.4+400R 28.0+320R 34.8+268R 42.8+228R 53.1+200R 64.5+177R 79.4+160R ... -_-. _....._. .. ............_._ ...... .._..... ... ......_......_.... ......_......... ._....... ............ 683 646 579 502 445 400 364 q 9.97 9.43 8.45 7.33 6.49 5.84 5.31 BP@ 12".. ..._.... ................ . _ ....__...._ . .....__.... - ...._.__ ___.-_. ...._.__. F 4.0+70R 4.8+56R 5.8+47R 7.0+40R 8.6+35R 10.5+31R 12.7+28R 22.8+400R 27.4+320R 33.1+268R 40.0+228R 49.1+200R 60.0+177R 72.5+160R ... .. ...... . ......__.._ . ... ............. .. ......._....._ _........ .._ ... .. ........._ .... ..._....... ...... 731 720 595 600 521 529 474 q 10.67 10.51 8.68 8.76 7.60 7.72 6.92 TSW @ 24,,.. --- --_.....-- F 12.2+6R 11.8+5R 16.0+4R 15.3+4R 19.4+3R 18.5+3R 22.6+3R 2 n _ 69.7+34R 67.4+29R 91.4+23R 87.4+23R 110.8+17R 105.6+17R 129.0+17R L TSW @ 18" !W TSW @12" TSW @ 6" BP @ 24" 907 851 704 689 667 597 578 q 13.24 12.42 10.27 10.06 9.73 8.71 8.44 F �8.4+6R 8.9+6R 11.8+4R 12.0+41R 12.3+3R 15.0+3R 15.1+3R 48.0+34R 50.8+29R 67.4+23R 68.5+23R 70.2+17R 85.7+17R 86.2+17R 1072 972 877 808 756 715 u 682 q 15.64 14.19 12.80 11.79 11.03 10.43 9.95 F 6.6+6R 7.3+5R 37.7+34R 41.7+29R 1464 a 1310 q 21.37 19.12 F 4.2+6R 4.5+5R 24.0+34R 25.7+29R 962 804 q 14.04 11.73 F 3.7+41R 4.5+32R 21.1+234R 25.7+183F 7,9+4R 8.5+4R 9.1+3R 45.1+23R 48.5+23R 52.0+17R -1204 -_--_--1127 1068 17.57 16.45 15.59 _4.7+4R-- 4.8+4R- 5.0+3R 26.8+23R 27.4+23R 28.6+17R 663 578 502 9.68 8.44 7.33 5.7+27R 7.1+23R 9.0+20R 32.5+154R 40.5+131R 51.4+114R - ...... ..--------- --..... ........--...-- 1034 854 719 622 549 q 15.09 12.46 10.49 9.08 8.01 BP @ 12 3.6+41R 4.4+32R 5.4+27R 6.8+23R 8.5+20R F 20.6+234R 25.1+183R 30.8+154R 38.8+131R 48.5+114R ..... ...._.._ ..... ........_........ _....__-- ......... ........-. 999 969 800 796 691 q 14.58 14.14 11.68 11.62 10.08 TSW @ 24" ...._...._ ..__._ .._... ._.._.... F 9.8+4R 9.5+3R 13.0+3R 12.5+2R 16.0+2R 56.0+23R 54.2+17R 74.2+17R 71.4+i1R 91.4+11R 9.6+3R 54.8+17R 929 13.56 5.2+3R 29.7+17R 454 6.63 11.1+18R 63.4+103R 493 7.19 10.4+18R 59.4+103R 695 10.14 ................. 15.4+2R 87.,9+11R 10.1+3R 57.7+17R 753 10.99 -.. ----- ___.... 5.3+3R 30.3+17R 406 5.93 13.8+16R 78.8+91R 448 6.54 12.8+16R 73.1+QIR 621 9.06 ................ 18.8+2R 107.4+11R 375 5.47 16.7+15R 95.4+86R 411 6.00 15.5+15R 88.5+86R 629 9.18 ........-. 18.2+2R 103.9+11R 1224 1134 937 908 882 779 769 757 q 17.86 16.55 13.67 13.25 12.87 11.37 11.22 11.05 TSW @ 18" 6.8+4R 7.3+3R 9.6+3R 9.9+2R 10.2+2R 12.5+2R 12.7+2R 12.9+2R F 38.8+23R 41.7+17R 54.8+17R 56.5+11R 58.2+11R 71.4+11R 72.5+11R 73.7+11R 1431 1292 1189 1091 1016 958 912 818 q 20.88 18.86 17.35 15.92 14.83 13.98 13.31 11.94 TSW@12'... .......... .-_. .-_------ F ---- _.. .......---._. F 5.4+4R 6.0+3R 6.6+3R 7.1+2R 7.6+2R 8.1+2R 8.5+2R 9.0+2R 30.8+23R 34.3+17R 37.7+17R 40.5+11R 43.4+11R 46.3+11R 48.5+11R 51.4+11R 1965 1745 1596 1488 1406 1223 990 818 q 28.68 25.47 23.29 21.72 20.52 17.85 14.45 11.94 ,. TSW @ 6.. - __... __.� ...... ._ ....... _.... _ .-.----- F 3.5+4R 3.7+3R 3.9+31R 4.1+2R 4.2+2R 4.4+2R 4.5+2R 4.6+2R 20.0+23R 21.1+17R 223+17R 23.4+11R 24.0+11R 25.1+11R 25.7+11R 26.3+11R BP = Button Punch; TSW = Top Seam Weld 342 4.99 20.4+14R 116.5+80R 380 5.55 18.6+14R 106.2+80R 573 8.36 21.5+1R 122.8+6R 688 10.04 15.1+1R 86.2+6R 688 10.04 9.4+1R 53.7+6R _._688 ,.... 10.04 4.8+1 R 27.4+6R 52 Catalog VR2 4 c 11/2" (38 mm) Deep Roof Deck Primer Painted or Galvanized ALLOWABLE UNIFORM LOADS (psf, N/n12 rm OX O1 n (n D r Catalog VR2 27 19 SPAN (ft -in., mm) 4'-0" 5'-0" 5'-6" 6'-0" 6'-6" 7'A" T-6" 8'-0" 8'-6" 9'-0" 9'-6" 10'-0" 10'4" 11'-0" 11'-6" 12'-0" SPAN GAGE 1,220 1,520 1,680 1,830 1,980 2,130 2,290 2,440 2,590 2,740 2,900 3,050 3,200 3,350 3,500 3,660 178 114 94 79 57 58 51 4439 35 31 28 STRESS 8,523 5,458 4,501 3,783 3,,208 2,777 2,442 2,107 1,867 1,675 1,484 1,341 22 92 69 53 42 34 27 22 19 16 13 11 1-/240 +++ 4,405 3,304 2,538 2,011 1,628 1,293 1,053 910 766 622 527 223 143 118 99 85 73 64 56 49 44 40 36 32 30 27 25 STRESS 10,677 6,847 5,650 4,740 4,.070 3,495 3,064 2,681.__.2,345 2,107 1,915 1,724 1,532 1,436 1,293 1,197 W 2U 2222... _2222. 2222... 2_222. .............. J 222 113 85 66 52 41 34 28 23 19 17 14 12 11 9 8 /n 1-/240 10,629 5,410 4,070 3,160 2,490 1,963 1,628 1,341 1,101 910. 814. 670 575 527 431 383 Z 300 196 162 136 116 100 87 76 68 60 54 49 44 40 37 34 STRESS 14,364 9,385 7,757 6512 5,554 4,788 3,639 3,256 2,873._ 2,586 2,346 2,107 1,915 1,772 1,628 0 O2222-......... .4,166 -2222... 2222.._ 22._._-. 159 119 92 72 58 47 39 32 27 23 20 17 15 13 11 -� U240 +N 7,613 5,698 4,405 3,447 2,777 2,250 1,867 1,532 1,293 1,101 958 814 718 622 527 300 250 207 174 148 127 111 98 86 77 69-� 62 57 52 47� 43 STRESS 14,364 11,970 9,911 8.331 7,086 6,081 5,315 4,692 4,118 3,687 3,304 2,969 2,729 2,490 2,250 2,059 16 ......._._.._..__ __ ._..�.. __.._....___._.._______ _.._____._ 2__22_2-_._..._,_�__.__.__.. 198 149 115 90 72 59 48 40 34 29 25 21 19 16 14 1-/240 +++ 9,480 7,134 5,506 4,309 3,447 2,825 2,298 1,915 1,628 1,389 1,197 1,005 910 766 670 188 120 99 84 71 61. 54 47 42 37 33 30. STRESS 9,001 5,746 4,740 4,022 3,399 2,921 2,586 2,250 2011 1,772 1,580 1,436 22 ___ ..___._ __._ __ _. _.. -.__.. 2_8_22 32 28 1-/240 +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ 1,532 1,341 2228._ 236 151 125 105 89 77 67 59 52 47 42 38 34 31 29 26 STRESS 11,300 7,230 5,985 5,027 4,261 3,687 3,208 2,825 2,490 2,250 2011 1,819 1,628 1,484 1389 1,245 W 2 .__ 2222. _..- _.. 2222. _ _ 2822. 2 101... 40 34 29 26 22 20 ib 1-/240 ++i +++ +++ +++ +++ +++ +++ +++ +++ 2 2,250 1,915 1,628 1,389 1,245 1,053 958 .. ... _. 300 204 8222 . 168 ,2288. 141 2822 121 2888 104 91 2222.. 80 70 2222.. 63 56 2288.,. 51 46 _.__.... 42 39 .. _.. 35 0 STRESS 14,364 9,768 8,044 6,751 5,794 4,980 4,357 3,830 3,352 3,016 2,681 2,442 2,202 2,011 1,867 1,676 A 0 1 2882 __. ....... 2882. -....316 282811.. 56 48 36 28 1-/240 +++ ++t ... +++ .. +++ i++ 222,2.. +++ +++ +++ +++ +++ 2681 . 2,298 .. 1,963 ,9 1,724 1,484 ,4 1,341 300 254 210 176 150 129 113 99 88 78 70 63 57 52 48 44 STRESS 14,36412,16210,055 8,427 7,182 6,177 5,410 4,740 4,213 3,735 3,352 3,016 2,729 2,490 2,298 2,107 16 70 60 51 45 39 34 1-/240 +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ 3,352 2,873 2,442 2,155 1,867 1,628 235 150 124 105 89 77 67 59 52 46 42 38 STRESS 11,252 7,182 5,937 5,027 4,261 3,687 3,208 2,825 2,490 2,202 2,011 1,819 22 100 79 63 51 42 35 30 25 22 1-/240 +++ +++ +++ 4,788 3,783 3,016 2,442 2,011 1,676 1,436 1,197 1,053 295 188 156 131 112 96 84 74 65 58 52 47 43 39 36 33 STRESS 14,125 9001 7,469 6,272 5,363 4,597 4,022 3,543 3112 2,777 2,490 2,250 2,059 1,867 1,724 1,580 W 2U . 8882__ 288 8888 ._ _...___ 78 63 52 44 37 23 20 18 15 -� d L/240 +++ +++ +++ 5,937 ,93 4,644 ,6 3,735 3,016 2,490 2,107 1,772 1,484 ,4 1,293 ,2 1,101 958 862 718 300 255 STRESS 210 177 151 130 113 99 88 79 71 64 58 53 48 44 1436412,20910,055 8,475 7,230 6,224 5,410 4,740 4,213 3,783 3,399 3,064 2,777 2,538 2,298 2,107 AO 1 O 173 136 109 89 73 61 51 44 37 32 28 25 22 LI240 i++ +++ +++ 8,283 6,512 5,219 4,261 3,495 2,921 2,442 2,107 1,772 1,532 1,341 1,197 1,053 300 300 262 220 188 162 141 124 110 98 88 79 72 65 60 55 STRESS 14,364 14 364 12,545 10.534 9,001 7,757 6,751 5,937 5,267 4,692 4,213 3,783 3,447 3,112 2,873 2,633 16 216 170 136 111 91 76 64 54 47 40 35 31 27 1-/240 ++i ++i +++ 10,342 8,140 6,512 5,315 4,357 3,639 3,064 2,586 2,250 1,915 1,676 1,484 1,293 rm OX O1 n (n D r Catalog VR2 27 19 Tortional effects on walls with ridged roof diaghagm Maverik Type IV length (ft) 99 Width (ft) 48 roof ht (ft) 17 Wall wt 15 psf Roof wt 20 lost Wt of wall Centriod of wall least clear wall lenght (ft) ht (ft) in lbs X (ft) Y (ft) Wt " X Wt " Y opening It A 15.83 17 4036.65 7.67 0 30961.11 0 17 B 48 17 12240 0 24 0 293760 17 C 39.25 17 10008.75 19.8 48 198173.3 480420 8 D 47.42 17 12092.1 66.33 48 802069 580420.8 8 E 9.08 17 2315.4 90 43.5 208386 100719.9 8 F 8.83 17 2251.65 94.5 32 212780.9 72052.8 17 G 9.83 17 2506.65 99 27.25 248158.4 68306.21 8 H 10.83 17 2761.65 99 13.5 273403.4 37282.28 8 1 16.83 17 4291.65 89 8.25 361956.9 35406.11 17 J 8.16 17 2080.8 82 4 170625.6 8323.2 17 K 15.33 17 3909.15 74.5 0 291231.7 0 17 L 0 17 0 0 0 0 0 8 M 0 17 0 0 0 0 0 8 N 0 17 0 0 0 0 0 8 0 0 17 0 0 0 0 0 8 P 0 17 0 0 0 0 0 8 lenght widht Roof 84.635 48 81249.6 42.3175 24 3438280 1949990 Total wt Total Total 139744.1 6256026 3626682 Centroid gravity ft fixity coef 0.4 X bar 44.77 0.1 fixed Ybar 25.95 0.4 cantilever Centroid of wall Force induced in wall Orientation Rigidity in the to center of rigidity by lateral Panel Rigidities X Y X Y D (R' D) (R * DA2) X (lb) A 1.22 1 0 1.22 0.00 43.50 53.21 2314.50 150.67 B 8.06 0 1 0.00 8.06 44.20 356.39 15752.58 1009.22 C 15.50 1 0 15.50 0.00 4.50 69.72 313.72 197.44 D 19.04 1 0 19.04 0.00 4.50 85.65 385.39 242.55 E 1.86 0 1 0.00 1.86 45.80 85.15 3899.77 241.12 F 0.29 1 0 0.29 0.00 11.50 3.35 38.54 9.49 G 2.18 0 1 0.00 2.18 54.80 119.19 6531.77 337.52 H 2.61 0 1 0.00 2.61 54.80 143.14 7844.22 405.34 1 1.40 1 0 1.40 0.00 35.25 49.28 1737.23 139.56 J 0.24 0 1 0.00 0.24 37.80 8.91 336.84 25.23 K 1.14 1 0 1.14 0.00 43.50 49.54 2154.83 140.27 L 0.00 0 1 0.00 0.00 44.20 0.00 0.00 0.00 M 0.00 0 1 0.00 0.00 44.20 0.00 0.00 0.00 N 0.00 0 1 0.00 0.00 44.20 0.00 0.00 0.00 O 0.00 0 1 0.00 0.00 44.20 0.00 0.00 0.00 P 0.00 0 1 0.00 0.00 44.20 0.00 0.00 0.00 Center of rigidity Center of gravity Length Width SUM 41309.39 X bar 44.20 44.77 99 48 Y bar 43.50 25.95 Eccentricity Additional 5% ecc Force induced by IBC (Ib) wind Moment induced (lb'ft) X 0.57 4.95 5.52 21200 X Y Y 17.55 2.40 19.95 116978.2 422901.7 Shear in each wall Wall Moments induced Walls in line Applicable wall wall line laterally induced line Tortion Shears rigidities total rigidit total shear X Y wall line A 672.06 0.00 1 2561.343 1 1297.756 2.36186 A 2.36 1297.76 B 0.00 11437.80 5 17156.76 2 18973.96 34.53178 B 8.06 11437.80 C 8514.40 0.00 2 1579.518 3 768.1859 1.398065 C 34.53 18973.96 D 10459.56 0.00 2 1940.368 4 160.0982 0.291372 D 34.53 18973.96 E 0.00 2637.18 7 1928.942 5 11437.8 8.063227 E 1.14 2637.18 F 160.10 0.00 4 161.313 6 334.4055 0.235744 F 0.29 160.10 G 0.00 3085.33 8 2700.196 7 2637.184 1.138741 G 4.79 6790.61 H 0.00 3705.28 8 3242.756 8 6790.608 4.787127 H 4.79 6790.61 1 768.19 0.00 3 2372.453 1 1.40 768.19 J 0.00 334.41 6 428.9805 1 0.24 334.41 K 625.70 0.00 1 2384.648 K 2.36 1297.76 L 0.00 0.00 4 0 L 0.29 160.10 M 0.00 0.00 4 0 M 0.29 160.10 N 0.00 0.00 4 0 N 0.29 160.10 O 0.00 0.00 4 0 O 0.29 160.10 P O.Ob 0.00 4 0 P 0.29 160.10 Moment Moments induced Combined Total shear in wall Shear/length IBC Tortion Moment A 11425.01 2561.343 13986.35 672.0592 42.4547830387 B 194442.6 17156.76 211599.4 11437.8 238.28754476 C 144744.8 1579.518 146324.3 8514.399 216.927366391 D 177812.5 1940.368 179752.9 10459.56 220.572770208 E 73193.29 1928.942 75122.23 4305.488 474.172648333 F 2721.67 161.313 2882.983 160.0982 18.1311695327 G 52450.62 2700.196 55150.82 3085.331 313.868848456 H 62989.71 3242.756 66232.47 3705.277 342.130862524 1 13059.16 2372.453 15431.61 768.1859 45.643843288 1 5684.894 428.9805 6113.874 334.4055 40.9810690468 K 10636.85 2384.648 13021.49 625.6968 40.8151846625 L 0 0 0 0 ERR M 0 0 0 0 ERR N 0 0 0 0 ERR O 0 0 0 0 ERR P 0 0 0 0 ERR Uplift on walls roof trib on wall A -2380.55 24.5 B -1898.71 3 C -4004.25 24.5 D -5543.4 24.5 E 6935.469 S/HD10S good for 111201b 3 F -1052.47 12 G 4117.342 HTT4 good for 43951b 3 H 4473.846 S/HD10S good for 111201b 3 1 -1817.56 12 J -314.754 3 K -2310.44 24.5 L ERR M ERR N ERR O ERR P ERR for HTT4 use: SB5/8x24 good for Wind & SDC A -B = 66751b SDC C -F = 57301b for S/HD10S use: SB7/8x24 good for Wind & SDC A -B = 93551b SDC C -F = 78551b c2f Tortional effects on walls with ridged roof diaghagm Maverik Type IV length (ft) 99 Width (ft) 48 roof hl (ft) 17 Wall wt 15 psf Roof wt 20 psf Wt of wall Centriod of wall least clear wall lenght (ft) ht (ft) in lbs X (ft) Y (ft) Wt' X Wt " Y opening ft A 15.83 17 4036.65 7.67 0 30961.11 0 17 B 48 17 12240 0 24 0 293760 17 C 39.25 17 10008.75 19.8 48 198173.3 480420 8 D 47.42 17 12092.1 66.33 48 802069 580420.8 8 E 9.08 17 2315.4 90 43.5 208386 100719.9 8 F 8.83 17 2251.65 94.5 32 212780.9 72052.8 17 G 9.83 17 2506.65 99 27.25 248158.4 68306.21 8 H 10.83 17 2761.65 99 13.5 273403.4 37282.28 8 1 16.83 17 4291.65 89 8.25 381956.9 35406.11 17 J 8.16 17 2080.8 82 4 170625.6 8323.2 17 K 15.33 17 3909.15 74.5 0 291231.7 0 17 L 0 17 0 0 0 0 0 8 M 0 17 -0 0 0 0 0 8 N 0 17 0 0 0 0 0 8 O 0 17 0 0 0 0 0 8 P 0 17 0 0 0 0 0 8 Ienght widht Roof 84.635 48 81249.6 42.3175 24 3438280 1949990 Total wt Total Total 139744.1 6256026 3626682 Centroid gravity ft fixity coef 0.4 X bar 44.77 0.1 fixed Ybar 25.95 0.4 cantilever Centroid of wall Force induced in wall Orientation Rigidity in the to center of rigidity by lateral Panel Rigidities X Y X Y D (R' D) (R * D^2) X (lb) A 1.22 1 0 1.22 0.00 43.50 53.21 2314.50 56.86 B 8.06 0 1 0.00 8.06 44.20 356.39 15752.58 380.84 C 15.50 1 0 15.50 0.00 4.50 69.72 313.72 74.51 D 19.04 1 0 19.04 0.00 4.50 85.65 385.39 91.53 E 1.86 0 1 0.00 1.86 45.80 85.15 3899.77 90.99 F 0.29 1 0 0.29 0.00 11.50 3.35 38.54 3.58 G 2.18 0 1 0.00 2.18 54.80 119.19 6531.77 127.37 H 2.61 0 1 0.00 2.61 54.80 143.14 7844.22 152.96 1 1.40 1 0 1.40 0.00 35.25 49.28 1737.23 52.66 J 0.24 0 1 0.00 0.24 37.80 8.91 336.84 9.52 K 1.14 1 0 1.14 0.00 43.50 49.54 2154.83 52.93 L 0.00 0 1 0.00 0.00 44.20 0.00 0.00 0.00 M 0.00 0 1 0.00 0.00 44.20 0.00 0.00 0.00 N 0.00 0 1 0.00 0.00 44.20 0.00 0.00 0.00 O 0.00 0 1 0.00 0.00 44.20 0.00 0.00 0.00 P 0.00 0 1 0.00 0.00 44.20 0.00 0.00 0.00 Center of rigidity Center of gravity Length Width SUM 41309.39 X bar 44.20 44.77 99 48 Y bar 43.50 25.95 Eccentricity Additional 5% ecc Force induced by IBC (lb) seism Moment induced (lb'ft) X 0.57 4.95 5.52 8000 X Y, Y 17.55 2.40 19.95 44142.7 15955.5 Shear in each wall Wall Moments induced Walls in line Applicable wall wall line laterally induced line Tortion Shears rigidities total rigidit total shear X Y wall line A 253.61 0.00 1 966.5447 1 489.7192 2.36186 A 2.36 489.72 B 0.00 4316.15 5 6474.248 2 7159.985 34.53178 B 8.06 4316.15 C 3212.98 0.00 2 596.0445 3 289.8815 1.398065 C 34.53 7159.98 D 3947.00 0.00 2 732.2142 4 60.41443 0.291372 D 34.53 7159.98 E 0.00 995.16 7 727.9026 5 4316.152 8.063227 E 1.14 995.16 F 60.41 0.00 4 60.87284 6 126.1908 0.235744 F 0.29 60.41 G 0.00 1164.28 8 1018.942 7 995.1639 1.138741 G 4.79 2562.49 H 0.00 1398.22 8 1223.682 8 2562.494 4.787127 H 4.79 2562.49 1 289.88 0.00 3 895.2653 1 1.40 289.88 J 0.00 126.19 6 161.8794 1 0.24 126.19 K 236.11 0.00 1 899.867 K 2.36 489.72 L 0.00 0.00 4 0 L 0.29 60.41 M 0.00 0.00 4 0 M 0.29 60.41 N 0.00 0.00 4 0 N 0.29 60.41 O 0.00 0.00 4 0 O 0.29 60.41 P 0.00 0.00 4 0 P 0.29 60.41 Moment IBC 4311.323 73374.58 54620.67 67099.07 27620.11 1027.045 19792.69 23769.7 4927.985 2145.243 4013.904 0 0 0 0 0 Uplift on walls A -2829.93 B -4420.96 C -6300.41 D -7878.14 E 1916.396 F -1244.39 G 795.069$ H 852.4 3 1 -230 .69 J -748535 K -27 2.46 L ERR M ERR N ERR O ERR P ERR Moments induced Tortion 966.5447 6474.248 596.0445 732.2142 727.9026 60.87284 1018.942 1223.682 895.2653 161.8794 899.867 0 0 0 0 0 Combined Moment 5277.868 79848.83 55216.72 67831.28 28348.01 1087.918 20811.63 24993.38 5823.25 2307.122 4913.771 0 0 0 0 0 S/HD10S good for 111201b HTT4 good for 43951b S/HD10S good for 11 120l Total shear in wall 253.6073 4316.152 3212.981 3947.004 1624.712 60.41443 1164.276 1398.218 289.8815 126.1908 236.112 0 0 0 0 0 for HTT4 use: SB5/8x24 good for Wind & SDC A -B = 66751b SDC C -F = 57301b for S/HD10S use: SB7/8x24 good for Wind & SDC A -B =93551b SDC C -F = 78551b Shear/length 16.0206728446 89.9198282114 81.8593835439 83.2350076255 178.933074843 6.84195076705 118.441074889 129.105985858 17.2240918068 15.4645543573 15.4019564764 ERR ERR ERR ERR ERR roof trib on wall 24.5 3 24.5 24.5 3 12 3 3 12 3 23 North American Standard For Cold -Formed Steel Framing - Lateral Design with Supplement No. 1 lsv c = 2 , G Table C2.1.3 jZ . 2.- c, United States andMextco r Nominal Shear Strength (Rn) for Seismic and Other In -Plane Loads for Shear Walls 1,4,7,8 (Pounds Per Foot) 13 Assembly Description Max. Aspect Ratio Fastener Spacing at Panel Edges2 (Inches) Deslgnati on Thicknesssa of Stud, Track and Required Sheathing Screw (h/w) 6 4 3 2 Blocking Size (mils) 2:13 780 990 - - 33 or 43 8 15/32" Structural 1 sheathing (4 -ply), one side 2:1 890 1330 1775 2190 43 or 54 8 68 10 2:13 700 1 915 - - 33 8 13 825 1235 1545 2060 43 or 54 8 7/16" OSB, one side 2350 54 8 2:1 940 1410 1760 2:1 1232 1848 2310 3080 68 10 0.018" steel sheet, one side 2:1 390 33 (min.) 8 4:1 1000 1085 1170 43 (min.) 8 0.027" steel sheet, one side 2:13 647 710 778 845 33 (min.) 8 1. Nominal strength shall be multiplied. by the resistance factor (f) to determine oesign srrengm or divided by mre sarery factor (S)) to determine allowable strength as set forth in Section WA. 2. Screws in the field of the panel shall be Installed 12 Inches (305 mm) o.c. unless otherwise shown. 3. Shear wall height to width aspect ratios (h/w) greater than 2A, but not exceeding 4:1, shall be permitted provided the nominalstrength values are multiplied by 2w/h. See Section 02.1. 4. See Section 02.1 for requirements for sheathing applied to both sides of wall. 5. Unless noted as (min.), substitution of a stud or track of a different designation thicknessis not permitted. 6. Wall studs and track shall be of ASTM A1003 Structural Grade 33 (Grade 230) Type H steel for members with a designation thickness of 33 and 43 mils, and A1003 Structural Grade 50 (Grade 340) Type H steel for members with a designation thickness equal to orgreater than 54 mils. 7. For wood structural panel sheathed shear walls, tabulated Rn values applicable for short-term load duration (seismic loads). For other in -plane lateral loads of normal or permanent load duration as defined by the RMPA NDS, the values In the table above for wood structural panel sheathed shear walls shall be multiplied by 0.63 (normal) or 0.56 (permanent). 8. For SI: 1" = 25.4 mm,1 foot = 0.305 m, 1 Ib = 4.45 N. G� �A— rye �1 ftj 2,5 S1 Holdowns & Tension Ties The S/HD series of holdowns is designed for installation with either screws or bolts into the studs or column. The S/HDS series installs with #14 screws and has been designed to utilize fewer fasteners t0 reduce installation time. The S/HDB series is ideal for bolt -on applications where the cold -formed stud manufacturer can pre -punch the bolt holes. MATERIAL: See table FINISH: Simpson Strong -Tie gray paint. Hot -dip galvanized is available; see Corrosion -Information, page 12-13. INSTALLATION: • Use all specified fasteners; some models have extra fastener holes. See General Notes. • Anchor bolt washer is not required. • Standard washers are required on stud bolt nuts for model S/HDB. - • Thin wall socket (OD=2' maximum) is required for S/HD15 to tighten the 1' anchor bolt. • Stud bolts - use A307. • Boundary members (back-to-back studs) design shall be by Designer. - • S/HDS and S/HDB holdowns can be - welded per Designer's recommendation and specification. To tie back-to-back DS tback.to- to stud members together, the Designer must determine the fasteners required bind members to act as one unit. d Welders and welding procedures shallion be qualified as specified in AWS 01.3.Welded connections used for cold -formed steel structural members in which the thickness of the thinnest connected part is 0.18 inch or less shall comply to 2001 AISI NAS Specification Section E2. CODE: See page 8 for Code Listing Key Chart. ® Available with additional corrosion protection. Check with Simpson Strong -Tie. 115B Typical S/HD10B PACO Column Installation Contact Simpson Strong -ire. 4 V � rt-"' •� r vj S/HD15S (S/HD8S and 71D10S similar) (IW smous {` 2'b'smolos 2W SMS Typical S/HD10S Dietrich Stud Application Contact Simpson Strong -Tie. Model H Fasteners Stud Member Thickness frill (ga)4 ASD Tension Load Deflection at AS Load° LRFD Tension Load Deflection at: LRFD Leslie Nominal Tension Loadr Code Ref Found. Anchor Diameter' Stud Fasteners S/HD8S 11 r/4 17 - #14 2-33 (2-20aa) 7335 0.120 11715 0.204 13720 2-43 2-18 a 8750 0.086 13975 0.146 21435 2-54 2-16 a 8855 0.106 14145 0.162 21700 Steel Fixture 10840 0.053 17335 0.072 32525 S/HD1 OS 1311 %a 22 - #14 2.33 (2-20aa) 7400 0.122 11815 0.192 13835 2.43 (2-18aa) 11120 0.112 17755 0.124 1 20795 2-54 (2-16aa) 12220 0.096 19520 0.145 1 29940 Steel Fixture 12375 0.043 19820 - 0.061 1 33535 S/HD15S 17 1 30 -#14 2-43 2-18 a 12110 0.096 19340 0.164 22645 2-54 2-16 a 13500 0.110 21565 0.130 33075 Steel Fixture 15810 0.043 25320 0.065 42845 S/HDBB 11 Ye 2 - a/4 Dia 2-33 2-20 a 3895 0.081 5620 0.144 8645 FC1 2-43 2-18 a 5345 0.098 7710 0.146 11865 2-54 2-16 a 8950 0.082 14280 0.141 20310 Steel Fixture 9080 1 0.069 14545 0.104 22975 S/HD108 13Y2 r/4 3-3/4Dia 2-33 2-20 a 5840 0.070 1 8430 0.124 12970 2-43 2-18 a 8015 0.087 11565 0.120 17795 2-54 2-16 a 12090 0.125 19720 0.230 28050 Steel Fixture 15635 0.102 24955 0.123 35495 S/HD15B 17 1 4 - a/4 Dia 2-43 2-18 a 10690 0.118 15425 0.179 22165 2-54 2.16 a 16020 0.090 25565 0.12 1 36360 Steel Fixture 18690 0.104 29825 1 0.139 1 42425 1. Designer shall specify the foundation anchor material type, length, embedment and configuration. Tabulated loads may exceed anchor bolt ASTM A36 at A307 tension capacities. 2. See pages 26-30 for anchor bolt options. 3. See page 21 for anchor bolt retrofit options. 4. Stud design by Specifier. Tabulated loads are based on a minimum studs thickness for fastener connection. 5. ''%' self -drilling screws can be substituted for #14. 6. Deflection at ASD and LRFD Loads includes fastener slip, holdown elongation and anchor bolt elongation (L=4'). 7. Nominal Tension Load is based on the average ultimate (peak) load from tests. AISI Lateral Design standard requires holdown to have nominal strength to resist lesser of amplified seismic load or what the system can deliver. 7 1 a5• 33 SIMP50N HTT, S/LTT & SMU Tension Ties The HTT and S/HTT is a single -piece formed tension tie—no rivets, and a 4 -ply formed seat. No washers are required. The S/LTT, S/HTT and HITT Tension Ties are ideal for retrofit or new construction projects. They provide high-strength, post -pour, concrete -to -steel connections. MATERIAL: S/HTT14, HTT4, HTT5 111 mil (11 go) S/LTT20B — Strap: 97 mil (12 ga) Plate: 229 mil (3 ga) FINISH: Galvanized INSTALLATION: • Use all specified fasteners. • Use the specified number and type of screws to attach the strap portion to the steel stud. Bolt the base to the wall or foundation with a suitable anchor; see table for the required bolt diameter. • Do not install S/LTT20 raised off of the bottom track. CODE: See page 8 for Code Listing Key Chart. u- ���y, J lsher lot uired HTT5 (HTT4 similar) U.S. Patent 5,467,570 Load Transfer Plate - Washer not required S/LTT20 B Available with additional corrosion protection. Check with Simpson Strong -Tie. Typical HTT5 Installation as a Holdown U.S Patent 5,467,570 136 S/HTT14 Washer not required 1. The Designer shall specify the anchor embedment and configuration. 2. See pages 26-30 for anchor bolt options. 3. See page 21 for anchor bolt retrofit options. 4. Stud design by Specifier. Tabulated loads are based on a minimum stud thickness for fastener connection. 5. Deflection at ASD and LRFD Loads is the deflection of the holdown measured between the anchor bolt and strap portion of the holdown when loaded to the ASD and LHFD load, respectively. This movement is strictly due to the holdown deformation under a static load test attached to members listed in the table. 6. Nominal Tension Load is based on the average ultimate (peak) load from tests. AISI Lateral Design standard requires holdown to have nominal strength to resist lesser of amplified seismic load or the maximum force the system can deliver. Em Dimensions Fasteners Stud ASD LRFD Member Nominal Code ModelTHCL Found. Stud Thickness Tension Deflection Tension Deflection Tension Rel. W Anchor Fasteners mil(ga) Lead al ASD Load atLRFD Load' Diameter Load' Load' S/LTT20 2 20 114 Ya 8 - #10 33 (20ga) 1200 0.125 1890 0.250 4625 ILC1, 33(20ga) 2775 0.108 4430 0.172 6800 LC1, S/HTT14 214 16 1'/a Va 16-#10 FC1 2-33 (2-20ga) 3850 0.125 6700 0.250. 11590 33 (20ga 3180 0.104 4770 0.187 8215 HTT4 211 12% 1'/e '/e 18 - #10 2-33 (2-20ga) 4395 0.125 6675 0.250 11835 43 18ga 4240 0.125 6505 0.250- 11585 160 2-18ga) 4670 0.125 6970 0.250 12195 HTT5 2111 16 1'/e Ye 26 - #102-43 1-54 (1-16ga) 4150 0.125 6425 0.250 12366 1. The Designer shall specify the anchor embedment and configuration. 2. See pages 26-30 for anchor bolt options. 3. See page 21 for anchor bolt retrofit options. 4. Stud design by Specifier. Tabulated loads are based on a minimum stud thickness for fastener connection. 5. Deflection at ASD and LRFD Loads is the deflection of the holdown measured between the anchor bolt and strap portion of the holdown when loaded to the ASD and LHFD load, respectively. This movement is strictly due to the holdown deformation under a static load test attached to members listed in the table. 6. Nominal Tension Load is based on the average ultimate (peak) load from tests. AISI Lateral Design standard requires holdown to have nominal strength to resist lesser of amplified seismic load or the maximum force the system can deliver. Em The new SBs%x24 anchor bolt offers a load -tested anchorage solution that exceeds the capacity of all of our holdowns that call for a W dia. anchor. Similarly, the SBlx30 covers holdowns utilizing a 1" diameter anchor that exceed the capacity of our SSTB bolts. The SWAx21l is designed to maximize performance with minimum embedment for holdowns utilizing a dia. anchor. SB anchor bolts are now code listed by ICC -ES under the 2006 and 2009 IBC and IRC to meet the requirements of ICC -ES acceptance criteria — AC 399. ICC -ES ESR -2611 is the industry's first code report issued for proprietary anchor bolts evaluated to the criteria of AC 399. Special Features: • Indentification on the bolt head showing embedment angle and model • Sweep geometry to optimize position in form • Rolled thread for higher tensile capacity • Hex nuts and plate washer fixed in position • Available in HOG for additional corrosion resistance MATERIAL: ASTM F-1554, Grade 36 FINISH; None. May be ordered HDG. Contact Simpson Strang -Tie. INSTALLATION: • SB is only for concrete applications poured monolithically. • Top nuts and washers for holdown attachment are not supplied with the SB; install standard nuts, couplers and/or washers as required. • On HOG SB anchors, chase the threads to use standard nuts or couplers or use overlapped products in accordance with ASTM A563, for example Simpson Strong-Tiee NUT5/8-OST, NUT7/8-OST and NUT1-OST. • Install SB before the concrete pour using AnchorMatesO. Install the SB per the plan view detail. • Minimum concrete compressive strength is 2500 psi. • When rebar is required it does not need t0 be tied to the SB. CODES: See page 20 for Code Reference Key Chart. These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong -Tie for details. SB Balls at Stairwell s= 6' (standard on all models) Embedment I, I Line (Top of S Concrete) J Corner STEMWALL PLAN VIEWS 0 e 4'/." Min.(SPt. and A)o. ° 5'Mln.(SBt) 77 1�' Min. End Wall SBU30 (Other models similar) B4 rater le Imay be tpintation rehar) Typical SB Installation e• ,° —14 rehar a' n 3.5 S- - - °e" s from top Corner Non -Corner Corner Installation Installation Installation (Install with arrow (Bolt may be (Install with arrow on top of the bolt installed 0 45° to on top of the bolt oriented as shown) 135° as shown) oriented as shown) 135'/90'/45° 135° Ir 2-0 4 " i4s° e 45° *J' Plan View of o' .2 � Q '.. SB Placement � omeredaowcomnlefryp) in Concrete Perspective View 4�2_7_ Dimensions (ill.) Allowable Tension Loads (lbs.) Model No. Slemwall Length Min: Wind&SOC Aa6 for notes to the Designer. SDC C -F Code Ref. Width Dia. Locate Embed. B approx. 45° S to 9o° 11B) Midwall Corner End Wall Midwall Corner End Wall SB6/ex24 6 % 24 18 6675 6675 6675 6675 5730 5730 123, S13%x24 8 '/e 24 18 10470 9355 6820 8795 7855 5730 F30, S6100 8__F 1 30 24 13665 9905 7220 11470 8315 6065 L20 Corner STEMWALL PLAN VIEWS 0 e 4'/." Min.(SPt. and A)o. ° 5'Mln.(SBt) 77 1�' Min. End Wall SBU30 (Other models similar) B4 rater le Imay be tpintation rehar) Typical SB Installation e• ,° —14 rehar a' n 3.5 S- - - °e" s from top Corner Non -Corner Corner Installation Installation Installation (Install with arrow (Bolt may be (Install with arrow on top of the bolt installed 0 45° to on top of the bolt oriented as shown) 135° as shown) oriented as shown) 135'/90'/45° 135° Ir 2-0 4 " i4s° e 45° *J' Plan View of o' .2 � Q '.. SB Placement � omeredaowcomnlefryp) in Concrete Perspective View 4�2_7_ 14 Rebar 1. See page 37 for notes to the Designer. Corner STEMWALL PLAN VIEWS 0 e 4'/." Min.(SPt. and A)o. ° 5'Mln.(SBt) 77 1�' Min. End Wall SBU30 (Other models similar) B4 rater le Imay be tpintation rehar) Typical SB Installation e• ,° —14 rehar a' n 3.5 S- - - °e" s from top Corner Non -Corner Corner Installation Installation Installation (Install with arrow (Bolt may be (Install with arrow on top of the bolt installed 0 45° to on top of the bolt oriented as shown) 135° as shown) oriented as shown) 135'/90'/45° 135° Ir 2-0 4 " i4s° e 45° *J' Plan View of o' .2 � Q '.. SB Placement � omeredaowcomnlefryp) in Concrete Perspective View 4�2_7_ 14 Rebar Locate B approx. 45° S to 9o° from wall— v 4%!'Min. Midwall Corner STEMWALL PLAN VIEWS 0 e 4'/." Min.(SPt. and A)o. ° 5'Mln.(SBt) 77 1�' Min. End Wall SBU30 (Other models similar) B4 rater le Imay be tpintation rehar) Typical SB Installation e• ,° —14 rehar a' n 3.5 S- - - °e" s from top Corner Non -Corner Corner Installation Installation Installation (Install with arrow (Bolt may be (Install with arrow on top of the bolt installed 0 45° to on top of the bolt oriented as shown) 135° as shown) oriented as shown) 135'/90'/45° 135° Ir 2-0 4 " i4s° e 45° *J' Plan View of o' .2 � Q '.. SB Placement � omeredaowcomnlefryp) in Concrete Perspective View 4�2_7_ 7 Structured rnnnw,: zr: 4ul1X��l<;1 `C S rrccr 1'I nginecri g fnc. cumr Dore 11,12 Wunll Mnin 5mcl, Oaunlilul, Udh 8,1610 in 8111.?96.1118 0ficc 601.298-1122 f, x ,, 'D@ uctlluo, T�TIC' OV `� 7�M (I I 1 11V0�1%✓L%�.IalGlll[[fl: qts � G = x'33 �l •� :��v-�Z t��t-�TiLnl� ................................ ..RoLT-, 72: ... ....:.....:..:..:..:..::.:..:.... .: `�?� �} Lr•!�lC- . �. .. i3a:L, � ..tis �.. 1'-E. ti-,�-. .T2:� �[ ........... ..............:..:..:.. .... ��Sf3 L� ..:........... .. .... 3a�?Lb ,: �lSSI.p� ...........:...........:32.'`01........ ..... ....:.... ......... ICC -ES Evaluation Report ESR -1917 Reissued May 1, 2011 This report is subject to renewal in two years. WWW.icc-es.org 1 (800) 423.6587 1 (562) 699-0543 A Subsidiary of the International Code Council® DIVISION: 03 00 06—CONCRETE Section: 03 16 00—Concrete Anchors REPORT HOLDER: HILTI, INC. 5400 SOUTH 122" EAST AVENUE TULSA, OKLAHOMA 74146 (800) 879.8000 www.us.hilti.com HiltiTechEnci@us.hilti.com EVALUATION SUBJECT: HILT[ KWIK BOLT TZ CARBON AND STAINLESS STEEL ANCHORS IN CRACKED AND UNCRACKED CONCRETE 1.0 EVALUATION SCOPE Compliance with the following codes: ■ 2009 and 2006 International Building Codec (IBC) ■ 2009 and 2006 International Residential Code® (IRC) Property evaluated: Structural 2.0 USES The HIM Kwik Bolt TZ anchor (KB -TZ) is used to resist static, wind, and seismic tension and shear loads in cracked and uncracked normal -weight concrete and sand - lightweight concrete having a specified compressive strength, Fe, of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa); and cracked and uncracked normal -weight or sand - lightweight concrete over metal deck having a minimum specified compressive strength, Fc. of 3,000 psi (20.7 MPa). The anchoring system complies with requirements for anchors installed in hardened concrete as described in Section 1912 of the IBC. The anchoring system is an alternative to cast -in-place anchors described in Sections 1911 of the IBC. The anchors may also be used where an engineered design is submitted in accordance with Section R301.1.3 of the INC. 3.0 DESCRIPTION 3.1 KB -TZ: KB -TZ anchors are torque -controlled, mechanical expansion anchors. KB -TZ anchors consist of a stud (anchor body), wedge (expansion elements), nut, and washer. The anchor (carbon steel version) Is illustrated in Figure 1. The stud is manufactured from carbon steel or AISI Type 304 or Type 316 stainless steel materials. Carbon steel KB -TZ anchors have a minimum 5 pm (0.0002 inch) zinc plating. The expansion elements for the carbon and stainless steel KB -TZ anchors are fabricated from Type 316 stainless steel. The hex nut for carbon steel conforms to ASTM A 563-04, Grade A, and the hex nut for stainless steel conforms to ASTM F 594. The anchor body is comprised of a high-strength rod threaded at one end and a tapered mandrel at the other end. The tapered mandrel is enclosed by a three-sectlon expansion element which freely moves around the mandrel. The expansion element movement is restrained by the mandrel taper and by a collar. The anchor is installed in a predrilled hole with a hammer. When torque Is applied to the nut of the installed anchor, the mandrel is drawn Into the expansion element, which is in turn expanded against the wall of the drilled hole. 3.2 Concrete: Normal -weight and sand -lightweight concrete must conform to Sections 1903 and 1905 of the IBC. 3.3 Steel Deck Panels: Steel deck panels must be In accordance with the configuration in Figure 5 and have a minimum base steel thickness of 0.635 inch (0,899mm). Steel must comply with ASTM A 653iA 653M SS Grade 33 and have a minimum Yield strength of 33,000 psi (228 MPa). 4.0 DESIGN AND INSTALLATION 4.1 Strength Design: 4.1.1 General: Design strength of anchors complying with the 2009 IBC and Section R301.1.3 of the 2009 IRC must be determined in accordance with ACI 318-08 Appendix D and this report. Design strength of anchors complying with the 2006 IBC and Section R301.1.3 of the 2006 IRC must be in accordance with ACI 318-05 Appendix D and this report. Design parameters provided in Tables 3 and 4 of this report are based on the 2009 LBC (ACI 318-08) unless noted otherwise in Sections 4.1.1 through 4,1.11. The strength design of anchors must comply with ACI 318 D.4.1, except as required in ACI 318 D.3.3. Strength reduction factors, A as given In ACI 318 DA.4 and noted in Tables 3 and 4 of this report, must be used for load combinations calculated in accordance with Section 1605.2.1 of the IBC and Section 9.2 of ACI 318. Strength reduction factors, ,A as given in ACI 318 D.4.5 must be used for load combinations calculated in accordance with ACI 318 Appendix C. An example calculation is provided in Figure 7. The value of Fe used in the calculations must be limited to a maximum of 8,000 psi (55.2 MPa), in accordance with ACI 318 D.3.5. 1CC-ESEnoluallmr Reporu arevol to be ronstnied as,epre,mrtiny nevheri,a a• nuy order aurlbutervwt.rpeciricnlly addrarnv/,. nnrnre drey to he construed as an endorsement aff/re.mbjea oftlm repari or a recornnrendmion for iB nre. There /s no irarr awy by ICC inn/ur oma .Service, LLC, cvprur or iphod, nafiffil M) to are( finding or other matter in this report, oro( to onyp+nduct covered by the report. raf= :e,,,,,,-, Copydghl (9) 2011 Pago f of 11 0 ww v.hiltt.us Company: Specifier: Address: Phone l Fax: E -Mail: Specifier's comments: 1 Input data Anchor type and diameter: Effective embedment depth: Material: Evaluation Service Report:: Issued I Valid: Proof: Stand-off installation: Anchor plate: Profile: Base material: Reinforcement: WCA Structural Engineering JC 442 North Main Street (801) 298-1118 1 wca@wcaeng.com Seismic loads (cat. C, D, E, or F) Geometry [in.] & Loading [lb, hri Page: Project: Sub -Project I Pos. No.: Date: Prof is Anchor 2.2.6 1 Maverik Country Store 6/14/2012 pp1 rm 9dP, Kwik Bolt TZ - CS 5/8 (4) "' 'v""""` �l[fl[{��tii��7liilr' , her = 4.000 in., hnom = 4.438 in. Carbon Steel ESR 1917 5/1/2011 1 5/1/2013 design method ACI 318 / AC193 eb = 0.000 in. (no stand-off); t = 0.071 in. Ix x ly x t = 6.000 in. x 32.000 in. x 0.071 in.; (Recommended plate thickness: not calculated) no profile cracked concrete, 3000, f� = 3000 psi; h = 420.000 in. tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: > No. 4 bar yes (D.3.3.5) X t� vl CP SY J Input data and results must be ohe&ed for agreement with the existing conditions and for plausibilityl PROFIS Anchor( c) 20032009 Hilti AG, FL -9494 Schaan Hilti is a registered Trademark of HIM AG, Scaan __3o www.hiltims Company: WCA Structural Engineering Specifier: JC Address: 442 North Main Street Phone I Fax: (801) 298-1118 1 E -Mail: wca@wcaeng.com 2 Load case/Resulting anchor forces Load case: Design loads Anchor reactions [lb] Tension force: (+Tension, -Compression) Anchor Tension force Shear force Shear force x Shear force max. concrete compressive strain: - [%e] max. concrete compressive stress: - [psi] resulting tension force in (x/y)=(0,000/0.000): 0 [Ib] resulting compression force in (x/y)=(0.000/0.000): 0 [Ib] 3 Tension load Page: Project: Sub -Project I Pos. No.: Date: Profis Anchor 2.2.6 2 Maverik Country Store 6/14/2012 Load Nu, [lb] Capacity j,N„ [lb] Utilization PN = Nua/^ Status Steel Strength* N/A N/A N/A N/A Pullout Strength* N/A N/A N/A N/A Concrete Breakout Strength* N/A N/A N/A N/A * anchor having the highest loading **anchor group (anchors in tension) Input data and results must be checked for agreement with the existing conditions and for plausibilityl PROFIS Anchor (c) 2003-2009 Hilti AG, FL -9494 Schaan Hilti Is a registered Trademark of Hill AG, Schaan Company: Specifier: Address: Phone I Fax: E -Mail: 4 Shear load WCA Structural Engineering JC 442 North Main Street (801) 298-1118 1 wca@wcaeng.com Page: Project: Sub -Project I Pos. No.: Date: Prof is Anchor 2.2.6 3 Maverik Country Store 6/14/2012 * anchor having the highest loading **anchor group (relevant anchors) 4.1 Steel Strength V.. [lb] �V.. [Ib] Vu. [lb] 7600 0.650 4940 2354 4,2 Pryout Strength Load V., [lb] - Capacity �Vn [lb] Utilization it, = Vu,/�Vn Status Steel Strength* 2354 4940 48 OK Steel failure (with lever arm)* N/A N/A N/A NIA Pryout Strength** 2354 5866 41 OK Concrete edge failure in direction y+** 2354 2768 86 OK * anchor having the highest loading **anchor group (relevant anchors) 4.1 Steel Strength V.. [lb] �V.. [Ib] Vu. [lb] 7600 0.650 4940 2354 4,2 Pryout Strength AN, [in. 21 ANw [in. 21 ce,min lin.] kw cad [in.] 120.00 144.00 4.000 2.000 6.750 e.,,v [in.] W.0V stay [in.] W.c2y Wed,N 0.000 1.000 0.000 1.000 0.900 XV,,N Wcp N kcr 1.000 1.000 17 Nb [lb] 4 �.sismic �nondudle OVcpg [lb] Vua [lb] 7449 0.700 0.750 1.000 5866 2354 4.3 Concrete edge failure in direction y+ Is [in.) do [in.] ct [in.] Ave [in 21 Avc9 [in z] 4.000 0.625 16.000 240.00 1152.00 W.d.v Wp.r.Im,v ecv fn.] W..v Wcy Whv 0.750 1.000 0.000 1.000 1.200 1.000 Vb [lb] �W mlc �nonduchie �Vcbg [lb] Vu. [lb] 28120 0.700 0.750 1.000 2768 2354 Input data and results must be checked for agreement with the existing conditions and for plausibilityl PROFIS Anchor (c) 2003-2099 Hilti AG, FL -9494 Schaan Hili is a registered Trademark of Hild AG, Schaan www.hilti.us Profis Anchor 2.2.6 Company: WCA Structural Engineering Page: 4 Specifier: JC Project: Maverik Country Store Address: 442 North Main Street Sub -Project I Pos. No.: Phone I Fax: (801) 298-1118 1 Date: 6/14/2012 E -Mail: wra@wcaeng.com 5 Warnings To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re -distributions on the anchors due to elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the loading! Condition A applies when supplementary reinforcement is used. The m factor is increased for non -steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to ACI 318, Part D.4.4(c). Refer to the manufacturer's product literature for cleaning and installation instructions. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-08 Appendix D, Part D.3.3.4 that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, Part D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. In lieu of D.3.3.4 and D.3.3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6. An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908.1.9. This approach contains "Exceptions" that may be applied in lieu of D.3.3 for applications involving "non-structural components" as defined in ASCE 7, Section 13.4.2. An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908.1.9. This approach contains "Exceptions" that may be applied in lieu of D.3.3 for applications involving "wall out -of -plane forces" as defined in ASCE 7, Equation 12.11-1 or Equation 12.14-10. • It is the responsibility of the user when inputing values for brittle reduction factors 4nendaclile) different than those noted in ACI 318-08, Part D.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08, ASCE 7 and the governing building code. Selection of tjnonducule = 1.0 as a means of satisfying ACI 318-08, Part D.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level <= the design strengths calculated per ACI 318-08, Part D.3.3.3. Fastening meets the design criteria! Input data and resu!Is must be checked for agreement with the existing conditions and for plausibility! PROF IS Anchor( c )2003-2009 Kill AG, FL -9494 Schaen Mitt is a registered Trademark of Hilti AG, Schaan Structural Engineering,lic. 142 North Muir Stec 1. B01,111irut, U1,111 8-1010 801-7.98.1118 Office 801-298-1122 Fax WC3(FZ)WC;ICLlg.COI" ITCHRI Klfa C -Oz -r- I'MIJECT4: ROM- CLIRN DAIII:- TOM: FNGflNELjt:_ �C C) \�L QJQ C p �A 9 L4 Pt� cli-lz CPwl —lu� ; ?S> {�-lU-OT Tp. - ............. ........ ...... Z"4, $-rb p .. ........... 2A -S Lic 2-H �2- L -V, nh- ....................... (> ........... .... . . ....... . . ...... of 6,-o C -L, cz?� .......... ..... ........... LbU, 0 ...... ...... ..... Screw Table Notes Screw spacing and edge distance shall not be less than 3 x d. (d = Nominal screw diameter) The allowable loads are based on the steel properties of the members being connected, per AISI section E4. When connecting materials of different steel thicknesses or tensile strength (Fu), the lowest applicable values should be used. The nominal strength of the screw must be at least 3.75 times the allowable loads. Values include a 3.0 factor of safety. Applied loads may be multiplied by 0.75 for seismic or wind loading, per AISI A 5.1.3. Penetration of screws through joined materials should not be less than 3 exposed threads. Screws should be installed and tightened in accordance with screw manufacturer's recommendations. Allowable Loads for Screw Connections (lbs/screw) Weld Table Notes Weld capacities based on AISI, section E2 When connecting materials of different steel thicknesses or tensile strength (Fu), the lowest applicable values should be used. Values include a 2.5 factor of safety. Based on the minimum allowance load for fillet or flare groove welds, longitudinal or transverse loads. Allowable loads based on E60xx electrodes. For material less than or equal to .1242" thick, drawings show nominal weld size. For such material, the effective throat of the weld shall not be less than the thickness of the thinnest connected part. Allowable Loads for Fillet Welds and Flare Groove Welds Steel Mils Thickness Desi n in .Steel Properties F ksi Fu ksl Nominal Weld Size. No. 12 No. 10 No.6 No..6 Steel Thickness Steel Properties 54 : Dia. = 0.216 (in) Dia. = 0.190 (in) Dia. =.0.164 (in) Dia. = 0.138 (in) Mils Desi n in F ksi Fu ksi Shear Pullout Shear Pullout. Shear Pullout Shear Pullout 18 0.0188 33 45 45 1/8 66 39 60 33 27 0.0283 33. 45t t S �. 1 121 59 111 50 30 0.0312 33 45 ;4 151 76 141 65 129 55 33 0.0345 33 45 ,4 177 84 164 72 151 61 43 0.0451 33 45 280 124 263 109 244 94 224 79 54 0.0566 33 45 394 156 370 137 344 118 68 0.0713 33 45 557 196 523 173 Weld Table Notes Weld capacities based on AISI, section E2 When connecting materials of different steel thicknesses or tensile strength (Fu), the lowest applicable values should be used. Values include a 2.5 factor of safety. Based on the minimum allowance load for fillet or flare groove welds, longitudinal or transverse loads. Allowable loads based on E60xx electrodes. For material less than or equal to .1242" thick, drawings show nominal weld size. For such material, the effective throat of the weld shall not be less than the thickness of the thinnest connected part. Allowable Loads for Fillet Welds and Flare Groove Welds Steel Mils Thickness Desi n in .Steel Properties F ksi Fu ksl Nominal Weld Size. Allowable Load Ib/in 43 0.0451 33 45 1/16 609 54 0.0566 33 45 3/32 764 68 0.0713 33 45 1/8 963 97 0.1017 33 45 1/8 1373 118 0.1242 33 45 1/8 1677 54 0.0566 50 65 3/32 1104 68 0.0713 50 65 1/8 1390 97 0.1017 50 65 1/8 1983 118 0.1242 1 50 65 1/8 2422 3,j Structural Engineering inc. 442 NORTH MAIN STREET, BOUNTIFUL, UTAH 84010 801-298-1118 OFFICE 801-298-1122FAX wca@wcaeng.com PRDIECT: Maverik (Type IV) PROMUN �LAOV CLIENT: Wall Studs TOPIC: DATE: ENGINEER: .JL H:= Hdia= 17 ft WCandC:= 17.Opsf Sstud 16in S:= 35psf (S = Snow or Roof Live which ever is greater) Sjoist 6ft+ loin D:= 20psf Spanjoist := 50ft Axial load on studs (max. load on studs occurs at walls that are parallel to joist, axial loads for walls perpendicular to joist are calculated below): Drift bad at walls parallel to joist: S 27psf + 14psf D 2 - P 20.5• sf Pstud (D + S + S) Sjoist 'S 344•lbf D ' 2 stud = Moment load on studs: WCandC' Sstud)-H2 Mstnd = 8 =9.83•in•kip Defection L240 min.: 4 _ 5 (WCandC'Sstud)'H t`oQ 384 H 29000ksi — 240 Use: 60OS20043 studs at 16" O.C. min. For 33ksi steel studs: Seff=0.873in3xca_ii leff = 2.683in4 fFT ik tr illi 4 Ma = 17.24in*kip = 1.73 -in Va = 12401bf From Combine Axial and lateral load tables w/ L/360 axial load per stud in 1280*lbf @ 16"O.C. -------------------------------------- Maximum Axial load for truss bearing studs: Drift reaction at wall, perpendicular to joist 50ft - �•9ft SD:= 1 •44psf•9ft• 3 - 186.12•plf 2 50ft Spanjoist PTrimmerStud (D + S)-' Simt + SD-Sjoist = 11•kip 2 Use: (3) 60OS200-43 studs at For 33ksi steel studs: GF:3*4.3kip = 13kip K! f no note, deflection meets U720 2 Deflection meets L/120 6 Deflection meets U360 1 DeflectionmeetsL/240 7 DeflectionmeetsL/600 See Combined Axial and Lateral Load Table Notes on page 23. �\ 37 rcr.mn- 20 psf Lateral ... Wall Spacing 6005137-(mils) 6005162-(mils) 6005200-(mils) Height (in.) 33 kst -<50 ksi 33 ksi , 50 ksi 33 ksi ,. 50 ksl (H) o.c. 33 - 43 54 68 97 33 43 54 68 97 33 43 54 -.. 68 97 8 12 1.46 2.20 3.56 4.79 7.30 2.10 3.08 5.32 7.15 11.06 2.50 3.92 7.07 9.60 15.23 16 1.32 2.06 3.44 4.68 7.20 1.95 2.94 5.19 7.01 10.91 2.34 3.74 6.89 9.43 15.05 24 1.05 1.79 3.21 4.45 6.99 1.65 2.66 4.92 6.74 10.61 2.01 3.39 6.53 9.10 14.69 9 12 1.34 2.08 3.46 4.69 7.21 1.97 2.96 5.20 7.02 10.91 2.34 3.73 6.81 9.32 14.85 16 1.17 1.91 3.31 4.54 7.07 1.77 2.77 5.03 6.84 10.72 2.14 3.51 6.58 9.10 14.61 24 0.83 1.56 3.02 4.24 6.80 1.40 2.41 4.69 6.49 10.34 1.73 3.06 6.13 8.67 14.14 10 12 1.21 1.95 3.34 4.57 7.09 1.82 2.81 5.06 6.87 10.74 2.16 3.51 6.50 8.97 14.38 16 1.00 1.73 3.15 4.38 6.92 1.58 2.58 4.84 6.64 10.50 1.91 3.24 6.22 8.70 14.08 24 0.58 1.31 2.79 4.01 6.58 1.13 2.14 4.41 6.20 10.01 1.42 2.70 5.67 8.17 13.49 12 12 0.91 1.63 3.05 4.27 6.80 1.45 2.43 4.64 6.48 10.29 1.75 3.00 5.76 8.12 13.18 16 0.61 1.33 2.78 3.99 6.54 1.13 2.11 4.32 6.14 9.91 1.41 2.62 5.36 7.73 12.74 24 0.06" 0.767 2.27 3.46 6.03 0.53° 1.51 3.72 5.49 9.18 0.76' 1.90 4.61 6.99 11.90 14 12 0.57' 1.27 2.69 3.89 6.42 1.03 1.96 3.99 5.72 9.63 1.29 2.42 4.88 7.07 11.66 16 0.20 s 0.887 2.34 3.51 6.05 1.567 3.59 5.28 9.09 0.87' 1.95 4.3B 6.58 11.09 24 0.17 c 1.67 ` 2.81 ' 5.350.83 c 2.85 ' 4.46 8.09 0.10 ` 1.08 ° 3.47 ' 5.65 10.01 i 6 12 0.22 ° 0.87 c 2.28 7 3.43 5.92 t062 1.47' 3.27 4.80 8.21 0.83 c 1.82 3.95 5.93 9.97 16 0.41 c 1.84 ° 2.96 ' 5.44 1.01 ° 2.81 ` 4.29 7.58 0.35 °. 3.40 ' 5.35 9.29 24 1.05 '' 2.11 ' 4.56 °0.20' 1.98 ° 3.36 ` 6.44 ' 0.32 ° 2.39 ° 4.32 ° 8.05 f no note, deflection meets U720 2 Deflection meets L/120 6 Deflection meets U360 1 DeflectionmeetsL/240 7 DeflectionmeetsL/600 See Combined Axial and Lateral Load Table Notes on page 23. �\ 37 rcr.mn- III -28 Column Design for Use with the 2007 North American Cold -Formed Steel Specification Table III - S Nominal Axial Strength, P., kips:,2 QC 1.80 i SSMA Studs „c = 0.85 t C -Sections With Lips v �✓ FY = 33 ksl fy 50 ksi KUBracing (KLy = KU) B eing (KLy=•KLtj Secoon ft. Cont. 1/4 Pt. 1 3 Pt. 1/2 Pt. None Cont 1/4 Pt 1/3 Pt 1j2 R.t. None 800Si62-33* 4.0 5.811 5.771 5.701 5.521 4.47 7.0 5.711 5.601 5,411 4,82 2,36 10.0 5,561 5.341 4.92 3.74 t 13.0 5.371 4:97 4.23 2.67 16.0 5.111 4.47 3,50 1.88 itT 19.0 4.78 3.93 2.79 1 i itS 22.0 4.39 3.38 2;18 259 3.98 2,85 1.76. t '• kl rra 6005200 9fi 310 31.4 31.3 31.2 30.8 28-6 , , s ', 44` 0 jz } ry)4ei t({ ',i r $ 9 j tr 38 6A $0.8 30.6 30.3 29.3 23.7 4 Q1 4fZt `iit���tPP 8 $ 8.0 29.6 29;0 28,4 26.1 14.6 r 10.0 28.4 27.6 26.7 23.7 9.40 rfi�g`�6s fl6';W 12.0 15,0 27.1 24.8 26.(5 23.4 24.$ 21.8 20.9 16.3 35 iA , r , I,z }(i i , 318 ° a'Sdt` + i116 230 , • I5 7 yu¢ y,4 17.0 23.1 21.4 19.7 13.0 „ `�?t , 1Y' rt'W"!! lPv1Y ! + 18 0 C 20.0 20.4 18.516.4 9.40'S> ! '� 6008200,68 3.0 1918 19.7 19.7 19.4 18.0 5.0 19.4 19.3 19.1 18.5 8.0 18.6 18.3 17.9 16.4 9.94 2 10.0 17.9 17.4 16.8 14,8: 6.90 b 13.0 16.7 15.9 15.0 12.2 21 i , r 0r ft'litr 111!3 15.0 15.7 14,8 13.7 10.5 17.0 14.7 13.6 12.3 8.92 l �'{{{ t�,�L2 ! 20.0 13.1 11.7 10.3 6.90 4i 6.005200-54 3.0 14.7 14.6 14.6 14.4 D.4 tE3'7ri 4� 1,Sg7'tjhw ti p}� 18 5.0 '14.4 14.3 14;2 13.7 112 �h,, it i,�' t idtt � (r�`y �rr17r,3r ; ;1`.*4 6 6 � y 8.0 13.8 13.6 13.2 12.1 7.48 r JU 50 trr 7 9 7sJ8x . 10.0 13.3 12.9 12.4 10.9 523 r lit,3 n 13.0 12.4 11.8 11.1 8.88 15.0 11.7 10.9 10.1 7:59 4 6 13 3 + r 1�1r`T �; '8-. 17.5 10.9 10.0 9.05 6.37 20.0 9.69 8.67 7.5.5 4.98 110 9 31 600S200.43 3.0 10.71 1071 10.71 10.6 9.91 I 5.0 10.6 10.5 10,4 10.1 832 8.0 10.2 10.1 9.84 9.04 5.48 10.0 9.89 9.64 9.30 898 3.92 Ali 13.0 9,26 8,80 8.24 6.56 15.0 8.71 8.16 7.49 5.56 � I 18.0 7.14 6.33 4.22 .: 20.0 7.23 1 6.45 1 5.57 1 3.58 Structural (S) Stud Section Properties Web -height to thickness ratio exceeds 200. Web Stiffeners are required at all support points and concentrated loads. Suitability of web holes must be evaluated independently. Where web height -to -thickness ratio exceeds 260, or flange width -to -thickness ra8o exceeds 60, effective properties are not calculated (limitations in AISI section Bt) 41lowable moment includes cold -work of forming. ee Section Propenies Table Notes on page 6. ccnrts `,Jl/ Design Gross Properties Effective Properties Torsional Thickness FY Area Weight Ix Sx Rx ly Ry Ixe Sxe Ma Vag Vanet JX1000 Cw X0 m Ro 0 Lu Member in (ksij ins Iblfl in° ins in (in° in in' in in-k Ib (Ib in° ins (mj in in in 4006137-33 0.034633 33 0.249 0.85 0.603 0.301 1.556 0.061 0.496 0.60 026 5.12 976 595 0.099 0204.-0.965 0.597 1.897 0,741 34.5 4ODS13743 0.0451 33. 0.323 1.10 0.776 0.388 1.551 0.078 0.491 0.78 0.36 7.50 1739 810 0.219 0,257 -0.954 Q591 1.885 0.744 34.4 400613754 0.0566 33 0.401 1.36 0.953 0.477 1.542 0.094 OA84 0.95 0.45 896 2603 944 0.428 0.311 -0.940 0.593 1.870 0.747 342 4005737-54 0.0566 50 0.401 1.29 0.953 0.477 1.542 0.094 0.484 0.95 0.43 1282 3372 1223 0.428 0.311 -0.940 0.563 1.870 0.747 27.7 4006137 0.0713 33 0.497 1.89 1.165 0.582 1.531 0.112 0.475 1.17 0.57 1121 3215 895 0.842 0.375 4922 0.574 1.849 0.751 34.3 4OOS137a 0.0713 60 0.497 1.69 1.165 0.582 1.531 0.112 0.475 1.17 0.56 16.70 4871 1356 0.842 0.375 -0.922 0.574 1.849 0.751 27.6 4ODS16293 0.0346 33 0275 0.94 0.502 0.346 1.586 0.103 0.611 0.69 0.30 5.91 976 595 0.110 0.363 -1.263 0.766 2118 0.644 423 40OS162-43 0.0451 33 0,357 1.21 0.892 0.446 1.581 0.131 00 0.89 0.42 823 1739 810 0242 0:460 -1252 0.761 2106 0.647 422 400516254 0.0566 33 0.443 1.51 1.098 0.519 1.574 0.159 O.WO 1.10 0.53 10.39 2503 944 0.473 0.560 -1238 0.754 2.09D 0.649 422 400516254 00586 50 0.443 1.51 1.09B 0.549 1.674 0.159 0.500 1.10 0.50 14.90 3372 1223 0.473 0.590 -1238 0.754 2.090 0.649 34.1 40OS162-6B 0.0713 33 0.550 1.87 1.346 0.673 1.564 0.192 0.591 1.35 0.66 13.00 3215 895 0.933 0.677 -1.220 0.745 2.009 0.653 422 400S16258 0.0713 50 0.550 1.87 1.346 0.673 1.564 0.192 0.591 1.35 0.65 19.41 4811 1358 0.938 0.677 -1:220 0.745 2.050 0.653 34.0 400.5200.33 0.0146 33 0.310 1.05 0.812 0.406 1.619 0.183 0.769 0.81 0.33 6.49 976 595 0.124 0.507 -1.686 1.007 2.462 0.533 531 400920043 0.0451 33 0.402 1.37 1047. 0.524 1.615 0.235 0.764 1.05 0.48 9.45 1739 810 0272 0886 -1.676 1.00D 2449 0.532 53.0 40OS200.54 0.05E6 33 0.500 1.70 1.292 0.646 1.608 0237 0.758 1.29 0.62 1230 M 944 0.534 1.083 -1.682 0.993 2.433 0.534 531 400220D 51 0.0566 50 0.%0 1.70 1.292 0.646 1.608 0.247 0.758 1.29 0.55 1643 3372 1223. 0534 1.083 -1.062 0.993 2.433 0.534 429 40OS200O8 0.0713 33 0.622 212 1.589 0.795 1599 0.349 0,750 1.59 0.78 15.40 3215 895 1.054 1.318 -1.643 0.983 2412 0.536 53.2 40OS20M 00713 50 0.622 2.12 1M 0.795 1.599 0.349 0.750 1.59 0.75 2248 4811 13% 1.054 1.318 -1.643 0.983 2412 0,536 42.9 4OD530033' 0.0346 33 0.379 129 1.084 0.542 1.691 0.479 1.125 0.151 1.786 -2.621 1.510 3.316 0.375 40OS30043 00451 33 0.492 1.67 .1,400 0300 1.687 0.617 1.120 0.334 2.282 -2.608 1.503 3.302 0.376 40OS30DS4 0.0566 33 0.613 2.09 1.732 0.866 1.681 0.760 1.114 1.72 0.68 13.44 2603 944 0.655 2.802 -2.594 1.496 3.285 0.377 74.1 400530034 0.0506 50 0.613 2.09 1.732 0.866 1.681 0.760 1.114 1.64 0.59 17.72 3372 1223 0.655 2.802 -2.594 1.496 3.285 0.377 59.9 40OS30058 0.0713 33 0.761 2.60 2.139 1.070 1.673 0.933 1.105 2.14 0.91 18.06 3215 895 1.295 3.432 .2.574 1.486 3263 0.378 74.3 400530038 00713 50 0.761. 2.60 2,139 1.070 1.673 0.933 1.105 2.10 .0.81 24.09 4871 1356 -1.295 3432-.-2.574 1.486 3.263 0.318 60.0 550516293 0.0346 33 0.327 1.11 1.458 0.530 2.112 0.113 0.589 1.46 OSi 10.11 699 699 0.130 0.713 -1.114 0.697 2.459 0.79541.4 550S16243 0.0451 33 0.424 1.44 1.883. 0.685 2.107 0.145 0,594 1.88 0.68 14.79' 1550 1199 0,288 0.905 -1.103 0.691 2.448 0.797 39.2 550516254 00566 33 0S28 1.80 2.324 0.845 2.098 0.176 0.577 2.32 0.85 18.76' 2739 1666 0.564 1.105 -1.090 0.684 2.434 0.800 38.7 55DS162-54 0.0566 50 0.528 1.80 2.324 0.845 2.098 0.176 0.577 2.32 0.81 26.86• 3093 1881 0.564 1.105 -1.090 0.684 2.434 0.800 31.6 55OS162M 0.0713 33 0.657 2.24 2.881 1.040 2.086 0.212 0.568 2.86 1.04 23.72' 4347 2057 1.114 1.342 -1.072 0.675 2.414 0.803 38.0 550516258 0.0713 50 0.657 2.24 2,851 1.040 2.086 0.212 0.588 2.86 1.03 34.94' 5350 2532 1.114 1.342 -1.072 0.675 2.414 0.803 31.1 550830033' 0.0346 33 0.431 1.47 2.210 0.804 2.265 0.536 1.115 0.172 3.401 -2.392 1.415 3.478 0.527 550530043' 0.0451 33 0.560. 1.90 2.860 1.040 2.261 0.690 1.110 0.379 4.357 -2.380 1.408 3.465 0.528 5505300-54 0.0566 33 0.698 2.37 3.545 1.289 2.254 0.850 1.104 3.51 1.08 21.34 2739 1666 0.745 5.364 -2.365 1.401 3.449 0.530 73.1 55OM54 0.0588 50 0.698' 2.37 3.545 1.289 2.254 0.850 1.104. 3.30 0.98 29.44 3093 1881 0.745 5.364 -2.365 1.401 3.449 0.530 592 550830058 0.0713 33 0.871 2.96 4.391 1.597 2.245 1.1744 1.095 4.38 1.41 27.88 4347 2057 1.476 6.594 -2.346 1.391 3.427 0.531 73.1 55OS300E8 ': 00713 50 0.871 2,96 4.391 1.597 2245 1.044 1.095 4.29 1.29 38.53 5350 2532. 1.476 6.594 -2.346 1.391 3.427.:0.531 59.1 6005137-33 0.0346 33 0.318 1.08 1.582 0.527 2.229 0.069 OA64 1.55 0.46 8.98 638 638 0.127 0.500 -0.807 0.519 2.416 0.889 33.5 6005137.43 0.0454 33 0.413 1.41 2.042 0.691 2.223 0.087 0.459 2.04 0.65 12.74 1416 1240 0280 0.633 -0.796 0.513 2.406 0.890 332 60OS13754 0.0566 33 0.514 1.75 2.518 0.839 2.213 0.105 OA52 2.52 0.83 16.44 2739 1890 0.549 0.769 -0.784 0.506 2.391 0.893 33.0 600Si37-54 0.0566 50 0,514 1.75 2,518 0.839 2.213 0.105 OA52 2.52 0.78 2326 2823 1947 0.549 0.769 -0.784 0.506 2.391 0.893 26.8 600573758 0.0713 33 0.640 2.18 3.094 1.031 2.200 0.125 0.443 3.09 1.03 24.05' 4347 2339 1.084 0.930 -0.768 OA97 2.3710.8% 302 6DO8137-68 0.0713 50 0.640 2.18 1004 1.031 2.200 0.125 0.443 3.09 1.03 30.84 5350 2879 1.084 0.930 -0.768 0,497 2.371 0.895 26.6 6005137-97 0.1017 33 0.889 3.03 4.188 1.396 2.170 0.159 OA22 4.19 1.40 34.48' 6911 2512 3.066 1.216 -0.734 0.480 2.330 0.901 28.8 6005737-97 0.1017 50 DIM 3.03 4.188 1.396 2.170 0.159 OA22 4.19 1.40 50.w 10472 3805 3.066 1.216 0.734 0.480 2.330 0.901 23.6 600Si62-33 0.0346 33 0.344 1.17 1.793 0.598 2.282 0.116 Ob81 1.79 0.58 11.41 638 638 0.137 0,861 -1.072 0.677 2.587 0.828 41.1 600SI62-43 0.0451 33 0,447 1.52 2.316 0.772 2.276 0.148 0.576 2.32 0.77 16.68' 1416 1240 0.303 1.095 -1.062 0.670 2.577 0.830 39.0 600516234 0.0566 33 0.556 1.89 2.860 0.953 2.267 0.180 0.570 2.86 0.95 21.17' 2739 1890 0.594 1.337 -1.049 0.663 2.662 0.832 38A 600SI62-54 0.0566 50 0.556 1.89 2.860 0.053 2.267 0.180 0.570 2.86 0.92 30.33' 2823 1947 0,594 1.337 -1.049 0.663 2.562 0.832 31.4 600576258 0.0713 33 0.693 2.36 3.525 1.175 2.255 0.218 0.560 3.53 1.18 26.79' 4347 2339 1.174 1.626 -1.032 0.655 2.543 0.835 37.7 60DS162a 0.0713 50 0.693 2.36 3,525 1.175 2255 0.218 0.560 3.53 1.16 39.47• 5350 2879 1.174 1.626 -1.032 0.855 2.513 0.835 30.8 6004162-97 0.1017 33 0.966 3.29 4.797 1.599 2.229 0.283 0.541 4.80 1.60 38.37' 6911 2512 3.329 2.153 -0.997 0.636 2.501 0.841 36A 6005162-97. 0.1017 50 0.950 .3.29 4,797 1.599 2.229 0.283 0.541 4.80 1.60 56.73' 10412 3805 3329 2.153 4997 0.636 2.501 0.841 29.8 600.4162-118 0.1242 33 1.158 3.94 5.652 1.884 2.209 0.321 0.526 5.65 1.88 46.82' 8267 2391 5.956 2.487 -0.971 0.623 2.470 0.845 35.6 6005162-118 0.1242 50 1.158 3.94 5.652 1.884 2.209 0.321 0.526 5.65 1.88 68.94. 12526 3622 5.956 2.487 -0.971 0.623 2.470 0.845 29.0 600520033 0.0346 33 0.379 1.29 2.075 0.692 2.340 0.209 0.743 2.06 0.62 1228 638 638 0.151 1.593 -1.457 0.901 2.855 0.740 51.6 6WS200-03 0.0451 33 0.492 1.67 2.683 0.894 2.335 0.268 0.739 2.68 0.67 17.24 1416 1240 0.334 2.033 -1.446 0.894 2844 0.742 51.5 6ODS200-54 O0566 33 0.613 2.09 3.319 1.106 2.327 0.328 0.732 3.32 1.11 24.07' 2739 1890 0.655 2.493 -1.432 0.887 2.829 0.744 48.9 60OS200-54 00566 50 0.613 2.09 3.319 1.106 2,327 0.328 0.732 3.32 1.02 30.40 2623 1947 0.655 2.493 -1.432 0.887 2.829 0.744 41,6 600820068 0.0713 33 0.764 2.60 4.101 1.367 2.316 0.400 0.723 4.10 1.37 30.42' 4347 2339 1.295 3.047 -1.415 0.878 2.809 0.746 482 600520068 0.0713 50 0.784 2.60 4.101 1.367 2.316 0.400 0323 4.10 1.32 4371' 5350 2879 1.295 3.047 -1.415 0.878 2.809 0.746 39.3 600520097 0.1017 33 1.087 3.63 5.612 1,871 2293 0.530 0.705 5.61 1.87 43.49' 6911 2512 3.679 4.080 -1.378 0.859 2.767 0.752 46.9 600520097 0.1017 50 1.067 3.63 5.612 1.871 2.293 0.530 0.705 5.61 1.87 64.53' 10472 3905 3.679 4.080 -1.378 0.11% 2.767 0.752 38.3 60OS20D-118 0.1242 33 1.283 4.36 6.641 2.214 2.275 0.611 0.690 6.64 2.21 63.05' 8267 2391 6.595 4.753 -1.351 0.845 2.735 0.756 46.1 6009200118 0.1242 50 1.283 4.36 6.641 2.214 2.275 0.611 0.500 6.64 2.27 78.44' 12526 3622 6.595 4.753 -1.351 0.845 2.735 0.756 37.6 60OS25043 0.0451 33 0.537 1.83 3.082 1.027 2.396 0.458 0.923 3.08 0.92 18.14 1416 1240 0.364 3.417 -1.874 1.136 3.179 0.652 62A 60DS250-54 0.0566 33 0.670 2.28 3.819 1273 2.388 0.662 0.917 3.82 1.16 22.90 2739 1890 0.715 4.194' -1.860 1.129 3.163 0.654 62.3 60OS250-54 00566 50 0.670 228 3319 1.273 2.388 0.562 0.917 3.77 1.07 32.00 2823 1947 0.715 4.194 -1.860 1.129 3.163 0.654 50.5 6OUS250-68 0.0773 33 HIM 2.84 4.727 1.576 2.378 0689 0908 4.73 1.51 32.82' 4347 2339 1.416 5.145 -1.842 1.119 3.142 0.656 59.2 600825058 0.0713 50 0.836 2.84 4.727 1.576 2.378 0.688 0,908 4.72 1.39 41.49 5350 2879 7.416 5.145 .1.842 1.119 3.142 0.656 50.4 600525097 0.1017 33 1.169 3.98 6.496 2.165 2.357 0.923 0.889 6.50 2.16 48.81' 6911 2512 4.030 6.947 -1.803 1.100 3.098 0.661 58.1 6008250.97 0.1017 50 1.169 3.98 6.496 2.165 2.357 0.923 0.889 6.50 2.06 69.38` 10472 3805 4.030 6.947 -1.803 1.100 3.099 0.661 47.3 6005250.718. 0.1242 33 1.407 4.79 7.713 2,571 2342 1.075 0.874 7.71 2.57 59.58' 8267 2391 7.234 8.142 -1.775 1.085 3.066 0.665 57.3 6005250118 0.1242 50 1 1.407 479 2713 2.571 2.342 1.075 0.874 7.71 2.50 85.92' 12526 3622 7234 8.142 -1.775 1.085 3.068 0.665 46.7 Web -height to thickness ratio exceeds 200. Web Stiffeners are required at all support points and concentrated loads. Suitability of web holes must be evaluated independently. Where web height -to -thickness ratio exceeds 260, or flange width -to -thickness ra8o exceeds 60, effective properties are not calculated (limitations in AISI section Bt) 41lowable moment includes cold -work of forming. ee Section Propenies Table Notes on page 6. ccnrts `,Jl/ Structural PROJECT: Mayerik(Type IV) PR01ECTa AM Engineering Inc. CLIENT: DATE: 442 NORTH MAIN STREET, BOUNTIFUL, UTAH 84010 801 -298 -ITIS OFFICE 801-298-1122FAX Entry soffit framing TOPIC: ENGINEER: J�+ wceQwceeng.com Dead + Roof loading (Roof live or Roof snow + drifting) w] := (15 + 35 + 44)psf = 94-psf 11 := 2ft w2 (15 + 35 + 20)psf = 70•psf 12:= 4ft 13:= 5ft 14:= lift PI :_ I '(WI - w2)"3 = 60-plf P2 = w2.13 = 350-plf Summation of moments about R2: 13 13 PI.— + PT 2 I RI I + 1 = 162.5•plf z Summation of forces in the x -direction: R2:= RI = 162.5-plf Wall stud design: (assume wall studs are spaced at 24" O.C., maximum moment occurs at point (0,0).) Ssmd:= 2ft M:= (RI•Sscua)'ll = 7800 in.lbf Assume 33ksi steel studs: SFeq := M = 0.39•in3 0.6-33ksi Use: 60OS200.43 studs at 24" O.C. min. For 33ksi steel studs: Seff = 0.873in3 leff = 2.683in4 Me = 17,24in'kip Va = 12401bf ---------------------------------- ---------------------------------- CANOPY CONFIGURATION CANOPY LOADING ROOF DECK TS SECTION ROOF BEAMS 1&2 TS SECTION FLOOF COLUMN AT ENDS OFCANOPY ROOF DECK TS SECTION 4 THRUST REACTION 1 W1 P2 P = WF BEAM REACTIONS 52 Structural ion Engineering in,. 442 NORTH MAIN STREET, BOUNTIFUL, UTAH 84010 801298-1118 OFFICE 801298-1122FAX wca@wcaeng com PROTECT: Maverik (Type IV) PROTECTa 1V1��2 AN14JA TOPIC Beam design (along Grid 1) WF Beam design (foist support beams located along Grid 1): Roof live or snow (psf): ws := 35psf Snow drifts (psf): wdrin:= 44psf Ldrift := 911 Roof dead (pst): wp:= 20psf Misc. dead (plf): w,nisc:= 200plf Roof joist span: Ljo;st:= 50ft Roof joist spacing: Tribjuist:= Eft+ loin Roof canopy span: LC811Opy := 5ft + 3in I wdrift:= 2—'wdGft'Lddft=198•plf Uniform F loading on / LZ;st opy 1 Wbeams (joist µ'beam 1ws + WD)'I\ + Lcan+ wdrift+ wmise = 2061.75•plf supports): ( Joist reactions: PRjo;st:= wbean Tribjoist = 14088.63•lbf Out -of -Plane TS beams above and below storefront windows: Wind Pressure: ww;nd 17.Opsf TS section located under window, limit wind deflection to L/240: Ltst := 18ft+ 6in Tribtst := 1lft - 2 wtst := ww;nd'Tritits, = 7.79. 1 b in 2 M wtst'Ltst = 48000.56•in•lbf Mt,, := 8 Zfeq •— Mtsl = 1.74-in3 F67�6i) 5 wtst'Ltst 4 4 Ireq_w := 384 = 9.19 -in L 29000ksi• tst 240 DATE: ENGINEER: �•/ Use: HSS6x2xl/4 (in strong axis bending) ZX = 5.84in3 Ix = 13.1 ih4 ----------------------------------- ----------------------------------- TS section located above window, from inspection of numbers this TS is controlled by the thrust from the canopy limit wind deflection to U360: Lts2:= 18ft + 6in wts2:= R2 = 162.5•plf wts2'Lts2 2 M(,2:= = 83423.44•in•Ibf 8 Zreq .— Mts2=3.03-in3 46ksi ( 1.67 ) 4 Ireq_ts2 := 5 wts2'Lt82 4 384 L = 23.95 -in 29000ksi• Ise 360) Use: HSS10x6x1/4 (in weak axis bending) Zy = 16.6in3 ly = 44.1in4 4( Steel Beam Design - Simple span w/ uniform and point loads -I shapes AISC 360-10 Specification for Structural Steel Building and Steel Construction Manual Design method for ASD (Load combinations are pre -design) Loading criteria: Span: L:= 18.5ft Unbraced length: Lb:= 7ft Deflection limit: A:= 360 Uniform load: w := wb,= = 2061.75,plf Point loads: Point load locations: PI = Olbf P4:= Okip al := Oft a4:= Oft P2 := Okip PS:= Okip a2:= Oft a5:= Oft P3 := Okip P6:= Okip a3:= Oft a6:= Oft Material and beam shape: Member. BM -1 Maverik Type IV - Grid 1-BtoC and Grid 1-DtoE --- - -°6- j n5 n4 PI P2 P3 P4 15 P6 R2 RI Steel Grade: I ASTM A992' Beam shape: Yield Stress: Fy = 50•ksi Lateral -torsional buckling modifier: Modulus of elasticity: E = 29000•ksi (May be taken as 1.0, Conservative) Design shear and moment: RBMI = 19.07•kip V = 1907•kip 'M=88.2•kip•ft Design of Member for Flexure (AISC 360-10 Chapter F): CompF1mge = "Flange is compact" M11 M. = I I5:4kip ft = 0.765 Compµeb = "Web is compact" Db M Slb= 1.67 f1b) Design of Member for Shear(AISC 360.10 Chapter G): SZ„ = 1.5 V„ — = 87.4 -kip u, Design of Member for Service Deflection: 2x Momentx — Ix 6 = 0.5•in < A"n"14. = 0.62 -in Moment Diagram, kip -ft 0 9.25 M = 88.2•kip•ft x L n 18.5 Shearx V = 0.218 Va CIl�� fi = 0.81 Aallo�v Shear Diagram, kip V = 19.07•kip x L n Cb:= 1.0 M < Mn (ASD), Flexure OK" Checks = l "ASD Flexure ratio = 0.765" J "V< < Vn (ASD), Shear OK" Checkz = "Unstiffened webs OK" "ASD Shear ratio Check3 = "Service deflection OK" "Service defleition ratio = 0.81" - bmax 3.5 x Deflection Diagram, in. 6 = 0.5 -in L x•— n Live bad deflection is less than V600, OK for storefront windows Steel Beam Design - Simple span w/ uniform and point loads - I shapes AISC 360-10 Specification for Structural Steel Building and Steel Construction Manual Design method for ASD (Load combinations are pre design) Member: BM -2 Loading criteria: Maverik Type IV - Grid 1-CtoD Span: L:= 14ft Unbraced length: Lb:= 7ft 1 _a6 i Deflection limit: A := 360 A4 I Uniform load: W:= wbeam = 2061.75-plf Point loads: Point load locations: PI := Olbf P4:= Okip al := Oft a4:= Oft P2 Okip P5 := Okip a2:= Oft a5:= Oft P3 := Okip P6:= Okip a3:= Oft a6:= Oft Material and beam shape: Steel Grade: ASTM A9921 v Beam shape: W14)(22 v Yield Stress: Fy = 50•ksi Lateral -torsional buckling modifier: Cb:= 1.0 Modulus of elasticity: E = 29000.ksi (May be taken as 1.0, Conservative) Design shear and moment: RnM2 = 14.43 -kip V = 14.43 -kip M = 50.5•kip-ft Design of Member for Flexure (AISC 360-10 Chapter F): ompptan e = - "Flange pact" M„ g is com M ("M < Mn (ASD), Flexure OK" P3 P4 P5 �16 Mn "ASD Flexure ratio = 0.754" P2 P1 Design of Member for Shear (AISC 360-10 Chapter G): S2, = 1.5 V" V ("V < Vn (ASD), Shear OK" !2 = 63 kip R1 2R 12 I f 'ASD Shear ratio = 0.229" Steel Grade: ASTM A9921 v Beam shape: W14)(22 v Yield Stress: Fy = 50•ksi Lateral -torsional buckling modifier: Cb:= 1.0 Modulus of elasticity: E = 29000.ksi (May be taken as 1.0, Conservative) Design shear and moment: RnM2 = 14.43 -kip V = 14.43 -kip M = 50.5•kip-ft Design of Member for Flexure (AISC 360-10 Chapter F): ompptan e = - "Flange pact" M„ g is com M ("M < Mn (ASD), Flexure OK" = 67 kip ft = 0.754 Check! _ ) Compµeb = "Web is compact" f2b Mn "ASD Flexure ratio = 0.754" f2b = 1.67 Design of Member for Shear (AISC 360-10 Chapter G): S2, = 1.5 V" V ("V < Vn (ASD), Shear OK" !2 = 63 kip V = 0.229 n1 Check2 = I "Unstiffened webs OK" I\ 12 I f 'ASD Shear ratio = 0.229" Design of Member for Service Deflection: 6 = 0.309•in < Aj, o, = 0.47 in 6 = 0.662"Service deflection OK" 1 Aallow Check3 – "Service deflection ratio = 0.662" JI Moment Diagram, kip -ft Shear Diagram, kip 1.5x10 459.72 lx 103 151.70 Momenta Shearx 50 – 156.32 0 7 14 0 7 14 – 464.34 M = 50.5•kip•ft X.L V = 14.43 -kip X.L n n Deflection Diagram, in. 0.30 - bmax X 7 14 -0.309 5=0.31 -in L X.— n Live load deflection is less than U600, OK for storefront windows 43 Steel Column Design - Combined loading -Square HSS Sections Member: AISC 360-10 Specification for Structural Steel Building and Steel Construction Manual Columns at Canopy framing Design method for ASD (Load combinations are pre -design) Maverik Type IV Loading criteria: Column Material: Effective unbraced length (x): Lx:= II + ly + 14 = 17ft Steel Grade: ASTM A500 Gr. BLVJ Effective length factor (x): kx:= 1.0 Shape: Fy = 46•ksi F❑ = 58•ksi E = 29000ksi Effective unbraced length (y): Ly := 11 + 12 + 14 = 17 ft HSS6X6X5f16 Y Effective length factor (y):ky 1.0 Base platecriteria: :_ Service loads: Steel Grade: JASTM A36 U Axial load: P:= RBMI + RBM2 = 33.5 -kip Fy P = 36•ksi F„_p = 58•ksi Concentrated bad from thrust Pthrmt R2'(34.5ft = 2) = 2.8 -kip Safety factors: of canopy: PC:= 1.67 nb:= 1.67 Moment in major axis (x): Mc = Pthmst �II + I2�•�14� _ 10.88•kip•ft (I I + Iz + 14) Pthmt = 2 -8 -kip Moment in minor axis (y): My := Okip•ft Section geometry Design of Member for Compression (AISC 360-10 Chapter E): C_Checkl = "Slenderness ratio OK" Check Section elements are compact" C 2 = "Slenderness iteration not req'd" Design of Member for Flexure (AISC 360-10, Chapter F): "X-axis bending, Flange is compact" F_Checkl = "X-axis bending, Web is compact" "Y-axis bending, Flange is compact" "Y-axis bending, Web is compact" Pn P = 0.32 1O5 -kip (sp—ic) PC "p < Pn (ASD), Compression OK" CompressionCheck = "ASD Compression ratio Mn.x 31 -kip -ft Mx =0.35 Ob 70J 'Mx < Mn.x (ASD), Flexure OK" X_FlexureCheck = "ASD X-axis Flexure ratio Mn,y = 31•kip•ft My = 0 Pb Mn.yl (PbJ Y_FlexureCheck = "Y-axis Flexure N.A." Design of Member for Combined Forces (AISC 360-10, Chapter H): Base plate design: Column width: Column depth Wcol B = 6 -in Dcol := HT = 6 -in "Combine Forces OK" CF_Checkt = "AISC 360-10 Eq. Hl -la Controls" "ASD Combine Forces ratio = 0.63" Base plate width: Base plate depth Bp:= W,C1+3in Np := Dcul + 3in tm;,t = 0.53 -in W Concrete Spread Footing Design (reinforced both directions ACI 318-11, Load and Reduction factors per Chapter 9 (axial design only) (Bearing area based on IBC ASD Basic Load Combinations) Footing loads and design criteria: Loads (unfactored): Initial footing thickness: Dead: D:= (RBMI + RBM2) (35%) Live: fI := 1.0 L:= Olbf Snow/Live roof: f2:= 0.2 S (RBMI + R6M2).(65%) Soil bearing pressure: qb:= 1500psf Height of soil over -burden: hsuil := Oft Over -burden soil unit weight: rysoll:=l00pcf Percents on & S distribute beam reaction: RBM1 + RBM2 = 33.5 -kip D + S = 33.5 -kip Factored loads and load combinations: Designed by: JSC Footing Callout: FTG -1 -Center columns Concrete Strength: Normal/light weight conc: Strength reduction factor, flexure: Strength reduction factor, shear: Reinforcing steel yeild strength: Supported column type: h:= 12in d:= h - (3 + ])-in fe:= 2500psi X:= 1.0 (�f := 0.9 (, := 0.75 fy := 60ksi as:= 40 Base plate/pedistal width (short): w:= Sin Base plate/pedistal width (long): 1:= Sin Load combinations Required strength for concrete design and controling combination: Cone-Design_EQ = "ACI Load Equation 9-3a w/ U = 48.9 kips" Allowable bearing load and controling combinations: Required bearing area: Pa Areaieq := qb _ (h•150•pcf) - (hsoir'Ys00 Concrete footing design: -oncrete calculations One -Way shear design: Two-way or Punching sheardesign Flexure design: Bearing_Design_EQ = "IBC Load Equation 16-10 w/ Pa = 33.5 kips" Area(eq - 24.82 ft2 Vuj = 14.7 -kip < @Vct =36tkip Vol = 45.4 -kip < (�Vc2 = 76.8 -kip M� = 23-kip•ft & As 1eq - 0.65•in2 "[7144 Bars @ Sin O.C." "[5] #5 Bars @ 12in O.C." Req_Steel = "[3] #6 Bars @ 18in O.C." "[3] #7 Bars @ 25in O.C." "[2] 48 Bars @ 32in O.C." Use: B := 5ft (each dir.) AreaCheck = "OK" OCI Check = "OK" dIVc2 Check -- "OK„ Maximum spacings: • 3 x thickness • 181n O.C. M Concrete Spread Footinq Desiqn (reinforced both directions ACI 318-11, Load and Reduction factors per Chapter 9 (axial design only) (Bearing area based on IBC ASD Basic Load Combinations) Footing loads and design criteria: Loads (u nfa clone d): Initial footing thickness: Dead: D:= RBMI•(35%) I iVP f- 10 L Olbf Snow/Live roof: Soil bearing pressure: f2:= 0.2 S:= RBMt•(65%) qb:= 1500psf Height of soil over -burden: hsoil := Oft Over -burden soil unit weight: rySoil:= 100pcf Percents on D & S distribute beam reaction: RBMt = 19.07•kip D + S = 19.07•kip Factored loads and load combinations: Designed by: JSC Footing Callout: FTG -2 - End columns Concrete Strength: Strength reduction factor, flexure: Strength reduction factor, shear: Reinforcing steel yeild strength: Supported column type: h:= 12in d := h — (3 + I). in fc:= 2500psi or:= 0.9 0,:= 0.75 fy := 60ksi as := 40 Base plate/pedistal width (short): w:= Bin Base plate/pedistal width (long): 1:= gin -oad combinations Required strength for concrete design and controling combination: Allowable bearing load and controling combinations: Required bearing area: Pa Areareq qb _ (h• 150.pcf) - (hsoil'•YS00 Concrete footing design: 'oncrete calculations One -Way shear design: Two-way or Punching shear design Conc-Design_EQ = "ACI Load Equation 9-3a w/ U = 27.8 kips" Bearing_Design_EQ = "IBC Load Equation 16-10 w/ Pa=19.1 kips" Areareq = 14.13 ft V� j = 7 -kip < (�Vot = 28.8 -kip Vii2 = 24.8 -kip < 0c2 = 76.8 -kip Flexure design: M" = 9.7•kip•ft & As feq = 0.27•in2 "[6] #4 Bars @ 8in O.C." "[4] #5 Bars @ 12in O.C." Req_Steel _ "[3] #6 Bars @ 17in O.C." "[2] #7 Bars @ 24in O.C." ,"[2148 Bars @ 32in O.C." Use: B:= 411 (each dir.) Areacheck = "OK" Vcl check = "OK" (�Vc2 Check = "OK" Maximum spacings: • 3 x thickness • 18in O.C. 0 1 �Q-Awommh, sil Structural n uerr 1 iq _ I tl `a ren,, 1'-log2. Engineering i,,< ,I -IL' • nh 4P in 5r •eL II unNul. I gall SiulU xnl , IIIti UI11. eul t, -I L'.'I:n �l _ �? — - - -c a I , (017 > V (u Kou2fhcz -r- r`v", n:,_G G, A o fv��, JJn I � .. A ( ;PIG• K ?7� Structural Engineering 442 North Main Siec1, Ouwni00, Wh 8-1010 801.298-1118 Office 801-298-11^_2 Fax WCCln¢nc.#.Curu TOPIC: VgAt�� Q .'w,�,' ENCINELR: —✓ gyp. = �6�� .. . ?� c i-� eon r s _ �z p �� C G14� f� - 1, I �-'(L .:4a @. `r1a� asp J � ; •��- r:L„ l-.' v ................1......... ..... .. .......... ......... .................................................... , .................................................. ..Pe�F Structural Engineering 442 North Main Steet, Bountiful, Utah 84010 801-298-1118 Office 801-298-1122 Fax wca@wcaeng.00m PROIEC:T: Y `�t.�-�l-� r �L PROIfCTu: CLIENT: DATE nn�-Cs ✓ l \� TOPIC:ce '\b" --C• 1�' I t�L7iG_. ENGINEER: Jcs�s1 L`�L� a�as .... .:..:.. .. �1ori2�Ps��3 :yt\..^ �1 �1� tis p .. ................... ... . 49 ............... Jcs�s1 L`�L� a�as .... .:..:.. .. �1ori2�Ps��3 :yt\..^ �1 �1� tis p .. ................... ... . 49 tbA(�) - p;1D� Structural En�ii�eering I„l ,9rcc,. Bounuhd 11,,6 Not '18.111,, 1 I\ I11:: UOla \III '�\ II"I':,,a I'6, OIP(P Ak-16ak Vo' ,IJgl l'I Irios u:.,\::1,: �jbCJ �1�oL-�I� -;'� �'-Itl•�pdnl ? :,r�i`I�,��nl ��qn.1 y,.Uti P i p- usO, C \ PxoC-.>c,- LC, r ;�, r` IDS Ca r l� so � LOP ,ITE . ' a - e -. �' •' �' fi =tu,4 4;-,. 1'' -ST i�'»'s.' ,., r�` r r r . r <a)" ("' L1360 Live Load Defection L14BO Live Load Deflection F. Single Span Double Span Single Span Double Span Section (k �) Spacing (in) an center Spacing (in) on center Spacing (In) on center Spacing (in) on center 12 16 24 12 16 24 12 16 24 12 16 24 6005762.33 33 6'9ro 5' We 4'7'0 51 To 4'0'o 3'4'e 69'0 5' We 4'7'0 5, re 4'8'o 3'4'0 6005200.33 33 7'Te 6' To 4' To We 4'Te 3'4'e 7'Te 6'20 4'7'e 5' We 4'9'e 3'4'0 6DOS162.43 33 8'4'p 7'To 51D'e 8'1'e 6'9'e 5'Te 8'4'e 7'Te SIWe TI'e 6' To 5'2'e 6009200.43 33 0'7'e 7'5'e fi'l'e 8'2'0 6' We 53'0 8'7'0 7' Ye 6'1'e 6'2'e 6' We 5'3'0 6005250.43 33 81910 7'To TXe O'Ne 7'6'0 5'4'0 B'9'e 7'Te 6'3'9 0'4'e 7'0'e 5'41e 600S162-54 50 1010' 9'1' 7'10'e 11'1' 915' 7'4' 911' 8131 7'Te ITT 913' 7'41 5005200-54 50 1761 9'7' 8'1'e 1112, 9'5' 7'4' 917' 810' 7'7'e 10'9' 915' 7'4' GOOS250.54 5D 11'0' 10'0'9 8'3'e 11'5' 9'8' 716' 1010' 9'1' 71 We ITT 9'8' 716' BODS162.68 50 1019, 919, 8-6- 1210, 10' 11' T 1 P 919, 8110, 7'9* 10111' 9' 11' 8,91 600§200.68 50 11'Y 1013, 8' 11' 17 8' 11' 6' 913, 10' 3' 74' 8' 2' 11,61 IV 5' T2' 6005250.68 50 11' 10' Will 9.5. ITT` 1115, 9' 1' 1019, 919, Val ITP 10' 11' 911. 60DSM-97 50 I'll Ill 10'10' 9'5' 1314' 12'1' 10'7' IV 1o' 9110' 8'7' 12'1' 11'0' 9'7' 6005200-97 50 1216' 11'4* ` 9' 11' 1411, 1219, 11' T 1114, t0' 4' 9' 0' ITV 11'7m IVT 6003250-97 50 ITT 11'11' 1015' 14'9' 1315 1119' 11'11' 10'10' 916' ITS' ITT 10'0' 6005762.118. 50, 17.7' 11'5' 101 D' 14'1' IT 101 11'2' 1115' 10'4' 9'1' UAW 11'0' ITT 6005200.118 50 ITT IT 0' 1016' 14'10' 1316' 11110' 12'0' 10'11' 9'7' 1316' ITT 1019' 6005260.118 50 13' 11' 12' 8' 11,11 1618, 14'2* IT S' 128' 11'6' 1010, 14'2' 12' 11' 1113, 8005162-33 33 6'9'e 5'i'e TS'e Vale 31110 PO'e 6'9'o 5'7'e 3'5'o 5'0'e 3' it's Tale 8008200.33 33 6' 9'e File 3' SD 5' 1'e T 11'e 2' 0'e 6' 9'e 5' 'a 3' 5'e T 1'e 3' 11'e T 0'e 0003162.43 33 914.0 8'1'e fi'l'e 8'4'0 61lo'e 5'1'e 914'e a, Ile 6'7'0 84'e 6'10'e 5'1'e 8003200.43 33 10'0'e 8'8'0 7'11e 9'01e 7'4'e 514'0 IVWI a 7'1'e 9'0'e Tile 5'4'e 8005250.43 33 10'310 81 We 7'3'e 9'0'0 7'4'e. 5'4'e 10'3'e B'il'e T3'e- 9'0'e 7'4'e 5'Ne BODS152-54 5o 12'6'0 10' two a'lo'e ITT 1014' 8'1' 1115' 1D'4'e 8'10'e 177 10'4' 811' 800S2DO-64 So 13'2'0 11'7'c 9'5'0 13'4' 1112' 0'7'e ITT 10'11'e 9, Fe 13'4' 11'T 817'e 8009250.54. 50 13' We 11'10'9 9' We 13'5' 1113' 8'8'e 12'6'e 72,4'0 91810 ITT 11'3' 0'8'e 8003162-68 50 1316' 12'4' 10'4'e 14'6' 178' 1011' 174' 11'21 9'9'e 13'101 177' 1011, 8005200-66 50 ITT 1711' 11'3'0 15'11' 14'0' IT 3' 111' 11'0' 10, To 14'5' 172, 11'3' 8009260-68 50 14'10' 13'5* 11'4a 16'0' 13'10' 11,01 1315, I2' 3' Wale 15' 1' 1319, 11,01 8008162-97 50 15'0' 73'8' 11'11' 16'11' 15'4' 170' 13'8' ITS' 10'10' 15'4' IT It' ITT 8005200.97 50 159' 14'4' ITV 17'8' 1611, 14' 1' Ali' 1310, 11'4' 16'1' 14'7' 129' 8009250-97 50 16'6' 1610, 13'1' 18' 6' 16' 70' 14' 8' 1510, 13'7' 11' 11' 10' 10' 15' 3' 134' 8005162-116. 50 15' 11' 1415, 12'7' 12,10' 16'3' 14'T 14'5' ITT 11'6' 1613, 14,91 12' 11' BOOS206.118 50. 16'8' 15'T 13'3' 1819' 1T 0' 14'11' 15'2' 13'8' ITO' 17'0' 166' 13'6' 9008250-118. 60 17'V 15' 10' IT 10' 19'7* 1T 1 D' 1517, 15, io* 14'5' 12-7- 17'10' 16-2- 14' 2' 10ODS16243 33 10'4'0 O'11'e 6'@e. - 8'1'0 615'0 4'6'e 10'4'0 8'11'0 6'0'0 8'1'e 6'5'e 4'6'e IOGDS200.43 33 11'2'e 8'11'e 6' We 0'3'e 6'6'e 4'7'e ITTe 8'1Pe 6'0'e VTe 6'6'e 4'7'e 10005250-43 33 11'610 B'11'0 6'01e 8'5'0 6'7'e 4'7'e 11'610 B'it'e 610'0 81510 6'7'e 4'7'e IOOOS162-54 50 13' We 12' 0'e 9' 10'e 12'10' 10'7' 71 I7' 13'7e 1279 9' 10'e 12' 10' 10' 7' Till 10003200-54 50 14'11'0 IT11"o lo'b'e ITT 10'10' 81010 14'2b 12'10'a 10, We 93' 10'10' 810'6 10008250-54 50 Wile 13,310 10' We 1318, 11' 2' 8' 2'e 14'11'e 13'3'e 10' lire IT 8' 11'? 8' 2'e 10005162-68 50 16'2' 14'2'0 11'7'e 1615' 14'2' 11'2' 14'9' ITT 11'7'e 16'5' ITT IfT 10083200-68 50 16'11' 15'Te IT Fe 17'6' 14'10' 11'8' 1515' 14'Va 177le ITT 14'10' 1118' 10005250-68 50 17'01 15'7'a ITTo 1810' 15'7' 12'41e 16'1' t4'7'0 12' We 1810' 15'T 174'0 10005162-97 50 toll' 1615, Ali' 20'4' 1812, 14'T 1615, Will IT 1' 1816, 16'9' 14' 8' 10ODS200-97 50 18' 11' ITT 15' 0' 21' T 19' 3' 1518, 17' T 1517, 1318, 1913, 17'W 15'4* 10005250-97 50 1918' 17'11' 1516' 22'1' 20'1' 16'11' 11'11' 16'3' 14'2' 2011' 10'31 15'11' 10005162.118 50 19'2' IT5' 15'3' 21'6' 19'7' 16'7' 1715' 15'10' 13'10' 19'7' ITT 1516, 6005300-118 50 20' 1' 18'T 15' 11' 22'6' 20' 5' 1718, MIX 16'7' 1415' MY 18'.7' 1613, 0005250-110 50 20' 11' 19' 0' 1617, 23'5* 21' 4' 1817' 1910, ITT 15' 1' 21'4' 10' 4' 16' 11' e" wet, st7r/eners required at ends, Veb s6//eners mquired at interiorsupports tor double span conditions. 'cc fable Notes nn page 35 51 Table (Votes 1. Values are for unpunched members. 2. Total load deflection is limited to L/360. 3. Headers are made from two boxed or back-to-back members. 4. Allowable moment, shear, and web crippling arebased on twice the capacity of a single member. The moment of inertia is based on twice the value of the single member. Boxed Header 5. Web crippling check is based on 1" of bearing at end supports. 6. Members are assumed adequately braced for bending. 7. Allowable loads are for simply supported headers with uniform bending loads only. 8. See page 5 for additional table notes. Sack -to -Back Header ,",veb stlr/anea required a7 ends. Header .b • o:d YleldStren9th Sear . Section (ka1) 3 (fl) 4(fQ 5(It) 6(10 8111) 10 (it) 121(1) 5505162.33 33 931.49 69850 460.10 319se 179.7e 115,00 73.8e 5505162.43 33 1946.60 1094.90 700.80 486.69 273.70 164.60. 95.30 6505162.54 50 34847o 1960.10 1254.5e 871.20 396.8e 203.2 111.6 5508162-68. 50 4782.6e 2690.28 1721.70 11570e 488.5e 2501 144,7 600SI37.33 33 850.8e 638.te 436.5o 303.Io 170.50 109. 1, 75.80 600$162-33 33 850.88 638.1a 504.9e 350.6e 197.20 126.28 87.60 600S700.33 33 850.8e 630.1e 510.5e 398.78 224.2e 143.5e 99:70 6ODS137-43 33 1751.10 985.00 63848 437.6e 245.30 157.66 103.2e 6005162-43 33 188760 1205.1e 771.3e 535.6e 301.30 192.6e 1171e 600200-43 33 188760 1282.40 820.70 569.90 320.60 205.20 135.70 80DS25D-43 33 1067.60 1350,70 86440 000.3e 3377e 216.10 150.10 6005137.54 50 3146.8a 1770.10 1132.9x. 786,70 429.80 2201 127.3 6005162.54 50 3763.8e 2158.30 1381.3e 959,3e 488.30 250.00 144.7 6005200.54 50 3763.8e 2281:98 1460.49 10142o 566.7e 290.10 167.9 6005250.54 50 3763.89 2392.70 1531.40 1063.40 590.20 329.1e 190.5 60DS13740 50 4280.50 2407:80 164149 1070.1e 528.3a 270.5 156.5 600516268 50 5280.3e 2974.70 1903,89 1322.19 601.70 306.1 178.3 6005200-68 50 5880.ie 330750 2116.8e 1470.Oe 700.0o 350.4 207.4 00OS250.68 50 5700.20 3255,8e 2083.7e 1447.00 606.3e 412.Be 238,9 6008137-97 50 7526.50 4233.7e 2709:5e 1694.8e 715 366.1 2168 GOOS162.97 5D 8403.7e 472710 3025.3e 1941.30 019 41913 242.7 6005200-97 60 9432.60 5305.9e 3395.7e 2270.90 950.Oe 490.5 283.9 6005250.97 50 9898,le 5567.7e 3563.3e 2474.5e 1109.0e 567.8 320.6 6008737.110 50 9130.7e 5140.50 3289.90 190790 030.7 429.4 248.5 6005162-118 50 10212.Be 5744.7e 3676.6e 22873e 965 494.1 285.9 6003200-118 50 11620.3e 6536.40 4183.3e 2687.40 1133.7 500.5 335.9 600$250418 60 12729.2e 7160,2e 4582.5e 3121.2a. 1316.7a 674.2 390.1 8ODS137-33 33 6320e 474.Oe 379.2e 316.Oe 223.2e 142:8e 99.20 0008162.33 33 632.Oe 474.Oe 379.2e 316.Oe 237.Oe 160.18 116.7e 8005200-33 33 632.0x 474.Oe 379.2e 316.Oe 237,Oe 189,6e 134.50 BOOS137-43 33 1401.5e 040.90 504.30 320.70 210.3a 146.1e BOOS162.43 337401.50 1051.2 040.90 670.88 381.80 - 2444e 1697e BOOS200-43 33 140I.Se a 840.9e 700.8e 437.2e 279.80 194.38 8005250.43 33 1401.50 1051.2e 840.9e 700.8e 459.Se 294.1e 204.20 BOOS137-54 50 2780.4e 2091.3o 1518.30 1054.4e 593.10 379.68 251.69 8006162-54 So 2788.40 2091.30 1673.Oe 1215.2e 6113.6e 437.5e 283,3e BOGS200-54 50 2708.4e 2091.3e 1673.00 1384.18 778.Ge 498.3e 332.5e BODS250-54 GO 2780.4e 2091.3e 1673.Oe 1394.2e 815.2e 521.7e 362:30 8005137.68 50 5627.68 3297.Ge 2144e 1465.6e 024.4e 527.6e 31790 800S1G2-68 50 5627.6e 3759.1e 2405.80 1670.70 939.00 601.4e 35760 0005200-68 50 5627.60 4220.70 2917.3e 2025.9e 1139.6e 711.6e 411.80 BOOS250.68 - 50 56276e 4220.70 2066.9e 1990.9e 11199e 716.70 46740 0005137-97 50 9468.1e 5325 Be 3408.50 236740 1331.50 751se 434.9 DOOS162-97 50 10657.1e 5094.60 3836.6e 2664.3e 1490.7a 849.Oo 491.3 BODS200-97 50 13297,59 7479. Be .9787.10 3324.4e 1070.90 979.30 $66.7 8003250-97 s0 13839.90 7785.Oe 49024e 346D4e 1946.2e 1117.9e 646.9e 0005137418 50 14157.30 7963.59 5096.6c 3539.30 1732.3e 886.9 513.3 8005162.118 50 15509.2e 0760.90 5612.10 3097.Jo 1964.Oe 1005.50 501.9 BOOS200-710 50 17414.8e 9795.80 6269.30 4353.70 2273.20 1163.90 673.5 8005250-11B 50 I 10210.le 10243.2c 1 6555.60 4552.5e 2560.80 I 1332.2e. 771.4 ,",veb stlr/anea required a7 ends. °I4'V' 8�I:4J'Al It{ox P, cable Notes L. Allowable axial loads listed in kips (1 klp = 1,000 pounds). 2. Allowable axial loads listed are based on simple one span condition. 3. Allowable axial loads determined in accordance with AISI S100 Section C5 and with the assumption that axial load passes through centroid of the effective section. 1, Allowable axial loads are based on 4'-0" on center bracing, 5. Studs are assumed to be adequately braced at a maximum spacing of L„ to develop full allowable moment, %. 6. Listed wind pressures represent calculated designed wind pressure (I.D W based on 2009 or 0.6 W based on 2012 IBC). For deflection calculations, listed wind pressures have been reduced by 0,70 as allowed by IBC. The 5 psf pressure has not been reduced for deflection checks. 7. End supports have not been checked for web crippling. See web crippling tables on page 51. B. see page 5 for additional table notes. .=- 'no note, dellection meets 0120 2ettection meets 41120 'Oel7ection meets 1/240 'Deflection meets t/3dO 'Oellecoon meets L1600 3 5 Ps ra Loafllnteriovftls)� 3608162'- 3028137. 3625162 3625200 Well Nl d�h Spacing. (Inl oc 33 list 50 list JJ last 50 list 33 kat SO Jail 33 --"- kal 50 list 1f41 33 43 54 68 33 43 54 fib 33 43 54 88 33 43 54 fib 12 1.01 2.56 3.97 5.08 1.49 2.14 3.32 4.37 1.87 2.65 4.15 5.38 2.25- 3.28 5.18 6.68 8 16 1,74 2.48 3.90 8.01 1.42 2.07 3.26 4.30 1.80 2.57 4.00 5.31 2.17 3.20 6110 6.60 24 1.58 2.32 3.76 4.87 1.29 1.93 3.13 4.17 1.65 2.42 3.94 5.17 2:01 3.03 4.94 6.45 12 1.67 2.38 3.65 4,67 1.38 201 3,11 4.07 1.74 2.48 3,06 4.99 2.10 3.07 4.79 617 9 16 - 1.57 2.28 3,56 4.58 1.30 1.92 3,02 3.99 1.64 2.38 3.77 4.90 2.00 2,96 4,69 6.07 24 1.39 2.09 3.39 4,41 1.13 1.74 2.07 3.02 1,46 2.19 3.60 4.72 1.00 2,76 4.49 508 12 1.51 2,18 3.29 4.23 1.26 1.85 2.85 3.73 1.58 2.29 3.53 4.55 1.93 284 4.37 5.61 10 16 111 207 339 4.12 1.16 1.75 2.75 3.63 1.47 2,17 3.42 4.44 1.81 271 4.25 5.49 2A1.19 ; 1.84 2.99 3.92 0.96 1.54 2.57 3.44 1.26 1.95 3.22 4.23 1.57 2.47 4.01 5.27 12 1.75 2;56 3.31 0.99 1.51 2.27 2.97 1,25 1.87 2.79 3:60 1.56 2.32 3.45 4,44 12 16 1.044 1.61 2.44 3.18 0.66' 1.37 2.15 2.85 1.11 1.12 2.66 3,47 1:40 2.16 3.30 4.30 24 0,79' 1.34' 2.21 2.94 0.63' 1.12° 1,93' 2.62. 0.86' 1.444 2.42 3.22 1:12' 1.86 3.03 4.03 12 0.86' 1.33 1.95 2.54 0,723 1.15' 1.75 2.3Q 0.93' 1.44 2,14 2.78 1.18 1.01 264 3.A3 14 16 0.71' 1.17' 1:02' 2.40 a59' 1.00' 1.62' 2.16 0.78' 1,28' 2.00 2.64 1.01' 1.634 2.48 3.21 24 0.462 0.69' 1.58' 2.16' 0.34' 0.732 1.39' 1,92' 0.52' 0.09' 1.75' 2.38' 0.70' 1:313 2,193 2.99 12 0.69' 0.96' M8' 1.95 0.60' 0.833 1.333 1.70' 0.65' 1.06' 1.63' 2,14 0.843 1.36' 2.Ot 2.66 16 16 0.452 0.80' 1,353 1.01' 0:382 0.68' 1.20' 1.63' 0.512 0.90' 1.49' 200' 0.67' 1.18' 1.063 2.50 24 0.21- 0.541 1.122' 1.57' 0.12' 0.42' 1 0.972 1.392 025' 0;622 UP 1.74' 0.38' 0.062 1.68' 2.21' ..d (interior Walls) 4005137 4005162 4005200 6508162 Wall Her lit spacing (in) cc 33list so list 33 list So list 33 kat 50 ks1 33 list 50 ks1 tr 1 1 33 43 s4 68 33 43 54 68 33 43 64 68. 33 43 54 68 12 1.61 231 3.67 4.98 2.03 2.87 4.62 610 - 2.42 3.55 5.77- 7,63 2.39 3.36 5.63 7.45 0 16 1,55 2.25 3.61 4.91 1.96 2.80 4.55 6.11 2:34 3.40 5.70 250 2.34 3.33 5.58 7.41 24 1.42 2.12 3.49 4,78 1.82 2.66 4.42 5.97 2.19 3.32 5.54 7,41 2.24 3.23 5.49 7.32 12 1.52 2.20 3.49 4.79 1.91 2.72 4.37 5.85 2.28 3.37 5.43 7.19 2.32 3.31 5.55 741 9 16 1.44 2.12 3.42 4,70 1.82 2.63 4.26 5.76 2.19 3.27 5.33 7.10 2.26 3.24 6.49 735 24 1.28 t95 3.27 4.54 165 2.46 4.11 5.59 2.00 3.00 5.14 6.91 2.13 3,12 5.30 7.24 12 1.41 2.07 3.20 4.49 1.77 2.56 4.00 5.47 2.13 3.16 5.04 6.70 2.25 3.22 5.41 7.35 10 16 1.31 1.97 3.19 4.30 1.67 2.45 3.07 5.36 2.01 3.04 4.92 6.58 2.16 3.14 5.34 7.27 24 1.12 1.)7 3.00 4.18 1.46 2.23 3.77 5.14 1.79 2.81 4.69 6.34 2.00 2.99 5.19 7.12 12 1.16 1.76 2.77 3.75 1.46 2.17 3.A7 4.54 1.79 2.69 4.19 5.57 2.05 3.00 5.04 6.07 12 16 1.03 1.62 2.64 3.61 1.32 2.02 3.27 4.39 1,63 2.53 4.03 5.41 1.03 25g 4.93 6.76 24 0.80' 1.36 2.40 3.35 1.06' 1.74 3,01 4.12 1.35 2.22 374 5.11 1.71 2.68 4.71 6.54 12 0.90' 1,41 2.22 2.96 1.14 1.75 2.71 3.57 t43 2.19 3.32 4.39 1.81 2.72 4.54 6.23 14 16 - 0.75' 1.25' 2.08 2.00 0.98' 1.50 2.55 3.41 1.25' 2.00 3.14 4.21 1.66 2.57 4.39 6.07 24 0.49' 0.96' 1,81' 2.52' 0.70' 1.26' 2.27' 3.10 0.92' 1.65' 2.82 3.00 1.37 2.29 4.11 5.70 12 0.65' 1.08' 1.74 2.30 0.84' 1.35' 2.12 2.76 1.07' 1.71 2.60 3.42 1.53 2.39 3.95 5.45 16 16 0.50' 0.913 159' 2.14' 0.68' 1.17' 1.96• 2.61 059' 1.51' 2.41 3.28 1.35 2.20 3.77 5.26 24 0.23' 0.617 1.323 1.06, 0.392 0.05' 1.67' 2.31' 0.56= 1.163 2.09' 2.91' 1.02' 1.07 3.43 4.90 'no note, dellection meets 0120 2ettection meets 41120 'Oel7ection meets 1/240 'Deflection meets t/3dO 'Oellecoon meets L1600 3 5 13 r Wall Hcighl IPI Spacing (in)oc 73 33 ksi 43 6005137 54 50 ksi 60 97 33 W50 37 43 600S162 54 ksi 60 97 33 ksi 33 43 6005200 54 50 ksl 60 97 12 1.31 2.06 3.43 4.60 7.22 1.87 2.09 5.1.1 6.99 10.94 2.29 3.71 6.86 9.41 15.09 B 16 1.12 1.81 3.27 4.52 7.09 1.64 2.69 4.94 6.00 10.76 2.06 346 6,61 9.18 14.06 1.72 24 0.75 1.51 2.96 4.22 6.03 1.21 2.28 4.56 6.43 10.39 1.50 2.98 6.12 8.72 14.40 3.22 12 1.15 1.90 3.29 4.54 7.10 1.60 2.71 4.96 6.81 10.77 2.03 3.46 6.54 9.07 14.66 9 16 0.91 1.67 3.09 4.34 6.93 140 2.45 4.71 6.57 10.53 1.79 3.15 6.23 8.77 14.36 6.54 24 0.46 1.21 230 3.95 6.59 0.66. 1.95 4.22 6.09 10.05 1,23 2.55 5.61 8.19 13.77 - 12 0.97 1.72 3.13 4.38 6.96 1.46 2.51 4.75 6.61 10.56 1.84 3.18 6.17 0.67 1.4.14 10 16 0.69 1.44 2.88 4.13 6.75 1.13 2.19 4.44 6.30 10.25 1.49 2.81 5.79 0.30 13.76 6.01 24 0.14' 0.89 2.40 3.65 6.32 048 1.58 3.84 5.71 9.65 0.82 2.08 5.05 7.59 13.03 10.35 12 0.50 1.32 2.75 3.99 6.61 0.97 2.01 4.20 6.09 10.01 1.31 2.55 5.30 7.60 12.83 12 16 0.20' 0.93 2.40 3.63 6.28 0.53' 1.58 3.77 5.64 9.54 0.65 2.04 4.78 7.17 12.28 2.10 24 - 0.20 1.73' 2.95 5.66 - 6.76' 2.94 4.79 8.66 - 1.104 3.79 6.20 11.25 5.93 12 0.16' 0.86' 2.30 3.51 6.14 0.45' 1.44 3.44 5.21 9.22 0.76' 1.85 4.31 6.51 11.20 14 16 - 0.36' 1.641 3.04 5.70 2.87 0.91' 2.90' 4.54 858 0.21' 1,25' 3.67 5.87 10.50 12.79 24 - - 1.003 2.16' 4.861 - - 1.92' 3.60' 7.39 - 0,141 2.521 4.70' 9.21 17.90 12 16 0.393 1.80' '2.96' 3.06 5.56 - UP 2.64' 4.22 7.74 023' 1.183 3.31 5.28 9.42 16 16 - - 1.253 2.383 4.99' 'A.. 0.283 2.04' 3.57' 6.99 ]IG 0.503 2.613 4.56' 8.61 - 24 0.60' 0.28, 1.353 3.953 - - 0.903 2.423 5.671 0.43' 1.371 3.283 7.164 Wap Heltgg�ht if p �In)oig- 33 its[ 43 43 800S1J7 50 ksi 54 68 97 33 ksi 43 54 '.8005162. 60 68 Asl 97 116 33 ksi 43 54 8009200 .. _. 50 lest 68 97 118 12 2.11 3.31 4.50 6.98 2.90 5.09 6.92 10.93 14,02 4.03 7.31 9:89 15.60 20.09 8 i6 1.98 3.21 4.40 6.09 2.82 4.95 6.78 10.80 13.91 3.85 7.14 9,73 15.45 19.94 Sakai 24 1.72 3.00 4.20 6.70 2.52 4.67 6.51 19.53 13.67 3.49 6.78 9.41 15.14 19.64 33 12 2.01 3.22 4.42 6.90 2.85 4.97 6.80 10.02 13.92 3:88 7.16 9.75 1547 19.90 9 16 1.84 3.09 439 6.78 2.65 4.79 6.62 10.64 13.77 3.65 6.93 9.54 15.27 1076 0.50' 24 1.51 2.82 4.03 6.54 2.26 4.44 6,27 10.30 13.47 3.20 6.48 9.13 14.87 19.37 1.523 12 1.08 3.17 432 6.01 - 4,84 6.66 10.68 13:80 3.71 6.98 9.59 15.31 19.80 10 16 1.68 2:95 4.16 6.6fi 2; 6 4.61 6.44 10.46 13.61 3.42 6.70 9133 15.05 19.55 2.08' 24 1.28 2.63 3104 6.36 1.90 4.17 6.01 10.03 13.23 2.86 6.13 8.81 14.55 19.05 - 12 1.60 2.119 4.09 6.59 2.36 4.51 6.34 10.35 13.51 3.36 6,55 9,18 14.91 19.39 12 16 1.31 2.65 3.86 6.37 2.01 4.18 6.02 10.03 13.22 2.139 6.13 0.80 14.53 -19.01 2.83 24 0.75 2.17 340 5.92 1.34 3.55 5.38 9.39 12.66 2.10 5,32 0.04 13.70 18.26 - 12 1.27 260 3.81 6.31 1.96 4.11 5.93 9.93 13.12 2.78 5.93 8.61 14.38 18.85 14 16 0.89 2,28 3.49 6.00 1.49 3.66 5.49 OAS 1272 2.24 5.37 8.08 13.83 18.30 - 24 0.16, 1.64 2.87 5:39 0.02 2.81 4.63 8.60 11.92 1.22 4.30 7.05 12.79 17.23 0.481 12 0.90 2.27 3.47 5.97 1.50 3.63 5.44 9.40 12.53 2.18 5.12 7.71 13.34 17.90 16 16 0.424 1.85 3.06 5.56 0.93 3.07 4.86 8.79 12.08 1.53 4.43 7.04 12.64 17.16 0.53' 11 - Ir1G3 1 11 1 Al) - 'A.. '11a YG[ 11 in .111 ]IG .1v rr 0. 1[1[ 'no note, Aellection meets 417.70 www 2e/tedion meets 47d0 Defection meets 2/240 10e/1ection n3eels 41360 'DeOecAlm, meets 41600 �� ie r.71,1,-6'oles v, i':rye .'s t 1 a.1 3503102. 3626137 3628162 3625700 Wall Hotht Sppacing (in).oa 33 ksi 50 k51 J7Nsl 50 Just 33 ksi Sokol 33 kat Sakai jt1 33 43 54 fig 3J 43 64 68 33 43 54 60 33 43 54 68 12 0.70 1.49 2.99 4.08 0.56' 1.16 2.43 3.44 0.85 1.59 3.17 4.38 1.13 213 4.06 5.58 8 16 0.433 1.11' 2.64 3.72 0.24' 0.01' 2.11 3.10 0.50' 1.21 2.82 4.01 0.74' 1.71 365 5.10 24 - 0.421 1.99' 3.05 0.16, 1.523 2.47' - 0.523 216' 3.32 - 0.95' 2.89 4.42 12 0.463 1.114 2.48 3.48 0.283 0.83' 2.03 2.94 0.533 1.21 2.6B 3.77 0.77' 1.68 3.44 484 9 16 - 0.693 2.08' 3.06 - 0.443 1.66' 2.55' 0.133 0.783 2.27' 3.34 0.323 1.211 2.97 4.37 24 - - 1.371 2.313 - - 0.993 1.843 - - 1.54' 2.573 0.373 2.123 3.514 12 0.173 0.74? 1.99' 2.08 0.513 1.623 2.44' 0.233 0.84' 2.18' 3.16 0.423 1.25' 2.83 4.09 10 16 - 0.293 1.563 2433 - - 1.22° 2.013 - 0.363 1.741 2.69' - 0.743 2.323 3.58' 24 - - 0.813 1.633 - - 0.513 1.251 - 0.961 1.861 - - 1.431 266' 12 - 0.133 1.132 1.613 - - 0.093 1.513 - 0.203 1.293 2.033 - 0.491 1.731 2.72' 12 16 - - 0.701 1.352 - - 0.481 1.06' - - 0.043 1.551 - - 1.217 2.191 24 - - 0.56' - - - 0.29' - - - 0.71' - - 0.31' 1.262 12 - - 0.53' 1.042 - - 0.35' 0.821 - 0.64' 1.192 - 0.922 1.691 14 16 - - 0.13' 0.60' - - 0.39' - - 0.21' 0.73' - 0.43' 1.182 _ 24 - - 0.31' 12 - 0.13' 0.51' - - - 0.34' - 0.19' 0.62' - 0,38' 0.97' 16 16 - - - 0.11' - - - - - 0.19' - - - 0.50' 24 'no note, Aellection meets 417.70 www 2e/tedion meets 47d0 Defection meets 2/240 10e/1ection n3eels 41360 'DeOecAlm, meets 41600 �� ie r.71,1,-6'oles v, i':rye .'s V LJJ NL, Vv/ (LNLT) ) c Com -I ao 56, WCA Structural Engineering, Inc. 442 North Main Street, #200 Bountiful, Utah 84010 Phone: (801) 298-1118, Fax: (801) 298-1122 email: wca@wcaeng.com Code Search Code: International Building Code Occupancy: Occupancy Group = B Business Risk Category & Importance Factors: Risk Category = II Wind factor = 1.00 Snow factor = 1.00 Seismic factor= 1.00 Type of Construction: Fire Rating: Roof = 0.0 hr Floor = 0,0 hr Building Geometry: Roof angle (B) 0.00/12 0.0 deg Building length (L) 14.0 It Least width (B) 14.0 ft Mean Roof Ht (h) 9.0 ft Parapet ht above grd 0.0 ft Minimum parapet ht 0.0 It JOB TITLE Maverik Trellis JOB NO. CALCULATED BY JC CHECKED BY Live Loads: Roof 0 to 200 sf: 20 psf 200 to 600 sf: 24 - 0,02Area, but not less than 12 psf over 600 sf: 12 psf Floor: Typical Floor N/A Partitions N/A SHEET NO. DATE 4/21/14 DATE N WCA Structural Engineering, Inc. 442 North Main Street, #200 Bountiful, Utah 84010 Phone: (801 ) 298-1118, Fax: (801) 298-1122 email: wca@wcaeng.com Wind Loads: Ultimate Wind Speed Nominal Wind Speed Risk Category Exposure Category Enclosure Classif. Internal pressure Directionality (Kd) Kh case 1 Kh case 2 Type of roof Topographic Factor (Kzt ASCE 7 155 mph '120.1 mph =7 vl`>O 11 C Enclosed Building +/-0.18 0.85 0.849 0.849 Monoslope Topography Flat Hill Height (H) 80.0 ft Half Hill Length (Lh) 100.0 ft Actual H/Lh = 0.80 Use H/Lh = 0.50 Modified Lh = 160.0 It From top of crest: x = 50.0 ft Bldg up/down wind? downwind H/Lh= 0.50 KI = z/Lh = 0.31 K2 = z/Lh = 0.09 K3 = At Mean Roof Ht: 0.95 1, = Kzl = (1+K,1<21<3)"2 = Gust Effect Factor h= 9.0 ft B = 14.0 ft /z (0.6h) = 15.0 ft Rigid Structure e = 0.20 t = 500 ft Zmin = 15 ft C = 0.20 9o. 9v ` 3.4 L, = 427.1 ft Q = 0.95 1, = 0.23 G = 0.90 use G = 0.85 JOB TITLE Maverik Trellis JOB NO. CALCULATED BY JC CHECKED BY SHEET NO. DATE 4/21/'14 DATE Speedup VW 0.000Speedup L 0.792 V{Z} x(upwind) / x(dsYunwnd) 1.000 W2 . H Lh H/2 1.00_--- 2D RIDGE or 3D AXISYMMETRICAL HILL Flexible structure if natural frequency < 1 Hz (T > 1 second). However, if building h/B < 4 then probably rigid structure (rule. of thumb). h/B = 0.64 Rigid structure G = 0.85 Using rigid structure default Flexible or Dvnamicallv Sensitive Structure Natural Frequency (r)I) = 0;0 Hz Damping ratio (j3) = 0 /b = 0.65 /a = 0.15 Vz = 130.9 NI = 0.00 Rn = 0.000 Rh = 28.282 rl = 0.000 He = 28.282 q = 0.000 HL = 28.282 q = 0.000 9R = 0.000 R = 0.000 G = 0.000 h = 9.0 ft 5:� WCA Structural Engineering, Inc. 442 North Main Street, 11200 Bountiful, Utah 84010 Phone: (801) 298-1118, Fax: (801) 298-1122 email: wca@wcaeng.com J08 TITLE Maverik Trellis JOB NO. CALCULATED BY JC CHECKEDBY SHEET NO. DATE 4121114 DATE Wind Loads - Open Buildings: 0.25!5 h/L <_ 1.0 Nominal Wind Pressures /1 Type of roof = Monoslope Free Roofs G = 0.85 (AUD UD L�, A V J' Wind Flow = Clear Roof Angle = 0.0 deg NOTE: The code requires the MWFRS be Main Wind Force Resisting System designed for a minimum pressure of 10 psf. Kz = Kh (case 2) - 0,85 Base pressure (qh) = 26.6 psf Roof pressures -Wind Normal to Rfdge Wind Load Clear Wind Flow Wind Direction Flow Case 3 Y=o & 180 deg Cnw Cnl >2h positive I negative positive A Cn= "---"-------- 1.200.30_ ---'-_._.__.__ _ ------ Clear Wind ----:0.30_ p = 27.2 psf 6� psf Flow -13.6 ps Cn = -p= - -1.10 -0.10 Cn= _ 0.8.0 0.50 -24:9psf -2.3 Pat NOTE: 1). Cnw and Cnl denote combined pressures from top and bottom roof surfaces. 2). Cnw is pressure on windward half of roof. Cnl is pressure on leeward half of roof. 3). Positive pressures act toward the roof. Negative pressures act away from the roof. Roof pressures -Wind Parallel to Ridaa. V = 90 den Wind Load Clear Wind Flow Horizontal Distance from Windward Flow Case 3 Ed e sh >h!5 211 >2h positive I negative positive negative _A Cn = ---•---`---"' -0.80 --------------- -0.60 - ----:0.30_ Clear Wind 1.80 p = -16.1 ps -13.6 ps -6.8psf Flow -----120---- Cn= _ 0.8.0 0.50 0.30 _____________ -1.10 'p = 18.1 ps 11.3 ps 6.8 psf Fascia Panels -Horizontal pressures qp = 26,6 psf Components & Cladding - roof pressures Kz = KIT (case 1) = 0.85 Base pressure (qh) = 26.6 psf G = 0.85 h = 9.0 it 2h = 18.0 it Windward fascia: 39.9 psf (GCpn = +1.5)� Leeward fascia: -26,6 psf (GCpn =-1.0) a=3.0 ft a'=0.0 at 4az = 36.0 sf M: Clear Wind Flow Effective Wind Area zone 3 zone 2 zone 1 positive I negative positive negative positive .negative <_ 9 sf 2.40 •_-_•--__-_____ -3.30 _________-__._ 1.80 -1.70 1.20 -1.10 CN >9, 5 36 sf1.80 ----------> --------- -----120---- -1.70 -----1.10--- ______________ 1.80 ----1.20 ---^-•- ______________ -1.70 -- 1.20 _____________ -1.10 36 sf "------- - -1'•------ .10 ----- 1,20 1-.10-'-- Wind 5 9 sf - - - 54.3 sf -P --- -74.7 sf ---------p 40.7 sf p -38.5 sf _ - a .. 27.2 sf P_____ -24.9 sf pressure.........- >9, <_ 36 sf ---____ 40.7 psf __ -38.5 psf ______________ 40.7 psf ____--_ --___ -38.5 psf _____--___-___ 27.2 psf _______-P____ -24.9 psf _________P > 36 sf 27.2 psf -24.9 psf 27.2 psf -24.9 psf 27.2 sf 24.9 sF M: WCA Structural Engineering, Inc. JOB TITLE Maverik Trellis 442 North Main Street, #200 Bountiful, Utah 84010 JOB NO. Phone: (80'1) 298-1118, Fax: (801) 298-1122 CALCULATED 9Y JC email: wca@wcaeng.com CHECKED BY Location of Wind Pressure Zones vn1ID DIEftnON .0 y- 0'•100' r"? PMHED SHEET NO. DATE 4121/14 DATE t_Iruf 1 'ISL MID DrPIECTICII eLC T9 Y= 0'.1@0' �j TROUGH s WnVDDIRECTTODT v=Of, I8V WRID DIPECn011 Y= 100' MUD DIRE", 01I4,P MONOSLOPE WDID DIRECn011 aM" 911113) DMECn01i4� TROUGH WIND DIREcnoia v= goo MAIN WIND FORCE RESISTING SYSTEM ' 2 1 1 ! (9110. tv NIf1HnSL7PE PITCHED OR TRS 41GHED ROOF COMPONENTS AND CLADDING 5j WCA Structural Engineering, Inc. 442 North Main Street. #200 Bountiful, Utah 84010 Phone: (801) 298-1118, Fax: (801) 298-1122 email: wca@wcaeng.com Seismic Loads: IBC Risk Category: II Importance Factor (1) : 1.00 Site Class: D Ss (0.2 sec) = 150.00 %g S1 (1.0 sec) = 60.00 %g Fa = 1.000 Fv= 1.500 Joe TITLE Maverik Trellis JOB NO. CALCULATED BY JC CHECKED BY Sins = 1.500 SDS = 1.000 Sml = 0.900 So, = 0.600 SHEET NO. DATE 4/22/14 DATE Strength Level Forces Design Category = D Design Category= D Seismic Design Category = D Number of Stories: 1 Structure Type: All other building systems Horizontal StructLIrregularities:. No plan Irregularity Vertical Structural Irregularities: No vertical Irregularity Flexible Diaphragms: Yes Building System: Cantilevered Column Systems detailed to conform to the requirements for: Seismic resisting system: Steel special cantilever column systems System Structural Height Limit: 35 ft Actual Structural Height (hn) 9.0 R See ASCE? Section 12.2.5 for exceptions and other system limitations DESIGN COEFFICIENTS AND FACTORS Response Modification Coefficient (R) = 2,5 Over -Strength Factor (flo) = 1.25 Deflection Amplification Factor (Cd) = 2.5 Sos = 1.000 Sol = 0.600 p = redundancy coefficient Seismic Load Effect (E) = p U, +/_ 0.2SDs D = p OE +/- 0.200D (.1E = horizontal seismic force Special Seismic Load Effect (Em) = filo OE +/- 02SDs D = 1.3 RE +/- 0.200D D = dead load PERMITTED ANALYTICAL PROCEDURES Simplified Analysis - Use Equivalent Lateral Force Analysis Equivalent Lateral -Force Analysis - Permitted Building period coat. (CT) = 0.020 Cu = 1.40 Approx fundamental period (Ta) = CThn-= 0.104 sec x=0.75 Tmax = CuTa = 0.145 User calculated fundamental period (T) = 0 sec Use T = 0.104 Long Period Transition Period (TL) = ASCE7 map= 8 Seismic response coef. (Cs) = Sosl/tt = 0.400 need not exceed Cs = slit I42T = 2.309 but not less than Cs = 0.5'811/R = 0.120 USE Cs = 0.400 Design Base Shear V = 0.400W Model & Seismic Response Analysis - Permitted (see codeforprocedure) ALLOWABLE STORY DRIFT Structure Type: Non- masonry, 4 story or less designed to accommodate the story drift Allowable story drift = 0.0251tsx where hsx is the story height below level x 9 u Structural. Engineering .112 \ u11 \Iain Srvo U un11hJ. I tah Y;0111 \III RII is UO ue�III n C:l.e Kc"IM, VPn1 NO Rl:I-_L (Lj ILrU LPit, U11 : AN I'm 11,P1, C-9= lj , 1A Y `= ,..,,11`.11 N. lr ' 1 e; I U-( 4 L = (�3ax Lrb 61 Structural vu nrr i': I .l, r 1 lL-�il..l •i a:rul l — Engineering It\II 4.12 N... 11, NI m \r cl [Int llhJ I lah 8.1010 SIII ,a I11N 111Th 'UI Iti 11']Ill, - ,. ru ,,. n}.a nl InPp �-.t -_n i. ,..\a,...%..t 1,.1��.1��❑.. .�� C. ._.. ___.., J? • o.t�o�-':.fit g T��: 2.y Fay... G�w�l �.'.� r�,�}naual,• Ua. 4•, ; I, z 2S,c.' S2=uUv F H 3 _ LA ' 'J Z. 6a �\A\- Da:LiL,,J raAlQutl II A\ n �}/ - (7 � Z) JGL 'j�'inT. N.,.T L,47�:2A l -�'-�•i..: ��r.. •2r:cz�k �La•�„2nl s7��ena�,� g T��: 2.y Fay... G�w�l �.'.� r�,�}naual,• Ua. 4•, ; I, z 2S,c.' S2=uUv F H 3 _ LA ' 'J Z. 6a Stl'Uet'IM, I PIN,iid,. MA-yui.\ t,- „L1 Engineering i.. a 11,11 ;.1' 1 nL \h' 1 Srcm lititimiltd. I lids s To Ili 1wk 5111 IX I I Is oIlice MPI )p.l l_' lis, p /� b.SGP111I, Dl : MLD 4 Ott L�-r —�T- P u�•1"" jVE> �I 2vi?> Uh (4-i(6 CyLk ,\� u±� Tom: a S\4; v.SS:may = Z .65 c,a• (4-i(6 CyLk ,\� u±� ARu ��,J-T r�'t:- jv`ij�.� �{.,.t,> ?-YC:2*ll_—ToP':..s �•..I:CI. Agp1- Lkj,.lx.f 'jAGtx 2-U blvd ufl��u r�,rz ?s�a�4 +ray Fes.\ fiorm,��� r��.f•,1�-„+ F �ttS Nth bel �-- .k Z S l ICO cuia-re L) k-� s : 2 1-?;ly (I�z,u ILA \VC"7✓. _ 343e�5 � \Jih Z 1.S 4-s •� 63 S ?� Z �� z = �.\�� 1 L �,S\` Co -b k (amu 2Jk�-a -1� QUI Company WCA Structural Engineering, Inc. Apr 22, 2014 Designer 3:48 PM Job Number : Maverik Trellis 2x6 112 rafters Checked By:_ Joint Reactions (BV Combination) I r I �k-1 v n., 1 1_ _ N2 i 0 2 M2 Y 038 2 1 N3 0 .2G1 0 3 1 Totals 3 1 COG (ftl: X: 5.875 1 Y• 0 1 Member Distributed Loads (i c AQ). + L wr !! ft AGm6...I -k-, fl::....Y.-- o1-1 a -__a.. w'_ri. rzl . r-_ I u--_.._a_n_v. n._ _ _ _u. ... .... .. .. .. ... _.. .. __ 1 M1 Y -.038 M—�� 1 2 M2 Y 038 .038 h 0 0 3 1 M3 I Y 038 038 0 12 Member Section Forces (BV Combination) _ 1 1 A M—�� 1 1 .O. 0.,,,, 0l 22 01 .00 3 0 -.019 .005 4 14 0 -.029 011 5 _ 5 0 -.038 6 1 M2 1 0 .038 .019 7 2 0 29 11 8 1 3 0 .0 .005 9 4 0 .01 .001 105 0 0 0 11 1 M3 1 0 .223 .019 1 0 112 -.493 13 3 0 0 -.637 4 0 -.112 15 5 _ 0 -.223 .019 �' Iv \/ . 22"5Lb Version 6.5 [l:\ ... \... \Calculations\Trellis Table 2-4 ALLOWABLE STRESSES FOR BUILDING -TYPE STRUCTURES (UNWELDED) Allowable Stresses Fla (k/In2) Section 17/S2 Alclad 3004 - H34 Sheet Axial Tension Fir =24 kAn2 E=10,1001Jn2 axial tension stress on net D.2b 15.9 Fc=21 k/In2 k,=1 effective area Fw= 31 k/lns axial tension stress on gross D.2a 14.5 area Flexure Tension Compression elements In uniform stress F.0.1.1 14.5 see 8.5.4.1 thruB.5.4.5 and E,4.2 elements in flexure F.B.1.2, F.4.1 18.9 16.5 . see also F.4.2 round tubes F.6.1 _T7_0 14.9 see also F8.2 rods F.T 18.9 16.5 Searina bolls or rivets on holes J.3.7a, J.4.7 31.8 bolls on slots, pins on holes, J.3.7b, J.7 21.1 flet surfaces Slenderness F/S2 for F/S2 for F/St for S Ss; Sr S, S, <.S <S2 S2. S a S, all shapes member buckling E.3 kLlr 12.4-0.074S 112 51,352/52 Flexural Comoresslon open shapes lateral-torslonal F2.1 Lb/(ry,Cb'n) 14.6- 0.073 S 134 86,996 /S2 buckling closed shapes lateral -torsional F.3.1 24S,/(Cb(11Jpn) 14.6-0.139S'4 4062 23,5991S buckling rectangular bars lateral -torsional F4.2 (d/t)(LACA)"' 23.1 - 0.399 S 39 11,420 /Sb buckling round tubes local buckling F.6.2 Rdt 25.2-1.492 S'a 95 16.8 - 0.634 S12 282 1 3,776 /[S(1+S1n/35)2) Elements -Uniform Compression flat elements supported an one 8.5.4.1 b/t 12.7 8.2 17.3 -0.565 S 20 2,417/S2 edge In columns whose buckling axis Is not an axis of symmetry flat elements supported on 8.5.4.1 b/t 12.7 8.2 173-0.565 S 15.3 133/S one edge in all other columns and all beams flat elements supported on 8.5.4.2 b/t 12.7 25.5 173-0.181S 48 4151S both edges - flat elements supported on 8.5.4.4 >•, 12.7 21.2 14.6 - 0.087 S 112 60,414 /S2 both edges and with an Intermediate stiffener curved elements supported B.5.4.5 Rb/t 12.7 40;6 16.8 -0.634 Sin 282 3,776 4S(t+S'0/35)2) on both edges flat elements -alternate B.5.4.6 ;1,s 12.7 40.8 178-0.113S 77 665/S method Elements -Flexural Com reo sslon flat elements supported on 8.5.5.1 b/t 16.5 57.9 23.1 - 0.113 S 102 1,1801S both edges I --- flat elements supported on 8.5.5.2 b/t 16.5 10.8 23.1 - 0.608 S 25 4.932/S2 tension edge, compression edge free flatelements supported on 13.5.5.3 b/t 16.5 129.9 23,1 - 0.050 S 229 2,644/S both edges and with a longitudinal stiffener flat elements-allernate B.5.5.4 T.,, 16.5 $7.7 23.1 - 0.174 S 66 767/S method Elements -Shear flat elements supported on G.2 b/t 8.7 41.3 12.1 - 0.083 S 98 38,665/S2 both edges '-- I -- �- January 2010 (6� VI -13 Structural Engineering i4, .LC \ nll ,I-! ! Srcri Ii nnwi4l, l4 �6 v-n!In tiUl Ih IIIti 141' MII IGIL'I.!♦ C- Zc6 LA IOPII. I:I;hal:a: (Ii L-) (-2 H-�)- ISLA PIP v I's'p1R(iz/,- -4 = wl,(bub �I : 1sLq Cb Lj \(01� = van M �.r_l'=i rf�oY^.. �� [r{aIa1z4-f;;J- ru heignr-ro-mice'ness ratio exceeos mu, wen stiffeners are required at all support points and concentrated /oars. onable moment includes cold pork olionniag. Talwo Notes on {.lgc z Design Gross Properties Effective Properties Torsional Properties Section Thickness P � q Area Welghl Ix Sx Rx ly Ry NO Sxa Mal Mad Vag Venal J%1000 Cw Xo m RD Lu (in) (In9 (151(1) (in') (d) (in) (in') (in) Dns (W) (In -k) (in -k) (IS) (IS) (in') (W) (hi) lin) (in) 8 (in) 800S762.68 0.0713 50 0.836 2.04 7.089 1.772 2,913 0.235 0.130 7.070 1.663 49.00 45.11 4221 3367 1A16 3.093 -0.699 0.566 3 994 0.916 31.9 8009162-97 0.1017 33 1.169 3.98 9.713 2.428 1.883 0.305 0.510 9.713 2.428 58.27' 58.27 8843 4024 4.030 4.114 .0.866 0.569 3,053 0.919 35.1 OOOS162.97 0.1017 50 1.169 3.98 9.713 2.428 2,003 0,305 0.510 9.713 2.428 72.70 71.93 10885 5938 4.030 4,114 -0.86G 0.568 3.053 0.919 317 BOOS162d10 0.1242 33. 1407 4.79 11,504 2.016 2.860 0,345 6.496 tl.504 2,876 71.47° 71,47 11341 4971 7.234 4.766 -0.042 0.556 3.022 0,922 34.1 BOOS162-.118 0.1242 50 IA07 4.79 11.504 2.076 2.060 0.345 0.496 11.504 2.076 105.23' 105.23 16235 7115 7.234 4,766 -0.842 0.556 3.022 0.922 28,0 3008200.33' 0.0346 33 0.448 1.62 4.096 1.024 3.023 0.227 0.712 4.096 0.816 16.12 1.1.52 47.1 474 0.179 2,971 -1.280 0.817 3.363 0.853 50.6 8008200.43 0.0451 33 0.562 1.00 5.302 1.325 3,018 0,292 0.708 5.302 1.293 25.54 20.99 1051 1051 0.395 3,797 -1.177 0.811 3.353 0.855 50,3 8005200.54 0.0506 33 0.726 2.47 6.573 1.6.13 3,009 0.357 0,701 6.573 1.6.43 35.752 30,37 2091 2091 D.776 4.663 -1.205 0.604 3.338 0.856 47.8 DOOS200.54 0.0566 50 0.726 2:47 6,573 1.643 3,009 0.357 0,701 6.573 1.499 44.07 37.37 2091 2091 0.775 4663 .1.265 0.004 3.330 0,056 40.7 0005200-68 0.0713 33 0.907 3,09 8.140 2.035 1996 0,435 0.692 8.140 2.035 45.292 41,79 4221 3367 1.537 5.712 -1.248 0.796 3:319 0,859 47.0 8005200-60 0.0713 50 0.907 3.09 8.140 2.635 2.996 0.435 0.692 8,140 1.964 65.212 54.70 4221 3367 1.537 6.712 -1,248 0.796 3.319 0.859 30.4 DOOS200-97 0.1017 33 1.271 4.32 11.203 2.001 2.969 0.576 0,673 11.203 2.801 65.127 65.12 0843 4824 4.381 7.684 -1,214 0.777 3.278 0.853 45.5 8008200-97 0.1017 50 1,271 4.32 11.203 2.801 2.969 0.576 0.673 11.203 2.801 96.637 89.76 10885 5938 4.301 7,684 •1.214 0:777 3,278 0.063 37.2 3005200410 0.1242 33 1.531 5.21 13.316 3.329 2.949 0.665 0.659 13.316 3.329 79.782 79,78 11341 4971 7.872 8.981 -1,188 0.764 3.247 8.866 44.6 3005200-118 0,1242 50 L531 531 13,316 3.329 2,949 0.665 0.659 13.316 3.329 1IT952 117.55 16235 7115 7.872 8.901 -1.108 0.764 3.247 0.866 36.5 8005250-43 0.0451 33 0.627 2.13 6.015 1.504 3.097 0.500 (t993 6.015 1.313 25.95 22,00 1051 1051 0.425 6.374 -1,675 1.043 3,632 0.787 61.5 BOOS250 54 0.0566 33 0.783 2.66 7.465 1.066 3.008 0.614 0.086 7465 1.712 33,82 30.07 2091 2091 0836 7,850 •1.661 1.036 3.617 0.789. 61.4 8008250.54 0.0566 50 0.783 2;66 7.465 1:806 3,088 0.614 0.886 7,378 1.525 4566 39.13 2091 2091 0,836 7.850 -1,661 1.036 3,617 0.749 49,8 8005250.66 0.0713 33 D.978 3.33 9.261 2.315 3.077 0.762 0.817 9.261 2,220 40,332 43.63 4221 3367 1,658 9.652 -1.644 1,027 3.597 0.791 58.2 6008250.68 0.0713 50 0.978 3.33 9.261 2,315 3,077 0.752 0.877 9.240 2.059 61.65 53.75 4221 3367 1.650 9.652 -1.644 1,027 3.597 0.791 49.6 8008250-97 0:1017 33 1.372 4.67 12,789 3.197 3.053 1.009 0,857 12.789 3.101 72.072 70.72 0843 4824 4.731 13.091 .1.607 1.000 3.555 0.796 56.8 8006250-97 0.1017 50 1.372 4.67 12.789 3.197 3.053 1.009. 0.857 12.789 3.054 102.702 93,42 10885 5930 4.731 13.091 •1.607 1.008 3,555 0.796 46.4 1005250-118 0.1242 33 1955 5.63 15,242 3.010 3.035 1.175 0.043 15.242 3.810 00.312 88,31 11341 4071 8.511 15.395 -1.580 0:994 3,524 0.799 55.9 1005250-118 0.1242 50 1.655 5.63 15.242 3.815 3,035 1,175 0.043 15,242 3.707 127.517 122,92 16235 7115 8.511 15.395 -1.580 0,994 3.524 0.799 45.8 BOOS3D0.54 0.0566 33 0.039 2.86 0,350 2.090 3.156 0,960 1.069 8.249 1.785 35,28 31,13 2091 2091 0.896 12.076 2,073 1.271 3.924 0721 72.2 4005300.54 0.0565 50 0.839 1.050 286 3.57 8,358 10.382 2.090 2.595 3,156 3.145 9.960 1.179 1.069 1.060 7,862 1.535 45,96. .22 2091 2091 0.896 1.779 1$,076 14,888 -2.073 -2.055 1.271 1,262 3.924 3,903 0.721 0,723 50,6 72,0 5300- 8 4,0 3 10.351 2.321 45.66 42.54 4221 3008300-68 0.0713 50 1.650 3.57 10.382 2.595 3.145 1.179 1.060 10.082 2,145 64,21 55.47 4221 3367 1.779 14.808 .2,055 1,262 3,901 0.723 50.4 3ODS300-97 0.1017 33 1,474 5.02 14.375 3.594 3323 1.595 1.040 14.375 3.443 76.217 73.25 8843 4024 5.082 20.304 4,017 1.243 3.860 0,727 67.7 3005300-97 0.1017 50 1.474 5.02 14.375 .3.594 3.123 1.595 1.040 14.170 3.304 98.92 89,89 10885 5938 5.082 20,304 -2.017 1,243 3.860 0,727 58.1 10OS300-118 0.1242 33 1.779 6,05 17,167 4.292 3106 1.071 1.025 17.167 4.168 94,332 95.78 11341 4971 9.149 23.979 -0,009 1.229 3.828 0.730 66.8 1008300.118 0.1242 50 1.779 6.05 17,167 4.292 3,106 1,071 1.025 17,022 4.108 138,417 126.69 16235 7115 .9.149 23.978 -1.989 1.229 3,820 0:730. $4.5 30DS350.54 0,0566 33 0.938 3,19- 9.483 2.421 3.212 1.646 1.325 9.477 2.125 41,90 38.29 2091 2091 1.002 22.897 --2.766 1.668 4.441 0.612 98.0 3008350-54 0.0566 5D 0,938 3.19 9.6113 2.421 3.212 1.646 1,325 9.191 1.869 55.96 49.74 2081 2091 1.602 22.697 .2.766 1,668 4.441 0:612 73.1 3005350,68 0.0713 33 1.174 4.00 12.046 3.012 3.203 2.034 1316 12.046 2,837 56.07 51.89 4221 3367 1.990 20.308 -2.748 1.658 4.421 0.614 89.9 1008350.68 0.0713 50 4374 4,00 12.046 3.012 3.203 2.034 1.316 11.909 2.596 77.73 68.05 4221 3367 1,990 26..308 •2.746 1.658 4,421 0,614 72.9 1008350.97 0,1017 33 1.652 5.62 16.737 4.184 3.183 2.784 1,298 16.737 4.101 89.437 87.25 8043 4824 5.696 30.834 -2.710 1.639 4.377 0.617 85.4 IODS360.97 0.1017 50 1.652 5.62 16.737 4384 3,103 2,784 1.298 16.737 3.785 113.34 108,67 10885 5938 5.696 38.834 -2.710 1.639 4.371 0G17 72.7 005350-110 0:1242 33 1.997 6,79 20.041 5.010 3.168 3.295 1.285 20.041 5.010 111.447 111.44 11341 4971 10.267 46,060 -2.682 1.624 4,345 0,619 04.6 066350.118 0.1242 50 1.997 6.79 20.041 5.010 3.168 3.295 1.285 20,041 4.762. 158.027 150.37 16235 7115 10.267 46,068 -2.682 1.624 4.345 0.619 68.9 IODSM-437 0,0451 33 0,627 2.13 8.025 1.605 3.577 0.168 0.518. 7.523 1.302 25.74 22.49 836 836 0.425 3.430 -0.823 0.545 3,707 0.951 3B.8 ODOS16254 0,0566 33 0.783 2.66 9.950 1,990 3.565 0.204 0,511 9.627 1.722 34.02 31.11 1661 1661 0.836 4.198 -0.612 0.538 3.692 0,952 30.6 OOOS162�54 0,0566 50 0.763 2,06 9.960 1.990 3.565 0,264 0,611 9.391 1.572 47.07 40.37 1661 1661 0.836 4.198 .0.612 0.530 3.692 0.952 31,3 0005162-68 0.0713 33 0.978 3,33 12.325 2.465 3.550 0.246 0.502 12.256 2.276 44.98 42.91 3345 3345 1.658 5.121 •0.796 0.531 3.673 0.953 36:2 D009162-68 0.0713 50 0.978 3.33 12.325 2.465 3.550 0.246 0.502 11.978 2.154 64.51 66,35 3345 3345 1,658 5.121 -0.798 0.531 3.673 0.953 31.0 0005762-97 0.1017 33 1.372 4.67 16.967 3,393 3.516 0.320 0.483 16.957 3.393 67.06 67,05 8843 6434 4.731 6.627 -0.768 0.514 3.631 0.855 375 0006162-97 0,1017 50 1.372 4.67 16,967 3.393 3.516 0.320 0A83 16.967 3,269 97.89 92.56 9864 7177 4.731 6.827 .0.768 0.614 3.631 0.955- 30.4 )OOS162-110 01242 33 1.655 5.63 20.169 4.634 3.491 0,363 0.460 20169 4.034 100.241 100.25 13189 7747 8.611 7.924 -0.746 0,502 3.600 0.957 32.9 1008162-118 01242 50 1.655 5,63 20.169 4:834 3.491 0.363 0A68 20,169 4.034 120.77 120.34 16236 9536 0,511 7.924 .0,746 0.502 3.600 0.057 30.0 1005200-43' 0.0451 33 0,612 2.29 9,005 1,617 3.676 0,309 0677 8.602 1.470 29.05 26.14 836 036 0.456 6.236 4.147 0.743 3.910 0,914 49.3 )005200.54 0.0566 33 0,839 2.86 11.270 2.256 3.666 0.370 0.671 10.953 1,904 39.20 35.86 1661 1661 0.896 7.665 -1.135 0.737 3,896 0.915 49.1 )008200.54 0.0566 50 0,039 2,86 11.278 2.256- 3.666 0.378 0,671 10.769 1.705 51.05 46.62 1661 1661 0.896 7665 -1.135 0.737 3.896 0.915 39.8 )OOS200.68 0.0713 33 1,050 3.57 13.994 2.799 3.652 0.460 0.662 13.920 2.607 51.51 49.07 3345 3345 1.779 9.401 .1.120 0.729 3.076 0.917 48,8 )OOS200.60 0.0713 50 1,050 3.57 13,994 2.799 3.652 0.460 0,662 13,665 2,420 72,46 64.50 3345 3345 1.779 9.401 -1.120 0.729 3.876 0,917 39,6 )OOS200-97 0.1017 33 1.474 5.02 19,336 3.867 3.622 0.609 0.643 19.336 3.867 76.42 76.42 8843 6434 5.082 12:679 .1.088 0.711 3.836 0.920 48.2 )DOS200-97 0.1017 50 1.474 5.02 19:336 3,067 3.622 0.609 0.643 19.336 3.741 112.00 10473 9064 7177 5.082 12.679 -1.088 0.711 3,836 0,920 39,0 1005200418 0,1242 33 1.779. 6,05 23.052 4.610 3.599 0.703 0.629 23.052 4,610 110.502 110.50 13189 7747 9.149 14.040 -1.064 0.699 3.805 0.922 43.3 005200.118 0,1242 50 1379 6.05 23.052 4,610 3.599 0,703 0.629 13.052 4.610 138.04 135.74 16235 9536 9,149 14.848 4.064 0.699 3,805 0.922 38.7 DOS250-43' 0.0451 33 0.717 2.44 10,203 2,041 3.771 0.531 0.860 10,203 1.617 31.95 27.67 836 836 0.406 10.481 -1.518 0.965 4.155 0.867 60.7 IDOS250.54 0.0566 33 0,896 3.05 12.677 2,635 3.762 0.553 0.854 12.677 2.277 44.99 38.02 1661 1661 0957 12,922 -1.505 0.958 4.140 0.068 60.5 100$250.54 0.0566 50 0.896 3.05 12,677 2.535 3.762 0.653 0,054 12.660 1.1379 56.26 49,16 1661 1661 0,957 12.922 4.505 0.958 4.140 0.868 49.1 1005250.68 0.0713 33 1.121 3.81 15.751 3.150 3,749 0.799 0.844 15.751 3.028 65.937 55.62 3345 3345 1,899 15.909 -1.408 0.950 4.121 0,870 57.3 1005250.611 0.0713 50 1.121 3.81 15,751 3.150, 3.749 0.799 0.844 15.741 2.760 62.89 60.13 3345 3345 1,899 15.909 -1.408 0.950 4.121 0.070 48.8 IOOS250-97 01017 33 1.576 5.36 21.1127 4,365 3,722 1.072 0.825 21.827 4.357 98.417 91.77 0843 6434 5.433 21.632 •1.454 0.932 4.060 0,873 55.8 1085250-97 01017 50 1,576 5.36 21.827 4.365 3.722 1.672 0.825 21.027 4.101 140.631 1204 9864 7177 5.433 21.632 -1,464 0.932 4.080 6.873 45.6 008250-118 0,1242 33 1,904 6,48 20000 5.216 3.701 1,249 0.810 26.080 5.216 120.892 120.71 13189 7747 9.780 25.490 4.428 0.918 4.049 0.876 54.7 DOS250-110 0.1242 50 1.904 6.40 26.080 5.216 3.701 1.249 0.810 26.000 5.082 174.841 159.00 16235 9536 9.708 25.490 .1.428 0,910 4.049 0.876 44.0 �OOS300-54 0.0566 33 0.953 3.24 14.076 2815 3.844 I.024 1,037 13.938 2.312 45.69 39.41 1661 1661 1,017 19.886 .1.892 1.185 4.408 0.016 71.5 006300-54 0.0566 50 0.953 3.24 14.076 2.816 3.844 1.024 1.037 13.440 1.902 56.96 5069 1661 1661 1.017 19.888 -1.892 1.185 4.408 0.816 58.1 008300.60 0.0713 33 1.192 4.06 17.509 3.502 3.832 1.250 1.027 17.441 3.150 62.41 54.29 3345 3345 2.020 24.551 -1.874 1.176 4.380 0.810 71.3 005300.60 0.0713 50 1 1.192 4.06 17,509 3.502 3.032 1.258 1.027 17.099 2.802 03.89 70.40 3345 3345 2.020 24.551 .1.87.1 1.176 4.388 0.010 5740 ru heignr-ro-mice'ness ratio exceeos mu, wen stiffeners are required at all support points and concentrated /oars. onable moment includes cold pork olionniag. Talwo Notes on {.lgc z mm Structural Engineering 11C. \Ihm Sroi 11 pnblul. lash '.lulil XIII IS II , Oil i� 8111 -PI -112: 1'z� u -env a Coen_ wmi nu•.I: n>.n: r o1�{ i�.- d- l=1 �`I:.� fl- ��c::n is -.f,;1 T� o(^ r 1 d �) r i• � l i [ Y C -,f t=ots C�=ee �1L InUL, A11 ie_urtw Pa dor 4. 4- F,Rv'! c> ME k`a5i�&1 3 Lo/1CiS Structural Engineering j11c. .1.;'> uh \Iw tircci. II ,mikd. L ah �d1110 WII Iti IIIC (Llf it ,III C' -I L': I:�'. �rca'n o.aalg.onu 1'141111 1: P ryA-I/ 1. Lt L T2.,L.LL4 _, 1.1.M 4 t Cj P i�4�� -1 QC. "�1 vb Ing. C,- U,A % vb - b,Lin( 5�� )(v-it6(1q 0,� - 3q2 (,b ' Cowau .1 �hJ Cl cn7 L� 1r Col L ti.12z 3-41 Sw'sia� G� re Pzl c.� 1 VV -t r V ,C 2.s - O VZ S3 n \ c> '��.�� \k, a :.,"(- 2a v. =-ill •�.� , I Strllr,tllral ru)II(I T12V1-A_:,_rm�ni1 EncyMeerilIG m. a I�i_' N� iib \I un tii v I4 uwuiii 1 rah aillU R f ejUUv\ CSS. �t2� = t b\ 2. Lb Iii �pc l l \j - �- ' = 2 53 oo �o(a-../ o4T =) pkIe.. IFc>(Z r Ll l'�a�Q�l�f��•� Liy'e�1 t� is2�1�1T:� �PA-G`_ Steel Column Design -Combined Ioading -Square HSS Sections Member: AISC 360-10 Specification for Structural Steel Building and Steel Construction Manual, 14th Edition CL-1_Gravity Design method for ASD (Load combinations are pre -design) Loading criteria: Effective unbraced length (x) Effective length factor (x): Effective unbraced length (y): Effective length factor (y): Service loads: Axial load: Moment in major axis (x): Design methodology: Gt.:= 9ji ASD Design kI.V 1.2 Slc := 1.67 f1b := 1.67 Lj,:= 9jr kt, := 1.2 P:= 6kip fllty 0.007P•Ll. Moment in minor axis (y): AIS := Okip fi © Section geometry Compression Design (AISC 360-10 Chapter E): 0 ASD/LR FD capacity: C_Clregkl = "Slenderness ratio OK" C_Chec% "Section elements are compact" _ - "Slenderness iteration not req'd" Flexure Design (AISC 360-10, Chapter F): 0 ASD/LRFD capacity: "X-axis bending, Flange is compact" "X-nxis bending, Web is compact" F Clteck/ _ "Y-axis bending, Flange is compact" "Y-axis bending, Web is compact" ASD/LRFD capacity: Combined Forces Design (AISC 360-10, Chapter H): IE rPc := 0.90 `I'G := 0.90 Column Material: Steel Grade: JASTM A500 Gr. 8U Ft, = 464si Frr = 58•ksi E = 29000ksi Shape: HSS3X3X3/16 LI Pcapaciry = 2 L8, kip P = 0,27 PCapacily "P < Pn (ASD). Compression OK" l Cwnpresri°nC7ieck' ( "ASD Compression ratio (1.27" Mx 1.Gapacify P. k�v. c npntiry Mx < Mn.x (ASD), Flexure OK" 1_FlesrOeC'deck = ASD X-axis Flexure ratio At, A4j,.capacitj,=5•1-ipfl 1 =0 My. capacity Y_F'/esureClieck =. "Y-axis. Flexure N.A," "Combine Forces OK" CI-cheekl = "AISC 360-10 Eq. Hl -la Controls" "Combinet oices ratio=0.35" oteet uutunnt uaatgu - wfrjuilieu loauinq-Jquare mbz, Jectlons Member: AISC 360-10 Specification for Structural Steel Building and Steel Construction Manual, 14th Edition CL -1 -Wind Design method for ASD (Load combinations are pre -design) Loading criteria: Effective unbraced length (x): Ls.:= 9)t Effective length factor (x): kx 1.2 Effective unbraced length (y): Lt, 9fr Effective length factor (y): kt, := 12 Service loads: Axial load: P:= 1.96kip Moment in major axis (x): A/s. = 253115f•Lt Moment in minor axis (y): Alv:= 0.3•(2531GfJs.) ❑f Section geometry Compression Design (AISC 360-10 Chapter E): 0 ASD/LRFD capacity: C_Checkt = "Slenderness ratio OK" C Cheek "Section elements are compact" = -- "Slenderness iteration notreq'd" Flexure Design (AISC 360-10, Chapter F): 0 ASD/LRFD capacity: "X-axis bending, Flange is compact" "X-axis bending, Web is compact" F Checkt = "Y -dais bending, Plunge is compact" "Y-axis bending, Web is compact" ASD/LRFD capacity: Combined Forces Design (AISC 360-10, Chapter H): Design methodology: ASD Design Jle:= 1.67 (Ile := 0.90 Ilh := 1.67 I'1, := 0.90 Column Material: Steel Grade: ASTM A500 Gr. Ell FV = 46-ksi hrr = 58•4-si E = 290004si Shape: HSS3X3X3/16 v Pcopacity = 21.8 -kip P= 0.09 Pcdpgcitn P _ Pn (ASD); Compression OK' 1 :CanpressiunCheck J "ASD Compression ratio = 0.09" NIs. A4c.capaciq,=5•kipft =0:5 A'�c.eapacity ]vlx < Mn.x (ASD), Flexure OK" I,Y_FleaurcCheck — I "r1SDX-axis Flexure ratio = 05" Aly Aly. capacity = 5'ktp f , =0.15 kly:cgpacity My < Mo.), (ASD), Flexure OK" 1 I' Fleavre'Chadk = 11 ASD Y-axis Flexure ratio — 0.15" "Combine Forces OK" CF Check = "AISC 360-10 Eq. 1-11 _I b it -Ib Controls" Combine Forces ratio=0.67" 9 Steel Column Design - Combined loading - Square HSS Sections Member. AISC 360-10 Specification for Structural Steel Building and Steel Construction Manual, 14th Edition CL -1 Seismic Design method for ASD (Load combinations are pre -design) Loading criteria: Effective unbraced length (x): Effective length factor (x): Effective unbraced length (y): Effective length factor (y): Service loads: Axial load: Lx:= 9ft kl.:= 1.2 1J,:= 9ft kv := 1.2 P:= 1.96kip Moment in major axis (x): X41.:= 1001bJ'•Ll. Moment in minor axis (y): XIt,:= 0.3•(301bf•6Y) section geometry Compression Design (AISC 360-10 Chapter E): F1 ASD/LRFD capacity: C Checkl = "Slenderness ratio OK" C Check _ Section elements are compact" "Slenderness iteration not req'd" Flexure Design (AISC 360-10, Chapter F): 51 ASD/LRFD capacity: "X-axis trending, Flange is compact" F Check ";taxis bending, Web is compact" — 1 "Y-axis bending, Flange is compact" "Y-axis bending, Web is compact" ASD/LRFD capacity: Combined Forces Design (AISC 360-10, Chapter H): Ifl Design methodology: ASD Design 'v I2c := 1.67 I2b := 1.67 I,c := 0.90 Ib 0.90 Column Material: Steel Grade: ASTIA A600 Gr. Bi v Fr, = 46•kxi rtr = 58-ksi C = 290004-ei Shape:(—H5S3X3X-3/16 I v I Pcapacily= 21.8 -kip P = 0.09 < 15%, OK Pcnpncq+ F Pn (ASD); Compression OK" ContpressumCitee k — "ASD Compression-.ntin NII. k1xcapaci0, = 5•kipfr = 0? Nlr.capacig: Mx < Mn.x (ASD), Flexure OK" Y_FlelareC'lteck = 'ASP X-axis Flexureratio X'1,, 'Wy.capacity` '-'-IPJ'- = 0.02 Mjacapgcily D4y <tvin.y (ASD); Flexure Olc" )` F'leat° °Check - "'ASID Y-axis Flexure "Combine Forces OK" CF Check, �.'XISC 360-10 Eq. HI -1b Controls" "Combine Forces. ratio 0.28" 73 Embedded Posts and Poles (pole footings) Member: International Building Code (IBC), Seclion 1807.3 & 1810.3.9 - Trellis footings (12in dia__wind controls) Post/Pole loading criteria: Diameter of round post or diagonal of square poist: Applied lateral load on post: Distance from ground to load, P: Allowable lateral bearing pressure as set forth in Table 1806.2: Allowable soil stress increase Design Criteria for Nonconstrained: (Per the IBC the maximum usable depth is 12'-0") Nonconstrained post depth initial guess: (Initial guess must be less than final depth) Calculations depllfaclor:= uwi(3`dn0nc, I3lI) Given /4.36•h d,1011c = 0S•fl • I +[I + 05 d f Design Criteria for Constrained: Constrained post depth initial guess: (Initial guess must be less than final depth) Calculations: S3 := dcai (SIF•Larpl'es'Sm•e) Y;iven 4.25•P•h deOP - S3.1 SI := depihfcicror'(SLF•Lciipre.rsaic) dNonc:= Find(dn011c) = 4.46fl h := 12in P:= 253/1( h:= 9fi Lall"vastwe := 150 llnf- fi 2.0. Per IBC 1806.3.4V 34•P SI•b > initial depth, d 1117011•:= 51in check-, _ "For Nonconstrained Foundation Use: 4.5 ft min." dC011 := 38in ft� dCon := F,nd(rlcon) = 3.19J1 > initial depth, d check2 = "For Constrained Foundation Use: 3.2 R min." Reinforcing: ----- Per IBC 1810.3.9.4 (no reinforcing required for SDC A, B Reinforcing bar size & number of bars: #5 OV SDC C, IBC 1810.3.9.4,1 2 I/ �l i•er fll,erl := 0.0025•7r. b Xrerl = 0 28•in� SDC Cbars:= ped marl 4 I SDC Cb 4 l l fl bm d #3 ties spacing: IG• bin = 10•in 8 SDC D,E & F. IBC 1810.3.9.4.2 / �_ r r A , := 0.005.7r•I bl di -eq = 0.57 -in SDC D := ceill nmsl •I , 11—crl ll SDC' D = 4 ,eq l J rcq - bars ` ` JJ -- bms bnl For SDC D,E & F Ties spacing: / #3 lies for b = 20" and less b #4 ties for b > than 20" cheek9 = "Number 3 ties" 12. S u, = 7. •u, Embedded Posts and Poles (pole footings) International Buildins Code(IBC)_Section 1807.3 &1810.3.9 Post/Pole loading criteria: Diameter of round post or diagonal of square poist: Applied lateral load on post: Distance from ground to load, P: Allowable lateral bearing pressure as set forth in Table 1806.2: Allowable soil stress increase Design Criteria for Nonconstrained: (Per the IBC the maximum usable depth is 12'-0") Nonconstrained post depth initial guess: (Initial guess must be less than final depth) Calculations v� de th • '- rain —•rl _ t P jdcrnr '- 3 nonce 3 Giron rinonc = 0.5•A• I Arr43J SJ Design Criteria for Constrained: Constrained post depth initial guess: (Initial guess must be less than final depth) Calculations: S3:= dcori (SIF•Lntpressure) Given _ 4.25•P•h dcon - S3•b Member: Trellis footings (16in dia._wind controls) b := I Gin P:= 25310' h := 9 ft lntprersnr.e := I50/i. irf t 2.0, Per IBC 1806.3.4 ,hare:= 471n Sl:= dept l'Jimto.(SIF•Lntprrssure� A 2.34•P S,•b r/No)rc := Find(drrorrc) = 3.95,ft > initial depth, d check, = "For Nonconstrained Foundation Use; 4 ft.min." dCon Find(dca) =2•92ft > Initial depth, d Reinforcing: Per IBC 1810.3.9.4 (no reinforcing required for SDC A, B dea):= 34in checks = "For Constrained Foundation Use: 3 it min." Reinforcing bar size & number of bars: rty J SDC C, IBC 1810.3.9.4.1 / \� `ir•er 11 111-eq0.0025.7r•I h I Al -eq =0.5•in2 SDC'_Chrns:=ceilBUY 4, IJ SDC CGnrs=4 l / l aha•J #3 ties spacing: SDC D,E & F, IBC 1810.3.9.4.2 I l2 .Ir.ef ;= OAUS•7r• 2 .dr.e9 = I.OI•ill .5'DL'_Dbnrs•:= ceill nu.,l 4 trul�� Aber For SDC D,E & F #3 ties for b = 20" and less #4 ties for b > than 20" Ties spacing: IG• db—in= 10•in 8 S'DC. Ubam = 4 r1b check] = "Number3 ties" 12. 8 in= 7.5•in Embedded Posts and Poles (pole footings) Member. International Building Code (IBC), Section 1807.3 & 1810.3.9 – _ _—_ Trellis footings (18tn dia. wind controls) Post/Pole loading criteria: Diameter of round post or diagonal of square poist: Applied lateral load on post: Distance from ground to load, P: Allowable lateral bearing pressure as set forth in Table 1806.2. Allowable soil stress increase Design Criteria for Nonconstrained: (Per the IBC the maximum usable depth is 12'-0") Non constrained post depth initial guess: (Initial guess must be less than final depth) Calculations deprlrjactor:= 101(3• " (1110•3 I 7 1 Given \ J jr lIlllI0�1 411011C = 0.5-A,4.36•hll •A• I + LI + (JJ J Design Criteria for Constrained: Constrained post depth initial guess: (Initial guess must be less than final depth) S1:= deplGjac[or�S/F•Lntprexsine� dNorrc := Find(dno»c) = 3.78j1 b := 18/n l':= 253Ibj b 9 jt Lnthressnr.e := 150psj It 2.0, Per IBC 18'06.3.4UV 2.34•P Sl•b > initial depth, d rluorrc;= 45in check, = "PorNonconstrained Foundation Use: 3.8 R min." dean := 33in Calculations: '33 := 1ICa1•(SIF•La1p1.e.vr1i1.e) (:tyro, 4.75•—Ph > initial rlcaii – S3 •G dCoil Find�dcon� = 2.8,%t depth, d check2 = "For Constrained Foundation Use: 2.8ft min," Reinforcing: Per IBC 1810.3.9.4 (no reinforcing required for SDC A, B Reinforcing bar size & number of bars: SDC C, IBC 1810.3.9.4.1 Ai.L1l := 0.0025.7r•G� ArLq = 0.64•in2 2 SDC D,E&F, IBC 1810.3.9.4.2 (G 2 :I rerl 0.005.7x` 121 Arer ,SDC CGanx:= ceilnrac 4, / ''iGar #3 ties spacing: rlr.eq = 1.27-in2 SDC–Dbarv:= c•eilnsrs(4 .Ireq)I 'I bar For SDC D,E & F #3 ties for b = 20" and less #4 ties for b > than 20" Ties spacing: check3 = "Number 3 lies" ,SDC Cbars = 4 16- db in = 10•in 8 SDC --- Dbm's = 5 12• db—in = 7,5•in 3 ==== == ==== == === = ==== ======== ===---======m Embedded Posts and Poles (pole footings) Member. International BuildingCode (IBC), Section 1807.3 & 1810.3.9 _ _ Trellis footings (24in dia__wind controls) Post/Pole loading criteria: Diameter of round post or diagonal of square poist: Applied lateral load on post: Distance from ground to load, P: Allowable lateral bearing pressure as set forth in Table 1808.2: Allowable soil stress increase Design Criteria for Nonconstrained: (Per the IBC the maximum usable depth is 12'-0") Nonconstrained post depth initial guess: (initial guess must be less than final depth) Calculations: (161,1fnclo r:'= /qi1� I •dn0n°" 13frl Given r r (4.36-h)1051 A Design Criteria for Constrained: Constrained post depth initial guess: (Initial guess must be less than final depth) Calculations: S3 `= cicoii ��SIf •Lnrin•essm•e} Civet 4 25•P -h deaf 43•b SI:= del�lhfactar•(SIF•Lnp)'est•tt),e) dNarc• := Find(lna c) = 3.43,/1 b = 24in P:= 253/1?/ h := 9/1 Lnthl•essm.e := I50pyf fi 2.0. Per IBC 1806.3.4 2..34• P S/•b > initial depth, d ilnarc:= 40in check f = "For Nonconstrained Foundation Use: 3.5 ft min." — ------------------------ (1C'0n := Find(dC017) = 2.54ft > initial depth, d Reinforcing:. Per IBC 1810.3.9.4 (no reinforcing required for SDC A, B Reinforcing bar size & number of bars: SDC C, IBC 1810.3.9.4.1 r l�_ Ar•eq := 0.0025•7r• �J �lreq = 1.13•i, SDC D,E & F. IBC 1810.3.9.4.2 11001:= 301n check -2 = "For Constrained Foundation Use: 2.6 it min." ,SDC–Cba.r := Veil mac 4, �1—c(J 1) Am - #3 ties spacing: #6 v SDC_Cba•a• = 4 db I(• $ in = 10•in Y /� fi1Cq D.005.7r.1 ArOq=2.2G•in .SDC'–Dbnrs:= c•ei llia 4— SDCDbars I ba For SDC D,E & F Ties spacing: #3 lies for b = 20" and less (lb #4 ties for b > than 20" cheek3 = "Number 4 ties" 12• 8 in = 7,5 -in