HomeMy WebLinkAboutSTRUCTURAL CALCS 2 - 16-00575-577 - 117 S 2nd E - Mattson Apartments (Abri) - Civil SiteMattson Appartments
Structural Calculations
Engineer's seal applies to this entire calculation
packet. This packet is void if binding seal is broken
or if engineer's seal is not an original signature in
red ink.
This engineering report is valid only for the aforementioned
building located at 1 st South and 2nd East, Rexburg, Idaho.
This report is to be used only once and may not be copied or
reproduced without the written consent of LEI Engineers and
Surveyors, Inc.
ENGINEERS
SURVEYORS
PLANNERS
3.302 N. Main Street
Spanish Fork, UT 84660
Phone: 801.798.0555
Fax: 801.798.9393
office@lei-eng.com
www,lei-eng.com
2016-2850
Location:
Rexburg, Idaho
Date:
10/18/2016
Engineered by:
J. Miller
9634
10/19/2016
16-0057=-577
Mattson Apartinents
5truot ur,11 CI ICS 10-21-16
Office Copp ( I of I )
Mattson Appartments
Structural Calculations
Engineer's seal applies to this entire calculation
packet. This packet is void if binding seal is broken
or if engineer's seal is not an original signature in
red ink.
This engineering report is valid only for the aforementioned
building located at 1 st South and 2nd East, Rexburg, Idaho.
This report is to be used only once and may not be copied or
reproduced without the written consent of LEI Engineers and
Surveyors, Inc.
ENGINEERS
SURVEYORS
PLANNERS
3302 N. Main Street
Spanish Forl<, UT 84660
Phone: 801.798.0555
Fax: 801.798.9393
office@lei-eng.com
www.lei-eng.com
2016-2850
Location:
Rexburg, Idaho
Date:
10/18/2016
Engineered by:
J. Miller
sizo
9634
at16 0
�rE OF 19P�,wq't`
CRY D.titE.o�
APPLIES TO PAGES 1-168
Structural Review for: Mattson Appartments
Location:
Rexburg, Idaho
Job #:
2016-2850
Engineered by:
J. Miller
Code:
2015 IBC
Loadings
Risk Category:
II
Ground Snow Load:
Elevation =
4862 it
County=
Madison
A.=
6.2
S =
63
Po=
50
Pp=
50.0 psf
Roof Snow Load:
Ci= 1.1
Roof Exposure C,= 0.9 Full
1= 1.0
Pi= 34.7 psf
Roof Dead Load:
DL = 16.9 psf
Floor Loadings:
Dead Load = 23.4 psf
Light Weight Storage = 125 psf
Live Load= 40 psf
Wind Loading: (Envelope Procedure Chapter 28)
Roofing Material = Shingle rile
Roof Pitch = 0.25/12
Roof Angle = 1.2 degrees
Exposure Category = C
Mean Roof Height = 50
Wind Speed V = 115
Height & Exposure Factor X = 1.56
P. Horizontal Pressures pne1
zone A zone B I zone C I zone D 11 C&C I Parapet
32.6 0.0 1 21.8 1 0.0 11 33.9 1 78.4
Seismic Loading: fEoutvalent Lateral Force Procedure - see attached)
Soil Bearing Capacity: 4500 psf Eagle Rock Engineering Pro. 16116
Page 1 of 168
Snow Drift Calculations
Roofing Material = Shingle/rile
Ground Snow Load pn =
50 psf
Flat Roof Snow Load p, =
35 psf
Roof Pitch =
0.25
Angle =
1
Cr=
1.00
Sloped Roof Snow Load p, =
35 psf
% =
20.50
Height of normal Snow Load he =
1.69 ft
Total load (par)= 92 87 72 124 69
Siesmic Weight
Additional Seismic Weight 0.0 psf
Total Seismic Weight 16.9 psf
Page 2 of 168
Drift Rt
Drift #2
Drift 113
Drift N4
Drift #5
Winward
Winward
Winward
Leeward
Leeward
Roof Height Difference h. (ft)=
3.75
3.75
3.75
14
24
Does Drift Exist (ho/hy <.2)7
Yes
Yes
Yes
Yes
Yes
Length of upper roof 1„ (ft)=
128
68
36
117
19
Height of Drift ha (ft)=
2.e
2.5
1.8
4.4
1.7
W (ft)=
11
10
7
17
7
Max drift width (ft)=
30
3o
30
112
192
Drift tapers to zero rd w (ft)=
11
10
7
17
7
Drift Load pd (psf)=
58
52
38
89
35
Total load (par)= 92 87 72 124 69
Siesmic Weight
Additional Seismic Weight 0.0 psf
Total Seismic Weight 16.9 psf
Page 2 of 168
Dead Loads
Material
Weight (psf)
1 -ply rolled membrane roof
1
7/16" OSB sheathing
1.5
Joist framing @ 24" o.c.
3
Insulation (0.3 psf/in X 18 in)
5.4
Drop Ceiling
0
Sprinklers
3
Misc. (lighting, etc.)
3
Total
16.9
Material
Weight (psf)
1 1/2" gyperete
13
1/4" sound board
1
3/4" OSB floor sheathing
2.4
Floor Joists @ 16" o.c.
4
Drop Ceiling
2
Misc. (lighting etc.)
1
Total
23.4
Page 3 of 168
Wind Loads
ASCE 7.10 Envelope Procedure Part 1 (Chapter 28)
Building Category II (Table 1.5-1)
V Basic Wind Speed:
115 mph
(Figure 26.5-1)
Kd =
0.85
(Table 26.6.1)
Exposure =
C
(Section 26.7)
Kai=
1
(Figure 26.8-1)
Enclosed Structure
(Section 26.10)
GCpi=
0.18
(Table 26.11-1)
-0.18
MWFRS
Roof Pitch -
0.25 /12
Roof Angle =
1.2 degrees
Mean Roof Height =
50 ft
Kh =
1.09
(Table 28.3-1)
qh=
31.4 lb/ft`
(Equation 28.3.1)
Load Case A
Wind Pressure
Roof Angle
1 2
3 4 IE 2E
0-5
12.55 -21.64
-11.61 -9.10 19.13 -33.56
Wind Perpendicular to the Ridge
Well End
Roof End Wall Int.
Roof Int.
32.62
0.71 21.64
0.42
Parapet
Top of Parapet Elevation =
50 ft
Kp=
1.09
(Table 28.3-1)
qp =
31.4 Ib/ft`
(Equation 28.3-1)
GCp =
2.50
Po =
78.4 Ib1W
Components and Cladding
Walls
(Figure 30.4-1)
GC, =
-1.26
p =
-33.88 IbW
Page 4 of 168
Preface & Structural Notes
This engineering report is valid only for the following plan and location:
Mattson Appartments
1 st South and 2nd East, Rexburg, Idaho
NOTE TO PLAN CHECKER AND BUILDING INSPECTOR:
It the above address does not match the Intended building address, notify LEI immediately @ 801-798-0555.
This engineering packet is to be used only once for the above mentioned location and is not to be copied or
reproduced without written consent of LEI Consulting Engineers.
Structural Notes:
General Notes
1 If values and assumptions staled in this report are incorrect, or if changes In the field are noticed which are different from those stated in this
report, the engineer must be notified in order for the necessary corrections to be made.
2 If there are any discrepancies between the calculations and the drawings, these calculations shall supercede.
3 This engineering report deals only with the structural parts of the building and does not provide liability to the non-structural parts.
4 If plans are stamped in conjunction with this engineering packet, certification pertains only to the structural elements of the plans.
5 The general contractor is responsible for the method, means, and sequence of all structural erection except when specifically noted otherwise on
the drawings. He shall provide temporary shoring and bracing as his method of erection requires to provide adequate vertical and lateral support
during erection. This shoring and bracing shall remain in place until all permanent members are placed and all final connetions are completed
including all roof and floor attachments.
Site Preparation
1 Do not place footings or foundations on disturbed soils, undocumented fill, debris, frozen soil, or in ponded water. {-
2 All slabs on grade shall be underlain by 4 in. of free -draining granular material such as "pea" gravel or 3/4 - 1 in. minus clean gravel.
3 Footings, foundations, excavations, grading and fill shall be performed as per the geotechnical report.
Concrete
1 All concrete footings and slabs on grade shall have a 28 day minimum strength = 2500 psi.
2 All concrete foundation walls and retaining walls shall have a 28 day minimum strength = 3000 psi. j
3 Concrete shall be thoroughly consolidated by suitable means during placement.
4 Footings shall be centered below the wall and/or column above, typical unless noted otherwise.
5 Exterior footings shall bear below the effects of frost.
6 Stagger footing construction joints from wall construction joints above by at least 6 feet.
7 Reinforcing in continuous footings shall be continuous at corners and/or intersections by providing proper lap lengths and/or corner bars.
8 Interior slabs on grade shall be a min. of 4" thick.
9 Place vertical reinforcing in the center of the wall (except for retaining walls or when each face is specified).
10 Vertical reinforcing shall be dowelled to footing or structure below and to structure above with the same size bar and spacing, typical U.N.O.
11 Provide comer bars at all intersections and corners. Use same size bar and spacing as the horizontal reinforcing.
12 Horizontal reinforcing shall terminate at the ends of the walls and at openings with a standard hook.
13 Provide drainage at the base of retaining walls.
Reinforcing Steel
1 Reinforcing steel shall be new stock deformed bars and shall conform to ASTM A615, grade 60, with a design yield strength = 60 ksi.
2 Reinforcing steel shall be free of loose, flaky rust, scale, grease, oil, dirt, and other materials which might affect or impair bond.
3 Splices in continuous reinforcing shall be made on areas of compression and/or at points of minimum stress, typical U.N.O.
4 Lap splices shall be 40 bar diameters or 24" long in concrete. Dowels shall have a minimum of 30 bar diameters embedment.
5 Bends shall be made cold; do not use heal. Do not un -bend or re -bend a previously bent bar.
6 Reinforcing steel in concrete shall be securely anchored and tied in place prior to placing concrete and shall be positioned with the following
minimum cover. - -
concrete cast against and permanently exposed to earth = 3"
concrete exposed to earth or weather= 1 1/2"
slabs on grade = center of slab
Structural Steel -
1 Structural steel W -shapes shall conform to ASTM A992 grade 50 enhanced steel. Structural steel plates shall conform to ASTM A36. i
2 Structural steel HSS -shapes shall conform to ASTM A500, grade B, with a min. yield strength Fy= 46 ksi (rectangular) or Fy= 42 ksi (round).
3 Structural pipe shall conform to ASTM A53, with a min. yield strength Fy = 36 ksi. j
4 High strength bolts shall conform to ASTM A325, all other bolts shall conform to ASTM A307 or better.
5 Welded anchor studs and deformed bar anchors shall conform to the manufacturers specs.
6 Fabrication shall be done in an approved fabricator's shop.
7 Use high strength (8000 psi min. at 28 days), non shrink, liquid epoxy grout beneath all steel base plates and bearing plates.
8 Bolt shall be bearing type connections U.N.O. I
9 Steel to steel bolted connections shall be made with ASTM A325 high strength bolts and nuts, U.N.O.
10 All other bolted connections shall be made with bolts and nuts conforming to ASTM A307 U.N.O., including anchor bolts.
11 Bolted connections shall be tightened and shall have washers as required by AISC U.N.O. -
12 Enlarging of holes shall be accomplished by means of reaming. Do not use a torch on any bolt holes.
13 Welded connections shall be made using low hydrogen matching filler material electrodes, U.N.O.
14 Welders shall be currently certified according to AWS within the last year. All welding procedures shall be pre -qualified. Welders shall follow
welding procedures.
15 Welding and gas cutting shall be done per AWS.
16 Welds shall have the stag removed.
Page 5 of 168
Structural Notes (cont):
Masonry Veneer Anchor Ties
1 Masonry veneer ties shall be one of the following:
a. Dovetail anchors
b. DX-10 seismic clip interlock system by Hohmann & Barnard
c. Engineer approved 2 piece adjustable hot-dipped galvanized ties.
2 Maximum spacing shall be 16" o.c. horizontal and vertical.
3 Provide continuous horizontal galvanized #9 wire In center third of mortar joints at 16" o.c. Engage #9 wire with all anchor ties in seismic zone
category E.
Wood Truss
1 Bottom chords of trusses, acting as ceiling members must be able to support a 10 psf live load per IBC requirements.
2 The truss manufacturer shall be responsible for the design and fabrication of the pre-engineered trusses.
3 The trusses shall be designed as per the attached engineering specs.
4 The trusses shall be designed to carry any additional loads due to mechanical units, overhead doors, roof overbuilds, etc.
5 The trusses shall be designed per the IBC and local ordinances.
6 All members shall be designed for combined stresses based on the worst loading condition.
7 The truss manufacturer shall indicate proper bracing of compression chord members @ 6' long (or longer), as well as bracing for truss erection.
8 All dimensions shall be field verified prior to fabrication.
9 The contractor shall be responsible for the installation of the trusses per the truss manufacturer's recommendations and specs.
10 No web or chord members shall be modified in the field without approval from the truss engineer.
11 The project engineer is not responsible for the pre-engineered trusses, nor for the installation of the trusses.
12 Contractor is to verify truss layout is consistent with these plans and notify engineer of any deviations.
General Framing
1 All joists, rafters, posts and headers shall be DF-L #2 or equal U.N.O. It TJI's or equal are used, they must be installed per manufacturer's specs.
2 All joists and rafters shall have solid blocking at their bearing points.
3 All wood/lumber placed onto concrete shall be pressure treated or redwood.
4 Verify all beam sizes with engineering specs.
5 All beams and headers over 6'-0" shall be supported by double trimmer studs U.N.O.
6 All headers over 8'-0" shall shall have double king studs at each end U.N.O.
7 All over frame areas are to have full roof sheathing below.
S Provide solid blocking and continuous bearing to foundation at all bearing point loads from above.
9 Provide double floor joists below all parallel bearing walls above.
10 Glulam beams shall be 24F-V4 DF/DF for single spans and 24F-VS DF/DF for multiple spans and cantilevered spans.
11 Mlcrollam beams shall be Laminated Veneer Lumber (LVL) with the following minimum design values: E=1,900,000 psi, Fb=2,600 psi, Fv=285 psi
12 Parallam beams shall be Parallel Strand Lumber (PSL) with the following minimum design values: E=2,000,000 psi, Fb=2,900 psi, Fv=290 psi.
13 TimberStrand beams shall be Laminated Strand Lumber (LSL) w/ the following minimum design values:
- 1-1/4" wide (rim board): E=1,300,000 psi, Fb=1,700 psi, Fv=425 psi.
• 1-3/4" wide: E=1,550,000 psi, Fb=2,325 psi, Fv=310 psi.
14 All rafters and joists over 3 ft long shall be hangered if not supported by bottom bearing.
15 All hangers and other wood connections must be designed to carry the capacity of the member that they are supporting.
16 No structural member shall be cut or notched unless specifically shown, noted or approved by engineer.
17 Lag screws shall be inserted In a drilled pilot hole 60.76% of the shank diameter by turning with a wrench, not by driving with a hammer.
18 Nails are to be common wire U.N.O.
19 All bolt holes shall be drilled with a bit 1/32" to 1/16" larger than the nominal bolt diameter.
20 All joints in wall sheathing shall occur in the middle of a plate or block and nailed on each side of the joint w/ edge nailing per the shearwall schedu
21 All over built roof rafters shall be braced vertically to the trusses below at 4' o.c. max.
22 Double top plates are to have a minimum 48" lap splice w/ (8) 16d nails U.N.O.
23 All fasteners and connectors in contact with treated lumber shall be galvanized G90 or better.
Page 6 of 168
Surnrnary
Floor Joists: FJi: 11 7/8" TJI/210 @ 16' o.c. as noted on plans
FJ2: 117/8" TJI/360 0 12" o.c. as noted on plans
FJ3: (2) 2x10 DF -L#2 @ 19.2" o.c. as noted on plans
FJ4: 2x10 DF -L#2 @ 16" o.c. as noted on plans
3/4" APA rated T&O flooring to be nailed with 10d nails @ 6" o.c. edge, 12" o.c. field
Deck Joists: DJ1: Not Used
Roof:
Other:
RR1: 11 7/8" TJI/210 ® 24" o.c. as noted on plans
RR2: 11 7/8" TJI/210 @ 12' o.c. as noted on plans
Use 5/8' APA rated OSB sheathing w/ 10d nails @ 6" o.c. edge, 12" o.c. field
Overbuild to be 2" x 6" Timber @ 24" o.c.
All bearing headers to be (2) 2x10 (DF L #2 or better) unless noted otherwise
All exterior sheathing to be Shear Wall #1 unless noted otherwise
All glulam beams are to be 24F -V4 unless noted otherwise
Strap end lengths for shear walls (see also Simpson Coiled strap specs.):
CS16 = 14" CMST14 = 34" CMSTCI6 = 25"
Page 7 of 168
Beam Schedule
Desig. I
Desig.
Qty. I
Size Type
ITrimmers
Kin Stud
RBI
2
2x6 Timber
(1)
(1)
RB2
1
1 3/4" x 11 7/8" Microllam
(2)
N/A
RB32
1 3/4" x 11 7/8"
2x8 Timber
(2)
(1)
R54
1
1 3/4" x 11 7/8" Microllam
(2)
N/A
Page 7 of 168
Beam Schedule
Desig. I
City, I
Size
Type
Trimmers King Stud
FB1
2
2x6
Timber
(1) (1)
F82
1
1 1/4" x 11 7/8"
Rim Board
N/A N/A
FB3
2
1 3/4" x 11 7/8"
Microllam
(2) N/A
FB4
4
1 3/4" x 117/8"
Microllam
See Plans
FB5
2
13/4" x 11 7/8"
Microllam
(2) 1 WA
F66
2
2 x 10
Timber
See Plans
FB7
2
2 x 8
Timber
(2) 1)
FB8
2 1
1 3/4" x 11 7/8"
Microllam
(2) WA
FB9
-
Not Used
-
FB10
2
2x-10
Timber
(2) WA
FB11
2
2x8
Timber
(1) (1)
FB12
1
13/4" x 11718"
Microllam
2 WA
F813
2
2 x 8
Timber
(2) (1
FB14
1
13/4" x 11 7/8"
Microllam(2)
N/A
F815
1
13/4" x 11 7/6"
Microllam
(2) N/A
FB16
2
2 x 10
Timber
2) N/A
FB17
1
W 8 x 10
A992-50
See Plans
Page 7 of 168
Page 8 of 168
Beam Schedule
Desig.
Qty.
Size
Type
Trimmers n Stu
MB7
2
2 x 8
Timber
(2)
(1)
MB2
2
13/4" x 11 7/8"
Microllam
(2)
N/A
MBS
2
1 3/4" x 11 7/8"
Microllam
See Plans
MB4
2
2x6
Timber
(1)
(1)
MB5
3
1 3/4" x 117/8"
Microllam
See Plans
MB6
5
13/4" x 117/8"
Microllam
See Plans
MB7
2
13/4" x 117/8"
Microllam
(2)
(1)
MBB
2 1
13/4" x 117/8"
Microllam
2)
N/A
MB8
5
0
Microllam
See Plans
MB10
2
2 x 12
Timber
(2)
(1)
M011
2
2 x 10
Timber
(2)
N/A
MB12
3
2 x 10
Timber
(2)
N/A
MB13
2
13/4" x 9 1/2"
Microllam
(2)
(2)
MB14
2
2 x 8
Timber
(2)
(1)
MB15
2
2 x 6
Timber
(2)
(i
MB16
2
13/4"x91/4"
Microllam
(2)
N/A
MB17
2
1 3/4" x 9 1/4"
Microllam
(2)
N/A
20182
2x-10
Timber
(2
N/A
M819
2
2 x 6
Timber
(2)
(1)
MB20
2
2 x 8
Timber
(2)
0)
Page 8 of 168
Page 9 of 168
Beam Schedule
Desig.
ally.
Size
Type
ITrimmers IKing Stud
TBI
2
2x6
Timber
(1) (1)
TB2
2
1 3/4" x 11 7/8"
Microllam
(2) N/A
TB3
3
1 3/4" x 11 7/8"
Microllam
See Plans
T84
2
2x8
Timber
(2) 1 (1)
TB5
4
1 3/4" x 11 7/8"
Microllam
See Plans
TB6
1
1 1/4" x 11 7/8"
Rim Board
See Plans
TB7
2
1 3/4" x 11 7/8"
Microllam
(2) 1 N/A
TB8
2
1 3/4" x 11 7/8"
Microllam
See Plans
TB9
2
2 x 8
Timber
(2) (1)
TB10
2
2 x 10
Timber
(2) N/A
TB11
2
2 x 6
Timber
(2) (1)
TB12
2
2x6
Timber
(1) (1)
TS13
2
1 3/4" x 9 1/2"
Microllam
(3) (1)
TB14
3
13/4" x 11 7/8"
Microllam
N/A N/A
TB15
2
1 3/4" x 11 7/8"
Microllam
N/A N/A
TB76
3 1
1 3/4" x 11 7/8"
Microllam
N/A N/A
TB77
2
1 3/4" x 11 7/8"
Microllam
TB18
1
W 10 x 88
A992-50
See Plans
TB19
1
W 10 x 77
A992-50
See Plans
TB20
1
W 10 x 100
A992-50
See Plans
T821
1
W 10 x 15
A992-50
See Plans
TB22
1
W 10 x 17
A992-50
See Plans
TB23
1
W 10 x 54
A992-50
See Plans
TB24
2
1 3/4" x 117/8"
Microllam
See Plans
TB25
2
1 3/4" x 11 7/8"
Microllam
N/A N/A
TB26
2
13/4"x91/2"
Microllam
(2) (1)
TB27
2
2 x 10
Timber
(2) N/A
TB28
3
2 x 10
Timber
(3) N/A
TB29
2
1 3/4" x 9 1/4"
Microllam
(2) N/A
T830
2
1 3/4" x 9 1/4"
Microllam
(2) N/A
TB31
2
2 x 6
Timber
(2) (1)
18323
1 3/4" x 9 1/2"
Microllam
(2) (2)
TB33
2
2x6
Timber
(1) (1)
TB34
1
5 1/8" x 22 1/2'
Glulam
See Plans
Page 9 of 168
Beam Schedule
Desi
qty. I
Size
Tye
ITrimmers JlKin4Stucli
SB1
2
2x6
Timber
(1)
(1)
SB2
2
2 x 6
Timber
(2)
(1)
SB3
2
1 3/4" x 9 1/4"
Microllam
(2)
N/A
SB4
2
1 3/4" x 9 1/4"
Microllam
See Plans
SB5
2
2 x 10
Timber
See Plans
SB6
2
13/4"x91/2"
Microllam
(2)
(1)
SB7
3
2 x 10
Timber
(2)
(1)
SB8
3
2 x 10
Timber
(2)
(1)
SB9
2
2 x 10
Timber
(2)
(1)
SB10
3
2 x 10
Timber
(2)
N/A
5611
2
1 3/4" x 9 1/4"
Microllam
(2)
N/A
S812
2
2 x 10
Timber
(2)
N/A
SB13
3
1 3/4" x 11 7/8"
Microllam
See Plans
Page 9 of 168
FORTE
o n T E MEMBER REPORT Level, RR PASSED
I� fl 1 G 1 piece(s) 117/8" T7I@ 360 @ 24" OC
Overall Sloped Length: W1 5/16"
i
i
166"
0 0
cations are measured from the outside face of left support (or left cantilever end). Al dimensions are horizontal.
sign Results
Actual da Location
Allowed
Result
LDF
Load: Combination (Pattern)
nber Reaction (lbs)
854 @ 2 1/2"
1731 (3.5011)
Passed (49%)
1.15
1.0 D + 1.0 S (All Spans)
ar (lbs)
825 @ 16'9 1/2"
1961
Passed (42%)
1.15
1.0 D + 1.0 S (All Spans)
nent (Ft -lbs)
3472 @ 8' 6 1/2"
7107
Passed (49%)
1.15
1.0 D + 1.0 S (All Spans)
: Load DeO. (in)
0.334 @ W6 1/2"
0.556
Passed (1-1599)
—
1.0 D + 1.0 S (All Spans)
al Load Defl. (in)
0.477 @ W6 1/2"
0.834
Passed (LI419)
-
1.0 D + 1,0 S (All Spans)
dlection criteria: LL (1-1360) and TL (1.1240).
acing (Lu): Ail compresslon edges (top and bottom) must be braced at 4'4 314" o/c unless detailed otherwise. Proper attachment and positioning of lateral
acing Is required W achieve member stability.
pports
Toter
Availeblo
Required
Dead Snow
Total
Accessories
Leveled Plate - SPF
3.50"
3.50"
1.75"
256 598
854
Blocking
leveled Plate - SPF
3.50"
1 3.50"
1.75"
256 598
654
Blocking
)eking Parcels are assumed to carry no loads applied directly above them and the full load Is applied to the member being designed,
Dead I snow
35.0
Notes
:rhaeuser warrants that the sizing of its products will be In accordance with Weyerhaeuser product design criteria and published design values.
shaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for Installation details.
v.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not Intended to
nwent the need for a design professional as determined by the authority having Jurisdiction. The designer of record, builder or framer Is responsible m
e that this calculation Is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable
by st rdards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR -1153 and ESR -1307 and/or tested
cordance with applicable ASTM standards. For current rode evaluabon reports refer to hUp://www.woodbywy.com/wMces/s_CodeR poM.aspx.
xoduct aoollcabon. Input design loads, dimensions and support Information have been provided by Forte Software Ocerator
Ye Software Operator
k Miller
Consulting Engineers and Survayors
1036-7833
*lei erg con
System : Roof
Member Type : Joist
Building Use : Residenbal
Building Code: IBC
Design Methodology : ASD
Member Pitch: 0.25/12
QSUSTAINABLE FORESTRY INmATNE
10/18/201612:03:51 PM
Forte v5.0, Design Engine: V6.4.0.40
2016-2850.4fe
Page 10 of 168 Page 1 of 1
F F O R T E MEMBER REPORT Level, RR1 w/drift PASSED
1 pieces) 117/8" T]I@ 210 @ 24" OC
Overall Sloped Length: 17' 15/16"
a 0
All locations are measured from the outside face of left support (or left cantilever end).AII dimensions are horizontal.
0
Design Results
Actual Dr Location
AllowedResul!
Dead
LDF
Loaat Combination (Pattern)
Member Reaction lbs
1069 0 16' 10 1/2"
1679 (3.50")
Passed (64%)
1.15
1.0 D + 1.0 5 (All Spans
Shear (lbs)
1025 0 16' 9 1/2"
1903
Passed (54%
1.15
1.0 D + 1.0 5 All Spans)
Moment R-Ibs)
3905 0 8' 11 5/16"
4364
Passed (89%)
1.15
1.0 D + 1.0 S (All Spans)
Live Load DeN. In
0.507 0 8'7 15116"
0.556
Passed (U394)
-
1.0 D + 1.0 S (All Spans)
Total Load DeO. in
0.6910 8' 7 9/16"
0.834
1 Passed (U289)
-
1.0 D + 1.0 S (All Spans)
uenecoon cmena: u. L V sou) and I E Lt/L9d).
Bracing (Lu): All compression edges (top and holtom) must be braced at 3' 2 11/16" o/c unless detailed otherwise. Proper attachment and positioning of
lateral bracing Is required to achieve member stability.
Blocking Panels are assumed m carry no loads applied directly above them and the full load is ADDlied to the member being designed
Bearing Length
Loads m Supports abs)
Dead
5>E�POrts
Total Available Required
Dead Snow Total
Accessories
I - Beveled Plate - SPF
3.50" 3.50" 1.75"
256 649 905
Blocking
2 -Beveled Plate - SPF
3.50" 3.50" 1 1.75"
256 813 1069
Blocking
Blocking Panels are assumed m carry no loads applied directly above them and the full load is ADDlied to the member being designed
Weyerhaeuser Notes
Neyerhaeuser warrants that the dung of Its Products will be in accordance with Weyerhaeuser product design criteria and published design values.
Neyerhaeuser expressly disclaims any other warranties related W the software, Refer to current Weyerhaeuser literature for installation details.
www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this s iti Use of this software Is not Intended to
:Ircumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or former Is responsible to
assure that this calculation Is compatible with the overall project. Products manufactured at Weyerhaeuser facilltles are tNrtlyany certified to sostainable
'oresby standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES unclear technical reports ESR -1153 and ESR -1387 and/or tested
n accordance with applicable ASTM standards. For current code evaluation reports refer to hbp://www.woodbywy,corrVnmices/s_CodeReports.aspx.
rhe product applicatlon, Input design loads, dimensions and support information have been provided by Forte Software Operator
Forte Software Operator
Jerk Miller
LEI Consulting Engineers and Surveyors
(601) 636-7833
jack B'lei eng com
System : Roof
Member Type: ]Dist
Building Use : Residential
Bullding Code: IBC
Design Methodology: ASD
Member Pitch: 0.25/12
QSUSTAINABLE FORESTRY INITKTP7E
Job Notes 10/18/2016 12:04:18 PM
Forte v5.0, Design Engine: V6.4.0.40
2016-2850.4te
Page 11 of 168 Page 1 of 1
Dead
Snow
Loads
Location
Spacing
(0.90)
(1,15) cdmmenb
I -Uniform (PSF)
0 to IT 1"
24"
15.0
35.0 Roof
?-Tapered (PL F)
6'915/16"to 17'
N/A
-
O.D to 52.0
Weyerhaeuser Notes
Neyerhaeuser warrants that the dung of Its Products will be in accordance with Weyerhaeuser product design criteria and published design values.
Neyerhaeuser expressly disclaims any other warranties related W the software, Refer to current Weyerhaeuser literature for installation details.
www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this s iti Use of this software Is not Intended to
:Ircumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or former Is responsible to
assure that this calculation Is compatible with the overall project. Products manufactured at Weyerhaeuser facilltles are tNrtlyany certified to sostainable
'oresby standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES unclear technical reports ESR -1153 and ESR -1387 and/or tested
n accordance with applicable ASTM standards. For current code evaluation reports refer to hbp://www.woodbywy,corrVnmices/s_CodeReports.aspx.
rhe product applicatlon, Input design loads, dimensions and support information have been provided by Forte Software Operator
Forte Software Operator
Jerk Miller
LEI Consulting Engineers and Surveyors
(601) 636-7833
jack B'lei eng com
System : Roof
Member Type: ]Dist
Building Use : Residential
Bullding Code: IBC
Design Methodology: ASD
Member Pitch: 0.25/12
QSUSTAINABLE FORESTRY INITKTP7E
Job Notes 10/18/2016 12:04:18 PM
Forte v5.0, Design Engine: V6.4.0.40
2016-2850.4te
Page 11 of 168 Page 1 of 1
F O Il 6 r E MEMBER REPORT Level, RR2
G 1 piece(s) 117/8" T]I@ 210 @ 12" OC
Overall Sloped Length: Wit 5/16"
0
i
I r
i I
I �
16'6"
0
rations are measured from the outside face of left support (or left cantilever end).AII dimensions are horizontal.
sign Results
Actual ® Location
Allowed
aNult
LDF
Loads Combination (Pattam)
Tiber Reaction (lbs)
914 @ 2 1/2"
1679 (3.50")
Passed (54%)
1.15
1.0 D + 1.0 S (All Spans)
!ar (Ibs)
B83 @ 3 1/2"
1903
Passed 46%)
1.15
1.0 D + 1.0 S (All Spans)
Tent (Ft -lbs)
3715 @ 8' 6 I/2"
4364
Passed (85%)
1.15
1.0 D + 1.0 S (All Spans)
e toad DeO. (In)
0.565 @ 8'6 1/2"
0.556
Passed (U354)
--
1.0 D + 1.0 S(AM Spans)
at Load Defi. (In)
0.657 @ S' 6 1/2"
0.834
Passed (U305)
--
1.0 D + 1.0 S (All Spans)
!Flection cnteda: LL (1-/36D) and TL (1/240).
acing (Lu): All compression edges (top and bottom) must be braced at Y3 11/16" o/c unless detailed otherwise. Proper attachment and positioning of
feral bracing Is required to achieve member stability.
pports 1 Tatar
Available
Required
Dead
Snaw Total
AaretsodN
3eveled Plate- SPF 3.50"
3.50"
1.]5"
128
]Bfi 9l4
Blocking
3eveled Plate - SPF 3.50"
3.50"
1.75"
128
786 914
Blocking
ocHng Panels are assumed to carry no loads applied directly above them and the full load Is applied to the member being designed.
Dead Snow
ids Location Spacing (0.90) (1.15) Comments
Jniform (PSF) 0 to 17' 1" 12" 15.0 92.0 Roof
werhaeuser Notes
erhaeuser warrants that the sizing of Its products will be In accordance with Weyerhaeuser product design criteria and published design values.
erhaeuser expressly disclalms any other warranties related W the software. Refer to current Weyerhaeuser literature for Installation details.
N.wcodbywy.comJ Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software Is not Intended to
iinvert Bre need for a design professional as determined by the authority having Jurisdiction. The designer of record, builder or framer Is responsible to
T that this calculation is compatible with the overall project Products manufactured at Weyerhaeuser facilities are thlyd-pang Mitred to sustainable
Ay standards. Weyerhaeuser Engineered lumber Products have been evaluated by ICC ES under technical reports ESR 1153 and ESR -1387 and/or tested
cordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woDdbywy.com/servicests_CodeReports.aspx.
product application, Input design loads, dimensions and support information have been provided by Forte Software Operator
to So6ware Operator
k Miller
Consulling Engineers and Surveyors
1)836-7833
c is lei-.ng.com
PASSED
System : Roof
Member Type : Joist
Building Use: Residential
Building Code: IBC
Design Methodology: ASD
Member Pitch: 0.25/12
0 SUSTAINABLE FORESTRY INITIATIVE
10/18/201612:04:33 PM
Fore v5.0, Design Engine: V6.4.0.40
2016-2850.4fe
Page 12 of 166 Page i of 1
( F O R T E MEMBER REPORT Level, RR3 PASSED
1 pieces) 117/8" TJI@ 210 @ 16" OC
0
Overall Sloped Length: 17' 1 5/16"
o E
All locations are measured from the outside face of left support (or left cantilever end).AII dimensions are horizontal.
0
Design Results
AcWal0 Location
Allowed
Result
LOB
Load: Combination (Pattern)
Member Reaction (lbs)
1072 @ 16110 1/2"
1679 (3.50")
Passed 64%
1.15
1.0 D + 1.0 S (All Spans)
Shear (Ibs)
1027 @ 16 91/T'
1903
Passed 54%)
1.15
1.0 D + 1.0 S (Ail Spans)
Moment (Ft -lbs)
3831 @ 9' 13/16"
4364
Passed (88%)
1.15
1.0 D + 1.0 S(AllSpans)
Live Load per. (in)
0.552 @ 8' 8 3/8"
0.556
Passed L/363
-
1.0 D + 1.0 S (AllSpans)
Total Load DeFl. (in)
0.674 @ 8'8"
0.834
Passed L/297
-
1.0 D + IA S (All Spans)
Deflection criteria: LL (1-1360) and TL (1.1240).
Bracing (Lu): All compression edges (top and bottom) must be braced at T3 1/16" o/c unless detailed otherwise, Proper attachment and positioning of lateral
bracing Is required to achieve member stability.
Blocking Panels are assumed to carry no loads applied directly above them and the full load Is applied to the member being designed.
Loads
Searing Length
Loads W Supports (Ibs)
I -Uniform (PSF)
Supports
Total Available Required
Dead Snow Total
Accessories
I - Beveled Plate - SPF
3.50' 3.50" 1.75"
171 634 805
Bkscltlng
I - Beveled Plate - SPF
3.50" 3.50" IJS"
171 901 1072
Blociing
Blocking Panels are assumed to carry no loads applied directly above them and the full load Is applied to the member being designed.
Loads
Deadsnow
Location spacing (o.g0)
(1.15) comments
I -Uniform (PSF)
0 to 17'1' 16" 15.0
35.0 Roof
2 - Tapered (PLF)
6" to 17'1" N/A -
1 0.0 to 89.0
Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser Product design criteria and published design values.
Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for Installation details.
(www.woWbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not Intended to
circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, bundler or Ramer is responsible to
assure that this calculation Is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable
forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR -1153 and ESR -1387 and/or tested
in accordance with applicable ASTM standards. For current code evaluation reports refer to hUp:/7www.woodbywy.conVwMces/s CodeReports.aspx.
The product application, Input design loads, dimensions and support Information have been provided by Forte Software Operator
System : Roof
Member Type : Joist
Building Use: Residential
Building Code: IBC
Design Methodology: ASO
Member Pitch: 0.25/12
0 SUSTAINABLE FORESTRY INITIATIVE
Forte Software operator Job Noses 10/18/2016 12;04:44 PM
Jack Maier Forte v5.0, Design Engine: V6.4.0.40
LB Consulting Engineers and Surveyors 2016-2850Afe
;801) 626 7833
lacks le' eng can Page 13 of 168 Page 1 of 1
TO R TE' MEMBER REPORT Level, FJ2
1 piece(s) 117/8" T]I@ 360 @ 12" OC
Overall Length: 31'2 1/4"
0 1
rrr—
t
rl I�
14' 14'6" 7_'6"I_
3cations are measured from the outside face of left support (or left Cantilever end).Ail dimensions are horizontal.
0
sign Results
Actual ® Location
Allowed
Result
LDF
Load, Combination (Pattern)
Tiber Reaction (Ibs)
2094 @ 29' 5 1/2"
3000 (5.25")
Passed 70%
1.00
1.0 D + 1.0 L Adj Spans)
tar (Ibs)
1514 @ 29' 8 1/4"
1705
Passed (89%)
1.00
1.0 D + 1.0 L All Spans)
ment (Ft-Ibs)
-2045 @ 29' 5 1/2"
6180
Passed (33%)
1.00
1.0 D + 1.D L All Spans)
a Load DeFl. (in)
0.060 @ 31' 21/4"
0.200
Passed (21/694)
—
1.0 D + 0.75 L + 0.75 S Alt Spans)
:al Load Dell. In
0.102 @ 31' 2 1/4"
0.200
Passed 21./406)
•
1.0 D + 0.75 L + 0.75 S (Alt Spans
Pro" Rating
56
40
Passed
,flection criteria: LL (1.1480) and TL (1.1240).
verharg deflection criterla: LL (0.2") and TL (Ori").
acing (Lu): All compression edges (top and bottom) must be braced at 5' 5 7/8" o/c unless detailed otherwise. Proper attachment and positioning of lateral
'acing Is required to achieve member stability.
structural analysis of the deck has not been performed.
,Flection analysis Is based on amposite action with a single layer of 23/32' Weyerhaeuser Edge'" Panel (24" Span Rating) that is glued and nailed dawn.
tuitional conslderabons for the Tl -Pro•" Rating include: None
pports Total Available Required Dead Fluor
Liane
Snow
Total
Auessorles
SWd wall - SPF2.25" 1.75" 198 276/-36
10
434/-36
t 1/4" Rim Board
Beam - SPF 53.50' .25' 5.25" 3.50" 315 732
-57
1047/-57
Blocking
Stud wall - SPF 5.50" 5.50" 3.50" 1 1045 1049
454
2548
Bbcking
in Board is assumed W carry all loads applied directly above It, bypassing the member being designed.
ocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the
member being designed.
ads
Location spacing
Dead
(0.90)
Fluor Live
(1.00)
snow
(1.15)
Comments
indorm (PSF)
0 to 31' 2 1/4' 12"
23
40.0
-
Residential - uAng
'oinl(PLF)
30'10" 12"
7794 .0
640.0
407.0
Notes
erhaeuser warrants that the sl8ng of Its products will be In accordance with Weyerhaeuser product design criteria and published design values.
erhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details.
w.woodbyvy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are hot designed by this software. Use of this software Is not intended to
Iinvent the need for a design professional as determined by the authority having Jurisdiction. The designer of record, builder or framer Is responsible to
re that this calculation Is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third -party certifled to sustainable
sDy, standards. Weyerhaeuser Engineered Lumber Products have been evaluated by LCC ES under technical reports ESR -1153 and ESR -1387 and/or tested
:cordance with applicable ASTM standards. For anent code evaluation reports refer to http://www.modbywy.corrVwwlcesls CodeRepom.aspx.
product application, Input design loads, dimensions and support Information have been provided by Forte Software Operator
le software Operator
:k Miller
Consulting Engineers and Surveyors
1)836-7833
(01ei eng com
PASSED
System : Floor
Member Type; bist
Building Use : Residential
Building Code: IBC
Design Methodology; ASD
0 SUSTAINABLE FORESTRY INTRATIVE
10/18/2016 12:04:57 PM
Forte v5.0, Design Engine: V6.4.0,40
2016-2050.4te
Page 14 of 168 Page 1 of 1
Project: 2016-2650
Location: FJ2
Floor Joist
12015 International Building Code(2012 NDS)]
1,51N x 9.251N x 7.5 FT @16 O.C.
#2 - Douglas -Fir -Lerch - Dry Use
Section Adequate By: 4.1 %
Controlling Factor: Moment
DEFLECTIONS
enter
Live Load
0.06 IN L/1400
Dead Load
0.04 in
Total Load
0.11 IN L/838
Live Load Deflection Criteria: U480 Total Load Deflection Criteria: U360
REACTIONS
A B
Live Load
410 Ib 410 Ib
Dead Load
268 Ib 268 Ib
Total Load
678 It, 678 to
Bearing Length
0.72 in 0.72 In
SUPPORT LOADS
A B
Live Load
308 pif 308 plf
Dead Load
201 pif 201 pif
Total Load
509 plf 509 pif
Base Values Adjusted
Bending Stress: Fb = 900 psi Fb' = 1139 psi
Cd=1.00 CF=1.10 Cr -1.15
Shear Stress: Fv = 180 psi Fv' = 180 psi
Cd=1.00
Modulus of Elasticity: E = 1600 ksi E'= 1600 ksi
Comp. Ito Grain: Fc -1= 625 psi Fc -1'= 625 psi
Controlling Moment: 1949 ft -Ib
3.75 Ft from left support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2
Controlling Shear: -615 Ib
At a distance d from right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2
Comparisons with required sections:
Recrd
Prov ded
Section Modulus:
20.55 in3
21.39 in3
Area (Shear):
5.12 in2
13.88 in2
Moment of Inertia (deflection):
42.48 in4
98.93 in4
Moment:
1949 ft -Ib
2029 ft -lb
Shear:
-615 lb
1665 lb
®Jack Miller
LEI Surveyors and Engineers
3302
3302 North Main Street
Spanish Fork, Utah
I I A'. `. L
10/18/2016 12:03:29 PM
A 7.5 It - --__B
Span Length 7.5 ft
Unbraced Length -Top 0 it
Unbraced Length -Bottom 0 ft
Floor sheathing applied to top of joists -top of joists fully braced.
Floor Duration Factor 1.00
Uniform Floor Loading
Center
Live Load LL =
40
psf
Dead Load DL=
23.4
psf
Total Load TL=
63.4
psf
TL Adj, For Joist Spacing wT =
84.5
plf
Wall Loading
Wall One
Live Load (-L to Joists): Lt =
315
plf
Dead Load ( -L to Joists):D1 =
227
plf
Load Location X1 =
3.75
ft
Page 15 of 168
ct: 2016-2850
ion: FJ2-check
Joist
International Building Code(2012 NDS)]
Ix9.25 IN x8.0 FT @ 16 O.C.
louglas-Fir-Larch - Dry Use
)n Adequate By: 28.2%
oiling Factor: Moment
LECTIONS
Center
Load
0.10 IN L/989
i Load
0.02 in
I Load
0.12 IN L/833
Load Deflection Criteria: U480 Total Load Deflection Criteria: L/360
IONS
A @
Load
667 Ib 667 Ib
I Load
125 Ib 125 Ib
I Load
792 Ib 792 Ib
ing Length
0.84 in 0.84 in
PORTLOADS A_ B
Load
500 pif 500 pif
f Load
94 pif 94 pif
I Load
594 pif 594 pif
Douglas -Fir -Larch
Tolling Moment: 1583 ft -Ib
Ft from left support of span 2 (Center Span)
ated by combining all dead loads and live loads on span(s) 2
:rolling Shear: -6491b
i distance d from right support of span 2 (Center Span)
ated by combining all dead loads and live loads on span(s) 2
parisons with required sections: Recd Provided
on Modulus: 16.68 in3 21.39 in3
(Shear): 5.41 int 13.88 int
ant of Inertia (deflection): 47.99 in4 98.93 in4
ant: 1583 ft -Ib 2029 ft -Ib
ir. -649 lb 1665 lb
I i A" , k
Jack Miller woe
LEI Surveyors and Engineers
3302 North Main Street o�
Spanish Fork. Utah
10/18/2016 12:03:36 PM
JOIST DATA Center
Span Length 8 ft
Unbraced Length -Top 0 It
Unbraced Length -Bottom 0 ft
Floor sheathing applied to top of joists -top of joists fully braced.
Floor Duration Factor 1.00
JOIST LOADING
Uniform Floor Loading Center
Live Load LL = 125 psf
Dead Load DL= 23.4 psf
Total Load TL = 148.4 psf
TL Adj. For Joist Spacing wT = 197.9 plf
Page 16 of 168
Base Values
Adjusted
ling Stress:
Fb = 900 psi
Fb' =
1139 psi
Cd=1.00 CF=1.10 Cr -1.15
u Stress:
Fv = 180 psi
FV =
180 psi
Cd --1.00
Jus of Elasticity:
E = 1600 ksi
E'=
1600 ksi
p. -LtoGrain:
Fc -1= 625 psi
Fc -1'=
625 psi
Tolling Moment: 1583 ft -Ib
Ft from left support of span 2 (Center Span)
ated by combining all dead loads and live loads on span(s) 2
:rolling Shear: -6491b
i distance d from right support of span 2 (Center Span)
ated by combining all dead loads and live loads on span(s) 2
parisons with required sections: Recd Provided
on Modulus: 16.68 in3 21.39 in3
(Shear): 5.41 int 13.88 int
ant of Inertia (deflection): 47.99 in4 98.93 in4
ant: 1583 ft -Ib 2029 ft -Ib
ir. -649 lb 1665 lb
I i A" , k
Jack Miller woe
LEI Surveyors and Engineers
3302 North Main Street o�
Spanish Fork. Utah
10/18/2016 12:03:36 PM
JOIST DATA Center
Span Length 8 ft
Unbraced Length -Top 0 It
Unbraced Length -Bottom 0 ft
Floor sheathing applied to top of joists -top of joists fully braced.
Floor Duration Factor 1.00
JOIST LOADING
Uniform Floor Loading Center
Live Load LL = 125 psf
Dead Load DL= 23.4 psf
Total Load TL = 148.4 psf
TL Adj. For Joist Spacing wT = 197.9 plf
Page 16 of 168
Project: 2016-2850
Location: FJ3
Floor Joist
[2015 International Building Code(2012 NDS)]
( 2 ) 1.51N x 9.251N x 7.5 FT @19.2 O.C.
#2 - Douglas -Fir -Lerch - Dry Use
Section Adequate By: 8.1 %
Controlling Factor: Moment
CAUTIONS
Properly connect sheathing to double joists/rafters or fully laminate to transfe
DEFLECTIONS Center
Live Load 0.05 IN U1850
Dead Load 0.03 in
Total Load 0.08 IN U1154
Live Load Deflection Criteria: L1480 Total Load Deflection Criteria: L/360
REACTIONS A B
Live Load 744 Ib 744 Ib
Dead Load 448 Ib 448 Ib
Total Load 1192 Ib 1192 Ib
Bearing Length 0.64 in 0.64 In
SUPPORTLOADS A B
Live Load 465 pif 465 pif
Dead Load 280 plf 280 pif
Total Load 745 pif 745 plf
MATERIAL PROPERTIES
#2 - Douglas -Fir -Larch
Base Values Adiusted
Bending Stress: Fb = 900 psi Fb' = 1139 psi
Cd=1.00 CF=1.10 Cr -1.15
Shear Stress: Fv = 180 psi Fv' = 180 psi
Cd=1.00
Modulus of Elasticity: E = 1600 ksi E'= 1600 ksi
Comp.-Lto Grain: Fc -J-= 625 psi Fc -1'= 625 psi
Controlling Moment: 3755 ft -Ib
3.75 Ft from left support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2
Controlling Shear: 1116 lb
At a distance d from left support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2
Comparisons with required sections:
Read
Provided
Section Modulus:
39.58 in3
42.78 in3
Area (Shear):
9.3 in2
27.75 in2
Moment of Inertia (deflection):
79.65 in4
255.21 In4
Moment:
3755 ft -Ib
4059 ft -lb
Shear:
1116 lb
3330 lb
Decking Information
Plywood Thickness:
T =
3/4 in
Plywood Is Glued:
psi
Dead Load DL =
Moment of Inertia Calculations For Glued Floor:
Joist Area:
A -joist=
27.76 IN2
Plywood Area:
A -ply=
2.51N2
Section Centroid:
C =
5 IN ABOVE BASE
Moment of Inertia (deflection):
1 -comb =
255 IN4
®Jack Miller
LEI Surveyors and Engineers
3302 North Main Street
Spanish Fork, Utah
I r A� erns
StruCalc Version 9.0.2.5
diaphragm forces.
zs n
12:03:31 PM
Span Length 7.5 It
Unbracetl Length -Top 0 it
Unbracetl Length -Bottom 0 R
Floor sheathing applied to top of joists -top of joists fully braced.
Sheathing/sheetrock applied to bottom of joists -bottom of joists fully braced.
Floor Duration Factor 1.00
Uniform Floor Loading
Center
Live Load LL =
40
psi
Dead Load DL =
23.4
psf
Total Load TL=
63.4
psi
TL Adj. For Joist Spacing wT =
101.4
pif
Wall Loading
Wall One
Live Load ( --to Joists): L7 =
630
plf
Dead Load ( JL to Joists)D1 =
384
plf
Load Location X1 =
3.75
it
Page 17 of 168
ch 2016-2850
tion: FJ4
Joist
i International Building Code(2012 NDS)]
4 x9.25 IN x7.5 FT @16 O.C.
)ouglas-Fir-Larch - Dry Use
on Adequate By: 4.1 %
olling Factor: Moment
RECTIONS
.Center
Load
0.06 IN U1400
d Load
0.04 in
d Load
0.11 IN U838
Load Deflection Criteria: U480 Total Load Deflection Criteria: U360
CT1 IONS
& 4
Load
410 Ib 410 Ib
d Load
268 Ib 268 Ib
II Load
678 Ib 678 Ib
ring Length
0.72 in 0.72 in
'PORTLOADS
A B
Load
308 pif 308 pIf
d Load
201 plf 201 pIf
II Load
509 plf 509 pif
3.75
ft
rERIAL PROPERTIES
Douglas -Fir -Larch
Base Values Adjusted
ding Stress:
Fb = 900 psi Fb' = 1139 psi
Cd=1.00 CF=1.10 Cr -1.15
ar Stress:
Fv = 180 psi Fv' = 180 psi
Cd=1-00
lulus of Elasticity: E = 1600 ksi E'= 1600 ksl
rp. Jt to Grain: Fc -1= 625 psi Fc -1'= 625 psi
strolling Moment: 1949 ft -Ib
'5 Ft from left support of span 2 (Center Span)
sated by combining all dead loads and live loads on span(s) 2
trolling Shear: -615 lb
a distance d from right support of span 2 (Center Span)
sated by combining all dead loads and live loads on span(s) 2
1parisons with required sections: Read Provided
Lion Modulus: 20.55 in3 21.39 in3
I (Shear): 5.12 In2 13.88 in2
lent of Inertia (deflection): 42.48 in4 98.93 in4
lent: 1949 ft -Ib 2029 fl -Ib
ar: -615 Ib 1665 Ib
1u'r Rt ', �!Np
.I. .s 1,a
Jack Miller
LEI Surveyors and Engineers
3302 North Main Street
Spanish Fork, Utah
1 011 812016 12:04:05 PM
7.6 a
Span Length 7.5 ft
Unbraced Length -Top 0 ft
Unbraced Length -Bottom 0 ft
Floor sheathing applied to top of joists -top of joists fully braced.
Floor Duration Factor 1.00
Uniform Floor Loading
Came
Live Load LL =
40
psf
Dead Load DL=
23.4
psf
Total Load TL =
63.4
psf
TL Adj, For Joist Spacing wT =
84.5
plf
Wall Loading
Wall One
Live Load (1 to Joists): Lt =
315
pif
Dead Load ( -L to Joisls):D1 =
227
plf
Load Location X1 =
3.75
ft
Page 18 of 168
Ledger L7 Calculations
Loads/Reactions
Dead Load:
23.4
psf
Live Load:
60
psf
Span length of rafter/truss:
10
ft
Roof rafter/truss spacing:
1.33
ft
Uniform load on rafter/truss:
110.9
plf
End reaction on rafter/truss:
554.6
lbs
Ledger loading:
417
plf
Number of Required Screws per
Stud in Wall
SDWS2240ODB Wood Screw=
285
(per Simpson)
CD=
1.00
SDWS2240ODB Wood Screw=
285
Ib
Number of required screws:
1.5
screws/ft
Stud wall spacing:
1.33
ft
Required screws at each stud :
1.9
Use 2 SDWS2240ODB wood screws minimum at each stud
Use 2 x 10 ledger
Page 19 of 168
0 O Of jV ] W W W n W h O N N N 0 C o N yy N O 00 O O c
M C Y N M L
d I(� N O O N r O q N d O V O N h 1Np O O W M
(O OfNCO0 Cmy
'pl p � q 0. OO OO 0• p
d Ip N W W r O M N N O tp O O O N N O O OI Ot T N r O O N E N N O N N O d' h y O N O y O O N m y
V W_ W W (p M OR S h I� N h g O p �Op W O r ON N Cl
lV (V M (7 W N O OO� --o N C4O M 0 O O
OO 0' pG Cp
x
N f O O M d N Nj N N m? V d' V N N N O d 001 CJ N^ C O N M O n O N
80
Q Vtl y� N
I
II II v .0-..
'I II C k p C C
T N II O 'rp' OL p p
Y y
tidi
0 3 n a d a i e
o 2 t rn d c o
0 d d d 31
E cLL '311 v u•° $'c�d��5 Ts a II rv'm�¢a 2E OE -2 .ado n i
o W II o `o ' a y M g g 'c a o E r v d pp p E c c° A c c •'- u o d o$
dgo `ugoo H oi'G dm�E.1�o�a�ccbd d•� 3
m o s do 0 _= w o i r 3 3 3 3 o m a a¢ a s r�a$e'�o�r�is@ > G m o a LL m R_ L L N W w r< J a J a r
U
N
p aO V N OO OO N r O M N N 0n('1 Mh N N NW NN OM O O Mn 0{cW � 0
0 MW NyyMN OO^ OO^ m n apNpnj bN Y O MN N YO OO OO NO. OO M
YO 00M aNr OQO W0O O0
N N o O 0 n a
0OO0
r '
O
a M N N W W . b 1O V a m M O S O E n M N m aO Y O 10(1 N N p� Y
IN
[V
n M a N O
M
II
L
LL M
N a O O N M
N N OW (00 M^^ N (7 S O O n N 0 N a 0 0 d Y O N M Y' O S m O
N W
N p
0
o 0
`m
o,
g
•a O O M V N N
r r No CJ d f1i N O]
y t�Np? pp WNW1(1
N
((ma�yyyy
- n M W M O
N 6NO O � O Lq N � p O
y
JLp
Cm
" N N N �-
W N N O
$ J
g
pCO qq O OO O G C
n c
N N O O O O O O W O N M N MW t
hr W mmONNN NI�
t l
M M M
N
S
M
C
g
Md N
O
u
4
OnMpO OY y8p O N1�1 n OO Y
W Nn Oc
u o o cN6a a.53s
S
z_d o_or t_�
O'vOoW
q
O >_ O O
p O O O o p
m L
R
3� J J/ 7 O m V ,G
N
O
I-
('
298
M
N O O M d aj
tD O N 1` 1�
Ot0 No tNp tND W n O O
W d' O O S
E N N0 N d M
W d O d Y O N f0 Y N W N n N
n �j N nj d O O N
O
O O
p
d d
N
W n G f0 W W^ O N y N O moo
N N c
S
�
y N
U
N
p aO V N OO OO N r O M N N 0n('1 Mh N N NW NN OM O O Mn 0{cW � 0
0 MW NyyMN OO^ OO^ m n apNpnj bN Y O MN N YO OO OO NO. OO M
YO 00M aNr OQO W0O O0
N N o O 0 n a
0OO0
r '
O
a M N N W W . b 1O V a m M O S O E n M N m aO Y O 10(1 N N p� Y
IN
n M a N O
II
N 0 0 CN91f O
N a O O N M
N N OW (00 M^^ N (7 S O O n N 0 N a 0 0 d Y O N M Y' O S m O
c AS o
0
o 0
`m
o,
e u
co oco o c
4 a
ry c
29
y
JLp
Cm
C> p C 0
g U O 23
$ J
g
_N N N �lJ n o
No (7 V
M N O1 N O M t0
N aa Na
N N O O O O O O W O N M N MW t
hr W mmONNN NI�
t l
M M M
aON OO <WD OYq0WW N01 -n�' 0pN 0Y
OQW.WO (24�4 OpdMMvOONn
^
O O O O QQ
LL N W U
II
II
c AS o
o py o a
x f3 V E
e u
g- a •c
29
3Q o 9 Q I II
JLp
Cm
C> p C 0
g U O 23
$ J
q p a
mt
tea$
o y— B 9 n$
vat 'D°idsum n
MS
II II
o a v m
wu.2
oJL o m li q�
o'�LLcs
a
3A
S
E
a
cwwgic
obi C°.1n
C C
u o o cN6a a.53s
S
z_d o_or t_�
u� d yn
O y�
O >_ O O
Qi Q U
C W IL
R
3� J J/ 7 O m V ,G
••
IL
O
I-
298
Ll O 6C
ct: 2016-2850
ion: FB4 with drift load
Loaded Multi -Span Beam
International Building Code(2012 NDS)]
.75 IN x 11,875 IN x 12.0 FT
Microllam -iLevel Trus Joist
)n Adequate By: 1.4°%
olling Factor: Moment
Jack Miller
LEI Surveyors and Engineers
3302 North Main Street
Spanish Fork, Utah
r', r;u.ir1,
\ORYI t -r: l:S
StruCalc Version 9.0.2.5 10/18/2016 12:03:34 PM
ITIONS
'ninations are to be fully connected to provide uniform transfer of loads to all members
LECTIONS Center
Load 0.34 IN L1418
LOADING DIAGRAM
J Load 0.15 in
I Load 0.49 IN U291
Load Deflection Criteria: U360 Total Load Deflection Criteria: U240
T,C IONS 9 B
Load 7464 Ib 9051 Ib
`
I Load 3731 Ib 3462 Ib
x'
ILoad 11195 Ib 12513 Ib
,
Ing Length 2.13 in 2.38 in
- –
-- -
M DATA Center
— - _ - --
i Length 12 ft
aced Length -Top 0 ft
aced Length -Bottom 12 ft
A --
-
tzn --
-- =B
Load Duration Factor 1.00
h Depth 0.00
UNIFORM LOADS
Center
'ERIAL PROPERTIES
Uniform Live Load
300 plf
Microllam - iLevel Trus Joist
Uniform Dead Load
256 pit
Base Values Adjusted
Beam Self Weight
26 plf
ling Stress: Fb = 2600 psi Fb' = 2604 psi
Total Uniform Load
582 plf
Cd=1.00 CF=1.00
POINT LOADS CENTER
rr Stress: Fv = 285 psi Fv' = 285 psi
Cd=1.00
Aus of Elasticity: E = 1900 ksi E'= 1900 ksi
p. Ito Grain: Fc -1= 750 psi Fc --L'= 750 psi
.
6PAN
Load Number One
Live Load 788 Ib
Dead Load 461 Ib
Location 2.5 it
TRAPEZOIDAL LOADS
- CENTER SPAN
trolling Moment: 35210 ft -Ib
2 Ft from left support of span 2 (Center Span)
Load Number
Om
Two
ated by combining all dead loads and live loads on span(s) 2
Left Live Load
572 plf
0 plf
trolling Shear: -10259 Ib
Left Dead Load
279 plf
0 plf
r distance d from right support of span 2 (Center Span)
Right Live Load
572 plf
957 plf
ated by combining all dead loads and live loads on span(s) 2
Right Dead Load
279 plf
0 pif
Load Start
0 ft
1 ft
iparisons with required sections: Reo'd Provided
Load End
12 ft
12 ft
ion Modulus: 162.28 in3 164.52 in3
Load Length
12 ft
11 ft
(Shear): 53.99 int 83.13 In2
lent of Inertia (deflection): 840,5 in4 978.83 in4
ienC 35210 ft -Ib 35696 ft -Ib
ir: -10269 1In 15794 lb
Page 22 of 168
N
'. 00 00 M C NM
^ y N N O m m p] m m m M IN O t0 r 00f ' p M C O N O Q m O N O
W c h o 0 0 o a
F o d
me
LL m N N
li m
N N
s oO S M 02 N N O' OF, O m N V N A r r N N O O E n INSN n N op V
b 0Y O8 n n 0Y NN NN Oo m(7 ON 0Y
C d p cN� q OO O O O Q
N � m 2 n
61 t y fll 4U
LL m 41
d ON O O W r
o O O O mN N O 1V� O ON O NH NN OV OW t0 i0 OI ON E NW NO NyV OO m V pSONO O m
oNr ONm ON WON O NMN N^ y
dap c ? W m a o 0 0
d N N O O N- O M V O N 0 0 4
N � OO OO M Q N (6 N M p W O O O O N O N O O lV N
']V
M C W
G
d
O
d N N 88 O N O m W O N O M O W N N O O W I
N O MV N W N N^.IN^z N V O O N OO -yNNy8 N W Y O O h M N y
OO m V g O o O O O Q
m t GGCya ' N �
LL Q1 V! d
O d OOp q' 0 0 OO OO G
L
LL N y N
d N N O O N n O Mm O O O N N O O V V V N N O O
N O O m V N V b Vj uj W O I� h 1` 0oN O
O'r-- OI O O m M V C N O Vj N M N
p O 0 OO OO OO OO C
t
o m b a
v
Imi N y ' N C
ann lON
11 n
7. 1 I II ,0 ° .O
^I d
11 q'
C j�
q q d LL T
E ca" � v"'-'-agd�8ccg %-°I ��m "m wM 0E A ai`d_r
MI 4.. Cd ��i�0 0, Nvya . n&a 3EJl .L:yy 3 3¢p'�-a'R gd E e c
M R R d` U.S W OC LL IL J H H 3 3 3 3 'a g a 6 3 2 �J� ;�AMOb > O Nd O G
c
n n
$t.o
t
yp
N Y N
y e
M
g i o o
'3q
�dY,d�y
II
Q'q
C N �y R❑
O
OJ
R;
IL mR_ IL IYNN
W ILw
Ja � aF
:t: 2016.2850
ion: FB17
Loaded Multi -Span Beam
International Building Code(AISC 14th Ed ASD)]
50 W8x1 O x 8.0 FT
in Adequate By: 97.4%
oiling Factor: Moment
LECTIONS Centpr
Load 0.06 IN L/1551
I Load 0.05 in
I Load 0.11 IN L/838
Load Deflection Criteria: U360 Total Load Deflection Criteria: LJ240
CTIONS A B
Load 1500 Ib 1500 Ib
I Load 1290 Ib 1290 Ib
I Load 2790 Ib 2790 Ib
Ing Length 0.51 In 0.51 in
META Cents
i Length 8 ft
aced Length -Top 0 ft
aced Length -Bottom 8 ft
EL PROPERTIES
10 - A992-50
rerties:
Uniform Live Load 0
pit
Id Stress:
Fy =
50 ksi
lulus of Elasticity:
E =
29000 ksi
tth:
d =
7.89 in
b Thickness:
tw=
0.17 in
tge Width:
bf =
3.94 in
tge Thickness:
If =
0.21 in
Lance to Web Toe of Fillet:
k =
0.51 in
hent of Inertia About X -X Axis:
lx=
30.8 in4
;tion Modulus About X -X Axis:
Sx =
7.81 in3
stic Section Modulus About X -X Axis:
Zx =
8.87 in3
gn Properties per AISC 14th Edition Steel Manual:
ige Buckling Ratio:
FBR =
9.61
wable Flange Buckling Ratio:
AFBR =
9.15
b Buckling Ratio:
WBR =
40.47
wable Web Buckling Ratio:
AWBR =
90.55
strolling Unbraced Length:
Lb =
0 ft
iting Unbraced Length -
for lateral -torsional buckling:
Lp =
2.97 ft
ninal Flexural Strength w/ safety factor:
Mn =
21870 ft -Ib
Controlling Equation:
F3-1
b height to thickness ratio:
h/tw =
40.47
iting height to thickness ratio for eqn. G2-2: h/tw-limit =
53.95
Factor:
Cv =
1
Controlling Equation:
G2.2
ninal Shear Strength w/ safely factor:
Vn =
26826 Ib
:rolling Moment: 11080 ft -Ib
Ft from left support of span 2 (Center Span)
ated by combining all dead loads and live loads on span(s) 2
:rolling Shear: -2790 Ib
ight support of span 2 (Center Span)
ated by combining all dead loads and live loads on span(s
parisons with required sections: Recd Provided
ant of Inertia (deflection): 8.82 in4 30.8 in4
ant: 11080 ft -Ib 21870 ft -Ib
u: -2790 lb 26826 lb
pa
Jack Miller
LEI Surveyors and Engineers
3302 North Main Street or
Spanish Fork, Utah
1 U n Vt01: c:
9.0.2.5 10/18/2016 12:04:00 PM
UNIFORM LOADS Center
Uniform Live Load 0
pit
Uniform Dead Load 0
pit
Beam Self Weight 10
plf
Total Uniform Load 10
plf
POINT LOADS - CENTER
SPAN
Load Number One
Live Load 3000 Ib
Dead Load 2500 Ib
Location 4 ft
Page 24 of 168
m NO 00 00 M V N ^ Ypl a N M m] N p y M p 0 0 0 W N r m ('O ON ON m N U O N r O N` D O O
G 0 0 0 0
N O O CJ C N r nj m V W C r n N r O O O r nj N M S m O O N M O W W W N' O
d ] M r r r N N O O q' O OO O O a
yuy •�
N O y O N r o y
W W W W W m O O r r r O rn M O r1� r N r^ N o
� � 0 0 C Oi O S V) VI r]� � �- �- r- m W ^ OJ ^� N N N � O 00 N' Oy I6 0 0 0 0 C
d N No O N r O m NO N O O O W N N- S 0
f0 ONNN{N m O- O NM NMVO 7 Y O8OY O O W O OV
OOMVN b WN(r_0^-0m.
N 0 0O0
S ]] Qyy S ^ A OO O C O C
0
E N N o W m v, oy g W V o N y o O W r y
N O O V N d l7 N W W r r m O O O r W r O O V O W I`x440�j0 0 0 N 'mmy U UO^ N @ d
Om
CO T 0 0. O O OC
O
d N N O O N n O N N M O N O N N W O O O r r r m V O O W_ E N N O W N V O V M N y O N m y N W m M r y
NO 00 00 M 'v N Yj N m 0 W fV (� W tp m N N N N N O O^ 41 M r M 4 m OW W m N 0 O^ (e U N^ O m— 8 U
V m N N N V O
]] a a d' m a N N Cd 00 N yqy OO OO 0 0
N ' o M L
d �d1 N 8 O m f O m m W O N O N r N N O O O W W W Id gyy O O N" N M N m m N m m y O r O y O N O O O y
k f• $ S M V N N m W W p W O M V V V W n W - OWl m N N 0 0 N r N 0 0 0
II
I
I1
It C C
T N I1 II OY
d 9611 II C 641 I II '��- tJp� d �1 d
�.. 9 G y II X} V d C C Z Q C
m .`c R a a •c 11 11 0 a !l ._. o rn °J m g 'c c
0 1 18 a l o c o v° r' 3 c
n c -B -II n•-' o'er r10
m 11
pE p U y A 190 .L' N d11 11 11 N .,0. d d R dO J. O LL LL d O d d
dl 0 0 pCl 11 Y O jL
S O C G s v' R C x_ �_ C; O S L C Y h L C V I -b d C IIl C O
W R yy
M Stt 6 U E W 2 Y.rL3 F r 3 3 3 3a° R d Baa dre d 7009 G(Lm��Li ILN N W IL .�.� .°lama r
gage ec,A 6T
r O N G O CI O
p Q
N
g
d N No O N r O m NO N O O O W N N- S 0
f0 ONNN{N m O- O NM NMVO 7 Y O8OY O O W O OV
OOMVN b WN(r_0^-0m.
N 0 0O0
S ]] Qyy S ^ A OO O C O C
0
E N N o W m v, oy g W V o N y o O W r y
N O O V N d l7 N W W r r m O O O r W r O O V O W I`x440�j0 0 0 N 'mmy U UO^ N @ d
Om
CO T 0 0. O O OC
O
d N N O O N n O N N M O N O N N W O O O r r r m V O O W_ E N N O W N V O V M N y O N m y N W m M r y
NO 00 00 M 'v N Yj N m 0 W fV (� W tp m N N N N N O O^ 41 M r M 4 m OW W m N 0 O^ (e U N^ O m— 8 U
V m N N N V O
]] a a d' m a N N Cd 00 N yqy OO OO 0 0
N ' o M L
d �d1 N 8 O m f O m m W O N O N r N N O O O W W W Id gyy O O N" N M N m m N m m y O r O y O N O O O y
k f• $ S M V N N m W W p W O M V V V W n W - OWl m N N 0 0 N r N 0 0 0
II
I
I1
It C C
T N I1 II OY
d 9611 II C 641 I II '��- tJp� d �1 d
�.. 9 G y II X} V d C C Z Q C
m .`c R a a •c 11 11 0 a !l ._. o rn °J m g 'c c
0 1 18 a l o c o v° r' 3 c
n c -B -II n•-' o'er r10
m 11
pE p U y A 190 .L' N d11 11 11 N .,0. d d R dO J. O LL LL d O d d
dl 0 0 pCl 11 Y O jL
S O C G s v' R C x_ �_ C; O S L C Y h L C V I -b d C IIl C O
W R yy
M Stt 6 U E W 2 Y.rL3 F r 3 3 3 3a° R d Baa dre d 7009 G(Lm��Li ILN N W IL .�.� .°lama r
gage ec,A 6T
d N N O O N n O M N O N O O M V N n U1
O O d N N W W O e O E NN O N 0 O of W0 j[ O N O
M M W Ol M
N Q
n o a 00 [U N N N N O
N N N
N O 0 O N O O O
M m m N N
W yy pp
O O p
y N�D oo
E N N M CO p N O m
O Q
L`� 0
C lW'l N N N N N
O N
N^ N
m N
y
a
UY1
v
N
q O O 0' 0' 0
C
jy� IOOD
d
D
d N O O N n O M N O N O
O n n M N
O O yy M M^V O O O
N N 0 0
n
co 66cid G
Q oD 4
a
d N N O O Nn O M N N N M O p n 00.00 I� W O E N O O pO n <q N je O N m
NN W N n n
j O po po M O N en- N N W M W]] Onl 27 lnl y m 0 2 O' N m N Cj n N M O^ N N M O 0^ O V 0' O O O O
m Ly
'r w N c
o N W O p O N 0 0 p a W N N NN [ N[VV I� nI� tl0�N_IDD O O O^ N N N �° W tO O N °1 N Y OM W M O 0 N (np O Y
o o o C r ] N N N O ai tD a 0 N W W laD ° C 04
N O N O
O o o O 0' Q
N W Ip .^
gal
O
C o"o oM nop e� W o a
Woo ea Wv W oo o <� �oo' m MM Nom mrn�`N�Q ooM lu°�Do g 9o0
8 e Nd d o
o Q 0
c
0 lNNW M NN ]W M M W.fND OO oO oO C40 qp N M NNM CC'1 oM OOO M• NM y O0OW WW yu ON 0N6 0N0 OOO CW; �Opd [
i N y dd
a
II II
II II c Cc
`C-
II II C
Cc
oc
do n c � I II Y3
II dDc1pI� 9 IIA a k'ad n W 'v _d ,I_I —�'' it
D L
n u nn" o •€°t .d7 m q 2 II c a y4 LLJ6u 3 g>_v _m
yo
.4
E c o. n m'a ii=a£d $gcg $� m A data
.2 -
eea$$n 3�.5l,A 3 amt m y m Eaa a �cJl I d - ;x ;
d ooc' o�$ogd
Ott �� �!!o°v' �v �i� lar- � a`.o qo=4:°
al mmati5w¢G 1JfH;"3 3;o na�aaa98�s'°�i�@>mmvn tim¢= L Lyy wu JbbaJaf
m N O 0 M 4 N y 0 I� p m d N fV f0 t00 f0 tp0 tpD N p O N O O^ N M M M 0g M OOO O
i O p N 0 0 m� 0 Lq O N O �4 Y
^^ N
N O p q 0 0 0 0 C,
g
j o^ p on C N f0 OI C]
O
U� O O O Y O O M O N h p O
N V O O N b O^^^ O O M M Q YI O_ Q
n' O!
CN
] Q ^ O a
o O O
c
N N N
N' O M O o M O O N O N N
MO O O m o pp pp N M UI M N OI O O M O
Y O M
Y O O N M OI Y
�2
O
R O OO OO O C
G
y
g(O
N^
C
g
II II II
C Q
IO
II
co G
I
p
?_
&
iI
gC
.��.
C
'It
'`
II I
0
8c
og�JG=
c
>�0
9
m m
x
n W e m
y 8
C 6
n _ w v n II n E
9 6 C
a a A w[
eIt
J� FI1�
Al, I�
A2 wo
A
Gp¢�1�
Gad=W
II O O C.6 6 6
X_ �_
SIL L
y. O O 4- p U -� E y AN C
yqy G to = I�
0Om
`4i o
Is
Ci
S 1 3 3 3 3a° NLQQa�
V D Lm2� L yy
W h
sa�aF
9e�-JRIA
O O
N N O O W N R N N O O O E O O N d O O n O t� so
mm m 7
� f
m(LA
N
N CC
o o O N r dO N d 0 0 to N R W m j j O N N m 0 0 0 E tl N Cj m N N W N OG O N d 0 R 8- d N O
�yO1 O m V tV .L pOj 1p O O .6 c
pp p p p p p pp pp NN�� pp p m O
r� N 8 m p R d O N 0 Qm N nN', N N m t0 tG t0 N N O O O W N n N R y O O g N O Q O
0d q N OO O OO C
�D C C`S LU •L
m
� N N
m
O
(p' 0 0 0 E OJ N ON I` m o o d N o 00 N O Cl N O O
00 0 0 0 0 Q0
m 0 N g
W' f O N O O o o O
0
ee am q
y y
fh x
N o 0 7 a R
NQ N O N m m a Np N�pp S S g E m N n N N dOO Cd 0 O N N o O�� N d 0
O >�' Nei N f0 •-•-•- N N� n NNS CO OO OOO Q
C ' 0u m L
m 4I
m y N 4
p pD
y0fOSd WN N NmO Er M h N'y C O mI� Oy n WWm m
N O O 0 N N YcO0O
S
O O O f7 V R N O' O h N N N N m W N IWU N W CQ O O~ y) W f0 N N O c W V Q N O O O .0
" L f 0 0 0 0
F y
A c
C c A 0 C C
r0 0 Q t.. �' 0 0
m n x n �n di 00 P.jL0 U' 0 u
qj nN n ae'E Aa r, 0 n RFen g¢ c v c
o u`- g g o a n �yy E c u
�o o no%Ig G� E ip ea �?3 Fim y c 0 ooa_
^I o_ V a J F O 'E
O%q Ec O vcgO
00 oypcy .i9_ac¢ap— e
O O o yy�y
O7J m 7O m �¢—LN c�
aJ30oJ0UNdi
�oN•
omL 9 a �� $�
Page 28 of 168
O O O m P N p N W N N V N N N; Vi N N N n O O O E W M 0 M o p 0 W m W
•]] `�' N co q O O 0. 0• C
N E ' s m L gY$jl
f 41
g
suopelnoleo peyoepe ee9
O N M ] d Nd Nd NVOOOENNWMWpNd0t O^ O O NN N (O Ip N O
m yy m t .0
f m N N Cy
O
0 N 0 0 M V N rN- O N O N m 0 b ,Q O p Np N N O O O E n N i0(1 ry N N� p O O Cdj' D O W N y 0 0 n_ ppq OJ Y
�- W O O O O 0
g
N N
O' E qW 1W(ONh NM'NOI NOO dWt(0V W M q::
OO
W O(
O0O p
G
M y W N
Y L
L`01
NO N 00 00.- CN N O W O o
N W W 0
N' W N
S uj .Wy
0
ON
b
d A•- O• -i T
d
^h
01'T-0,:q
O1'0
oQ0
O 0' C a
M
Vl
d
O
NO
Nm
OO OO m O W O O . N
0 0 m
Q M
Myy g 00 'c
m
OY'O
NONN
O O
O c
O 6Y
c
E!
d a
m t
N y
O
O N O 0fV N
VVN11 m
V N dNN m
AN
N m N0• N MO8O
p0 h
O O (� m W YOI Og
O0
0^
n
mT
08
�O
d
C
�
g
O
p
S O t01 r d' N M 0 N O m y
OO yy yy aa pp pp
OOi N N N N N O y n M
p
N W W Oi O N
p p y
O 00 0 tc
p
O h O 0 O O p
O
OO O O 0'
m
2 W
Y
C
N
0JL
m
A
c
e
A
c
o o a
c
0 0
u n I n
i0
�&
^i
y n n of
1;Vn
n
m
3 In"�0
acr61 ny
g A� E
Ac
e y
o x� �c c
5. g.
2 1(, C
2
> O c `r v E$
L C
> O 0
i
E L
0
O O m 0
w N 9 Z^r R$ v 9W
A
CCo E p^
` m b •Y R O a IL 4L p
G£
'T�- IO
O 0 001 0
M
E c
01 01 @@ II 11 II p
a5Q ccc
ry C1 ,�, c c T
� n'a Mz =II `0
co:S
r�
c
° m g mo
c
W'oo m��
Q1
y ya' lY
ea g g�,aa999 eJll
�.5
I It
33 p n .y E _e
a i'4C o o m W
E.0
a R'C lei
g.
v."v
R3 3
g_ o
0 o c
m 1 G. Q
m 0 0 y c C
(.1 W 6 Y. IL J h F 3 3 3 3 p
k o O@
m L Q Q Q J 6' 7 J S 41 7 0 0 9 .O
IL 0 QN = IL IL N N
W IL -
S
Ja a J Q 10 -
Page 29 of 168
ct: 2016.2850
ion: TB16
Loaded Multi -Span Beam
International Building Code(2012 NDS)]
.75 IN x 11.875 IN x 12.0 FT
Microllam - iLevel Trus Joist
m Adequate By: 18.9%
olling Factor: Shear
®Jack Miller
LEI Surveyors and Engineers
3302 North Main Street
Spanish Fork, Utah
i'.6141 I'H:
zue:trnr•:
,i A`.`. F9 p.
9.0.2.5 10/18/2016 12:03:41 PM
(TIONS
ninations are to be fully connected to provide uniform transfer of loads to all members
LECTIONS Center
Load 0.19 IN U751
LOADING DIAGRAM
I Load 0.13 In
ILoad 0.32 IN L/454
Load Deflection Criteria: U360 Total Load Deflection Criteria: U240
CTIONS A s
Load 2969 Ib 10218 Ib
I Load 1906 Ib 7214 Ib
t
I Load 4875 Ib 17432 Ib
ing Length 1.24 in 4.43 in
-
M DATA Cent [
i Length 12 it
=_- ---
aced Length -Top 0 ft
-- - -
{►
12 ft ---
B
aced Length -Bottom 12 ft
Load Duration Factor 1.00
h Depth 0.00
UNIFORM LOADS
Center
ERIAL PROPERTIES
Uniform Live Load
440 plf
Microllam - iLevel Trus Joist
Uniform Dead Load
258 plf
Base Values
Adjusted
Beam Self Weight
19 plf
lIng Stress: Fb = 2600 psi
Fb' = 2604 psi
Total Uniform Load
717 plf
Cd=1.00 CF=1.00
LOADS
u Stress: Fv = 285 psi
Fv' = 285 psi
POINT -CENTER
Load Number One
SPAN
Two
Cd=1.00
Live Load 2690 Ib
5217 Ib
Jus of Elasticity: E = 1900 ksi
E'= 1900 ksi
Dead Load 1312 Ib
4478 Ib
p. Ito Grain: Fc --L= 750 psi
Fc -1'= 750 psi
Location 11.5 ft
11.5 ft
,rolling Moment: 16565 ft -Ib
I Ft from left support of span 2 (Center Span)
ated by combining all dead loads and live loads on span(s) 2
rolling Shear: -9966 Ib
distance d from right support of span 2 (Center Span)
ated by combining all dead loads and live loads on span(s) 2
parisons with required sections: Read Provided
on Modulus: 76.35 in3 123.39 in3
(Shear): 52.45 in2 62.34 int
ant of Inertia (deflection): 387.31 in4 732.62 in4
ant: 16565 111 26772 ft -Ib
r. -9966 lb 11845 lb
Page 30 of 168
Project: 2016-2850
Location: TB17
Multi -Loaded Multi -Span Beam
[2015 International Building Code(2012 NDS)]
( 2 ) 1.75 IN x 11.1175 IN x 8.0 FT
1.9E Microllam - !Level Trus Joist
Section Adequate By: 8.7%
Controlling Factor: Moment
`;vu:trau>
f'I 0.%':£n5
CAUTIONS
Laminations are to be fully connected to provide uniform transfer of loads to all members
DEFLECTIONS Center
Recd
Live Load 0.10 IN
U922
75.66 in3
Dead Load 0.07 in
Area (Shear):
32.19 int
Total Load 0.18 1141-1545
Moment of Inertia (deflection):
215.26 in4
Live Load Deflection Criteria: 1./360 Total Load Deflection Criteria: L/240
REACTIONS A
@
17848 ft -Ib
Live Load 4480 Ib
2403 Ib
7897 lb
Dead Load 3345 Ib
1647 Ib
Total Load 7825 Ib
4050 Ib
Bearing Length 2.98 in
1.54 in
BEAM DATA
Center
Span Length
8 It
Unbraced Length -Top
0 ft
Unbraced Length -Bottom
8 it
Live Load Duration Factor
1.00
Notch Depth
0.00
MATERIAL PROPERTIES
1.9E Microllam - iLevel Trus Joist
Base Values
Adjusted
Bending Stress:
Fb = 2600 psi
Fb' = 2604 psi
Cd=1.00 CF=1.00
Shear Stress:
Fv = 285 psi
Fv' = 285 psi
Cd --1.00
Modulus of Elasticity:
E = 1900 ksi
E'= 1900 ksi
Comp.-Lto Grain:
Fc -1= 750 psi
Fc -1'= 750 psi
Controlling Moment: 16416 ft -Ib
3.52 Ft from left support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2
Controlling Shear: 61161b
At a distance d from left support of span 2 (Center Span)
Created by combining all dead loads and live loads on spans) 2
Comparisons with required sections:
Recd
Provided
Section Modulus:
75.66 in3
82.26 in3
Area (Shear):
32.19 int
41.56 in2
Moment of Inertia (deflection):
215.26 in4
488.41 in4
Moment:
16416 ft -Ib
17848 ft -Ib
Shear:
6116 lb
7897 lb
Jack Miller
LEI Surveyors and Engineers
3302 North Main Street
Spanish Fork, Utah
10/18/2016
Uniform Live Load
100
pit
Uniform Dead Load
59
pit
II
Beam Self Weight
13
plf
Total Uniform Load
172
olf
Load Number Qg@
Live Load 3073 Ib
Dead Load 1798 Ib
Location 3.5 ft
TRAPEZOIDAL LOADS
Load Number
- CENTER SPAN
Ono
Left Live Load
860 pif
Left Dead Load
748 plf
Right Live Load
860 plf
Right Dead Load
748 pit
Load Start
0 it
Load End
3.5 ft
Load Length
3.5 it
Page 31 of 168
cl: 2016-2850
ion: TB18
Center
Loaded Multi -Span Beam
Fy =
International Building Code(AISC 14th Ed ASD)]
-50 W1 Ox88 x 22.0 FT
ath:
In Adequate By: 21.3%
b Thickness:
oiling Factor: Deflection
ige Width:
LECTIONS Camer
ige Thickness:
Load 0.53 IN U495
ante to Web Toe of Fillet:
J Load 0.37 in
nent of Inertia About X -X Axis:
I Load 0.91 IN L/291
tion Modulus About X -X Axis:
Load Deflection Criteria: LI360
Total Load Deflection Criteria: U240
CTIONS A @
gn Properties per AISC 14th Edition Steel Manual:
Load 9905 Ib 13171
Ib
I Load 7382 Ib 9293
Ib
ILoad 17287 Ib 22464
Ib
ing Length 1.49 in 1.49
in
M DATA Center
Lb =
I Length 22 It
aced Length -Top 0 ft
Lp =
aced Length -Bottom 22 ft
Mn =
x88 - A992.50
erties:
Center
Id Stress:
Fy =
lulus of Elasticity:
E _
ath:
d =
b Thickness:
tw =
ige Width:
of
ige Thickness:
if =
ante to Web Toe of Fillet:
k =
nent of Inertia About X -X Axis:
Ix =
tion Modulus About X -X Axis:
SX =
:tic Section Modulus About X -X Axis:
Zx =
gn Properties per AISC 14th Edition Steel Manual:
age Buckling Ratio:
FBR =
wable Flange Buckling Ratio:
AFBR =
i Buckling Ratio:
WBR =
wable Web Buckling Ratio:
AWBR =
trolling Unbraced Length:
Lb =
icing Unbraced Length -
for lateral -torsional buckling:
Lp =
sinal Flexural Strength w/ safely factor:
Mn =
Controlling Equation:
F2-1
height to thickness ratio:
h/tw =
ting height to thickness ratio for eqn. G2-2:
h/tw-limit =
:actor:
Cv =
Controlling Equation:
G2-2
sinal Shear Strength w/ safety factor:
Vn =
50 ksi
29000 ksi
10.8 in
0.61in
10.3 in
0.99 in
1.49 in
534 (n4
98.5 in3
113 in3
5.2
9.15
12.93
90.55
Oft
9.29 ft
281936 ft -Ib
12.93
53.95
1
130680 Ib
rolling Moment: 180982 ft -Ib
Ft from left support of span 2 (Center Span)
ated by combining all dead loads and live loads on span(s) 2
rolling Shear: -22464 Ib
ght support of span 2 (Center Span)
iced by combining all dead loads and live loads on span(s
)arisons with required sections: Reed Provided
ant of Inertia (deflection): 440.05 in4 534 in4
ant: 180982 ft -Ib 281936 ft -Ib
-22464 lb 130680 lb
page
Jack Miller
LEI Surveyors and Engineers
3302 North Main Street e�
Spanish Fork. Utah
r i'NI
^.oevnrar.>
9.0.2.5 10/18/2016 12:03:45 PM
A — —stn
B
UNIFORM LOADS
Center
Uniform Live Load
40 pit
Uniform Dead Load
24 pit
Beam Self Weight
88 pit
Total Uniform Load
152 plf
POINT LOADS -CENTER
SPAN
Load Number One
Two
Live Load 10218 Ib
11978 Ib
Dead Load 7214 Ib
7007 Ib
Location 11 fl
14 It
Page 32 of 168
Project: 2016-2850
Location: TB19
Multi -Loaded Multi -Span Beam
12015 International Building Code(AISC 14th Ed ASD)]
A992-50 W1 Ox77 x 22.0 FT
Section Adequate By: 21.8%
Controlling Factor: Deflection
DEFLECTIONS Center
Live Load 0.53 IN L/498
Dead Load 0.37 in
Total Load 0.90 IN U292
Live Load Deflection Criteria: L1360 Total Load Deflection Criteria: U240
REACTIONS A @
Live Load 7541 Ib 13346 Ib
Dead Load 5652 Ib 10427 Ib
Total Load 13193 Ib 23773 Ib
Bearing Length 1.37 in 1.37 in
BEAM DATA Center
Span Length 22 it
Unbraced Length -Top 0 N
Unbraced Length -Bottom 22 ft
31��1•]RR[i �•iriliif
Properties:
Redd
Provide
Yield Stress:
Fy =
50 ksi
Modulus of Elasticity:
E =
29000 ksi
Depth:
d =
10.6 in
Web Thickness:
tw=
0.53 in
Flange Width:
bf=
10.2 in
Flange Thickness:
If =
0.87 in
Distance to Web Toe of Fillet:
k =
1.37 in
Moment of Inertia About X -X Axis:
lx=
455 in4
Section Modulus About X -X Axis:
Sx =
85.9 in3
Plastic Section Modulus About X -X Axis:
Zx =
97.6 in3
Design Properties per AISC 14th Edition Steel Manual:
Flange Buckling Ratio:
FBR =
5.86
Allowable Flange Buckling Ratio:
AFBR =
9.15
Web Buckling Ratio:
WBR =
14.83
Allowable Web Buckling Ratio:
AWBR =
90.55
Controlling Unbraced Length:
Lb =
0 ft
Limiting Unbraced Length -
for lateral -torsional buckling:
Lip =
9.18 ft
Nominal Flexural Strength w/ safety factor:
Mn =
243513 ft -Ib
Controlling Equation:
F2-1
Web height to thickness ratio:
h/tw =
14.83
Limiting height to thickness ratio for eqn. G2.2: h/tw-limit =
53.95
Cv Factor:
Cv=
1
Controlling Equation:
G2-2
Nominal Shear Strength w/ safety factor:
Vn =
112360 Ib
Controlling Moment: 169421 ft -Ib
14.08 Ft from left support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2
Controlling Shear: -23773 lb
At right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s
Comparisons with required sections:
Redd
Provide
Moment of Inertia (deflection):
373.65 in4
455 In4
Moment:
169421 ft -Ib
243513 ft -Ib
Shear:
-23773 lb
112360 lb
Jack Miller
LEI Surveyors and Engineers
3302 North Main Street r/Of
Spanish Fork, Utah
!•:au:rra�.
Version 9.0.2.5
1011812016 1 2:03:48 PM
22 n
Uniform Live Load
40
plf
Uniform Dead Load
23
plf
Beam Self Weight
77
pH
Total Uniform Load
14D
elf
Load Number One Two Three
Live Load 9455 Ib 3789 Ib 5803 Ib
Dead Load 5531 Ib 2216 Ib 3395 Ib
Load Number One
Left Live Load 120 plf
Left Dead Load 341 plf
Right Live Load 120 plf
Right Dead Load 341 plf
Load Start 14 It
Load End 22 ft
Load Length 8 ft
Page 33 of 168
3:2016.2850
on: TB20
.oaded Multi -Span Beam
International Building Code(AISC 14th Ed ASD)]
50 W10x100 x 26.0 FT
n Adequate By: 18.2%
Ming Factor: Deflection
LECTIONS Cents
Load 0.66 IN 1./474
I Load 0.44 in
Load 1.10 IN L/284
Load Deflection Criteria: U360 Total Load Deflection Criteria: U240
OTIONS a 0.
Load 7911 Ib 13381 Ib
I Load 5928 Ib 9128 Ib
Load 13839 Ib 22509 Ib
ing Length 1.62 in 1.62 In
M DATA Center
i Length 26 ft
aced Length -Top 0 ft
aced Length -Bottom 26 ft
°L PROPERTIES
000 - A992-50
erties:
Recd
Provided
d Stress:
Fy =
50 ksi
lulus of Elasticity:
E =
29000 ksi
dh:
d =
11.1 in
)Thickness:
tw=
0.68 in
rge Width:
bf =
10.3 in
rge Thickness:
If =
1.12 in
ante to Web Toe of Fillet:
k =
1.62 in
nent of Inertia About X -X Axis:
Ix =
623 in4
tion Modulus About X -X Axis:
SX =
112 in3
stic Section Modulus About X -X Axis:
Zx =
130 in3
gn Properties per AISC 14th Edition Steel Manual:
rge Buckling Ratio:
FBR =
4.6
wable Flange Buckling Ratio:
AFBR =
9.15
i Buckling Ratio:
WBR =
11.56
wable Web Buckling Ratio:
AWBR =
90.55
trolling Unbraced Length:
Lb =
0 ft
sting Unbraced Length -
for lateral -torsional buckling:
Lp =
9.36 ft
ninal Flexural Strength w/ safety factor:
Mn =
324351 ft -Ib
Controlling Equation:
F2-1
height to thickness ratio:
h/tw =
11.56
Ring height to thickness ratio for eqn. G2-2: h/tw-limit =
53.95
:actor:
Cv=
i
Controlling Equation:
G2-2
sinal Shear Strength w/ safety factor:
Vn =
150960 Ib
rolling Moment: 194103 ft -Ib
i Ft from left support of span 2 (Center Span)
ated by combining all dead loads and live loads on span(s) 2
rolling Shear: -22509 Ib
ght support of span 2 (Center Span)
ated by combining all dead loads and live loads on span(s
parisons with required sections:
Recd
Provided
ant of Inertia (deflection):
527.25 in4
623 in4
ant:
194103 ft -Ib
324351 ft -Ib
r:
-22509 lb
150960 lb
page
Jack Miller
LEI Surveyors and Engineers
3302 North Main Street of
Spanish Fork, Utah
`.ue:•tr`.ns
Version 9.0.2.5
10/18/2016 12:03:50 PM
Uniform Live Load
40
plf
Uniform Dead Load
23
plf
Beam Self Weight
100
plf
Total Uniform Load
163
olf
Load Number One Two
Live Load 12063 Ib 8189 Ib
Dead Load 7057 Ib 4791 Ib
Location 15.5 ft 18 ft
Page 34 of 168
Project: 2016-2850 page j
Jack Miller
Location: TB21 LEI Surveyors and Engineers
Multi -Loaded Multi -Span Beam 3302 North Main Street m I
[2015 International Building Code(AISC 14th Ed ASD)] Spanish Fork, Utah
A992-50 W1 0x15 x 7.5 FT(5+2.5) r 61affn
Section Adequate By: 57.8%
Controlling Factor: Moment
DEFLECTIONS Center B=
Ix =
68.9 in4
LOADING DIAGRAM
Sx=
13.8 In3
Plastic Section Modulus About X -X Axis:
Zx =
Live Load -0.02 IN U3691 0.06 IN 21-1942
Design Properties per AISC 14th Edition Steel Manual:
StruCalc Version 9.0.2.5
FBR =
7.41
10/18/2016 12:04:14 PM
Dead Load -0.01 in 0.05 in
9.15
Web Buckling Ratio:
WBR =
38.52
Allowable Web Buckling Ratio:
AWBR =
Total Load -0.03 IN L12042 0.11 IN 21-1522
Controlling Unbraced Length:
Lb =
5 it
Limiting Unbraced Length -
Live Load Deflection Criteria: 1./360 Total Load Deflection Criteria: U240
for lateral -torsional buckling:
Lp =
2.86 ft
for Eqn. F2-2:
REACTIONS A B
8.61 It
Nominal Flexural Strength w/ safety factor:
Mn =
34034 ft -Ib
Controlling Equation:
F2-2
Live Load -2284 Ib 7539 Ib
Web height to thickness ratio:
h/tw =
38.52
Limiting height to thickness ratio for eqn. G2-2: h/tw-limit =
53.95
Cv Factor:
Dead Load -1834 Ib 6404 Ib
1
Controlling Equation:
G2-2
Nominal Shear Strength w/ safety factor:
'
Total Load -4118 Ib 13943 Ib
Uplift (1.5 Ib 0 Ib
0.00 in
Bearing Length 0.00 In 0.57 in
Length
BEAM DATA Center Richt
-_
-
Span Length 5 It 2.5 ft
A- -
sit
B 2.5ft --
Unbraced Length -Top 0 6 0 ft
Unbraced Length -Bottom 5 ft 2.5 ft
STEEL PROPERTIES
UNIFORM LOADS Center
Right
W10x15-A992-50
Uniform Live Load 40
pif
230
plf
Uniform Dead Load 24
pif
398
plf
Properties:
Beam Self Weight 15
pif
15
plf
Yield Stress:
Fy =
50 ksi
Total Uniform Load 79
plf
643
plf
Modulus of Elasticity:
E=
29000 ksl
POINT LOADS,
Depth:
=
10 in
RIGHT
Load Number One
SPAN
Thickness:
t w =
0.23 in
Live Load 4480b
Flange Width:
tff =
4 in
Dead Load 33451b
Flange Thickness:
=
0.27 In
Location 2.5 ft
Distance to Web Toe of Fillet:
k
k =
0.67 in
Moment of Inertia About X -X Axis:
Ix =
68.9 in4
Section Modulus About X -X Axis:
Sx=
13.8 In3
Plastic Section Modulus About X -X Axis:
Zx =
16 in3
Design Properties per AISC 14th Edition Steel Manual:
Flange Buckling Ratio:
FBR =
7.41
Allowable Flange Buckling Ratio:
AFBR =
9.15
Web Buckling Ratio:
WBR =
38.52
Allowable Web Buckling Ratio:
AWBR =
90.55
Controlling Unbraced Length:
Lb =
5 it
Limiting Unbraced Length -
for lateral -torsional buckling:
Lp =
2.86 ft
for Eqn. F2-2:
Lr=
8.61 It
Nominal Flexural Strength w/ safety factor:
Mn =
34034 ft -Ib
Controlling Equation:
F2-2
Web height to thickness ratio:
h/tw =
38.52
Limiting height to thickness ratio for eqn. G2-2: h/tw-limit =
53.95
Cv Factor:
Cv =
1
Controlling Equation:
G2-2
Nominal Shear Strength w/ safety factor:
Vn =
46000 Ib
Controlling Moment: -21572 ft -Ib
Over right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2, 3
Controlling Shear: 9433 Ib
At left support of span 3 (Right Span)
Created by combining all dead loads and live loads on span(s
Comparisons with required sections:
BOA Provided
Moment of Inertia (deflection):
31.64 in4 68.9 in4
Moment:
-21572 ft -Ib 34034 ft -Ib
Shear:
9433 lb 46000 lb
Page 35 of 168
t: 2016-2850
)n: TB22
.oaded Multi -Span Beam
International Building Code(AISC 14th Ed ASD))
50 W1 Oxi 7 x 7.5 FT (5 + 2.5)
n Adequate By: 2.2%
I ing Factor: Moment
.ECTIONS . CenterRicht
-oad -0.03 IN L/2345 0.10 IN 2U590
Load -0.02 in 0.07 in
Load -0.04 IN U1385 0.18 IN 2U342
-oad Deflection Criteria: L1360 Total Load Deflection Criteria: U240
:TIONS A B
-oad -4143 Ib 14229 Ib
Load -2460 Ib 11672 Ib
Load -6603 Ib 25901 Ib
t(1.5 F.S) -6603 Ib 0 Ib
ng Length 0.00 in 0.63 in
d DATA Canter BIgm
Length 5 ft 2,5 It
iced Length -Top 0 ft 0 It
iced Length -Bottom 5 ft 2.5 ft
I. PROPERTIES
:17 - A992-50
irtles:
Rgrd
I Stress:
Fy =
ulus of Elasticity:
E _
Ih:
d =
i Thickness:
tw =
ge Width:
bf=
ge Thickness:
if =
ince to Web Toe of Fillet:
k =
rent of Inertia About X.X Axis:
Ix=
ion Modulus About X -X Axis:
Sx =
tic Section Modulus About X -X Axis:
Zx =
In Properties per AISC 14th Edition Steel Manual:
ge Buckling Ratio:
FBR =
vable Flange Buckling Ratio:
AFBR =
Buckling Ratio:
WBR =
vable Web Buckling Ratio:
AWBR =
.rolling Unbraced Length:
Lb =
:Ing Unbraced Length -
for lateral -torsional buckling:
Lip =
for Eqn. F2-2:
Lr =
trial Flexural Strength wl safety factor:
Mn =
Controlling Equation:
F2-2
height to thickness ratio:
h/tw, =
Ing height to thickness ratio for eqn, G2-2: h/tw-limit =
actor:
Cv =
Controlling Equation:
G2-2
inal Shear Strength w/ safety factor:
Vn =
50 ksi
29000 ksi
10.1 in
0.24 in
4.01 in
0.33 in
0.63 in
81.9 in4
16.2 Ina
18.7 in3
6.08
9.15
36.83
90.55
5 i
2.98 it
9.15 ft
40658 ft -Ib
36.83
53.95
1
48480 Ib
oiling Moment: 39785 ft -Ib
right support of span 2 (Center Span)
ted by combining all dead loads and live loads on span(s) 2, 3
oiling Shear: 16591 Ib
It support of span 3 (Right Span)
ted by combining all dead loads and live loads on span(s
,arlsons with required sections:
Rgrd
Provided
nt of Inertia (deflection):
57.37 in4
81.9 in4
nt:
-39785 fl -Ib
40658 ft -Ib
Beam Self Weight 17
16591 Ib
48480 Ib
®Jack Miller
LEI Surveyors and Engineers
3302 North Main Street
Spanish Fork, Utah
i
Version 9.0.2.5 10/18/2016 12:04:19 PM
UNIFORM LOADS
W
R1811t
Tat
w
plf 40
pif
Uniform Dead Load 24
pif 23
pif
Beam Self Weight 17
pif 17
pif
Total Uniform Load 81
plf 80
plf
POINT LOADS - RIGHT
Load Number g0e
SPAN
Two
Live Load 2403 Ib
6483 Ib
UNIFORM LOADS
Center
R1811t
Uniform Live Load 40
plf 40
pif
Uniform Dead Load 24
pif 23
pif
Beam Self Weight 17
pif 17
pif
Total Uniform Load 81
plf 80
plf
POINT LOADS - RIGHT
Load Number g0e
SPAN
Two
Live Load 2403 Ib
6483 Ib
Dead Load 1647 Ib
4704 Ib
Location 2.5 it
2.5 it
TRAPEZOIDAL LOADS - CENTER SPAN
Load Number One
Left Live Load 120 plf
Left Dead Load 341 plf
Right Live Load 120 plf
Right Dead Load 341 pif
Load Start 0 ft
Load End 5 It
Load Length 5 ft
RIGHT SPAN
Load Number One
Left Live Load 120 pif
Left Dead Load 341 pif
Right Live Load 120 pif
Right Dead Load 341 plf
Load Start 0 ft
Load End 2.5 It
Load Length 2.5 It
Page 36 of 168
N N 0p O N' 0 NN 0 0 0 O 0 N N N
O 0 00 y n N �j m N V C V
O O f Npfppp pm0mpJJ tC y -0 O E N N O a �- O a O N Y
a 0 0 0 Ol F N Oc "t O r ap Y
Na N°+i N m N O
n �
c
V O P
y y m N N r
8
O
ry O O O O O
a
4 m II
k II
m
i a
mm
y H
ISO L�
B
yy
II
v v
'
E t
y E
80
TiLL e S
3 i
I�
`o N01
O O O O c
c d C p o e c
nc c II{F
1
n
CU G
y0
N
p
�O
d
yy��N-
' f
a� E
81 m
NNN
DO
C;—B.
� P 8 N N
E
0 0 0 O C
Y •N-' 0 0 (O O N D D O 10 W pal N N N Oy O N h N O' O E CN
N y !7 0 m N N y N O 8 N O N N °r' N O
(9 iJ [tNV lV N O O q O O O OO to m N y y d
m g
ON a 00 N n g N m O N 0 bJ N OOI a s N N N a 1!j O O O y 0 a C S 8 N fbJ 0 N O. N O N- O
NNNN N OR m O O O O 0
F. fA f71
n pp
N 0ttpp RR p p Nyy p O
O S S m a N W N N O O J O1 m w N a T 0 O y N O p O m a O N ry O N � O
00m DDD N Q O O O O O s
0 c L E
y 88 op m p� app (q(qVV pp�� y' N �O m
lN'm�ONy yN'N N mOg E m�
-a
0tln C'l �^'V VQGI o�O� NQgY N tOCOONC OE
suopelnoleo pope a aeg
Page 37 of 168
n �
c
n
m II
4 m II
k II
y H
ISO L�
B
p
II
v v
'
E t
y E
mAca
TiLL e S
3 i
I�
`o N01
i oo` `o Vd
c d C p o e c
nc c II{F
1
n
CU G
.xi v y o xy y y A C
i J �L y i G M 9 a IL
O
m Q= IL fl.
p
Page 37 of 168
2016.2850
ion: TB25
Loaded Multi -Span Beam
International Building Code(2012 NDS)]
1.75 IN x 11.875 IN x 8.0 FT
Microllam - iLevel Trus Joist
in Adequate By: 0.3%
cling Factor: Shear
�I RyL,,.:u>
Jack Miller
LEI Surveyors and Engineers
3302 North Main Street
Spanish Fork. Utah
9.0.2.5 10/18/2016 12:04:11 PM
ITIONS
ninations are to be fully connected to provide uniform transfer of loads to all members
LECTIONS Center
LOADING DIAGRAM
Load 0.12 IN L/824
I Load 0.09 in
I Load 0.21 IN U457
Load Deflection Criteria: L/360 Total Load Deflection Criteria: U240
CTIONS A B
2
Load 6483 Ib 6483 Ib
J Load 4704 Ib 4704 Ib
I Load 11187 Ib 11187 Ib
ing Length 4.26 in 4.26 in
M DATA Center
r Length 8 ft
-A----
aced Length -Top 0 ft
-- eir— ---- --- B -
aced Length -Bottom 8 it
Load Duration Factor 1.00
h Depth 0.00
UNIFORM LOADS
Center
ERIAL PROPERTIES
Uniform Live Load
100 pif
Microllam - !Level Trus Joist
Uniform Dead Load
59 pif
Base values Adiusted
Beam Self Weight
13 pif
ling Stress: Fb = 2600 psi Fb' = 2604 psi
Total Uniform Load
172 pif
Cd=1.00 CF=1.00
POINT LOADS .CENTER SPAN
Load Number le. Two
v Stress: Fv = 285 psi Fv' = 285 psi
Cd=1.00
11us of Elasticity: E = 1900 ksi E'= 1900 ksi
Live Load 3073
Ib 3073 Ib
D. Ito Grain: Fc-1= 750 psi Fc -1'= 750 psi
Dead Load 17
Ib 176
lb
Location 0..55
ft 7.. 5 ft
ft
TRAPEZOIDAL LOADS
-CENTER SPAN
rolling Moment: 16474 ft -Ib
Ft from left support of span 2 (Center Span)
Load Number
Qgg
ated by combining all dead loads and live loads on span(s) 2
Left Live Load
860 pif
rolling Shear: 7872 Ib
Left Dead Load
748 pif
distance d from left support of span 2 (Center Span)
Right Live Load
860 plf
ated by combining all dead loads and live loads on span(s) 2
Right Dead Load
748 plf
Load Start
0.5 It
parisons with required sections: Reed Provided
Load End
7.5 ft
on Modulus: 75.93 in3 82.26 in3
Load Length
7 ft
(aneaq: gl.44 Inz 41.ati Inz
ent of Inertia (deflection): 256.23 in4 488.41 in4
ant: 16474 ft -Ib 17848 ft -Ib
r: 78721b 7897 lb
Page 38 of 168
§
: 2; \®r!!2!!§§`=�2°!;iRm §®r0w2q/R®
` ` |``
{ of {
/it || |;
o 14 A., $%§;¥ +
` !,#,!) J� |!)f|
k
!
« a § 7■|I/,.#|aES(tLmLeL!J w £2!.),�!
Page 39»68
t: 2016-2850
on: TB34
.oaded Multi -Span Beam
International Building Code(2012 NDS)]
IN x 22.51N x 9.0 FT
4 - Visually Graded Western Species - Dry Use
n Adequate By: 19.0%
filing Factor: Shear
-ECTIONS Center
Load 0.03 IN U3771
Load 0.02 in
Load 0.05 IN U2154
Load Deflection Criteria: U360 Total Load Deflection Criteria: U240
:TIONS A 8
-oad 4229 Ib 10930 Ib
Load 3760 Ib 7680 Ib
Load 7989 Ib 18610 Ib _
ng Length 2.40 in 5.59 in
Length
9 fl
aced Length -Top
0 ft
aced Length -Bottom
9 ft
-oad Duration Factor
1.00
)er Adj. Factor
i
rer Required
0.02
-RIAL PROPERTIES
Uniform Live Load 344
M - Visually Graded Western Species
Uniform Dead Load 462
Base Values
ing Stress:
Fb = 2400
Total Uniform Load 831
Fb_cmpr= 1850
Cd=1.00
r Stress:
Fv = 265
Ih
=Load
Cd=1.00
lus of Elasticity:
E = 1800
t.1 to Grain:
Fc -1= 650
Adiusted
psi Controlled by:
psi Fb' = 2400 pal
psi Fv' = 265 psi
ksi E'= 1800 ksi
psi Fc --L= 650 psi
rolling Moment: 35405 fl -Ib
Ft from left support of span 2 (Center Span)
ited by combining all dead loads and live loads on span(s) 2
rolling Shear: -17115 lb
distance d from right support of span 2 (Center Span)
ited by combining all dead loads and live loads on span(s) 2
)arisons with required sections: Reo'd PrQvided-
rn Modulus: 177.03 in3 432.42 in3
(Shear): 96.88 in2 115.31 int
ant of Inertia (deflection): 542.13 in4 4864.75 in4
wt: 35405 ft -Ib 86484 ft -Ib
-17115 Ib 20372 lb
®Jack Miller
LEI Surveyors and Engineers
3302 North Main Street
Spanish Fork, Utah
r', i.; f. I'r H S
I ; r.•. •.<i.1
10/18/2016 12:04:07 PM
9 ft -
-
UNIFORM LOADS Center
Uniform Live Load 344
pit
Uniform Dead Load 462
pit
Beam Self Weight 25
pit
Total Uniform Load 831
pit
ne
Ih
=Load
7 Ib
7 ft
Page 40 of 168
o�g"�e�$iv'mnaNaam NON���i$�ma��.:`ma$<�1O w`r'��°�RioOg'°oN$0
w o 0 0 6 c
N t N
N _
g
a o�cg$ � $Nm ocQi op$Nm ��rom $oo�JJi pm ym�v'��o o r�y� `* �'d mrn vc�0$m �i YO uoi,o�$o0
m C fV O O ry^ 0 0 0 0
q CR E °'°'n "S� 3Iq
NNN �O$N°j Om�Nr?O
rn O Om � 0 0 0 0 0
°
1aN U N
p
MOOv ,
Z..iz
0V
? <M
SW OO OO NO
O^O
OOONr�^O
V VOj ^O
OO 0 000
.w!
N
O y
' E )NR
O NOOo
9 N O�O
N
NNN0O
0
m
y
N u
g
O^ O OO m O
o
mm
m 0
0 00EmN`p
jN
m 0
C 0NO
gV NO0Nqp
N N N
t0
O
t
O p
^ y T
N N
� �
g
�2^ 0. O m YO N O O O 0
N
pp pp N m 0
p o pp pp
D O O M j m T W T b CI O O Y yNj' N V 001 a N n C OW m�IO�
Q N O O p O O
^ O OOO R O O O O p
C b GY
°
II J.
A C c k G C
O
w m
O NC C N �1 y. ,x' .� v C ^I OI Y II .�.
II w G V n a L II V v Cl E C j ° O tC_..
i0 c Ga a n A B° ? xg S c
p 3 w o li IL a o sy c `o a
C v¢� m w C q
n n °e °_ a n @$ a 9 € H 3 o S
w O q O
In m«'caam u,Ilc9 Ll` c m� -u cn end
EI�a ti a_o ��3 as
'gam n �o # Q¢a oz,LL €.a E n A n c?r Y A- o wow°
y o Nn o cavo -da
It Rx �Cw,� wee I'c 'I `a"ia' iYo o'S
00 ¢°a a`ti 5w¢E¢ °SHF 3 3 3 i a° wad'¢ a�'¢a 3gin>°°'oi anti ui ¢= li 4N N w4.z �3 3f
Page 41 of 168
suopelnolea payoelle ea$
O S P S O N 10 O N O N t7 W W
0 n n n pf Cl 0 0~ °i W N W O A S m V N 0 o C V 0 S N O N O
0 S q O O OO O
d
N
^f
i& A
N �
N
�y
N
y EW
100 O
.0 S0 WN m ON
0
NN N
0. N
O C
N N
N
ail
a
GO
d N' 00 00 1(f h 00 N O O N O S 10 m N N
m �p p�
Oy V tii (I `0 tr0 N O OWi O O V� p
p o �p�p00�� tm�
pp yy
N d W0• T W 1° 0 00 W t0 N N O til
eg m ddod c
y�
y
g
d N N O n [�. 00
N "OOrV tV N O)
O O 1Ip�
a N O� A
N WOoNrOyN'V NNO
6^OOi1
g
n k
4
C
o o Q
k C C
c a
g; o
v IR
n R k^<o.
a T.
}
Fn ,IL J� �
E
m II
R ci U E
B a "� .l �-"
c c'
J xo' c
9aa II
O F 6
30 eo °$m
O J I"' - m
5� M oo00y
9A J~°
II y
1U t Fy y N a y
HC Oi .'0_' N i N .z d i II II II L1 O
C D. II 9 _ Q Q C 'r^ J
tk 8 LL yry
'e G n L k 0 a q d p IT
d W L P. a_ ._
I.IEg
O
R O
O�
c d
1Un g
pQc g ria
.•�.. LL
•mCc°
'o
aL°xWm
Qi 2 Rg
Q SL
J Gdpco .
Tn1. PD�
J _oN
Q f
Page 42 of 168
Project: 2016-2850
Location: SB13
Multi -Loaded Multi -Span Beam
[2015 International Building Code(2012 NDS)]
( 3) 1.75 1N x 111.875 1N x 12,0 FT
1.9E Microllam - [Level Trus Joist
Section Adequate By: 33.7%
Controlling Factor: Moment
®Jack Miller
LEI Surveyors and Engineers
3302 North Main Street
Spanish Fork, Utah
r:a�arfn.
�n!tvr r�u�s
StruCalc Version 9.0.2.5 10/18/
all members
DEFLECTIONS Center
Live Load 0.28 IN U506
Dead Load 0.10 In
Values
2600 psi
Total Load 0.38 IN L/375
Live Load Deflection Criteria: L/360 Total Load Deflection Criteria: L/240
REACTIONS A
B
Live Load 5288 Ib
5286 Ib
Dead Load 1927 Ib
1959 Ib
Total Load 7215 Ib
7245 Ib
Bearing Length 1.83 in
1.84 in
BEAM DATA
anter
Span Length
12 ft
Unbraced Length -Top
0 ft
Unbraced Length -Bottom
12 ft
Live Load Duration Factor
1.00
Notch Depth
0.00
MATERIAL PROPERTIES
1.9E Microllam - iLevel Trus Joist
Bending Stress:
Base
Flo=
Values
2600 psi
Adjusted
Fb'=
2604 psi
123.39 in3
Cd=1.00
CF=1.00
62.34 int
Moment of Inertia (deflection):
Shear Stress:
Fv =
285 psi
Fv' =
285 psi
Shear:
Cd=1.00
11845 lb
0 ft
8 ft
Modulus of Elasticity:
E =
1900 ksi
E'=
1900 ksi
Comp.-Lto Grain:
Fc --1-=
750 psi
Fc -1'=
750 psi
Controlling Moment: 20027 ft -Ib
6.36 Ft from left support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2
Controlling Shear: -6059 lb
At a distance d from right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2
Comparisons with required sections:
Recd
Provided
Section Modulus:
92.3 in3
123.39 in3
Area (Shear):
31.89 in2
62.34 int
Moment of Inertia (deflection):
521.54 In4
732.62 in4
Moment:
20027 ft -Ib
26772 ft -Ib
Shear:
-60591b
11845 lb
— 12ft
Uniform Live Load 550 plf
Uniform Dead Load 129 pif
Beam Self Weight 19 plf
Load Number 0118 Two
Live Load 832 Ib 832 Ib
Dead Load 324 Ib 324 Ib
Location 3 ft 8 ft
TRAPEZOIDALLOAOS-CENTERSPAN
Load Number
One
TWO
Left Live Load
330 pif
330 pif
Left Dead Load
208 pif
208 pif
Right Live Load
330 pif
330 plf
Right Dead Load
208 plf
208 plf
Load Start
0 ft
8 ft
Load End
3 ft
12 ft
Load Length
3 ft
4 It
Page 43 of 168
Seismic Weights
Roof
Roof DL =
16.9 psf
Exterior Wall DL =
10 psf
Exterior Brick DL =
40 psf
Interior Wall DL=
6 psf
High Roof Area =
11150 ftA2
Exterior Wall Length =
510 1t
Wall Length with Brick =
0 it
Trib. Exterior Wall Height =
9 it
Interior Wall Length =
522 it
Trib. Interior Wall Height=
4.5 it
Exterior Wall Area =
4590 ftA2
Interior Wall Area =
2349 ftA2
Roof Weight=
188435 Ib
Wall Weight=
59994 Ib
Total Weight =
248429 Ib
Level Floor
Living DL =
23.4 psf
Exterior Wall DL =
10 psf
Exterior Brick DL =
40 psf
Interior Wall DL =
6 psf
Living Area =
11422 ftA2
Exterior Wall Length =
510 it
Wall Length with Brick =
0 it
Trib. Exterior Wall Height =
10 it
Interior Wall Length =
530 it
Trib. Interior Wall Height =
4.5 it
Exterior Wall Area =
5100 ftA2
Interior Wall Area =
2385 ftA2
Floor Weight =
267374.8 Ib
Wall Weight=
65310 Ib
Total Weight=
332684.81b
Level 4 Floor
Living DL =
23.4 psf
Exterior Wall DL =
10 psf
Exterior Brick DL =
40 psf
Interior Wall DL =
6 psf
Living Area =
11686 ftA2
Exterior Wall Length =
530 it
Wall Length with Brick =
116 it
Trib. Exterior Wall Height =
10 it
Interior Wall Length=
530 it
Trib. Interior Wall Height =
4.5 it
Exterior Wall Area =
5300 ftA2
Interior Wall Area =
2385 ftA2
Floor Weight=
273552.4 lb
Wall Weight=
90510 lb
Total Weight =
364062.4 Ib
Page 44 of 168
Level Floor
Living DL =
23.4 psf
Exterior Wall DL=
10 psf
Exterior Brick DL =
40 psf
Interior Wall DL =
6 psf
Living Area =
11686 ftA2
Exterior Wall Length =
530 it
Wall Length with Brick =
188 1t
Trib. Exterior Wall Height =
10 it
Interior Wall Length =
53011
Trib. Interior Wall Height =
4.5 it
Exterior Wall Area =
5300 ftA2
Interior Wall Area=
2385 ftA2
Floor Weight=
273552.4 lb
Wall Weight=
142510 lb
Total Weight=
416062.4 lb
Level 2 Floor
Living DL =
23.4 psf
Roof DL =
16.9 psf
Exterior Wall DL =
10 psf
Exterior Brick DL =
40 psf
Interior Wall DL=
6 psf
Living Area =
1221 ftA2
Low Roof Area =
100 psf
Exterior Wall Length =
56 it
Wall Length with Brick =
26 it
Trib. Exterior Wall Height =
4.5 it
Interior Wall Length =
8 it
Trib. Interior Wall Height =
4.5 it
Exterior Wall Area =
252 ftA2
Interior Wall Area =
36 ItA2
Floor Weight =
29562.8 Ib
Roof Weight=
1690 lb
Wall Weight=
7416 lb
Total Weight =
38668.8 Ib
Page 45 of 168
Seismic Distribution
(Numeric Gridlines)
Gridline A
2253 ttA2
m
Total Area
11686 ftA2
Gridline 1
2319 ftA2
<
Gridline 2
4575 ftA2
m
Gridline 3
2876 ftA2
j_
Gridline 4
1196 ftA2
I=
Gridline 5
720 ftA2
Sum:
11686 ftA2
(Alpha Gridlines)
Total Area 11686 ftA2
Page 46 of 168
Gridline A
2253 ttA2
m
Gridline B
2827 ftA2
Gridline C
792 ttA2
Gridline D
3332 ftA2
a
Gridline E
1753 ftA2
j_
Gridline F
465 ftA2
Gridline G
264 ftA2
Sum:
11686 ftA2
Page 46 of 168
Title Block Line 1
You can change this area
using the "Settings' menu item
and then using the'Prinfing &
Title Block' selection.
'rifle Block Line 6
ASCE Seismic Base Shear
Project Title:
Engineer:
Project Descn
Project ID:
Prialed: I8 GCT 2m6,12:I1PM
File= t:'StructuriiRM6 Structural Job001e2e5"A Manscn Apanments12016.2e50.ec6
Mattson Appartments _
Risk Category
Calculations per ASCE 7-10
Risk Category of Building aOther Structure: "I" : Buildings and other structures that represent
a low hazard to human life in the
ASCE 740, Page 2, Table 1.5-1
event of failure.
Seismic Importance Factor = 1
ASCE 7-10, Page 5, Table 1.54
USER DEFINED Ground Motion
ASCE7-10 11.4.1
Max. Ground Motions, 50% Damping:
- -
SS = 0.44309.0.2 sec response
S1 = 0.1560 g, 1.0 sec response
Site Class, Site Coeff. and Design Categoy
Site Classification 'D' : Shear Wave Velocity 600 to 1,200 f lsec _ D
ASCE 7-f0 TabIa 20.3-1
Site Coefficlents Fa & Fv Fa = 1.45
ASCE 7-10 Table 11.44 & 11.44
(using straight-line interpolation from fable values) Fv = 2.18
Maximum Considered Earthquake Acceleration S MS= Fa' Ss = 0.640
ASCE 7-10 Eq. 11.4.1
S Mi = Fv' S1 = 0.339
ASCE 7-10 Eq. 11.4.2
Design Spectral Acceleration S DS' S M'SPl3 = 0.427
ASCE 7-10 Eq. 11.4-3
S DrS M1213 = 0.226
ASCE 740 Eq. 11.4.4
Seismic Design Category = D
ASCE 7-10 Table 11.64&-2
Resisting System
ASCE 7-10 Table 1229
Basic Seismic Force Resisting System... Bearing Wall Systems
Llght-framed walls sheathed wlwood structural panels
rated for shear resistance or steel sheets.
Response Modification Coefficient "R" = 6.50 Building height Limits:
System Overstrength Factor "Wo' = 2.50 Category"A & B' Limit:
No Limit
Deflection Amplification Factor 'Cd' = 4.00 Category "C" Limit:
No Limit
Category'D" Limit:
Limit= 65
NOTEI See ASCE 7-10 for all applicable footnotes. Category"E"Limit:
Limit= 65
Category'F" Limit:
Limit= 65
Lateral Force Procedure
ASCE 7.10 Section 12.8.2
Equivalent Lateral Force Procedure
The "Equivalent Lateral Force Procedure' is being used according
Io the provisions of ASCE 7-10
12.8
Determine -Building Period_ _ _ _
Use ASCE 12.8-7
Structure Type for Building Period Calculation: All Other Structural Systems
"Ct'value = 0.020 "hn': Height from base to highest level=
50.011
"x'value = 0.75
'Ta"Approximate fundamental period using Eq. 12.8.7: Ta=Ct'(hn^x) =
0.376 sec
'TL" : Long -period transition period per ASCE 7-10 Maps 22-12 -> 22-16
8,000 sec
Building Period"Ta"Calculated from Approximate Method selected = 0.376 we
" Cs " Response Coefficient
S DS Shod Period Design Spectral Response
' R': Response Modification Factor
' I ": Seismic Importance Factor
Seismic Base Shear
Cs = 0.0657 from 12.8.1.1
0.427 From Eq. 12.8.2, Preliminary Cs
6.50 From Eq. 12.8-3 & 12.84 , Cs need not exceed
1 From Eq. 12.8-5 & 12.8.6, Cs not be less than
Cs: Seismic Response Coefficient =
W(see Sum Wibelow) = 1,399.91 k
Seismic Base Shear V= Cs 'W = 91.95 k
Page 47 of 168
ASCE 7.10 Section 12.8.1.1
0.066
0.093
0.019
0.0657
ASCE 7-10 Section 12.8.1
Title Block Line 1
You can change this area
using the "Settings" menu item
and then using the "Printing &
Title Block' selection.
Title Block tJns 8
ASCE Seismic Base Shear
Project Title:
Engineer:
Project Descr:
File = t:VStwOk?Mn2016
Vertical Distribution of Seismic Forces
Fi Sum Fi Sum Wi Fpx : Calcd Fpx:
Min
5 248.43
25.18 25.18 248.43 25.18
' k' : hx exponent based on Ta = 1.00
4 332.69
26.98 52.16 581.11 29.86
28.41
3 364.06
Table of building Weights by Floor Level...
-
31.09
2 416.06
16.87 91.16 1,361.24 27.86
35.53
Level R wk Weight
HI: Height
(Wi' Hi) ^k
Cvx
Fx=Cvx' V
5 248.43
50.00
12,421.45
0.2738
25.18
4 332.69
40.00
13,307.40
0.2934
26.98
3 364.06
30.00
10,921.86
0.2408
22.14
2 416.06
20.00
8,321.24
0.1835
16.87
1 38.67
1,399.91
10.00
386.69 _
0.0085
0.78
Sum WI = 1,399.91 k
Sum WI' Hi =
45,358.64 k -ft
Total Base Shear=
Diaphragm Forces : Seismic Design Category "B" to "F"
Level e Wi
Fi Sum Fi Sum Wi Fpx : Calcd Fpx:
Min
5 248.43
25.18 25.18 248.43 25.18
21.21
4 332.69
26.98 52.16 581.11 29.86
28.41
3 364.06
22.14 74.30 945.18 28.62
31.09
2 416.06
16.87 91.16 1,361.24 27.86
35.53
1 38.67
0.78 91.95 1,399.91 2.54
3.30
Wpx ..........................
Weight at level of diaphragm and other structure elements attached to it.
Fi ........................
.... Design Lateral Force applied at the level.
Sum F ........................
Sum of'Lat. Force" of current level plus all levels above
MIN Reel Force @ Level .........
020' S os I ' Wpx
MAX Req'd Force @ Level ,
. , ..... 0,40' S Ds l ' Wpx
Fpx: Design Force @ Level
....... Wpx' SUM(x->n) Fi / SUM(x->n) wj, x = Current level, n =
Top Level
Page 48 of 168
Project ID:
Piinled: 19 OCT 2016 12.I1PM
2850_11A Mallwn APaftwte12016.2850.ec6
INC. 1983-2016, Build:6.16.7.21, Ver.8.16.7.21
MIR
ASCE 7-10 Section 12.8.3
Sum Story Shear - Sum Story Moment
25.18
0.00
52.16
251.80
74.30
773.36
91.16
1,516.33
91.95_
2,427.98
91.95 k
62.17
Base Moment=
33475k -ft
ASCE 7-10 12.10.1.1
Fpx: Max
Fpx
Dsgn. Force
42.43
25.18
25.18
56.81
29.86
29.86
62.17
31.09
31.09
71.05
35.53
35.53
6.60
3.30
3.30
N YI
O
4 O
7
O
O
N d
^
O
II
U
J
r 3
O
T
>
o
`�
a�
w�Ci
N
II
>3
1�
IO,
y II II II 11
m
z
r
N
J q
ILn rn U'
1°
d
b a
yE lL C
N
m
e
I�fi
7
O
O
N d
Q
O
C e
U
J
r 3
O
T
b
3 of 168 J
o
`�
a�
w�Ci
II
>3
1�
IO,
y II II II 11
m
z
b
0
N
J q
ILn rn U'
»
�
r E E E €
E
id
�55 N55 m P
Ip p I� Wryry NqqI O
6 r
N EW E D
�
b
J 2
gr
e E
� ub.
m
0
#
F
y
¢ N
O
L
O
O
O
N
C N j
o
U
N
�
r
N
a
J y
i
m
b
r
2
01
z
i--�
O
CO,
N
r
N
�
�
b
i
0
F=
b
o
� o
>
n
]
II
b
b
C
y
3
N
G
m
rn
� a y
=
Npp
II II 11 Y
Z z
8
ih
N
b 2
C
C.FII
O
¢ C
tII
II II
r$a
J 2
C
E
w E m
P y
3
�
H
°
•E
ii
N
O
N O
p p p p
O O O O
N N
•D
y
F O$
b a
yE lL C
N
m
e
I�fi
7
O
O
N d
Q
O
C e
L
T
b
3 of 168 J
o
`�
C
�
Z
C
q 1�
Fig m in o `�
1�
IO,
y II II II 11
m
z
3
ILn rn U'
z
�
id
�55 N55 m P
Ip p I� Wryry NqqI O
6 r
N EW E D
((I�
b
J 2
gr
e E
O
m
m
L
a
#
F
y
¢ N
O
L
O
O
O
N
C N j
o
U
N
�
r
N
a
J y
i
Page 4
b a
yE lL C
N
m
e
II
L
V y
O
N d
Q
q O
C e
L
T
b
3 of 168 J
o
`�
II
E
O
C o
z
3
z
�
id
'b
W
b
J 2
gr
e E
O
i
a
O
O
�
0
C
�
C
O.
u
z
i--�
N
N
�
pR
C
0
� n n
o
� o
n
]
II
^
C O
J
Z z
N
b 2
C
C.FII
O
¢ C
tII
II II
r$a
J 2
C
!
!E!
Page
�
�
k
!
|
)ƒ{{&
\k°
,J°!
!
!
!E!
Page
�
�
k
!
|
8`555§
-
k
k/ | |
!
!E!
Page
�
�
k
!
|
3
N
v
J
1
m
$ $ 9
g t m N r
O O
Page°
r
i
N
R
n
h
n
N
r
N
8
O
m
c
5 �
N B
m
c a
u
1 o 168
r
i
N
R
n
h
n
N
r
N
8
O
I
N
l0 1
c
D
m
c_
IIy
�
N
y a
3 m
�M
'I
L 9 >
> N
l0 1
c
D
A II I
CT��V
IIy
�
� x
ym
'I
e
� o
a
a
p
'EO
U
y C
m
p
E O
>
N II
a `I�
C y
d �
n
O
3
II
F 2>
n
b
n H
3
� O
E
N
F
o
o
O
d W>
D �
d
6
t
N Y
q z
D
d
J pl
d
m yy5
b
ry
M m �
�
a
q N
d
J
II � N
o d
II II E II
n L
v
S
>
m
o
E.
E E E
m
d N e
d = at
o (mO13
¢
Page 6
o
� o
ym
'I
e
� o
a
u
'EO
U
✓=
O
p
E O
>
N
f.
C y
d �
O
O
3
II
F 2>
n
b
n H
3
N c
F
o
II II II II
d
6
t
maU
i
D
d
J pl
� a u v
m yy5
b
ry
M m �
�
Page 6
g
G
S
0
�
ym
a
II
U
✓=
O� OI N O
p
E O
>
a
C y
d �
�
3
o
d
6
t
D
d
ry
M m �
�
d
J
II � N
o d
II II E II
n L
v
S
>
m
o
E.
E E E
m
o (mO13
¢
3 a m
GU)F'
iV W>
o
lh N
f
m
y
N F
D .p1 Z
F
E
3
�
D
a c
Ip N
bb m yy yd.
rn m V
f > F• �
0 3 0 A g
E ..
E N m c41
� rn yyE
N
3
N N ?
N
E
y
n 45> o
N
N
8 m O
N W
N > N
7
O 1 F p
m n bR Z
II II II
L LI
J 2
$, EE E E
n H �
m
c �
r a°
N 0
d e
N
9 >
? of 168
g
G
S
0
n
c
U
II
`I
^
�y
o
= o
>
N
N
U
W
c
� u
II
L 9 L
N 7
N z
r
z
6
II
N
d
J9{ 7
O 2
N0 a
j
o g U
p
.S OL
8
3
c
m m
V!
g
0
m
c
o
= o
V x
N
U
`a
c
� u
II
L 9 L
N 7
N z
6
II
J9{ 7
O 2
p
.S OL
8
3
c
m m
V!
Ip
vWi
>4
ry
n
Q
F
xN
C
11 II 11 II
�
p r
o O z
p✓%
>
R
� 2
>
N
a
�
g
0
m
c
c
V x
N
U
`a
c
� u
j 9
L 9 L
N 7
N z
g
0
p� N
N
O
S
4 O
6
II
p
8
V
c
m m
c
Ip
vWi
>4
ry
n
Q
F
0
�
p r
o O z
p✓%
>
R
>
N
�
N V 4 O C t
O •� ry
E
E
E E
8 N II
o m a
YpV C
d
r 4
O
m V v pl y
>
N
pq
a = t O
p
5 q N
(ryp o
1. pl�j N m � O •{y� R
N
9
N N (p
II N G� O� N V y
II II IEI 11
rn U
a
=m
p} d
O
E E
B
r
r
» d
V
45 o
yl ?
N
IZ
p
a:
C
tu n n n
v n y U
1Y x n
1
E E E
m
c
i n
h a°
U � t
Y L
9 � ` O
Page
3 of 168 0 J m z
g
0
8 1
O
8 1
c
Page n
N �y
! o ;
L
adg
I�
z
C
R
Q'c
O
e
Q
o
m m
0 0
^ �
c
V
N
b II
m m
N y n
c
m m
b
�
O
8 g
y N
>
ryN b
m
W
{N9 N
C
� y Z
u
II
r
c
N
y
_
O
K^^
a
r q
y m
j
Y
rL
do m
2
c
a A
E
x
o
N
N
C
~
b
by
Q
C
r
O 4
c M OS
<
S 3 n
d U
n yah
a1p
r
O yyFFF
N m
o
p' N
E a U
Fi
2a
p N F
0
II
m
N d �
O
#.
> R c
F
N m In
N
F > F
p O S
h
0 0 3 0 m
m
C
sy
M �
NN L
F/ A
j C
N
d
y
II II It II
-
`NPP.
N
E
g
to m
D D O ti `o
_N
m
^
N
O
^
yr m
S
a
F p
E E b
8 1
O
8 1
c
Page n
N �y
! o ;
L
adg
I�
m
C
R
0
O
e
Q
o
G
0 0
^ �
c
4•
N
b II
m m
N y n
r
C LI
6
b
�
O
a w
y N
>
L f
A 2
m
W
II
C
� y Z
II II II
U
O v
N
y
_
O
a
a �a
a
r q
y m
j
N `� L
upni
N N L
2
c
N c
E
x
8 1
O
8 1
c
Page n
L g u� kN
83 c 11 II jl, p c
Ci
Jd ni Ci tC �i � S
J
p O ^ N N
g E E E
O
m
C
n
'u $
m O
U e t
E L E
i of 168c `"
=ox
! o ;
8
adg
I�
> N
OO
R
7
OI0
C z
O
e
Q
G
'tbm
C ..
d
U
c
m m
N y n
O
8 8
C p A
w
>
IN9 N
a b
Jn
II
C
� y Z
II II II
U
O v
y 49y
o_
a
a �a
o
>
v 3 0
A
^
M
2
c
N c
E
x
o
N
N
by
D y�
(p^p
N
O 4
c M OS
d U
3�
a1p
r
^ m
o
p' N
N
2a
p N F
0
m
F
#.
> R c
F
N
p O S
C
sy
s g
IryI
� o $
NN L
F/ A
L g u� kN
83 c 11 II jl, p c
Ci
Jd ni Ci tC �i � S
J
p O ^ N N
g E E E
O
m
C
n
'u $
m O
U e t
E L E
i of 168c `"
o
! o ;
8
I�
> N
OO
7
OI0
C z
O
G
C ..
N y n
C p A
w
a v
C
� y Z
II II II
U
y 49y
o_
m a
o
E
A
^
E
E � E
c
a _
N
O V
by
D y�
d U
3�aw>oH'
o
p' N
p N F
0
Lr tO
M z
#.
> R c
F
N
p O S
yL d N
U p
j C
N
d
6M
p c
II II It II
-
`NPP.
N
D D O ti `o
_N
m
a
F p
E E b
k
rn E
�
�
E �
L g u� kN
83 c 11 II jl, p c
Ci
Jd ni Ci tC �i � S
J
p O ^ N N
g E E E
O
m
C
n
'u $
m O
U e t
E L E
i of 168c `"
>
n
n
Irwi ym
L�
5� rn U'
Jd 2
0
g
�
�
12
m
d E
J
O
g Z
N N
O O
>
dR
2
?
g
6
f0
7
N
FST EI m
J S p1
OO
yO�
z h �
s
O Y O
w
J
O
$
a
-
N
J
E E
>
1 f
'3 O
E E
¢ t o o
G
4_
c
3
a n
In
N
H
m
y� G
8 d N II
N
`� $
I)pI
vii
pp�yy
S
� N
V, YPpll N
m
N
CII
GGn
N FST q.a V
O
3
� tpp
N
F
f0
3
pN m4'
m tl
d
d
n'tWMr'e
� r-
0 O
O Z
N h55 m
Q
y a
p
O
p 3
m m
Page E
n II y n
Frn
�
Irwi ym
L�
5� rn U'
Jd 2
0
g
o
12
� o
d E
J
O
g Z
N N
O O
>
dR
c
?
g
{ZV
C
3 a y
II IpI II n
U
d F
72 Y•
FST EI m
J S p1
z h �
s
O Y O
II L
J
N
y
> O
J
E E
>
1 f
'3 O
E E
¢ t o o
G
4_
c
3
a
Page E
n II y n
Frn
�
Irwi ym
L�
5� rn U'
Jd 2
g
o
12
� o
d E
J
O
g Z
N N
Page E
N
9
.E>
�
O
� o
J
O
g Z
N N
O O
Y
N m
?
g
m m
II L
11 II Y p
N
m O
a $ m
N
9
.E>
�
O
� o
J
O
g Z
Q
m m
II L
11 II Y p
N
m O
a $ m
J
E E
>
n
E E
¢ t o o
G
h
a
N
R y C
"3d
y� G
8 d N II
N
5
d
F N
a
N N
N
CII
GGn
N FST q.a V
d
d
n'tWMr'e
� r-
0 O
O Z
N h55 m
Q
y a
E E
EES E E Eq
N
m
m g4m m2 "d al°N ¢ ti
�
A
N
a n
N
o s
d
�
FE..
d a
C
L
y
4
d
2
5 of 168
N
9
.E>
N N
t
� o
N
m m
f
Z> o o c
¢ t o o
h
a
N
N
5
8 n n
N N
N
CII
GGn
N FST q.a V
N
W V N�5�
N h55 m
'M1
y a
E E
EES E E Eq
m
�
A
N
d
d a
C
L
y
4
d
2
5 of 168
|
§
B
,
sl
,
(
a
!
§
\;!
a!!
`§)
�®)
>;
!(
�!
��§
)E§
§§
!)|
#
}#)2|\
E/»■
)§N
!
§!
a
!
§
Anchor DesignerTM
Software
Version 2.4.5673.270
m
1.Prolect Information
Customer company:
Customer contact name
Customer e-mail:
Comment:
2. Input Data & Anchor Parameters
General
Design method:ACI 318.08
Units: Imperial units
Anchor Information:
Anchor type: Cast -in-place
Material: AB H
Diameter (inch): 0.625
Effective Embedment depth, her (inch): 6.000
Anchor category: -
Anchor ductility: Yes
hmin (inch): 8.13
Cmm (inch): 1.25
Smin (inch): 2.56
Company: Date:
10/17/2016
Engineer: Page:
1/4
Project:
Address:
Phone:
E-mail:
Load and Geometry
Load factor source: ACI 318 Section 9.2
Load combination: not set
Seismic design: Yes
Anchors subjected to sustained tension: Not applicable
Strength reduction factor for brittle failure, ¢a: 1.0
Apply entire shear load at front row: No
Anchors only resisting wind and/or seismic loads: No Z
<Figure 1>
Project description: HDU5 interior
Location: Gridline 5
Fastening description:
Base Material
Concrete: Normal -weight
Concrete thickness, h (inch): 10.00
State: Cracked
Compressive strength, fe (psi): 2500
IPcv: 1.0
Reinforcement condition: B tension, B shear
Supplemental reinforcement: Not applicable
Reinforcement provided at corners: No
Do not evaluate concrete breakout In tension: No
Do not evaluate concrete breakout in shear: No
Ignore Edo requirement: Yes
Build-up grout pad: No
5466 Ib
0 Ib
Y
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility,
Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925,847.3871 w .strongtie.com
Page 57 of 168
„• Anchor Designer TM
a t Software
Version 2.4.5673.270
<Figure 2>
Company:
Date: 12'17/2016
Engineer:
Page: 2/4
Project:
Address:
Phone:
E-mail:
Recommended Anchor
Anchor Name: PAB Pre -Assembled Anchor Bolt - PABSH (5/8"0)
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925,560.9000 Fax: 925.847.3871 www.stronglie.com
Page 58 of 168
Anchor DesignerTM
Software
Version 2.4.5673.270
Company:Date:
Anchor Forces
10/17/2016
Engineer:
Page:
3/4
Project:
Address:
Phone:
E-mail:
3. Resulting
Anchor Forces
Anchor
Tension load,
Shear load x,
Shear load y,
Shear load combined,
&I (lb)
Va.x (lb)
Vuay (lb)
q(V...)'+(V... )a (Ib)
1
5466.0
0.0
0.0
0.0
Sum
5466.0
0.0
0.0
0.0
Maximum concrete compression strain Cl..): 0,00
Maximum concrete compression stress (psi): 0
Resultant tension force (Ib): 5466
Resultant compression force (Ib): 0
Eccentricity of resultant tension forces in x-axis, e'N. (inch): 0.00
Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00
g Steel Strength of Anchor in Tenslon(Sec D,511
N,. (b) q ^N (lb)
27120 0.75 20340
5 Concrete Breakout Strength of Anchor in Tension (Sec D a 2)
Na = ka lJrahm" (Eq. D-7)
ka 2 Fa (psi) ho (in) Ne (Ib)
24.0 1.00 2500 6.000 17636
0.750doNre = 0.750do (ANc7ANra) WON'Ixp,N'yop,N& (Sec. 0.3.3.31 D.4.1 & Eq. D-4)
Aw(ins) AN.(ins %d,N %,,N 'Yap,N Nb (lb) d 0.750d0% (lb)
340.31 324.00 1.000 1.00 1.000 17636 0.70 9725
8 Pullout Strength of Anchor in Tension (Sec D S 3)
0.75�d¢Nm = 0.750dO'Y,rNp = 0.75OdOWcP8Amoro (Sec. D.3.3.3, D.4.1, Eq. D-14 & D-15)
'N.P Aau (ins) ra (psi) d 0.75OdONp,, (Ib)
1.0 1,94 2500 0.70 20404
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility,
Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94586 Phone: 925,560.9000 Fax: 925,847,3871 www,stronglie,com
Page 59 of 168
Iti71rl Anchor DesignerTM
_ Software
Version 2.4.5673.270
Company: Date:
10/17/2016
Engineer: I Page:
4/4
Project:
Address:
Phone:
E-mail:
11. Results
Tensile
Shear Forces
Interaction of and
Tension
(Sec. D.7)
Factored Load, Nu. (Ib)
Design Strength, o% (Ib)
Ratio
Status
Steel
5466
20340
0.27
Pass
Concrete breakout
5466
9725
0.56
Pass (Governs)
Pullout
5466
20404
0.27
Pass
PABSH (5/8"0) with hef = 6.000 inch meets the selected design criteria.
12. Warnings
- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections D.8.1 and D.8.2 for torqued cast -in-place anchor is waived per
designer option.
- Per designer input, ductility requirements have been determined to be satisfied — designer to verify.
Designer must exercise own judgement to determine if this design is suitable.
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 84588 Phone: 925.560.9000 Fax: 925.847.3871 wwwatrongge.com
Page 60 of 168
£
n
L
U
L
ry y!
W W
O
J
II))
C
�
>
nY
xN
C
C Y II II 11
pE�U
pNL
d I
a o
y m
E E
g
0 3 0
M
II a
] E O
u
b 3
2
OO
N m d
ro
d�
r
a
O
N
F-
ro
¢
y
< S
n
�
N m O
N
r
F m
M g m
I I
d
?
9
3
E
N Q
>
°
m Z
g
E
O
�
nY
xN
C
C Y II II 11
pE�U
pNL
d I
O q
F
E E
g
0 3 0
II a
] E O
114
0 � o
a v ]
11 j o
y y
o � r
m n 8 z p o
Page E
0
E
0
E
II II Il It
m O A N
4 6
F
v& E
C
E
8
u
O o
s
n o
p
>
C
N
p
8
� II
a
v
tfi
II II II II
� �NmU
U
c
m
a
P Y
G
J 2 OI
N
q
� •C
O
N W P
E E E n
N N p&
6
j p
G
q
l
N j
p p p G F
O O p 0 2
t r
u
d 2;
A C
m
IIqq C �
II II II 11
a $ 0
m U
b _
0
N -
p
N f �
N
Sti N N
n n E u
[V
6FNI E
W
`2 N
^ gSI� c
J
rn
N
d
Page E
m O A N
F
8
b
p
>
¢
o
8
a
v
tfi
II II II II
� �NmU
U
c
m m rn m m>
P Y
G
J 2 OI
N
q
� •C
O
N W P
E E E n
N N p&
6
j p
G
q
l
p
Page E
m O A N
�pp N
n
o
r
�
U
c
m m rn m m>
O
N
l
j p
G
q
l
p
p p p G F
O O p 0 2
bi
A C
IIqq C �
II II II 11
a $ 0
m U
0
J q
p
[V
6FNI E
W
`2 N
^ gSI� c
J
rn
N
d
b N WU
� p m o
N GC
tI Wi'ap
i>l
C o
L
II II II n
L
CFFF
M
a
o
n o
N
j
h
= O
o g g o w o
P (p
7
2> O q 3
9
N b Z
P CN
c � II �I II u
NN<MN a $S'.y�U
J
p
m
a
r
rn O
N C
�
d Y
u1
2 of 168
8
0
8
O
0
o,
j
M m o
o
qma
�
j C
L
v
E
8
L
m m o�
W
o
>
II
O
Q
r
8 c Z
o
o
a
3
c
F
J
j
R
V
w
11 L
II II �{ 11
J
py
OO
+�
C' " V
Cc;
cTT
Z L
>
� P �
y
J
>
qy
$ tan $ �6 6n
r o' E £ E
X
8 8 8
r
z
O
2 h
L
IL
n
O
.O
Fi ✓' y c m O
¢
O¢V m
j A
>
n
ri
w
O m g C
j
II
y
=1 IPPI � 11
P
4 u z
c
>
0
�
N
F
10�.
GG
U
O
N n w
w �
N
N n x_ mA In fq U y
¢
m 5
3
Z _m U
€^'a
o
m
v
«
1
o
a
o
m
n
Nm
t
a o gB
vat
2
C
7
` 3
6 9 o n o
y
7
J
/�I O
Ss}
II F
$
C Zry
Cy
II II II II
A
� 2
� O
LL E
p,
q�
ry y N
Q� n G 4 0� n 6�¢
a
C
r
L S
y
LL W O
o o
u y z
3 of 168
o
m
O
ro
z
m
r
Sr
F
y
P
m 4
YI
A
_
9
�$
O
N Q p
y
Q
r
8
7
N Uyy
yy
.4 Y'
FCA .m .m
H N
•Y
N m
m
a
g v
v
x
E E E
vl m m
o a o
y
ry
O C O O O
8
W f O
2
S
y >
N
w
IR
J
O
m
L
II II II II
�^ m y
m
to in rn a U
J
ygry J
O
C
N
E E d
E
� Egg
E E
OI
y
L
37
N
y n
c P
C.`u
N U'
N i
Page E
j
M m o
o
qma
�
j C
L
v
E
8
L
m m o�
W
o
>
N
O
Q
r
8 c Z
o
o
a
3
c
F
j
R
w
11 L
II II �{ 11
J
py
OO
+�
C' " V
y
}^p
cTT
Z L
>
� P �
>
qy
$ tan $ �6 6n
r o' E £ E
m
O
2 h
u
N
IL
o m
P d O�
O
.O
Fi ✓' y c m O
O¢V m
j A
'R
n
W II
6
O m g C
j
4 u z
�
N
F
10�.
GG
w �
N
N n x_ mA In fq U y
n II n n
0
�
Z _m U
€^'a
3
R m N
i 9 ;�_„
1
m
n
t
a o gB
vat
` 3
6 9 o n o
y
7
J
/�I O
J
II F
C Zry
Cy
II II II II
� 2
O Ih i F
w N E
mqq vqq> m n mryry
LL E
p,
q�
ry y N
Q� n G 4 0� n 6�¢
a
C
r
L S
y
LL W O
o o
u y z
3 of 168
Id I
Page 8
a�
�
m
y o
3 0
y
J
N m
II
L
t
J
J
U
N G+ m
II
>
II
•= p
j
L
U
04-
c
m m m
D
s o
L
N
>
�
p
>
J rn
a n g N
rbb g. E
E E E
yy
IL
o
3 O
y c & O
�
D O
r N
N c
J
n
j >
y_ a
o
c «I
j
B
_ c
a t
m
N m G Uj
O
i
II II � 11
d N
N r
>
m
a m
C v
S
¢`
!2 ga N & V z
K
S p
3
c
o
y m
p
y
r
y y
IL
n II
�> Nm
O. O
a O
a t0
N
N�
II 'y 3 m =
II II CI II
v
C N o o: N
�
3
\
F >��� n
i�C
1� a as
o Q
� N
v
L
b
o
'
0 o x o
y
N
3
�
w>
.N
II
N
r
o
N E L
8 m y > O
7
r
z S O o G
O
r 2
n
II II II 11
9 r
� J S
E E E
N rn m
; O
o?
q
N
rn
c_
9
� �
3
H no
LL p
c u 3 L
L
d
L
9 ry
Id I
Page 8
Q N r
N q�
m y II VI 11 II
� Z c
A rn
'[per O N m a
m-0 I}!
aa55 n g vg�
n n n n n n y a v g m .'
K �
c
� o
LL q
9 > > w
L
tof 168y J
N m
t
J
n
YG
N G+ m
II
>
II
•= p
j
L
U
c
m m m
D
s o
L
N
>
�
p
t
pp pp pp
0 0 0 17
Q
a t
IIpp
II II � 11
>
m
a m
C v
S
E E
EErn
gg
IL
n II
�> Nm
O. O
a O
yN
N
N
L
b
w>
pN
r
Tj l7 N
n
9 r
0,
; O
o?
q
r
m
Q
=
R
O
"R
^
c
Fio—
E
,Yf
R yn N
N Oj
> £
Q O
VN1
«I 7
n
OO o d
m
>1 p
=
y
lV
2=
(V N
r Z
1
Q G
Q N r
N q�
m y II VI 11 II
� Z c
A rn
'[per O N m a
m-0 I}!
aa55 n g vg�
n n n n n n y a v g m .'
K �
c
� o
LL q
9 > > w
L
tof 168y J
8
OO
0
N N N
o
c
n
n
U
L
o
L
U
7
p
F
Z 1x
M
II
N
L II II 11 11
II¢
y$
o
>83
E E m
>
D
O
c
0
m
?e
E
ly
N i o o
°
E IL
$ II
O
U
So
y¢]
a a o
¢
Ro
R
o
a
3 8
9
c
�
d
N
N N
j O
a
O
15
W
w
11
a
d a m
8
L
Oo
v
a
dF
d o
3 N
o
C
m
c
N
N m
d
6
?
79
N W
V
m
IIg
'y w
3 V%
t II II II 0
IIyy
2
y
41
�
N0
$
Y
D
a
N
E
N
V!
'�o�
8
ry
O - OO
> N
O.
d
`ON
S
7
r
g
z>�a
a
�`D
n
=
r
a
r
a
n y cN5
N
II II II II
9 51 rn rn U
o
�y
�
N m d
N to n m m
°' y3
m
I�
te, r m m
a c E
y E y
E E
m N m d
w d m
N z
v a
5v
�
E, w
m
Q
�
�
o
6
N
y
a
Ny
8
N
L
`�
O�
V
>
S �
V
0 "
z
Page
of 168
�
z
8
OO
0
1:2016-2850
on: P8
International Building Code(AISC 14th Ed ASD)]
x 5 x 5/16 x 9.0 FT /ASTM A500-GR.B-46
n Adequate By: 20.8%
®Jack Miller
LEI Surveyors and Engineers
3302 North Main Street
Spanish Fork, Utah
sou:t Iuus
TIONS
i column has been designed as a cantilever.
e that the length of the column inputed should include the portion of the column
w grade above the point of fixity, See IBC 1805.7 for lateral soil bearing calculations.
.ECTIONS
ction due to lateral loads only: DO = 0.5 IN = L/217
-oad Deflection Criteria: L/180
-oad:
Load:
Load:
Vert-LL-Rxn = 10576 Ib
Vert-DL-Rxn = 4091 Ib
Vert-TL-Rxn = 14667 Ib
IZONTAL REACTIONS
Reaction at Top of Column: TL-Rxn-Top = 0 Ib
Reaction at Bottom of Column: TL-Rxn-Bottom = 652 Ib
JMN DATA
Column Length: 9 ft
iced Length (X -Axis) Lx: 9 it
iced Length (Y -Axis) Ly: 9 it
in End Condtlon-K (e): 2.1
5 x 5 x 5/16 - Square
Yield Strength:
Fy =
46 ksi
lus of Elasticity:
E =
29 ksl
in Section:
dx =
5 in dy =
in Wall Thickness:
t =
0.291 in
9.16 in3
A=
5.26 in
5 in
int of Inertia (deflection):
Ix =
19 in4
ly =
19 in4
in Modulus:
Sx =
7.62 10
Sy =
7.62 in3
c Section Modulus:
ZX =
9.16 in3
Zy =
0 in3
)f Gyration:
rx =
1.9 in
ry =
1.9 in
nn Compression Calculations:
14th Edition Steel Manual:
Aing Load Case: Axial Total Load and Lateral Loads (D + 075[L + W])
tatio:
KI.Vrx =
119.37 KLy/ry= 119.37
AXIAL LOADING
oiling Direction for Compr.
Calcs: (Y -Y Axis)
Live Load:
-al Buckling Stress:
For =
17.62 ksi
Dead Load:
;ontrolling Equation
F7-1
Column Self Weight:
ial Compressive Strength:
Pc=
55 kip
Total Load:
an Bending Calculations
per AISC
14th Edition Steel Manual:
Aing Load Case: Axial Total Load and Lateral Loads (D + 075[L + W])
LATERAL LOADING
itricity Moment:
Mx -ex =
0 ft -Ib My-ey = 0 ft -Ib
Uniform Lateral Load:
it Moment + Eccentricity:
Mrx =
4401 ft -Ib Mry = 0 ft -Ib
Point Load:
a Buckling Ratio:
FBR =
14,18
Live Load:
Flange Buckling Ratio:
AFBR =
28.12
Location:
FBR for Non -Compact:
NC =
35.15
Suckling Ratio:
WBRX =
14.18 WBRY = 0
WBR for Eqn. F7-5:
AWBR=
60.76
Flex. Str. w/ Sfty Factor:
Mcx =
21 ft -kip Mcy = 21 ft -kip
;ontrolling Equation
F7-1
F7-1
pined Stress Calculations:
Controls : 0.40
Page 66 of 168
i
i
9 it
A
10/18/2016 12:03:55 PM
PL = 10576 Ib
PD = 3918 Ib
CSW = 173 Ib
PT = 14667 Ib
(Dy Face)
wL-Lat= 0 pit
one
652 Ib
Frk="� Anchor DesignerTM
I"
,::'('r16" I1 ' SO oWa e873.270
At
1.Proiect information
Customer company:
Customer contact name
Customer e-mail:
Comment:
2 Input Data & Anchor Parameters
General
Design method:ACI 318-08
Units: Imperial units
Anchor Information:
Anchor type: Cast -in-place
Material: AB H
Diameter (inch): 0,625
Effective Embedment depth, ho (inch): 6.000
Anchor category: -
Anchor ductility: Yes
hmm (inch): 6.13
Cmm (inch): 1.25
Smm (Inch): 2.50
Company:
Date:
10/17/2016
Engineer:
Page:
1/5
Project:
Address:
Phone:
E-mail:
Project description: Cantilevered Columns
Location: Gridline G
Fastening description:
Base Material
Concrete: Normal -weight
Concrete thickness, h (inch): 24.00
Slate: Cracked
Compressive strength, fo (psi): 2500
Wcv: 1.0
Reinforcement condition: B tension, B shear
Supplemental reinforcement: Not applicable
Reinforcement provided at corners: No
Do not evaluate concrete breakout in tension: No
Do not evaluate concrete breakout in shear: No
Ignore 6do requirement: Yes
Build-up grout pad: No
Base Plate
Load and Geometry Length x Width x Thickness (inch): 10.00 x 10.00 x 0.75
Load factor source: ACI 318 Section 9.2 Yield stress: 36000 psi
Load combination: not set
Seismic design: No Profile type/size: HSS5X5X1/4
Anchors subjected to sustained tension: Not applicable
Apply entire shear load at front row: No
Anchors only resisting wind and/or seismic loads: No Z
<Figure 1>
7247 Ib
✓,/0 Ib
Y
5868 ft -Ib
Input data and results must be checked for agreementwith the existing circumstances, the standards and guidelines must be checked for plausibility.
Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94586 Phone: 925.560.9000 Fax: 925.847.3871 w .slrongtle.00m
Page 67 of 168
®' Anchor DesignerM
Software
Version 2.4.5673.270
<Figure 2>
Company:
Dale:
10/17/2016
Engineer:
Page:
2/5
Project:
Address:
Phone:
E-mail:
Recommended Anchor
Anchor Name: PAB Pre -Assembled Anchor Bolt - PAB5H (5/8"0)
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
Simpson Strong -Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94586 Phone: 925.560.9000 Fax: 925.847.3871 www.strong5a.com
Page 68 of 168
• Anchor Designer TM
Software
r Version 2.4.5673.270
Company: Date:
10/17/2016
Engineer: Page:
3/5
Project:
Address:
Phone:
E-mail:
3. Resulting
Anchor Forces
Anchor
Tension load,
Shear load x,
Shear load y,
Shear load combined,
Nua (Ib)
Vu.. (lb)
V..' (Ib)
4(Vaax)'+(Vaey)' (Ib)
1
2847.7
163.0
0.0
163.0
2
2847.7
163.0
0.0
163.0
3
0.0
163.0
0.0
163.0
4
0.0
163.0
0.0
163.0
Sum
5695.4
652.0
0.0
652.0
Maximum concrete compression strain (%a): 0.18 <Figure 3>
Maximum concrete compression stress (psi): 785
Resultant tension force (Ib): 5695
Resultant compression force (lb): 12942
Eccentricity of resultant tension forces in x-axis, e'N. (inch): 0.00
Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00
Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00
Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00
4. Steel Strength of Anchor in Tensipn(Seo. D,5 11
Naa (Ib) d ^. (Ib)
27120 0.75 20340
S. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.21
Nb = ka,Nfaharl s (Eq. D-7)
ka 7, ra (psi) her(in) Nb (lb)
24.0 1.00 2500 3.000 6235
01 o2
Y
X
04 03
^ba =4 (ANa/ANao) YeyN P6.NY n F,,NNb (Sec. D.4.1 & Eq. D-5)
Am. (In') AN. (m2) YKN Y'agN 'Y,N Y`1N Nb (Ib) 4 ONabs (lb)
158.50 81.00 1.000 1.000 1.00 1.000 6235 0.70 8541
6. Pullout Strength of Anchor in Tension (Sec. D.5.31
ONp = OY'gPNP = OY',PSAb,¢ra (Sec. D.4.1, Eq. 0-14 & D-15)
Yc,P Am (in') ru (psi) q ONm (lb)
1.0 1.94 2500 0.70 27205
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925,847.3871 www.strongtie.com
Page 69 of 168
girl Anchor Designer""^
Software
Version 2.4.5673.270
Company:
Date:
10/17/2016
Engineer:
I Page:
4/5
Project:
Address:
Phone:
E-mail:
S. Steel Strength of Anchor In Shear (Sec. D.6,11
Vs, (lb) 09-.1 d 0q001/'. (Ib)
Interaction of Tensile and
16270 1.0 0.65 10576
Tension
Factored Load, Nua (Ib)
9. Concrete Breakout Strength of Anchor in Shear (Sec.
D.6,22)
Status
Steel
2848
20340
Shear perpendicular to edge in x -direction:
Pass
Concrete breakout
5695
8541
0.67
Vb. = 7(1,/d.)02gd..igfbc,r'4 (Eq. D-24)
Pullout
2848
27205
0.10
Pass
le (in) da (in) ,i r, (psi)
c.r (in)
Vo. (Ib)
Ratio
Status
Steel
5.00 0,63 1.00 2500
11.50
16356
Pass
T Concrete breakout x+
652
¢V,bu. = 0 (AV,/A -)'V ,vV�d,vyc.vn vVb.. (Sec. D.4.1 & Eq. D-22)
0.16
Pass (Governs)
II Concrete breakout y-
326
Av, (in') Av„ (in2) Ye, v KdV
Kv
Ph,v
Vb. (lb)
0
Oi/a, (Ib)
276.00 595.13 1.000 0,778
1.000
1.000
16356
0.70
4132
Shear parallel to edge In x -direction:
0.00
66.7%
1.0
Pass
Ver = 7(/,/Q0 24d.Av`fci' 5 (Eq. D-24)
1. (in) da (in) ,t r, (psi)
co (in)
Vbx (Ib)
5.00 0.63 1.00 2500
4.50
4004
AVwe. = 0(2)(Av /Av )ye,,vyl.dv PcvyhvVby(Sec. D.4.1, D.6.2.1(c) & Eq. 0-22)
Aw (in') Avm (inr) V'..v W.d,V
K'v
''Ph.v
Vbr (lb)
6
01/aq. (lb)
108.00 91.13 1.000 1.000
1.000
1.000
4004
0.70
6643
10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.31
QV,m = ¢k, N,eb = ¢kT(AN./Arxv)Y' xyed,N'V,,N'Ycp.NNs (Eq. D-31)
kcp Aw (Inr) An. (Inr) yeFN W.qN yc,N yvp,N Nb (Ib) d WVw (lb)
2,0 256.00 81.00 1.000 1.000 1.000 1.000 6235 0.70 27590
11. Results
Interaction of Tensile and
Shear Forces (Sec. DM
Tension
Factored Load, Nua (Ib)
Design Strength, oN„ (Ib)
Ratio
Status
Steel
2848
20340
0.14
Pass
Concrete breakout
5695
8541
0.67
Pass (Governs)
Pullout
2848
27205
0.10
Pass
Shear
Factored Load, Vua (Ib)
Design Strength, oW (Ib)
Ratio
Status
Steel
163
10576
0.02
Pass
T Concrete breakout x+
652
4132
0.16
Pass (Governs)
II Concrete breakout y-
326
6643
0.05
Pass (Governs)
Pryout
652
27590
0.02
Pass
Interaction check Nii l^ Vv./OVh
Combined Ratio
Permissible
Status
Sec. -D.7.10.67
0.00
66.7%
1.0
Pass
PAB5H (5/8"0) with hef = 6.000 inch meets the selected design criteria.
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility,
Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.slronglle.com
Page 70 of 168
Anchor DesignerTM
Software
Version 2.4.5673.270
F.
Company:Date:
10/17/2016
Engineer:
Page:
S15
Project:
Address:
Phone:
E-mail:
12. Warninas
- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections D.8.1 and D.8.2 for torqued cast -in-place anchor is waived per
designer option.
• Designer must exercise own judgement to determine if this design is suitable.
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility,
Simpson Strong -Tie Company Inc 5956 W. Las Posites Boulevard Pleasanton, CA 94508 Phone: 925.560.9000 Fax: 925.847.3871 v .strong9e.com
Page 71 of 168
F. Fi.
Page 72 of
\ )\
) }
Page 72 of
!
4
§J j)
;f{}
!
\�
Page 73me
-
.\!£!§■!!!§i!!!;!!
& ;!
| |
/
,r!!!!!!!!!!!§§!§
«!!
:5)
§)
§
>|
§!
!ƒ`§
{!
K(
)
>■J§!§$/§\
:r_::__------=4
i
|
)\k\\\\\kk\\k\�\\
!
4
§J j)
;f{}
!
\�
Page 73me
-
& ;!
| |
!
4
§J j)
;f{}
!
\�
Page 73me
\\
!
!
/\H
�`!!r§!;§°§§;!!§■
§�.
„ ... „ ........
!
w§§!!§§§§r!!§!rr§
§
-
/§
!�
!
f!§!!!!!§!§!§f§!@
»!§§§§§jN(j
§§§0N
)
|
k\\\\\\k\\\\kkkk\
\\
!
!
/\H
§
!|§§!!!§§|!!||§§!
a!!§!!!!!r!!§!!!§!
�|)
) )
e;)§
E
.
f\
§
>!J§2§$|§!
k
Page 75ee
§
§
!
) )
!
Page 75ee
§
§
!
5 N L II II It II
m P m �ti N�� rn fJ
N m P N 1° A OI I� d f' C E 5u5 E E g q N m
m
c
L N
3 � A
c
� U
QI y d
y 5 N Page 7
III
S
m o m
C
� m
a°
N
N
� O
C N
m m �
� N
s
o a o
J
II ^
> = O
s
m z
w � o
o
II
«
J
C
Q
q�
y II II II IIy
N
>
N
O
0
J
f
888 i>
a
n N
C
c
to T'� V
J
OO p
O i
d
> N O
J P
>
a~
h$
° E E E
ryN
C
�
U
�
� u
00
n
4 °; F
mm a$ P O« Z
a
r=
¢
O N
II 'y 3 r ` N
N N
C II II II
F
o
N$¢ n
�a 3 g' yy yyyy �'g'
N tR m N N N
E U
a.41
I- >-
pp
8
d N
o
°
h n ] •�'
.�
LLl
n m g o o
E
N
E
8
OO OO
7
5 N L II II It II
m P m �ti N�� rn fJ
N m P N 1° A OI I� d f' C E 5u5 E E g q N m
m
c
L N
3 � A
c
� U
QI y d
y 5 N Page 7
III
t
y
m
c
C
� m
a°
N
N
� O
C N
m m �
� N
s
o a o
J
II ^
> = O
of 168
m z
t
y
n II E n
C
� m
m m �
� N
s
o a o
J
II ^
> = O
:.I J
w � o
J >
f
Z
C
Q
q�
y II II II IIy
d J 2 L
as W�a
0
u
•
II
r
m n�
L
m
LI II II a
P E U
s
Z'i
U
J U�
Y J
Q
t
m m m m m
y �
0
V
F E
rn
oRRRRR
�
Na
N [O
u
•
om
m n�
a
a
s
Z'i
y m N Q N
m y
J U�
Y J
Q
t
m m m m m
0
V
oRRRRR
-
J
11
r
d
>
m
f
Q
m u
¢
F
99
N
y
0
u
� N
H
m
N
P T
{p
f
z y
Z
F
>i
h
NZ
r
F
T
m
IF
y
^
N
g
II
y
N
N 46
N m P
a E E
E E E
N N N
NI& o1
3'a
•
n � c
m^
a
c
Z'i
y m N Q N
m y
J U�
Y J
Q
t
m m m m m
0
V
oRRRRR
-
J
11
r
d
>
�
E
m u
¢
99
N
0
u
� N
H
a
d
F
F
�
^
N
g
II
y
N
N 46
N
O
0
n
y
88888
8
;
bN'
r
a m wry m
F
aR
d d d o d
N Lq n N R
tR Nn tn9
N
S
y
^5 N5 m5 a5 in a n55 m m
m
G
d y
y a
9 >
Page
of 168
Y O
a J y zN
NI& o1
3'a
n II n
a
c
Z'i
J U�
•- N
8
d
0
["S (ma
p II ^
3&0Y J
U
G W m O) m m 10; 0 3 O
N N
� II
G F
¢ L
m
N
II 0 � II zzII 11 11
J O W y
> � J
g W
>`W
i �m
A ,I
a E r 0
o v p g
O rn N y (moi) y > OO
F N
p > ¢ L ~
a
yy yi N O
Q>
d x a
11 � p � II II II 11
JZ7 pJ m
i 6 F -
o
r "
N �
N � J
o d
N_
$> 0¢ Y F
¢ OO OO OO OO OO
a -
� N N
y II II 11
NlV�
10N1
N (O d h W n W m 0 'L d H E
OE OE N
E
2. oa�aa
m
p
N $ p
3 � a
N e L
C N C
W rj A
N 7 J n
Page 7
8
d
K
y m b. m
(Q p
n
n
^
U
L
�
U
G
m m m m m m m m m
N
.1
O
N W N- W W- N- m
¢
0
t
U
II
1- w
LI II II 11
mw(S
>
g y o 6 6~E
p N
E
b
[ p
V
m i
'n N
?
1%
N C
rym
v
_ N
=
6
G
N N pl
r
IW
v �
pp
d
N
e y
n Z
l o
a
3
jxWJ;
d
>
¢
L
N
a
2n
Fn
f° b
y tri
a
�
pp m 8o
N N N N s N s N N O n O
N
3
J
3
E
J
E 8 W &'m 8m S °A 8888 W ppE
n .= d d d
m m a m o m m v m Z o
? IQ e'i c
2 OO N
m A
G �p n N � II LI G II
C
�
p s �N
N W e N f0 n W m '.� y F 6
EEE E E E
m
B n
N n
a u2
O
3 of 168 U h z
8
d
K
4 0
!
a
///
—T--.
\�
§
(f!!!§!§!!§#§
)
;
;
„...._„..
�..
a§§§§§!!§§§!§
«■;
e5)
!k
§
')
E
;
|
§!§!!!§|§!!§§
2
|
4 0
!
a
///
—T--.
\�
§
)
;
;
4 0
!
a
///
—T--.
\�
§
!§§§§r§!§§§§§!t
!§§[§!!!![§|§■§
H§§!§§!!§§!§!§§§§
>§Jfmilil-
e§|
�
;
;
`®)00
160
/
Page 80mm
!
k
;
;
Page 80mm
!
|
!
() q
Page 81 of
-VA
px E... §;|
a§§§§!!§!§!§§§!
yB§
!ƒ
§
] !
49
_
}
)
;
!
�lGrr4§§r§r§B§rm
!
§§§!§B!§!f§!!![
|!§§§\§§§§§§§§§§
!
k\k\\\\\\k\\\\\
|
!
() q
Page 81 of
^age
�N
�W
ti
n a
Y
J
7
p
L
II
m >
"
g U
0
L
m m
U
yy
>
088
Ipp
=
q
yi
N
N
V
N
y
G
Jn
n
O
>
3
N
o
F
i
7 Z
1•C
E
N N a
N
Fi
N
n 8
II n n n
a
N
—
F o
> A
V
J 2
c
>
� a
~ °
S
3
a
P P
�
r�O S
m ' ffi
m P
b m
Y
4
i o o
0
f
V
V
N N
o
u
n
8o
o
•$
c
0
e;
y
m
N
H
OO
j
'
aaI
7
~
m¢
°
N � V
I3I y V � G
II II Ly 4
f 6
L
yy
p
fr OF U
Z>
o V
V G
S
t
O
�
a
N 0 3 q a
1, eq
r Q
F
N M
E E
m N
N N
c
ffi o � o
S
3
�
N_T
b W V L
Z
rV J m
J
g
8 w �o
N
qffiq
N N >
I f
L t? O Z O¢
Ip
c
ry O q
ON p
y II PII II p
GN a (J
Sr DI
N N $ J N m
K I L
c
G
cm
N
R y
m
3
N 8
a A Co
^age
ti
n a
Y
L
m m
uy�
�L
"
g U
0
L
m m
d
088
Ipp
=
q
yi
N
V
� �
y
G
Jn
n
O
>
N
_ 3
7 Z
1•C
E
N N a
N
N
O
s N a q N
a
J L
q
—
F o
c
o
S
3
a
n
r�O S
m ' ffi
m P
r
Y
^age
> m
R
m
"
Ipp
=
q
yi
N
V
� �
y
G
II II II 1
7 Z
1•C
V
a
J L
q
o i
o
S
n
r�O S
E E E
u
8o
Sg
8
w jo;
8
e;
y
m
N
OO
j
'
aaI
7
~
m¢
°
f 6
L
OO OO
5
Z>
G
S
O
�
a
m N
N N
c
y II VI II II
uyrf Lg U
J
N_T
b W V L
Z
rV J m
c
G
N B
0
82 of 1A J t° z
L
m m m
] o
L
U
L
m m m
0
L
m m m
vv
3 o
E
�
L
y>
6
D
Oq
a
Q
O
N N tOV z
p p
2 ; O"
¢
¢
F
r
JG
II
L
0
II II I,I
Oi
11
V
JO
II a
¢
a II II 11
O
11
00't
..
$E
9�m�V
9 NNR
Z
>
J m m
j
J p1
E E
>
E E om
N
N N
E
4
aV
3$ 8
o
a oyE
Y
li
o
v
m
6 o a o
N
[
N
N d N
J
N
a f
G J
O
N G d
YI
II
•
N
O^
E
L
v
mF n 6
m E
F
10 U
m
8
3 M
N
`o
o�
o
8
m
3' `�
m o E
8
o
a
N>
d
d 8
N
t
Ood
Z
_
m 8
d o a
V z
a ➢ E
3 S
0 S
N m
d
> 6
f
N m
O
N > O Q
Y H
F
o
F
g(
0
y�n� N
Fq
r N t0
Ej E
v
p
s
8 8
i•-
¢
N
y
pyo
p C N
N
(� dyy
N 0 byy m m
1
IN
E
6 �1
N d m C
6
N l0 d
m
N fp F55
liu a F
''Ndd
�Wo5 x �g
E
E E E
c
m
0
U)
a S `"
0
Page 83 of
A�
$
o o $ o
^
^ ^
ytyy
II
6
II
3 o
y
$ N
O
c
m m m m m m m 0
c
rn m m m m m m O F o E $
W>
N
O
Q
p O p p
N N N N N N VOI Z?
�$$
O$$$$ 2; O^ L Y)
O q >!.
p _M
q
r
V Cq
o D'
v
V
11 it 11
o m
:
>
^
>
>1
r
>
EE q
n u o w
y5 O
uZ
9
.qffi
_
s
¢
d
8
q
N
r6
a
0
O N
r
f.' y
v� G O
O z
a$
F V i
B oa 3 o
c
h Fn Nrn N
> ¢ t r
f2�-
r
m
m
r
m
>"
ilg
> w 9 Ed >C
8
n .�
F y ¢ w
:i 'c
10!
>
c
r
o z
`� Fn 6 q E E
n
3
a a n
3
M.�A8A8
pf38 ;��
m.�
;88688e'I $o
89dm8�88 m o o; 8
r G 3^
E
W888688 oio` 8E
OO y> Oo
J
r > r
Oo .= OO
J
>
N d ci N N ¢ 1R
^
G
m L II II IZI 11
a N a 0
O II II E �hpp
s? � a a g a a� YI V
m
W
m
p a N m a Yf
G
i
N M a m s N dq
a N�
C .sm N M a N
^ N m d N55 10 I� m m IA! d r E Nq E 0
N
p
m y
0 0 N N
E
y%
W
0 2 6 0 6
6 2 N N N
x 2 yqj y y
m
m
c
s
r
>N
i
N a
A O
N a
m O
y
>
Z
J
rn
0 m z Page 84 of 168c2
M
� ) )
Page 85 m\{ o
§
J||
§!§
|
\
J!|=\§§
i
k
!
EEr
$
§
#!!!!
Date: 10/18/2016 12:05 PM
rstern: English
is: TAStructural\2016 Structural Jobs12016-2850_HA Mattson Apartments\Gridlie 5.etz\
--w mzsa
w 1Ox54 -- --
w mxs
w 10n4
m�
it
Page 86 of 168
i
Current Date: 10/18/201612:05 PM
Units system: English
File name: TAStructurah2016 Structural Jobs\2016-2850_HA Mattson Apartments\Gridlie 5.etz\
GLOSSARY
Cb22, Cb33
Cm22, Cm33
d0
DJX
DJY
DJZ
DKX
DKY
DKZ
di-
Ig
LIg factor
K22
K33
L22
L33
LB pos
LB neg
RX
RY
RZ
TO
TX
TY
TZ
Nodes
Geometry data
Moment gradient coefficients
Coefficients applied to bending term In Interaction formula
Tapered member section depth at J end of member
Rigid end offset distance measured from J node in axis X
Rigid end offset distance measured from J node in axis Y
Rigid end offset distance measured from J node In axis Z
Rigid end offset distance measured from K node in axis X
Rigid end offset distance measured from K node in axis Y
Rigid end offset distance measured from K node in axis Z
Tapered member section depth at K end of member
Inertia reduction factor (Effective Inema/Gross Inertia) for reinforced concrete members
Effective length factor about axis 2
Effective length factor about axis 3
Member length for calculation of axial capacity
Member length for calculation of axial capacity
Lateral unbraced length of the compression flange in the positive side of local axis 2
Lateral unbraced length of the compression flange in the negative side of local axis 2
Rotation about X
Rotation about Y
Rotation about Z
1 = Tension only member 0 = Normal member
Translation In X
Translation in Y
Translation In Z
Node
X
Y
Z
Rigid Floor
(ft]
[it]
------------
[it)
_ ..
_._...-._._...-__.
........................._._....
1
0.00
9.00
0.00
0
2
6.00
0.00
0.00
0
3
6.00
9.00
0.00
0
4
24.00
0.00
0.00
0
5
24.00
9.00
0.00
0
6
42.00
0.00
0.00
0
7
42.00
9.00
0.00
0
6
48.00
9.00
0.00
0
Restraints
Node
TX
TY
TZ
RX
RY
RZ
....-._.-.--_"--"'----...»_......-..._
2
1
1
...............
1
.._......................
0
0
0
4
1
1
1
0
0
0
6
1
1
1
0
0
0
Page 87 ofe188
Members
Member
NJ
NK
Description
Section
Material d0
dL
Ig factor
...........................
-.._-..._._....._......._._.._
..... _......
___................... .__
[in]
........................
[in]
...----••-
1
1
3
Beam
W 10X54
........ ._._._.-._._....._._..-._..........
A992 Gr50 0.00
0.00
0.00
2
3
5
Beam
W 10X54
A992 Gr50 0.00
0.00
0.00
3
5
7
Beam
W 10X54
A992 Gr50 0.00
0.00
0.00
4
7
8
Beam
W 10X54
A992 Gr50 0.00
0.00
0.00
5
2
3
Column
TUBE 10x6x5_8
A500 GrC rectangular 0.00
0.00
0.00
6
4
5
Column
TUBE 10x6x5_8
A500 GrC rectangular 0.00
0.00
0.00
7
6
7
Column
TUBE 10x6x5_8
A500 GrC rectangular 0.00
0.00
0.00
Orientation
of local axes
Member
Rotation
Axes23
NX
NY
NZ
[Deg]
__-•-------------
5
-------.
90.00
....................
_....._...................--_.._.r.
0
0.00
0.00
_._..-..-._._..
0.00
6
90.00
0
0.00
0.00
0.00
7
90.00
0
0.00
0.00
0.00
Current Date: 10/18/2016 12:05 PM
Units system: English
File name: T:\Structural\2016 Structural Jobs\2016-2850_HA Mattson Apartments\Gridlie 5.etz\
Load data
GLOSSARY
Comb : Indicates if load condition is a load combination
Load conditions
Condition
Description
Comb.
Category
... .......................
DL
...--...----.......--_'----......_..._._._._..........--........._._................................_.._._....
Dead Load
No
DL
LL
Live Load
No
LL
SL
Snow Load
No
SNOW
Wx
Wind in
No
WIND
EOx
Seismic in X
No
EQ
D7
1.4DL
Yes
D2
1.2DL+1.6LL
Yes
D3
1.2DL+0.5SL
Yes
D4
1.2DL+1.6LL+0.5SL
Yes
D5
1.2DL+1.6SL
Yes
D6
1.2DL+0.5Wx
Yes
D7
1.2DL+1.6SL+LL
Yes
D8
1.2DL+1.6SL+O.SWx
Yes
D9
1.2DL+Wx
Yes
010
1.2DL+Wx+0.5SL
Yes
D11
1.2DL+Wx+LL
Yes
D12
1.2DL+Wx+LL+0.58L
Yes
D13
1.2DL+0.2SL
Yes
D14
1.2DL+EQx
Yes
D15
1.2DL+LL+0.2SL
Yes
D16
1.2DL+EQx+0.2SL
Yes
D17
1.2DL+EQx+LL
Yes
018
1.2DL+EQx+LL+0.2SL
Yes
D19
0.9DL+Wx
Yes
D20
0.9DL+EQx
Yes
S1
DL
Yes
S2
DL+LL
Yes
S3
DL+SL
Yes
S4
DL+0.75LL
Yes
S5
DL+0.75SL
Yes
S6
DL+0.75LL+0.75SL
Yes
S7
DL+0.6Wx
Yes
S8
DL+0.7EQx
Yes
S9
DL+0.75LL+0.45Wx+0.75SL
Yes
S10
DL+0.525EQx
Yes
$11
DL+0.75SL
Yes
S12
DL+0.525EQx+0.75SL
Yes
S13
0.6DL+0.6Wx
Yes
S14
0.6DL+0.7EQx
Yes
Page PdIV 68
Distributed force on members
Vt V2
d1
d2
Condition
Member
Dirt
Vail
Va12
Mall
%
Dist2
%
......._.........»
................._.......__......._...................................-----.........._._........_._............_
...............
..
[Kip/ft]
[Kip/ft]
[ft]
[ft]
-0.856
DL
1
Y
-0.748
-0.748
0.00
Yes
5.00
No
-6.458
6.00
Y
-0.059
-0.059
0.00
Yes
100.00
Yes
Y
2
Y
-0.748
-0.748
2.00
No
6.00
No
Y
-0.059
-0.059
0.00
Yes
100.00
Yes
Y
-0.023
-0.023
6.00
No
100.00
Yes
3
Y
-0.748
-0.748
12.50
No
16.50
No
Y
-0.059
-0.059
0.00
Yes
100.00
Yes
Y
-0.023
-0.023
0.00
No
12.50
No
4
Y
-0.748
-0.748
1.00
No
100.00
Yes
Y
-0.059
-0.059
0.00
Yes
100.00
Yes
LL
1
Y
-0.525
-0.525
0.00
Yes
5.00
No
Y
-0.088
-0.088
0.00
Yes
100.00
Yes
2
Y
-0.525
-0.525
2.00
No
6.00
No
Y
-0.088
-0.088
0.00
Yes
100.00
Yes
Y
-0.04
-0.04
6.00
No
100.00
Yes
3
Y
-0.525
-0.525
12.50
No
16.50
No
Y
-0.088
-0.088
0.00
Yes
100.00
Yes
Y
-0.04
-0.04
0.00
No
12.50
No
4
Y
-0.525
-0.525
1.00
No
100.00
Yes
Y
-0.088
-0.088
0.00
Yes
100.00
Yes
SL
1
Y
-0.26
-0.26
0.00
Yes
5.00
No
2
Y
-0.26
-0.26
2.00
No
6.00
No
3
Y
-0.26
-0.26
12.50
No
16.50
No
4
Y
-0.26
-0.26
1.00
No
100.00
Yes
Wx
1
X
-0.0462
-0.0462
0.00
Yes
100.00
Yes
2
X
-0.0462
-0.0462
0.00
Yes
100.00
Yes
3
X
-0.0462
-0.0462
0.00
Yes
100.00
Yes
4
X
-0.0462
-0.0462
0.00
Yes
100.00
Yes
EQx
i
X
-0.0462
-0.0462
0.00
Yes
100.00
Yes
2
X
-0.0462
-0.0462
0.00
Yes
100.00
Yes
3
X
-0.0462
-0.0462
0.00
Yes
100.00
Yes
4
X
-0.0462
-0.0462
0.00
Yes
100.00
Yes
Concentrated forces on members
yp
p, j P2
d�
d2
Condition Member
Dirt
Valuel
Distt
%
...._._- ...._._._._Y
[Kip]
[ft]
DL
DL �
...............
..
_._..........._5.00
._.........No
Y
-0.856
0.00
Yes
2
Y
-0.678
2.00
No
Y
-6.458
6.00
No
Y
-14.229
14.00
No
3
Y
-0.678
16.50
NoJ
Page 9%91368
Self weight multipliers for load conditions
Self weiaht multlolier
Condition Description Comb. MuItX MultY MultZ
DL
Y
-8.458
12.50
No
0.00
Y
-14.229
4.00
No
4
Y
-0.678
1.00
No
0.00
Y
-0.656
100.00
Yes
LL 1
Y
-0.903
5.00
No
Seismic in X
Y
-0.275
0.00
Yes
2
Y
-0.903
2.00
No
0.00
Y
-6.248
6.00
No
0.00
Y
-9.036
14.00
No
3
Y
-0.903
16.50
No
Yes
Y
-6.248
12.50
No
1.2DL+1.6SL
Y
-9.036
4.00
No
4
Y
-0.903
1.00
No
0.00
Y
-0.275
100.00
Yes
SL 1
Y
-0.393
5.00
No
0.00
Y
-0.161
0.00
Yes
2
Y
-0.393
2.00
No
1.20L+Wx+0.5SL
Y
-2.733
6.00
No
D11
Y
-2.636
14.00
No
3
Y
-0.393
16.50
No
0.00
Y
-2.733
12.50
No
0.00
Y
-2.636
4.00
No
4
Y
-0.393
1.00
No
1.2DL+LL+0.2SL
Y
4161
100.00
Yes
Self weight multipliers for load conditions
Self weiaht multlolier
Condition Description Comb. MuItX MultY MultZ
DL
Dead Load
No
0.00
0.00
0.00
LL
Live Load
No
0.00
0.00
0.00
SL
Snow Load
No
0.00
0.00
0.00
Wx
Wind in X
No
0.00
0.00
0.00
EQx
Seismic in X
No
0.00
0.00
0.00
D1
1.4DL
Yes
0.00
0.00
0.00
D2
1.2DL+1.6LL
Yes
0.00
0.00
0.00
D3
1.2DL+0.5SL
Yes
0.00
0.00
0.00
D4
1.2DL+1.6LL+0.5SL
Yes
0.00
0.00
0.00
D5
1.2DL+1.6SL
Yes
0.00
0.00
0.00
D6
1,2DL+0.5Wx
Yes
0.00
0.00
0.00
D7
1.2DL+1.6SL+LL
Yes
0.00
0.00
0.00
D8
1.2DL+1.6SL+0.5Wx
Yes
0.00
0.00
0.00
D9
1.2DL+Wx
Yes
0.00
0.00
0.00
D10
1.20L+Wx+0.5SL
Yes
0.00
0.00
0.00
D11
1.2DL+Wx+LL
Yes
0.00
0.00
0.00
D12
1.2DL+Wx+LL+0.5SL
Yes
0.00
0.00
0.00
D13
1.2DL+0.28L
Yes
0.00
0.00
0.00
D14
1.2DL+EQx
Yes
0.00
0.00
0.00
D15
1.2DL+LL+0.2SL
Yes
0.00
0.00
0.00
D16
1.2DL+EQx+0.2SL
Yes
0.00
0.00
0.00
D17
1.2DL+EQx+LL
Yes
0.00
0.00
0.00
D18
1.2DL+EQx+LL+0.2SL
Yes
0.00
0.00
0.00
D79
0.9DL+Wx
Yes
0.00
0.00
0.00
D20
0.9DL+EQx
Yes
0.00
0.00
0.00
S1
DL
Yes
0.00
0.00
0.00
Page 97'013168
S2
DL+LL
Yes
0.00
0.00
0.00
S3
DL+SL
Yes
0.00
0.00
0.00
S4
DL+0.75LL
Yes
0.00
0.00
0.00
S5
DL+0.75SL
Yes
0.00
0.00
0.00
S6
DL+0.75LL+0.75SL
Yes
0.00
0.00
0.00
S7
DL+0.6Wx
Yes
0.00
0.00
0.00
S8
DL+0.7EQx
Yes
0.00
0.00
0.00
S9
DL+0.75LL+0.45Wx+0.75SL
Yes
0.00
0.00
0.00
S10
DL+0.525EQx
Yes
0.00
0.00
0.00
S11
DL+0.75SL
Yes
0.00
0.00
0.00
S12
DL+0.525EQx+0.75SL
Yes
0.00
0.00
0.00
S13
0.6DL+0.6Wx
Yes
0.00
0.00
0.00
S14
0.6DL+0.7EQx
Yes
0.00
0.00
0.00
Earthquake (Dynamic analysis only)
Condition
a/g
Ang.
Damp.
[Deg]
N
._...---------"-------.-..___._.__-._._-._...---._
DL
0.00
0.00
0.00
LL
0.00
0.00
0.00
SL
0.00
0.00
0.00
Wx
0.00
0.00
0.00
EQx
0.00
0.00
0.00
D1
0.00
0.00
0.00
D2
0.00
0.00
0.00
D3
0.00
0.00
0.00
D4
0.00
0.00
0.00
D5
0.00
0.00
0.00
D6
0.00
0.00
0.00
D7
0.00
0.00
0.00
D8
0.00
0.00
0.00
D9
0.00
0.00
0.00
D10
0.00
0.00
0.00
D11
0.00
0.00
0.00
D12
0.00
0.00
0.00
D13
0.00
0.00
0.00
D14
0.00
0.00
0.00
D15
0.00
0.00
0.00
D16
0.00
0.00
0.00
D17
0.00
0.00
0.00
D18
0.00
0.00
0.00
D19
0.00
0.00
0.00
D20
0.00
0.D0
0.00
Si
0.00
0.00
0.00
S2
0.00
0.00
0.00
83
0.00
0.00
0.00
S4
0.00
0.00
0.00
S5
0.00
0.00
0.00
S6
0.00
0.00
0.00
S7
0.00
0.00
0.00
S8
0.00
0.00
0.00
S9
0.00
0.00
0.00
S10
0.00
0.00
0.00
Sit
0.00
0.00
0.00
S12
0.00
0.00
0.00
Page R?168
S13 0.00 0.00 0.00
S14 0.00 0.00 0.00
PaOe5
Page 93 f 168
n ' .
Current Date: 10/18/2016 12:06 PM
Units system: English
File name: TAStructural\2016 Structural Jobs\2016-2850_HA Mattson Apartments\Gridlle 5.etz\
Analysis result
Translations
Condition SL=Snow Load
1 0.00048
0.01063
Translations lint
0.00000
0.00000
Rotations [Radl
2 0.00000
Node
TX
TY
TZ
RX
RY
RZ
............ _._....._...........
Condition
.........................
DL -Dead Load
_._.........................................._.
-0.00034
4 0.00000
0.00000
0.00000
1
0.00109
0.03973
0.00000
0.00000
0.00000
-0.00048
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00058
3
0.00109
-0.00349
0.00000
0.00000
0.00000
-0.00121
4
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00005
5
0.00070
-0.00715
0.00000
0.00000
0.00000
0.00007
6
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00056
7
0.00034
-0.00356
0.00000
0.00000
0.00000
0.00112
8
0.00034
0.03297
0.00000
0.00000
0.00000
0.00038
_._...._ .............
Condition
................
LL=Live Load
_..... ....._.._._.... _.._
........... _....... .......-....._........................
0.00000
............._._._.
.........._
1
0.00102
0.04270
0.00000
0.00000
0.00000
-0.00056
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00049
3
0.00102
-0.00271
0.00000
0.00000
0.00000
-0.00101
4
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00004
5
0.00069
-0.00504
0.00000
0.00000
0.00000
0.00006
6
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00047
7
0.00039
-0.00277
0.00000
0.00000
0.00000
0.00094
8
0.00039
0.03729
0.00000
0.00000
0.00000
0.00049
Condition SL=Snow Load
1 0.00048
0.01063
0.00000
0.00000
0.00000
-0.00013
2 0.00000
0.00000
0.00000
0.00000
0.00000
0.00016
3 0.00048
-0.00110
0.00000
0.00000
0.00000
-0.00034
4 0.00000
0.00000
0.00000
0.00000
0.00000
-0.00002
5 0.00037
-0.00146
0.00000
0.00000
0.00000
0.00003
6 0.00000
0.00000
0.00000
0.00000
0.00000
-0.00015
7 0.00027
-0.00112
0.00000
0.00000
0.00000
0.00030
8 0.00027
0.00802
0.00000
0.00000
0.00000
0.00010
... _.... _............................. ..........._........_......e.._
Condition Wx=Wlnd in X
0.02973
........................
.... ...........
........................................
........................
...
1 -0.14861
-0.02972
0.00000
0.00000
0.00000
0.00041
2 0.00000
0.00000
0.00000
0.00000
0.00000
0.00185
3 -0.14859
-0.00012
0.00000
0.00000
0.00000
0.00041
4 0.00000
0.00000
0.00000
0.00000
0.00000
0.00200
5 -0.14857
0.00000
0.00000
0.00000
0.00000
0.00011
6 0.00000
0.00000
0.00000
0.00000
0.00000
0.00185
7 -0.14858
0.00012
0.00000
0.00000
0.00000
0.00041
8 -0.14861
0.02973
0.00000
0.00000
0.00000
0.00041
Condition EDx=Selsmic in X
1 -0.14861
-0.02972
0.00000
0.00000
0.00000
0.00041
2 0.00000
0.00000
0.00000
0.00000
0.00000
0.00185
3 -0.14859
-0.00012
0.00000
0.00000
0.00000
0.00041
4 0.00000
0.00000
0.00000
0.00000
0.00000
0.00200
5 -0.14657
0.00000
0.00000
0.00000
0.00000
0.00011
6 0.00000
0.00000
0.00000
0.00000
0.00000
0.00185
7 -0.14858
0.00012
0.00000
0.00000
0.00000
0.00041
8 -0.14661
_....._...._.._...._.._.._ .....................
0.02973
........................
0.00000
... .»............
0.00000
_......_._...........
0.00000
..... ............................
0.00041
._..
Page
Mcntii
Condition
D1.1.41DL
0.06492
0.00000
0.00000
0.00000
-0.00079
i
1
0.00000
0.00156
0.05571
0.00000
0.00000
0.00000
-0.00067
�tt
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00082
p
3
-0.00009
0.00156
-0.00488
0.00000
0.00000
0.00000
-0.00169
0.00013
4
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00007
0.00094
5
0.00000
0.00102
-0.01001
0.00000
0.00000
0.00000
0.00010
0.00000
6
0.00000
... ..................
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00078
7
1
0.00051
-0.00499
0.00000
0.00000
0.00000
0.00156
2
8
0.00000
0.00051
0.04623
0.00000
0.00000
0.00000
0.00054
-0.00425
.. ..... ......
Condition
..... ...
D2=1.2DL+1.6LL
..... ..........................
..._.............................
4
._.._._.._._...........
V... W.___._..._..._.__......___.
0.00000
p
1
0.00101
0.00318
0.11662
0.00000
0.00000
0.00000
-0.00148
0.00014
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00149
-0.07831
3
0.00000
0.00318
-0.00852
0.00000
0.00000
0.00000
-0.00308
0.00000
4
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00012
5
0.00220
-0.01665
0.00000
0.00000
0.00000
0.00018
6
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00144
7
0.00127
-0.00870
0.00000
0.00000
0.00000
0.00285
8
0.00127
0.09969
0.00000
0.00000
0.00000
0.00125
--......................
Condition
D3=1.2DL+0.5SL
..... _._....... .......
_._._...__._._
.................... ......._..._._._._.._
.____._..____..........»........._._.._
1
0.00159
0.05308
0.00000
0.00000
0.00000
-0.00064
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00078
3
0.00159
-0.00474
0.00000
0.00000
0.00000
-0.00162
4
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00007 -
5
0.00107
-0.00931
0.00000
0.00000
0.00000
0.00010
6
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00075
7
0.00058
-0.00484
0.00000
0.00000
0.00000
0.00149
8-
0.00058-
0.04364
0.00000
0.00000
- 0.00000
- y 0.00051
- -
................
Condition
D4=1.2DL+1.6LL+0.5SL
...._...__
---------- _...._...........................................
1
0.00347
0.12205
0.00000
0.00000
0.00000
-0.00155
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00157
3
0.00347
-0.00907
0.00000
0.00000
0.00000
-0.00325
4
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00013
5
0.00243
-0.01739
0.00000
0.00000
0.00000
0.00019
j
6
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00151
I
7
0.00146
-0.00926
0.00000
0.00000
0.00000
0.00300
8
0.00146
0.10378
0.00000
0.00000
0.00000
0.00130
3
Condition D5=1.2DL+1.6SL
1
0.00217
0.06492
0.00000
0.00000
0.00000
-0.00079
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00096
3
0.00217
-0.00594
0.00000
0.00000
0.00000
-0.00199
4
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00009
5
0.00153
-0.01092
0.00000
0.00000
0.00000
0.00013
6
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00092
7
0.00094
-0.00607
0.00000
0.00000
0.00000
0.00182
8
0.00094
0.05256
0.00000
0.00000
»..... _._.......... ........
0.00000
... ..................
0.00062
............. ..,
....................................
Condition D6=1.2DL+0.5Wx
-.......
.._........................................
1
-0.07742
0.03200
0.00000
0.00000
0.00000
-0.00035
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00168
3
-0.07741
-0.00425
0.00000
0.00000
0.00000
-0.00123
4
0.00000
0.00000
0.00000
0.00000
0.00000
0.00101
5
-0.07787
-0.00858
0.00000
0.00000
0.00000
0.00014
6
0.00000
0.00000
0.00000
0.00000
0.00000
0.00031
7
-0.07831
-0.00421
0.00000
0.00000
0.00000
0.00156
8
-0.07832
0.05531
0.00000
0.00000
0.00000
0.00068
Page 999F;8
Condition D7.1.2DL+1.6SL+LL
1 0.00336
0.10805
0.00000
0.00000
0.00000
-0.00136
2 0.00000
0.00000
0.00000
0.00000
0.00000
0.00145
3 0.00336
-0.00865
0.00000
0.00000
0.00000
-0.00301
4 0.00000
0.00000
0.00000
0.00000
0.00000
-0.00013
5 0.00240
-0.01597
0.00000
0.00000
0.00000
0.00019
6 0.00000
0.00000
0.00000
0.00000
0.00000
-0.00140
7 0.00150
-0.00884
0.00000
0.00000
0.00000
0.00276
8 0.00150
0.09016
0.00000
0.00000
0.00000
0.00111
Condition D8=1.2DL+1.6SL+0.5Wx
1 -0.07823
0.04890
0.00000
0.00000
0.00000
-0.00056
2 0.00000
0.00000
0.00000
0.00000
0.00000
0.00196
3 -0.07822
-0.00601
0.00000
0.00000
0.00000
-0.00177
4 0.00000
0.00000
0.00000
0.00000
0.00000
0.00100
5 -0.07885
-0.01092
0.00000
0.00000
0.00000
0.00019
6 0.00000
0.00000
0.00000
0.00000
0.00000
0.00009
7 -0.07945
-0.00601
0.00000
0.00000
0.00000
0.00204
8 407946
0.06858
0.00000
0.00000
0.00000
0.00084
Condition D9=1.2DL+Wx
1 -0.15616
0.01629
0.00000
0.00000
0.00000 -0.00014
0.00000
2 0.00000
0.00000
0.00000
0.00000
0.00000 0.00267
0.00000
3 -0.15614
-0.00431
0.00000
0.00000
0.00000 -0.00102
0.00000
4 0.00000
0.00000
0.00000
0.00000
0.00000 0.00207
0.00000
5 -0.15660
-0.00858
0.00000
0.00000
0.00000 0.00020
-0.15741
6 0.00000
0.00000
0.00000
0.00000
0.00000 0.00130
6
7 -0.15704
-0.00415
0.00000
0.00000
0.00000 0.00177
0.00123
8 -0.15707
0.07103
0.00000
0.00000
0.00000 0.00090
0.00000
Condition D10=1.2DL+Wx+0.5SL
1
-0.15692
0.02147
0.00000
0.00000
0.00000
-0.00020
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00276
3
-0.15690
-0.00486
0.00000
0.00000
0.00000
•0.00118
4
0.00000
0.00000
0.00000
0.00000
0.00000
0.00208
5
-0.15741
-0.00931
0.00000
0.00000
0.00000
0.00021
6
0.00000
0.00000
0.00000
0.00000
0.00000
0.00123
7
-0.15790
-0.00471
0.00000
0.00000
0.00000
0.00193
8
-0.15793
0.07526
0.00000
0.00000
0.00000
0.00095
-_. . .................................
Condition
.......
D11=1.2DL+Wx+LL
........ _........... ._-...-...._......_...._...._.._._._.
1
-0.16106
0.05815
0.00000
0.00000
0.00000
-0.00069
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00324
3
-0.16103
-0.00702
0.00000
0.00000
0.00000
-0.00202
4
0.00000
0.00000
0.00000
0.00000
0.00000
0.00212
5
-0.16182
-0.01363
0.00000
0.00000
0.00000
0.00026
6
0.00000
0.00000
0.00000
0.00000
0.00000
0.00090
7
-0.16257
-0.00691
0.00000
0.00000
0.00000
0.00273
8
-0.16259
0.10969
0.00000
0.00000
0.00000
0.00140
Condition D12=1.2DL+W x+LL+0.5SL
1 -0.16188
0.06335
0.00000
0.00000
0.00000
-0.00075
2 0.00000
0.00000
0.00000
0.00000
0.00000
0.00333
3 -0.16186
-0.00757
0.00000
0.00000
0.00000
-0.00218
4 0.00000
0.00000
0.00000
0.00000
0.00000
0.00212
5 -0.16270
-0.01436
0.00000
0.00000
0.00000
0.00027
6 0.00000
0.00000
0.00000
0.00000
0.00000
0.00083
7 -0.16349
-0.00747
0.00000
0.00000
0.00000
0.00289
8 -0.16351
0.11397
0.00000
0.00000
0.00000
0.00146
Page a%068
Condition D13=1.2DL+0.2SL
1 0.00143
0.04986
0.00000
0.00000
0.00000
-0.00060
2 0.00000
0.00000
0.00000
0.00000
0.00000
0.00073
3 0.00143
-0.00441
0.00000
0.00000
0.00000
-0.00152
4 0.00000
0.00000
0.00000
0.00000
0.00000
-0.00006
5 0.00094
-0.00888
0.00000
0.00000
0.00000
0.00009
6 0.00000
0.00000
0.00000
0.00000
0.00000
-0.00070
7 0.00049
-0.00450
0.00000
0.00000
0.00000
0.00140
8 0.00049
0.04121
0.00000
0.00000
0.00000
0.00048
Condition D14.1.2DL+EQx
1 -0.15616
0.01629
0.00000
0.00000
0.00000
-0.00014
2 0.00000
0.00000
0.00000
0.00000
0.00000
0.00267
3 -0.15614
-0.00431
0.00000
0.00000
0.00000
-0.00102
4 0.00000
0.00000
0.00000
0.00000
0.00000
0.00207
5 -0.15660
-0.00858
0.00000
0.00000
0.00000
0.00020
6 0.00000
0.00000
0.00000
0.00000
0.00000
0.00130
7 -0.15704
-0.00415
0.00000
0.00000
0.00000
0.00177
8 -0.15707
0.07103
0.00000
0.00000
0.00000
0.00090
Condition D15=1.2DL+LL+0.25L
1 0.00257
0.09288
0.00000
0.00000
0.00000
-0.00117
2 0.00000
0.00000
0.00000
0.00000
0.00000
0.00123
3 0.00257
-0.00711
0.00000
0.00000
0.00000
-0.00254
4 0.00000
0.000DO
0.00000
0.00000
0.00000
-0.00010
5 0.00176
-0.01392
0.00000
0.00000
0.00000
0.00015
6 0.00000
0.00000
0.00000
0.00000
0.00000
-0.00118
7 0.00100
-0.00727
0.00000
0.00000
0.00000
0.00234
8 0.00100
0.07874
0.00000
0.00000
0.00000
0.00097
Condition D16=1.2DL+EQx+0.2SL
1
-0.15646
0.01836
0.00000
0.00000
0.00000
-0.00016
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00270
3
-0.15644
-0.00453
0.00000
0.00000
0.00000
-0.00108
4
0.00000
0.00000
0.00000
0.00000
0.00000
0.00207
5
-0.15692
-0.00888
0.00000
0.00000
0.00000
0.00021
6
0.00000
0.00000
0.00000
0.00000
0.00000
0.00127
7
-0.15739
-0.00437
0.00000
0.00000
0.00000
0.00183
8
-0.15741
0.07272
0.00000
0.00000
0.00000
0.00092
._
Condition
......................................_....-___--..___.._.-...--.....--..-_____.._...._.._..__..........._.._.......___.........._.._.
D17=1.2DL+EQx+LL
~
1
-0.16106
0.05815
0.00000
0.00000
0.00000
-0.00069
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00324
3
-0.16103
-0.00702
0.00000
0.00000
0.00000
-0.00202
4
0.00000
0.00000
0.00000
0.00000
0.00000
0.00212
5
-0.16182
-0.01363
0.00000
0.00000
0.00000
0.00026
6
0.00000
0.00000
0.00000
0.00000
0.00000
0.00090
7
-0.16257
-0.00691
0.00000
0.00000
0.00000
0.00273
8
-0.16259
0.10969
0.00000
0.00000
0.00000
0.00140
Condition D18=1.2DL+EQx+LL+0.2SL
1 -0.16138
0.06023
0.00000
0.00000
0.00000
-0.00072
2 0.00000
0.00000
0.00000
0.00000
0.00000
0.00327
3 -0.16136
-0.00724
0.00000
0.00000
0.00000
-0.00208
4 0.00000
0.00000
0.00000
0.00000
0.00000
0.00212
5 -0.16217
-0.01392
0.00000
0.00000
0.00000
0.00026
6 0.00000
0.00000
0.00000
0.00000
0.00000
0.00087
7 -0.16294
-0.00714
0.00000
0.00000
0.00000
0.00279
8 -0.16296
0.11140
0.00000
0.00000
0.00000
0.00143
Page"9 /-oi 168
Condition
D19m0.9DL+Wx
0.05045
0.00000
0.00000
0.00000
-0.00061
2
1
-0.15419
0.00477
0.00000
0.00000
0.00000
0.00000
0.00161
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00246
0.00000
3
-0.15417
-0.00326
0.00000
0.00000
0.00000
-0.00066
i
4
0.00000
0.00000
0.00000
0.00000
0.00000
0.00205
0.00000
5
-0.15451
-0.00644
0.00000
0.00000
0.00000
0.00018
0.00000
6
0.00000
0.00000
0.00000
0.00000
0.00000
0.00143
EII
7
-0.15485
-0.00308
0.00000
0.00000
0.00000
0.00143
i
8
-0.15487
0.06065
0.00000
0.00000
0.00000
0.00077
0.00000
........ _................................
Condition
D20=0.9DL+EOx
._.......».»..»....
•0.00000
y . _ ^
_
0.00192
-0.00552
1
-0.15419
0.00477
0.00000
0.00000
0.00000
0.00000
0.00000
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00246
0.00000
3
-0.15417
-0.00326
0.00000
0.00000
0.00000
-0.00086
0.00000
4
0.00000
0.00000
0.00000
0.00000
0.00000
0.00205
0.00182
5
-0.15451
-0.00644
0.00000
0.00000
0.00000
0.00018
6
0.00000
0.00000
0.00000
0.00000
0.00000
0.00143
7
-0.15485
-0.00308
0.00000
0.00000
0.00000
0.00143
8
-0.15487
0.06065
0.00000
0.00000
0.00000
0.00077
... ......................................
Condition
S7=DL
.
... _. .._.........
.»...».._....._._
.... _..... __..... _._�..__._._�
1
0.00109
0.03973
0.00000
0.00000
0.00000
-0.00048
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00058
3
0.00109
-0.00349
0.00000
0.00000
0.00000
-0.00121
4
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00005
5
0.00070
-0.00715
0.00000
0.00000
0.00000
0.00007
6
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00056
7
0.00034
-0.00356
0.00000
0.00000
0.00000
0.00112
8
0.00034
0.03297
0.00000
0.00000
0.00000
0.00038
_
...... .._....................
Condition
........................................................_....._._........._.»._.
S2=DL+LL
1
0.00221
0.08268
0.00000
0.00000
0.00000
-0.00104
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00107
3
0.00221
-0.00620
0100000
0.00000
0.00000
-0.00223
4
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00009
5
0.00149
-0.01220
0.00000
0.00000
0.00000
0.00013
6
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00103
7
0.00082
-0.00633
0.00000
0.00000
0.00000
0.00206
8
0.00082
0.07045
0.00000
0.00000
0.00000
0.00088
Condition S3=DL+SL
1
0.00161
0.05045
0.00000
0.00000
0.00000
-0.00061
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00074
3
0.00161
-0.00459
0.00000
0.00000
0.00000
-0.00154
4
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00007
5
0.00111
-0.00862
0.00000
0.00000
0.00000
0.00010
6
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00071
7
0.00065
-0.00469
0.00000
0.00000
0.00000
0.00142
8
0.00065
0.04106
0.00000
0.00000
0.00000
0.00048
Condition
........
S4=DL+0.75LL
...................................................
.-.................................................
...
1
0.00192
0.07193
0.00000
0.00000
0.00000
-0.00090
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00095
3
0.00192
-0.00552
0.00000
0.00000
0.00000
-0.00197
4
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00008
5
0.00129
-0.01093
0.00000
0.00000
0.00000
0.00012
6
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00091
7
0.00069
-0.00564
0.00000
0.00000
0.00000
0.00182
8
0.00069
0.06107
0.00000
0.00000
0.00000
0.00075
Page 699068
Condition
S5.DL+0.75SL
0.06549
0.00000
0.00000
0.00000
-0.00080
1
0.00148
0.04777
0.00000
0.00000
0.00000
-0.00058
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00070
3
0.00148
-0.00431
0.00000
0.00000
0.00000
-0.00146
4
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00006
5
0.00101
-0.00825
0.00000
0.00000
0.00000
0.00009
6
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00067
7
0.00057
-0.00440
0.00000
0.00000
0.00000
0.00134
8
0.00057
0.03903
0.00000
0.00000
0.00000
0.00046
.......................
Condition
_..............._.__.._....................._._._.._._..........__.___..........._._...._.._._...........
S6=DL+0.75LL+0.75SL
0.02339
.
0.00000
0.00000
_.». ...............
1
0.00233
0.08001
0.00000
0.00000
0.00000
-0.00100
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00107
3
0.00233
-0.00634
0.00000
0.00000
0.00000
-0.00222
4
0.00000
0.00000 •
0.00000
0.00000
0.00000
-0.00009
5
0.00161
-0.01203
0.00000
0.00000
0.00000
0.00014
6
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00103
7
0.00095
-0.00648
0.00000
0.00000
0.00000
0.00205
8
0.00095
0.06716
0.00000
0.00000
0.00000
0.00083
Condition
87=DL+0.6Wx
1
-0.09247
0.02105
0.00000
0.00000
0.00000
-0.00022
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00175
3
-0.09245
-0.00356
0.00000
0.00000
0.00000
-0.00095
4
0.00000
0.00000
0.00000
0.00000
0.00000
0.00122
5
-0.09284
-0.00715
0.00000
0.00000
0.00000
0.00014
6
0.00000
0.00000
0.00000
0.00000
0.00000
0.00061
7
-0.09321
-0.00349
0.00000
0.00000
0.00000
0.00137
8
-0.09322
0.05165
0.00000
0.00000
0.00000
0.00064
............
Condition
-"__-..... _................. ....
S8=DL+0.7EOx
_.... ._. ............
____..._.._------- --_._._._
..... ...._-..-.............................
1
-0.10806
0.01794
0.00000
0.00000
0.00000
-0.00017
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00195
3
-0.10804
-0.00357
0.00000
0.00000
0.00000
-0.00091
4
0.00000
0.00000
0.00000
0.00000
0.00000
0.00143
5
-0.10843
-0.00715
0.00000
0.00000
0.00000
0.00015
6
0.00000
0.00000
0.00000
0.00000
0.00000
0.00080
7
-0.10880
-0.00347
0.00000
0.00000
0.00000
0.00142
8
-0.10881
0.05477
0.00000
0.00000
0.00000
0.00066
Condition S9=DL+0.75LL+0.45Wx+0.75SL
1
-0.07054
0.06549
0.00000
0.00000
0.00000
-0.00080
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00198
3
-0.07053
-0.00640
0.00000
0.00000
0.00000
-0.00202
4
0.00000
0.00000
0.00000
0.00000
0.00000
0.00090
5
-0.07124
-0.01203
0.00000
0.00000
0.00000
0.00019
6
0.00000
0.00000
0.00000
0.00000
0.00000
-0.00012
7
-0.07191
-0.00642
0.00000
0.00000
0.00000
0.00225
8
-0.07192
0.08168
0.00000
0.00000
0.00000
0.00103
_....... _......
Condition
............. ... ...........
S70=DL+0.525EDx
._._.._....._...._.................
W.__ .................
_... _...._.».»........_....._..__._........_...
1
-0.08077
0.02339
0.00000
0.00000
0.00000
-0.00025
2
0.00000
0.00000
0.00000
0.00000
0.00000
0.00160
3
-0.08076
-0.00355
0.00000
0.00000
0.00000
-0.00098
4
0.00000
0.00000
0.00000
0.00000
0.00000
0.00106
5
-0.08115
-0.00715
0.00000
0.00000
0.00000
0.00013
6
0.00000
0.00000
0.00000
0.00000
0.00000
0.00046
7
-0.08151
-0.00350
0.00000
0.00000
0.00000
0.00134
8
-0.08153
0.04932
0.00000
0.00000
0.00000
0.00061
Page DS068
Condition S71.DL+0.75SL
1 0.00148
0.04777
0.00000
0.00000
0.00000
-0.00058
2 0.00000
0.00000
0.00000
0.00000
0.00000
0.00070
3 0.00148
-0.00431
0.00000
0.00000
0.00000
-0.00146
4 0.00000
0.00000
0.00000
0.00000
0.00000
-0.00006
5 0.00101
-0.00825
0.00000
0.00000
0.00000
0.00009
6 0.00000
0.00000
0.00000
0.00000
0.00000
-0.00067
7 0.00057
-0.00440
0.00000
0.00000
0.00000
0.00134
8 0.00057
0.03903
0.00000
0.00000
0.00000
0.00046
Condition S12=DL+0.525EQx+0.75SL
1 -0.08118
0.03128
0.00000
0.00000
0.00000
-0.00035
I
2 0.00000
0.00000
0.00000
0.00000
0.00000
0.00174
-0.00217
3 -0.08116
-0.00438
0.00000
0.00000
0.00000
-0.00123
u
4 0.00000
0.00000
0.00000
0.00000
0.00000
0.00106
0.00000
5 -0.08163
-0.00825
0.00000
0.00000
0.00000
0.00015
0.00000
6 0.00000
0.00000
0.00000
0.00000
0.00000
0.00036 '
0.00092
7 -0.08207
-0.00434
0.00000
0.00000
0.00000
0.00157
8 -0.08208
0.05552
0.00000
0.00000
0.00000
0.00068
Condition S13=0.6DL+0.6Wx
1 -0.09111
0.00547
0.00000
0.00000
0.00000
-0.00003
2 0.00000
0.00000
0.00000
0.00000
0.00000
0.00149
3 -0.09109
-0.00217
0.00000
0.00000
0.00000
-0.00047
4 0.00000
0.00000
0.00000
0.00000
0.00000
0.00121
5 -0.09132
-0.00429
0.00000
0.00000
0.00000
0.00011
6 0.00000
0.00000
0.00000
0.00000
0.00000
0.00081
7 -0.09155
-0.00206
0.00000
0.00000
0.00000
0.00092
8 -0.09156
0.03809
0.00000
0.00000
0.00000
0.00048
Condition S14=0.6DL+0.7EQz
1 -0.10640
0.00242
0.00000
0.00000
0.00000
0.00001
2 0.00000
0.00000
0.00000
0.00000
0.00000
0.00168
3 -0.10638
-0.00218
0.00000
0.00000
0.00000
-0.00043
4 0.00000
0.00000
0.00000
0.00000
0.00000
0.00142
5 -0.10661
-0.00429
0.00000
0.00000
0.00000
0.00012
6 0.00000
0.00000
0.00000
0.00000
0.00000
0.00100
7 -0.10684
-0.00205
0.00000
0.00000
0.00000
0.00096
8 -0.10685
0.04114
0.00000
0.00000
0.00000
0.00053
Reactions
MY
Y C_s,
t FY Mx
z Fx
Fz
Adz
Direction of positive forces and moments
Page i 1017, 68
sl1M 0.00000 88.64500 0.00000 0.00000 0.00000 0.00000
Page PQYPM Ali
Forces IKiol
Moments IKiD*M
Node
FX
FY
FZ
MX
MY
MZ
..............................
Condition
_..............
DL=Dead Load
......... ..._....._._._
..___....._..._.._.._.......»........_._.__._.
2
0.82722
16.37105
0.00000
0.00000
0.00000
0.00000
4
-0.05520
33.57046
0.00000
0.00000
0.00000
0.00000
6
-0.77202
16.71599
0.00000
0.00000
0.00000
0.00000
SUM
_ »
0.00000
_.._._.__._._...
66.65750
_ ._._._....._._........»..
0.00000
0.00000
------------------
0.00000
- - -- i
0.00000
Condition
LL=Live Load
I
2
0.69398
12.72273
0.00000
0.00000
0.00000
0.00000
4
-0.04262
23.66781
0.00000
0.00000
0.00000
0.00000
6
-0.65135
12.99347
0.00000
0.00000
0.00000
0.00000
_. ..................
sl1M
................._._....._.....,...---.......-----_._..»......._.__.....__.._..__............._..__..._._.»..».».»--._._....__..
0.00000
49.38400
0.00000
0.00000
0.00000
0.00000
Condition
SL=Snow Load
2
0.22902
5.16423
0.00000
0.00000
0.00000
0.00000
4
-0.02015
6.86779
0.00000
0.00000
0.00000
0.00000
6
-0.20887
5.27998
0.00000
0.00000
0.00000
0.00000
..»»..»........_.._
SUM
......... .............
0.00000
__-_..... .........................
17.31200
.._.........._......
0.00000
_......................................
0.00000
.....
0.00000
_._..... .,.._..
0.00000
Condition
Wx=Wind in X
2
0.66811
0.55433
0.00000
0.00000
0.00000
0.00000
4
0.87973
0.00014
0.00000
0.00000
0.00000
0.00000
6
0.66975
-0.55447
0.00000
0.00000
0.00000
0.00000
................
sl1M
.............. __.______._._....._.....__.._._
2.21760
0.00000
.............._._._........_........____.....___.._._..._.._...._.:_._.._.._...:.
0.00000
0.00000
0.00000
0.00000
Condition
EOx=Seismic In X
2
0.66811
0.55433
0.00000
0.00000
0.00000
0.00000 1
4
0.87973
0.00014
0.00000
0.00000
0.00000
0.00000
6-
0.66975
-0.55447
0.00000
0»00000
0.00000
0.00000
SUM .....
_ -
^ 2.21760
-
0.00000
- - '
0.00000
' W
0.00000 _
_ ^ - --
0.00000
'
0.00000
Condition
D1=1.4DL
2
1.15665
22.91831
0.00000
0.00000
0.00000
P
0.00000
4
-0.07711
47.00083
0.00000
0.00000
0.00000
0.00000
6
-1.07954
23.40136
0.00000
0.00000
0.00000
0.00000
--_-.-- ....
sl1M
._............................................
0.00000
..__.__......----_-.........._....._.-_....._....-------------..._..._._.............».
93.32050
0.00000
0.00000
0.00000
0.00000
Condition
D2=1.20L+1.6LL
2
2.09276
39.99330
0.00000
0.00000
0.00000
0.00000
4
-0.13334
78.16858
0.00000
0.00000
0.00000
0.00000
6
-1.95942
40.84152
0.00000
0.00000
0.00000
_.__._..____......_........_....__.._._.._._.___._._......._..._._..........
SUM
0.00000
159.00340
0.00000
_ ^ M0.00000
._._.._
0.00000
...........
0.00000
0.00000
Condition
D3=1.2DL+O.SSL
2
1.10569
22.22618
0.00000
0.00000
0.00000
0.00000
4
-0.07614
43.72067
0.00000
0.00000
0.00000
0.00000
6
-1.02954
22.69814
0.00000
0.00000
0.00000
0.00000
sl1M 0.00000 88.64500 0.00000 0.00000 0.00000 0.00000
Page PQYPM Ali
Condition
D4-1.2DL+1.6LL+0.5SL
2
2.20542
42.57389
0.00000
0.00000
0.00000
0.00000
4
-0.14321
81.60526
0.00000
0.00000
0.00000
0.00000
6
-2.06220
43.48025
0.00000
0.00000
0.00000
0.00000
SUM
0.00000
167.65940
0.00000
0.00000
0.00000
0.00000
Condition
D5=1.2DL+1.6SL
2
1.35533
27.90498
0.00000
0.00000
0.00000
0.00000 j
4
-0.09806
51.27866
0.00000
0.00000
O.00D00
0.00000
6
-1.25727
_._._._.._....
28.50456
0.00000
0.00000
0.00000
0.00000
I
SUM
0.00000
........... .....
107.68820
.................................................................................
0.00000
0.00000
0.00000
-„...
0.00000
Condition
D6=1.2DL+0.5Wx
2
1.33023
19.93655
0.00000
0.00000
0.00000
0.00000 f
4
0.36614
40.28551
0.00000
0.00000
0.00000
0.00000
6
-0.58757
19.76694
0.00000
0.00000
0.00000
0.00000
SUM
1.10860
79.98900
0.00000
0.00000
0.00000
0.00000
Condition
D7.1.2DL+1.6SL+LL
2
2.04231
40.62200
0.00000
0.00000
0.00000
0.00000
4
-0.13994
74.95705
0.00000
0.00000
0.00000
0.00000
6
-1.90237
41.49315
0.00000
0.00000
0.00000
0.00000
_.--_-______.______-_____._-__-_..__._.._...._._.__--_-_-__._.-_-__._
SUM
0.00000
157.07220
...................................
0,00000
0.00000
0.00000
0.00000
Condition
D8=1.2DL+1,6SL+0.5Wx
2
1.69379
28.20223
0.00000
0.00000
0.00000
0.00000
4
0.33385
51.27867
0.00000
0.00000
0.00000
0.00000
6
-0.91884
28.20730
0.00000
0.00000
0.00000
0.00000
SUM
1.10880
107.68820
0.00000
0.00000
0.00000
0.00000
Condition
D9.1.2DL+Wx
2
1.66799
20.22830
0.00000
0.00000
0.00000
0.00000
4
0.79845
40.28560
0.00000
0.00000
0.00000
0.00000 I
6
--_»__--_
-0.24884
19.47510
0.00000
0.00000»
0.00000
0.00000
----
SUM
_---- ----..__._..-...-_..._,....._
2.21760
...--_.....
79.98900
---'- . -.......
000000
.._..
0.00000
0.00000
_
0.00000 `
Condition
D10=1.2DL+Wx+O,5SL
II
2
1.78180
22.81308
0.00000
0.00000
0.00000
0.00000
4
0.78823
43.72078
0.00000
0.00000
0.00000
0.00000
6
-0.35243
22.11114
0.00000
0.00000
0.00000
0.00000
SUM
-__......................
2.21760
........_....._..__..._....._....___•-_._._....._._._-.._....._.._._.........._......._..-__.
88.64500
0.00000
0.00000
0.00000
0.00000
4
Condition
011=12DL+Wx+LL
2
2.36129
32.96681
0.00000
0.00000
0.00000
0.00000
4
0.74810
63.96097
0.00000
0.00000
0.00000
0.00000
6
-0.89179
32.44522
0.00000
0.00000
0.00000
0.00000 ..
SUM 2.21760 129.37300 0.00000 0.00000 0.00000 0.00000
Page POz'of168
Condition D12=1.2DL+Wx+LL+0.5SL
2
2.47452
35.55135
0.00000
0.00000
0.00000
0.00000 -
4
0.73787
67.39708
0.00000
0.00000
0.00000
0.00000
6
-0.99480
35.08057
0.00000
0.00000
0.00000
0.00000
i
SUM
2.21760
138.02900
0.00000
0.00000
0.00000
0.00000
Condition
D13=1.2DL+0.2SL
2
1.03751
20.67734
0.00000
0.00000
0.00000
0.00000
4
-0.07016
41.65954
0.00000
0.00000
0.00000
0.00000
6
-0.96735
21.11461
0.00000
0.00000
0.00000
0.00000
SUM
0.00000
83.45140
0.00000
0.00000
0.00000
0.00000
Condition
014=1.2DL+EOx
2
1.66799
20.22830
0.00000
0.00000
0.00000
0.00000
4
0.79845
40.26560
0.00000
0.00000
0.00000
0.00000
6
-0.24884
. ..... .........
19.47510
_........ _._......
0.00000
0.00000
0.00000
0.00000
St1M
2.21760
79.98900
........... ..._...........
0.00000
..................................
0.00000
..... -_........................
0.00000
.--...
0.00000
Condition
D15=1.2DL+LL+0.2SL
2
1.72623
33.39581
0.00000
0.00000
0.00000
0.00000
4
-0.11222
65.33531
0.00000
0.00000
0.00000
0.00000
6
-1.61401
34.10429
0.00000
0.00000
0.00000
0.00000
_.__...._....-----------
SUM
0.00000
132.83540
0.00000
......
0.00000
0.00000
0.00000
Condition
D16=1.20L+EQx+0.2SL
2
1.71353
21.26222
0.00000
0.00000
0.00000
0.00000
4
0.79436
41.65965
0.00000
0.00000
0.00000
0.00000
6
-0.29029
20.52953
0.00000
0.00000
0.00000
0.00000
.............................
SUM
_...............
2.21760
.__._.......................................
83.45140
0.00000
......... ._._......._....._.._._.
0.00000
..................
0.00000
_.r.
0.00000
Condition
D17=1.2DL+EL1x+LL
2
2.36129
32.96681
0.00000
0.00000
0.00000
0.00000
4
0.74810
63.96097
0.00000
0.00000
0.00000
0.00000
6
-0.89179
__.....
32.44522
0.00000
0.00000
0.00000
0.00000
------------------
SUM
__------ _............................................
2.21760
129.37300
.----------
0.00000
------ _.._.._._,_,.,_._.__..-_.,__._.__,_.___..,,__.__.......
0.00000
0.00000
0.00000
Condition
078=1.20E+EOx+LL+0.2SL
I
2
2.40660
34.00063
0.00000
0.00000
0.00000
0.00000
4
0.74401
65.33539
0.00000
0.00000
0.00000
0.00000
6
-0.93300
33.49938
0.00000
0.00000
0.00000
0.00000
... ....................................
SUM
........
2.21760
.-..---....... -....................
132.83540
....
0.00000
...... ........ ...................
0.00000
._.___._._._...._....._.».....
0.00000
0.00000
Condition
D19=0.9DL+Wx
2
1.41863
15.31004
0.00000
0.00000
0.00000
0.00000
4
0.81886
30.21318
0.00000
0.00000
0.00000
0.00000
6
-0.01989
14.46853
0.00000
0.00000
0.00000
0.00000
........................
SUM
...................................................
2.21760
59.99175
_..................................
0.00000
0.00000
.»................._........_._._.».....
0.00000
0.00000
PagealNW168
Condition D20=0.9DL+EOx
I
2
1.41863
15.31004
0.00000
0.00000
0.00000
0.00000
4
0.81886
30.21318
0.00000
0.00000
0.00000
0.00000
6
-0.01989
14.46853
0.00000
0.00000
0.00000
0.00000
...............
SUM
..................................
2.21760
.... .._._.____W_».._....._._.._._..____...._._.__...........................
59.99175
0.00000
0.00000
------------------
0.00000
-
0.00000
Condition
Sl -DL
2
0.62722
16.37105
0.00000
0.00000
0.00000
0.00000
4
-0.05520
33.57046
0.00000
0.00000
0.00000
0.00000
6
-0.77202
16.71599
0.00000
0.00000
0.00000
0.00000
.__ ............
SUM
.................... .._--__._......
0.00000
.... ............................
66.65750
._....»....»...»........»_._.._.._.�_...__....___M.__...___»
0,00000
0.00000
0.00000
0.00000
Condition
S2=DL+LL
2
1.51702
29.09040
0.00000
0.00000
0.00000
0.00000
4
-0.09736
57.24458
0.00000
0.00000
0.00000
0.00000
6
-1.41965
29.70651
0.00000
0.00000
0.00000
0,00000
.......................................
SUM
........._....._.»..._'"_._.__.__._._.____..___.___._...____.__-_
0.00000
116.04150
0.00000
........
0.00000
.-_........... .....................
0.00000
...
0.00000
Condition
S3=DL+SL
2
1.05471
21.53405
0.00000
0.00000
0.00000
0.00000
4
-0.07518
40.44054
0.00000
0.00000
0.00000
0.00000
6
-0.97954
21.99492
0.00000
0,00000
0.00000
0.00000
__.._................._..__._..._....__..._-_....._.._.__.___......_.._........._........................_._.....__....__...-___._..........__..»....._._
SUM
0.00000
83.96950
0.00000
0.00000
0.00000
0.00000
Condition
S4-DL+0.75LL
2
1.34489
25.91082
0.00000
0.00000
0.00000
0.00000
4
-0.08686
51.32557
0.00000
0.00000
0.00000
0.00000
6
-1.25802
26.45910
0.00000
0.00000
0.00000
0.00000
__.....__.__._......___._..__.__._.._.__......
SUM
0.00000
__...... ._
103.69550
...... ... ....................................._...__
0.00000
0.00000
...............................
0.00000
0.00000
Condition
S5=DL+0.75SL
2
0.99788
20.24333
0.00000
0.00000
0.00000
0.00000
4
-0.07019
38.72295
0.00000
0.00000
0.00000
0.00000
6
-0.92769
20.67521
0.00000
0.00000
0.00000
0.00000
....... .......................
SUM
...____....__._._..._.._.-_._
0.00000
79.64150
....... ____-_._._... _
0.00000
................. .-------------------
0.00000
...... ......... _._
0.00000
............ ...
0.00000
Condition
S6=DL+0.75LL+0.75SL
2
1.51485
29.78253
0.00000
0.00000
0.00000
0.00000
4
-0.10178
66.47911
0,00000
0.00000
0.00000
0.00000
6
-1.41307
30.41785
0.00000
0.00000
0.00000
0.00000
..... ..... ..
SUM
...................................
0.00000
_.... .......
116.67950
0.00000
.-.___._.._._-------- -------
0.00000
_-_._._...__._-.............
0.00000
...... ._.»-.-
0.00000
Condition
S7-DL+0.6Wx
2
1.23217
16.71612
0.00000
0.00000
0.00000
0.00000
4
0.46516
33.57050
0.00000
0.00000
0.00000
0.00000
6
-0.36677
16.36888
0.00000
0.00000
0.00000
0.00000
... _•-......................
SUM
.--•_.-__........-.._._..._......_._......_..........._....._____..._._......_._...._......_....._._._............_.........___.__..
1.33056
66.65750
0.00000
0.00000
0.00000
0.00000
Page PoaV &
Condition SS-DL+0.7EQx
2
1.29960
16.77596
0.00000
0.00000
0.00000
0.00000
4
0.55188
33.57051
0.00000
0.00000
0.00000
0.00000
-
6
•0.29917
16.31102
0.00000
0.00000
0.00000
0.00000
SUM
... _...........
1.55232
...... _........................
66.65750
___...
0.00000
............... ...._._._._._._.........
0.00000
.......................
0.00000
0.00000
Condition
S9=DL+0.75LL+0.45Wx+0.75SL
2
1.82017
30.05171
0.00000
0.00000
0.00000
0.00000
i
4
0.28560
56.47911
0.00000
0.00000
0.00000
0.00000
i
6
-1.10786
30.14868
0.00000
0.00000
0.00000
0.00000
SUM
.__.____._ . .......
0.99792
......... _...............................
116.67950
....._.._._....�........_..._.._..._'__-._.___._..............__.
0.00000
0.00000
0.00000
0.00000
!
Condition
S10=DL+0.525EQx
2
1.18158
16.67474
0.00000
0.00000
0.00000
0.00000
4
0.40011
33.57049
0.00000
0.00000
0.00000
0.00000
6
-0.41746
16.41227
0.00000
0.00000
0.00000
0.00000
f
...._._......................................................
SUM
1.16424
66.65750
._.__.'._____._.__.....»...-........_..__.._._.__._.___.--......_........._._...
0.00000
0.00000
0.00000
0.00000
Condition
S71.DL+0.75SL
2
0.99788
20.24333
0.00000
0.00000
0.00000
0.00000
4
-0.07019
38.72295
0.00000
0.00000
0.00000
0.00000
6
-0.92769
20.67521
0.00000
0.00000
0.00000
0.00000
SUM
...............»..._._...___.....
0.00000
_............................
79.64150
_.._............
0.00000
............ .......
0.00000
........ .... .................
0.00000
.............
0.00000
Condition
S12.DL+0.525EQx+0.75SL
_
2
1.35237
20.54963
0.00000
0.00000
0.00000
0.00000
4
0.38495
36.72297
0.00000
0.00000
0.00000
0.00000
6
-0.57308
20.36889
0.00000
0.00000
0.00000
0.00000
P
...... .........
SUM
........ ...... ....._..___.._.__._____._.
1.16424
79.64150
............... ........................
0.00000
-._-..............................................
0.00000
0.00000
0.00000
Condition
S13=0.6DL+0.6Wx
i
2
0.90030
10.16425
0.00000
0.00000
0.00000
0.00000
4
0.49025
20.14138
0.00000
0.00000
0.00000
0.00000
6
-0.05999
9.68887
0.00000
0.00000
0.00000
0.00000
!
I
__..............................._.______._._..___.__....__......_..„........_......._......_._____.._._._._...........____.....__._._.___._._.-_
SUM
1.33056
39.99450
0.00000
0.00000
0.00000
0.00000
Condition
S14=0.6DL+0.7EQx
ff
f
2
0.96747
10.22110
0.00000
0.00000
0.00000
0.00000
4
0.57749
20.14140
0.00000
0.00000
0.00000
0.00000
6
0.00736
9.63200
0.00000
0.00000
0.00000
0.00000
..................
SUM
_.......... ............................................
1.55232
39.99450
0.00000
0.00000
-- W..._.........__.-...
0.00000
0.00000
Page PUo'oflT88
Current Date: 10/18/2016 12:06 PM
Units system: English
File name: TAStructural\2016 Structural JobsQO16-2850_HA Mattson Apartments\Gridlie 5.etz\
Steel Code Check
Report: Summary- Group by description
Load conditions to be included in design
D1=1.4DL
D2=1.2DL+1.6LL
D3=1.2DL+O.SSL
D4=1.2DL+1.6LL+0.5SL
D5=1.2DL+1.6SL
D6=1.2DL+0.5Wx
D7=1.2DL+1.6SL+LL
D 8=1.2 D L+ 1.6 S L+0.5 W x
D9=1.2DL+Wx
D10=1.2DL+Wx+0.5SL
D11=1.2DL+Wx+LL
131 2=1.2DL+Wx+LL+0.58L
D13=1.2DL+0.2SL
D14=1.2DL+EQx
D15=1.2DL+LL+0.2SL
D16=12DL+EQx+0.2SL
D17=1.2DL+EQx+LL
D7 8=1.2DL+EQx+LL+0.2SL
D19=0.9DL+Wx
D20=0.9DL+EQx
Description
.... .... ............................
Section
...........
Member
Ctrl Eq.
Ratio
Status
Reference
Beam
..._.... _..............
W 10X54
_..........................
2
.......... . o ... ._.......
D4 at 100.00/
...................
0.56
............
OK
._............. _.....
Eq. H1 -1b
Column
TUBE 1ox6x6 8
5
D12 at 100.00%
0.19
OK
Eq. Hl -ib
Page pO T168
E= Anchor DesignerTM
(Sa_nyr_ rui
Software
Version 2.4.5673.270
1.Proact Information
Customer company:
Customer contact name
Customer e-mail:
Comment:
2. input Data 8 Anchor Parameters
General
Design method:ACI 318-08
Units: Imperial units
Anchor Information:
Anchor type: Cast -in-place
Material: AB H
Diameter (inch): 0.625
Effective Embedment depth, ha (inch): 6.000
Anchor category: -
Anchor ductility: Yes
hmm (Inch): 8.13
Cmin (inch): 1.25
Smia (inch): 2.50
Company:
12ate:
11011812016
Engineer:
Page:
1/4
Project:
Address:
Phone:
E-mail:
Project description: BPI
Location: Gridline 5
Fastening description:
Base Material
Concrete: Normal -weight
Concrete thickness, h (inch): 24.00
Stale: Cracked
Compressive strength, f. (psi): 2500
4r,v: 1.0
Reinforcement condition: B tension, B shear
Supplemental reinforcement: Not applicable
Reinforcement provided at corners: No
Do not evaluate concrete breakout in tension: No
Do not evaluate concrete breakout in shear: No
Ignore Edo requirement: Yes
Build-up grout pad: No
P1
i'1
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3671 wxw.strongtie.com
Page 107 of 168
Base Plate
Load and Geometry
Length x Width x Thickness (inch): 11.00 x 12.00 x 0.75
Load factor source: ACI 318 Section 9.2
Yield stress: 36000 psi
Load combination: U = 0.91) + 1.0E + 1.6H
Seismic design: Yes
Profile typelsize: HSS10X6X5/8
Anchors subjected to sustained tension: Not applicable
Strength reduction factor for brittle failure, On: 1.0
Apply entire shear load at front row: No
Z
Anchors only resisting wind and/or seismic loads: No
<Figure 1>
1$668 Ib
P1
i'1
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3671 wxw.strongtie.com
Page 107 of 168
t�lr/ • Anchor Designer TM
Software
-!' Version 2.4.5673.270
<Figure 2>
Company: Date:
10/18/2016
Engineer: Page:
2/4
Project:
Address:
Phone:
E-mail:
Recommended Anchor
Anchor Name: PAB Pre -Assembled Anchor Bolt - PABSH (5/8"0)
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925,580.9000 Fax: 925.847.3871 www.stronglie.com
Page 108 of 168
®' Anchor DesignerTIA
y l; Software
p Version 2.4.5673.270
w
Company:
Date:
1011812016
Engineer:
Page:
3!4
Project:
Address:
Phone:
E-mail:
3, Resulting Anchor
Forces
Anchor
Tension load,
Shear load x.
Shear load y,
Shear load combined,
Na. (lb)
VY.. (lb)
Vasy (Ib)
q(Vu..)'+(Vwy)' (lb)
1
0.0
418.8
0.0
418.8
2
0.0
418.8
0.0
418.8
3
0.0
418.8
0.0
418.8
4
0.0
418.8
0.0
418.8
0.0
1675.0
Maximum concrete compression strain (%.): 0.00
Maximum concrete compression stress (psi): 0
Resultant tension force (lb): 0
Resultant compression force (lb): 0
Eccentricity of resultant tension forces in x-axis, e'N. (inch): 0.00
Eccentricity of resultant tension forces in y-axis, e'N1(inch): 0.00
Eccentricity of resultant shear forces in x-axis, e'v. (inch): 0.00
Eccentricity of resultant shear forces in y-axis, a'" (inch): 0.00
8 Steel Strength of Anchor in Shear (Sec D.6.1)
Va. (lb) O6 W 0 ,by.dQVsa (Ib)
16270 1.0 0.65 10576
9. Concrete Breakout Strength of Anchorin Shear (Sec. D.6.21
Shear perpendicular to edge in x -direction:
Vh.=7(le/de)° Ndaigf,Car' s(Eq. D-24)
<Figure 3>
I. (in) da (in) A rc (psi) car (in) Vba (Ib)
5.00 0.63 1.00 2500 12.00 17434
01 o2
Y
X
o4 o3
0.750doVwg. = 0.75�dq (Avc/Avw)'Fmv V,v c,vVh,VVbx (Sec. D.3.3.3, D.4.1 & Eq. D-22)
Avc(ing) Aw.(in') Veov v KV y'h.v Vb.(lb)
0 0.7504V b, (Ib)
288.00 648.00 1.000 0.758 1.000 1.000 17434 0.70 3085
Shear parallel to edge in x -direction:
Vey = 7(l./ da)°Ncl.;14rcc.rr a (Eq. D-24)
I. (in) ds (in) A Fc (psi) c.r (in) Vbr (lb)
5.00 0.63 1.00 2500 3.50 2746
0.750d0l/ bg. = 0.75¢dO(2)(Aw/Av-)'/�.,v'/'.avKv'/'h,vVar (Sec. D.4.1, D.6.2.1(c) & Eq. D-22)
Avc (in') Awe (In') P%..v V'O v V'..v T'h,v Vey (lb) d 0.75OdOVebg. (lb)
84.00 55.13 1.000 1.000 1.000 1.000 2746 0.70 4394
10. Concrete Pryout Strength of Anchor In Shear (Sec. D.6.3)
0.75OdO Vcpg = 0.75¢r¢k.pN.bg = 0.75¢4k.p(AN./ANm) y'.C,NY'.a,NyoxY',.g,NNe (Eq. D-31)
k.p ANc (in') AN.. (in') y'a.,N W.d,N KN 'PgN Nb (lb) 0 0.750dol/w (lb)
2.0 256.00 81.28 1.000 0.933 1.000 1.000 6252 0.70 19287
11. Results
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility,
Simpson Strong -Tie Company Inc 5956 N,, Las Positas Boulevard Pleasanton, CA 94588 Phone: 925,660.9000 Fax: 925.847.3871 wwwatrongtie.com
Page 109 of 168
Anchor DesignerTM
Software
Version 2.4.5673.270
m
Company:
IlDatw
10/18/2016
Engineer:
I Page:
1414
Project:
Address:
Phone:
E-mail:
Interaction of Tensile and Shear Forces (Sec. D.71
Shear Factored Load, Vn. (Ib)
Design Strength, aVn (Ib)
Ratio
Status
Steel 419
10576
0.04
Pass
T Concrete breakout x+ 1675
3085
0.54
Pass (Governs)
II Concrete breakout y- 838
4394
0.19
Pass (Governs)
Pryout 1675
19287
0.09
Pass
PAB5H (5/8"0) with hef = 6.000 inch meets the selected design criteria.
12. Warnings
- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 0.8.1 and D.8.2 for torqued cast -in-place anchor is waived per
designer option.
- Per designer input, ductility requirements have been determined to be satisfied — designer to verify.
Designer must exercise own judgement to determine if this design is suitable.
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
Simpson Strong -Tie Company Inc 5956 W. Las Posites Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925,847.3871 www.strongtie.com
Page 110 of 168
Anchor DesignerTM
Software
Version 2.4.5673.270
ct Information
Customer company:
Customer contact name:
Customer e-mail:
Comment:
2 Input Data & Anchor Parameters
General
Design melhod:ACl 318-08
Units: Imperial units
Anchor Information:
Anchor type: Cast -in-place
Material: AB_H
Diameter (Inch): 0.625
Effective Embedment depth, her (inch): 6.000
Anchor category: -
Anchor ductility: Yes
hmm (inch): 8.13
Cmm (Inch): 1.25
Smm (Inch): 2.50
Load and Geometry
Load factor source: ACI 318 Section 9.2
Load combination: U = 1.20 + 1.6(Lr or S or R) + 1.OL
Seismic design: No
Anchors subjected to sustained tension: Not applicable
Apply entire shear load at front row: No
Anchors only resisting wind and/or seismic loads: No Z
<Figure 1>
Company: jDater 10/14/2016
Engineer: I Page: 1/4
Project:
Address:
Phone:
E-mail:
7655 Ib
Project description: BP2 @ TB22
Location: Gridline 5
Fastening description:
Base Material
Concrete: Normal -weight
Concrete thickness, h (inch): 24.00
State: Cracked
Compressive strength, fe (psi): 2500
W,,.v: 1.0
Reinforcement condition: B tension, B shear
Supplemental reinforcement: Not applicable
Reinforcement provided at corners: No
Do not evaluate concrete breakout in tension: No
Do not evaluate concrete breakout in shear: No
Ignore 6do requirement: Yes
Build-up grout pad: No
Base Plate
Length x Width x Thickness (inch): 6.00 x 12.00 x 0.75
Yield stress: 36000 psi
Profile type/size: HSS5X5X1/4
0 Ib
y
0 ft -Ib
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847,3871 www.strongtie.ccm
Page 111 of 168
®' Anchor DesignerTIM
_ Software
Version 2.4.5673.270
<Figure 2>
Company: Date:
10/14/2016
Engineer: Page:
2/4
Project:
Address:
Phone:
E-mail:
nn
Recommended Anchor
Anchor Name: PAB Pre -Assembled Anchor Boll - PA65H (5/8"0)
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.cam
Page 112 of 168
Anchor DesignerTM
Software
F�14�.- �'_- Version 2.4.5673.270
m
Company:
Dale:
10114/2016
Engineer:
Page:
3/4
Project:
Address:
Phone:
E-mail:
3. Resulting Anchor
Farces
Anchor
Tension load,
Shear load x,
Shear load y,
Shear load combined,
Nu. (Ib)
V... (Ib)
Vuay (Ib)
q(VY..)'+(V..y)' (Ib)
1
1913.8
0.0
0.0
0.0
2
1913.8
0.0
0.0
0.0
3
1913.8
0.0
0.0
0.0
4
1913.8
0.0
0.0
0.0
Sum
7655.0
0.0
0.0
0.0
Maximum concrete compression strain (%.): 0.00
Maximum concrete compression stress (psi): 0
Resultant tension force (Ib): 7655
Resultant compression force (lb): 0
Eccentricity of resultant tension forces in x-axis, e'w (inch): 0,00
Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00
4. Steel Strength of Anchor in Tension(Sec. D.5.11
Ns. (lb) O ONs. (lb)
27120 0.75 20340
5. Concrete Breakout Strength of Anchor in Tension (Sec D.5.2)
No = kp7.4foh.r' 5 (Eq. D-7)
ki, A r. (psi) h.r (in) No (Ib)
24.0 1.00 2500 6.000 17636
<Figure 3>
01 Y 02
__10-
04 X 03
ONS g =O (AwIANDD)V`xNT",NYIgNYI[ N% (Sec. D.4.1 & Eq. D-5)
AN. (in 2) AICD (In°) T.N Ybge %'N 'F"N Na (Ib) ONm¢ (Ib)
298.13 324.00 1.000 0.817 1.00 1.000 17636 0.70 9277
ON, = 0%PNp = OKPBAW, (Sec, D.4.1, Eq. D-14 & D-15)
KP Ano (in') f, (psi) O ONm (lb)
1.0 1.94 2500 0.70 27205
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
Simpson Strong -Tie Company Inc 5958 W. Las Posites Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 wwwstrongtie.com
Page 113 of 168
F711'/� i Anchor DesignerTM
Software
Version 2.4.5673.270
Company:
Date:10/14/2016
Engineer:
I Page:
4/4
Project:
Address:
Phone:
E-mail:
11. Results
Interaction Tensile
Shear Forces D.71
of and
Tension
,(Sec.
Factored Load, Naa (lb)
Design Strength, oNa (Ib)
Ratio
Status
Steel
1914
20340
0.09
Pass
Concrete breakout
7655
9277
0.83
Pass (Governs)
Pullout
1914
27205
0.07
Pass
PAB5H (5/8"0) with hef = 6.000 inch meets the selected design criteria.
12. Warninnis
- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections D.8.1 and D.8.2 for torqued cast -in-place anchor is waived per
designer option.
- Designer must exercise own judgement to determine if this design is suitable.
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility,
Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 926.560.9000 Fax: 925.847,3871 www.stronglie.com
Page 114 of 168
Anchor DesignerTM
1 Software
Version 2.4.5673.270
e
1 Protect Information
Customer company:
Customer contact name:
Customer e-mail:
Comment:
2. Inout Data & Anchor Parameters
General
Design method:ACl 318-08
Units: Imperial units
Anchor Information:
Anchor type: Bonded anchor
Material: F1554 Grade 36
Diameter (inch): 0.625
Effective Embedment depth, ho (Inch): 6.000
Code report: ICC -ES ESR -2508
Anchor category: -
Anchor ductility: Yes
hmm (inch): 9.13
cac (Inch): 12.85
Cmm (inch): 1.75
Smio (inch): 3.00
Load and Geometry
Load factor source: ACI 318 Section 9.2
Load combination: not set
Seismic design: Yes
Anchors subjected to sustained tension: No
Strength reduction factor for brittle failure, ma: 1.0
Apply entire shear loo' -- '
Anchors only resistinc
<Figure 1>
Company:
jDate,
110117/2016
Engineer:
Page:
1/4
Project:
Address:
Phone:
E-mail:
Project description: HDU5 interior
Location: Gridline 5
Fastening description:
Base Material
Concrete: Normal -weight
Concrete thickness, h (inch): 10.00
State: Cracked
Compressive strength, fa (psi): 2500
Wo,v: 1.0
Reinforcement condition: B tension, B shear
Supplemental reinforcement: Not applicable
Reinforcement provided at corners: No
Do not evaluate concrete breakout in tension: No
Do not evaluate concrete breakout in shear: No
Hole condition: Dry concrete
Inspection: Continuous
Temperature range, Shorl/Long: 110!75°F
Ignore Edo requirement: Not applicable
Build-up grout pad: No
Z
0 Ib
Y
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
Simpson Sirong-Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94688 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com
Page 115 of 168
IMF
',►� Anchor Designer TM
Software
Version 2.4.5673.270
m
<Figure 2>
Company: Dale:
10/17/2016
Engineer: page:
1214
Project:
Address:
Phone:
E-mail:
Recommended Anchor
Anchor Name: SET -XP® - SET -XP w/ 5/8"0 F1554 Gr. 36
Code Report: ICC -ES ESR -2508
Wb -
F1
rYea j1
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94586 Phone: 925.560.9000 Fax: 925.847.3871 www,strongtie.com
Page 116 of 168
®' Anchor DesignerTIA
FA
=7
1 1 , Software
�' ;.�- Version 2.4,5673.270
Company:
Date:
10/17/2016
Engineer:
Page:
3/4
Project:
Address:
Phone:
E-mail:
3. Resulting Anchor Forces
da (in)
h.r(in)
No (lb)
Anchor Tension load,
Shear load x,
Shear load y,
Shear load combined,
N.. (Ib)
V.., (Ib)
V..y (Ib)
4(V�..)2+(V.er)' (lb)
1 2655.0
0.0
0.0
0.0
Sum 2655.0
0.0
0.0
0.0
Maximum concrete compression strain (N.): 0.00
Maximum concrete compression stress (psi): 0
Resultant tension force (lb): 2655
Resultant compression force (lb): 0
Eccentricity of resultant tension forces in x-axis, e'w (inch): 0.00
Eccentricity of resultant tension forces in y-axis, e'NY (inch): 0.00
4. Steel Strength of Anchor in Tension(Sec. D.5.11
Na. (lb) 4 ON.. (lb)
13110 0.75 9833
S. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.21
No = k.A4F.hal5 (Eq. D-7)
k. d P. (psi) her (in) Nb (lb)
17.0 1.00 2500 6.000 12492
0.75Od¢N.n=0.750dO(AmIAN.o)WodNV'c.NV'.r,NNh (Sec. D.3.3.3, D.4.1 & Eq. D-4)
Am (Ins) ANd. (ins V'.d,N VY,N V4r,N Na (lb) 0 0.750d^b (Ib)
324.00 324.00 1.000 1.00 1.000 12492 0.65 6090
6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)
oror=ao-f.had. r K..raNmre
rq=(psi) f.bwa... K..r CUVWr� (psi)
855 1.00 1.00 1.00 855
Nao = rk,vad he(Eq. D-160
rka (psi)
da (in)
h.r(in)
No (lb)
855
0.63
6.000
10073
0.750dmNa =
0.760do (AN./AN.o) T'edmn V'r,N.Nau (Sec. D.3.3.3, D.4.1 & Eq. D-168)
AN. (ins)
ANao (Ins)
VSgrd.
%,,N. N.o (lb) d 0.750doN. (Ib)
223.60
223.60
1.000
1.000 10073 0.65 4910
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility,
Simpson Strong -Tie Company Inc 5956 W. Las Posilas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847,3871 www.slronglie,com
Page 117 of 168
Anchor DesignerTM
Software
Version 2.4.5673.270
Company:Date:
10/17/2016
Engineer: Page:
414
Project:
Address:
Phone:
E-mail:
11. Results
Interaction Tensile
Shear Forces (Sec. D.71
of
Tension
and
Factored Load, N�. (Ib)
Design Strength, eNn (lb)
Ratio
Status
Steel
2655
9833
0.27
Pass -
Concrete breakout
2655
6090
0,44
Pass
Adhesive
2655
4910
0.54
Pass (Governs)
SET -XP w/ 5/8"0 F1564 Gr. 36 with half a 6.000 inch meets the selected design criteria.
12. Warninas
- When cracked concrete is selected, concrete compressive strength used in concrete breakout strength in tension, adhesive strength in tension
and concrete pryout strength in shear for SET -XP adhesive anchor is limited to 2,500 psi per ICC -ES ESR -2508 Section 5.3.
- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and Is provided for historical purposes.
- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections D.8.1 and D.8.2 for torqued cast -in-place anchor is waived per
designer option.
- Per designer input, ductility requirements have been determined to be satisfied — designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturers product literature for hole cleaning and installation instructions.
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
Simpson Strong -Tie Company Inc 5958 W. Las Posilas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.647.3871 www,slrongtie.com
Page 118 of 168
U
3 in
n
a
N
N
0 3Im
�: co
>
r w
m of
a
rn
a
a
u
u
�
a
C
y
g
rn
N
ry
N
q
N
m
a
a
n
c
a
L
N
L
L
a
'
II
of N
d
y
16
u
m
V
m
Y
J
O _
O y
N
O
m Y
a
N
O
a
C
N
a
2 0
O
0
N >
« O
II II 11
p
O
>
N N Z
<p >
II II
11
>
a
N IV
Z
v
�
�
IL
(.7
2
a
D
N
LL
V
U
J
d
u
E
m
o�
O
-
m
LL
N
N
b
U
a
N
¢
p
N
N
N m
U
m
V
¢
o
u
`o
rn
In
~
-
Q
a,
o
w
6
U
a
C U
u
°
F
-Y
O
d
U
U _
m
E
E
It II
O D
p N
Y
a
O
cN�l
a
m
N N
F
A
E
L
p
a
✓ C
n
O
O
C
m
o e
•� r
L 3
>
o
a
¢
a
•� r
j u
p y
W
LL
wp. C
5
O
3
m
II
C O
R L
c
c
O
E N
m E R
Ln
mM
m
C]
O� N p
N p L
uaJ
N
L
II II
Y
e
II a
d
v
u°
.0. fm/l
. �ro
N
3
N
?
C O
0
_ n
N N
iQ-
Fa-
O
L
E
4
o
d E �
E
m
n p
5
rn
a
a
J
II II
ry
II II
II Q
O
D >
n
a
N
N
0 3Im
�: co
E
>
>
N m
N a
a
rn
a
H
C
3
rn
N
ry
N
c
>
m
a
a
n
c
L
N
L
L
a
'
II
of N
d
y
16
J
L
N
N U
p a
O _
O y
a
p
m Y
a
N
Y
C
N
a
2 0
C
N >
« O
II II 11
p
O
>
N N Z
°
a
U D
a
N
N
3
�
�
IL
(.7
2
N
LL
U
N
m
O
°
m
N
b
a
r
¢
U x
0
N
N m
rn
~
-
U
U
m
u
O 10
rn 9 ~
d
p N
Y
a
O
moi
C
3
a
¢
a
•� r
j u
p y
W
LL
W
r
a
O
3
m
v
C O
n
t
U
E N
m E R
Ln
mM
m
C]
O� N p
N p L
uaJ
N
L
II II
q II It
II a
�
c
. �ro
3 3
0
N N
O
> >
E
rn
rn
rn
c
c
c
(Q
t
L
L
L
a
N
N
16
L
L
p a
A
O y
a
m Y
a
N
Y
C
N
N
2 0
C
d
« O
C O
O
3 N
J
3
N
IL
(.7
2
I+age;9 of 168
!)
!,
(\
);"
-cc
k�
\
-
/
k
o
§
-
i
!
2!
2
!&
$!.6\a
!! !
-
)!
It
11
\~�
�
\`�
�M
10
CIO
E
;G
»\)2[
=D
,
`
k
}:\=
r0
\\\\E
7}°}°i
_
.
,
},~0
to
0
}\)§)
(IM
`
!]
$
7\0
/\
\
7/{
!k
_
|
f
f
{
o
§
-
i
!
2!
2
!&
$!.6\a
!! !
-
)!
\~�
�
�M
10
CIO
»\)2[
=D
,
`
k
}:\=
r0
\\\\E
_
to
0
!]
|
f
f
{
§
-
i
!
2!
2
!&
$!.6\a
!! !
-
)!
Ei D
6
Y
U
r
U
s
>
>
iin
X
O
m
N
e
C
u
H
Y
O
N
ip
uN)
O
G
O
y
N
d
n
O
a
N
C
d
a
Y
U
L
U
OI g
G
ro
p e
>
>
u
E N
3m
Y Y
O O
rn N
N r
V tpp
Q
0
1
y
Y
Q
d
u
C
6
u
N
C
y
a
OI
t
A
Y
U
L
U
C
>
>
C
3m
Y
O
rn
M
t9
m
u
N
Y
O
N
N
O
a
d
O
Y
O
y
y
d
y
C
d
v
y
C
y
a
a
ry
d
N
N
Yp
a
N
SIO
W
Q�f
R
RN
N
>
N
d
C
>
0 y
C
II
W
N
Y
II
ro
r`
Y
II
M
W'
Y
J
W
O
u
O
O
J
O 4
OJ
O
O
>
II
N
II
N
11
Z
C
N >
II
N
II
N
II
Z
C
>
N
o
>
II
N
II
fJ
II
Z
C
>
N
d
>
d
>
d
m
N
d
�
0
ll
O
U
N ll
4
V
N
LL
v�
O
M
O
in
M
O
N
O
N
to
U
IN
o
v
{
o
cV
N
N
d
ip
O
d
r
Q
o
u
,K
n
¢
o
u
v
n
O
m
N
O)
ro
li
M
0
OI
t
LL
o o
O)
m
o
e
v
¢
w
o
'"
d
m
mo
N
¢
co
(M
U
a`
w
(m
m
y
C U
m
d
C
m
y
C U
r
U
r
U
6
r
U
O
U
O
II
tl
�y
II
O (p
b
II
II
O f0
ro
II II
O b
i'
CI
r
n
m?
r
N
m
o r
•�
'�
m
•Cc
r
r
n
'o
Y
r
M
o
d
*' c
d
c
o
d
c
A
a
rno
O
rna
rno
N '
o
o
�_
r
>
v>
a
w
a>
a
w
w rn
C
M
C
C
S
O
CC
T
N
�"d
fO
-
N
a
co
a
3
$pF
MN
3 FpF
M
;
ACN
3
a
F
$
oN
>p
F9
p
LL
rC-�
0m
y
QQ
0
3
p
L
c 0$
p 3
0
9
C O
rt
m
3
N
9
c 0
g
U
o
n
M
m
E m
t
O
m
a
o
o
E R
N
.n
O
n
a m
E O
,u
CP
N
tp
[O
Oi
N
pW
^
O
Oi
N
m
0
O�
C
of
O
m
a
a
0
J
L
V a
J
L
O IL
J
L
17 a
gIIIIII�a
�111111
II
It
11IIII�a
c
vM
`c'
�n
33
� d
33
C
Qi Qi
33
d QI
d
d
d
O
O
m n1.
Q
7
C
C
(p
t
L
L
L
m
y
y
f0
L
V
L
N
9
L
N
p V
In
A
7i
y
m
ro
JdE
V
d Y
N
C
m
«
00C
N
C
H
«
d
Q U
j
u
p
dd
C
N
U'
J
N
IL
J
07'age
It
of
168
y
Y
U
U
>
y
o
c y
Sin
O O
M N
N C
N h
oy
N
Q
U
v
C
N
d
a
of
L
Y
V
U
>
c
Sin
O
m
M
IA
N
u
y
O
In
N
V
N
q
L
Q
U
y
h
C
N
v
a
rn
U
U
>
>
o
c y
Sin
O O
M N
N N
N a5
o
2
0
0
U
y
C
v
H
2U2
$I
>
V
C
>
R
C
>
b
C
G
N
G N
G
N
II
C
C
r'
.1L
II
V
O
n'
Y
11
V
O
r'
Y
Ip
II
II
II
C
W
>
II
II
II
C
f` >
II
II
II
C
N
N
Z
D,
yo
N!J
Z
>
o
N
IV
Z
7
a
>
>
•U
N
LL
Oyi
U
N
LL
O
U
N
11
y
N
O
N
M
O
N
M
O
o
'_
N
o
-
N
o
N
o
y
.-
o
v
•-
o
Ip
LL
O
O
m
p
LL
O
O
OI
m
o
D
m
o
D
m
y
D
Q
�
Q
m
O
d
Q`
w
O
N
m
u
Of
y
g
O1
co
u
m
VO-
p
Y O
F
p
Y O
p
Y O
U
U
U
�p
II
II
O fp
N
II II
O 0
N
II
II
O (p
d
d
O
IS
p
L D
p
L D
On
S D
pl O
O) O
QI O
d ^
C
d
>
tN0 E
N
i�
3
>
N
E
b
i
cm
>
tN0 E
N
i
3
�>
wrn
.->
�
n
a
W«
S
u
N L
n
v
a
o
0
4
y O
0No
e
u°
oCf)
Tao
w
I°
«N
c 0
o
o
v
O
O D
C
az
O
DAv
L
E
m
E
E
E
E
ar
E
EEL
Ul y
O
M
y O
N
m
o6
O
pi
m
C6
II II
q
II
II
II � a
II
I
ry
II II
11 � a
II II
q
II
II
II � a
E
rn
m
m
c
c
e
IO
L
t
L
L
F
U
N
W
N
N
N
p
U
q
U
`
y
V
q
ty1
9>
>
V>
O
O
C
U' J
Ul
(JO
S
Yage
1O�
y
l of
168
lL
E
m
W
W
p
Y
U
U
e
>
O
c y
O O
rn in
pi OJ
M m
o voi
c
o
d
O
u
n
y
W
�
¢
v
y
a
E
m
W
p
Y
U
U
o
^
>
u
c 0
O O
m in
M D
o rn
r N
cE
0
d
O
u
n
y
v
W
¢
W
y
p'
g
Y
U
U
rn 8
W
G E
>
u
c y
O O
°' '^
y 0
o n
n m
c
o
d
O
u
n
u
w
¢
v
y
(p
N
ry
N
jp
N
>
O
C
>
m
C
>
N
C
p
¢
p
J
f
N
a
m
O
O
a
a
a
a
n>
n
n
n
c
Oni
N
jy
Z
ai
N
IJ
Z
v
N
NZ
>
>
Y
>C6
W .M..
a
n a
w
a
•U
LL
LL
m
N
N
N
U
N
LL
V
o
N
o
w
N
o
N
N
N
N
T
N
N
N
N
N
N
Q
o
u
t a
d
�
o
W
LL
O O
O1
W
LL
m
m N
d
N0
m
,Im
`0
m
�
Q
m
0
<
N
G
O
Q
ro
N
m
u
O1
c ti
9
i0
u
W
OI
c ti
m
m
O7
~
0
0
10-
0
U O
r
o
Y O
O
E
u n
O iD
E
n
n
O tp
E
n n
O
@
N
c
M
L
O)
y N
n
M
L
rn
y H
a
M
L
rn
y
Opj
O
O
L O
0
O)
O)
.E
oE
o
L 3
>
o
o
L 3
OI
C
C
C
d
2
d
0
O N
0
LL
(I`n
D 30
C 0
0
30C
C
O -0
¢
Q
O -0
Q
Q
O0E
u 0
o
v
E
N
0
E 0
m E
Nn0
E
0
0
OM
O
a
L
as
L
aIL
L
an.
If IIco
Q
b a
II II
N
�� II
II fD a
g
F -
m
am
33'e
3
a,
y y
n
N N
a
N N
O
D 7
O
7 D
O
7 7
E
m
m
m
c
c
c
N
L
L
L
L
u
W
v
l0
L
y
G 9
L
y
9
L
y
Q
d
(W
cc M
O
O
C>
W C
9>
O C
S
C7 J
N
2
U' J
r0
Pag
21Of 168
E
L
A
D
U
>
e
>
00
rn N
M N
m
r r
M
o
d
g
O
U
O
f
c
4 R
0 b
a
y
U
O
—
C
jp
y
c
>
F
F
L
c
N
U
a a
0
c m V
A
Yp
a
y
V
> M
J
O
c
N
M
N m O
n
�
L
N
y^
a
n a
~
c
�
r
•O
m O y
W
>
N
N N
J p
Z v
m
0
A
U
'
m
N
a
D y
w U
c
$ a
LL
M
> n
V N
yN
N
O J
Z
IL
D
O N
ys4
m
N
�
�
ro
N
O
d
N
w
LL m
U
N
ro
O
o 0
LL
m
o m
N
u
r
¢
o
N
A
Y O
M
OI
Q
O
IM
N
A
d
E
n
n _o in
Q
m
m
e~
d
M
F
a
N
Y O
ro
« N
O
O
v
C
L
n n
o
Q n
O
a~
M '
_m
r
c
N
Ic
A
7
�p
C
w �
Y
A M
L O
w C
M
O 3
CO
Ca
V
E
N
rn
h N
m rn E
L
G01
y m
m
rn
N
o M 0
� � O Q
A
J
A
a
II II
m
II
11 II � Q
J a
C
3
m F-V
r0a
n z
a
00
d
n
�c°�
N N
Q L
a
O
E
� 7
A
C
> N N y
U
N
a y
r W
J O Ig O N N m O
yy a
N D II II II C
Om w U
LL N O N
O N
o N N
ro y r
~ { 0 O
E II II O ,O
A 9
Q r a N
A R
O n « CC
O L O
O)
r
> N E 0 L 3
w C_
I
N L a
¢ F � u •� m 3
d
I- v FQ- n t nr n E�a
O
o rn o
t o N N E N
rx 4 m o N! M N 0 Q
J r oa
II II 2 II II II
J n 'p 3 � F- •- _
n 0 N
O 7 �
Y Y
O O
10 c
T N
M N U Y
A O
> 0 N
m
h
rn
C
M
c
n
c
F
> In
N
U
A
Yp
a
y
> M
a
c
M
v
n
L
(!1 G 9
L
N
y^
n a
~
c
�
r
•O
m O y
W
Y
W
J p
m
0
a
D y
h
c
$ a
> n
N N
O J
Z
IL
D
N
�
O
N
w
LL m
U
N
O
o 0
N
u
r
¢
N
A
LL
M
OI
Q
O
IM
N
d
F
O
Y O
O
E
n n
o
Q n
n
a~
W
n
c
N
Ic
A
7
�p
L O
w C
O 3
Ca
N
G01
F
A
C N
s
o
a
r0a
n z
a
00
d
�c°�
V
Q L
a
M
E
N n
O
d
o
V Q
J
t
D a
II II
q
II II
II
b Q
0 0
¢
O
1
7 7
E
m
rn
c
c
c
0
L
N
v
L
(!1 G 9
L
N
y^
O
y
W
m O y
W
Y
D y
h
c
$ a
7o�
NPage'Ulof
O J
N
IL
168
d u d
c y c y c y
3:
m
d y d
m U
M (A
d a d
ry N 1'p
ry > II II II C N > II II II C
W
E LL� U y LL N U N
N
N N Q N m Q N
oN O
p d q d
A IL N �
6 c N m 0 4 o G N W O
m •- v C U m � v C O
-
� n II O io m n II O i0
d N rn F L�' m m 3 F- d
�_
H q C i •� F f � � 7�
Mo OIO
j v a L 3 j a E a L 3
C C_
R « `
- o A L
•co t 3
C N > d C N
0 4)
p
F V O IL 4 U) O LL H O)
y o 3 N a a C 0 o ;" c� o a C 0
0 n c E 3 1- i¢- .c n c n£ m
U aU _
t o E E L b E
m
fi N n o m E N n o
ma�N A E��a
d ad a
J II II ry II II II � a J II II ry II II II � a
3 i a m
O m 7 O 7
N
El m m m
c
lO L
c
c
L d
L
d
L
d
L
❑ W `
x
W m Y
LL m
O d
= C7 J fn
LL
J rNge`If25m—of 168
3v N
3 in
>
I
I
y
y
v
C
d
a
>
N m
y
v
N
Cy
F
d
o
> h O
N
> m
W
p
y
w
y
C
v
a
ry
N
W
N
ry
N
>
a
C
7
q
a
C
> ONi
a
C
y
6
FN
y
O
0
y
6
9
190
HN
190
to '^
II
v
v
th
y
II
I.a�I
c
n'u ,
O
Nvn
C
>c
ffi�Nz
c
>M
Z
>C>
C?
N
J
Z>
U
[O
O
O
w
u
0
N
•U
`7
O
w
YI
¢
U
N
LL
y
N
LL CMI
O
n
M
p
N
M
O
N
O
o
N
O
a
N
o a
N
I
1p
LL
m
N
01
m
LL
m
<o
OI
m
LL
N M
QI
¢`
m
o
y
¢`
m
o
¢
10
y
0)
(0
V
m
d
V
IM
F
a
Y O
p
Y O
1-0
Y O
O
O
O
O
m
II
II
iD
m
II
II
iO
ro
II II
_O i0
a
s
s
a Ud
¢
m
o
a@J
¢
A
e~
.p�
O
m
« C
O
w
« C
ol
o
« O
O
L V
O
L O
n
O
MO
OIO
M0
>">In
w
w
G
C_
C
11
W L
_
°
_
`-
11
H
l7
°
l0
O Q
0
.fig
y
C_
i
o 3
0
£�
y
C_
4 0 3
dd
0
o
y 1p
O
a
' L
}i
Q
Q
Vf
W
N
LL
(n
B
o
O
M
D0
8
0
O
M
0
0
S o
O
m
p
¢
a
`o
—
O v
4
¢
o—
g
0 v
¢ ¢
`o
— n
O
L
Ea,'2
n
K
a
E d
oE�
L
L
E'o
s
r
amE—To
a
E d
L
L
vm`D
a
a v
E v
In
.c
OI
O
rn
m m
m
m
f
o
0
$, rn vI
ap
m
f
M O
N
IL
a
U Q
N
q
V Q
N
m
U Q
a
J
A
L
a
II II
a
n
u
11 to
n 11
u
n
u eQ
II u
c
II n
rn
II Q
m
ro
n
y 0
3 3�
v y
7
0
7
O
7 7
01
1>
j
E
rn
m
m
c
c
c
IO
L
L
L
L
v
v
a
m
L
m
a
L
y
a
L
y
E
Y
N
C M
O
C N
O
C^
p
O00
9>
`
a
O C
000
0Page1" 26 --of 168
c>
y J
(A
IL .�..
E
a
W
O
Y
N
U
-
>
A2
Sin
O O
m N
a m
c
N
W
Q
W
C
d
N
L
E
n
W
O
Y
N
U
j
E
€
>
u
Sin
O O
M N
m m
c
o
a
y
O
O
d
C
a
E
m§
t
W
O
Y
N
U
j
u
in
O O
rn
M N
c
d
O
y
v
C
d
N
U
a
N
ry
d
N
�
d
N
jp
d
N
>
C
>
N
C
>
V
N
C
17
O
F
C
a
n
v
v
Y
II
v
m
m
Y
II
a
M
o
N
V
fi
r
N
N
W U
U
n
N
fYi
J
O
O
J
O
O
J
O
O
d
d
$
r
r >
II
II
II
G
j
II
II
II
C
M j
II
II
II
C
>
N
N
2
.M.�
>
N
IV
Z
._..
>
6
N
IV
Z
�i
U
W
yLL
N
Li
N
LL
m
U
N
LL
N
U
y
m
O
N
O
M
N
O
O
N
04
O
Niv
0
04
M
O
O
y
u
4
n
¢
O
O
y
r
04
N
LL
(0
O
Oi
W
LL
N
N
tm
v
o
a
(O
1pO
�u
m
17
o
C
Q
ro
O
Ol
a
m
O
d
OI
W
v
U
O �j
m
f
~
-C O
~
U
~
U
U-
U
U
V
E
II
II
O <O
E
II
II
O <O
E
II
II
O {p
Q
a
rn o
A
f
d
a
a
m
oF-
Q
m
m
W
H
a
1)
N
L
O1
y
y U1
'nc
H
N
L'
s
Oi
N
y N
C
m
N
L
n9
pl
y
y y
q
c
C
D
v
C
p
v
Y C
O
v
C
O
O
c
O
L o
D) O
OIC
v
33
M
C_
E
O 3
o
g
y
C
$
0 3y
N
M
(C L
3
Qdd
Q
rmt
3
¢
a
•fir
p
E
o
O m
O
O
O a
p
V
9
C 0
_9
O
;
M
9
C
tp
h
O
¢
<
`p
--
n
—
O -O
¢
¢
o
—
n
—
O 17
;^,
n
O -O
F
F
L
E
n
e
.r
cf�
n
E d
!2 E m
F
L
!-
L
E
a..
a
E v
o E 0
F
L
F
N
L
E
a
N
.r
vii
m E m
L
C
m
0
N
f
N
f U a
C'
W
N
N'
f 0 a
a
m N
m
m
N
m
N O
J
L
N
'O a
J
L
'0 a
J
L
N
'O a
II II
ry
II
II
II a
II II
II
II
II a
II 11
d
II
II
II a
_
r-
E
OI
C
y
O
Ui
C
l0
L
d
t
L
y
v
u
W
W
L
y
a
y
V
t
O)
p
9
Y
d
U
d
>
O
U
.o
;
o
c
v;
.c
o
V�1
rL
C7 J
N
2
Page
of 168
u u u
0 0 U 0 0 U O O
c E c E d c
m n
m o
m N 2 0 C t> M N uo 0 C > m N u Y
— O O O O 4 _ O
d n m E d a m E v
y > N M y > N d
E
m
c
L
R
t
•p
L
t
C
R_
N
ILL
N
c_
C
m
y
_
ip
y
N
y
II
Q a
m'
a
J
O
•- N
f
m
J
O
' N
f
m U
O
J
n
o
N
m
U
O
a
a
a
a
M >
II II
II
O
m J
II II
11
C
A >
II II
II
C
>
NN
Z
7
>
NN
Z
?
>
NN
Z
y
y
o
u
m
�
u
m
N
u
m
y
LL
M
0)
U
y
LL
m
O
U
y
11-
N
N
_
U
N
N
O
N
m
O
N
m
. o
m
N
o
m
N
o
.0
N
Q
o
o
..
a
Q
o
d
r
¢
o
r
LL
N
M
cm
N
LL
N I�
tm
N
ly
VJ
N
O)
¢
m
O
M
d
¢
<O
¢
m
OIm
N
D
N
U
m
U
m
c d
~
U
~
U
~
C
U
U
U
O
E
II
II
O (p
E
II II
O {O
E
II
It
O 10
a
N
i
s
m y
a
N
t
o
N y
a
N
t
o
N
O
O
O
L O
W O
O)
r
0
r
d
t r
>
M
Is
w
>
>
E
N
Ia0
m
>
w �
>
w Oi
C
C
C
lzF
II
N •.t,
V
g
II
.0
>
F
E
w m
a
N m
e
v
y m
F
O
{L
(n
v
4
0
ImL
« N
p 3
M
v
C O
0 3
m
o
c 0
pP
p 3
M
9
C
0
t
a
a O a
`o
a
Z,
a OO
d
¢
¢
^
`o
a
O V
F¢-
E«
F¢-
1¢-
v
n^
E«
H
n
O O
mW fp
N
co
U
OI
N M
OI
N
N Q
p'
N
E
U
J
LO
a
J
L
•O a
J
L
G.
II II
R
II
II
II Q
II II
11 It
II Q
II II
R
II
- Q
a
p
3
I- a
a
O
3
H r V
a
O
3
11 II
F
r _
o
> >
o
> >
o
>
E
m
c
L
R
t
•p
L
t
y
R_
N
ILL
N
c_
O
rn
c_
L
d
L
rn 9
N y
C M 0
9 > : O C
d
O J �' Page 128 of 168
m
c
L
d
L
N
•p
c
Y
O
c
U' J N
ILL
u
9 N
C y
3 'w
E rn
e
A
L �
f0 N o
^ 10 y
u U
C N C N
3i'n Sin
U
N
O O
U
00
a in
c
oflal
m
m ul
c
m N
OO
S
N
>
'm
a
C =
m >
^
Il
N
a
N
II
Z
c
=
m
II
N
II
N
II
z
C
w
>
m
C W
O
m
w
O
N
y
�U
N
LL
w O
'y
y
O
N
C
fV
o
m
fV
o
rn
N
� ,O
N
LL
O O
OI
N
LL
m
O
'p0)
Old
Q�
to
Gl
Q
m
O
m
Cl
�O,
~^
U G
~^
p
am
U
E
II a
0Fo
V
II
a
U
oto
20
E
N
L '�
O
O
Of o
L
4)
Ul r
r
v>
tmC
N
w C
QQQQQQ
g
y
U CI)O
g
0
LL
M N
Y
9
LL
W
0
N O
$
3
v
c o
o ;°
o
v
in
c
'O D
H
H
t
a
E y
t
a
a
a
U
IQ-
IQ-
d
y`
SI
°j ^
o
rn
a mp
a
o f
rn
M
m
rn
M
O
Ll
i
a
A
II II
it
a
II
II
Il
to a
a
J a
p
3 E
F-
r
J a
pr
O
m
c
p
c
N
L
U)
$
L
y
a
N
A
O Y
N
jQ
y
N
0
�
d 7
u
O
>
Page 119 of 168
0
3
m
b
W
M
� m M
b
n
P
N
v
r --o
M � m
v
u
n
N
d
y
d
22
y
a
_
O1
C
q
N
L
a
m
L
U
c
0 d
N
O
x D
N
n _a
F-
c b
a
0
LL
M
O
O1
O
0
N
U
y
0
C
a
n II
II
C
N N
Z
io
r --o
M � m
E
OI
C
N
9
O1
C
l0
� u
L
of
L
U
d
0 d
N
W
0
N
N m
N
d
N
M N
V
O y
O y
r
0
LL
M
O
O1
O
0
N
U
y
0
C
OC1 U
O
0 page 1 M of 168
Y O
o
EII
n
io
6
0i
N y
L
U
O
of —
L
C
b A c
�
C m
0
0 N
D
a
( O
E
UEa
rn
b rn
a
o
d _
E%
r
m
m
.n
n
D
U Q
N
a
to Q
II
II II
a. M
N
3
E
OI
C
pi
C
O1
C
l0
L
L
L
L
d
d
L
W
0
N
N m
V
y
Y
N 9
d
N N Y
N
M N
V
O y
O y
O
C N J
C N O
S>, O
0
D>
O C
9> ? 0p C
0
C
0 page 1 M of 168
(7 J N
S
u u u
C y C E E
3 v, 3w Sin
Y y
Y Y c Y Y
O O O O O V O O
E SS c E c
yy
V
U
C
N
Ip UNi
[yn
Cc
L
O
N
V
C
O
N
H
N
N
O
N
N
r
V
N
M
{�
Y
II
a W
^ NON
M
N
Y
UO
11
<
V
W
N
J
O �
O
J
O o
m
J
p�
•-
N
m Q
a
9
a
yq
N >
II
N
II
N
II
Z
C
v
N >
II II
II
C
N >
II
II
II
C
>$
>
d
VN
.N
•F
N
.n
m
w
N
,N
W
N
•U
LL
m
t)
LL
O
O
LL
W
Z
N
O
E
m
O
N
m
O
.Q
1O
e
O
I$
N
o
v
N
N
r
N
r
N
.-
m
LL
Q W
Ol
cm
m
LL
CI
Im
a
d
r U
O
m
d
C V
C V
~
V
U
~
U
O
Fes-
o
e O
to
E
E
11
11
OE pp
m
~
N
C
L W
~
N�
•W
F
N
C
.1.
r
p
L V
p
r V
n
O
L
Of 0
Ol o
O) o O
>
10 E
W
;
m E
0
L f
?
E
f0
W
>
>
3
w Co>
Im
r C
It
«
V
c
O
II
�. L
II££
3
O
y
F
f>
C y
H
f
>`
C
C N
F
F
IL
W
w
y
S VJ
,yy
O
oo
li
y
'E
C
O
o
0
E
Oa
r
0•OU
Ey
No E
dC
9OW�
0
EN
EE
U
E
m
J
a
II II
N
II II
It Q
II II
W
II II
II a
II 11
N
II
II
II a
A b
C
v�
ro m
o
E
Im
C
rn
C
a
C
W
L
L
L
W
y
v^
y
v^
y
v
Q
M
jp
M
q
y
M
jd
y
fl
C Q
lye
O
C M
«
O
c N
u
O
C i
y
O C
i
O G
L
Q
O
=
0 S
y
LL 2.
O
Page 131
of 168
O J
LL
PL
U
C 02
3 'm
3 m
£
W o
m n
m
v
v
v
c
v
E
m
N v
r
c
L
m
v
N
y
C 9
a
>
N
w
N
v
�
_
>
N m
v
A
N
jp
N
>
N
a
C
a a_
c
O
v
U
v
'
U
n
II
N
m
a
Y
U
II
�
J
O
a
O
J
O-
II II
�
C
L
>
m
�
N N
Z
>
II II
II
C
m
pp >
y
j
9
N
u
m
U
m
LL
m
o
U
O
N
M
O
O
a
o
m
N
r0'
v
N
�
rn
H
v
N
�
U
L
W
Ei
N
w
O
W
o
y
O
d
�
�
w
0
No
(V
O
No
Y O
p
v
U
p
d
Q
O
O (O
N
a
L
O O
II II
N
O f0
y
d
Q
m
v
rn
�
U
N
07
H
f
U
U 0
F
-
N
n
�•
o
a
a
In
t`-
a
m
�
7 •�
F-
N
3
F
j
N
C
n
O
L �
a
C
v},
�
E
r�
3
LL
0 U)
CO
=
v
�O
Ev
�nr�E�
E E
t
)
0 m
N£
R
O
G a
M m
M V
O
E
N
m
O
N
r
J
O
N
2i
Q
Q
y
Y
II 11
<6 L
Q
Q
N
� a
r
> v
O m
�-
F
�
o
N
O
v w
33.E
0) d)
> >
o
> >
EU
E
5
M m
E
N m
m
a
II II
ry
II II
II �
II II
>
o
>
o
£
m
m n
m
v
c
E
m
y
r
c
L
LL2
v
N
y
C 9
a
a
!J
w
�
_
u
3 `w
rn
c_
a
t
w j
a � Y
v �
J m Page 1'T2 of 168
m
c
t
m n
m
v
a
u
E
c
v
v
y
i ?
c
LL2
_
w
�
v
n
jp
N
>
N
a
C
a a_
c
O
v
U
v
U
n
N
N
W
U
�
a
C
m >
II II
II
C
>
m
N N
Z
V
m
y
j
9
N
u
m
U
m
LL
m
o
U
O
N
M
O
O
N
�
v
�
N
w
m
Q
W
o
O
d
�
�
�
Y O
p
Y O
O (O
a
II II
O f0
y
¢
m
rn
~
y
n
�•
In
A !E
N
3
F
j
N
C
a
C
v},
E
r�
3
LL
0 U)
CO
=
v
�O
Ev
�nr�E�
E E
t
)
0 m
N£
R
O
G a
M m
M V
O
N
m
Q
0 a
IL
r
J
N
N
a
!9'0 a
II 11
�
II II
II
� a
v w
33.E
0) d)
> >
o
> >
rn
c_
a
t
w j
a � Y
v �
J m Page 1'T2 of 168
m
c
t
m
v
L
w
E
a �
y
i ?
c
LL2
N uu
.O E v E o •E
c y c v c y
3 y 3 N 3 y
U U U
t X Y t Y Y r Y X
U O O U O O U O O
o rn 8 m 4 N rn m 4
> M N OO R> M N N p Eo Q M N d O
p U p C u p 2 O
n N N >$ t7 N N > b N
>
M d
M N
u
N
rp
N
>
OI OJ
0 0
U
y
ry
Nzz
F
N
>
'0m
M
V
y
Ip
N
N
J
C
J
D
•C
>
N
a
cN
{yV
n N
O. N
4
U
nZ
d
N
N
fi
i.i
n
d
N
N
N
Q
m>
It
II
II
C
d>
II
II
If
C
n>"
It
II
II
C
>
M
N
N
2
u D
J
In
N
N
Z
O D
>
m
N
N
Z
v
MO
u
0
d
0
O
N
u
m
d
•E
ANO
w
•E
LL
M
r-
•E
_
IL
iMn
:_
N
B
LL
N
M
Q
Q
N
I(I
N
p
O
N
fa
OI
N
Q
O
n
0
oN
o
(V
o
N
CC
d
•�
a
¢
o
,� a
¢
o
,�
a
m
u
m
n
Ol
m
li
°'
rn
m
u°• '�'
m
O7
Q
ro
N
d
Q
m
0
N
Cl
Q
m
O
M
d
0
SC G
0
Fo-
`
p
d O
R
(.)
II
11
fD
N
U
II II
O 10
b
O II
II
O to
W
r
_Q
d
Q
O
0
9 r
Q
O
p 5
r
a
Q
N
y
r
�_
�
r
�_
Q •�
r
m
` •Im
p
N
�•' C
p
N
" C
p N
•' C
o
t
o
r D
o
r D
IMP
rno
rno
ID
m >
m
C
OI
G
y G
N
NCo
�i
Q
Q
n
•� i
Q
Q
•Im i
Q
r
r
>
0
G N
r
r
>
u
G
LL
Y N
LL
Yin
L
I6
O
p
fy
G O
ay
It-
E
N
m
EyG
N E y
L
E
O
Eya
N c
V9
n(O
E
N
N(On
EGO
w
C C LL
L
m
M d
m
N
tV
m
O V a
O
M
R
OMi
m
Q13
r
N N
0
J
N
a
0
J
a
W
J
E
N
O a
II II
q
II
II
II Q
II II
11 II
II Q
II II
II
II II
b Q
N N
N
a
N N
n
N
O
> >
O
7
O
> >
L
v
v
t0
fill
-a
N
6 E
lLi1
v
0
d
N
Y
�
N
O YUtl
�
N
Yuu
•
V j
JO
C
'O j
�
�` C
D j
J
�O
C
y
page
133
Of 168
u
3 N
M � y
E
m
t�0 M
y
c
D
N
L
3
L
>
�
y
�
y
9
Q
N
W
Y
a
0
9 v
o c
N
0 0
O
M N 0
b R
t�0 M
y
D
L
3
>
t9i
y
a
>
N
_ry
°
o
N
c
=
v
^
N
Q
J
O 4
tO
O
C
0 J
II
II
II
i
•0
N
j
�
N
O
N
w
U
wrLw
ro
U
O
y
O
iy
O
d
r
O1
m
LL
m
OI
a
X O
F
3
X O
U -
O
m
U
II II
O to
,fpD�
V
Q
N
N~
y
y N
��
~
C`
m
�
y
y to
.to
A
L V
a
O
O
pl O
01
y
C y
H
f
>0
C y
In
O
LL
2
U;
C 0
0E'O
�
0
rara��
a
N
y
E
O) N
N
IIDD
N
0 A
0
G.
a
J
II II
ry
II II
II
a
3
N
mC
N N
p
rn
c
L
d
C
y
j
N
d
O
J
rn
Page 73A
of 168
STUD WALL CALCULATION 5 Floor
Wall Location =
Exterior
Species =
DF -L Stud
Stud Width =
1.5 in
Stud Depth IQ =
5.5 in
L =
9 ft
stud spacing =
1.33 It
Fb =
700 psi
F. =
850 psi
F.i =
625 psi
E =
1400000 psi
Emin =
510000 psi
CF =
1.00 for bending
Cr =
1.00 for comp. II to grain
A =
8.25 W
S =
7.56 W
Dead Loads:
0.8
Roof DL =
135.2 plf
Floor DL =
0 pit
wcL =
215.2 pit
Live Loads:
FSE/F c =
Roof LL =
382.1 pit
Floor LL =
0 pit
WLL=
382.12
Load Case is Gravity Loads Only
Load Combinations:
P =
D =
286 be
D+L =
286 lbs
D+S =
794 Ibs
D+0.75(L)+0.75(S) =
667 lbs
Co (D) =
0.9
Cc (D+L) =
1
Co (D+S) =
1.15
Cc (D+0.75(L)+0.75(S)) =
1.15
fb=f�L
96.3 psi
1087.2
19.6 in
E'min =
510000 psi
C =
0.8
FcE =
1087.2
F,=
978 psi
FcE/F =
1.112 psi
(1+FcE/F J/2c =
1.320
Cb =
0.726
P =
710.1
Check =
OK psi
Bearing of stud on wall plates:
Cb =
1.25
P�L =
781
Check=
OK psi
Loadinas
Roofing Material = Shingle/Tile
Roof Pitch =
0.25
Angle =
1.2
Cs =
1.000
Increase for Drift=
1.378
Effective snow load =
48 psi
Roof dead load =
17 psi
Floor live load =
40 psf
Floor dead load =
23 psi
Trib. Area roof=
8 ft
Trib. Area,,,,=
0 ft
Add. Uniform Load =
80 pit
Lateral Load = 47.05 psf
Use: 2x6 DF -L Stud Grade @ 16" o.c.
Load Case 2: Gravity Loads + Lateral Loads
Co =
1.6
C, =
1.35
w=
62.6 pit
M=
7603.3 in.lb
fb =
1005.4 psi
F'b =
1512.00 psi
Check =
OK
Axial:
(Idd.) =
19.6 in
E'min =
510000 psi
c =
0.8
FcE =
1067.2 psi
Fn=
1360 psi
FSE/F c =
0.799
(1+FSE/F .)/2c =
1.125
Cb =
0.609
P =
828.7 psi
D+0.75(W)+0.75(L)+0.75(8)
D+W
f� =
80.9
34.7 psi
Check =
OK
OK
Combined Stress:
FcE. =
1087.2
1087.2 psi
Interaction Formula=
0.55
0.69
Check =
OK
OK
Page 135 of 168
STUD WALL CALCULATION 2 Floor
Wall Location =
Exterior
Species =
DF -L Stud
Stud Width =
1.5 In
Stud Depth (d,) =
5.5 In
L=
9 f
stud spacing =
1.33 It
Fb =
700 psi
F� =
850 psi
Foi =
625 psi
E =
1400000 psi
Emin =
510000 psi
CF =
1.00 for bending
CF =
1.00 for comp. II to grain
A =
8.25 in`
S =
7.56 in'
Dead Loads:
(I./d)„ =
Roof DL =
135.2 pif
Floor DL =
602.55 pif
wcL =
1187.75 pif
Live Loads:
1.2
Roof LL =
382.1 pit
Floor LL =
1030 pit
WLL=
1412.12
Load Case 1: Gravity Loads Only
Load Combinations:
Floor live load =
D =
1580 lbs
D+L =
2950 lbs
D+S =
2088 lbs
D+0.75(L)+0.75(5) =
2988 lbs
Cc (D) =
0.9
Cc (D+L) =
1
Ce INS) =
1.15
Ce (D+0.75(L)+0.75(S)) =
1.15
I. = fpL =
362.2 psi
(I./d)„ =
19.6 in
E'mip =
510000 psi
C =
0.8
F.E =
1087.2
F � =
978 psi
F.E/F p =
1.112 psi
(1+FSE/F J/2c =
1.320
CP =
0.726
F'p =
710.1
Check=
OK psi
Bearing of stud on wall plates:
Cb =
1.25
F'pr =
781
Check =
OK psi
Loadings
Roofing Material = Shinglelflle
Roof Pitch =
0.25
Angle =
1.2
Cs =
1.000
Increase for Drift=
1.378
Effective snow load =
48 psf
Roof dead load =
17 psf
Floor live load =
40 psf
Floor dead load =
23 psf
Trib. Area,ppi=
8 it
Trib. Area rim,=
25.75 It
Add. Uniform Load =
450 pif
Lateral Load = 47.05 psf
Use: 2x6 DF -L Stud Grade @ 16" o.c.
Load Case 2: Gravity Loads + Lateral Loads
Co =
1.6
C, =
1.35
W =
62.6 pif
M =
7603.3 in.lb
fb =
1005.4 psi
F% =
1512.00 psi
Check=
OK
Axial:
(le/d,) =
19.6 in
E'mb, =
510000 psi
C =
0.8
FSE =
1087.2 psi
F p =
1360 psi
FcE/F =
0.799
(1+FSE/F�)/2c=
1.125
Cp =
0.609
F'p =
828.7 psi
Check =
Combined Stress:
F.E. =
Interaction Formula =
Check =
Page 136 of 168
1.5 psi
OK
1087.2 1087.2 psi
0.94 0.86
OK OK
STUD WALL CALCULATION 2nd fl000r interior bearing
Wall Location=
Interior
Loadings
Species =
DF -L W2
Roofing Material =
Shingle/file
Stud Width =
1.5 in
Roof Pitch =
0.25
Stud Depth (d,) =
3.5 In
Angle =
1.2
L =
9 It
Cs =
1.000
stud spacing =
0.667 ft
Increase for Drift=
1.000
Fb =
900 psi
Effective snow load =
35 psf
Fc =
1350 psi
Roof dead load =
17 psf
F, =
625 psi
Floor live load =
40 psf
E =
1600000 psi
Floor dead load =
23 psf
E.,, =
580000 psi
Trib. Area row=
14.5 ft
Cr =
1.10 for bending
Trib. Area npp,=
43.5 ft
CF =
1.05 for comp. II to grain
Add. Uniform Load =
270 pit
A =
5.25 in'
S =
3.06 in'
Lateral Load =
5.00 psi
Dead Loads:
Roof DL =
245.05 pit
Floor DL =
1017.9 pit
wDL=
1532.95 pit
Use: (2) 2x4 DF -11- 92 Grade @ 16" o.c.
Live Loads:
Roof LL =
502.4 pit
Floor LL =
1740 pit
WLL=
2242.43
Load Case 1: Gravity Loads Only
Load Case 2: Gravity Loads + Lateral Loads
Load Combinations:
CD =
1.6
D=
1022 lbs
Cr=
1.15
D+L =
2183 lbs
W =
3.3 plf
D+S =
1358 lbs
M =
372.1 in.lb
D+0.75(L)+0.75(S) =
2144 lbs
fb =
121.5 psi
CD (D) =
0.9
Pb =
1821.60 psi
CD (D+L) =
1
Check =
OK
Cc (D+S) =
1.15
Axial:
CD (D+0.75(L)+0.75(S)) =
1.15
(Idd,) =
29.6 In
fc = foL =
415.8 psi
E'mib =
580000 psi
(I./d)„=
29.6 in
c=
0.8
E'mib =
580000 psi
FcE =
545.2 psi
C =
0.8
F c =
2268 psi
FcE =
545.2
FcE/F c =
0.240
F c =
1418 psi
(1+FcE/F'c)/2c =
0.775
FcE/F c =
0.385 psi
Cp =
0.227
(1+FcE/F J/2c =
0.865
Pc =
514.9 psi
Cp=
0.348
D+0.76(W)+0.76(L)+0.76S D+W
Pc =
492.7
fc =
408.4 194.8 psi
Check =
OK psi
Check =
OK OK
Bearing of stud on wall plates:
Combined Stress:
Cb =
1.25
F.E. =
545.2 545.2 psi
F'cL =
781
Interaction Formula =
0.83 0.25
Check =
OK psi
Check =
OK OK
Page 137 of 168
STUD WALL CALCULATION 4th floor interior bearing
Wall Location =
Interior
Loadings
Species =
DF -L #2
Roofing Material =
Shingle/Tile
Stud Width =
1.5 In
Roof Pitch =
0.25
Stud Depth (dx) =
3.5 in
Angle =
1.2
L =
9 It
Cs =
1.000
stud spacing =
1.33 ft
Increase for Drift=
1.000
Fp =
900 psi
Effective snow load =
35 psi
FO =
1350 psi
Roof dead load =
17 psi
FOL =
625 psi
Floor live load =
40 psi
E =
1600000 psi
Floor dead load =
23 psi
Emin =
580000 psi
Trib. Area ,O,=
14.5 It
CF=
1.10 for bending
Tdb. Area floe,=
14.5 It
CF =
1.05 for comp. II to grain
Add. Uniform Load =
80 pit
A=
5.25 in`
S =
3.06 in'
Lateral Load =
5.00 psi
Dead Loads:
Roof DL =
245.05 plf
Floor OL =
339.3 plf
WCL=
664.35 plf
Use: 2x4 DF -L #2 Grade @ 16" o.c.
Live Loads:
Roof LL =
502.4 plf
Floor LL =
580 plf
W LL=
1082.43
Load Case 1: Gravity Loads Only
Load Case 2: Gravity Loads+ Lateral Loads
Load Combinations:
Ce =
1.6
D =
884 lbs
C, =
1.15
D+L =
1655 lbs
w =
6.7 plf
D+S =
1552 lbs
M =
742.0 In.lb
D+0.75(L)+0.75(5) =
1963 lbs
fy =
242.3 psi
Ce (D) =
0.9
Po =
1821.60 psi
Cc (D+L) =
1
Check =
OK
Cc (D+S) =
1.15
Axial:
Cc (D+0.75(L)+0.75(S)) =
1.15
(IJd,) =
29.6 in
iO = fOL =
374.0 psi
P.I. =
580000 psi
(I,/d)„ =
29.6 In
c =
0.8
E,o. =
580000 psi
FOE =
545.2 psi
C =
0.8
F =
2268 psi
FOG =
545.2
FOE/F. =
0.240
FO=
1630 psi
(1+FOE/FO)/2c=
0.775
FOE/F =
0.334 psi
CP =
0.227
(1+FOE/F P)/2c =
0.834
PO =
514.9 psi
CP=
0.307
D+0.75(W)+0.75(L)+0.75(S) D+W
F -c =
500.8
fO =
374.0 168.3 psi
Check=
OK psi
Check=
OK OK
Bearing of stud on wall plates:
Combined Stress:
Cb =
1.25
FOE„ =
545.2 545.2 psi
P,,,L=
781
Interaction Formula =
0.85 0.30
Check =
OK psi
Check =
OK OK
Page 138 of 168
Project: 2016-2850
Location: Stair studs
Base Values
Multi -Loaded Multi -Span Beam
Bending Stress:
[2015 International Building Code(2012 NDS)]
1.5 IN x 7.251N x 13.5 FT(9+4.5)
Fb'.=
#2 - Douglas -Fir -Larch - Dry Use
10.88 int
Section Adequate By: 61.5%
C/=0.59 CF=1.20
Controlling Factor: Moment
Shear Stress:
DEFLECTIONS Center
ffiw
Live Load 0.05 IN L12044
0.08 IN 2U1416
Dead Load 0.00 in
0.00 in
Total Load 0.05 IN U1973
0.08 IN 2U1368
Live Load Deflection Criteria: L/120
Total Load Deflection Criteria: 1./120
REACTIONS 9 B
1600 ksi
Live Load 221 Ib 664 Ib
1600 ksi
Dead Load 8 Ib 24 Ib
Fc -1=
Total Load 229 Ib 688 Ib
Fc -1'=
Bearing Length 0.24 in 0.73 in
BEAM DATA Lkwff
Bigiff
Span Length 9 ft
4.5 It
Unbraced Length -Top 0 ft
0 it
Unbraced Length -Bottom 9 It
4.5 R
Live Load Duration Factor 1.60
Notch Depth 0.00
MATERIAL PROPERTIES
#2 - Douglas -Fir -Larch
Controlling Moment: -688 ft -Ib
Over right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2, 3
Controlling Shear: -346 Ib
At a distance d from right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2, 3
Comparisons with required sections:
Base Values
Adiusted
Bending Stress:
Fb =
900 psi
Fb'.=
1015 psi
10.88 int
Cd=1.60
C/=0.59 CF=1.20
47.63 in4
Shear Stress:
Fv=
180 psi
Fv'=
288 psi
2088 lb
Cd=1.60
Modulus of Elasticity:
E =
1600 ksi
E'=
1600 ksi
Comp. Ito Grain:
Fc -1=
625 psi
Fc -1'=
625 psi
Controlling Moment: -688 ft -Ib
Over right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2, 3
Controlling Shear: -346 Ib
At a distance d from right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2, 3
Comparisons with required sections:
Reced
Provided
Section Modulus:
8.14 in3
13.14 in3
Area (Shear):
1.8 in2
10.88 int
Moment of Inertia (deflection):
4.18 in4
47.63 in4
Moment:
-688 ft -Ib
1111 ft -Ib
Shear:
-346 lb
2088 lb
®Jack Miller
LEI Surveyors and Engineers
3302 North Main Street Lof
Spanish Fork, Utah
F%co 1, r ft5
S 11 it Pt.1Q R5
10/19/2016 9:02:36 AM
A
66
plf
66 plf
sft
-g—
4.5n
Uniform Live Load
66
plf
66 plf
Uniform Dead Load
0
plf
0 plf
Beam Self Weight
2
plf
2 plf
Total Uniform Load
68
olf
68 cif
Page 139 of 168
FORTE MEMBER REPORT Level Wall: Stud
1 pieces) 11/2" x 7 1/4" 1•SE TimberStrand® LSL @ 16" OC
!ng is concep"I
Wall Height: 28'9"
Member Height: 28' 4 1/2"
PASSED
0. C. Spacing: 16.00"
Design Results
Actual
Allowed
Result
LDF
Load: Combination
Slenderness
40
50
Passed (80%)
Compression (Ibs)
676
4197
Passed 16%)
1.15
1.0 D + 1.0 S
Plate Bearing lips)
676
5777
Passed (12%)
--
1.0 D + 1.0 S
Lateral Reaction (Ibs)
247
1.60
1.0 D + 1.0 W
Lateral Shear (Ibs)
236
5858
Passed (4ob)
1.60
1.0 D + 1.0 w
Lateral Moment (Ft -lbs)
1750 @ mid -span
4190
Passed 42%)
1.60
1.0 D+ 1.0 w
Lateral Deflection (In)
2.50 @ mld-span
2,84
Passed (1!136)
—
1.0 D+ 1.0 W
Bending/Compression 1
0.50 1
1
1 Passed (50%)
1 1.60
1 1.0 D+ 1.0 W
• lateral de0ectlon criteria: Wind (V120)
• Arial load eccentricity for this design Is 1/6 of applicable member side dimension.
• Applicable calculations are based on NDS.
• A bearing area factor of 1.25 has been applied to base plate bearing capacity.
• A 4% Increase in the moment capacity has been added to account for repetitive member usage.
Supports Type Material System: Wall
Top li ON 2X Spruce -Pine -Fir Member Type : Stud
Base I 2X 5 ruce-Pine-Fir BWlling Code :IBC
Max Unbraced —Length Comments Design Methodology : ASD
1'
Dead I Snow
tical Load
:cupancy Category (m, Hurricane Prone Region (No), 1
IN IBC Table 1604.3, foomote f: Deflection checks are
13.0
Topographic Factor (1.0), Wind Directionality Factor (0.55), Basic Wind
=fined using full member span and Crib. width.
of this lateral wind load.
rhaeuser warrants that the sizing of its products will be In accordance with Weyerhaeuser product design criteria and published design values.
rhaeuser expressly disclaims any ouar warranties related to the software. Refer to current Weyerhaeuser literature for installation details.
r.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software Is not Intended to
nvent the need for a design professional as determined by the authority having jurisdiction. The designer or record, builder or framer Is responsible to
e that this calculation Is compatible with the overall protect. Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable
ry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR -1153 and ESR -1357 and/or tested
,ordance with applicable ASTM standards. For current code evaluation reports refer to http://viww.woodbywy.mm/services/s_CodeReports.aspx.
rmduct application. Input desion loads, dimensions and support Information have been provided by Foie Software OCerator
a Software Operator I Job Noleo
t Miller
Donsulling Engineers and Surveyors
) 636 7233
ecla-eng.cam
Pagel
SUSTAINABLE FORESTRY INITIi
10/19/2016 9:02:39 AM
Forte v5.0, Design Engine Ver: V6.4.0.40
2016-2850.4te
Page 1 of 1
KING STUD CALCULATION Leff study
Species =
DF -L Stud
Stud Width =
6 in
Stud Depth (dx) =
5.5 in
L=
9 f
opening width =
9.5 ft
stud spacing =
5.42 ft
Fb =
700 psi
F, =
850 psi
FDL =
625 psi
E =
1400000 psi
E., =
510000 psi
CF =
1.00 for bending
CF =
1.00 for comp. II to grain
A =
33 in`
S =
30.25 In'
Dead Loads:
0.609
Roof DL =
84.5 pit
Floor DL =
117 pit
w❑L =
281.5 pit
Live Loads:
Roof LL =
173.3 pit
Floor LL =
500 pit
WLL=
673.25
Load Case 1: Gravity Loads Only
Load Combinations:
D =
1526 lbs
D+L =
4236 be
D+S =
2465 lbs
D+0.75(L)+0.75(8) =
4262 be
CD (D) =
0.9
CD (D+L) =
1
Co (D+S) =
1.15
C❑ (D+0.75(L)+0.75(S)) =
1.15
f. = f�L
129.2 psi
(la/d)x=
19.6 in
E',i =
510000 psi
C =
0.8
FSE =
1087.2
F � =
978 psi
Fie/F =
1.112 psi
(1+F.E/F J/2c =
1.320
Cp =
0.726
P =
710.1
Check=
OK psi
Bearing of stud on wall plates:
Cb =
1.06
P =
664
Check=
OK psi
Loadings
Roofing Material = Shingle/file
Roof Pitch =
0.25
Angle =
1.2
Cs =
1.000
Increase for Drift=
1.000
Effective snow load =
35 psi
Roof dead load =
17 pet
Floor live load =
100 psi
Floor dead load =
23 psi
Trib. Area ram=
5 ft
Trlb. Area rw=
5 It
Add. Uniform Load =
80 pit
Lateral Load = 20.33 psi
Use: (2) 2x6 Full Height King Studs
Load Case 2: Gravity Loads + Lateral Loads
Co-
1.6
Cr =
1.15
w=
110.2 pit
M=
13385.4 in.lb
fb =
442.5 psi
F'b=
1288.00 psi
Check=
OK
Axial:
Check= OK
Odd.) =
19.6 In
510000 psi
c =
0.8
F.s =
1087.2 psi
F =
1360 psi
FoE/F =
0.799
(1+F.E/F c)/2c =
1.125
Co =
0.609
F'c=
828.7 psi
fc = 129.21
46.2 psi
- -
Check= OK
OK
Combined Stress:
F�&= 1087.2
1087.2 psi
Interaction Formula= 0.32
0.36
Check= OK
OK
_
Page 141 of 168
KING STUD CALCULATION Left Exersice
Species =
DF -L Stud
Stud Width=
7.51n
Stud Depth IQ =
5.5 In
L=
9k
opening width =
19 It
stud spacing =
10.17 ft
Fp =
700 psi
Fc =
850 psi
F�L =
625 psi
E =
1400000 psi
Emi„ =
510000 PSI
CF =
1.00 for bending
CF =
1.00 for comp. I I to grain
A =
41.25 in`
S =
37.61 in'
Dead Loads:
(le/d), =
Roof DL=
50.7 plf
Floor DL =
140.4 pit
wcL =
211.1 pn
Live Loads:
1.2
Roof LL =
104.0 pit
Floor LL =
240 pit
WLL=
343.95
Load Case 1: Gravity Loads Only
Load Combinations:
Floor live load =
D =
2757 lbs
D+L =
5198 lbs
D+S =
3614 lbs
D+0.75(L)+0.75(5) =
5381 lbs
Co (D) =
0.9
Co (D+L) =
1
Co (D+S) =
1.15
Cc (D+0.75(L)+0.75(S)) =
1.15
f� = f�, =
130.4 psi
(le/d), =
19.6 in
E'mi„ =
510000 psi
c =
0.8
FSE =
1087.2
F,=
976 psi
F.E/F c =
1.112 psi
(1+Fc,/F J/2c =
1.320
Cp =
0.726
F, =
710.1
Check=
OK psi
Bearing of stud on wall plates:
Co =
1.05
F -,L
656
Check =
OK psi
Loadings
Roofing Material = Shingle/Tile
Roof Pitch =
0.25
Angle =
1.2
Cs =
1.000
Increase for Drift=
1.000
Effective snow load =
35 psi
Roof dead load =
17 psi
Floor live load =
40 psi
Floor dead load =
23 psi
Trib. Area ,=
3 it
Trib. Area ,,,,=
6 It
Add. Uniform Load =
80 pit
Lateral Load = 20.33 psi
Use: (2) 2x6 Full Height King Studs
Load Case 2: Gravity Loads + Lateral Loads
Cc =
1.6
Cr =
1.15
W =
206.7 off
M =
25116.2 in.lb
fs=
664.2 psi
F'e =
1288.00 psi
Check =
OK
Axial:
(I./d,) =
19.6 in
2.i; =
510000 psi
C =
0.8
F.E =
1087.2 psi
F o =
1360 psi
F.e/F c =
0.799
(1+FSE/F J/2c =
1.125
Ce =
0.609
F =
828.7 psi
4=
Check =
Combined Stress:
FcEx =
Interaction Formula =
Check =
Page 142 of 168
16.8 psi
OK
1087.2 1087.2 psi
0.46 0.56
OK OK
T
CI
O
LL
C
O
U
N N
N
F a
V O o M e
c
0
u
N N
p pp �'J pp N pNO tyO m
�� O w U) O .� O' O 0- V N O C i0 r N m N f7 N
C
O
U
y N
d �
cl OO e
N� W Ow N
N N
suoi}einoleo peyoeuu aaS
m
tz
c
0
U
v y
a
LL N t0 m U) O 0 Ow .M 8Om NmN OW1pN"0 M N
d
O
Z
� c E
N
E E
cc!.�
c m c 0 0 r 0 0 ? ¢
1 7 m ¢ H
0 -a
° n O c
ti E
O aoi 'ami 8 8 c 11� `�2 z 8 a o° a a a a s o u a° w °o
02�CL tl QU WCL IL ILF f: f:3 3 3 3 31 R LL V
Page 143 of 168
Use menu item Settings> Printing & Title Block
to set these five lines of Information
for your program.
'his Wall in File: tAstructurah2016 structural
RateinPro(c)1967-2016, Build 11.16.07.15
Criteria
3,544 psi OK
Retained Height =
10.00 it
Wall height above soil =
0.00 ft
Slope Behind Wall =
0.00
Height of Soil over Toe =
6.00 in
Water height over heel =
0.0 ft
Surcharge Loads
Surcharge Over Heel = 50.0 psi
Used To Resist Sliding & Overturning
Surcharge Over Toe = 0.0 psi
Used for Sliding & Overturning
Axial Load Applied to Stem j
Axial Dead Load = 690.0 lbs
Axial Live Load = 857.0 lbs
Axial Load Eccentricity = 0.0 in
Design Summary
Wall Stability Ratios
Overturning = 1.74 OK
Slab Resists All Sliding I
Total Bearing Load = 6,251 lbs
...resultant ecc. = 12.89 In
Soil Pressure 0 Toe =
3,544 psi OK
Soil Pressure 0 Heel =
0 psi OK
Allowable -
4,500 psi
Soil Pressure Less Than
Allowable
ACI Factored @ Toe =
4,962 psi
ACI Factored @ Heel =
0 psi
Footing Shear W Toe =
22.9 psi OK
Footing Shear 0 Heel =
20.6 psi OK
Allowable =
75.0 psi
illding Calcs
Lateral Sliding Force =
2,096.0 Itis
Title FT1C. FW10 Page: 1
Job # : Dsgnr: J. Miller Date: 18 OCT 2016
Description....
Cantilevered walls for basement
.2850_ha mattson apartments12016-285[
Cantilevered Retaining Wall
Soil Data
0.0 #/h
Allow Soil Bearing
= 4,500.0 psi
Equivalent Fluid Pressure Method
Active Heel Pressure
= 32.0 psi/ft
Passive Pressure
250.0 psf/0
Soil Density, Heel
= 110.00 pcf
Soil Density, Toe
= 0.00 pcf
FootingIlSoil Friction
= 0.400
Soil height to ignore
Rebar Placed at =
for passive pressure
= 12,00 in
Lateral Load Applied to Stem
Lateral Load =
0.0 #/h
...Height to Top =
0.00 a
...Height to Bottom =
0.00 ft
Load Type =
Wind (W)
Design Method =
(Service Level)
Wind on Exposed Stem =
0.0 psi
(Service Level)
# 5
'ertical component of active lateral soil pressure IS
IOT considered in the calculation of soil bearing
.oad Factors
Building Code
Dead Load
Live Load
Earth, H
Wind, W
Seismic, E
IBC 2012,ACI
1.200
1.600
1.600
1.000
1.000
Stem Construction _ `
2nd
Footing Width =
Stem OK
Design Height Above Fig a=
3.00
Wall Material Above "Ht' _.
Concrete
Design Method =
LRFD
Thickness =
10.00
Rebar Size =
# 5
Rebar Spacing =
12.00
Rebar Placed at =
Edge
Design Data -
fb/FB+fa/Fa =
0.324
Total Force 0 Section
Service Level lbs =
Strength Level Itis =
1,417.3
Moment.... Actual
Service Level 114 =
Strength Level ft-#=
3,497.1
Moment..... Allowable 1t-#= 10,783.7
Service Level
Strength Level
Shear..... Allowable
Anet (Masonry)
Rebar Depth 'd'
Masonry Data -
rm
Fs
Solid Grouting
Modular Ration'
Wall Weight
Short Term Factor
Equiv. Solid Thick.
Masonry Block Type
Masonry Design Method
Concrete Data
fc
Fy
psi =
psi = 14.4
psi= 67.1
Int =
in= 8.19
Code: IBC 2012,ACI 318-11,ACI 530-11
Adjacent Footing Load
Adjacent Footing Load =
0.0-Tbs
Footing Width =
0.00 it
Eccentricity =
0.00 in
Wall to Fig CL Dist =
0.00 It
Footing Type
Line Load
Base Above/Below Soil
_
at Back of Wall -
0.0 ft
Poisson's Ratio =
0.300
Stem OK
0.00
Concrete
LRFD -RFD
10.00
# 5
6.00
Edge
0.476
2,792.7
9,697.0
20,291.7
28.4
67.1
8.19
psi =
psi =
psi = 125.0 125.0
= Medium Weight
= ASD
psi= 2,000.0 2,000.0
psi= 60,000.0 60,000.0
Page 144 of 168
Use menu Item Settings > Printing & Title Block
to set these five lines of information
for your program.
This Wall in File: t.\structural\2016 structural
Title FT1Cr FW10 Page: 2
Job 9: Dsgnr: J. Miller Date: 18 OCT 2016
Description....
Cantilevered walls for basement
-2850 he mattson apartmentst2016-2850
Cantilevered Retaining Wall
Concrete Stem Rebar Area Details
2nd Stem
Vertical Reinforcing
As (based on applied moment) :
0.0988 In2/ft
(4/3) " As :
0.1317 in2/ft
200bd/fy : 200(12)(8.1875)/60000:
0.3275 in2/ft
0.0001 bh : 0.0001(12)(10) :
0.012 in2/ft
Required Area
Provided Area:
Maximum Area:
Bottom Stem
As (based on applied moment) :
(4/3)' As:
200bd/fy : 200(12)(8.1875)/60000
0.0001 bh : 0.0001(12)(10) :
0.1317 in2/ft
0.31 in2/ft
0.8873 in2/ft
Vertical Reinforcing
0.2739 In2/ft
0.3651 in2/ft
0.3275 In2/ft
0.012 in2/ft
Required Area :
0.3275 in2/ft
Provided Area :
0.62 in2/ft
Maximum Area:
0.8873 in2/ft
Footing Dimensions & Strengths
Toe W idth
= 1.25 ft
Heel Width
=
Total Footing Width
._3_25__
= 4.50
Footing Thickness
= 12.00 In
Key Width =
0.00 in
Key Depth =
0.00 in
Key Distance from Toe =
2.00 it
f'c = 2,500 psi Fy =
60,000 psi
Footing Concrete Density =
150.00pcf
Min. As % =
0.0018
Cover @ Top 2.00 @ Btm� 3.00 in
Horizontal Reinforcing
Code: IBC 2012,ACI 318-11,ACI530-11
Min Stem T&S Point Area 1,680 int
Min Stem T&S Reinf Area per it of stem Height: 0.240 int/fl
Horizontal Reinforcing Options :
One layer of : Two layers of:
#4@ 10.00 in #4@ 20.00 In
#5@ 15.50 In #5@ 31.00 in
#6@ 22.00 In #6@ 44.00 in
Horizontal Reinforcing
Min Stem T&S Reinf Area 0.720 in2
Min Stem T&S Paint Area per it of stem Height: 0.240 in2/ft
Horizontal Reinforcing Options :
One layer of : Two layers of:
#4@ 10.00 in #4@ 20.00 in
#5@ 15.50 in #5@ 31.00 in
#641 22.00 in #6@ 44.00 in
Footing Design Results
Tie
Heel
Factored Pressure
m 4,962
0 psi
Mu': Upward
= 3,419
706 ft-#
Mu'! Downward
192
4,614 it-#
Mu: Design
3,227
3,908 it-#
Actual l -Way Shear
= 22.91
20.63 psi
Allow 1 -Way Shear
= 75.00
75.00 psi
Toe Reinforcing
= # 5 @ 6.00 in
Heel Reinforcing
- # 5 @ 12.00 in
Key Reinforcing
= None Spec'd
Other Acceptable Sizes & Spacings
Toe: #4@ 9.26 in, #5@ 14.35 in, #60 20.37 in, #70 27.78 in, #8@ 36.57 in, #9@ 46
Heel: #4@ 9.26 in, #5@ 14.35 In, #6@ 20.37 in, #7@ 27.78 In, #8@ 36.57 in, #9@ 46
Key: No key defined
Min footing T&S taint Area
Min footing T&S reinf Area per foot
If one layer of horizontal bars:
#40 9.26 In
#50 14.35 in
#6@ 20.37 In
Page 145 of 168
1.17 In2
0.26 in2 #t
If two layers of horizontal bars:
#40 18.52 in
#5@ 28.70 in
#6@ 40.74 In
Use menu item Settings> Printing & Title Block
Title FT1C r FW10
Page: 3
to set these five lines of information
Job #: Dsgnr:
J. Miller Date:
18 OCT 2016
for your program.
Description....
Cantilevered walls for basement
'his Wall In File: tAstructurah2016 structural jobs\2016.2850_he
mattson apartmenlst2016-2850.rpx
tetair,Pro (c)1967.2016, Build 11.16.07.18
.icense: KW -06060294
Cantilevered Retaining Wall
Code: IBC 2012,ACI 318-11,ACI 530.11
.icense To :LEI Englneera end Surveyors
Summary of Overturning & Resisting
Forces & Moments
.....OVERTURNING.,...
.....RESISTING.....
Force Distance
Moment
Force Distance
Moment
Item be ft
ft-# _
lbs ft
ft-#
Heel Active Pressure = 1,936.0 3.67
7,098.7 Soil Over Heel =
_
2,658.3 3.29
_
8,750.3
Surcharge over Heel = 160.0 5.50
880.0 Sloped Soil Over Heel =
Surcharge Over Toe =
Surcharge Over Heel =
120.8 3.29
397.7
Adjacent Footing Load =
Adjacent Footing Load =
Added Lateral Load =
Axial Dead Load on Stem=
690.0 1.67
1,150.0
Load @ Stem Above Soil =
' Axial Live Load on Stem =
857.0 1.67
1,428.3
=
Soil Over Toe =
0.63
Surcharge Over Toe =
Total 2,096.0 O.T.M.
7,g7g,7 Stem Weight(s) =
1,250.0 1.67
2,083.3
Earth @ Stem Transitions=
Footing Weight =
675.0 2.25
1,518.8
Resisting/Overturning Ratio =
1.74 Key Weight =
2.00
Vertical Loads used for Soil Pressure = 6,251.2
lbs Vert. Component —
Total=
5,394.2 he R.M:
13,900.2
Axial live load NOT included
in total displayed or used for overturning
resistance, but is included for soil pressure ce(culation.
Vertical component of active lateral soll pressure IS NOT considered in
the calculation of Sliding Resistance.
Vertical component of active lateral soil pressure IS NOT considered in
the calculation of Overturning Resistance.
Tilt -
Horizontal Deflection at Too of Wall due to settlement of soil
(Deflection due to wall bending not considered)
Soil Spring Reaction Modulus 250.0 pcl
Horizontal Dell @ Top of Wall (approximate only) 0.219 In
Tho_Lbove c_ticcla(1cnl is r nl valid it the heel soil_Isgninclpmsvure exreepsIhgtl ),Ille toe..
because the wall would then tend to rotate into the retained soil.
Page 146 of 168
Strip Footing Uplift Capacity - FT213
`'concrete =
150 pcf
bfooting =
18 In
dfoorng =
12 in
L =
10 It
Wsiab =
2 ft
tsleb =
4 in
As =
0.4 inA2
Pup =
2665 lbs
M =
6662.315 Ib -ft
Mu =
10659.7 Ib -ft
Muanow=
13600 lb -ft OK
wfoogng =
2250 Ib
wsiab =
1000 Ib
Mow =
3250 Ib OK
1. Determine the effective length of footing that can be used to
resist the uplift forces based on the capacity of the footing to act as
a beam. This can be done in EnerCalc or with the allowable
moment above (they give about the same answer).
2. If the uplift Is too high for the footing, try increasing the rebar,
the width or the finally the depth. If there is only one or two, use a
spot footing to resist any load beyond the capacity of the strip
footing. If you have more than that, use a larger strip footing
before using spot footings.
Page 147 of 168
Title Block Line 1
Project Title:
You can change this area
Engineer: Project ID:
using the "Settings" menu item
Project Descr:
and then using the "Printing &
Material Properties
Title Block' selection.
-4.805 k -ft
Title Block Line li
NhNd: 17 OCT
Beam on Elastic Foundation
File= liStmoWra112016SImcrurel JobsWI6-2850_HAMaasm ApaNnenls@0
FT2 -
CODE REFERENCES
0.975: 1
Maximum Deflection
Calculations per ACI 318-11, IBC 2012,
CBC 2013, ASCE 7.10
Load Combinations Used: IBC 2015
Max Downward L+Lr+S Deflection
Material Properties
Mu : Applied
-4.805 k -ft
Fc 112=
'
3.0 ksl
m Phi Values Flexure : 0.90
fr= f'c 7.50 =
410.792 psi
Shear: 0.750
W Density =
145.0 pct
p t = 0.850
X Lt Wt Factor =
1.0
Elastic Modulus =
3,122.0 ksl
Span If i
Sol SubgradeModulus
=
250.0 psi/(inch deflection)
Load Combination 1BC 2015
fy - Main Rebar = 60.0ksi Fy- Stirrups = 40.0ksi
E - Main Rebar 29,000.0 ksi E - Stirrups = 29,000.0 ksi
Stirrup Bar Size # _ It 3
Number of Resisting Legs Per Stirrup 2
Beam is supported on an elastic foundation.
W(-5.466)
18"wx10"h
Span=8.0 ft
Cross Section & Reinforcing Details
Rectangular Section, Width =18.0 in, Height =10.0 in
Span #1 Reinforcing....
244 at 3.0 in from Bottom, from 0.0 to 8.0 it in this span
Applied Loads _
Beam self weight calculated and added to loads
Load for Span Number 1
Uniform Load : D = 1.234, L =1.080, S = 0.3150 k/ft, Tributary Width =1.0 it
Point Load: W =-5.466 k 0 4.0 it
DESIGN SUMMARY
1381714
Service loads entered. Load Factors will be applied for calculations.
Maximum Bending Stress Ratio =
0.975: 1
Maximum Deflection
Section used for this span
Typical Section
Max Downward L+Lr+S Deflection
0.000 in
Mu : Applied
-4.805 k -ft
Max Upward L+Lr+S Deflection
0.000 in
Mn ` Phi : Allowable
4.929 k -ft
Max Downward Total Deflection
0.046 in
Load Combination +1.20D+0.50L+0.50S+W+1.6
Max Upward Total Deflection
-2.689 in
Location of maximum on span
4.047 it
Span # where maximum occurs
Span If i
Maximum Soil Pressure =
Allowable Soil Pressure =
1.664 ksf at 4.00 ft LdComb: +D+L+H
4.50 ksf OK
Shear Stirrup Requirements
Entire Beam Span Length : Vu < PhiVG2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in
Maximum Forces & Stresses for Load Combinations
Load Combination Location (#) Bending Stress Results_ (kdt )
Segment Length Span # In Span Mu :Max Phe nx Stress Ratio
MA%ImumBendingtri ebpe
Span If 1 1 7.906 -0.00 1?a�ls 148 of 1 W
A.40N1.60H
Span # 1 1 7.906 -0.00 1213 0.00
Design OK
Title Block Line 1 Project Title:
You can change this area Engineer: Proiect ID:
using the 'Settings" menu item Project Descr:
and then using the 'Printing &
Title Block' selection.
Title Block I.ine6_ nrmieo:nocTzoisiasaia
Beam on Elastic Foundation File=1:13tmclura82016 Stmclurel Jobs120*28M-HA Mattson Apartments@0162850.ec6
cuannmc iuc roan.vnia
Description: FT2-Check
Load Combination
Location (8)
Bending Stress Results_
( k-6 )
Segment Length Span #
N Span
Mu: Max
phi'Mnx
Stress Ratio
+1.20D+0.50Lr+1.60L+1.60H
'd'
Vu (k)
-
Mu
Span # 1 1
7.906
-0.00
12.13
0,00
+1.20D+1.60L+0.50S+1.60H
Load Combination
Number
(ft)
(in)
Span # 1 1
7.906
-0.00
12.13
0.00
+1.20D+1.60Lr+0.50L+1.60H
Req'd
Suggest
+1200+1.60L+0.50 +1.60
-10.00
Span # 1 1
7.906
-0.00
12.13
0.00
+1.20D+1.60Lr+0.50W+1.60H
10.58
Vu <PhiVd2
Not Reqd
0,00
Span#1 1
7.906
-0.00
12.13
0.00
+120D+1.60Lr-0.50W+1.60H
0.18
0.00
1.00
10.55
Span # 1 1
3.953
2.40
12.13
0.20
+1.20 D+0.50 L+1.6 0 S+1.60 H
0.19
7.00
0.22
0.22
Span # 1 1
7.906
-0.00
12.13
0.00
+120 D+1.60S+0.50W+1.60H
0100
+1.20D+0.50L+0.50S-W+1.601
1
0.28
Span # 1 1
7.906
-0.00
12.13
0.00
+1200+1.605.0.50W+1.60H
Vu <PhiVcl2
Not Reqd
0100
0.00
Span # 1 1
3.953
2.40
12.13
0.20
+1.20D+0.50Lr+0.50L+W+1.60H
0,03
1.00
10.58
Vu <PhiVcl2
Span # 1 1
7.906
-0,00
12.13
0.00
+1.20D+0.50Lr+0.50L-W+1.60H
7.00
0,37
0,37
0.05
Span # 1 1
3.953
4.80
12.13
0.40
+120D+0,50L+0.50S+W+1.60H
+120D+0.501 -+0.505-W+1.601
1
0.56
7.00
Span # 1 1
7.906
-0.00
12.13
0.00
+1.20D+0.50L+0.505-W+t.60H
Not Reqd
0.00
0.00
+1.20D+0.50L+0.50S-W+1.601
Span # 1 1
3.953
4.80
12.13
0.40
+1.20D+0.50L+0.70S+E+1.60H
1.00
10.58
Vu <PhlVd2
Not Reqd
Span # 1 1
7.906
-0.00
12.13
0.00
+1.20D+0.50L+0.705-E+1.60H
0.52
0.52
0.14
1.00
Span # 1 1
7.906
-0.00
12.13
0.00
+0.90D+W+0.90H
1
0.85
7.00
0.57
Span # 1 1
7.906
-0.00
12.13
0.00
+0.90D-W+0.90H
0.00
0.00
+1.20D+0.50L+0.50S-W+1.601
1
Span # 1 1
3.953
4.80
12.13
0.40
+0.90D+E+0.90H
10.56
Vu<PhiVd2
Not Reqd
0.00
Span It 1 1
7.906
-0.00
12.13
0.00
+0.90D-E+0.90H
0.68
0.27
1.00
10.58
Span # 1 1
7.906
-0.00
12.13
0.00
Overall Maximum Deflections -
Unfactored
Loads
0.74
0.74
Load Combination
Span Max. '-° Dell
Location in Span
Load Combination Max. "+" Dell Location in Span
_
1
0.0000
0.000
Span 1 -2.6894 4.000
Detailed Shear Information
Span
Distance
'd'
Vu (k)
Mu
d'VWMu
Phi'Vc
Comment
Phi'VS
Spacing
(in)
Load Combination
Number
(ft)
(in)
Actual Design
(k -fl)
(k)
(k)
Req'd
Suggest
+1200+1.60L+0.50 +1.60
-10.00
7.00
0,17
0.17
0,00
1.00
10.58
Vu <PhiVd2
Not Reqd
0,00
0.00
+1.20D+0.50L+0.50S-W+1.601
1
0.09
7.00
0.18
0.18
0.00
1.00
10.55
Vu <PhiVcl2
Not Reqd
0.00
0.00
+1.20D+0.50L+0.50S-W+1.601
1
0.19
7.00
0.22
0.22
0.01
1.00
10.58
Vu <PhWc/2
Not Reqd
0.00
0100
+1.20D+0.50L+0.50S-W+1.601
1
0.28
7.00
0.27
0,27
0.02
1.00
10.58
Vu <PhiVcl2
Not Reqd
0100
0.00
+1.20D+0.50L+0.50S-W+1.601
1
0.38
7.00
0,32
0,32
0,03
1.00
10.58
Vu <PhiVcl2
Not Raqd
0100
0.00
+1.20D+0.501 -+0.50S -W+1.601
1
0.47
7.00
0,37
0,37
0.05
1.00
10.58
Vu <PhlVd2
Not Reqd
0,00
0.00
+120D+0.501 -+0.505-W+1.601
1
0.56
7.00
0,42
0.42
0.08
1.00
10.68
Vu <PhiVd2
Not Reqd
0.00
0.00
+1.20D+0.50L+0.50S-W+1.601
1
0.66
7.00
0.47
0.47
0.11
1.00
10.58
Vu <PhlVd2
Not Reqd
0,00
0.00
+1.20D+0.50L+0.50S-W+1.601
1
0.75
7.00
0.52
0.52
0.14
1.00
10.58
Vu <PhIVd2
Not Reqd
0,00
0,00
+1.20D+0.50L+0.50S-W+1.601
1
0.85
7.00
0.57
0.57
0.18
1.00
10.58
Vu <PhiVd2
Not Reqd
0.00
0.00
+1.20D+0.50L+0.50S-W+1.601
1
0.94
7.00
0.63
0.63
0.22
1.00
10.56
Vu<PhiVd2
Not Reqd
0.00
0.00
+1.20D+0.50L+0.50S-W+1.601
1
1.04
7.00
0.68
0.68
0.27
1.00
10.58
Vu<PhiVoJ2
Not Reqd
0.00
0.00
+1.200+0.501-+0.5094+1.601
1
1,13
7.00
0.74
0.74
0.32
1.00
10.58
Vu<PhIVd2
Not Reqd
0.00
0.00
+1.20D+0.50L+0.50S-W+1.601
1
1,22
7.00
0.79
0.79
0.38
1.00
10.58
Vu<PhiVd2
Not Reqd
0.00
0.00
+1.20D+0.50L+0.505-W+1.601
1
1,32
7.00
0.85
0185
0.45
1.00
10.58
Vu<PhiVd2
Not Reqd
0.00
0.00
+1.200+0.50L+0.50S-W+1.601
1
1,41
7.00
0.91
0.91
0,52
1.00
10.58
Vu<PhiVd2
Not Reqd
0,00
0.00
+1.20D+0.50L+0.50S-W+1.601
1
1.51
7.00
0,97
0.97
0.59
1.00
10.58
Vu<PhiVd2
Not Reqd
0.00
0.00
+1200+0.501-+0.50S.W+1.601
1
1.60
7.00
1.03
1.03
Pag0R49 of tl'gg
10.58
Vu < PhiVd2
Not Reqd
0.00
0.00
+120D+0,50L+0.50S-W+1.601
1
1.69
7.00
1,10
1.10
0,76
1.00
10.58
Vu<PhiVd2
Not Reqd
0.00
0.00
title Block Line 1
Project Title:
lou can change this area
Engineer: Project ID;
(sing the "Settings' menu item
Protect Descr:
Ind then using the "Printing 8
Phl'Vc
-itle Block' selection.
Phi'Vs
itle Block Line 6
envied: 17 OCT 2016 12aP1
Beam on Elastic Foundation
rile=Nslmclurah2m16slmclum.IJobs12016-2850_HAMahnnApedmems12o162B5o.ec6
(in)
ENERCALC, INC. 1983.2018, Build:6.16.721, Ver.6.16,7.21
115111 r,r1,.
•r •. . -
Description: FT2-Check
Detailed Shear Information
Span
Distance
'd'
Vu (k)
Mu d'Vu/Mu
Phl'Vc
Comment
Phi'Vs
Spacing (in)
cad Combination
Number
(a)
(in)
Actual Design
(k -h)
(k)
(k)
Req'd
Suggest
1.20D+0.50L40.50S-W+1.691
1
1,79
7.00
1.16
1.16
0.85
1.00
10.58
Vu<PhiVd2
Not Reqd
0.00
0.00
120D+0.50L+0.50S-W+1.601
1
1.88
7.00
1.23
123
0.95
1.00
10.58
Vu<PhiVG2
Not Reqd
0.00
0.00
1.20D+0.50L+0.50S-W+1.601
1
1,98
7.00
1.29
1.29
1.06
1.00
10.58
Vu<PhiVcl2
Not Regd
0.00
0.00
1.20D+0.S0L+0.50S-W+1.601
1
2.07
7.00
1.36
1.36
1.17
1.00
10.58
Vu<PhIVG2
Not Regd
0.00
0.00
1.20D+0.50L+0.50S-W+1.601
1
2.16
7.00
1.42
1.42
1.28
1.00
to.58
Vu<PhlVG2
Not Reqd
0.00
0.00
120D+0.50L+0.50S-W+1.601
1
2,26
7.00
1.49
1.49
1.41
1.00
10.58
Vu<PhiVc/2
Not Reqd
0.00
0.00
1.20D+0.50L+0.50S-W+1.601
1
2.35
7.00
1.56
1.56
1.54
1.00
10.58
Vu <PhIVcl2
Not Reqd
0.00
0.00
1.20D+0.50L+0.508-W+1.601
1
2.45
7.00
1.63
1.63
1.67
IM
10.58
Vu<PhlVc/2
Not Reqd
0.00
0.00
1.20D+0.501 -+0.50S -W+1.601
1
2.54
7.00
1.70
1.70
1.82
1.00
10.58
Vu <PhlVc/2
Not Reqd
0.00
0.00
1.20D+0.50L+0.50S-W+1.601
1
2.64
7.00
1.78
1.78
1.97
1.00
10.58
Vu<PhlVc/2
Not Reqd
0.00
0.00
120D+0.50L+0.508-W+1.601
1
2.73
7.00
1.85
1.85
2.12
1.00
10.58
Vu <PhlVG2
Not Reqd
0.00
0.00
120D+0.50L+0.50$-W+1.601
1
2.82
7.00
1.92
1.92
2.29
1.00
10.58
Vu <PhIVG2
Not Reqd
0.00
0.00
1.20D+0.50L+0.50S-W+1.601
1
2.92
7.00
2.00
2.00
2.46
1.00
10.58
Vu <PhiVG2
Not Reqd
0.00
0.00
120D+0.50L+0.50S-W+1.601
1
3.01
7.00
2.07
2.07
2.64
1.00
10.58
Vu <PhiVd2
Not Reqd
0.00
0.00
1.20D+0.50L+0.50$-W+1.601
1
3.11
7.00
2.15
2.15
2.82
1
10.58
Vu <PhiVc(2
Not Reqd
0.00
0.00
1.20D+0.50L+0.50S-W+1.601
1
3.20
7.00
2.22
2.22
3.01
1.00
10.58
Vu <
PhiVc/2
Not Reqd
0.00
0.00
1.200+0.50L+0.50S-W+1.601
1
3.29
7.00
2.30
2.30
3.21
1.00
10.58
Vu <
PhiV62
Not Reqd
0.00
0.00
1.20D+0.50L+0.50S-W+1.601
1
3.39
7.00
2.38
2.38
3.42
1.00
10.58
Vu <
PhiVG2
Not Reqd
0.00
0.00
1.20D+0.50L+0.60S-W+1.601
1
3.48
7.00
2.45
2.45
3.63
1.00
10.513
Vu <PhiVG2
Not Reqd
0.00
0.00
1.20D+0.50L+0.50S-W+1.601
1
3.58
7.00
2.53
2.53
3.85
1.00
10.58
Vu <
PhiVc/2
Not Reqd
0.00
0.00
1.20D+0.50L+0.505-W+1.601
1
3.67
7.00
2.61
2.61
4.08
1.00
10.58
Vu <PhlVc/2
Not Reqd
0.00
0.00
120D+0.50L+0.50S-W+1.601
1
3.76
7.00
2.69
2.69
4.31
1.00
10.58
Vu <
PhIVG2
Not Reqd
0.00
0.00
1.20D+O.SOL+0.50S-W+1.601
1
3.86
7.00
2.77
2.77
4.55
1.00
10.58
Vu <PhiVc/2
Not Reqd
0.00
0.00
1.20D+0.50L+0.50S-W+1.601
1
3.95
7.00
2.84
2.84
4.80
1.00
10.58
Vu<PhlVG2
Not Reqd
0.00
0.00
1.20D+0.50L+0.505+W+1.60
1
4.05
7.00
2.77
2.77
4.80
1.00
10.58
Vu<PhlVG2
Not Reqd
0.00
0.00
1.20D+0.50L+0.509+W+1.60
1
4,14
7.00
2.69
2.69
4.55
1.00
10.58
Vu<PhlVG2
Not Reqd
0.00
0.00
1.20D+0.50L+0.508+W+1.60
1
4.24
7.00
2.61
2.61
4.31
1.00
10.58
Vu <PhIVG2
Not Reqd
0.00
0.00
1.20D+0.50L+0.50S+W+1.60
1
4.33
7.00
2.53
2.53
4.08
1.00
10.58
Vu <PhiVcl2
Not Reqd
0.00
0.00
1.20D+0.50L+0.50S+W+1.60
1
4.42
7.00
2.45
2.45
3.85
1.00
10.58
Vu <PhiVG2
Not Reqd
0.00
0.00
1.20D+0.50L+0.505+W+1.60
1
4,52
7.00
2.38
2.38
3.63
1.00
10.58
Vu <PhIVd2
Not Reqd
0.00
0.00
1.20D+0.50L+0.505+W+1.60
1
4.61
7.00
2.30
2.30
3.42
1.00
10.58
Vu <
PhIVG2
Not Reqd
0.00
0.00
1.20D+0.50L+0.505+W+1.60
1
4,71
7,00
2,22
222
3.21
1.00
10.58
Vu <PhiVd2
Not Reqd
0.00
0.00
1.20D+0.50L+0.50S+W+1.60
1
4.80
7.00
2.15
2.15
3.01
1.00
10.58
Vu <PhiVc12
Not Reqd
0.00
0.00
1.20D+0.50L+0.50S+W+1.60
1
4.89
7.00
2.07
2.07
2.82
1.00
10.58
Vu<PhiVG2
Not Reqd
0.00
0.00
1.20D+0.50L+0.50S+W+1.60
1
4.99
7.00
2.00
2.00
2.64
1.00
10.58
Vu <PhiVC12
Not Reqd
0.00
0.00
1.20D+0.50L+0.50S+W+1.60
1
5.08
7.00
1.92
1.92
2.46
1.00
10.58
Vu <PhiVG2
Not Reqd
0.00
0.00
1.20D+0.50L+0.50S+W+1.60
1
5.16
7.00
1.85
1.85
2.29
1.00
10.58
Vu <PhiVC/2
Not Reqd
0.00
0.00
1.20D+0.50L+0.505+W+1.60
1
5.27
7.00
1.78
1.78
2.12
1.00
10.58
Vu<PhiVG2
Not Reqd
0.00
0.00
120D+0.50L+0.505+W+1.60
1
5.36
7.00
1.70
1.70
1.97
1.00
10.58
Vu<PhiVG2
Not Reqd
0.00
0.00
1.20D+0.50L+0.S0S+W+1.60
1
5.46
7.00
1.63
1.63
1.82
1.00
10.58
Vu<Ph1VG2
NotRegd
0.00
0.00
1.20D+0.50L+O.SOS+W+1.60
1
5.55
7.00
1.56
1.56
1.67
1.00
10.58
Vu<PhiVc/2
Not Reqd
0.00
0.00
1.20D+0,50L+0.505+W+1.60
1
5.65
7.00
1.49
1.49
1.54
1.00
10.58
Vu<PhlVG2
Not Reqd
0100
0.00
1.20D+0.50L+0.505+W+1.60
1
5.74
7.00
1.42
1.42
1.41
1.00
10.58
Vu<PhiVG2
Not Reqd
0.00
0.00
1.20D+0.50L+0.50S+W+1.60
1
5.84
7.00
1.36
1.36
1.28
1.00
10.58
Vu<PhiVG2
Not Reqd
0.00
0.00
1.20D+0.50L+0.50S+W+1.60
1
5.93
7.00
1.29
1.29
1.17
1A0
10.58
Vu<PhiVG2
Not Reqd
0.00
0.00
1.20D+0.50L+0.50S+W+1.60
1
6.02
7.00
1.23
1.23
1.06
1.00
10.58
Vu<PhiVG2
Not Reqd
0.00
0.00
1.20D+0.50L+0.50S+W+1.60
1
6.12
7.00
1.16
1.16
0.95
1.00
10.58
Vu<PhiVG2
Not Reqd
0.00
0.00
120D+0.50L+0.50S+W+1.60
1
6.21
7.00
1.10
1.10
0.85
1.00
10.58
Vu<PhlVc/2
Not Reqd
0.00
0.00
.20D+0.50L+0.50S+W+1.60
1
6.31
7.00
1.03
1.03
0.76
1.00
10.58
Vu<PhlW2
Not Reqd
0.00
0.00
.20D+0.50L+0.50S+W+1.60
1
6.40
7.00
0.97
0.97
0.67
1.00
10.58
Vu<PhiVG2
Not Reqd
0.00
0.00
.20D+0.50L+0.50S+W+1.60
1
6.49
7.00
0.91
0.91
0.59
1.00
10.58
Vu<PhlVG2
Not Reqd
0100
0.00
.200+0,50L+0.508+W+1.60
1
6.59
7.00
0.85
0.85
0.52
1.00
10.58
Vu<PhiVG2
Not Reqd
0.00
0.00
.20D+0.50L+0.50S+W+1.60
1
6.68
7.00
0.79
0.79
Pag®41§0
of 1%.%
10.58
Vu <PhiVG2
Not Reqd
0.00
0.00
20D+0.50L+0.505+W+1.60
1
8.78
7.00
0.74
0.74
0.36
1.00
10.58
Vu<PhiVG2
Not Reqd
0.00
0.00
Title Block Line 1
You can change this area
using the "Settings" menu item
and then using the 'Printing &
Title Block' selection.
Title Block Line 6
Beam on Elastic Foundation
FT2-Check
Detailed Shear Information
Span
Load Combination Number
+1.20D+O.SOL+0.50S+ +1.60 1
+1.20D+0.50L+0.50S+W+1.60 i
+1.20 D+0.50 L+0.50 S+W+1.60 1
+1200+O.SOL+0.50S+W+1.60 1
+1.20D+0.50L+0.50S+W+1.60 1
+1.20D+0.50L+0.503+W+1.60 1
+1.20D+0.50L+0.50S+W+1.60 1
+1.20D+0.50L+0.50S+W+1.60 1
+1.20D+O.SOL+0.50S+W+1.80 i
+1.20D+0.50L+0.508+W+1.60 1
+1.200+0.50L+0.508+W+1.60 1
+1.20D+1.60L+0.50S+1.60H 1
Distance
V
Vu (k)
Reqd
Mu
(ft)
(in)
Actual Design
(k -ft)
6.87
7.00
0.68
0.68
0.32
6.06
7.00
0.63
0.63
0.27
7.06
7.00
0.57
0.57
0.22
7.15
7.00
0.52
0.52
0.18
7.25
7.00
0.47
0.47
0.14
7.34
7.00
0.42
0.42
0.11
7.44
7.00
0.37
0.37
0.08
7.53
7.00
0.32
0.32
0.05
7.62
7.00
0.27
0.27
0.03
7.72
7.00
0.22
0.22
0.02
7.81
7.00
0.18
0.18
0.01
7.91
7.00
0.17
0.17
0.00
Project Title:
Engineer:
Project Descr.
PVu/Mu
Phi"Vc
Comment
Reqd
(k)
Not Regd
1.00
10.58
Vu<PhiVc/2
1.00
10.58
Vu<PhiVc/2
1.00
10.58
Vu<PhiVd2
1.00
10.58
Vu<PhiVd2
1.00
10.58
Vu<PhlVc12
1.00
10.58
Vu<PhIVd2
1.00
10.58
Vu<PhiVc/2
1.00
10.58
Vu<PhiVcl2
1.00
10.58
Vu<PhiVd2
1.00
10.58
Vu<PhiVo/2
1.00
10.58
Vu<PhiVP/2
1.00
10,58
Vu<PhiVc/2
Page 151 of 168
Project ID:
Pwted A ] OGT 201 e. 190PM
Phi'Vs
Spacing (in)
(k)
Reqd
Suggest
Not Regd
0.00
0.00
Not Regd
0.00
0.00
Not Regd
0.00
0.00
Not Reqd
0.00
0,00
Not Reqd
0.00
0,00
Not Reqd
0.00
0,00
Not Reqd
0.00
0.00
Not Reqd
0.00
0.00
Not Reqd
0.00
0.00
Not Reqd
0.00
0.00
Not Reqd
0.00
0.00
Not Reqd
0.00
0,00
Title Block Line 1
You can change this area
using the 'Settings' menu item
and then using the 'Printing &
Title Block' selection.
Title Block Line 6
General Footina
FT4
Code References
Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7.10
Load Combinations Used; IBC 2012
General Information
Material Properties
rc : Concrete 28 day strength =
fyy : Rebar Yield =
Ec : Concrete Elastic Modulus =
Concrete Density =
N Values Flexure =
Shear =
Analysis Settings
Min Steel % Bending Point.
Min Allow %Temp Point.
Min. Overturning Safety Factor
Min. Sliding Safety Factor
Add Fig Wt for Soil Pressure
Use fig wt for stability, moments & shears
Add Pedestal Wt for Soil Pressure
Use Pedestal wt for stability, mom & shear
Dimensions
Width parallel to X -X Axis
Length parallel to Z -Z Axis =
Footing Thickness =
Pedestal dimensions...
px : parallel to X -X Axis =
pz : parallel to Z -Z Axis
Height =
Rebar Centerline to Edge of Concrete..,
at Bottom of fooling
Project Title:
Engineer:
Project Descr:
File= 1:1Struclura[016 Simclural
Project ID:
PmW 17 OCT 2016, 11 .19414
3.50 fl
3.50 it
12.0 in
12.0 In
12.0 in
30.0 in
3.0 in
Reinforcing
Soil Design Values
Bars parallel to X -X Axis
2.50 ksi
Allowable Soil Bearing =
4.50 ksf
60.0 ksi
Increase Bearing By Footing Weight =
No
3,122.0 ksi
Soil Passive Resistance (for Sliding) =
250.0 pcf
145.0 pcf
Soil/Concrete Friction Coeff. =
0.30
0.90
Direction Requiring Closer Separation
n/a
0.750
Increases based on footing Depth
N Bars required on each side of zone
We
Footing base depth below soil surface =
2.50 ft
Allow press, increase per foot of depth =
ksf
= 0.00180
when footing base is below =
it
= 1.0:1
= 1.0 :1
Increases based on footing plan dimension
Yes
Allowable pressure increase per foot of depth
Yes
No
when max, length or width is greater than —
ksf
No
N
=
it
3.50 fl
3.50 it
12.0 in
12.0 In
12.0 in
30.0 in
3.0 in
Reinforcing
Bars parallel to X -X Axis
Number of Bars =
7.0
Reinforcing Bar Size =
ii 4
Bars parallel to Z -Z Axis
Number of Bars =
7.0
Reinforcing Bar Size =
# 4
Bandwidth Distribution Check (ACI 15.4.4.2)
Direction Requiring Closer Separation
n/a
k Bars required within zone
n/a
N Bars required on each side of zone
We
Applied Loads
I I I
r�v�eale � I
D Lr L SW E H
P: Column Load = 23.960 19.230 7.230 k
OB: Overburden ksf
M-xx k -ft
M-zz = k -ft
V -x = 0.880 0.880 k
V -z = k
Page 152 of 168
Title Block Line i
Project Title:
You can change this area
using the "Settings' menu item
Engineer: Project ID:
Project Descr:
and then using the "Printing &
4.50
Title Block' selection.
Item
Title Block Line _6_ _ _ _
General Footing
P(ded:17 OCT
He=19Slruclurea2016 Stmolural J0bs12016.2850_HA Mattson Apanmenls120
ENERCALC. INC. 16832019. eulld:6.1812t.1
DESIGNSUMMARY
4.50
X -X, +D+L
4.50
X -X. +D+S
4.50
Min. Ratio
Item
Applied
Capacity
Governing Load Combination
PASS
0.910
Soil Bearing
4.095 ksf
4.50 ksf
+DA 750L+0.750S+0.5250E about Z -Z a
PASS
n/a
Overturning -X-X
0.0 Wt
0.0k -ft
No Overturning
PASS
13.438
Overturning -Z-Z
2.156 k -N
28.972 Wt
+0.60D+0.70E
PASS
10.904
Sliding -X-X
0.6160 to
6.717 k
+0.60D+0.70E
PASS
n/a
Sliding - Z -Z
0.0 k
0.0 k
No Sliding
PASS
n/a
Uplift
0.0 k
0.0 to
No Uplift
PASS
02613
Z Flexure (+X)
4.012 k - ft
15.353 k -ft
+1200+1.60L+0.50S
PASS
0.2613
Z Flexure (-X)
4.012 k - ft
15.353 Wit
+1.20D+1.60L+0.50S
PASS
0.2613
X Flexure (+Z)
4.012 k -ft
15.353 k -ft
+120D+1.60L+0.50S
PASS
0.2613
X Flexure (-Z)
4.012 k -ft
15.353 k -ft
+120D+1.60L+0.50S
PASS
0.3330
1 -way Shear (+X)
24.975 psi
75.0 psi
+1.20D+1.60L+0.50S
PASS
0.3330
1 -way Shear (-X)
24.975 psi
75.0 psi
+120D+1.60L+0.50S
PASS
0.3330
1 -way Shear (+Z)
24.975 psi
75.0 psi
+1.200+1.60L+0.50S
PASS
0.3330
1 -way Shear (-Z)
24,975 psi
75.0 psi
+120D+1.60L+0.50S
PASS
0.4163
2 -way Punching
62.438 psi
150.0 psi
+120D+1.60L+0.50S
Detailed Results
Soil Bearing_
Rotation Axis &
Load Combination... Gross Allowable
X -X. D Only
4.50
X -X, +D+L
4.50
X -X. +D+S
4.50
X -X. +D+0.750L
4.50
X -X, +D+0.750L+0.750S
4.50
X -X. +D+0.60W
4.50
X -X. +D+0.70E
4.50
X-X.+D+0.750L+0.450W
4.50
X -X. +D+0.750L+0.750S+0.450W
4.50
X -X. +D+0.750L+0.750S+0.5250E
4.50
Overturning Stability
Rotation Axis &
Load Combination...
X -X.
X -X.
X -X.
X -X.
X -X,
X -X.
X -X,
X -X.
X -X,
X -X.
X -X.
X -X.
4.50
4.50
4.50
4.50
Xecc
Zecc
Actual Eoll Beaiing Siress @ Location
ActualI Allow
Infinity
(in)
Bottom, -Z
Top, +z
Left, _X
Right, +X_
gatlo _
n/a
0.0
2.252
2.252
n/a
We
0.500
n/a
0.0
3.822
3.822
n/a
n/a
0.849
n/a
0.0
2.843
2.843
n/a
n/a
0.632
n/a
0.0
3.430
3.430
Na
n/a
0.762
n/a
0.0
3.872
3.672
rda
We
0.860
n/a
0.0
2.252
2.252
n/a
Na
0.500
We
0.0
2.252
2.252
n/a
n/a
0.500
n/a
0.0
3.430
3.430
n/a
n/a
0.762
n/a
0.0
3.872
3.872
nla
We
0.860
We
0.0
3.872
3.872
n/a
n/a
0.860
We
0.0
1.351
1.351
We
Na
0.300
n/a
0.0
1.351
1.351
n/a
n/a
0.300
0.0
n/a
n/a
We
2.252
2.252
0.500
0.0
n/a
n/a
Na
3.822
3.822
0.849
0.0
n/a
n/a
Na
2.843
2.843
0.632
0.0
We
n/a
We
3.430
3.430
0.762
0.0
We
n/a
We
3.872
3.872
0.860
0.8037
We
Na
n/a
1.998
2.507
0.557
0.9376
We
We
n/a
1.956
2.549
0.566
0.3959
We
We
n/a
3.239
3.621
0.805
0.3506
n/a
n/a
n/a
3.682
4.063
0.903
0.4090
nla
We
n/a
3.650
4.095
0.910
1.339
n/a
n/a
n/a
1.097
1.606
0.357
1.563
Na
We
n/a
1.055
1.648
0.366
Overturning Moment
None
None
None
None
None
None
None
None
None
None
None
None
Resisting Moment
Stability Ratio
Status
0.0 k -ft
Infinity
OK
0.0 k -ft
Infinity
OK
0.0 k -ft
Infinity
OK
0.0 Wt
Infinity
OK
0.0 Wt
Infinity
OK
0.0 Wt
Infinity
OK
0.0 k -ft
Infinity
OK
0.0 lo -it
Infinity
OK
0.0 k -ft
Infinity
OK
0.0 k -ft
Infinity
OK
0.0k -ft
Infinity
OK
0.0k -ft
Infinity
OK
Page 153 of 168
Title Block Line 1
You can change this area
using the 'Settings" menu item
and then using the "Printing &
Title Block' selection.
Title Block Line 6
General Footing
Description :
Overturning Stability
Rotation Axis &
_ Load Combination...
Z -Z. D Only
Z -Z, +D+L
Z -Z, +D+S
Z -Z,
Z -Z.
Z -Z.
Z -Z.
Z -Z,
Z -Z.
Z -Z,
Z -Z,
Z -Z.
Sliding Stability
Force Application Axis
Load Combination...
X -X, D Only
X -X, +D+L
X -X. +D+S
X -X. +D+0.750L
X -X. +D+0.750L+0.750S
X -X. +D+0.60W
X -X. +D+0.70E
X-X.+D+0.750L+0.450W
X -X, +D+0.750L+0.750S+0.450W
X-X.+0+0.750L+0.750S+0.5250E
X -X, +0.60D+0.60W
X -X. +0.60D+0.70E
Z -Z. D Only
Z -Z, +D+L
Z -Z, +D+S
Z -Z. +D+0.750L
Z -Z. +D+0.750L+0.750S
Z -Z. +D+0.750L+0.750S+0.5250E
Z -Z. +0.60D+0.60W
Z -Z. +0.60D+0.70E
Z -Z. +D+0.60W
Z -Z. +D+0.70E
Z -Z. +D+0.750L+0.450W
Z -Z. +0+0.750L+0.750S+0.450W
Footing Flexure
Project Title:
Engineer:
Protect Descr:
Project ID:
PWd.
File= IASImcNrak2016 Slmctural Job020162850_HAMattson ADaM
Overturnin Moment
Resisting Moment
Stability Ratio
Status
None
0.0k -ft
Infinity
OK
None
0.0 k -ft
Infinity
OK
None
0.0 k4t
Infinity
OK
None
0.0 k -ft
Infinity
OK
None
0.0k -ft
Infinity
OK
1.848 k4t
48.287 k -ft
26.129
OK
2.156 k -fl
48.287 k -fl
22.397
OK
1.386k -fl
73.526k -ft
53.049
OK
1.386 k4t
83.016 k -ft
59.896
OK
1.617 k -ft
83.016 k -ft
51.339
OK
1.848 k -ft
28.972 k -ft
15.678
OK
2.156 k -fl
28.972 k -ft
13.438
OK
0.0 k
15.797 k
No Slidinq
All units k
Sliding Force Resisting Force Stability Ratio Status
0.0 k
10.028 k
No Sliding
OK
0.0 k
15.797 k
No Slidina
OK
0.0 k
12.197 k
No Slidina
OK
0.0 k
14.355 k
No Slidina
OK
0.0 k
15.981 k
No Slidina
OK
0.5280 k
10.028 k
18.992
OK
0.6160 k
10.028 k
16.279
OK
0.3960 k
14.355 k
36.249
OK
0.3960 k
15.981 k
40.357
OK
0.4620 k
15.981 k
34.591
OK
0.5280 k
6.717 k
12.721
OK
0.6160 k
6.717 k
10.904
OK
0.0 k
10.028 k
No Slidina
OK
0.0 k
15.797 k
No Slidinq
OK
0.0 k
12.197 k
No Slidina
OK
0.0 k
14.355 k
No Slidinq
OK
0.0 k
15.981 k
No Sliding
OK
0.0 k
15.981 k
No Sliding
OK
0.0 k
6.717 k
No Sliding
OK
0.0 k
6,717 k
No Slidinq
OK
0.0 k
10.028 k
No Slidina
OK
0.0 k
10,028 k
No Slidina
OK
0.0 k
14.355 k
No Sliding
OK
0.0 k
15,981 k
No Slidinq
OK
Flexure Axle & Load Combinatlon Mu
Side
Tension
As Req'd
Gym. As
k -ft
Surface
in12
102
X-X.+1.40D 2.124
+Z
Bottom
0.2592
Min TemD%
X -X, +1.40D 2.124
-Z
Bottom
0.2592
Min Temp %
X-X,+1,20D+1.60L 3.782
+Z
Bottom
0.2592
Min TemD%
X-X.+1.20D+1.60L 3.782
-Z
Bottom
0.2592
Min Term) %
X-X,+1.20D+1.60L+0.50S 4.012
+Z
Bottom
0.2592
Min Term) %
X -X, +120D+1.60L+0.50S 4.012
-Z
Bottom
0.2592
Min Temp %
X-X.+120D+0.50L 2.433
+Z
Bottom
0.2592
Min TemD%
X-X.+120D+0.50L 2.433
-Z
Bottom
0.2592
MinTemD%
X-X,+120D+0.50W 1.820
+Z
Bottom
0.2592
MinTemD%
X -X, +120D+0.50W 1.820
-Z
Bottom
0.2592
Min TeMD %
X -X, +120D+0.50L+1.60S 3.171
+Z
Bottom
0.2592
Min Two %
X -X, +120D+0.50L+1.60S 3.171
-Z
Bottom
0.2592
Min TemD %
X-X.+120D+1.60S+0.50W 2.558
+Z
Bottom
0.2592
Min Temp %,
X-X.+120D+1.60S+0.50W 2.558
-Z
Bottom
0.2592
Min TemD%
X -X. +1.20D+0.50L+W 2.433
+Z
Bottom
0.2592
Min Temp %,
X -X, +120D+0.50L+W 2.433
-Z
Bottom
0.2592
Min TemD %
X -X, +120D+0.50L+0.508+W 2.664
+Z
Bottom
0.2592
Min TemD %
X -X, +1.20D+0.50L+0.50S+W 2.664
-Z
Bottom
0.2592
Min Temp %
Page 154 of 168
Actual As Phi'Mn
IM2 k -ft
15.353
15.353
15.353
15.353
15.353
15.353
15.353
Status
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
Title Block Line 1
You can change this area
using the "Settings' menu item
and then using the "Printing &
Title Block' selection.
Title Block Une 6
General Footing
Footing Flexure
Flexure Axis & Load Combination
X -X, +1.200+0,50L+0.70S+E
X -X, +1.20D+0.50L+0.70S+E
X -X, +0.90D+W
X -X, +0.90D+W
X -X. +0.90D+E
X -X. +0.90D+E
Z -Z, +1.40D
Z -Z, +1.40D
Z -Z, +1.20D+1.60L
Z-Z,+1.20D+1.60L
Z -Z. +120D+1.60L+0.50S
Z -Z, +1.200+1.60L+0.50S
Z-Z.+1.20D+0,50L
Z -Z, +120D+0.50L
Z -Z. +1.20D+0.50W
Z -Z. +1.20D+0.50W
Z -Z. +1.20D+0.50L+1.60S
Z -Z. +1.20D+0.50L+1.60S
Z -Z. +120D+1.605+0.50W
Z -Z, +1.20D+1.608+0.50W
Z -Z, +1.20D+0,50L+W
Z -Z, +1.20D+0.50L+W
Z -Z, +120D+0.50L+0.50$+W
Z -Z, +1,20D+0.50L+0.50S+W
Z -Z, +1.20D+0.50L+0.70S+E
Z -Z. +120D+0.50L+0.70S+E
Z -Z, +0,90D+W
Z -Z, +0.90D+W
Z -Z, +0.90D+E
Z-Z,+0.90D+E
One Way Shear
Load Combination...
+1,40D _.._
+1.20D+1.60L
+120D+1,60L+0.50S
+1.20D+0.50L
+120D+0,50W
+1.20D+0.50L+1.609
+1.20D+1.60S+0.50W
+1.20D+0.50L+W
+1.20D+0.50L+0.50S+W
+1.20D+0.50L+0.70S+E
+0.90D+W
+0.90D+E
Punching Shear
Load Combination.,.
+1.40D
+1.20D+1.60L
+1.20D+1.60L+0.50S
+1.20D+0.50L
+1.20D+0.50W
+1.20D+0.50L+1.60S
+120D+1.605+0.50W
+120D+0.50L+W
+120D+0.50L+0.50S+W
+120D+0.50L+0.70S+E
+0.90D+W
+0.90D+E
Project Title:
Engineer:
Project Descr:
File=t:1Blm (WV016
Project ID:
Priplad. 17 OCT 2016. 1$.19AM
HA Mattson Apadments12016 2850.ec6
183.2016, Builds.16.7.21, Ver.6.15.7.21
Mu
Side
Tension
As Req'd
Gvrn. As
Actual As
Phi'Mn
Status
k -ft
_Surface
0.202
102
InA2
InA2
k -k
_
2.756
+Z
Bottom
02592
Min Temo %
0.40
15.353
OK
2.756
-Z
Bottom
0.2592
Min Temo %
0.40
15.353
OK
1.365
+Z
Bottom
0.2592
Min Two %
0.40
15.353
OK
1.365
Z
Bottom
0.2592
Min Temp %
0.40
15.353
OK
1.365
+Z
Bottom
0.2592
Min Temo %
0.40
15.353
OK
1.365
-Z
Bottom
0.2592
Min Temp %
0.40
15.353
OK
2.124
X
Bottom
0.2592
Min Temp %
0,40
15.353
OK
2.124
+X
Bottom
0,2592
Min Temp %
0.40
15.353
OK
3,782
-X
Bottom
0.2592
Min Temp %
0.40
15.353
OK
3.782
+X
Bottom
0.2592
Min Two %
0.40
15.353
OK
4.012
-X
Bottom
0.2592
Min Temo %
0.40
15.353
OK
4.012
+X
Bottom
0.2592
Min Temo %
0.40
15.353
OK
2.433
-X
Bottom
0.2592
Min Temp %
0.40
15.353
OK
2.433
+X
Bottom
0.2592
Min Temp %
0.40
15.353
OK
1.692
•X
Bottom
0.2592
Min Temp %
0.40
15.353
OK
1,949
+X
Bottom
0.2592
Min Two %
0.40
15.353
OK
3.171
•X
Bottom
0.2592
Min Temo%
0.40
15.353
OK
3.171
+X
Bottom
0.2592
Min Temo %
0.40
15.353
OK
2.430
-X
Bottom
0.2592
Min Temo%
0.40
15.353
OK
2.686
+X
Bottom
0.2592
Min Temo %
0.40
15.353
OK
2.177
-X
Bottom
0.2592
Min Temp%
0.40
15.353
OK
2.690
+X
Bottom
0.2592
Min Two %
0.40
15.353
OK
2.407
•X
Bottom
0.2592
Min Temp%
0.40
15.353
OK
2.920
+X
Bottom
0.2592
Min Temo %
0.40
15.353
OK
2.499
-X
Bottom
0.2592
Min Temp %
0.40
15.353
OK
3.012
+X
Bottom
0.2592
Min Temo %
0.40
15.353
OK
1.109
-X
Bottom
0.2592
Min Temo %
0,40
15.353
OK
1.622
+X
Bottom
0.2592
Min Temo %
0.40
15.353
OK
1.109
-X
Bottom
0.2592
Min Temo %
0.40
15.353
OK
1.622
+X
Bottom
0.2592
Min Temo %
0.40
15.353
OK
Vu @ -X VU @ +X Vu @ -Z Vu @ +Z Vu:Maz_
13.219 Dsi 13.219 Dsi 13.219 osi 13.219 osi 13.219 osi
23.54 Dsi 23.54 osi 23.54 osi 23.54 osi 23.54 osi
24.975 psi 24.975 psi 24,975 osi 24.975 osi 24.975 Dsi
15.146 osi 15.146 osi 15.146 osi 15.146 nsi 15.146 osi
10.44 osi 12.221 Dsi 11.331 osi 11.331 osi 12.221 Dsi
19.737 Dsi 19.737 osi 19.737 osi 19.737 osi 19,737 Dsi
15.031 osi 16,812 Dsi 15,921 osi 15.921 osi 16.812 Dsi
13.365 Dsi 16.927 psi 15.146 osi 15.146 Dsi 16.927 Dsi
14.8osi 18.362 osi 16.581 osi 16.581 psi 18.362 Dsi
15.374 osi 18.936 osi 17.155 psi 17.155 Dsl 18.936 osi
6,717 Dsi 10.279 net 8.498 Dsi 8.498 psi 10.279 osi
6.717 Dsi 10.279 osi 8.498 psi 8.498 Dal 10.279 psi
Pd
33.049 osi
58.851 psi
62.438 osi
37.866 osi
28.327 Dsi
49,342 Dsi
39.804 psi
37.866 osi
41.452 osi
42.887 Dsi
21.246 Dsi
21.246 osi
Phl'Vn
150Dsi
150Dsi
150asi
150psi
150psi
150osi
150Dsi
150osi
150Dsi
150Dsi
150Dsi
150Dsi
Page 155 of 168
Vu / Phi'Vn
0.2203
0.3923
0.4163
0.2524
0.1888
0.3289
0.2654
0.2524
0.2763
0.2859
0.1416
0.1416
Phi Vn Vu / Phi'Vn Status
75 osl
0.1763
OK
75 osl
0.3139
OK
75 osi
0.333
OK
75 osl
0.202
OK
75 osi
0.163
OK
75 psi
0.2632
OK
75 Dsi
0.2242
OK
75 osi
0.2257
OK
75 osl
0.2448
OK
75 Dsi
0.2525
OK
75 psi
0.1371
OK
75 Dsi
0.1371
OK
All units k
Status
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
Fitts Block Line 1
fou can change this area
ising the 'Settings' menu item
Ind then using the "Printing &
little Block' selection.
title Block Line 6
General Footing
i[mirM,41,12#14 rr..
Description : FT5
Code References
Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10
-oad Combinations Used: IBC 2012
General Information
Project Title:
Engineer:
Project Descr:
Project ID:
_ Pfnied:17ocr2016. msanr
FIe= 1.0trucNreA2016 SlmcluraLbbs12016285LHA Menson Aparhenis12016.2850.ec6
ENERCALC. INC. 19113-2016. Bulida.16.7.21. Ver6.16.7.21
Material Properties
Soil Design Values
ft : Concrete 28 day strength =
2.50 ksi
Allowable Soil Bearing
fy : Rebar Yield =
60.0 ksi
Increase Beading By Footing Weight
Ec : Concrete Elastic Modulus
3,122.0 ksi
Soil Passive Resistance (for Sliding)
Concrete Density =
145.0 pcf
Soil/Concrete Friction Coefl.
N Values Flexure =
0.90
1g Z -Z Axis
Shear =
Analysis Settings
0.750
Increases based on footing Depth
Min Steel % Bending Reinf.
=
Footing base depth below soil surface
Allow press. increase per foot of depth
Min Allow %Temp Reinf.
= 0.00180
when footing base is below
Min. Overturning Safety Factor
= 1.0 :1
3.918
Min. Sliding Safety Factor
= 1.0 :1
Increases based on footing plan dimension
Add Fig Wt for Soil Pressure
Yes
Allowable pressure increase per foot of depth
Use ftg wt for stability, moments & shears
Yes
/-z =
Add Pedestal Wt for Soil Pressure
No
when max. length or width is greater than
Use Pedestal wt for stability, mom & shear
No
Dimensions
Width parallel to X -X Axis = 3.50 it
Length parallel to Z -Z Axis = 2.0 it
Footing Thickness = 12.0 in
Pedestal dimensions
px : parallel to X -X Axis = 12.0 in
pz : parallel to Z -Z Axis = 12.0 in
Height = 30.0 in
Rebar Centerline to Edge of Concrete...
at Bottom of footing = 3.0 in
Reinforcing
Bars parallel to X -X Axis
Number of Bars =
3
Reinforcing Bar Size
# 4
Bars parallel to Z -Z Axis
Number of Bars =
5
Reinforcing Bar Size =
# 4
Bandwidth Distribution Check (ACI 15.4.4.2)
Direction Requiring Closer Separation
1g Z -Z Axis
# Bars required within zone
72.7% ;._
# Bars required on each side of zone
27.3%
4pplied Loads
D Lr
• Column Load
3.918
OB: Overburden =
N-xx =
v1-zz =
/-x =
/-z =
FA
L_
10.576
Page 156 of 168
S
c 4.50 ksi
No
250.0 pcf
0.30
2.50 it
ksf
it
5.868 2.178
0.6520 0.2420
ksf
it
H
k
ksf
k -0t
k -ft
k
k
Title Block Line 1
You can change this area
using the "Settings' menu item
and then using the "Printing &
Title Block' selection.
Title Block Line 6
General Footing
Description :
DESIGN SUMMARY
Project Title:
Engineer:
Project Descr:
Project ID:
Pnnted:170CT2016, 196PId
File=tAStWUra62016 Structural Jobs12016.2650 HA Mattson Apadmentst2016¢950.ec6
Design OK
Detailed Results
Soil Bearing_
Rotation Axis &
Load Combination...
Overturning Stability
Rotation Axis &
Load Combination...
X -X. D Oniv
X -X, +D+L
X -X. +D+0.750L
X -X, +D+O.60W
X -X. +D+0.70E
X -X. +D+0.750L+0.45oW
X -X. +D+0.750L+0.5250E
X-X.+0.60D+0.60W
X-X,+0.60D+0.70E
Z -Z. D Onlv
Z -Z, +D+L
Z -Z. +D+0.750L
Z -Z, +D+0.60W
Z -Z, +D+0,70E
Z -Z, +D+0.750L+0.450W
Z -Z. +D+0.750L+0.5250E
Z-Z.+0.60D+o.60W
Z-Z,+o.60D+0.70E
Min. Ratio
Item
Applied
Capacity
Governing Load Combination
PASS
0.6856
Soil Besting
3.085 ksf
4.50 ksf
+0.60D+0.60W about Z -Z axis
PASS
n1a
Overturning -X -X
0.0k -it
0.0 Wt
No Overturning
PASS
1.272
Overturning -Z-Z
4.890 Wt
6.219 k -ft
+0.60D+0,60W
PASS
5.282
Sliding - X -X
0.3912 k
2.066 k
+0.60D+0.60W
PASS
n/a
Sliding - Z -Z
0.0 k
0.0 k
No Sliding
PASS
n/a
Uplift
0.0 k
0.0 k
No Uplift
PASS
0.2159
Z Flexure (+X)
2.521 k -ft
11.674 k -fl
+0.90D+W
PASS
0.2048
Z Flexure (-X)
2.390 k -ft
11.674 k -R
+1.20D+1.60L
PASS
0.03435
X Flexure (+Z)
0.3826 k -ft
11.139 k -ft
+1.200+1,60L
PASS
0.03435
X Flexure (-Z)
0.3826 k -ft
11.139 Wit
+1.20D+1,60L
PASS
0.2967
1 -way Shear (+X)
22.249 psi
75.0 psi
+0.90D+W
PASS
0.1984
1 -way Shear (-X)
14.879 psi
75.0 psi
+1.20D+1.60L
PASS
Na
1 -way Shear (+Z)
0.0 psi
75.0 psi
n/a
PASS
n/a
1 -way Shear (-Z)
0.0 psi
75.0 psi
n/a
PASS
0.1071
2 -way Punching
16.059 psi
150.0 psi
+1.20D+1.60L
Detailed Results
Soil Bearing_
Rotation Axis &
Load Combination...
Overturning Stability
Rotation Axis &
Load Combination...
X -X. D Oniv
X -X, +D+L
X -X. +D+0.750L
X -X, +D+O.60W
X -X. +D+0.70E
X -X. +D+0.750L+0.45oW
X -X. +D+0.750L+0.5250E
X-X.+0.60D+0.60W
X-X,+0.60D+0.70E
Z -Z. D Onlv
Z -Z, +D+L
Z -Z. +D+0.750L
Z -Z, +D+0.60W
Z -Z, +D+0,70E
Z -Z, +D+0.750L+0.450W
Z -Z. +D+0.750L+0.5250E
Z-Z.+0.60D+o.60W
Z-Z,+o.60D+0.70E
Overturning Moment
None
None
None
None
None
None
None
None
None
None
None
None
4.890 k -ft
2.118 k -ft
3.668 k - ft
1.588 k -ft
4.890 k -ft
2.118 k4t
-_ - --
Actual Sall Bearing Streas 4� Locaiion
Xecc
Zeoc
Gross Allowable
Left, -X
- R ht, +X
4.50
n/a
0.0
4.50
n/a
0.0
4,50
n/a
0.0
4.50
We
0.0
4.50
We
0.0
4.50
We
0.0
4.50
n/a
0.0
4.50
n1a
0.0
4.50
We
0.0
4.50
0.0
rda
4.50
0.0
n/a
4.50
0.0
Na
4.50
9.907
n/a
4.50
4.290
n1a
4.50
3.176
n/a
4.50
1.376
n/a
4.50
16.512
n/a
4.50
7.150
n/a
Overturning Moment
None
None
None
None
None
None
None
None
None
None
None
None
4.890 k -ft
2.118 k -ft
3.668 k - ft
1.588 k -ft
4.890 k -ft
2.118 k4t
-_ - --
Actual Sall Bearing Streas 4� Locaiion
Actual /Allow
Bottom, -Z
Top, +Z
Left, -X
- R ht, +X
Ratio
0.8461
0.8461
n/a
n/a
0.188
2.357
2.357
fire
n/a
0.524
1.979
1.979
n/a
n/a
0.440
0.8461
0.8461
n/a
We
0.188
0.8461
0.8461
n/a
n/a
0.188
1.979
1.979
n/a
n/a
0.440
1.979
1.979
n/a
fire
0,440
0.5077
0.5077
n/a
n/a
0.113
0.5077
0.5077
n/a
n1a
0.113
nia
n/a
0.8461
0.8461
0.188
n/a
n/a
2.357
2.357
0.524
Na
n/a
1.979
1.979
0.440
fire
n/a
0.0
2.113
0.470
n/a
n/a
0.3362
1.356
0.301
n/a
n/a
1.096
2.862
0.636
We
We
1.597
2.362
0.525
n/a
n/a
0.0
3.085
0.686
Na
We
0.0
1,018
0.226
Page 157 of 168
Resisting Moment
0.0 k -it
0.0 k -ft
0.0 k -ft
0.0 k -fl
0.0 kdt
0.0 k -ft
0.0 k -1t
0.0 k -1t
0,0 k -it
0.0 k -it
0.0 Wt
0.0 k -ft
10.365 k -t
10.365 k -ft
24.246 k -ft
24.246 k -ft
6.219 k -ft
6.219 k -ft
Stability Ratio
ritle Block Line 1
Project Title:
You can change this area
Engineer: Project ID:
using the "Settings' menu item
Project Descr:
and then using the 'Printing &
Title Block' selection,
Title, Block Line$
wmten:170cr2016.
General Footina
File=t:1SlmcNmb2016 Simdural Jobs120162650_HA Mattson Apenments12016-2E
Description : FT5
Sliding Stability
All units
k
Force Application Axis
Load Combination...
-
Sliding Force
Resisting
Force
Stability Ratio _
Status_
X -X, D Onlv
0.0 k
2.777 k
No Slidinq
OK
X -X. +D+L
0.0 k
5.950 k
No Sliding
OK
X -X. +D+0.750L
0.0 k
5.157 k
No Slidina
OK
X -X. +D+0.60W
0.3912 k
2.777 k
7.098
OK
X•X, +D+0.70E
0.1694 k
2.777 k
16.393
OK
X•X, +D+0.750L+0.450W
0.2934 k
5.157 k
17.575
OK
X-X,+D+0.750L+0.5250E
0.1271 k
5.157k
40.586
OK
X -X, +0.60D+0.60W
0.3912 k
2.066 k
5.282
OK
X-X,+0.60D+0.70E
0,1694k
2.066k
12.197
OK
Z -Z, D Onlv
0.0 k
3.527 k
No Sliding
OK
Z -Z, +D+L
0.0 k
6.70 k
No Slidina
OK
Z -Z. +D+0.750L
0.0 k
5.907 k
No Slidinq
OK
Z -Z. +D+0.60W
0.0 k
3.527 k
No Sliding
OK
Z-Z,+D+0.750L+0.5250E
0.0 k
5.907 k
No Sliding
OK
Z -Z, +0.60D+0.60W
0.0 k
2.816 k
No Slidino
OK
Z -Z, +0.60D+0.70E
0.0 k
2.816 k
No Sliding
OK
Z-Z.+D+0.70E
0.0 k
3.527 k
No Slidina
OK
Z-Z•+D+0.750L+0.450W
0.0 k
5.907 k
No Slidino
OK
Footing Flexure
Flexure Axis &Load Combination
Mu
Side
Tensio n
As Req'd
Gvrn. As
Actual As
Phi'Mn
Status
k -ft _
Surface_
in^2
IO2
_
_i_M2
k -h
X -X, +1.40D -
0.09383
+Z
Bottom
0.2592
Min Temo %
0.2657
11.139
OK
X -X. +1.40D
0.09383
-Z
Bottom
0.2592
Min Temo %
0.2857
11.139
OK
X -X, +1.20D+1.60L
0.3826
+Z
Bottom
0.2592
Min Temo %
0.2857
11.139
OK
X -X, +1.200+1.60L
0.3826
-Z
Bottom
0.2592
Min Two %
0.2857
11.139
OK
X•X. +1.20D+0.50L
0.1749
+Z
Bottom
0.2592
Min Temo %
0.2857
11.139
OK
X -X, +1.20D+0.50L
0.1749
-Z
Bottom
0.2592
Min Temo %
0.2857
11.139
OK
X•X. +1.20D+0.50W
0.08042
+Z
Bottom
0.2592
Min Temp %
0.2857
11.139
OK
X -X. +1.20D+0.50W
0.08042
-Z
Bottom
0.2592
Min Temo %
0,2857
11.139
OK
X -X. +1.20D+0.50L+W
0.1749
+Z
Bottom
0.2592
Min Temp %
0.2857
11.139
OK
X-X.+120D+0.50L+W
0.1749
-Z
Bottom
0.2592
Min Temo%
0.2857
11.139
OK
X -X. +120D+0.50L+E
0.1749
+Z
Bottom
0.2592
Min Temp %
0.2857
11.139
OK
X-X,+1.20D+0.50L+E
0.1749
•Z
Bottom
0.2592
Min Temo%
0.2857
11.139
OK
X -X, +0.90D+W
0.06032
+Z
Bottom
0.2592
Min Temo %
0.2657
11.139
OK
X -X, +0.90D+W
0.06032
•Z
Bottom
0.2592
Min Temo %
0.2857
11.139
OK
X-X,+0.90D+E
0.06032
+Z
Bottom
0.2592
Min Temo%
0.2657
11.139
OK
X-X.+0.90D+E
0.06032
Z
Bottom
0.2592
Min Temp%
0.2857
11.139
OK
Z -Z, +1.40D
0.5862
-X
Bottom
0.2592
Min TWO %
0.30
11.674
OK
Z -Z, +1.40D
0.5862
+X
Bottom
0.2592
Min Temo %
0.30
11.674
OK
Z -Z, +1.20D+1.60L
2.390
-X
Bottom
0.2592
Min Temo %
0.30
11.674
OK
Z -Z, +1.20D+1.60L
2.390
+X
Bottom
0.2592
Min Temo %
0.30
11.674
OK
Z -Z, +1.20D+0.50L
1.092
-X
Bottom
0.2592
Min Temp %
0.30
11.674
OK
Z-Z.+1.20D+0.50L
1.092
+X
Bottom
0.2592
Min Temo%
0.30
11.674
OK
Z-Z,+1.20D+0.50W
0.09130
-X
Tao
0.2592
Min Temo%
0.30
11.674
OK
Z -Z. +1.20D+0.50W
1.096
+X
Bottom
0.2592
Min Temo %
0.30
11.674
OK
Z -Z. +1.20D+0.50L+W
0.08198
-X
Too
0.2592
Min Temo %
0.30
11.674
OK
Z -Z, +1.20D+0.50L+W
2.287
+X
Bottom
0.2592
Min Temp %
0.30
11.674
OK
Z -Z. +1.20D+0.50L+E
0.6516
-X
Bottom
0.2592
Min Temo %
0.30
11.674
OK
Z -Z. +1.20D+0.50L+E
1.533
+X
Bottom
02592
Min Temp %
0.30
11.674
OK
Z-Z.+0.90D+W
02179
X
Top
0.2592
Min Temo%
0.30
11.674
OK
Z -Z, +0.90D+W
2.521
+X
Bottom
0.2592
Min Temo %
0.30
11.674
OK
Z -Z. +0.90D+E
0,06392
-X
Too
0.2592
Min Two %
0.30
11.674
OK
Z -Z, +0.90D+E
0.8176
+X
Bottom
0.2592
Min Temo %
0.30
11.674
OK
One Way Shear
Load Combination...
Vu @ -X
Vu a
+X Vu @ -Z
Vu @ +Z Vu:Max
Phi Vn Vu I Phi'Vn
Status
+1.40D
3.649 psi
3.649 osi
0 osi
0 osi
3.649 psi
75 osl 0.04865
OK
+120D+1.60L
14.879 osi
14.879 osi
0 psi
0 osi
14.879 osi
75 osi 0.1984
OK
+1.20D+0.50L
6.8 osi
6.8 osi
0 osl
0 osi
6.8 osi
75 osi 0.09066
OK
+1.20D+0.50W
0.996 osi
7251 osi
0 osi
0 osi
7.251
osi
75 osi 0.09668
OK
+120D+0.50L+W
1.32 osi
15.104 osi
0 osi
0 psi
15.104 psi
75 osi 0.2014
OK
Page 158 of 168
Title Block Line 1
You can change this area
using the 'Settings" menu item
and then using the "Printing &
Title Block" selection.
Title Block Line 6
General Footing
Description: FT5
+1.20D+0.50L+E
Project Title:
Engineer:
Protect Descr:
He=
3.739 psi 9.861os! 0 osi
Page 159 of 168
Project 10:
_ Pdaled:110CTPet6. IMPM1
ura1120166VucMAJ446162650_HAMa6son Apanmenis120162b60,ec6 t
ENEACALC, INC. 19832016, Build:6.16.7.21, Vec6.16.7.21 I
0 Dsi 9.861 Dal 75 osi 0.1315 OK
Title Block Line 1
You can change this area
ising the "Settings' menu item
and then using the "Printing &
rite, Block' selection.
rills Blgqk Line 6
General Footing
One Way Shear
Load Combination
+0.90D+W
+0.90D+E
Punching Shear
Load Combination...
+1.40D
+1.20D+1.60L
+1.20D+0.50L
+1.20D+0.50W
+1.20D+0.50L+W
+1200+0.50L+E
+0.90D+W
+0.90D+E
Vua-X Vu®+X
1.356 osi 22.2490si
0.71540si 5.407 Dsi
Vu
3.938 psi
16.059 Dsi
7.339 psi
3.376 osi
7.372 osi
7.339 osi
4.102 DSI
2.532 psi
Project Title:
Engineer:
Project Descr:
Project ID:
Punled:170CT20% 196PM
File= 1.lSOuctura5201681MIural Jobs@016-2650}IA Maeson ApaAmen1sa201&2B50.ec6
ENEFICALC, INC. 1983-2016. Bulld:e.16.7,21. Vec8.16.7.21
Vu @ •Z Vu @ +Z Vu:Maz Phi Vn Vu / Phi'Vn Status
0 cal 0 Dsl 22.249 osi 75 Dsi 0.2967 OK
0 Dsl 0 DO 5.407 Dsi 75 Dsi 0.07209 OK
All units k
_Phi*_ n_
1500si
150Dsi
1500si
1500si
150osi
150Dsi
1500si
150osi
Page 160 of 168
Vu / Phi'Vn Status
0.02626
OK
0.1071
OK
0.04893
OK
0.02251
OK
0.04915
OK
0.04893
OK
0.02735
OK
0.01688
OK
Post Calculations
Example Calculations:
Ib it
Post Max P 1
(2) 2x4
3725 8
(2) 2x6
8990 8
(3) 2x4
5805 8
(3)2x6
14295 8
(4) 2x4
7745 8
(4)2x6
19080 8
(5) 2x4
9680 8
(5) 2x6
23860 8
4x4
4340 8
6x6
11200 8
3 1/2" x 3 1/2" PLP
7440 8
3 1/2" x 5 1/4" PLP
11035 8
5 1/4" x 5 1/4' PLP
27915 8
31/8" x 7 1/2" OLP
11495 8
3 1/8' x 9" GLP
13790 8
5 1/8" x 6" GLP
26595 8
5 1/8" x 7 1/2" GLP
33240 8
Load Charts:
F,
Fa
Fol
E,
Et
it it in in
2"-4' Thick
5"x5°and Larger
0.00
1.15
Timber DF -L#2 Timber DF -L#2
Parallam Glulam Comb 114
1350700
6
2500
2100
900
750
2400
1900
900
750
2400
2200
1600000
1300000
18000001
1900000
1600000
1300000
18000001
1900000
psi
psi
psi
psi
psi
8 1
0.61
0.00
1.15
27.4
4.0
10.5
6
5
355
582
1551
1708
0.6
OK
8 1
0.96
0.00
1.15
17.5
4.0
16.5
15
8
545
1013
1344
1547
0.7
OK
6 1
0.61
0.00
1.15
27.4
2.7
15.75
9
12
369
582
1785
1964
0.6
OK
8 1
0.96
0.00
1.15
17.5
2.7
24.75
23
19
578
1019
1547
1779
0.7
OK
8 1
0.61
0.00
1.15
27.4
2.0
21
12
21
369
582
1785
1964
0.6
ON
8 1
0.96
0.00
1.15
17.5
2.0
33
30
33
578
1022
1547
1779
0.7
OK
6 1
0.61
0.00
1.15
27A
1.6
26.25
15
33
369
582
1785
1984
0.6
OK
6 1
0.96
0.00
1.15
17.5
1.6
41.25
38
52
578
1023
1547
1779
0.7
OK
8 1
0.61
0.00
1.15
27.4
3.4
12.25
7
7
354
571
1034
1035
0.7
OK
8 1
0.96
0.00
1.15
17.5
2.2
30.25
28
28
370
663
862
863
0.8
OK
1 8
0.00
0.61
1.15
3.4
27.4
12.25
7
7
607
953
3171
3174
1.0
OK
1 8
0.00
0.61
1.15
2.3
27.4
18.38
16
11
601
953
3032
3036
1.0
OK
1 8
0.00
0.92
1.15
2.3
18.3
27.56
24
24
1013
1889
3034
3036
1.0
OK
1 8
0.00
0.55
1.15
1.6
30.7
23.44
29
12
490
802
2181
2935
0.9
OK
1 8
0.00
0.55
1.15
1.3
30.7
28.13
42
15
490
802
2180
2935
0.9
OK
1 8
0.00
0.90
1.15
2.0
18.7
30.75
31
26
865
1773
2184
2783
0.8
OK
1 8
0.00
0.90
1.15
1.6
18.7
38.44
48
33
865
1773
2184
2783
0.8
OK
1 _8 _
0.00
0.90
1.15
1.3
18.7
46.13
69
39
865
1773
2183
2783
0.8
OK
0 8 6 8 061 0.61 1.15 27.4 27.4 12.25 7 7 0 571 1031 1035 0.0 OK
Roof Loads
(1) 2 x4
2215
1855
1570
1340
(1) 2 x6
5150
4630
4140
3695
(2) 2 x4
4450
3725
3150
2690
(2) 2 x6
9535
8990
8325
7430
(3) 2 x4
6960
5805
4890
4160
(3) 2 x6
15165
14295
13180
11720
(4) 2 x 4
9290
7745
6520
5550
(4) 2 x 6
20245
19080
17580
15630
(5) 2 x 4
11615
9680
8150
6935
im o v Rl
9R74e
99RRn
Mood
1 omiK
(2) 2 x 4 2905 2350 1930 1605
(2) 2 x 6 4670 3775 3095 2570
(3) 2 x 4 6605 5590 4750 4065
(3) 2 x 6 11575 9985 8575 7380
(4) 2 x 4 9290 7745 6520 5550
(4) 2 x 6 18155 16500 14830 13245
(5) 2 x 4 11615 9680 8150 6935
(5) 2 x 6 23935 22215 20425 18635
4 x 4 5185 4340 3670 3135
6 x 6 12040 11200 10330 9460
31/2' x 3 1/2' PLP 9000 7440 6225 5270
31/2' x 5 1/4' PLP 13330 11035 9245 7840
5 1/4" x 5 1/4" PLP 31850 27915 24355 21295
31/8' x 7 1/2' 13795 11495 9680 8245
3 1/8' x 9" 16555 13790 11620 9895
5 1/8' x 6" 29565 26595 23720 21095
5 1/8" x 7 1/2" 36955 33240 29650 26370
5 118"x 9" 44350 39890 35580 31645
Floor Loads
7 i 8 i Sit 10 it
2100
1775
1505
1290
4695
4270
$855
3470
0
4215
3560
3025
2595
y
8500
8080
7615
6970
0
6620
5560
4710
4025
13510
12845
12105
11020
0
8830
7415
6280
5365
18035
17145
16155
14700
11035
9265
7850
6710
12m
22555 21440 20200 18375
2800 2285 1885 1575
4500 3670 3025 2525
6205 5310 4550 3915
10745 9405 8170 7090
8830 7415 6280 5365 c
16425 15120 13760 12425.
11035 9265 7650 6710 iu
21465 20125 18695 17235 0
4915 4145 3525 3025 0
10790 10130 9430 8720
c
8595 7155 6015 5115 a
12720 10600 8930 7600 8e
m
29340 26080 23000 20250 0
13115 11005 9320 7970
15735 13205 11185 9565
26900 24510 22110 19840
33625 30640 27640 24805
40350 36765 33170 29765
Page 161 of 168
Notes: 1. Example calculations show posts braced
In one direction.
2. Loads have been adjusted to accommodate
for the worst case of the following eccentric
conditions: .175 of column thickness or. 175
of column width.
ct: 2016-2850 Lei
®Jack Miller
ion: P5 @ TB3 with loads above LEI Surveyors and Engineers
in 3302 North Main Street
International Building Code(2012 NDS)] Spanish Fork, Utah
.51N x 5.51N x 9.0 FT r'•Gf n'
louglas-Fir-Larch - Dry Use
In Adequate By: 4.6%
PL A1SEk5
StruCalc Version 9.0.2.5 10/18/2016 12:03:38 PM
(TIONS
ninatlons to be nailed together per National Design Specifications for Wood Construction Section 15.3.3.1
TICAL REACTIONS
Base Values Ad'uste
Load: Vert-LL-Rxn =
18035 Ib
I Load: Vert-DL-Rxn =
10630 Ib
I Load: Vert-TL-Rxn =
28665 Ib
UMN DATA
ling Stress (X -X Axis):
I Column Length: 9 k
My =
aced Length (X -Axis) Lx: 9 ft
Cd=1.00 CF= 1,30 Cr -1.15
aced Length (Y -Axis) Ly: 9 ft
ling Stress (Y -Y Axis):
mn End Condtion-K (e): 1
Fby' =
Load Duration Factor 1.00
Cd=1.00 CF=1.30 Cr -1.15
Douglas -Fir -Larch
mn Calculations (Controlling Case Only):
oiling Load Case: Axial Total Load Only (L+ D)
it Compressive Stress:
Base Values Ad'uste
able Compressive Stress:
pressive Stress:
Fc = 1350 psi Fc' = 728 psi
Mx -ex =
ntricity Moment (Y -Y Axis):
Cd=1,00 C1=1. 10 Cp=0.49
snt Due to Lateral Loads (X -X Axis):
ling Stress (X -X Axis):
Fbx = 900 psi Fbx' = 1346 psi
My =
ing Stress Lateral Loads Only (X -X Axis): Fbx =
Cd=1.00 CF= 1,30 Cr -1.15
Fbx' =
ling Stress (Y -Y Axis):
Fby = 900 psi Fby' = 1346 psi
Fby' =
Dined Stress Factor:
Cd=1.00 CF=1.30 Cr -1.15
ilus of Elasticity:
E = 1600 ksi E'= 1600 ksi
nn Section (X -X Axis):
dx = 5.5
in
nn Section (Y -Y Axis):
dy = 7.5
in
A = 41.25
int
on Modulus (X -X Axis):
Sx = 37.81
in3
on Modulus (Y -Y Axis):
Sy = 10.31
in3
lernessRatio:
Lex/dx= 19.64
Ley/dy = 14.4
mn Calculations (Controlling Case Only):
oiling Load Case: Axial Total Load Only (L+ D)
it Compressive Stress:
Fc =
able Compressive Stress:
Fc' =
ntricily Moment (X -X Axis):
Mx -ex =
ntricity Moment (Y -Y Axis):
My-ey =
snt Due to Lateral Loads (X -X Axis):
Mx =
silt Due to Lateral Loads (Y -Y Axis):
My =
ing Stress Lateral Loads Only (X -X Axis): Fbx =
able Bending Stress (X -X Axis):
Fbx' =
ing Stress Lateral Loads Only (Y -Y Axis): Fby =
able Bending Stress (Y -Y Axis):
Fby' =
Dined Stress Factor:
CSF =
695
728
0
0
0
0
0
1346
0
1346
0.95
psi
psi
ft -Ib
ft -Ib
ft -Ib
ft -Ib
psi
psi
psi
PSI
B
9s
AXIAL LOADING
Live Load:
PL =
18035 Ib
Dead Load:
PD =
10550 Ib
Column Self Weight:
CSW =
80 Ib
Total Load:
PT=
28665 Ib
Page 162 of 168
Project: 2016-2850
Location: P10
Column
[2015 International Building Code(AISC 14th Ed ASD)]
HSS 5 x 5 x 1/4 x 9.0 FT /ASTM A500-GR.B-46
Section Adequate By: 78.8%
VERTICAL REACTIONS
Live Load: Vert-LL-Rxn = 13746 Ib
Dead Load: Vert-DL-Rxn = 6595 Ib
Total Load: Vert-TL-Rxn = 20341 Ib
COLUMN DATA
Total Column Length: 9 It
Unbraced Length (X -Axis) Lx: 9 It
Unbraced Length (Y -Axis) Ly: 9 ft
Column End Condtion-K (e): 1
COLUMN PROPERTIES
HSS 5 x 5 x 1/4 - Square
Steel Yield Strength:
Fy =
46 ksi
Modulus of Elasticity:
E =
29 ksi
Column Section:
dx=
5 in
dy =
5 in
Column Wall Thickness:
t=
0.233 in
Area:
A =
4.3 in
Moment of Inertia (deflection):
lx=
16 in4
ly =
16 in4
Section Modulus:
Sx =
6.41 in3
Sy =
6.41 in3
Plastic Section Modulus:
Zx =
7.61 in3
Zy =
0 In3
Rad. of Gyration:
rx =
1.93 in
ry =
1.93 in
Column Compression Calculations:
KL/r Ratio:
KLx/rx
= 55.96
KLy/ry = 55.96
Controlling Direction for Compr. Calcs: (Y -Y Axis)
Flexural Buckling Stress:
Fcr=
37.26 ksi
Controlling Equation
F7-1
Nominal Compressive Strength:
Pc=
96 kip
Combined Stress Calculations:
H1 -1a Controls : 0.21
paw
Jack Miller
LEI Surveyors and Engineers
3302 North Main Street m
Spanish Fork, Utah
+.ia:v.rns
Version 9.0.2.5
Dead Load:
Column Self Weight:
9n
A
10/18/2016 12:03:58 PM
PL= 13746 lb
PD= 6453 lb
CSW = 142 Ib
ct: 2016-2850
ion: P11
International Building Code(2012 NDS)]
I x9,25 IN x9 FT
'arallam - Level Trus Joist
In Adequate By: 23.9%
TICAL REACTIONS
Load: Vert-LL-Rxn = 13056 Ib
I Load: Vert-DL-Rxn = 7729 Ib
ILoad: Vert-TL-Rxn = 20785 Ib
UMN DATA
I Column Length: 9 It
aced Length (X-A)is) Lx: 9 ft
aced Length (Y -Axis) Ly: 9 ft
mn End Condtion-K (e): 1
Load Duration Factor 1.00
UMN PROPERTIES
Parallam -Level Trus Joist
dx=
9.25
Base Values
Addusted
presslve Stress:
Fc = 2900 psi
Fc' = 843 psi
AXIAL LOADING
Cd=1,00 Cp=0.29
32.38
ling Stress (X -X Axis):
Fbx = 2900 psi
Fbx' = 2985 psi
49.91
Cd=1.00 CF=1.03
on Modulus (Y -Y Axis):
ling Stress (Y -Y Axis):
Flay = 2900 psi
Fby' = 2985 psi
terness Ratio:
Cd --1.00 CF=1.03
11.68
dus of Elasticity:
E = 2000 ksi
E'= 2000 ksi
nn Section(X-X Axis):
dx=
9.25
in
nn Section (Y -Y Axis):
dy =
3.5
in
AXIAL LOADING
A =
32.38
int
on Modulus (X -X Axis):
Sx =
49.91
in3
on Modulus (Y -Y Axis):
Sy =
18.89
in3
terness Ratio:
Lex/dx =
11.68
Column Self Weight:
CSW = 91 Ib
Ley/dy =
30.86
ft -Ib
®Jack Miller
LEI Surveyors and Engineers
3302 North Main Street
Spanish Fork, Utah
r:ctititrr,+
P t t.
i
9'e
B
10/18/2016 12:04:02 PM
mn Calculations (Controlling Case Only):
rolling Load Case: Axial Total Load Only (L + D)
AXIAL LOADING
rl Compressive Stress: Fc =
642
psi
Live Load:
PL = 13058 Ib
able Compressive Stress: Fc' =
843
psi
Dead Load:
PD= 7638 Ib
mricily Moment (X -X Axis): Mx -ex =
0
ft -Ib
Column Self Weight:
CSW = 91 Ib
ntricity Moment (Y -Y Axis): My-ey =
0
ft -Ib
Total Load:
PT= 20785 lb
enl Due to Lateral Loads (X -X Axis): Mx=
0
ft -Ib
ant Due to Lateral Loads (Y -Y Axis): My =
0
ft -Ib
ing Stress Lateral Loads Only (X -X Axis): Fbx =
0
psi
able Bending Stress (X -X Axis): Fbx' =
2985
psi
ing Stress Lateral Loads Only (Y -Y Axis): Fby =
0
psi
able Bending Stress (Y -Y Axis): Fby' =
2985
psi
bined Stress Factor: CSF =
0.76
Project: 2016-2850
Location: P12
Column
[2015 International Building Code(2012 NDS)]
3.5 IN x 7.O IN x 9 FT
1.8E Parallam Column - iLevel Trus Joist
Section Adequate By: 23.8%
VERTICAL REACTIONS
dx =
Live Load:
Vert-LL-Rxn = 8874 Ib
Dead Load:
Vert-DL-Rxn = 5261 Ib
Total Load:
Vert-TL-Rxn = 14135 Ib
COLUMN DATA
A=
Total Column Length:
9 ft
Unbraced Length (X -Axis) Lx:
9 ft
Unbraced Length (Y -Axis) Ly: 9 ft
Column End Condtion-K (e):
1
Axial Load Duration Factor
1.00
1n3
Slenderness Ratio:
COLUMN PROPERTIES
1.8E Parallam Column - iLevel Trus Joist
15.43
Base Values Adlusted
Compressive Stress:
Fc = 2500 psi Fc' = 757 psi
30.86
Cd=1.00 Cp=0.30
Bending Stress (X -X Axis):
Fbx = 2400 psi Fbx' = 2548 psi
psi
Cd=1.00 CF=1.06
Bending Stress (Y -Y Axis):
Fitly = 2400 psi Fby' = 2548 psi
Allowable Bending Stress (Y -Y Axis):
Cd=1.00 CF=1.06
Modulus of Elasticity:
E= 1800 ksi E'= 1800 ksi
Column Section (X -X Axis):
dx =
7
in
Column Section (Y -Y Axis):
dy =
3.5
in
Area:
A=
24.5
int
Section Modulus(X-X Axis):
Sx=
28.58
in3
Section Modulus (Y -Y Axis):
Sy =
14.29
1n3
Slenderness Ratio:
Lex/dx=
15.43
ft -Ib
Bending Stress Lateral Loads Only (X -X A)ds): Fbx =
Ley/dy=
30.86
Allowable Bending Stress (X -X Axis):
Column Calculations (Controlling Case Only):
Controlling Load Case: Axial Total Load Only it. + D)
Actual Compressive Stress:
Fe =
577
psi
Allowable Compressive Stress:
Fc' =
757
psi
Eccentricity Moment (X -X Axis):
Mx -ex =
0
ft -Ib
Eccentricity Moment (Y -Y Axis):
My-ey =
0
ft -Ib
Moment Due to Lateral Loads (X -X Axis):
Mx=
0
ft -Ib
Moment Due to Lateral Loads (Y -Y Axis):
MY=
0
ft -Ib
Bending Stress Lateral Loads Only (X -X A)ds): Fbx =
0
psi
Allowable Bending Stress (X -X Axis):
Fbx' =
2548
psi
Bending Stress Lateral Loads Only (Y -Y Axis): Fby =
0
psi
Allowable Bending Stress (Y -Y Axis):
Fby' =
2548
psi
Combined Stress Factor:
CSF =
0.76
Jack Miller
LEI Surveyors and Engineers
3302 North Main Street
Spanish Fork, Utah
1.1
9 f
10/18/2016 12:0416 PM
Live Load:
PL =
8874 Ib
Dead Load:
PD=
5192 Ib
Column Self Weight:
CSW =
69 Ib
Total Load:
PT=
14135 lb
Page 165 of 168
Title Block Line 1
You can change this area
using the "Settings' menu item
and then using the "Printing &
Title Block" selection.
Title Block
Steel Base Plate
Project Title:
Engineer:
Protect Descr:
Project ID:
PMled: 14 OCT 2016.10:I6AM
File = INSWoturaP2016 Slmclurel JobsT0164850—HA Menson Aparlmenls12016-2850.ec6
ENERCALC. INC. 1983-2016. Buld:6.16.7.21. Vec6.16.7.21
Code References
Calculations per AISC Design Guide # 1, IBC 2012, CBC 2013, ASCE 7-10
Load Combination Set: IBC 2012
General Information
Material Properties
AISC Design Method Load Resistance Factor Design
Mu: Max. Moment .....................
Steel Plate Fy =
36.0 ksi
fb: Max. Bending Stress ...............
Concrete Support fc -
3.0 ksi
M -X
Assumed Bearing Area :Full Bearing
23.960 k
0.0 k
Column & Plate
L: Live .......
19.230 k
Column Properties
0.0 k -ft
Lr: Roof Live .........
Steel Section: HSS10x6x5/8
0.0 k
0.0 k -ft
Depth 10 in
Area
0.0 k
Width 6 in
Ixx
0.0k
Flange Thickness 0,581 in
lyy
E: Earthquake ..............
Web Thickness 0 in
0.0 k
0.0 k -ft
A o : LRFD Resistance Factor
Allowable Bea ng Fp per J8
16.4 in^2
201 !nM
69.4 iM4
Plate Dimensions Support Dimensions
N : Length 12.0 in Width along'X' 12.0 in
B: Width 13.0 in Length along 'Z' 13.0 in
Thickness 0.750 in
Column assumed welded to base plate,
r-. _ i - ---. ,
Applied Loads
Mu: Max. Moment .....................
Plate DBSIen SOmmary
fb: Max. Bending Stress ...............
P•Y
V•Z
M -X
D: Dead Load ......,
23.960 k
0.0 k
0,0 k-0
L: Live .......
19.230 k
0.0 k
0.0 k -ft
Lr: Roof Live .........
0.0 k
0.0 k
0.0 k -ft
S: Snow ................
7.230 k
0.0 k
0.0 k -ft
W:Wind................
0.0k
0.0k
0.0 k -ft
E: Earthquake ..............
0.0 k
0.0 k
0.0 k -ft
H: Lateral Earth .........
0.0 k
0.0 k
0.0 k-11
'P'= Gravity load,'+'sign
isdownward.
"+" Moments create higher soil pressure at +Z edge.
"+' Shears push plate towards +Z edge.
0.60
2.550 ksi
i
,OVERNING DESIGN LOAD CASE SUMMARY
Mu: Max. Moment .....................
Plate DBSIen SOmmary
fb: Max. Bending Stress ...............
Design Method
Load Resistance Factor Design
Fb : Allowable:
Governing Load Combination
+1.20D+1,60L+0.505+1.60H
Fy' Phi
Governing Load Case Type
Axial Load Only
Bending Stress Ratio
Design Plate Size
1'-0" x V-1" x 0.3/4"
Pu: Axial........,
63.135k
fu: Max. Plate Bearing Stress ....
Mu: Moment........
0.000 k -ft
Fp: Allowable:
min( 0.85'fc'sgn(A2/Al),1.7' fc)'Phi
Bearing Stress Ratio
Page 166 of 168
2.696 k -In
19.171 ksi
32.400 ksi
0,592
Bending Stress OK
0.405 ksi
1.530 ksl
0.265
Bearing Stress OK
Title Block Line 1 Project Title:
You can change this area Engineer: Project ID:
using the 'Settings' menu item Project Descr:
and then using the "Printing &
Title Block' selection.
Steel Base Plate
Description :
File =1ASlructurarM tnx;kiral
Code References
Calculations per AISC Design Guide # 1, IBC 2012, CBC 2013, ASCE 7.10
Load Combination Set : IBC 2012
Generallnformation j
Material Properties
AISC Design Method Load Resistance Factor Design <6 c : LRFD Resistance Factor
Steel Plate Fy 36.0 ksi
Concrete Support Pc - 3.0 ksi
Assumed Bearing Area:Full Bearing Allowable Bearing Fp per J8
Column & Plate
Column Properties
Steel Section: HSS5x5x1/4
Depth 5 in Area 4.3 inA2
Width 5 in Ixx 16 inA4
Flange Thickness 0.233 in lyy 16 inA4
Web Thickness 0 in
Plate Dimensions Support Dimensions
N : Length 6.0 in Width along "X" 12.0 in
B: Width 12.0 in Length along 'Z 13,0 in
Thickness 0.750 in
Column assumed welded to base plate.
�- Applied Loads
P -Y V -Z M -X
D: Dead Load....... 6.453 k 0.0 k 0.0 k -ft
L: Live ....... 10.642 k 0.0 k 0.0 k -ft
Lr: Roof Live......... 0.0 k 0.0 k 0.0 k -ft
8: Snow ................ 3.104 k 0.0 k 0.0 k -ft
W: Wind ................ 0.0k 0.0k 0.0 k -ft
E : Earthquake .............. 0.0 k 0.0 k 0.0 k -ft
H: Lateral Earth ......... 0.0 k 0.0 k 0.0 k -ft
P'= Gravity load,'+'sign is downward. "+" Moments create higher soil pressure at+Z edge.
"+" Shears push plate towards+Z edge.
14 OCT M16 11:57M
Ver.6.16.7.21
0.60
2.763 ksi
i
GOVERNING DESIGN LOAD CASE SUMMARY
Mu : Max. Moment .....................
2.402 k -in
Plat -0p ma
fb:Max. Bending Stress ...............
17.081 ksl
Design ethod
Load Resistance Factor Design
Fb : Allowable:
32.400 ksi
Governing Load Combination
+1.20D+1.60L+0.50S+1.60H
Fy' Phi
Governing Load Case Type
Axial Load Only
Bending Stress Ratio
0.527
Design Plate Size
6" x V-0" x 0.3/4"
Bending Stress OK
Pu : Axial .........
26.323 k
fu : Max. Plate Bearing Stress ....
0.366 ksl
Mu: Moment ........
0.000 k -ft
Fp: Allowable:
1.658 ksi
min( 0.85?c'sgd(A2/A1), 1.7' fc)'Phl
Bearing Stress Ratio
0.221
Bearing Stress OK
Page 167 of 168
POST/ SHEAR WALL/FOOTING/FOUNDATION WALL SCHEDULE
mal all are neceaaaay ua"
Post Schedule
Degi nation Past Sime
P1 (1)2,1
P2 (2)2x
P3 3)2x
P4 (4) 2x
P5 (612x
PB 4.4
PT 6x6
Pe HSS S' x 5' x W16' A500 GOB
Pit HSS 19' x (E x 50 A500 GnB
P1D HSS S" x 5' x 1/4' A500 Gs
Pit 31/2'x91/4"Parallel Post
P12 1312' 17- Pamllam Post
otea:1, qa...........I lmmmer roads Mien apacmad
al headers. All other postskeirratlons.alone lull freight
has same U N O.
2, nMell (I) hMmarslutl end It) kng slutl w<M1 sae of
each opening UN O,
3. NNeM 121 Vin nrtluds eedl4ldB of opennga gmalal
ioi UN
4, nMall (2) lung studs wch sae of openings greeter than
6-0'UN.O.
5. 2x W II -up Pasts shell be the wm0 WBN of Iha wall in
which ley ere Ira Inad U N 0.
S. Nall each ply of 2.. bullFap Poeta W and sella @ a' o c.
akggeretl UN 0.
T. Posts Ina are sol forms! wlhn a and Well shall be
braced with 80 or AC post cap and PC or ABA poet bass
UN0,
Shear Wall Schedule's
Designation Materiel 'A la ma.. serum Bd Neils Capacity Note
Edge Fail Edge Field Wind $¢19miC
1 7116" OSB or CDX plywood 3/' 12" 6- 12" 360 260 r."s
2 7/i6"0SBor GDXplywood 4' 12' 530 350
3 Tli6" OSBar GDXpfywg0d 3' 12' fiB5 480 ass
4 7,16'OSS.r CDXplywood 2' 12' 695 640 ?d$,B
alae:1 Studs am to bewae a
2, Unit aheerwpactiw are based on AFSPASDPWS Table 43A (IBC 2305.3)
3, Use (2) long Muds at each and of Meet Poole shwer Well GMr is) UND,
4. All penal all shall be blocked Mh 2inch nominal or%Wrr Immng aaA edge MMg at all vupporm and papal there U N.O.
(Al SOFAS 4.37.1 role I)
S Who. .net. me.,rnd o bath faces of a wall and nal apacng b less Than 6' oc, or, inner We. Panalol es shall be affect to
fall on d5lerenl same, member,
5. Frchim, al etljoni t, panel ad,.. and sill plate shell be 3 min nominal or wart for edge mi 31oG or lass. Nails at adjolnn0
an91e BaeM igo sW IeleS.hall be Me aced AFBPASOPW5437.Inole3
Foundation Wall Schedule
give Reinforcement
FW3A- 3' Foundation Wall N4 bars 024" ox. serboal,344 bars horizontal
FW3B- 3' Foundation Well 112' took) 04 hours 024'o.c. vertical, 3 l4 bars hodzon181(2 ought
FW4.4' Founrialion Wall N4 bars 024" o.c, vertical, (4) x4 bats hodzOnml
FW10 10FOundati0n Well IS bars 0 12' ox, radical, 95 bars 012' ox. horizontal See Offal 13/51.1
FW14 -14' Foundation Wall N5 bar, 0 12' O.C, vertlosl, g5 bars 0 12- o.c, horizontal Sea Doll 10SIA
44: I. Uw YO'danmr xT' om ozlwrbogs@32'e1,W3Y1w1/4'(0.22g'1laolewW�onM IWerorwM phowwetls
IINO.
2. Vey 3.000 Ed, fe=60,000 pal No special nepeclbn required
3.%ace 1814 bar belawod on eacM1 sae of eedt openh0eM(2)pd bus above ouch apenn0 Barabellbeplacedailm 2'alone
Wenips andepend 24' bepnd Ise edge of Ne...sup : vertical bars may minarets 3' Irom the lop of the eoncrU. Openng
4 Top amebnolMbmhbarsshellll bsa "hb4w' aolflthmenlloopowdboo,n
om of the wll.
5. Place renlo¢amenl h cenlerol well DN O.
Page 168 of 168
Footing Schedule
Designation Length
Width
Depth Lengthwise Reinforcement Croeswiae Reinforcement
Oly. ids. LenglM1 spacing Oly. 31ze Length spring
Capacity Note
FT1A
Con[.
20"
10" 2 94 Cars. EQ,
7500 PLF
FTIB
Cont
54"
12" 6 04 Cont. EQ. 05 4B" 12"o.c.
20250 PLF
FT2A
Com.
IB"
10" 2 04 Cone. EQ.
6750 PLF
FT2B
Gon,
i6"
la, 2 N4 Dont. EQ.
6750PLF g0loPt2lbonom
1,73
30"
30'
10' 3 94 24" EQ. 3 R4 24' ED.
20126 LBS
FT4
42'
42'
10' 4 114 36" EQ. 4 04 36' E0.
$5125 LBS
FT5
4T
24'
12" 3 04 36" EQ. 5 R4 18' EQ.
31500 LBS
FT6
186"
132"
12" 11 N5 1'.. EO. 14 45 126" EQ.
693000 LBS
electysl, Y= pal o.pece nepednn who re .
2. PrMngs shell bear on mutual must aoUs or simsturl compacted AM (95% compaction). cpscYled and tested bye registered gaolxJmcal
embruar.
3. All lootngs shell bwrbelow the irovilme of the Ioceliry.130' U N O.1 Pmvae 12'dmmabrawo-lube el eneiwrepoolootng.per de1a120f50.1
4, PmW a lobar to msnh venae) IouMafsn mall rWamemenl waM1 24'mnmum VD spoke Isla IouMalnn wan.
5. CenlerlwfnfirmialoundalbnwallUN.O.
Foundation Wall Schedule
give Reinforcement
FW3A- 3' Foundation Wall N4 bars 024" ox. serboal,344 bars horizontal
FW3B- 3' Foundation Well 112' took) 04 hours 024'o.c. vertical, 3 l4 bars hodzon181(2 ought
FW4.4' Founrialion Wall N4 bars 024" o.c, vertical, (4) x4 bats hodzOnml
FW10 10FOundati0n Well IS bars 0 12' ox, radical, 95 bars 012' ox. horizontal See Offal 13/51.1
FW14 -14' Foundation Wall N5 bar, 0 12' O.C, vertlosl, g5 bars 0 12- o.c, horizontal Sea Doll 10SIA
44: I. Uw YO'danmr xT' om ozlwrbogs@32'e1,W3Y1w1/4'(0.22g'1laolewW�onM IWerorwM phowwetls
IINO.
2. Vey 3.000 Ed, fe=60,000 pal No special nepeclbn required
3.%ace 1814 bar belawod on eacM1 sae of eedt openh0eM(2)pd bus above ouch apenn0 Barabellbeplacedailm 2'alone
Wenips andepend 24' bepnd Ise edge of Ne...sup : vertical bars may minarets 3' Irom the lop of the eoncrU. Openng
4 Top amebnolMbmhbarsshellll bsa "hb4w' aolflthmenlloopowdboo,n
om of the wll.
5. Place renlo¢amenl h cenlerol well DN O.
Page 168 of 168
I