Loading...
HomeMy WebLinkAboutSTRUCTURAL CALCS 2 - 16-00575-577 - 117 S 2nd E - Mattson Apartments (Abri) - Civil SiteMattson Appartments Structural Calculations Engineer's seal applies to this entire calculation packet. This packet is void if binding seal is broken or if engineer's seal is not an original signature in red ink. This engineering report is valid only for the aforementioned building located at 1 st South and 2nd East, Rexburg, Idaho. This report is to be used only once and may not be copied or reproduced without the written consent of LEI Engineers and Surveyors, Inc. ENGINEERS SURVEYORS PLANNERS 3.302 N. Main Street Spanish Fork, UT 84660 Phone: 801.798.0555 Fax: 801.798.9393 office@lei-eng.com www,lei-eng.com 2016-2850 Location: Rexburg, Idaho Date: 10/18/2016 Engineered by: J. Miller 9634 10/19/2016 16-0057=-577 Mattson Apartinents 5truot ur,11 CI ICS 10-21-16 Office Copp ( I of I ) Mattson Appartments Structural Calculations Engineer's seal applies to this entire calculation packet. This packet is void if binding seal is broken or if engineer's seal is not an original signature in red ink. This engineering report is valid only for the aforementioned building located at 1 st South and 2nd East, Rexburg, Idaho. This report is to be used only once and may not be copied or reproduced without the written consent of LEI Engineers and Surveyors, Inc. ENGINEERS SURVEYORS PLANNERS 3302 N. Main Street Spanish Forl<, UT 84660 Phone: 801.798.0555 Fax: 801.798.9393 office@lei-eng.com www.lei-eng.com 2016-2850 Location: Rexburg, Idaho Date: 10/18/2016 Engineered by: J. Miller sizo 9634 at16 0 �rE OF 19P�,wq't` CRY D.titE.o� APPLIES TO PAGES 1-168 Structural Review for: Mattson Appartments Location: Rexburg, Idaho Job #: 2016-2850 Engineered by: J. Miller Code: 2015 IBC Loadings Risk Category: II Ground Snow Load: Elevation = 4862 it County= Madison A.= 6.2 S = 63 Po= 50 Pp= 50.0 psf Roof Snow Load: Ci= 1.1 Roof Exposure C,= 0.9 Full 1= 1.0 Pi= 34.7 psf Roof Dead Load: DL = 16.9 psf Floor Loadings: Dead Load = 23.4 psf Light Weight Storage = 125 psf Live Load= 40 psf Wind Loading: (Envelope Procedure Chapter 28) Roofing Material = Shingle rile Roof Pitch = 0.25/12 Roof Angle = 1.2 degrees Exposure Category = C Mean Roof Height = 50 Wind Speed V = 115 Height & Exposure Factor X = 1.56 P. Horizontal Pressures pne1 zone A zone B I zone C I zone D 11 C&C I Parapet 32.6 0.0 1 21.8 1 0.0 11 33.9 1 78.4 Seismic Loading: fEoutvalent Lateral Force Procedure - see attached) Soil Bearing Capacity: 4500 psf Eagle Rock Engineering Pro. 16116 Page 1 of 168 Snow Drift Calculations Roofing Material = Shingle/rile Ground Snow Load pn = 50 psf Flat Roof Snow Load p, = 35 psf Roof Pitch = 0.25 Angle = 1 Cr= 1.00 Sloped Roof Snow Load p, = 35 psf % = 20.50 Height of normal Snow Load he = 1.69 ft Total load (par)= 92 87 72 124 69 Siesmic Weight Additional Seismic Weight 0.0 psf Total Seismic Weight 16.9 psf Page 2 of 168 Drift Rt Drift #2 Drift 113 Drift N4 Drift #5 Winward Winward Winward Leeward Leeward Roof Height Difference h. (ft)= 3.75 3.75 3.75 14 24 Does Drift Exist (ho/hy <.2)7 Yes Yes Yes Yes Yes Length of upper roof 1„ (ft)= 128 68 36 117 19 Height of Drift ha (ft)= 2.e 2.5 1.8 4.4 1.7 W (ft)= 11 10 7 17 7 Max drift width (ft)= 30 3o 30 112 192 Drift tapers to zero rd w (ft)= 11 10 7 17 7 Drift Load pd (psf)= 58 52 38 89 35 Total load (par)= 92 87 72 124 69 Siesmic Weight Additional Seismic Weight 0.0 psf Total Seismic Weight 16.9 psf Page 2 of 168 Dead Loads Material Weight (psf) 1 -ply rolled membrane roof 1 7/16" OSB sheathing 1.5 Joist framing @ 24" o.c. 3 Insulation (0.3 psf/in X 18 in) 5.4 Drop Ceiling 0 Sprinklers 3 Misc. (lighting, etc.) 3 Total 16.9 Material Weight (psf) 1 1/2" gyperete 13 1/4" sound board 1 3/4" OSB floor sheathing 2.4 Floor Joists @ 16" o.c. 4 Drop Ceiling 2 Misc. (lighting etc.) 1 Total 23.4 Page 3 of 168 Wind Loads ASCE 7.10 Envelope Procedure Part 1 (Chapter 28) Building Category II (Table 1.5-1) V Basic Wind Speed: 115 mph (Figure 26.5-1) Kd = 0.85 (Table 26.6.1) Exposure = C (Section 26.7) Kai= 1 (Figure 26.8-1) Enclosed Structure (Section 26.10) GCpi= 0.18 (Table 26.11-1) -0.18 MWFRS Roof Pitch - 0.25 /12 Roof Angle = 1.2 degrees Mean Roof Height = 50 ft Kh = 1.09 (Table 28.3-1) qh= 31.4 lb/ft` (Equation 28.3.1) Load Case A Wind Pressure Roof Angle 1 2 3 4 IE 2E 0-5 12.55 -21.64 -11.61 -9.10 19.13 -33.56 Wind Perpendicular to the Ridge Well End Roof End Wall Int. Roof Int. 32.62 0.71 21.64 0.42 Parapet Top of Parapet Elevation = 50 ft Kp= 1.09 (Table 28.3-1) qp = 31.4 Ib/ft` (Equation 28.3-1) GCp = 2.50 Po = 78.4 Ib1W Components and Cladding Walls (Figure 30.4-1) GC, = -1.26 p = -33.88 IbW Page 4 of 168 Preface & Structural Notes This engineering report is valid only for the following plan and location: Mattson Appartments 1 st South and 2nd East, Rexburg, Idaho NOTE TO PLAN CHECKER AND BUILDING INSPECTOR: It the above address does not match the Intended building address, notify LEI immediately @ 801-798-0555. This engineering packet is to be used only once for the above mentioned location and is not to be copied or reproduced without written consent of LEI Consulting Engineers. Structural Notes: General Notes 1 If values and assumptions staled in this report are incorrect, or if changes In the field are noticed which are different from those stated in this report, the engineer must be notified in order for the necessary corrections to be made. 2 If there are any discrepancies between the calculations and the drawings, these calculations shall supercede. 3 This engineering report deals only with the structural parts of the building and does not provide liability to the non-structural parts. 4 If plans are stamped in conjunction with this engineering packet, certification pertains only to the structural elements of the plans. 5 The general contractor is responsible for the method, means, and sequence of all structural erection except when specifically noted otherwise on the drawings. He shall provide temporary shoring and bracing as his method of erection requires to provide adequate vertical and lateral support during erection. This shoring and bracing shall remain in place until all permanent members are placed and all final connetions are completed including all roof and floor attachments. Site Preparation 1 Do not place footings or foundations on disturbed soils, undocumented fill, debris, frozen soil, or in ponded water. {- 2 All slabs on grade shall be underlain by 4 in. of free -draining granular material such as "pea" gravel or 3/4 - 1 in. minus clean gravel. 3 Footings, foundations, excavations, grading and fill shall be performed as per the geotechnical report. Concrete 1 All concrete footings and slabs on grade shall have a 28 day minimum strength = 2500 psi. 2 All concrete foundation walls and retaining walls shall have a 28 day minimum strength = 3000 psi. j 3 Concrete shall be thoroughly consolidated by suitable means during placement. 4 Footings shall be centered below the wall and/or column above, typical unless noted otherwise. 5 Exterior footings shall bear below the effects of frost. 6 Stagger footing construction joints from wall construction joints above by at least 6 feet. 7 Reinforcing in continuous footings shall be continuous at corners and/or intersections by providing proper lap lengths and/or corner bars. 8 Interior slabs on grade shall be a min. of 4" thick. 9 Place vertical reinforcing in the center of the wall (except for retaining walls or when each face is specified). 10 Vertical reinforcing shall be dowelled to footing or structure below and to structure above with the same size bar and spacing, typical U.N.O. 11 Provide comer bars at all intersections and corners. Use same size bar and spacing as the horizontal reinforcing. 12 Horizontal reinforcing shall terminate at the ends of the walls and at openings with a standard hook. 13 Provide drainage at the base of retaining walls. Reinforcing Steel 1 Reinforcing steel shall be new stock deformed bars and shall conform to ASTM A615, grade 60, with a design yield strength = 60 ksi. 2 Reinforcing steel shall be free of loose, flaky rust, scale, grease, oil, dirt, and other materials which might affect or impair bond. 3 Splices in continuous reinforcing shall be made on areas of compression and/or at points of minimum stress, typical U.N.O. 4 Lap splices shall be 40 bar diameters or 24" long in concrete. Dowels shall have a minimum of 30 bar diameters embedment. 5 Bends shall be made cold; do not use heal. Do not un -bend or re -bend a previously bent bar. 6 Reinforcing steel in concrete shall be securely anchored and tied in place prior to placing concrete and shall be positioned with the following minimum cover. - - concrete cast against and permanently exposed to earth = 3" concrete exposed to earth or weather= 1 1/2" slabs on grade = center of slab Structural Steel - 1 Structural steel W -shapes shall conform to ASTM A992 grade 50 enhanced steel. Structural steel plates shall conform to ASTM A36. i 2 Structural steel HSS -shapes shall conform to ASTM A500, grade B, with a min. yield strength Fy= 46 ksi (rectangular) or Fy= 42 ksi (round). 3 Structural pipe shall conform to ASTM A53, with a min. yield strength Fy = 36 ksi. j 4 High strength bolts shall conform to ASTM A325, all other bolts shall conform to ASTM A307 or better. 5 Welded anchor studs and deformed bar anchors shall conform to the manufacturers specs. 6 Fabrication shall be done in an approved fabricator's shop. 7 Use high strength (8000 psi min. at 28 days), non shrink, liquid epoxy grout beneath all steel base plates and bearing plates. 8 Bolt shall be bearing type connections U.N.O. I 9 Steel to steel bolted connections shall be made with ASTM A325 high strength bolts and nuts, U.N.O. 10 All other bolted connections shall be made with bolts and nuts conforming to ASTM A307 U.N.O., including anchor bolts. 11 Bolted connections shall be tightened and shall have washers as required by AISC U.N.O. - 12 Enlarging of holes shall be accomplished by means of reaming. Do not use a torch on any bolt holes. 13 Welded connections shall be made using low hydrogen matching filler material electrodes, U.N.O. 14 Welders shall be currently certified according to AWS within the last year. All welding procedures shall be pre -qualified. Welders shall follow welding procedures. 15 Welding and gas cutting shall be done per AWS. 16 Welds shall have the stag removed. Page 5 of 168 Structural Notes (cont): Masonry Veneer Anchor Ties 1 Masonry veneer ties shall be one of the following: a. Dovetail anchors b. DX-10 seismic clip interlock system by Hohmann & Barnard c. Engineer approved 2 piece adjustable hot-dipped galvanized ties. 2 Maximum spacing shall be 16" o.c. horizontal and vertical. 3 Provide continuous horizontal galvanized #9 wire In center third of mortar joints at 16" o.c. Engage #9 wire with all anchor ties in seismic zone category E. Wood Truss 1 Bottom chords of trusses, acting as ceiling members must be able to support a 10 psf live load per IBC requirements. 2 The truss manufacturer shall be responsible for the design and fabrication of the pre-engineered trusses. 3 The trusses shall be designed as per the attached engineering specs. 4 The trusses shall be designed to carry any additional loads due to mechanical units, overhead doors, roof overbuilds, etc. 5 The trusses shall be designed per the IBC and local ordinances. 6 All members shall be designed for combined stresses based on the worst loading condition. 7 The truss manufacturer shall indicate proper bracing of compression chord members @ 6' long (or longer), as well as bracing for truss erection. 8 All dimensions shall be field verified prior to fabrication. 9 The contractor shall be responsible for the installation of the trusses per the truss manufacturer's recommendations and specs. 10 No web or chord members shall be modified in the field without approval from the truss engineer. 11 The project engineer is not responsible for the pre-engineered trusses, nor for the installation of the trusses. 12 Contractor is to verify truss layout is consistent with these plans and notify engineer of any deviations. General Framing 1 All joists, rafters, posts and headers shall be DF-L #2 or equal U.N.O. It TJI's or equal are used, they must be installed per manufacturer's specs. 2 All joists and rafters shall have solid blocking at their bearing points. 3 All wood/lumber placed onto concrete shall be pressure treated or redwood. 4 Verify all beam sizes with engineering specs. 5 All beams and headers over 6'-0" shall be supported by double trimmer studs U.N.O. 6 All headers over 8'-0" shall shall have double king studs at each end U.N.O. 7 All over frame areas are to have full roof sheathing below. S Provide solid blocking and continuous bearing to foundation at all bearing point loads from above. 9 Provide double floor joists below all parallel bearing walls above. 10 Glulam beams shall be 24F-V4 DF/DF for single spans and 24F-VS DF/DF for multiple spans and cantilevered spans. 11 Mlcrollam beams shall be Laminated Veneer Lumber (LVL) with the following minimum design values: E=1,900,000 psi, Fb=2,600 psi, Fv=285 psi 12 Parallam beams shall be Parallel Strand Lumber (PSL) with the following minimum design values: E=2,000,000 psi, Fb=2,900 psi, Fv=290 psi. 13 TimberStrand beams shall be Laminated Strand Lumber (LSL) w/ the following minimum design values: - 1-1/4" wide (rim board): E=1,300,000 psi, Fb=1,700 psi, Fv=425 psi. • 1-3/4" wide: E=1,550,000 psi, Fb=2,325 psi, Fv=310 psi. 14 All rafters and joists over 3 ft long shall be hangered if not supported by bottom bearing. 15 All hangers and other wood connections must be designed to carry the capacity of the member that they are supporting. 16 No structural member shall be cut or notched unless specifically shown, noted or approved by engineer. 17 Lag screws shall be inserted In a drilled pilot hole 60.76% of the shank diameter by turning with a wrench, not by driving with a hammer. 18 Nails are to be common wire U.N.O. 19 All bolt holes shall be drilled with a bit 1/32" to 1/16" larger than the nominal bolt diameter. 20 All joints in wall sheathing shall occur in the middle of a plate or block and nailed on each side of the joint w/ edge nailing per the shearwall schedu 21 All over built roof rafters shall be braced vertically to the trusses below at 4' o.c. max. 22 Double top plates are to have a minimum 48" lap splice w/ (8) 16d nails U.N.O. 23 All fasteners and connectors in contact with treated lumber shall be galvanized G90 or better. Page 6 of 168 Surnrnary Floor Joists: FJi: 11 7/8" TJI/210 @ 16' o.c. as noted on plans FJ2: 117/8" TJI/360 0 12" o.c. as noted on plans FJ3: (2) 2x10 DF -L#2 @ 19.2" o.c. as noted on plans FJ4: 2x10 DF -L#2 @ 16" o.c. as noted on plans 3/4" APA rated T&O flooring to be nailed with 10d nails @ 6" o.c. edge, 12" o.c. field Deck Joists: DJ1: Not Used Roof: Other: RR1: 11 7/8" TJI/210 ® 24" o.c. as noted on plans RR2: 11 7/8" TJI/210 @ 12' o.c. as noted on plans Use 5/8' APA rated OSB sheathing w/ 10d nails @ 6" o.c. edge, 12" o.c. field Overbuild to be 2" x 6" Timber @ 24" o.c. All bearing headers to be (2) 2x10 (DF L #2 or better) unless noted otherwise All exterior sheathing to be Shear Wall #1 unless noted otherwise All glulam beams are to be 24F -V4 unless noted otherwise Strap end lengths for shear walls (see also Simpson Coiled strap specs.): CS16 = 14" CMST14 = 34" CMSTCI6 = 25" Page 7 of 168 Beam Schedule Desig. I Desig. Qty. I Size Type ITrimmers Kin Stud RBI 2 2x6 Timber (1) (1) RB2 1 1 3/4" x 11 7/8" Microllam (2) N/A RB32 1 3/4" x 11 7/8" 2x8 Timber (2) (1) R54 1 1 3/4" x 11 7/8" Microllam (2) N/A Page 7 of 168 Beam Schedule Desig. I City, I Size Type Trimmers King Stud FB1 2 2x6 Timber (1) (1) F82 1 1 1/4" x 11 7/8" Rim Board N/A N/A FB3 2 1 3/4" x 11 7/8" Microllam (2) N/A FB4 4 1 3/4" x 117/8" Microllam See Plans FB5 2 13/4" x 11 7/8" Microllam (2) 1 WA F66 2 2 x 10 Timber See Plans FB7 2 2 x 8 Timber (2) 1) FB8 2 1 1 3/4" x 11 7/8" Microllam (2) WA FB9 - Not Used - FB10 2 2x-10 Timber (2) WA FB11 2 2x8 Timber (1) (1) FB12 1 13/4" x 11718" Microllam 2 WA F813 2 2 x 8 Timber (2) (1 FB14 1 13/4" x 11 7/8" Microllam(2) N/A F815 1 13/4" x 11 7/6" Microllam (2) N/A FB16 2 2 x 10 Timber 2) N/A FB17 1 W 8 x 10 A992-50 See Plans Page 7 of 168 Page 8 of 168 Beam Schedule Desig. Qty. Size Type Trimmers n Stu MB7 2 2 x 8 Timber (2) (1) MB2 2 13/4" x 11 7/8" Microllam (2) N/A MBS 2 1 3/4" x 11 7/8" Microllam See Plans MB4 2 2x6 Timber (1) (1) MB5 3 1 3/4" x 117/8" Microllam See Plans MB6 5 13/4" x 117/8" Microllam See Plans MB7 2 13/4" x 117/8" Microllam (2) (1) MBB 2 1 13/4" x 117/8" Microllam 2) N/A MB8 5 0 Microllam See Plans MB10 2 2 x 12 Timber (2) (1) M011 2 2 x 10 Timber (2) N/A MB12 3 2 x 10 Timber (2) N/A MB13 2 13/4" x 9 1/2" Microllam (2) (2) MB14 2 2 x 8 Timber (2) (1) MB15 2 2 x 6 Timber (2) (i MB16 2 13/4"x91/4" Microllam (2) N/A MB17 2 1 3/4" x 9 1/4" Microllam (2) N/A 20182 2x-10 Timber (2 N/A M819 2 2 x 6 Timber (2) (1) MB20 2 2 x 8 Timber (2) 0) Page 8 of 168 Page 9 of 168 Beam Schedule Desig. ally. Size Type ITrimmers IKing Stud TBI 2 2x6 Timber (1) (1) TB2 2 1 3/4" x 11 7/8" Microllam (2) N/A TB3 3 1 3/4" x 11 7/8" Microllam See Plans T84 2 2x8 Timber (2) 1 (1) TB5 4 1 3/4" x 11 7/8" Microllam See Plans TB6 1 1 1/4" x 11 7/8" Rim Board See Plans TB7 2 1 3/4" x 11 7/8" Microllam (2) 1 N/A TB8 2 1 3/4" x 11 7/8" Microllam See Plans TB9 2 2 x 8 Timber (2) (1) TB10 2 2 x 10 Timber (2) N/A TB11 2 2 x 6 Timber (2) (1) TB12 2 2x6 Timber (1) (1) TS13 2 1 3/4" x 9 1/2" Microllam (3) (1) TB14 3 13/4" x 11 7/8" Microllam N/A N/A TB15 2 1 3/4" x 11 7/8" Microllam N/A N/A TB76 3 1 1 3/4" x 11 7/8" Microllam N/A N/A TB77 2 1 3/4" x 11 7/8" Microllam TB18 1 W 10 x 88 A992-50 See Plans TB19 1 W 10 x 77 A992-50 See Plans TB20 1 W 10 x 100 A992-50 See Plans T821 1 W 10 x 15 A992-50 See Plans TB22 1 W 10 x 17 A992-50 See Plans TB23 1 W 10 x 54 A992-50 See Plans TB24 2 1 3/4" x 117/8" Microllam See Plans TB25 2 1 3/4" x 11 7/8" Microllam N/A N/A TB26 2 13/4"x91/2" Microllam (2) (1) TB27 2 2 x 10 Timber (2) N/A TB28 3 2 x 10 Timber (3) N/A TB29 2 1 3/4" x 9 1/4" Microllam (2) N/A T830 2 1 3/4" x 9 1/4" Microllam (2) N/A TB31 2 2 x 6 Timber (2) (1) 18323 1 3/4" x 9 1/2" Microllam (2) (2) TB33 2 2x6 Timber (1) (1) TB34 1 5 1/8" x 22 1/2' Glulam See Plans Page 9 of 168 Beam Schedule Desi qty. I Size Tye ITrimmers JlKin4Stucli SB1 2 2x6 Timber (1) (1) SB2 2 2 x 6 Timber (2) (1) SB3 2 1 3/4" x 9 1/4" Microllam (2) N/A SB4 2 1 3/4" x 9 1/4" Microllam See Plans SB5 2 2 x 10 Timber See Plans SB6 2 13/4"x91/2" Microllam (2) (1) SB7 3 2 x 10 Timber (2) (1) SB8 3 2 x 10 Timber (2) (1) SB9 2 2 x 10 Timber (2) (1) SB10 3 2 x 10 Timber (2) N/A 5611 2 1 3/4" x 9 1/4" Microllam (2) N/A S812 2 2 x 10 Timber (2) N/A SB13 3 1 3/4" x 11 7/8" Microllam See Plans Page 9 of 168 FORTE o n T E MEMBER REPORT Level, RR PASSED I� fl 1 G 1 piece(s) 117/8" T7I@ 360 @ 24" OC Overall Sloped Length: W1 5/16" i i 166" 0 0 cations are measured from the outside face of left support (or left cantilever end). Al dimensions are horizontal. sign Results Actual da Location Allowed Result LDF Load: Combination (Pattern) nber Reaction (lbs) 854 @ 2 1/2" 1731 (3.5011) Passed (49%) 1.15 1.0 D + 1.0 S (All Spans) ar (lbs) 825 @ 16'9 1/2" 1961 Passed (42%) 1.15 1.0 D + 1.0 S (All Spans) nent (Ft -lbs) 3472 @ 8' 6 1/2" 7107 Passed (49%) 1.15 1.0 D + 1.0 S (All Spans) : Load DeO. (in) 0.334 @ W6 1/2" 0.556 Passed (1-1599) — 1.0 D + 1.0 S (All Spans) al Load Defl. (in) 0.477 @ W6 1/2" 0.834 Passed (LI419) - 1.0 D + 1,0 S (All Spans) dlection criteria: LL (1-1360) and TL (1.1240). acing (Lu): Ail compresslon edges (top and bottom) must be braced at 4'4 314" o/c unless detailed otherwise. Proper attachment and positioning of lateral acing Is required W achieve member stability. pports Toter Availeblo Required Dead Snow Total Accessories Leveled Plate - SPF 3.50" 3.50" 1.75" 256 598 854 Blocking leveled Plate - SPF 3.50" 1 3.50" 1.75" 256 598 654 Blocking )eking Parcels are assumed to carry no loads applied directly above them and the full load Is applied to the member being designed, Dead I snow 35.0 Notes :rhaeuser warrants that the sizing of its products will be In accordance with Weyerhaeuser product design criteria and published design values. shaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for Installation details. v.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not Intended to nwent the need for a design professional as determined by the authority having Jurisdiction. The designer of record, builder or framer Is responsible m e that this calculation Is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable by st rdards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR -1153 and ESR -1307 and/or tested cordance with applicable ASTM standards. For current rode evaluabon reports refer to hUp://www.woodbywy.com/wMces/s_CodeR poM.aspx. xoduct aoollcabon. Input design loads, dimensions and support Information have been provided by Forte Software Ocerator Ye Software Operator k Miller Consulting Engineers and Survayors 1036-7833 *lei erg con System : Roof Member Type : Joist Building Use : Residenbal Building Code: IBC Design Methodology : ASD Member Pitch: 0.25/12 QSUSTAINABLE FORESTRY INmATNE 10/18/201612:03:51 PM Forte v5.0, Design Engine: V6.4.0.40 2016-2850.4fe Page 10 of 168 Page 1 of 1 F F O R T E MEMBER REPORT Level, RR1 w/drift PASSED 1 pieces) 117/8" T]I@ 210 @ 24" OC Overall Sloped Length: 17' 15/16" a 0 All locations are measured from the outside face of left support (or left cantilever end).AII dimensions are horizontal. 0 Design Results Actual Dr Location AllowedResul! Dead LDF Loaat Combination (Pattern) Member Reaction lbs 1069 0 16' 10 1/2" 1679 (3.50") Passed (64%) 1.15 1.0 D + 1.0 5 (All Spans Shear (lbs) 1025 0 16' 9 1/2" 1903 Passed (54% 1.15 1.0 D + 1.0 5 All Spans) Moment R-Ibs) 3905 0 8' 11 5/16" 4364 Passed (89%) 1.15 1.0 D + 1.0 S (All Spans) Live Load DeN. In 0.507 0 8'7 15116" 0.556 Passed (U394) - 1.0 D + 1.0 S (All Spans) Total Load DeO. in 0.6910 8' 7 9/16" 0.834 1 Passed (U289) - 1.0 D + 1.0 S (All Spans) uenecoon cmena: u. L V sou) and I E Lt/L9d). Bracing (Lu): All compression edges (top and holtom) must be braced at 3' 2 11/16" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing Is required to achieve member stability. Blocking Panels are assumed m carry no loads applied directly above them and the full load is ADDlied to the member being designed Bearing Length Loads m Supports abs) Dead 5>E�POrts Total Available Required Dead Snow Total Accessories I - Beveled Plate - SPF 3.50" 3.50" 1.75" 256 649 905 Blocking 2 -Beveled Plate - SPF 3.50" 3.50" 1 1.75" 256 813 1069 Blocking Blocking Panels are assumed m carry no loads applied directly above them and the full load is ADDlied to the member being designed Weyerhaeuser Notes Neyerhaeuser warrants that the dung of Its Products will be in accordance with Weyerhaeuser product design criteria and published design values. Neyerhaeuser expressly disclaims any other warranties related W the software, Refer to current Weyerhaeuser literature for installation details. www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this s iti Use of this software Is not Intended to :Ircumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or former Is responsible to assure that this calculation Is compatible with the overall project. Products manufactured at Weyerhaeuser facilltles are tNrtlyany certified to sostainable 'oresby standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES unclear technical reports ESR -1153 and ESR -1387 and/or tested n accordance with applicable ASTM standards. For current code evaluation reports refer to hbp://www.woodbywy,corrVnmices/s_CodeReports.aspx. rhe product applicatlon, Input design loads, dimensions and support information have been provided by Forte Software Operator Forte Software Operator Jerk Miller LEI Consulting Engineers and Surveyors (601) 636-7833 jack B'lei eng com System : Roof Member Type: ]Dist Building Use : Residential Bullding Code: IBC Design Methodology: ASD Member Pitch: 0.25/12 QSUSTAINABLE FORESTRY INITKTP7E Job Notes 10/18/2016 12:04:18 PM Forte v5.0, Design Engine: V6.4.0.40 2016-2850.4te Page 11 of 168 Page 1 of 1 Dead Snow Loads Location Spacing (0.90) (1,15) cdmmenb I -Uniform (PSF) 0 to IT 1" 24" 15.0 35.0 Roof ?-Tapered (PL F) 6'915/16"to 17' N/A - O.D to 52.0 Weyerhaeuser Notes Neyerhaeuser warrants that the dung of Its Products will be in accordance with Weyerhaeuser product design criteria and published design values. Neyerhaeuser expressly disclaims any other warranties related W the software, Refer to current Weyerhaeuser literature for installation details. www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this s iti Use of this software Is not Intended to :Ircumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or former Is responsible to assure that this calculation Is compatible with the overall project. Products manufactured at Weyerhaeuser facilltles are tNrtlyany certified to sostainable 'oresby standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES unclear technical reports ESR -1153 and ESR -1387 and/or tested n accordance with applicable ASTM standards. For current code evaluation reports refer to hbp://www.woodbywy,corrVnmices/s_CodeReports.aspx. rhe product applicatlon, Input design loads, dimensions and support information have been provided by Forte Software Operator Forte Software Operator Jerk Miller LEI Consulting Engineers and Surveyors (601) 636-7833 jack B'lei eng com System : Roof Member Type: ]Dist Building Use : Residential Bullding Code: IBC Design Methodology: ASD Member Pitch: 0.25/12 QSUSTAINABLE FORESTRY INITKTP7E Job Notes 10/18/2016 12:04:18 PM Forte v5.0, Design Engine: V6.4.0.40 2016-2850.4te Page 11 of 168 Page 1 of 1 F O Il 6 r E MEMBER REPORT Level, RR2 G 1 piece(s) 117/8" T]I@ 210 @ 12" OC Overall Sloped Length: Wit 5/16" 0 i I r i I I � 16'6" 0 rations are measured from the outside face of left support (or left cantilever end).AII dimensions are horizontal. sign Results Actual ® Location Allowed aNult LDF Loads Combination (Pattam) Tiber Reaction (lbs) 914 @ 2 1/2" 1679 (3.50") Passed (54%) 1.15 1.0 D + 1.0 S (All Spans) !ar (Ibs) B83 @ 3 1/2" 1903 Passed 46%) 1.15 1.0 D + 1.0 S (All Spans) Tent (Ft -lbs) 3715 @ 8' 6 I/2" 4364 Passed (85%) 1.15 1.0 D + 1.0 S (All Spans) e toad DeO. (In) 0.565 @ 8'6 1/2" 0.556 Passed (U354) -- 1.0 D + 1.0 S(AM Spans) at Load Defi. (In) 0.657 @ S' 6 1/2" 0.834 Passed (U305) -- 1.0 D + 1.0 S (All Spans) !Flection cnteda: LL (1-/36D) and TL (1/240). acing (Lu): All compression edges (top and bottom) must be braced at Y3 11/16" o/c unless detailed otherwise. Proper attachment and positioning of feral bracing Is required to achieve member stability. pports 1 Tatar Available Required Dead Snaw Total AaretsodN 3eveled Plate- SPF 3.50" 3.50" 1.]5" 128 ]Bfi 9l4 Blocking 3eveled Plate - SPF 3.50" 3.50" 1.75" 128 786 914 Blocking ocHng Panels are assumed to carry no loads applied directly above them and the full load Is applied to the member being designed. Dead Snow ids Location Spacing (0.90) (1.15) Comments Jniform (PSF) 0 to 17' 1" 12" 15.0 92.0 Roof werhaeuser Notes erhaeuser warrants that the sizing of Its products will be In accordance with Weyerhaeuser product design criteria and published design values. erhaeuser expressly disclalms any other warranties related W the software. Refer to current Weyerhaeuser literature for Installation details. N.wcodbywy.comJ Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software Is not Intended to iinvert Bre need for a design professional as determined by the authority having Jurisdiction. The designer of record, builder or framer Is responsible to T that this calculation is compatible with the overall project Products manufactured at Weyerhaeuser facilities are thlyd-pang Mitred to sustainable Ay standards. Weyerhaeuser Engineered lumber Products have been evaluated by ICC ES under technical reports ESR 1153 and ESR -1387 and/or tested cordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woDdbywy.com/servicests_CodeReports.aspx. product application, Input design loads, dimensions and support information have been provided by Forte Software Operator to So6ware Operator k Miller Consulling Engineers and Surveyors 1)836-7833 c is lei-.ng.com PASSED System : Roof Member Type : Joist Building Use: Residential Building Code: IBC Design Methodology: ASD Member Pitch: 0.25/12 0 SUSTAINABLE FORESTRY INITIATIVE 10/18/201612:04:33 PM Fore v5.0, Design Engine: V6.4.0.40 2016-2850.4fe Page 12 of 166 Page i of 1 ( F O R T E MEMBER REPORT Level, RR3 PASSED 1 pieces) 117/8" TJI@ 210 @ 16" OC 0 Overall Sloped Length: 17' 1 5/16" o E All locations are measured from the outside face of left support (or left cantilever end).AII dimensions are horizontal. 0 Design Results AcWal0 Location Allowed Result LOB Load: Combination (Pattern) Member Reaction (lbs) 1072 @ 16110 1/2" 1679 (3.50") Passed 64% 1.15 1.0 D + 1.0 S (All Spans) Shear (Ibs) 1027 @ 16 91/T' 1903 Passed 54%) 1.15 1.0 D + 1.0 S (Ail Spans) Moment (Ft -lbs) 3831 @ 9' 13/16" 4364 Passed (88%) 1.15 1.0 D + 1.0 S(AllSpans) Live Load per. (in) 0.552 @ 8' 8 3/8" 0.556 Passed L/363 - 1.0 D + 1.0 S (AllSpans) Total Load DeFl. (in) 0.674 @ 8'8" 0.834 Passed L/297 - 1.0 D + IA S (All Spans) Deflection criteria: LL (1-1360) and TL (1.1240). Bracing (Lu): All compression edges (top and bottom) must be braced at T3 1/16" o/c unless detailed otherwise, Proper attachment and positioning of lateral bracing Is required to achieve member stability. Blocking Panels are assumed to carry no loads applied directly above them and the full load Is applied to the member being designed. Loads Searing Length Loads W Supports (Ibs) I -Uniform (PSF) Supports Total Available Required Dead Snow Total Accessories I - Beveled Plate - SPF 3.50' 3.50" 1.75" 171 634 805 Bkscltlng I - Beveled Plate - SPF 3.50" 3.50" IJS" 171 901 1072 Blociing Blocking Panels are assumed to carry no loads applied directly above them and the full load Is applied to the member being designed. Loads Deadsnow Location spacing (o.g0) (1.15) comments I -Uniform (PSF) 0 to 17'1' 16" 15.0 35.0 Roof 2 - Tapered (PLF) 6" to 17'1" N/A - 1 0.0 to 89.0 Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser Product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for Installation details. (www.woWbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not Intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, bundler or Ramer is responsible to assure that this calculation Is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR -1153 and ESR -1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to hUp:/7www.woodbywy.conVwMces/s CodeReports.aspx. The product application, Input design loads, dimensions and support Information have been provided by Forte Software Operator System : Roof Member Type : Joist Building Use: Residential Building Code: IBC Design Methodology: ASO Member Pitch: 0.25/12 0 SUSTAINABLE FORESTRY INITIATIVE Forte Software operator Job Noses 10/18/2016 12;04:44 PM Jack Maier Forte v5.0, Design Engine: V6.4.0.40 LB Consulting Engineers and Surveyors 2016-2850Afe ;801) 626 7833 lacks le' eng can Page 13 of 168 Page 1 of 1 TO R TE' MEMBER REPORT Level, FJ2 1 piece(s) 117/8" T]I@ 360 @ 12" OC Overall Length: 31'2 1/4" 0 1 rrr— t rl I� 14' 14'6" 7_'6"I_ 3cations are measured from the outside face of left support (or left Cantilever end).Ail dimensions are horizontal. 0 sign Results Actual ® Location Allowed Result LDF Load, Combination (Pattern) Tiber Reaction (Ibs) 2094 @ 29' 5 1/2" 3000 (5.25") Passed 70% 1.00 1.0 D + 1.0 L Adj Spans) tar (Ibs) 1514 @ 29' 8 1/4" 1705 Passed (89%) 1.00 1.0 D + 1.0 L All Spans) ment (Ft-Ibs) -2045 @ 29' 5 1/2" 6180 Passed (33%) 1.00 1.0 D + 1.D L All Spans) a Load DeFl. (in) 0.060 @ 31' 21/4" 0.200 Passed (21/694) — 1.0 D + 0.75 L + 0.75 S Alt Spans) :al Load Dell. In 0.102 @ 31' 2 1/4" 0.200 Passed 21./406) • 1.0 D + 0.75 L + 0.75 S (Alt Spans Pro" Rating 56 40 Passed ,flection criteria: LL (1.1480) and TL (1.1240). verharg deflection criterla: LL (0.2") and TL (Ori"). acing (Lu): All compression edges (top and bottom) must be braced at 5' 5 7/8" o/c unless detailed otherwise. Proper attachment and positioning of lateral 'acing Is required to achieve member stability. structural analysis of the deck has not been performed. ,Flection analysis Is based on amposite action with a single layer of 23/32' Weyerhaeuser Edge'" Panel (24" Span Rating) that is glued and nailed dawn. tuitional conslderabons for the Tl -Pro•" Rating include: None pports Total Available Required Dead Fluor Liane Snow Total Auessorles SWd wall - SPF2.25" 1.75" 198 276/-36 10 434/-36 t 1/4" Rim Board Beam - SPF 53.50' .25' 5.25" 3.50" 315 732 -57 1047/-57 Blocking Stud wall - SPF 5.50" 5.50" 3.50" 1 1045 1049 454 2548 Bbcking in Board is assumed W carry all loads applied directly above It, bypassing the member being designed. ocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. ads Location spacing Dead (0.90) Fluor Live (1.00) snow (1.15) Comments indorm (PSF) 0 to 31' 2 1/4' 12" 23 40.0 - Residential - uAng 'oinl(PLF) 30'10" 12" 7794 .0 640.0 407.0 Notes erhaeuser warrants that the sl8ng of Its products will be In accordance with Weyerhaeuser product design criteria and published design values. erhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details. w.woodbyvy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are hot designed by this software. Use of this software Is not intended to Iinvent the need for a design professional as determined by the authority having Jurisdiction. The designer of record, builder or framer Is responsible to re that this calculation Is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third -party certifled to sustainable sDy, standards. Weyerhaeuser Engineered Lumber Products have been evaluated by LCC ES under technical reports ESR -1153 and ESR -1387 and/or tested :cordance with applicable ASTM standards. For anent code evaluation reports refer to http://www.modbywy.corrVwwlcesls CodeRepom.aspx. product application, Input design loads, dimensions and support Information have been provided by Forte Software Operator le software Operator :k Miller Consulting Engineers and Surveyors 1)836-7833 (01ei eng com PASSED System : Floor Member Type; bist Building Use : Residential Building Code: IBC Design Methodology; ASD 0 SUSTAINABLE FORESTRY INTRATIVE 10/18/2016 12:04:57 PM Forte v5.0, Design Engine: V6.4.0,40 2016-2050.4te Page 14 of 168 Page 1 of 1 Project: 2016-2650 Location: FJ2 Floor Joist 12015 International Building Code(2012 NDS)] 1,51N x 9.251N x 7.5 FT @16 O.C. #2 - Douglas -Fir -Lerch - Dry Use Section Adequate By: 4.1 % Controlling Factor: Moment DEFLECTIONS enter Live Load 0.06 IN L/1400 Dead Load 0.04 in Total Load 0.11 IN L/838 Live Load Deflection Criteria: U480 Total Load Deflection Criteria: U360 REACTIONS A B Live Load 410 Ib 410 Ib Dead Load 268 Ib 268 Ib Total Load 678 It, 678 to Bearing Length 0.72 in 0.72 In SUPPORT LOADS A B Live Load 308 pif 308 plf Dead Load 201 pif 201 pif Total Load 509 plf 509 pif Base Values Adjusted Bending Stress: Fb = 900 psi Fb' = 1139 psi Cd=1.00 CF=1.10 Cr -1.15 Shear Stress: Fv = 180 psi Fv' = 180 psi Cd=1.00 Modulus of Elasticity: E = 1600 ksi E'= 1600 ksi Comp. Ito Grain: Fc -1= 625 psi Fc -1'= 625 psi Controlling Moment: 1949 ft -Ib 3.75 Ft from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Controlling Shear: -615 Ib At a distance d from right support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Comparisons with required sections: Recrd Prov ded Section Modulus: 20.55 in3 21.39 in3 Area (Shear): 5.12 in2 13.88 in2 Moment of Inertia (deflection): 42.48 in4 98.93 in4 Moment: 1949 ft -Ib 2029 ft -lb Shear: -615 lb 1665 lb ®Jack Miller LEI Surveyors and Engineers 3302 3302 North Main Street Spanish Fork, Utah I I A'. `. L 10/18/2016 12:03:29 PM A 7.5 It - --__B Span Length 7.5 ft Unbraced Length -Top 0 it Unbraced Length -Bottom 0 ft Floor sheathing applied to top of joists -top of joists fully braced. Floor Duration Factor 1.00 Uniform Floor Loading Center Live Load LL = 40 psf Dead Load DL= 23.4 psf Total Load TL= 63.4 psf TL Adj, For Joist Spacing wT = 84.5 plf Wall Loading Wall One Live Load (-L to Joists): Lt = 315 plf Dead Load ( -L to Joists):D1 = 227 plf Load Location X1 = 3.75 ft Page 15 of 168 ct: 2016-2850 ion: FJ2-check Joist International Building Code(2012 NDS)] Ix9.25 IN x8.0 FT @ 16 O.C. louglas-Fir-Larch - Dry Use )n Adequate By: 28.2% oiling Factor: Moment LECTIONS Center Load 0.10 IN L/989 i Load 0.02 in I Load 0.12 IN L/833 Load Deflection Criteria: U480 Total Load Deflection Criteria: L/360 IONS A @ Load 667 Ib 667 Ib I Load 125 Ib 125 Ib I Load 792 Ib 792 Ib ing Length 0.84 in 0.84 in PORTLOADS A_ B Load 500 pif 500 pif f Load 94 pif 94 pif I Load 594 pif 594 pif Douglas -Fir -Larch Tolling Moment: 1583 ft -Ib Ft from left support of span 2 (Center Span) ated by combining all dead loads and live loads on span(s) 2 :rolling Shear: -6491b i distance d from right support of span 2 (Center Span) ated by combining all dead loads and live loads on span(s) 2 parisons with required sections: Recd Provided on Modulus: 16.68 in3 21.39 in3 (Shear): 5.41 int 13.88 int ant of Inertia (deflection): 47.99 in4 98.93 in4 ant: 1583 ft -Ib 2029 ft -Ib ir. -649 lb 1665 lb I i A" , k Jack Miller woe LEI Surveyors and Engineers 3302 North Main Street o� Spanish Fork. Utah 10/18/2016 12:03:36 PM JOIST DATA Center Span Length 8 ft Unbraced Length -Top 0 It Unbraced Length -Bottom 0 ft Floor sheathing applied to top of joists -top of joists fully braced. Floor Duration Factor 1.00 JOIST LOADING Uniform Floor Loading Center Live Load LL = 125 psf Dead Load DL= 23.4 psf Total Load TL = 148.4 psf TL Adj. For Joist Spacing wT = 197.9 plf Page 16 of 168 Base Values Adjusted ling Stress: Fb = 900 psi Fb' = 1139 psi Cd=1.00 CF=1.10 Cr -1.15 u Stress: Fv = 180 psi FV = 180 psi Cd --1.00 Jus of Elasticity: E = 1600 ksi E'= 1600 ksi p. -LtoGrain: Fc -1= 625 psi Fc -1'= 625 psi Tolling Moment: 1583 ft -Ib Ft from left support of span 2 (Center Span) ated by combining all dead loads and live loads on span(s) 2 :rolling Shear: -6491b i distance d from right support of span 2 (Center Span) ated by combining all dead loads and live loads on span(s) 2 parisons with required sections: Recd Provided on Modulus: 16.68 in3 21.39 in3 (Shear): 5.41 int 13.88 int ant of Inertia (deflection): 47.99 in4 98.93 in4 ant: 1583 ft -Ib 2029 ft -Ib ir. -649 lb 1665 lb I i A" , k Jack Miller woe LEI Surveyors and Engineers 3302 North Main Street o� Spanish Fork. Utah 10/18/2016 12:03:36 PM JOIST DATA Center Span Length 8 ft Unbraced Length -Top 0 It Unbraced Length -Bottom 0 ft Floor sheathing applied to top of joists -top of joists fully braced. Floor Duration Factor 1.00 JOIST LOADING Uniform Floor Loading Center Live Load LL = 125 psf Dead Load DL= 23.4 psf Total Load TL = 148.4 psf TL Adj. For Joist Spacing wT = 197.9 plf Page 16 of 168 Project: 2016-2850 Location: FJ3 Floor Joist [2015 International Building Code(2012 NDS)] ( 2 ) 1.51N x 9.251N x 7.5 FT @19.2 O.C. #2 - Douglas -Fir -Lerch - Dry Use Section Adequate By: 8.1 % Controlling Factor: Moment CAUTIONS Properly connect sheathing to double joists/rafters or fully laminate to transfe DEFLECTIONS Center Live Load 0.05 IN U1850 Dead Load 0.03 in Total Load 0.08 IN U1154 Live Load Deflection Criteria: L1480 Total Load Deflection Criteria: L/360 REACTIONS A B Live Load 744 Ib 744 Ib Dead Load 448 Ib 448 Ib Total Load 1192 Ib 1192 Ib Bearing Length 0.64 in 0.64 In SUPPORTLOADS A B Live Load 465 pif 465 pif Dead Load 280 plf 280 pif Total Load 745 pif 745 plf MATERIAL PROPERTIES #2 - Douglas -Fir -Larch Base Values Adiusted Bending Stress: Fb = 900 psi Fb' = 1139 psi Cd=1.00 CF=1.10 Cr -1.15 Shear Stress: Fv = 180 psi Fv' = 180 psi Cd=1.00 Modulus of Elasticity: E = 1600 ksi E'= 1600 ksi Comp.-Lto Grain: Fc -J-= 625 psi Fc -1'= 625 psi Controlling Moment: 3755 ft -Ib 3.75 Ft from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Controlling Shear: 1116 lb At a distance d from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Comparisons with required sections: Read Provided Section Modulus: 39.58 in3 42.78 in3 Area (Shear): 9.3 in2 27.75 in2 Moment of Inertia (deflection): 79.65 in4 255.21 In4 Moment: 3755 ft -Ib 4059 ft -lb Shear: 1116 lb 3330 lb Decking Information Plywood Thickness: T = 3/4 in Plywood Is Glued: psi Dead Load DL = Moment of Inertia Calculations For Glued Floor: Joist Area: A -joist= 27.76 IN2 Plywood Area: A -ply= 2.51N2 Section Centroid: C = 5 IN ABOVE BASE Moment of Inertia (deflection): 1 -comb = 255 IN4 ®Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork, Utah I r A� erns StruCalc Version 9.0.2.5 diaphragm forces. zs n 12:03:31 PM Span Length 7.5 It Unbracetl Length -Top 0 it Unbracetl Length -Bottom 0 R Floor sheathing applied to top of joists -top of joists fully braced. Sheathing/sheetrock applied to bottom of joists -bottom of joists fully braced. Floor Duration Factor 1.00 Uniform Floor Loading Center Live Load LL = 40 psi Dead Load DL = 23.4 psf Total Load TL= 63.4 psi TL Adj. For Joist Spacing wT = 101.4 pif Wall Loading Wall One Live Load ( --to Joists): L7 = 630 plf Dead Load ( JL to Joists)D1 = 384 plf Load Location X1 = 3.75 it Page 17 of 168 ch 2016-2850 tion: FJ4 Joist i International Building Code(2012 NDS)] 4 x9.25 IN x7.5 FT @16 O.C. )ouglas-Fir-Larch - Dry Use on Adequate By: 4.1 % olling Factor: Moment RECTIONS .Center Load 0.06 IN U1400 d Load 0.04 in d Load 0.11 IN U838 Load Deflection Criteria: U480 Total Load Deflection Criteria: U360 CT1 IONS & 4 Load 410 Ib 410 Ib d Load 268 Ib 268 Ib II Load 678 Ib 678 Ib ring Length 0.72 in 0.72 in 'PORTLOADS A B Load 308 pif 308 pIf d Load 201 plf 201 pIf II Load 509 plf 509 pif 3.75 ft rERIAL PROPERTIES Douglas -Fir -Larch Base Values Adjusted ding Stress: Fb = 900 psi Fb' = 1139 psi Cd=1.00 CF=1.10 Cr -1.15 ar Stress: Fv = 180 psi Fv' = 180 psi Cd=1-00 lulus of Elasticity: E = 1600 ksi E'= 1600 ksl rp. Jt to Grain: Fc -1= 625 psi Fc -1'= 625 psi strolling Moment: 1949 ft -Ib '5 Ft from left support of span 2 (Center Span) sated by combining all dead loads and live loads on span(s) 2 trolling Shear: -615 lb a distance d from right support of span 2 (Center Span) sated by combining all dead loads and live loads on span(s) 2 1parisons with required sections: Read Provided Lion Modulus: 20.55 in3 21.39 in3 I (Shear): 5.12 In2 13.88 in2 lent of Inertia (deflection): 42.48 in4 98.93 in4 lent: 1949 ft -Ib 2029 fl -Ib ar: -615 Ib 1665 Ib 1u'r Rt ', �!Np .I. .s 1,a Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork, Utah 1 011 812016 12:04:05 PM 7.6 a Span Length 7.5 ft Unbraced Length -Top 0 ft Unbraced Length -Bottom 0 ft Floor sheathing applied to top of joists -top of joists fully braced. Floor Duration Factor 1.00 Uniform Floor Loading Came Live Load LL = 40 psf Dead Load DL= 23.4 psf Total Load TL = 63.4 psf TL Adj, For Joist Spacing wT = 84.5 plf Wall Loading Wall One Live Load (1 to Joists): Lt = 315 pif Dead Load ( -L to Joisls):D1 = 227 plf Load Location X1 = 3.75 ft Page 18 of 168 Ledger L7 Calculations Loads/Reactions Dead Load: 23.4 psf Live Load: 60 psf Span length of rafter/truss: 10 ft Roof rafter/truss spacing: 1.33 ft Uniform load on rafter/truss: 110.9 plf End reaction on rafter/truss: 554.6 lbs Ledger loading: 417 plf Number of Required Screws per Stud in Wall SDWS2240ODB Wood Screw= 285 (per Simpson) CD= 1.00 SDWS2240ODB Wood Screw= 285 Ib Number of required screws: 1.5 screws/ft Stud wall spacing: 1.33 ft Required screws at each stud : 1.9 Use 2 SDWS2240ODB wood screws minimum at each stud Use 2 x 10 ledger Page 19 of 168 0 O Of jV ] W W W n W h O N N N 0 C o N yy N O 00 O O c M C Y N M L d I(� N O O N r O q N d O V O N h 1Np O O W M (O OfNCO0 Cmy 'pl p � q 0. OO OO 0• p d Ip N W W r O M N N O tp O O O N N O O OI Ot T N r O O N E N N O N N O d' h y O N O y O O N m y V W_ W W (p M OR S h I� N h g O p �Op W O r ON N Cl lV (V M (7 W N O OO� --o N C4O M 0 O O OO 0' pG Cp x N f O O M d N Nj N N m? V d' V N N N O d 001 CJ N^ C O N M O n O N 80 Q Vtl y� N I II II v .0-.. 'I II C k p C C T N II O 'rp' OL p p Y y tidi 0 3 n a d a i e o 2 t rn d c o 0 d d d 31 E cLL '311 v u•° $'c�d��5 Ts a II rv'm�¢a 2E OE -2 .ado n i o W II o `o ' a y M g g 'c a o E r v d pp p E c c° A c c •'- u o d o$ dgo `ugoo H oi'G dm�E.1�o�a�ccbd d•� 3 m o s do 0 _= w o i r 3 3 3 3 o m a a¢ a s r�a$e'�o�r�is@ > G m o a LL m R_ L L N W w r< J a J a r U N p aO V N OO OO N r O M N N 0n('1 Mh N N NW NN OM O O Mn 0{cW � 0 0 MW NyyMN OO^ OO^ m n apNpnj bN Y O MN N YO OO OO NO. OO M YO 00M aNr OQO W0O O0 N N o O 0 n a 0OO0 r ' O a M N N W W . b 1O V a m M O S O E n M N m aO Y O 10(1 N N p� Y IN [V n M a N O M II L LL M N a O O N M N N OW (00 M^^ N (7 S O O n N 0 N a 0 0 d Y O N M Y' O S m O N W N p 0 o 0 `m o, g •a O O M V N N r r No CJ d f1i N O] y t�Np? pp WNW1(1 N ((ma�yyyy - n M W M O N 6NO O � O Lq N � p O y JLp Cm " N N N �- W N N O $ J g pCO qq O OO O G C n c N N O O O O O O W O N M N MW t hr W mmONNN NI� t l M M M N S M C g Md N O u 4 OnMpO OY y8p O N1�1 n OO Y W Nn Oc u o o cN6a a.53s S z_d o_or t_� O'vOoW q O >_ O O p O O O o p m L R 3� J J/ 7 O m V ,G N O I- (' 298 M N O O M d aj tD O N 1` 1� Ot0 No tNp tND W n O O W d' O O S E N N0 N d M W d O d Y O N f0 Y N W N n N n �j N nj d O O N O O O p d d N W n G f0 W W^ O N y N O moo N N c S � y N U N p aO V N OO OO N r O M N N 0n('1 Mh N N NW NN OM O O Mn 0{cW � 0 0 MW NyyMN OO^ OO^ m n apNpnj bN Y O MN N YO OO OO NO. OO M YO 00M aNr OQO W0O O0 N N o O 0 n a 0OO0 r ' O a M N N W W . b 1O V a m M O S O E n M N m aO Y O 10(1 N N p� Y IN n M a N O II N 0 0 CN91f O N a O O N M N N OW (00 M^^ N (7 S O O n N 0 N a 0 0 d Y O N M Y' O S m O c AS o 0 o 0 `m o, e u co oco o c 4 a ry c 29 y JLp Cm C> p C 0 g U O 23 $ J g _N N N �lJ n o No (7 V M N O1 N O M t0 N aa Na N N O O O O O O W O N M N MW t hr W mmONNN NI� t l M M M aON OO <WD OYq0WW N01 -n�' 0pN 0Y OQW.WO (24�4 OpdMMvOONn ^ O O O O QQ LL N W U II II c AS o o py o a x f3 V E e u g- a •c 29 3Q o 9 Q I II JLp Cm C> p C 0 g U O 23 $ J q p a mt tea$ o y— B 9 n$ vat 'D°idsum n MS II II o a v m wu.2 oJL o m li q� o'�LLcs a 3A S E a cwwgic obi C°.1n C C u o o cN6a a.53s S z_d o_or t_� u� d yn O y� O >_ O O Qi Q U C W IL R 3� J J/ 7 O m V ,G •• IL O I- 298 Ll O 6C ct: 2016-2850 ion: FB4 with drift load Loaded Multi -Span Beam International Building Code(2012 NDS)] .75 IN x 11,875 IN x 12.0 FT Microllam -iLevel Trus Joist )n Adequate By: 1.4°% olling Factor: Moment Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork, Utah r', r;u.ir1, \ORYI t -r: l:S StruCalc Version 9.0.2.5 10/18/2016 12:03:34 PM ITIONS 'ninations are to be fully connected to provide uniform transfer of loads to all members LECTIONS Center Load 0.34 IN L1418 LOADING DIAGRAM J Load 0.15 in I Load 0.49 IN U291 Load Deflection Criteria: U360 Total Load Deflection Criteria: U240 T,C IONS 9 B Load 7464 Ib 9051 Ib ` I Load 3731 Ib 3462 Ib x' ILoad 11195 Ib 12513 Ib , Ing Length 2.13 in 2.38 in - – -- - M DATA Center — - _ - -- i Length 12 ft aced Length -Top 0 ft aced Length -Bottom 12 ft A -- - tzn -- -- =B Load Duration Factor 1.00 h Depth 0.00 UNIFORM LOADS Center 'ERIAL PROPERTIES Uniform Live Load 300 plf Microllam - iLevel Trus Joist Uniform Dead Load 256 pit Base Values Adjusted Beam Self Weight 26 plf ling Stress: Fb = 2600 psi Fb' = 2604 psi Total Uniform Load 582 plf Cd=1.00 CF=1.00 POINT LOADS CENTER rr Stress: Fv = 285 psi Fv' = 285 psi Cd=1.00 Aus of Elasticity: E = 1900 ksi E'= 1900 ksi p. Ito Grain: Fc -1= 750 psi Fc --L'= 750 psi . 6PAN Load Number One Live Load 788 Ib Dead Load 461 Ib Location 2.5 it TRAPEZOIDAL LOADS - CENTER SPAN trolling Moment: 35210 ft -Ib 2 Ft from left support of span 2 (Center Span) Load Number Om Two ated by combining all dead loads and live loads on span(s) 2 Left Live Load 572 plf 0 plf trolling Shear: -10259 Ib Left Dead Load 279 plf 0 plf r distance d from right support of span 2 (Center Span) Right Live Load 572 plf 957 plf ated by combining all dead loads and live loads on span(s) 2 Right Dead Load 279 plf 0 pif Load Start 0 ft 1 ft iparisons with required sections: Reo'd Provided Load End 12 ft 12 ft ion Modulus: 162.28 in3 164.52 in3 Load Length 12 ft 11 ft (Shear): 53.99 int 83.13 In2 lent of Inertia (deflection): 840,5 in4 978.83 in4 ienC 35210 ft -Ib 35696 ft -Ib ir: -10269 1In 15794 lb Page 22 of 168 N '. 00 00 M C NM ^ y N N O m m p] m m m M IN O t0 r 00f ' p M C O N O Q m O N O W c h o 0 0 o a F o d me LL m N N li m N N s oO S M 02 N N O' OF, O m N V N A r r N N O O E n INSN n N op V b 0Y O8 n n 0Y NN NN Oo m(7 ON 0Y C d p cN� q OO O O O Q N � m 2 n 61 t y fll 4U LL m 41 d ON O O W r o O O O mN N O 1V� O ON O NH NN OV OW t0 i0 OI ON E NW NO NyV OO m V pSONO O m oNr ONm ON WON O NMN N^ y dap c ? W m a o 0 0 d N N O O N- O M V O N 0 0 4 N � OO OO M Q N (6 N M p W O O O O N O N O O lV N ']V M C W G d O d N N 88 O N O m W O N O M O W N N O O W I N O MV N W N N^.IN^z N V O O N OO -yNNy8 N W Y O O h M N y OO m V g O o O O O Q m t GGCya ' N � LL Q1 V! d O d OOp q' 0 0 OO OO G L LL N y N d N N O O N n O Mm O O O N N O O V V V N N O O N O O m V N V b Vj uj W O I� h 1` 0oN O O'r-- OI O O m M V C N O Vj N M N p O 0 OO OO OO OO C t o m b a v Imi N y ' N C ann lON 11 n 7. 1 I II ,0 ° .O ^I d 11 q' C j� q q d LL T E ca" � v"'-'-agd�8ccg %-°I ��m "m wM 0E A ai`d_r MI 4.. Cd ��i�0 0, Nvya . n&a 3EJl .L:yy 3 3¢p'�-a'R gd E e c M R R d` U.S W OC LL IL J H H 3 3 3 3 'a g a 6 3 2 �J� ;�AMOb > O Nd O G c n n $t.o t yp N Y N y e M g i o o '3q �dY,d�y II Q'q C N �y R❑ O OJ R; IL mR_ IL IYNN W ILw Ja � aF :t: 2016.2850 ion: FB17 Loaded Multi -Span Beam International Building Code(AISC 14th Ed ASD)] 50 W8x1 O x 8.0 FT in Adequate By: 97.4% oiling Factor: Moment LECTIONS Centpr Load 0.06 IN L/1551 I Load 0.05 in I Load 0.11 IN L/838 Load Deflection Criteria: U360 Total Load Deflection Criteria: LJ240 CTIONS A B Load 1500 Ib 1500 Ib I Load 1290 Ib 1290 Ib I Load 2790 Ib 2790 Ib Ing Length 0.51 In 0.51 in META Cents i Length 8 ft aced Length -Top 0 ft aced Length -Bottom 8 ft EL PROPERTIES 10 - A992-50 rerties: Uniform Live Load 0 pit Id Stress: Fy = 50 ksi lulus of Elasticity: E = 29000 ksi tth: d = 7.89 in b Thickness: tw= 0.17 in tge Width: bf = 3.94 in tge Thickness: If = 0.21 in Lance to Web Toe of Fillet: k = 0.51 in hent of Inertia About X -X Axis: lx= 30.8 in4 ;tion Modulus About X -X Axis: Sx = 7.81 in3 stic Section Modulus About X -X Axis: Zx = 8.87 in3 gn Properties per AISC 14th Edition Steel Manual: ige Buckling Ratio: FBR = 9.61 wable Flange Buckling Ratio: AFBR = 9.15 b Buckling Ratio: WBR = 40.47 wable Web Buckling Ratio: AWBR = 90.55 strolling Unbraced Length: Lb = 0 ft iting Unbraced Length - for lateral -torsional buckling: Lp = 2.97 ft ninal Flexural Strength w/ safety factor: Mn = 21870 ft -Ib Controlling Equation: F3-1 b height to thickness ratio: h/tw = 40.47 iting height to thickness ratio for eqn. G2-2: h/tw-limit = 53.95 Factor: Cv = 1 Controlling Equation: G2.2 ninal Shear Strength w/ safely factor: Vn = 26826 Ib :rolling Moment: 11080 ft -Ib Ft from left support of span 2 (Center Span) ated by combining all dead loads and live loads on span(s) 2 :rolling Shear: -2790 Ib ight support of span 2 (Center Span) ated by combining all dead loads and live loads on span(s parisons with required sections: Recd Provided ant of Inertia (deflection): 8.82 in4 30.8 in4 ant: 11080 ft -Ib 21870 ft -Ib u: -2790 lb 26826 lb pa Jack Miller LEI Surveyors and Engineers 3302 North Main Street or Spanish Fork, Utah 1 U n Vt01: c: 9.0.2.5 10/18/2016 12:04:00 PM UNIFORM LOADS Center Uniform Live Load 0 pit Uniform Dead Load 0 pit Beam Self Weight 10 plf Total Uniform Load 10 plf POINT LOADS - CENTER SPAN Load Number One Live Load 3000 Ib Dead Load 2500 Ib Location 4 ft Page 24 of 168 m NO 00 00 M V N ^ Ypl a N M m] N p y M p 0 0 0 W N r m ('O ON ON m N U O N r O N` D O O G 0 0 0 0 N O O CJ C N r nj m V W C r n N r O O O r nj N M S m O O N M O W W W N' O d ] M r r r N N O O q' O OO O O a yuy •� N O y O N r o y W W W W W m O O r r r O rn M O r1� r N r^ N o � � 0 0 C Oi O S V) VI r]� � �- �- r- m W ^ OJ ^� N N N � O 00 N' Oy I6 0 0 0 0 C d N No O N r O m NO N O O O W N N- S 0 f0 ONNN{N m O- O NM NMVO 7 Y O8OY O O W O OV OOMVN b WN(r_0^-0m. N 0 0O0 S ]] Qyy S ^ A OO O C O C 0 E N N o W m v, oy g W V o N y o O W r y N O O V N d l7 N W W r r m O O O r W r O O V O W I`x440�j0 0 0 N 'mmy U UO^ N @ d Om CO T 0 0. O O OC O d N N O O N n O N N M O N O N N W O O O r r r m V O O W_ E N N O W N V O V M N y O N m y N W m M r y NO 00 00 M 'v N Yj N m 0 W fV (� W tp m N N N N N O O^ 41 M r M 4 m OW W m N 0 O^ (e U N^ O m— 8 U V m N N N V O ]] a a d' m a N N Cd 00 N yqy OO OO 0 0 N ' o M L d �d1 N 8 O m f O m m W O N O N r N N O O O W W W Id gyy O O N" N M N m m N m m y O r O y O N O O O y k f• $ S M V N N m W W p W O M V V V W n W - OWl m N N 0 0 N r N 0 0 0 II I I1 It C C T N I1 II OY d 9611 II C 641 I II '��- tJp� d �1 d �.. 9 G y II X} V d C C Z Q C m .`c R a a •c 11 11 0 a !l ._. o rn °J m g 'c c 0 1 18 a l o c o v° r' 3 c n c -B -II n•-' o'er r10 m 11 pE p U y A 190 .L' N d11 11 11 N .,0. d d R dO J. O LL LL d O d d dl 0 0 pCl 11 Y O jL S O C G s v' R C x_ �_ C; O S L C Y h L C V I -b d C IIl C O W R yy M Stt 6 U E W 2 Y.rL3 F r 3 3 3 3a° R d Baa dre d 7009 G(Lm��Li ILN N W IL .�.� .°lama r gage ec,A 6T r O N G O CI O p Q N g d N No O N r O m NO N O O O W N N- S 0 f0 ONNN{N m O- O NM NMVO 7 Y O8OY O O W O OV OOMVN b WN(r_0^-0m. N 0 0O0 S ]] Qyy S ^ A OO O C O C 0 E N N o W m v, oy g W V o N y o O W r y N O O V N d l7 N W W r r m O O O r W r O O V O W I`x440�j0 0 0 N 'mmy U UO^ N @ d Om CO T 0 0. O O OC O d N N O O N n O N N M O N O N N W O O O r r r m V O O W_ E N N O W N V O V M N y O N m y N W m M r y NO 00 00 M 'v N Yj N m 0 W fV (� W tp m N N N N N O O^ 41 M r M 4 m OW W m N 0 O^ (e U N^ O m— 8 U V m N N N V O ]] a a d' m a N N Cd 00 N yqy OO OO 0 0 N ' o M L d �d1 N 8 O m f O m m W O N O N r N N O O O W W W Id gyy O O N" N M N m m N m m y O r O y O N O O O y k f• $ S M V N N m W W p W O M V V V W n W - OWl m N N 0 0 N r N 0 0 0 II I I1 It C C T N I1 II OY d 9611 II C 641 I II '��- tJp� d �1 d �.. 9 G y II X} V d C C Z Q C m .`c R a a •c 11 11 0 a !l ._. o rn °J m g 'c c 0 1 18 a l o c o v° r' 3 c n c -B -II n•-' o'er r10 m 11 pE p U y A 190 .L' N d11 11 11 N .,0. d d R dO J. O LL LL d O d d dl 0 0 pCl 11 Y O jL S O C G s v' R C x_ �_ C; O S L C Y h L C V I -b d C IIl C O W R yy M Stt 6 U E W 2 Y.rL3 F r 3 3 3 3a° R d Baa dre d 7009 G(Lm��Li ILN N W IL .�.� .°lama r gage ec,A 6T d N N O O N n O M N O N O O M V N n U1 O O d N N W W O e O E NN O N 0 O of W0 j[ O N O M M W Ol M N Q n o a 00 [U N N N N O N N N N O 0 O N O O O M m m N N W yy pp O O p y N�D oo E N N M CO p N O m O Q L`� 0 C lW'l N N N N N O N N^ N m N y a UY1 v N q O O 0' 0' 0 C jy� IOOD d D d N O O N n O M N O N O O n n M N O O yy M M^V O O O N N 0 0 n co 66cid G Q oD 4 a d N N O O Nn O M N N N M O p n 00.00 I� W O E N O O pO n <q N je O N m NN W N n n j O po po M O N en- N N W M W]] Onl 27 lnl y m 0 2 O' N m N Cj n N M O^ N N M O 0^ O V 0' O O O O m Ly 'r w N c o N W O p O N 0 0 p a W N N NN [ N[VV I� nI� tl0�N_IDD O O O^ N N N �° W tO O N °1 N Y OM W M O 0 N (np O Y o o o C r ] N N N O ai tD a 0 N W W laD ° C 04 N O N O O o o O 0' Q N W Ip .^ gal O C o"o oM nop e� W o a Woo ea Wv W oo o <� �oo' m MM Nom mrn�`N�Q ooM lu°�Do g 9o0 8 e Nd d o o Q 0 c 0 lNNW M NN ]W M M W.fND OO oO oO C40 qp N M NNM CC'1 oM OOO M• NM y O0OW WW yu ON 0N6 0N0 OOO CW; �Opd [ i N y dd a II II II II c Cc `C- II II C Cc oc do n c � I II Y3 II dDc1pI� 9 IIA a k'ad n W 'v _d ,I_I —�'' it D L n u nn" o •€°t .d7 m q 2 II c a y4 LLJ6u 3 g>_v _m yo .4 E c o. n m'a ii=a£d $gcg $� m A data .2 - eea$$n 3�.5l,A 3 amt m y m Eaa a �cJl I d - ;x ; d ooc' o�$ogd Ott �� �!!o°v' �v �i� lar- � a`.o qo=4:° al mmati5w¢G 1JfH;"3 3;o na�aaa98�s'°�i�@>mmvn tim¢= L Lyy wu JbbaJaf m N O 0 M 4 N y 0 I� p m d N fV f0 t00 f0 tp0 tpD N p O N O O^ N M M M 0g M OOO O i O p N 0 0 m� 0 Lq O N O �4 Y ^^ N N O p q 0 0 0 0 C, g j o^ p on C N f0 OI C] O U� O O O Y O O M O N h p O N V O O N b O^^^ O O M M Q YI O_ Q n' O! CN ] Q ^ O a o O O c N N N N' O M O o M O O N O N N MO O O m o pp pp N M UI M N OI O O M O Y O M Y O O N M OI Y �2 O R O OO OO O C G y g(O N^ C g II II II C Q IO II co G I p ?_ & iI gC .��. C 'It '` II I 0 8c og�JG= c >�0 9 m m x n W e m y 8 C 6 n _ w v n II n E 9 6 C a a A w[ eIt J� FI1� Al, I� A2 wo A Gp¢�1� Gad=W II O O C.6 6 6 X_ �_ SIL L y. O O 4- p U -� E y AN C yqy G to = I� 0Om `4i o Is Ci S 1 3 3 3 3a° NLQQa� V D Lm2� L yy W h sa�aF 9e�-JRIA O O N N O O W N R N N O O O E O O N d O O n O t� so mm m 7 � f m(LA N N CC o o O N r dO N d 0 0 to N R W m j j O N N m 0 0 0 E tl N Cj m N N W N OG O N d 0 R 8- d N O �yO1 O m V tV .L pOj 1p O O .6 c pp p p p p p pp pp NN�� pp p m O r� N 8 m p R d O N 0 Qm N nN', N N m t0 tG t0 N N O O O W N n N R y O O g N O Q O 0d q N OO O OO C �D C C`S LU •L m � N N m O (p' 0 0 0 E OJ N ON I` m o o d N o 00 N O Cl N O O 00 0 0 0 0 Q0 m 0 N g W' f O N O O o o O 0 ee am q y y fh x N o 0 7 a R NQ N O N m m a Np N�pp S S g E m N n N N dOO Cd 0 O N N o O�� N d 0 O >�' Nei N f0 •-•-•- N N� n NNS CO OO OOO Q C ' 0u m L m 4I m y N 4 p pD y0fOSd WN N NmO Er M h N'y C O mI� Oy n WWm m N O O 0 N N YcO0O S O O O f7 V R N O' O h N N N N m W N IWU N W CQ O O~ y) W f0 N N O c W V Q N O O O .0 " L f 0 0 0 0 F y A c C c A 0 C C r0 0 Q t.. �' 0 0 m n x n �n di 00 P.jL0 U' 0 u qj nN n ae'E Aa r, 0 n RFen g¢ c v c o u`- g g o a n �yy E c u �o o no%Ig G� E ip ea �?3 Fim y c 0 ooa_ ^I o_ V a J F O 'E O%q Ec O vcgO 00 oypcy .i9_ac¢ap— e O O o yy�y O7J m 7O m �¢—LN c� aJ30oJ0UNdi �oN• omL 9 a �� $� Page 28 of 168 O O O m P N p N W N N V N N N; Vi N N N n O O O E W M 0 M o p 0 W m W •]] `�' N co q O O 0. 0• C N E ' s m L gY$jl f 41 g suopelnoleo peyoepe ee9 O N M ] d Nd Nd NVOOOENNWMWpNd0t O^ O O NN N (O Ip N O m yy m t .0 f m N N Cy O 0 N 0 0 M V N rN- O N O N m 0 b ,Q O p Np N N O O O E n N i0(1 ry N N� p O O Cdj' D O W N y 0 0 n_ ppq OJ Y �- W O O O O 0 g N N O' E qW 1W(ONh NM'NOI NOO dWt(0V W M q:: OO W O( O0O p G M y W N Y L L`01 NO N 00 00.- CN N O W O o N W W 0 N' W N S uj .Wy 0 ON b d A•- O• -i T d ^h 01'T-0,:q O1'0 oQ0 O 0' C a M Vl d O NO Nm OO OO m O W O O . N 0 0 m Q M Myy g 00 'c m OY'O NONN O O O c O 6Y c E! d a m t N y O O N O 0fV N VVN11 m V N dNN m AN N m N0• N MO8O p0 h O O (� m W YOI Og O0 0^ n mT 08 �O d C � g O p S O t01 r d' N M 0 N O m y OO yy yy aa pp pp OOi N N N N N O y n M p N W W Oi O N p p y O 00 0 tc p O h O 0 O O p O OO O O 0' m 2 W Y C N 0JL m A c e A c o o a c 0 0 u n I n i0 �& ^i y n n of 1;Vn n m 3 In"�0 acr61 ny g A� E Ac e y o x� �c c 5. g. 2 1(, C 2 > O c `r v E$ L C > O 0 i E L 0 O O m 0 w N 9 Z^r R$ v 9W A CCo E p^ ` m b •Y R O a IL 4L p G£ 'T�- IO O 0 001 0 M E c 01 01 @@ II 11 II p a5Q ccc ry C1 ,�, c c T � n'a Mz =II `0 co:S r� c ° m g mo c W'oo m�� Q1 y ya' lY ea g g�,aa999 eJll �.5 I It 33 p n .y E _e a i'4C o o m W E.0 a R'C lei g. v."v R3 3 g_ o 0 o c m 1 G. Q m 0 0 y c C (.1 W 6 Y. IL J h F 3 3 3 3 p k o O@ m L Q Q Q J 6' 7 J S 41 7 0 0 9 .O IL 0 QN = IL IL N N W IL - S Ja a J Q 10 - Page 29 of 168 ct: 2016.2850 ion: TB16 Loaded Multi -Span Beam International Building Code(2012 NDS)] .75 IN x 11.875 IN x 12.0 FT Microllam - iLevel Trus Joist m Adequate By: 18.9% olling Factor: Shear ®Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork, Utah i'.6141 I'H: zue:trnr•: ,i A`.`. F9 p. 9.0.2.5 10/18/2016 12:03:41 PM (TIONS ninations are to be fully connected to provide uniform transfer of loads to all members LECTIONS Center Load 0.19 IN U751 LOADING DIAGRAM I Load 0.13 In ILoad 0.32 IN L/454 Load Deflection Criteria: U360 Total Load Deflection Criteria: U240 CTIONS A s Load 2969 Ib 10218 Ib I Load 1906 Ib 7214 Ib t I Load 4875 Ib 17432 Ib ing Length 1.24 in 4.43 in - M DATA Cent [ i Length 12 it =_- --- aced Length -Top 0 ft -- - - {► 12 ft --- B aced Length -Bottom 12 ft Load Duration Factor 1.00 h Depth 0.00 UNIFORM LOADS Center ERIAL PROPERTIES Uniform Live Load 440 plf Microllam - iLevel Trus Joist Uniform Dead Load 258 plf Base Values Adjusted Beam Self Weight 19 plf lIng Stress: Fb = 2600 psi Fb' = 2604 psi Total Uniform Load 717 plf Cd=1.00 CF=1.00 LOADS u Stress: Fv = 285 psi Fv' = 285 psi POINT -CENTER Load Number One SPAN Two Cd=1.00 Live Load 2690 Ib 5217 Ib Jus of Elasticity: E = 1900 ksi E'= 1900 ksi Dead Load 1312 Ib 4478 Ib p. Ito Grain: Fc --L= 750 psi Fc -1'= 750 psi Location 11.5 ft 11.5 ft ,rolling Moment: 16565 ft -Ib I Ft from left support of span 2 (Center Span) ated by combining all dead loads and live loads on span(s) 2 rolling Shear: -9966 Ib distance d from right support of span 2 (Center Span) ated by combining all dead loads and live loads on span(s) 2 parisons with required sections: Read Provided on Modulus: 76.35 in3 123.39 in3 (Shear): 52.45 in2 62.34 int ant of Inertia (deflection): 387.31 in4 732.62 in4 ant: 16565 111 26772 ft -Ib r. -9966 lb 11845 lb Page 30 of 168 Project: 2016-2850 Location: TB17 Multi -Loaded Multi -Span Beam [2015 International Building Code(2012 NDS)] ( 2 ) 1.75 IN x 11.1175 IN x 8.0 FT 1.9E Microllam - !Level Trus Joist Section Adequate By: 8.7% Controlling Factor: Moment `;vu:trau> f'I 0.%':£n5 CAUTIONS Laminations are to be fully connected to provide uniform transfer of loads to all members DEFLECTIONS Center Recd Live Load 0.10 IN U922 75.66 in3 Dead Load 0.07 in Area (Shear): 32.19 int Total Load 0.18 1141-1545 Moment of Inertia (deflection): 215.26 in4 Live Load Deflection Criteria: 1./360 Total Load Deflection Criteria: L/240 REACTIONS A @ 17848 ft -Ib Live Load 4480 Ib 2403 Ib 7897 lb Dead Load 3345 Ib 1647 Ib Total Load 7825 Ib 4050 Ib Bearing Length 2.98 in 1.54 in BEAM DATA Center Span Length 8 It Unbraced Length -Top 0 ft Unbraced Length -Bottom 8 it Live Load Duration Factor 1.00 Notch Depth 0.00 MATERIAL PROPERTIES 1.9E Microllam - iLevel Trus Joist Base Values Adjusted Bending Stress: Fb = 2600 psi Fb' = 2604 psi Cd=1.00 CF=1.00 Shear Stress: Fv = 285 psi Fv' = 285 psi Cd --1.00 Modulus of Elasticity: E = 1900 ksi E'= 1900 ksi Comp.-Lto Grain: Fc -1= 750 psi Fc -1'= 750 psi Controlling Moment: 16416 ft -Ib 3.52 Ft from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Controlling Shear: 61161b At a distance d from left support of span 2 (Center Span) Created by combining all dead loads and live loads on spans) 2 Comparisons with required sections: Recd Provided Section Modulus: 75.66 in3 82.26 in3 Area (Shear): 32.19 int 41.56 in2 Moment of Inertia (deflection): 215.26 in4 488.41 in4 Moment: 16416 ft -Ib 17848 ft -Ib Shear: 6116 lb 7897 lb Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork, Utah 10/18/2016 Uniform Live Load 100 pit Uniform Dead Load 59 pit II Beam Self Weight 13 plf Total Uniform Load 172 olf Load Number Qg@ Live Load 3073 Ib Dead Load 1798 Ib Location 3.5 ft TRAPEZOIDAL LOADS Load Number - CENTER SPAN Ono Left Live Load 860 pif Left Dead Load 748 plf Right Live Load 860 plf Right Dead Load 748 pit Load Start 0 it Load End 3.5 ft Load Length 3.5 it Page 31 of 168 cl: 2016-2850 ion: TB18 Center Loaded Multi -Span Beam Fy = International Building Code(AISC 14th Ed ASD)] -50 W1 Ox88 x 22.0 FT ath: In Adequate By: 21.3% b Thickness: oiling Factor: Deflection ige Width: LECTIONS Camer ige Thickness: Load 0.53 IN U495 ante to Web Toe of Fillet: J Load 0.37 in nent of Inertia About X -X Axis: I Load 0.91 IN L/291 tion Modulus About X -X Axis: Load Deflection Criteria: LI360 Total Load Deflection Criteria: U240 CTIONS A @ gn Properties per AISC 14th Edition Steel Manual: Load 9905 Ib 13171 Ib I Load 7382 Ib 9293 Ib ILoad 17287 Ib 22464 Ib ing Length 1.49 in 1.49 in M DATA Center Lb = I Length 22 It aced Length -Top 0 ft Lp = aced Length -Bottom 22 ft Mn = x88 - A992.50 erties: Center Id Stress: Fy = lulus of Elasticity: E _ ath: d = b Thickness: tw = ige Width: of ige Thickness: if = ante to Web Toe of Fillet: k = nent of Inertia About X -X Axis: Ix = tion Modulus About X -X Axis: SX = :tic Section Modulus About X -X Axis: Zx = gn Properties per AISC 14th Edition Steel Manual: age Buckling Ratio: FBR = wable Flange Buckling Ratio: AFBR = i Buckling Ratio: WBR = wable Web Buckling Ratio: AWBR = trolling Unbraced Length: Lb = icing Unbraced Length - for lateral -torsional buckling: Lp = sinal Flexural Strength w/ safely factor: Mn = Controlling Equation: F2-1 height to thickness ratio: h/tw = ting height to thickness ratio for eqn. G2-2: h/tw-limit = :actor: Cv = Controlling Equation: G2-2 sinal Shear Strength w/ safety factor: Vn = 50 ksi 29000 ksi 10.8 in 0.61in 10.3 in 0.99 in 1.49 in 534 (n4 98.5 in3 113 in3 5.2 9.15 12.93 90.55 Oft 9.29 ft 281936 ft -Ib 12.93 53.95 1 130680 Ib rolling Moment: 180982 ft -Ib Ft from left support of span 2 (Center Span) ated by combining all dead loads and live loads on span(s) 2 rolling Shear: -22464 Ib ght support of span 2 (Center Span) iced by combining all dead loads and live loads on span(s )arisons with required sections: Reed Provided ant of Inertia (deflection): 440.05 in4 534 in4 ant: 180982 ft -Ib 281936 ft -Ib -22464 lb 130680 lb page Jack Miller LEI Surveyors and Engineers 3302 North Main Street e� Spanish Fork. Utah r i'NI ^.oevnrar.> 9.0.2.5 10/18/2016 12:03:45 PM A — —stn B UNIFORM LOADS Center Uniform Live Load 40 pit Uniform Dead Load 24 pit Beam Self Weight 88 pit Total Uniform Load 152 plf POINT LOADS -CENTER SPAN Load Number One Two Live Load 10218 Ib 11978 Ib Dead Load 7214 Ib 7007 Ib Location 11 fl 14 It Page 32 of 168 Project: 2016-2850 Location: TB19 Multi -Loaded Multi -Span Beam 12015 International Building Code(AISC 14th Ed ASD)] A992-50 W1 Ox77 x 22.0 FT Section Adequate By: 21.8% Controlling Factor: Deflection DEFLECTIONS Center Live Load 0.53 IN L/498 Dead Load 0.37 in Total Load 0.90 IN U292 Live Load Deflection Criteria: L1360 Total Load Deflection Criteria: U240 REACTIONS A @ Live Load 7541 Ib 13346 Ib Dead Load 5652 Ib 10427 Ib Total Load 13193 Ib 23773 Ib Bearing Length 1.37 in 1.37 in BEAM DATA Center Span Length 22 it Unbraced Length -Top 0 N Unbraced Length -Bottom 22 ft 31��1•]RR[i �•iriliif Properties: Redd Provide Yield Stress: Fy = 50 ksi Modulus of Elasticity: E = 29000 ksi Depth: d = 10.6 in Web Thickness: tw= 0.53 in Flange Width: bf= 10.2 in Flange Thickness: If = 0.87 in Distance to Web Toe of Fillet: k = 1.37 in Moment of Inertia About X -X Axis: lx= 455 in4 Section Modulus About X -X Axis: Sx = 85.9 in3 Plastic Section Modulus About X -X Axis: Zx = 97.6 in3 Design Properties per AISC 14th Edition Steel Manual: Flange Buckling Ratio: FBR = 5.86 Allowable Flange Buckling Ratio: AFBR = 9.15 Web Buckling Ratio: WBR = 14.83 Allowable Web Buckling Ratio: AWBR = 90.55 Controlling Unbraced Length: Lb = 0 ft Limiting Unbraced Length - for lateral -torsional buckling: Lip = 9.18 ft Nominal Flexural Strength w/ safety factor: Mn = 243513 ft -Ib Controlling Equation: F2-1 Web height to thickness ratio: h/tw = 14.83 Limiting height to thickness ratio for eqn. G2.2: h/tw-limit = 53.95 Cv Factor: Cv= 1 Controlling Equation: G2-2 Nominal Shear Strength w/ safety factor: Vn = 112360 Ib Controlling Moment: 169421 ft -Ib 14.08 Ft from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Controlling Shear: -23773 lb At right support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s Comparisons with required sections: Redd Provide Moment of Inertia (deflection): 373.65 in4 455 In4 Moment: 169421 ft -Ib 243513 ft -Ib Shear: -23773 lb 112360 lb Jack Miller LEI Surveyors and Engineers 3302 North Main Street r/Of Spanish Fork, Utah !•:au:rra�. Version 9.0.2.5 1011812016 1 2:03:48 PM 22 n Uniform Live Load 40 plf Uniform Dead Load 23 plf Beam Self Weight 77 pH Total Uniform Load 14D elf Load Number One Two Three Live Load 9455 Ib 3789 Ib 5803 Ib Dead Load 5531 Ib 2216 Ib 3395 Ib Load Number One Left Live Load 120 plf Left Dead Load 341 plf Right Live Load 120 plf Right Dead Load 341 plf Load Start 14 It Load End 22 ft Load Length 8 ft Page 33 of 168 3:2016.2850 on: TB20 .oaded Multi -Span Beam International Building Code(AISC 14th Ed ASD)] 50 W10x100 x 26.0 FT n Adequate By: 18.2% Ming Factor: Deflection LECTIONS Cents Load 0.66 IN 1./474 I Load 0.44 in Load 1.10 IN L/284 Load Deflection Criteria: U360 Total Load Deflection Criteria: U240 OTIONS a 0. Load 7911 Ib 13381 Ib I Load 5928 Ib 9128 Ib Load 13839 Ib 22509 Ib ing Length 1.62 in 1.62 In M DATA Center i Length 26 ft aced Length -Top 0 ft aced Length -Bottom 26 ft °L PROPERTIES 000 - A992-50 erties: Recd Provided d Stress: Fy = 50 ksi lulus of Elasticity: E = 29000 ksi dh: d = 11.1 in )Thickness: tw= 0.68 in rge Width: bf = 10.3 in rge Thickness: If = 1.12 in ante to Web Toe of Fillet: k = 1.62 in nent of Inertia About X -X Axis: Ix = 623 in4 tion Modulus About X -X Axis: SX = 112 in3 stic Section Modulus About X -X Axis: Zx = 130 in3 gn Properties per AISC 14th Edition Steel Manual: rge Buckling Ratio: FBR = 4.6 wable Flange Buckling Ratio: AFBR = 9.15 i Buckling Ratio: WBR = 11.56 wable Web Buckling Ratio: AWBR = 90.55 trolling Unbraced Length: Lb = 0 ft sting Unbraced Length - for lateral -torsional buckling: Lp = 9.36 ft ninal Flexural Strength w/ safety factor: Mn = 324351 ft -Ib Controlling Equation: F2-1 height to thickness ratio: h/tw = 11.56 Ring height to thickness ratio for eqn. G2-2: h/tw-limit = 53.95 :actor: Cv= i Controlling Equation: G2-2 sinal Shear Strength w/ safety factor: Vn = 150960 Ib rolling Moment: 194103 ft -Ib i Ft from left support of span 2 (Center Span) ated by combining all dead loads and live loads on span(s) 2 rolling Shear: -22509 Ib ght support of span 2 (Center Span) ated by combining all dead loads and live loads on span(s parisons with required sections: Recd Provided ant of Inertia (deflection): 527.25 in4 623 in4 ant: 194103 ft -Ib 324351 ft -Ib r: -22509 lb 150960 lb page Jack Miller LEI Surveyors and Engineers 3302 North Main Street of Spanish Fork, Utah `.ue:•tr`.ns Version 9.0.2.5 10/18/2016 12:03:50 PM Uniform Live Load 40 plf Uniform Dead Load 23 plf Beam Self Weight 100 plf Total Uniform Load 163 olf Load Number One Two Live Load 12063 Ib 8189 Ib Dead Load 7057 Ib 4791 Ib Location 15.5 ft 18 ft Page 34 of 168 Project: 2016-2850 page j Jack Miller Location: TB21 LEI Surveyors and Engineers Multi -Loaded Multi -Span Beam 3302 North Main Street m I [2015 International Building Code(AISC 14th Ed ASD)] Spanish Fork, Utah A992-50 W1 0x15 x 7.5 FT(5+2.5) r 61affn Section Adequate By: 57.8% Controlling Factor: Moment DEFLECTIONS Center B= Ix = 68.9 in4 LOADING DIAGRAM Sx= 13.8 In3 Plastic Section Modulus About X -X Axis: Zx = Live Load -0.02 IN U3691 0.06 IN 21-1942 Design Properties per AISC 14th Edition Steel Manual: StruCalc Version 9.0.2.5 FBR = 7.41 10/18/2016 12:04:14 PM Dead Load -0.01 in 0.05 in 9.15 Web Buckling Ratio: WBR = 38.52 Allowable Web Buckling Ratio: AWBR = Total Load -0.03 IN L12042 0.11 IN 21-1522 Controlling Unbraced Length: Lb = 5 it Limiting Unbraced Length - Live Load Deflection Criteria: 1./360 Total Load Deflection Criteria: U240 for lateral -torsional buckling: Lp = 2.86 ft for Eqn. F2-2: REACTIONS A B 8.61 It Nominal Flexural Strength w/ safety factor: Mn = 34034 ft -Ib Controlling Equation: F2-2 Live Load -2284 Ib 7539 Ib Web height to thickness ratio: h/tw = 38.52 Limiting height to thickness ratio for eqn. G2-2: h/tw-limit = 53.95 Cv Factor: Dead Load -1834 Ib 6404 Ib 1 Controlling Equation: G2-2 Nominal Shear Strength w/ safety factor: ' Total Load -4118 Ib 13943 Ib Uplift (1.5 Ib 0 Ib 0.00 in Bearing Length 0.00 In 0.57 in Length BEAM DATA Center Richt -_ - Span Length 5 It 2.5 ft A- - sit B 2.5ft -- Unbraced Length -Top 0 6 0 ft Unbraced Length -Bottom 5 ft 2.5 ft STEEL PROPERTIES UNIFORM LOADS Center Right W10x15-A992-50 Uniform Live Load 40 pif 230 plf Uniform Dead Load 24 pif 398 plf Properties: Beam Self Weight 15 pif 15 plf Yield Stress: Fy = 50 ksi Total Uniform Load 79 plf 643 plf Modulus of Elasticity: E= 29000 ksl POINT LOADS, Depth: = 10 in RIGHT Load Number One SPAN Thickness: t w = 0.23 in Live Load 4480b Flange Width: tff = 4 in Dead Load 33451b Flange Thickness: = 0.27 In Location 2.5 ft Distance to Web Toe of Fillet: k k = 0.67 in Moment of Inertia About X -X Axis: Ix = 68.9 in4 Section Modulus About X -X Axis: Sx= 13.8 In3 Plastic Section Modulus About X -X Axis: Zx = 16 in3 Design Properties per AISC 14th Edition Steel Manual: Flange Buckling Ratio: FBR = 7.41 Allowable Flange Buckling Ratio: AFBR = 9.15 Web Buckling Ratio: WBR = 38.52 Allowable Web Buckling Ratio: AWBR = 90.55 Controlling Unbraced Length: Lb = 5 it Limiting Unbraced Length - for lateral -torsional buckling: Lp = 2.86 ft for Eqn. F2-2: Lr= 8.61 It Nominal Flexural Strength w/ safety factor: Mn = 34034 ft -Ib Controlling Equation: F2-2 Web height to thickness ratio: h/tw = 38.52 Limiting height to thickness ratio for eqn. G2-2: h/tw-limit = 53.95 Cv Factor: Cv = 1 Controlling Equation: G2-2 Nominal Shear Strength w/ safety factor: Vn = 46000 Ib Controlling Moment: -21572 ft -Ib Over right support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2, 3 Controlling Shear: 9433 Ib At left support of span 3 (Right Span) Created by combining all dead loads and live loads on span(s Comparisons with required sections: BOA Provided Moment of Inertia (deflection): 31.64 in4 68.9 in4 Moment: -21572 ft -Ib 34034 ft -Ib Shear: 9433 lb 46000 lb Page 35 of 168 t: 2016-2850 )n: TB22 .oaded Multi -Span Beam International Building Code(AISC 14th Ed ASD)) 50 W1 Oxi 7 x 7.5 FT (5 + 2.5) n Adequate By: 2.2% I ing Factor: Moment .ECTIONS . CenterRicht -oad -0.03 IN L/2345 0.10 IN 2U590 Load -0.02 in 0.07 in Load -0.04 IN U1385 0.18 IN 2U342 -oad Deflection Criteria: L1360 Total Load Deflection Criteria: U240 :TIONS A B -oad -4143 Ib 14229 Ib Load -2460 Ib 11672 Ib Load -6603 Ib 25901 Ib t(1.5 F.S) -6603 Ib 0 Ib ng Length 0.00 in 0.63 in d DATA Canter BIgm Length 5 ft 2,5 It iced Length -Top 0 ft 0 It iced Length -Bottom 5 ft 2.5 ft I. PROPERTIES :17 - A992-50 irtles: Rgrd I Stress: Fy = ulus of Elasticity: E _ Ih: d = i Thickness: tw = ge Width: bf= ge Thickness: if = ince to Web Toe of Fillet: k = rent of Inertia About X.X Axis: Ix= ion Modulus About X -X Axis: Sx = tic Section Modulus About X -X Axis: Zx = In Properties per AISC 14th Edition Steel Manual: ge Buckling Ratio: FBR = vable Flange Buckling Ratio: AFBR = Buckling Ratio: WBR = vable Web Buckling Ratio: AWBR = .rolling Unbraced Length: Lb = :Ing Unbraced Length - for lateral -torsional buckling: Lip = for Eqn. F2-2: Lr = trial Flexural Strength wl safety factor: Mn = Controlling Equation: F2-2 height to thickness ratio: h/tw, = Ing height to thickness ratio for eqn, G2-2: h/tw-limit = actor: Cv = Controlling Equation: G2-2 inal Shear Strength w/ safety factor: Vn = 50 ksi 29000 ksi 10.1 in 0.24 in 4.01 in 0.33 in 0.63 in 81.9 in4 16.2 Ina 18.7 in3 6.08 9.15 36.83 90.55 5 i 2.98 it 9.15 ft 40658 ft -Ib 36.83 53.95 1 48480 Ib oiling Moment: 39785 ft -Ib right support of span 2 (Center Span) ted by combining all dead loads and live loads on span(s) 2, 3 oiling Shear: 16591 Ib It support of span 3 (Right Span) ted by combining all dead loads and live loads on span(s ,arlsons with required sections: Rgrd Provided nt of Inertia (deflection): 57.37 in4 81.9 in4 nt: -39785 fl -Ib 40658 ft -Ib Beam Self Weight 17 16591 Ib 48480 Ib ®Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork, Utah i Version 9.0.2.5 10/18/2016 12:04:19 PM UNIFORM LOADS W R1811t Tat w plf 40 pif Uniform Dead Load 24 pif 23 pif Beam Self Weight 17 pif 17 pif Total Uniform Load 81 plf 80 plf POINT LOADS - RIGHT Load Number g0e SPAN Two Live Load 2403 Ib 6483 Ib UNIFORM LOADS Center R1811t Uniform Live Load 40 plf 40 pif Uniform Dead Load 24 pif 23 pif Beam Self Weight 17 pif 17 pif Total Uniform Load 81 plf 80 plf POINT LOADS - RIGHT Load Number g0e SPAN Two Live Load 2403 Ib 6483 Ib Dead Load 1647 Ib 4704 Ib Location 2.5 it 2.5 it TRAPEZOIDAL LOADS - CENTER SPAN Load Number One Left Live Load 120 plf Left Dead Load 341 plf Right Live Load 120 plf Right Dead Load 341 pif Load Start 0 ft Load End 5 It Load Length 5 ft RIGHT SPAN Load Number One Left Live Load 120 pif Left Dead Load 341 pif Right Live Load 120 pif Right Dead Load 341 plf Load Start 0 ft Load End 2.5 It Load Length 2.5 It Page 36 of 168 N N 0p O N' 0 NN 0 0 0 O 0 N N N O 0 00 y n N �j m N V C V O O f Npfppp pm0mpJJ tC y -0 O E N N O a �- O a O N Y a 0 0 0 Ol F N Oc "t O r ap Y Na N°+i N m N O n � c V O P y y m N N r 8 O ry O O O O O a 4 m II k II m i a mm y H ISO L� B yy II v v ' E t y E 80 TiLL e S 3 i I� `o N01 O O O O c c d C p o e c nc c II{F 1 n CU G y0 N p �O d yy��N- ' f a� E 81 m NNN DO C;—B. � P 8 N N E 0 0 0 O C Y •N-' 0 0 (O O N D D O 10 W pal N N N Oy O N h N O' O E CN N y !7 0 m N N y N O 8 N O N N °r' N O (9 iJ [tNV lV N O O q O O O OO to m N y y d m g ON a 00 N n g N m O N 0 bJ N OOI a s N N N a 1!j O O O y 0 a C S 8 N fbJ 0 N O. N O N- O NNNN N OR m O O O O 0 F. fA f71 n pp N 0ttpp RR p p Nyy p O O S S m a N W N N O O J O1 m w N a T 0 O y N O p O m a O N ry O N � O 00m DDD N Q O O O O O s 0 c L E y 88 op m p� app (q(qVV pp�� y' N �O m lN'm�ONy yN'N N mOg E m� -a 0tln C'l �^'V VQGI o�O� NQgY N tOCOONC OE suopelnoleo pope a aeg Page 37 of 168 n � c n m II 4 m II k II y H ISO L� B p II v v ' E t y E mAca TiLL e S 3 i I� `o N01 i oo` `o Vd c d C p o e c nc c II{F 1 n CU G .xi v y o xy y y A C i J �L y i G M 9 a IL O m Q= IL fl. p Page 37 of 168 2016.2850 ion: TB25 Loaded Multi -Span Beam International Building Code(2012 NDS)] 1.75 IN x 11.875 IN x 8.0 FT Microllam - iLevel Trus Joist in Adequate By: 0.3% cling Factor: Shear �I RyL,,.:u> Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork. Utah 9.0.2.5 10/18/2016 12:04:11 PM ITIONS ninations are to be fully connected to provide uniform transfer of loads to all members LECTIONS Center LOADING DIAGRAM Load 0.12 IN L/824 I Load 0.09 in I Load 0.21 IN U457 Load Deflection Criteria: L/360 Total Load Deflection Criteria: U240 CTIONS A B 2 Load 6483 Ib 6483 Ib J Load 4704 Ib 4704 Ib I Load 11187 Ib 11187 Ib ing Length 4.26 in 4.26 in M DATA Center r Length 8 ft -A---- aced Length -Top 0 ft -- eir— ---- --- B - aced Length -Bottom 8 it Load Duration Factor 1.00 h Depth 0.00 UNIFORM LOADS Center ERIAL PROPERTIES Uniform Live Load 100 pif Microllam - !Level Trus Joist Uniform Dead Load 59 pif Base values Adiusted Beam Self Weight 13 pif ling Stress: Fb = 2600 psi Fb' = 2604 psi Total Uniform Load 172 pif Cd=1.00 CF=1.00 POINT LOADS .CENTER SPAN Load Number le. Two v Stress: Fv = 285 psi Fv' = 285 psi Cd=1.00 11us of Elasticity: E = 1900 ksi E'= 1900 ksi Live Load 3073 Ib 3073 Ib D. Ito Grain: Fc-1= 750 psi Fc -1'= 750 psi Dead Load 17 Ib 176 lb Location 0..55 ft 7.. 5 ft ft TRAPEZOIDAL LOADS -CENTER SPAN rolling Moment: 16474 ft -Ib Ft from left support of span 2 (Center Span) Load Number Qgg ated by combining all dead loads and live loads on span(s) 2 Left Live Load 860 pif rolling Shear: 7872 Ib Left Dead Load 748 pif distance d from left support of span 2 (Center Span) Right Live Load 860 plf ated by combining all dead loads and live loads on span(s) 2 Right Dead Load 748 plf Load Start 0.5 It parisons with required sections: Reed Provided Load End 7.5 ft on Modulus: 75.93 in3 82.26 in3 Load Length 7 ft (aneaq: gl.44 Inz 41.ati Inz ent of Inertia (deflection): 256.23 in4 488.41 in4 ant: 16474 ft -Ib 17848 ft -Ib r: 78721b 7897 lb Page 38 of 168 § : 2; \®r!!2!!§§`=�2°!;iRm §®r0w2q/R® ` ` |`` { of { /it || |; o 14 A., $%§;¥ + ` !,#,!) J� |!)f| k ! « a § 7■|I/,.#|aES(tLmLeL!J w £2!.),�! Page 39»68 t: 2016-2850 on: TB34 .oaded Multi -Span Beam International Building Code(2012 NDS)] IN x 22.51N x 9.0 FT 4 - Visually Graded Western Species - Dry Use n Adequate By: 19.0% filing Factor: Shear -ECTIONS Center Load 0.03 IN U3771 Load 0.02 in Load 0.05 IN U2154 Load Deflection Criteria: U360 Total Load Deflection Criteria: U240 :TIONS A 8 -oad 4229 Ib 10930 Ib Load 3760 Ib 7680 Ib Load 7989 Ib 18610 Ib _ ng Length 2.40 in 5.59 in Length 9 fl aced Length -Top 0 ft aced Length -Bottom 9 ft -oad Duration Factor 1.00 )er Adj. Factor i rer Required 0.02 -RIAL PROPERTIES Uniform Live Load 344 M - Visually Graded Western Species Uniform Dead Load 462 Base Values ing Stress: Fb = 2400 Total Uniform Load 831 Fb_cmpr= 1850 Cd=1.00 r Stress: Fv = 265 Ih =Load Cd=1.00 lus of Elasticity: E = 1800 t.1 to Grain: Fc -1= 650 Adiusted psi Controlled by: psi Fb' = 2400 pal psi Fv' = 265 psi ksi E'= 1800 ksi psi Fc --L= 650 psi rolling Moment: 35405 fl -Ib Ft from left support of span 2 (Center Span) ited by combining all dead loads and live loads on span(s) 2 rolling Shear: -17115 lb distance d from right support of span 2 (Center Span) ited by combining all dead loads and live loads on span(s) 2 )arisons with required sections: Reo'd PrQvided- rn Modulus: 177.03 in3 432.42 in3 (Shear): 96.88 in2 115.31 int ant of Inertia (deflection): 542.13 in4 4864.75 in4 wt: 35405 ft -Ib 86484 ft -Ib -17115 Ib 20372 lb ®Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork, Utah r', i.; f. I'r H S I ; r.•. •.<i.1 10/18/2016 12:04:07 PM 9 ft - - UNIFORM LOADS Center Uniform Live Load 344 pit Uniform Dead Load 462 pit Beam Self Weight 25 pit Total Uniform Load 831 pit ne Ih =Load 7 Ib 7 ft Page 40 of 168 o�g"�e�$iv'mnaNaam NON���i$�ma��.:`ma$<�1O w`r'��°�RioOg'°oN$0 w o 0 0 6 c N t N N _ g a o�cg$ � $Nm ocQi op$Nm ��rom $oo�JJi pm ym�v'��o o r�y� `* �'d mrn vc�0$m �i YO uoi,o�$o0 m C fV O O ry^ 0 0 0 0 q CR E °'°'n "S� 3Iq NNN �O$N°j Om�Nr?O rn O Om � 0 0 0 0 0 ° 1aN U N p MOOv , Z..iz 0V ? <M SW OO OO NO O^O OOONr�^O V VOj ^O OO 0 000 .w! N O y ' E )NR O NOOo 9 N O�O N NNN0O 0 m y N u g O^ O OO m O o mm m 0 0 00EmN`p jN m 0 C 0NO gV NO0Nqp N N N t0 O t O p ^ y T N N � � g �2^ 0. O m YO N O O O 0 N pp pp N m 0 p o pp pp D O O M j m T W T b CI O O Y yNj' N V 001 a N n C OW m�IO� Q N O O p O O ^ O OOO R O O O O p C b GY ° II J. A C c k G C O w m O NC C N �1 y. ,x' .� v C ^I OI Y II .�. II w G V n a L II V v Cl E C j ° O tC_.. i0 c Ga a n A B° ? xg S c p 3 w o li IL a o sy c `o a C v¢� m w C q n n °e °_ a n @$ a 9 € H 3 o S w O q O In m«'caam u,Ilc9 Ll` c m� -u cn end EI�a ti a_o ��3 as 'gam n �o # Q¢a oz,LL €.a E n A n c?r Y A- o wow° y o Nn o cavo -da It Rx �Cw,� wee I'c 'I `a"ia' iYo o'S 00 ¢°a a`ti 5w¢E¢ °SHF 3 3 3 i a° wad'¢ a�'¢a 3gin>°°'oi anti ui ¢= li 4N N w4.z �3 3f Page 41 of 168 suopelnolea payoelle ea$ O S P S O N 10 O N O N t7 W W 0 n n n pf Cl 0 0~ °i W N W O A S m V N 0 o C V 0 S N O N O 0 S q O O OO O d N ^f i& A N � N �y N y EW 100 O .0 S0 WN m ON 0 NN N 0. N O C N N N ail a GO d N' 00 00 1(f h 00 N O O N O S 10 m N N m �p p� Oy V tii (I `0 tr0 N O OWi O O V� p p o �p�p00�� tm� pp yy N d W0• T W 1° 0 00 W t0 N N O til eg m ddod c y� y g d N N O n [�. 00 N "OOrV tV N O) O O 1Ip� a N O� A N WOoNrOyN'V NNO 6^OOi1 g n k 4 C o o Q k C C c a g; o v IR n R k^<o. a T. } Fn ,IL J� � E m II R ci U E B a "� .l �-" c c' J xo' c 9aa II O F 6 30 eo °$m O J I"' - m 5� M oo00y 9A J~° II y 1U t Fy y N a y HC Oi .'0_' N i N .z d i II II II L1 O C D. II 9 _ Q Q C 'r^ J tk 8 LL yry 'e G n L k 0 a q d p IT d W L P. a_ ._ I.IEg O R O O� c d 1Un g pQc g ria .•�.. LL •mCc° 'o aL°xWm Qi 2 Rg Q SL J Gdpco . Tn1. PD� J _oN Q f Page 42 of 168 Project: 2016-2850 Location: SB13 Multi -Loaded Multi -Span Beam [2015 International Building Code(2012 NDS)] ( 3) 1.75 1N x 111.875 1N x 12,0 FT 1.9E Microllam - [Level Trus Joist Section Adequate By: 33.7% Controlling Factor: Moment ®Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork, Utah r:a�arfn. �n!tvr r�u�s StruCalc Version 9.0.2.5 10/18/ all members DEFLECTIONS Center Live Load 0.28 IN U506 Dead Load 0.10 In Values 2600 psi Total Load 0.38 IN L/375 Live Load Deflection Criteria: L/360 Total Load Deflection Criteria: L/240 REACTIONS A B Live Load 5288 Ib 5286 Ib Dead Load 1927 Ib 1959 Ib Total Load 7215 Ib 7245 Ib Bearing Length 1.83 in 1.84 in BEAM DATA anter Span Length 12 ft Unbraced Length -Top 0 ft Unbraced Length -Bottom 12 ft Live Load Duration Factor 1.00 Notch Depth 0.00 MATERIAL PROPERTIES 1.9E Microllam - iLevel Trus Joist Bending Stress: Base Flo= Values 2600 psi Adjusted Fb'= 2604 psi 123.39 in3 Cd=1.00 CF=1.00 62.34 int Moment of Inertia (deflection): Shear Stress: Fv = 285 psi Fv' = 285 psi Shear: Cd=1.00 11845 lb 0 ft 8 ft Modulus of Elasticity: E = 1900 ksi E'= 1900 ksi Comp.-Lto Grain: Fc --1-= 750 psi Fc -1'= 750 psi Controlling Moment: 20027 ft -Ib 6.36 Ft from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Controlling Shear: -6059 lb At a distance d from right support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Comparisons with required sections: Recd Provided Section Modulus: 92.3 in3 123.39 in3 Area (Shear): 31.89 in2 62.34 int Moment of Inertia (deflection): 521.54 In4 732.62 in4 Moment: 20027 ft -Ib 26772 ft -Ib Shear: -60591b 11845 lb — 12ft Uniform Live Load 550 plf Uniform Dead Load 129 pif Beam Self Weight 19 plf Load Number 0118 Two Live Load 832 Ib 832 Ib Dead Load 324 Ib 324 Ib Location 3 ft 8 ft TRAPEZOIDALLOAOS-CENTERSPAN Load Number One TWO Left Live Load 330 pif 330 pif Left Dead Load 208 pif 208 pif Right Live Load 330 pif 330 plf Right Dead Load 208 plf 208 plf Load Start 0 ft 8 ft Load End 3 ft 12 ft Load Length 3 ft 4 It Page 43 of 168 Seismic Weights Roof Roof DL = 16.9 psf Exterior Wall DL = 10 psf Exterior Brick DL = 40 psf Interior Wall DL= 6 psf High Roof Area = 11150 ftA2 Exterior Wall Length = 510 1t Wall Length with Brick = 0 it Trib. Exterior Wall Height = 9 it Interior Wall Length = 522 it Trib. Interior Wall Height= 4.5 it Exterior Wall Area = 4590 ftA2 Interior Wall Area = 2349 ftA2 Roof Weight= 188435 Ib Wall Weight= 59994 Ib Total Weight = 248429 Ib Level Floor Living DL = 23.4 psf Exterior Wall DL = 10 psf Exterior Brick DL = 40 psf Interior Wall DL = 6 psf Living Area = 11422 ftA2 Exterior Wall Length = 510 it Wall Length with Brick = 0 it Trib. Exterior Wall Height = 10 it Interior Wall Length = 530 it Trib. Interior Wall Height = 4.5 it Exterior Wall Area = 5100 ftA2 Interior Wall Area = 2385 ftA2 Floor Weight = 267374.8 Ib Wall Weight= 65310 Ib Total Weight= 332684.81b Level 4 Floor Living DL = 23.4 psf Exterior Wall DL = 10 psf Exterior Brick DL = 40 psf Interior Wall DL = 6 psf Living Area = 11686 ftA2 Exterior Wall Length = 530 it Wall Length with Brick = 116 it Trib. Exterior Wall Height = 10 it Interior Wall Length= 530 it Trib. Interior Wall Height = 4.5 it Exterior Wall Area = 5300 ftA2 Interior Wall Area = 2385 ftA2 Floor Weight= 273552.4 lb Wall Weight= 90510 lb Total Weight = 364062.4 Ib Page 44 of 168 Level Floor Living DL = 23.4 psf Exterior Wall DL= 10 psf Exterior Brick DL = 40 psf Interior Wall DL = 6 psf Living Area = 11686 ftA2 Exterior Wall Length = 530 it Wall Length with Brick = 188 1t Trib. Exterior Wall Height = 10 it Interior Wall Length = 53011 Trib. Interior Wall Height = 4.5 it Exterior Wall Area = 5300 ftA2 Interior Wall Area= 2385 ftA2 Floor Weight= 273552.4 lb Wall Weight= 142510 lb Total Weight= 416062.4 lb Level 2 Floor Living DL = 23.4 psf Roof DL = 16.9 psf Exterior Wall DL = 10 psf Exterior Brick DL = 40 psf Interior Wall DL= 6 psf Living Area = 1221 ftA2 Low Roof Area = 100 psf Exterior Wall Length = 56 it Wall Length with Brick = 26 it Trib. Exterior Wall Height = 4.5 it Interior Wall Length = 8 it Trib. Interior Wall Height = 4.5 it Exterior Wall Area = 252 ftA2 Interior Wall Area = 36 ItA2 Floor Weight = 29562.8 Ib Roof Weight= 1690 lb Wall Weight= 7416 lb Total Weight = 38668.8 Ib Page 45 of 168 Seismic Distribution (Numeric Gridlines) Gridline A 2253 ttA2 m Total Area 11686 ftA2 Gridline 1 2319 ftA2 < Gridline 2 4575 ftA2 m Gridline 3 2876 ftA2 j_ Gridline 4 1196 ftA2 I= Gridline 5 720 ftA2 Sum: 11686 ftA2 (Alpha Gridlines) Total Area 11686 ftA2 Page 46 of 168 Gridline A 2253 ttA2 m Gridline B 2827 ftA2 Gridline C 792 ttA2 Gridline D 3332 ftA2 a Gridline E 1753 ftA2 j_ Gridline F 465 ftA2 Gridline G 264 ftA2 Sum: 11686 ftA2 Page 46 of 168 Title Block Line 1 You can change this area using the "Settings' menu item and then using the'Prinfing & Title Block' selection. 'rifle Block Line 6 ASCE Seismic Base Shear Project Title: Engineer: Project Descn Project ID: Prialed: I8 GCT 2m6,12:I1PM File= t:'StructuriiRM6 Structural Job001e2e5"A Manscn Apanments12016.2e50.ec6 Mattson Appartments _ Risk Category Calculations per ASCE 7-10 Risk Category of Building aOther Structure: "I" : Buildings and other structures that represent a low hazard to human life in the ASCE 740, Page 2, Table 1.5-1 event of failure. Seismic Importance Factor = 1 ASCE 7-10, Page 5, Table 1.54 USER DEFINED Ground Motion ASCE7-10 11.4.1 Max. Ground Motions, 50% Damping: - - SS = 0.44309.0.2 sec response S1 = 0.1560 g, 1.0 sec response Site Class, Site Coeff. and Design Categoy Site Classification 'D' : Shear Wave Velocity 600 to 1,200 f lsec _ D ASCE 7-f0 TabIa 20.3-1 Site Coefficlents Fa & Fv Fa = 1.45 ASCE 7-10 Table 11.44 & 11.44 (using straight-line interpolation from fable values) Fv = 2.18 Maximum Considered Earthquake Acceleration S MS= Fa' Ss = 0.640 ASCE 7-10 Eq. 11.4.1 S Mi = Fv' S1 = 0.339 ASCE 7-10 Eq. 11.4.2 Design Spectral Acceleration S DS' S M'SPl3 = 0.427 ASCE 7-10 Eq. 11.4-3 S DrS M1213 = 0.226 ASCE 740 Eq. 11.4.4 Seismic Design Category = D ASCE 7-10 Table 11.64&-2 Resisting System ASCE 7-10 Table 1229 Basic Seismic Force Resisting System... Bearing Wall Systems Llght-framed walls sheathed wlwood structural panels rated for shear resistance or steel sheets. Response Modification Coefficient "R" = 6.50 Building height Limits: System Overstrength Factor "Wo' = 2.50 Category"A & B' Limit: No Limit Deflection Amplification Factor 'Cd' = 4.00 Category "C" Limit: No Limit Category'D" Limit: Limit= 65 NOTEI See ASCE 7-10 for all applicable footnotes. Category"E"Limit: Limit= 65 Category'F" Limit: Limit= 65 Lateral Force Procedure ASCE 7.10 Section 12.8.2 Equivalent Lateral Force Procedure The "Equivalent Lateral Force Procedure' is being used according Io the provisions of ASCE 7-10 12.8 Determine -Building Period_ _ _ _ Use ASCE 12.8-7 Structure Type for Building Period Calculation: All Other Structural Systems "Ct'value = 0.020 "hn': Height from base to highest level= 50.011 "x'value = 0.75 'Ta"Approximate fundamental period using Eq. 12.8.7: Ta=Ct'(hn^x) = 0.376 sec 'TL" : Long -period transition period per ASCE 7-10 Maps 22-12 -> 22-16 8,000 sec Building Period"Ta"Calculated from Approximate Method selected = 0.376 we " Cs " Response Coefficient S DS Shod Period Design Spectral Response ' R': Response Modification Factor ' I ": Seismic Importance Factor Seismic Base Shear Cs = 0.0657 from 12.8.1.1 0.427 From Eq. 12.8.2, Preliminary Cs 6.50 From Eq. 12.8-3 & 12.84 , Cs need not exceed 1 From Eq. 12.8-5 & 12.8.6, Cs not be less than Cs: Seismic Response Coefficient = W(see Sum Wibelow) = 1,399.91 k Seismic Base Shear V= Cs 'W = 91.95 k Page 47 of 168 ASCE 7.10 Section 12.8.1.1 0.066 0.093 0.019 0.0657 ASCE 7-10 Section 12.8.1 Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block' selection. Title Block tJns 8 ASCE Seismic Base Shear Project Title: Engineer: Project Descr: File = t:VStwOk?Mn2016 Vertical Distribution of Seismic Forces Fi Sum Fi Sum Wi Fpx : Calcd Fpx: Min 5 248.43 25.18 25.18 248.43 25.18 ' k' : hx exponent based on Ta = 1.00 4 332.69 26.98 52.16 581.11 29.86 28.41 3 364.06 Table of building Weights by Floor Level... - 31.09 2 416.06 16.87 91.16 1,361.24 27.86 35.53 Level R wk Weight HI: Height (Wi' Hi) ^k Cvx Fx=Cvx' V 5 248.43 50.00 12,421.45 0.2738 25.18 4 332.69 40.00 13,307.40 0.2934 26.98 3 364.06 30.00 10,921.86 0.2408 22.14 2 416.06 20.00 8,321.24 0.1835 16.87 1 38.67 ­1,399.91 10.00 386.69 _ 0.0085 0.78 Sum WI = 1,399.91 k Sum WI' Hi = 45,358.64 k -ft Total Base Shear= Diaphragm Forces : Seismic Design Category "B" to "F" Level e Wi Fi Sum Fi Sum Wi Fpx : Calcd Fpx: Min 5 248.43 25.18 25.18 248.43 25.18 21.21 4 332.69 26.98 52.16 581.11 29.86 28.41 3 364.06 22.14 74.30 945.18 28.62 31.09 2 416.06 16.87 91.16 1,361.24 27.86 35.53 1 38.67 0.78 91.95 1,399.91 2.54 3.30 Wpx .......................... Weight at level of diaphragm and other structure elements attached to it. Fi ........................ .... Design Lateral Force applied at the level. Sum F ........................ Sum of'Lat. Force" of current level plus all levels above MIN Reel Force @ Level ......... 020' S os I ' Wpx MAX Req'd Force @ Level , . , ..... 0,40' S Ds l ' Wpx Fpx: Design Force @ Level ....... Wpx' SUM(x->n) Fi / SUM(x->n) wj, x = Current level, n = Top Level Page 48 of 168 Project ID: Piinled: 19 OCT 2016 12.I1PM 2850_11A Mallwn APaftwte12016.2850.ec6 INC. 1983-2016, Build:6.16.7.21, Ver.8.16.7.21 MIR ASCE 7-10 Section 12.8.3 Sum Story Shear - Sum Story Moment 25.18 0.00 52.16 251.80 74.30 773.36 91.16 1,516.33 91.95_ 2,427.98 91.95 k 62.17 Base Moment= 33475k -ft ASCE 7-10 12.10.1.1 Fpx: Max Fpx Dsgn. Force 42.43 25.18 25.18 56.81 29.86 29.86 62.17 31.09 31.09 71.05 35.53 35.53 6.60 3.30 3.30 N YI O 4 O 7 O O N d ^ O II U J r 3 O T > o `� a� w�Ci N II >3 1� IO, y II II II 11 m z r N J q ILn rn U' 1° d b a yE lL C N m e I�fi 7 O O N d Q O C e U J r 3 O T b 3 of 168 J o `� a� w�Ci II >3 1� IO, y II II II 11 m z b 0 N J q ILn rn U' » � r E E E € E id �55 N55 m P Ip p I� Wryry NqqI O 6 r N EW E D � b J 2 gr e E � ub. m 0 # F y ¢ N O L O O O N C N j o U N � r N a J y i m b r 2 01 z i--� O CO, N r N � � b i 0 F= b o � o > n ] II b b C y 3 N G m rn � a y = Npp II II 11 Y Z z 8 ih N b 2 C C.FII O ¢ C tII II II r$a J 2 C E w E m P y 3 � H ° •E ii N O N O p p p p O O O O N N •D y F O$ b a yE lL C N m e I�fi 7 O O N d Q O C e L T b 3 of 168 J o `� C � Z C q 1� Fig m in o `� 1� IO, y II II II 11 m z 3 ILn rn U' z � id �55 N55 m P Ip p I� Wryry NqqI O 6 r N EW E D ((I� b J 2 gr e E O m m L a # F y ¢ N O L O O O N C N j o U N � r N a J y i Page 4 b a yE lL C N m e II L V y O N d Q q O C e L T b 3 of 168 J o `� II E O C o z 3 z � id 'b W b J 2 gr e E O i a O O � 0 C � C O. u z i--� N N � pR C 0 � n n o � o n ] II ^ C O J Z z N b 2 C C.FII O ¢ C tII II II r$a J 2 C ! !E! Page � � k ! | )ƒ{{& \k° ,J°! ! ! !E! Page � � k ! | 8`555§ - k k/ | | ! !E! Page � � k ! | 3 N v J 1 m $ $ 9 g t m N r O O Page° r i N R n h n N r N 8 O m c 5 � N B m c a u 1 o 168 r i N R n h n N r N 8 O I N l0 1 c D m c_ IIy � N y a 3 m �M 'I L 9 > > N l0 1 c D A II I CT��V IIy � � x ym 'I e � o a a p 'EO U y C m p E O > N II a `I� C y d � n O 3 II F 2> n b n H 3 � O E N F o o O d W> D � d 6 t N Y q z D d J pl d m yy5 b ry M m � � a q N d J II � N o d II II E II n L v S > m o E. E E E m d N e d = at o (mO13 ¢ Page 6 o � o ym 'I e � o a u 'EO U ✓= O p E O > N f. C y d � O O 3 II F 2> n b n H 3 N c F o II II II II d 6 t maU i D d J pl � a u v m yy5 b ry M m � � Page 6 g G S 0 � ym a II U ✓= O� OI N O p E O > a C y d � � 3 o d 6 t D d ry M m � � d J II � N o d II II E II n L v S > m o E. E E E m o (mO13 ¢ 3 a m GU)F' iV W> o lh N f m y N F D .p1 Z F E 3 � D a c Ip N bb m yy yd. rn m V f > F• � 0 3 0 A g E .. E N m c41 � rn yyE N 3 N N ? N E y n 45> o N N 8 m O N W N > N 7 O 1 F p m n bR Z II II II L LI J 2 $, EE E E n H � m c � r a° N 0 d e N 9 > ? of 168 g G S 0 n c U II `I ^ �y o = o > N N U W c � u II L 9 L N 7 N z r z 6 II N d J9{ 7 O 2 N0 a j o g U p .S OL 8 3 c m m V! g 0 m c o = o V x N U `a c � u II L 9 L N 7 N z 6 II J9{ 7 O 2 p .S OL 8 3 c m m V! Ip vWi >4 ry n Q F xN C 11 II 11 II � p r o O z p✓% > R � 2 > N a � g 0 m c c V x N U `a c � u j 9 L 9 L N 7 N z g 0 p� N N O S 4 O 6 II p 8 V c m m c Ip vWi >4 ry n Q F 0 � p r o O z p✓% > R > N � N V 4 O C t O •� ry E E E E 8 N II o m a YpV C d r 4 O m V v pl y > N pq a = t O p 5 q N (ryp o 1. pl�j N m � O •{y� R N 9 N N (p II N G� O� N V y II II IEI 11 rn U a =m p} d O E E B r r » d V 45 o yl ? N IZ p a: C tu n n n v n y U 1Y x n 1 E E E m c i n h a° U � t Y L 9 � ` O Page 3 of 168 0 J m z g 0 8 1 O 8 1 c Page n N �y ! o ; L adg I� z C R Q'c O e Q o m m 0 0 ^ � c V N b II m m N y n c m m b � O 8 g y N > ryN b m W {N9 N C � y Z u II r c N y _ O K^^ a r q y m j Y rL do m 2 c a A E x o N N C ~ b by Q C r O 4 c M OS < S 3 n d U n yah a1p r O yyFFF N m o p' N E a U Fi 2a p N F 0 II m N d � O #. > R c F N m In N F > F p O S h 0 0 3 0 m m C sy M � NN L F/ A j C N d y II II It II - `NPP. N E g to m D D O ti `o _N m ^ N O ^ yr m S a F p E E b 8 1 O 8 1 c Page n N �y ! o ; L adg I� m C R 0 O e Q o G 0 0 ^ � c 4• N b II m m N y n r C LI 6 b � O a w y N > L f A 2 m W II C � y Z II II II U O v N y _ O a a �a a r q y m j N `� L upni N N L 2 c N c E x 8 1 O 8 1 c Page n L g u� kN 83 c 11 II jl, p c Ci Jd ni Ci tC �i � S J p O ^ N N g E E E O m C n 'u $ m O U e t E L E i of 168c `" =ox ! o ; 8 adg I� > N OO R 7 OI0 C z O e Q G 'tbm C .. d U c m m N y n O 8 8 C p A w > IN9 N a b Jn II C � y Z II II II U O v y 49y o_ a a �a o > v 3 0 A ^ M 2 c N c E x o N N by D y� (p^p N O 4 c M OS d U 3� a1p r ^ m o p' N N 2a p N F 0 m F #. > R c F N p O S C sy s g IryI � o $ NN L F/ A L g u� kN 83 c 11 II jl, p c Ci Jd ni Ci tC �i � S J p O ^ N N g E E E O m C n 'u $ m O U e t E L E i of 168c `" o ! o ; 8 I� > N OO 7 OI0 C z O G C .. N y n C p A w a v C � y Z II II II U y 49y o_ m a o E A ^ E E � E c a _ N O V by D y� d U 3�aw>oH' o p' N p N F 0 Lr tO M z #. > R c F N p O S yL d N U p j C N d 6M p c II II It II - `NPP. N D D O ti `o _N m a F p E E b k rn E � � E � L g u� kN 83 c 11 II jl, p c Ci Jd ni Ci tC �i � S J p O ^ N N g E E E O m C n 'u $ m O U e t E L E i of 168c `" > n n Irwi ym L� 5� rn U' Jd 2 0 g � � 12 m d E J O g Z N N O O > dR 2 ? g 6 f0 7 N FST EI m J S p1 OO yO� z h � s O Y O w J O $ a - N J E E > 1 f '3 O E E ¢ t o o G 4_ c 3 a n In N H m y� G 8 d N II N `� $ I)pI vii pp�yy S � N V, YPpll N m N CII GGn N FST q.a V O 3 � tpp N F f0 3 pN m4' m tl d d n'tWMr'e � r- 0 O O Z N h55 m Q y a p O p 3 m m Page E n II y n Frn � Irwi ym L� 5� rn U' Jd 2 0 g o 12 � o d E J O g Z N N O O > dR c ? g {ZV C 3 a y II IpI II n U d F 72 Y• FST EI m J S p1 z h � s O Y O II L J N y > O J E E > 1 f '3 O E E ¢ t o o G 4_ c 3 a Page E n II y n Frn � Irwi ym L� 5� rn U' Jd 2 g o 12 � o d E J O g Z N N Page E N 9 .E> � O � o J O g Z N N O O Y N m ? g m m II L 11 II Y p N m O a $ m N 9 .E> � O � o J O g Z Q m m II L 11 II Y p N m O a $ m J E E > n E E ¢ t o o G h a N R y C "3d y� G 8 d N II N 5 d F N a N N N CII GGn N FST q.a V d d n'tWMr'e � r- 0 O O Z N h55 m Q y a E E EES E E Eq N m m g4m m2 "d al°N ¢ ti � A N a n N o s d � FE.. d a C L y 4 d 2 5 of 168 N 9 .E> N N t � o N m m f Z> o o c ¢ t o o h a N N 5 8 n n N N N CII GGn N FST q.a V N W V N�5� N h55 m 'M1 y a E E EES E E Eq m � A N d d a C L y 4 d 2 5 of 168 | § B , sl , ( a ! § \;! a!! `§) �®) >; !( �! ��§ )E§ §§ !)| # }#)2|\ E/»■ )§N ! §! a ! § Anchor DesignerTM Software Version 2.4.5673.270 m 1.Prolect Information Customer company: Customer contact name Customer e-mail: Comment: 2. Input Data & Anchor Parameters General Design method:ACI 318.08 Units: Imperial units Anchor Information: Anchor type: Cast -in-place Material: AB H Diameter (inch): 0.625 Effective Embedment depth, her (inch): 6.000 Anchor category: - Anchor ductility: Yes hmin (inch): 8.13 Cmm (inch): 1.25 Smin (inch): 2.56 Company: Date: 10/17/2016 Engineer: Page: 1/4 Project: Address: Phone: E-mail: Load and Geometry Load factor source: ACI 318 Section 9.2 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: Not applicable Strength reduction factor for brittle failure, ¢a: 1.0 Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No Z <Figure 1> Project description: HDU5 interior Location: Gridline 5 Fastening description: Base Material Concrete: Normal -weight Concrete thickness, h (inch): 10.00 State: Cracked Compressive strength, fe (psi): 2500 IPcv: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Do not evaluate concrete breakout In tension: No Do not evaluate concrete breakout in shear: No Ignore Edo requirement: Yes Build-up grout pad: No 5466 Ib 0 Ib Y Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility, Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925,847.3871 w .strongtie.com Page 57 of 168 „• Anchor Designer TM a t Software Version 2.4.5673.270 <Figure 2> Company: Date: 12'17/2016 Engineer: Page: 2/4 Project: Address: Phone: E-mail: Recommended Anchor Anchor Name: PAB Pre -Assembled Anchor Bolt - PABSH (5/8"0) Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925,560.9000 Fax: 925.847.3871 www.stronglie.com Page 58 of 168 Anchor DesignerTM Software Version 2.4.5673.270 Company:Date: Anchor Forces 10/17/2016 Engineer: Page: 3/4 Project: Address: Phone: E-mail: 3. Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, &I (lb) Va.x (lb) Vuay (lb) q(V...)'+(V... )a (Ib) 1 5466.0 0.0 0.0 0.0 Sum 5466.0 0.0 0.0 0.0 Maximum concrete compression strain Cl..): 0,00 Maximum concrete compression stress (psi): 0 Resultant tension force (Ib): 5466 Resultant compression force (Ib): 0 Eccentricity of resultant tension forces in x-axis, e'N. (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 g Steel Strength of Anchor in Tenslon(Sec D,511 N,. (b) q ^N (lb) 27120 0.75 20340 5 Concrete Breakout Strength of Anchor in Tension (Sec D a 2) Na = ka lJrahm" (Eq. D-7) ka 2 Fa (psi) ho (in) Ne (Ib) 24.0 1.00 2500 6.000 17636 0.750doNre = 0.750do (ANc7ANra) WON'Ixp,N'yop,N& (Sec. 0.3.3.31 D.4.1 & Eq. D-4) Aw(ins) AN.(ins %d,N %,,N 'Yap,N Nb (lb) d 0.750d0% (lb) 340.31 324.00 1.000 1.00 1.000 17636 0.70 9725 8 Pullout Strength of Anchor in Tension (Sec D S 3) 0.75�d¢Nm = 0.750dO'Y,rNp = 0.75OdOWcP8Amoro (Sec. D.3.3.3, D.4.1, Eq. D-14 & D-15) 'N.P Aau (ins) ra (psi) d 0.75OdONp,, (Ib) 1.0 1,94 2500 0.70 20404 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility, Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94586 Phone: 925,560.9000 Fax: 925,847,3871 www,stronglie,com Page 59 of 168 Iti71rl Anchor DesignerTM _ Software Version 2.4.5673.270 Company: Date: 10/17/2016 Engineer: I Page: 4/4 Project: Address: Phone: E-mail: 11. Results Tensile Shear Forces Interaction of and Tension (Sec. D.7) Factored Load, Nu. (Ib) Design Strength, o% (Ib) Ratio Status Steel 5466 20340 0.27 Pass Concrete breakout 5466 9725 0.56 Pass (Governs) Pullout 5466 20404 0.27 Pass PABSH (5/8"0) with hef = 6.000 inch meets the selected design criteria. 12. Warnings - Minimum spacing and edge distance requirement of 6da per ACI 318 Sections D.8.1 and D.8.2 for torqued cast -in-place anchor is waived per designer option. - Per designer input, ductility requirements have been determined to be satisfied — designer to verify. Designer must exercise own judgement to determine if this design is suitable. Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 84588 Phone: 925.560.9000 Fax: 925.847.3871 wwwatrongge.com Page 60 of 168 £ n L U L ry y! W W O J II)) C � > nY xN C C Y II II 11 pE�U pNL d I a o y m E E g 0 3 0 M II a ] E O u b 3 2 OO N m d ro d� r a O N F- ro ¢ y < S n � N m O N r F m M g m I I d ? 9 3 E N Q > ° m Z g E O � nY xN C C Y II II 11 pE�U pNL d I O q F E E g 0 3 0 II a ] E O 114 0 � o a v ] 11 j o y y o � r m n 8 z p o Page E 0 E 0 E II II Il It m O A N 4 6 F v& E C E 8 u O o s n o p > C N p 8 � II a v tfi II II II II � �NmU U c m a P Y G J 2 OI N q � •C O N W P E E E n N N p& 6 j p G q l N j p p p G F O O p 0 2 t r u d 2; A C m IIqq C � II II II 11 a $ 0 m U b _ 0 N - p N f � N Sti N N n n E u [V 6FNI E W `2 N ^ gSI� c J rn N d Page E m O A N F 8 b p > ¢ o 8 a v tfi II II II II � �NmU U c m m rn m m> P Y G J 2 OI N q � •C O N W P E E E n N N p& 6 j p G q l p Page E m O A N �pp N n o r � U c m m rn m m> O N l j p G q l p p p p G F O O p 0 2 bi A C IIqq C � II II II 11 a $ 0 m U 0 J q p [V 6FNI E W `2 N ^ gSI� c J rn N d b N WU � p m o N GC tI Wi'ap i>l C o L II II II n L CFFF M a o n o N j h = O o g g o w o P (p 7 2> O q 3 9 N b Z P CN c � II �I II u NN<MN a $S'.y�U J p m a r rn O N C � d Y u1 2 of 168 8 0 8 O 0 o, j M m o o qma � j C L v E 8 L m m o� W o > II O Q r 8 c Z o o a 3 c F J j R V w 11 L II II �{ 11 J py OO +� C' " V Cc; cTT Z L > � P � y J > qy $ tan $ �6 6n r o' E £ E X 8 8 8 r z O 2 h L IL n O .O Fi ✓' y c m O ¢ O¢V m j A > n ri w O m g C j II y =1 IPPI � 11 P 4 u z c > 0 � N F 10�. GG U O N n w w � N N n x_ mA In fq U y ¢ m 5 3 Z _m U €^'a o m v « 1 o a o m n Nm t a o gB vat 2 C 7 ` 3 6 9 o n o y 7 J /�I O Ss} II F $ C Zry Cy II II II II A � 2 � O LL E p, q� ry y N Q� n G 4 0� n 6�¢ a C r L S y LL W O o o u y z 3 of 168 o m O ro z m r Sr F y P m 4 YI A _ 9 �$ O N Q p y Q r 8 7 N Uyy yy .4 Y' FCA .m .m H N •Y N m m a g v v x E E E vl m m o a o y ry O C O O O 8 W f O 2 S y > N w IR J O m L II II II II �^ m y m to in rn a U J ygry J O C N E E d E � Egg E E OI y L 37 N y n c P C.`u N U' N i Page E j M m o o qma � j C L v E 8 L m m o� W o > N O Q r 8 c Z o o a 3 c F j R w 11 L II II �{ 11 J py OO +� C' " V y }^p cTT Z L > � P � > qy $ tan $ �6 6n r o' E £ E m O 2 h u N IL o m P d O� O .O Fi ✓' y c m O O¢V m j A 'R n W II 6 O m g C j 4 u z � N F 10�. GG w � N N n x_ mA In fq U y n II n n 0 � Z _m U €^'a 3 R m N i 9 ;�_„ 1 m n t a o gB vat ` 3 6 9 o n o y 7 J /�I O J II F C Zry Cy II II II II � 2 O Ih i F w N E mqq vqq> m n mryry LL E p, q� ry y N Q� n G 4 0� n 6�¢ a C r L S y LL W O o o u y z 3 of 168 Id I Page 8 a� � m y o 3 0 y J N m II L t J J U N G+ m II > II •= p j L U 04- c m m m D s o L N > � p > J rn a n g N rbb g. E E E E yy IL o 3 O y c & O � D O r N N c J n j > y_ a o c «I j B _ c a t m N m G Uj O i II II � 11 d N N r > m a m C v S ¢` !2 ga N & V z K S p 3 c o y m p y r y y IL n II �> Nm O. O a O a t0 N N� II 'y 3 m = II II CI II v C N o o: N � 3 \ F >��� n i�C 1� a as o Q � N v L b o ' 0 o x o y N 3 � w> .N II N r o N E L 8 m y > O 7 r z S O o G O r 2 n II II II 11 9 r � J S E E E N rn m ; O o? q N rn c_ 9 � � 3 H no LL p c u 3 L L d L 9 ry Id I Page 8 Q N r N q� m y II VI 11 II � Z c A rn '[per O N m a m-0 I}! aa55 n g vg� n n n n n n y a v g m .' K � c � o LL q 9 > > w L tof 168y J N m t J n YG N G+ m II > II •= p j L U c m m m D s o L N > � p t pp pp pp 0 0 0 17 Q a t IIpp II II � 11 > m a m C v S E E EErn gg IL n II �> Nm O. O a O yN N N L b w> pN r Tj l7 N n 9 r 0, ; O o? q r m Q = R O "R ^ c Fio— E ,Yf R yn N N Oj > £ Q O VN1 «I 7 n OO o d m >1 p = y lV 2= (V N r Z 1 Q G Q N r N q� m y II VI 11 II � Z c A rn '[per O N m a m-0 I}! aa55 n g vg� n n n n n n y a v g m .' K � c � o LL q 9 > > w L tof 168y J 8 OO 0 N N N o c n n U L o L U 7 p F Z 1x M II N L II II 11 11 II¢ y$ o >83 E E m > D O c 0 m ?e E ly N i o o ° E IL $ II O U So y¢] a a o ¢ Ro R o a 3 8 9 c � d N N N j O a O 15 W w 11 a d a m 8 L Oo v a dF d o 3 N o C m c N N m d 6 ? 79 N W V m IIg 'y w 3 V% t II II II 0 IIyy 2 y 41 � N0 $ Y D a N E N V! '�o� 8 ry O - OO > N O. d `ON S 7 r g z>�a a �`D n = r a r a n y cN5 N II II II II 9 51 rn rn U o �y � N m d N to n m m °' y3 m I� te, r m m a c E y E y E E m N m d w d m N z v a 5v � E, w m Q � � o 6 N y a Ny 8 N L `� O� V > S � V 0 " z Page of 168 � z 8 OO 0 1:2016-2850 on: P8 International Building Code(AISC 14th Ed ASD)] x 5 x 5/16 x 9.0 FT /ASTM A500-GR.B-46 n Adequate By: 20.8% ®Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork, Utah sou:t Iuus TIONS i column has been designed as a cantilever. e that the length of the column inputed should include the portion of the column w grade above the point of fixity, See IBC 1805.7 for lateral soil bearing calculations. .ECTIONS ction due to lateral loads only: DO = 0.5 IN = L/217 -oad Deflection Criteria: L/180 -oad: Load: Load: Vert-LL-Rxn = 10576 Ib Vert-DL-Rxn = 4091 Ib Vert-TL-Rxn = 14667 Ib IZONTAL REACTIONS Reaction at Top of Column: TL-Rxn-Top = 0 Ib Reaction at Bottom of Column: TL-Rxn-Bottom = 652 Ib JMN DATA Column Length: 9 ft iced Length (X -Axis) Lx: 9 it iced Length (Y -Axis) Ly: 9 it in End Condtlon-K (e): 2.1 5 x 5 x 5/16 - Square Yield Strength: Fy = 46 ksi lus of Elasticity: E = 29 ksl in Section: dx = 5 in dy = in Wall Thickness: t = 0.291 in 9.16 in3 A= 5.26 in 5 in int of Inertia (deflection): Ix = 19 in4 ly = 19 in4 in Modulus: Sx = 7.62 10 Sy = 7.62 in3 c Section Modulus: ZX = 9.16 in3 Zy = 0 in3 )f Gyration: rx = 1.9 in ry = 1.9 in nn Compression Calculations: 14th Edition Steel Manual: Aing Load Case: Axial Total Load and Lateral Loads (D + 075[L + W]) tatio: KI.Vrx = 119.37 KLy/ry= 119.37 AXIAL LOADING oiling Direction for Compr. Calcs: (Y -Y Axis) Live Load: -al Buckling Stress: For = 17.62 ksi Dead Load: ;ontrolling Equation F7-1 Column Self Weight: ial Compressive Strength: Pc= 55 kip Total Load: an Bending Calculations per AISC 14th Edition Steel Manual: Aing Load Case: Axial Total Load and Lateral Loads (D + 075[L + W]) LATERAL LOADING itricity Moment: Mx -ex = 0 ft -Ib My-ey = 0 ft -Ib Uniform Lateral Load: it Moment + Eccentricity: Mrx = 4401 ft -Ib Mry = 0 ft -Ib Point Load: a Buckling Ratio: FBR = 14,18 Live Load: Flange Buckling Ratio: AFBR = 28.12 Location: FBR for Non -Compact: NC = 35.15 Suckling Ratio: WBRX = 14.18 WBRY = 0 WBR for Eqn. F7-5: AWBR= 60.76 Flex. Str. w/ Sfty Factor: Mcx = 21 ft -kip Mcy = 21 ft -kip ;ontrolling Equation F7-1 F7-1 pined Stress Calculations: Controls : 0.40 Page 66 of 168 i i 9 it A 10/18/2016 12:03:55 PM PL = 10576 Ib PD = 3918 Ib CSW = 173 Ib PT = 14667 Ib (Dy Face) wL-Lat= 0 pit one 652 Ib Frk="� Anchor DesignerTM I" ,::'('r16" I1 ' SO oWa e873.270 At 1.Proiect information Customer company: Customer contact name Customer e-mail: Comment: 2 Input Data & Anchor Parameters General Design method:ACI 318-08 Units: Imperial units Anchor Information: Anchor type: Cast -in-place Material: AB H Diameter (inch): 0,625 Effective Embedment depth, ho (inch): 6.000 Anchor category: - Anchor ductility: Yes hmm (inch): 6.13 Cmm (inch): 1.25 Smm (Inch): 2.50 Company: Date: 10/17/2016 Engineer: Page: 1/5 Project: Address: Phone: E-mail: Project description: Cantilevered Columns Location: Gridline G Fastening description: Base Material Concrete: Normal -weight Concrete thickness, h (inch): 24.00 Slate: Cracked Compressive strength, fo (psi): 2500 Wcv: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No Base Plate Load and Geometry Length x Width x Thickness (inch): 10.00 x 10.00 x 0.75 Load factor source: ACI 318 Section 9.2 Yield stress: 36000 psi Load combination: not set Seismic design: No Profile type/size: HSS5X5X1/4 Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No Z <Figure 1> 7247 Ib ✓,/0 Ib Y 5868 ft -Ib Input data and results must be checked for agreementwith the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94586 Phone: 925.560.9000 Fax: 925.847.3871 w .slrongtle.00m Page 67 of 168 ®' Anchor DesignerM Software Version 2.4.5673.270 <Figure 2> Company: Dale: 10/17/2016 Engineer: Page: 2/5 Project: Address: Phone: E-mail: Recommended Anchor Anchor Name: PAB Pre -Assembled Anchor Bolt - PAB5H (5/8"0) Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94586 Phone: 925.560.9000 Fax: 925.847.3871 www.strong5a.com Page 68 of 168 • Anchor Designer TM Software r Version 2.4.5673.270 Company: Date: 10/17/2016 Engineer: Page: 3/5 Project: Address: Phone: E-mail: 3. Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, Nua (Ib) Vu.. (lb) V..' (Ib) 4(Vaax)'+(Vaey)' (Ib) 1 2847.7 163.0 0.0 163.0 2 2847.7 163.0 0.0 163.0 3 0.0 163.0 0.0 163.0 4 0.0 163.0 0.0 163.0 Sum 5695.4 652.0 0.0 652.0 Maximum concrete compression strain (%a): 0.18 <Figure 3> Maximum concrete compression stress (psi): 785 Resultant tension force (Ib): 5695 Resultant compression force (lb): 12942 Eccentricity of resultant tension forces in x-axis, e'N. (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00 4. Steel Strength of Anchor in Tensipn(Seo. D,5 11 Naa (Ib) d ^. (Ib) 27120 0.75 20340 S. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.21 Nb = ka,Nfaharl s (Eq. D-7) ka 7, ra (psi) her(in) Nb (lb) 24.0 1.00 2500 3.000 6235 01 o2 Y X 04 03 ^ba =4 (ANa/ANao) YeyN P6.NY n F,,NNb (Sec. D.4.1 & Eq. D-5) Am. (In') AN. (m2) YKN Y'agN 'Y,N Y`1N Nb (Ib) 4 ONabs (lb) 158.50 81.00 1.000 1.000 1.00 1.000 6235 0.70 8541 6. Pullout Strength of Anchor in Tension (Sec. D.5.31 ONp = OY'gPNP = OY',PSAb,¢ra (Sec. D.4.1, Eq. 0-14 & D-15) Yc,P Am (in') ru (psi) q ONm (lb) 1.0 1.94 2500 0.70 27205 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925,847.3871 www.strongtie.com Page 69 of 168 girl Anchor Designer""^ Software Version 2.4.5673.270 Company: Date: 10/17/2016 Engineer: I Page: 4/5 Project: Address: Phone: E-mail: S. Steel Strength of Anchor In Shear (Sec. D.6,11 Vs, (lb) 09-.1 d 0q001/'. (Ib) Interaction of Tensile and 16270 1.0 0.65 10576 Tension Factored Load, Nua (Ib) 9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6,22) Status Steel 2848 20340 Shear perpendicular to edge in x -direction: Pass Concrete breakout 5695 8541 0.67 Vb. = 7(1,/d.)02gd..igfbc,r'4 (Eq. D-24) Pullout 2848 27205 0.10 Pass le (in) da (in) ,i r, (psi) c.r (in) Vo. (Ib) Ratio Status Steel 5.00 0,63 1.00 2500 11.50 16356 Pass T Concrete breakout x+ 652 ¢V,bu. = 0 (AV,/A -)'V ,vV�d,vyc.vn vVb.. (Sec. D.4.1 & Eq. D-22) 0.16 Pass (Governs) II Concrete breakout y- 326 Av, (in') Av„ (in2) Ye, v KdV Kv Ph,v Vb. (lb) 0 Oi/a, (Ib) 276.00 595.13 1.000 0,778 1.000 1.000 16356 0.70 4132 Shear parallel to edge In x -direction: 0.00 66.7% 1.0 Pass Ver = 7(/,/Q0 24d.Av`fci' 5 (Eq. D-24) 1. (in) da (in) ,t r, (psi) co (in) Vbx (Ib) 5.00 0.63 1.00 2500 4.50 4004 AVwe. = 0(2)(Av /Av )ye,,vyl.dv PcvyhvVby(Sec. D.4.1, D.6.2.1(c) & Eq. 0-22) Aw (in') Avm (inr) V'..v W.d,V K'v ''Ph.v Vbr (lb) 6 01/aq. (lb) 108.00 91.13 1.000 1.000 1.000 1.000 4004 0.70 6643 10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.31 QV,m = ¢k, N,eb = ¢kT(AN./Arxv)Y' xyed,N'V,,N'Ycp.NNs (Eq. D-31) kcp Aw (Inr) An. (Inr) yeFN W.qN yc,N yvp,N Nb (Ib) d WVw (lb) 2,0 256.00 81.00 1.000 1.000 1.000 1.000 6235 0.70 27590 11. Results Interaction of Tensile and Shear Forces (Sec. DM Tension Factored Load, Nua (Ib) Design Strength, oN„ (Ib) Ratio Status Steel 2848 20340 0.14 Pass Concrete breakout 5695 8541 0.67 Pass (Governs) Pullout 2848 27205 0.10 Pass Shear Factored Load, Vua (Ib) Design Strength, oW (Ib) Ratio Status Steel 163 10576 0.02 Pass T Concrete breakout x+ 652 4132 0.16 Pass (Governs) II Concrete breakout y- 326 6643 0.05 Pass (Governs) Pryout 652 27590 0.02 Pass Interaction check Nii l^ Vv./OVh Combined Ratio Permissible Status Sec. -D.7.10.67 0.00 66.7% 1.0 Pass PAB5H (5/8"0) with hef = 6.000 inch meets the selected design criteria. Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility, Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.slronglle.com Page 70 of 168 Anchor DesignerTM Software Version 2.4.5673.270 F. Company:Date: 10/17/2016 Engineer: Page: S15 Project: Address: Phone: E-mail: 12. Warninas - Minimum spacing and edge distance requirement of 6da per ACI 318 Sections D.8.1 and D.8.2 for torqued cast -in-place anchor is waived per designer option. • Designer must exercise own judgement to determine if this design is suitable. Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility, Simpson Strong -Tie Company Inc 5956 W. Las Posites Boulevard Pleasanton, CA 94508 Phone: 925.560.9000 Fax: 925.847.3871 v .strong9e.com Page 71 of 168 F. Fi. Page 72 of \ )\ ) } Page 72 of ! 4 §J j) ;f{} ! \� Page 73me - .\!£!§■!!!§i!!!;!! & ;! | | / ,r!!!!!!!!!!!§§!§ «!! :5) §) § >| §! !ƒ`§ {! K( ) >■J§!§$/§\ :r_::__------=4 i | )\k\\\\\kk\\k\�\\ ! 4 §J j) ;f{} ! \� Page 73me - & ;! | | ! 4 §J j) ;f{} ! \� Page 73me \\ ! ! /\H �`!!r§!;§°§§;!!§■ §�. „ ... „ ........ ! w§§!!§§§§r!!§!rr§ § - /§ !� ! f!§!!!!!§!§!§f§!@ »!§§§§§jN(j §§§0N ) | k\\\\\\k\\\\kkkk\ \\ ! ! /\H § !|§§!!!§§|!!||§§! a!!§!!!!!r!!§!!!§! �|) ) ) e;)§ E . f\ § >!J§2§$|§! k Page 75ee § § ! ) ) ! Page 75ee § § ! 5 N L II II It II m P m �ti N�� rn fJ N m P N 1° A OI I� d f' C E 5u5 E E g q N m m c L N 3 � A c � U QI y d y 5 N Page 7 III S m o m C � m a° N N � O C N m m � � N s o a o J II ^ > = O s m z w � o o II « J C Q q� y II II II IIy N > N O 0 J f 888 i> a n N C c to T'� V J OO p O i d > N O J P > a~ h$ ° E E E ryN C � U � � u 00 n 4 °; F mm a$ P O« Z a r= ¢ O N II 'y 3 r ` N N N C II II II F o N$¢ n �a 3 g' yy yyyy �'g' N tR m N N N E U a.41 I- >- pp 8 d N o ° h n ] •�' .� LLl n m g o o E N E 8 OO OO 7 5 N L II II It II m P m �ti N�� rn fJ N m P N 1° A OI I� d f' C E 5u5 E E g q N m m c L N 3 � A c � U QI y d y 5 N Page 7 III t y m c C � m a° N N � O C N m m � � N s o a o J II ^ > = O of 168 m z t y n II E n C � m m m � � N s o a o J II ^ > = O :.I J w � o J > f Z C Q q� y II II II IIy d J 2 L as W�a 0 u • II r m n� L m LI II II a P E U s Z'i U J U� Y J Q t m m m m m y � 0 V F E rn oRRRRR � Na N [O u • om m n� a a s Z'i y m N Q N m y J U� Y J Q t m m m m m 0 V oRRRRR - J 11 r d > m f Q m u ¢ F 99 N y 0 u � N H m N P T {p f z y Z F >i h NZ r F T m IF y ^ N g II y N N 46 N m P a E E E E E N N N NI& o1 3'a • n � c m^ a c Z'i y m N Q N m y J U� Y J Q t m m m m m 0 V oRRRRR - J 11 r d > � E m u ¢ 99 N 0 u � N H a d F F � ^ N g II y N N 46 N O 0 n y 88888 8 ; bN' r a m wry m F aR d d d o d N Lq n N R tR Nn tn9 N S y ^5 N5 m5 a5 in a n55 m m m G d y y a 9 > Page of 168 Y O a J y zN NI& o1 3'a n II n a c Z'i J U� •- N 8 d 0 ["S (ma p II ^ 3&0Y J U G W m O) m m 10; 0 3 O N N � II G F ¢ L m N II 0 � II zzII 11 11 J O W y > � J g W >`W i �m A ,I a E r 0 o v p g O rn N y (moi) y > OO F N p > ¢ L ~ a yy yi N O Q> d x a 11 � p � II II II 11 JZ7 pJ m i 6 F - o r " N � N � J o d N_ $> 0¢ Y F ¢ OO OO OO OO OO a - � N N y II II 11 NlV� 10N1 N (O d h W n W m 0 'L d H E OE OE N E 2. oa�aa m p N $ p 3 � a N e L C N C W rj A N 7 J n Page 7 8 d K y m b. m (Q p n n ^ U L � U G m m m m m m m m m N .1 O N W N- W W- N- m ¢ 0 t U II 1- w LI II II 11 mw(S > g y o 6 6~E p N E b [ p V m i 'n N ? 1% N C rym v _ N = 6 G N N pl r IW v � pp d N e y n Z l o a 3 jxWJ; d > ¢ L N a 2n Fn f° b y tri a � pp m 8o N N N N s N s N N O n O N 3 J 3 E J E 8 W &'m 8m S °A 8888 W ppE n .= d d d m m a m o m m v m Z o ? IQ e'i c 2 OO N m A G �p n N � II LI G II C � p s �N N W e N f0 n W m '.� y F 6 EEE E E E m B n N n a u2 O 3 of 168 U h z 8 d K 4 0 ! a /// —T--. \� § (f!!!§!§!!§#§ ) ; ; „...._„.. �.. a§§§§§!!§§§!§ «■; e5) !k § ') E ; | §!§!!!§|§!!§§ 2 | 4 0 ! a /// —T--. \� § ) ; ; 4 0 ! a /// —T--. \� § !§§§§r§!§§§§§!t !§§[§!!!![§|§■§ H§§!§§!!§§!§!§§§§ >§Jfmilil- e§| � ; ; `®)00 160 / Page 80mm ! k ; ; Page 80mm ! | ! () q Page 81 of -VA px E... §;| a§§§§!!§!§!§§§! yB§ !ƒ § ] ! 49 _ } ) ; ! �lGrr4§§r§r§B§rm ! §§§!§B!§!f§!!![ |!§§§\§§§§§§§§§§ ! k\k\\\\\\k\\\\\ | ! () q Page 81 of ^age �N �W ti n a Y J 7 p L II m > " g U 0 L m m U yy > 088 Ipp = q yi N N V N y G Jn n O > 3 N o F i 7 Z 1•C E N N a N Fi N n 8 II n n n a N — F o > A V J 2 c > � a ~ ° S 3 a P P � r�O S m ' ffi m P b m Y 4 i o o 0 f V V N N o u n 8o o •$ c 0 e; y m N H OO j ' aaI 7 ~ m¢ ° N � V I3I y V � G II II Ly 4 f 6 L yy p fr OF U Z> o V V G S t O � a N 0 3 q a 1, eq r Q F N M E E m N N N c ffi o � o S 3 � N_T b W V L Z rV J m J g 8 w �o N qffiq N N > I f L t? O Z O¢ Ip c ry O q ON p y II PII II p GN a (J Sr DI N N $ J N m K I L c G cm N R y m 3 N 8 a A Co ^age ti n a Y L m m uy� �L " g U 0 L m m d 088 Ipp = q yi N V � � y G Jn n O > N _ 3 7 Z 1•C E N N a N N O s N a q N a J L q — F o c o S 3 a n r�O S m ' ffi m P r Y ^age > m R m " Ipp = q yi N V � � y G II II II 1 7 Z 1•C V a J L q o i o S n r�O S E E E u 8o Sg 8 w jo; 8 e; y m N OO j ' aaI 7 ~ m¢ ° f 6 L OO OO 5 Z> G S O � a m N N N c y II VI II II uyrf Lg U J N_T b W V L Z rV J m c G N B 0 82 of 1A J t° z L m m m ] o L U L m m m 0 L m m m vv 3 o E � L y> 6 D Oq a Q O N N tOV z p p 2 ; O" ¢ ¢ F r JG II L 0 II II I,I Oi 11 V JO II a ¢ a II II 11 O 11 00't .. $E 9�m�V 9 NNR Z > J m m j J p1 E E > E E om N N N E 4 aV 3$ 8 o a oyE Y li o v m 6 o a o N [ N N d N J N a f G J O N G d YI II • N O^ E L v mF n 6 m E F 10 U m 8 3 M N `o o� o 8 m 3' `� m o E 8 o a N> d d 8 N t Ood Z _ m 8 d o a V z a ➢ E 3 S 0 S N m d > 6 f N m O N > O Q Y H F o F g( 0 y�n� N Fq r N t0 Ej E v p s 8 8 i•- ¢ N y pyo p C N N (� dyy N 0 byy m m 1 IN E 6 �1 N d m C 6 N l0 d m N fp F55 liu a F ''Ndd �Wo5 x �g E E E E c m 0 U) a S `" 0 Page 83 of A� $ o o $ o ^ ^ ^ ytyy II 6 II 3 o y $ N O c m m m m m m m 0 c rn m m m m m m O F o E $ W> N O Q p O p p N N N N N N VOI Z? �$$ O$$$$ 2; O^ L Y) O q >!. p _M q r V Cq o D' v V 11 it 11 o m : > ^ > >1 r > EE q n u o w y5 O uZ 9 .qffi _ s ¢ d 8 q N r6 a 0 O N r f.' y v� G O O z a$ F V i B oa 3 o c h Fn Nrn N > ¢ t r f2�- r m m r m >" ilg > w 9 Ed >C 8 n .� F y ¢ w :i 'c 10! > c r o z `� Fn 6 q E E n 3 a a n 3 M.�A8A8 pf38 ;�� m.� ;88688e'I $o 89dm8�88 m o o; 8 r G 3^ E W888688 oio` 8E OO y> Oo J r > r Oo .= OO J > N d ci N N ¢ 1R ^ G m L II II IZI 11 a N a 0 O II II E �hpp s? � a a g a a� YI V m W m p a N m a Yf G i N M a m s N dq a N� C .sm N M a N ^ N m d N55 10 I� m m IA! d r E Nq E 0 N p m y 0 0 N N E y% W 0 2 6 0 6 6 2 N N N x 2 yqj y y m m c s r >N i N a A O N a m O y > Z J rn 0 m z Page 84 of 168c2 M � ) ) Page 85 m\{ o § J|| §!§ | \ J!|=\§§ i k ! EEr $ § #!!!! Date: 10/18/2016 12:05 PM rstern: English is: TAStructural\2016 Structural Jobs12016-2850_HA Mattson Apartments\Gridlie 5.etz\ --w mzsa w 1Ox54 -- -- w mxs w 10n4 m� it Page 86 of 168 i Current Date: 10/18/201612:05 PM Units system: English File name: TAStructurah2016 Structural Jobs\2016-2850_HA Mattson Apartments\Gridlie 5.etz\ GLOSSARY Cb22, Cb33 Cm22, Cm33 d0 DJX DJY DJZ DKX DKY DKZ di- Ig LIg factor K22 K33 L22 L33 LB pos LB neg RX RY RZ TO TX TY TZ Nodes Geometry data Moment gradient coefficients Coefficients applied to bending term In Interaction formula Tapered member section depth at J end of member Rigid end offset distance measured from J node in axis X Rigid end offset distance measured from J node in axis Y Rigid end offset distance measured from J node In axis Z Rigid end offset distance measured from K node in axis X Rigid end offset distance measured from K node in axis Y Rigid end offset distance measured from K node in axis Z Tapered member section depth at K end of member Inertia reduction factor (Effective Inema/Gross Inertia) for reinforced concrete members Effective length factor about axis 2 Effective length factor about axis 3 Member length for calculation of axial capacity Member length for calculation of axial capacity Lateral unbraced length of the compression flange in the positive side of local axis 2 Lateral unbraced length of the compression flange in the negative side of local axis 2 Rotation about X Rotation about Y Rotation about Z 1 = Tension only member 0 = Normal member Translation In X Translation in Y Translation In Z Node X Y Z Rigid Floor (ft] [it] ------------ [it) _ .. _._...-._._...-__. ........................._._.... 1 0.00 9.00 0.00 0 2 6.00 0.00 0.00 0 3 6.00 9.00 0.00 0 4 24.00 0.00 0.00 0 5 24.00 9.00 0.00 0 6 42.00 0.00 0.00 0 7 42.00 9.00 0.00 0 6 48.00 9.00 0.00 0 Restraints Node TX TY TZ RX RY RZ ....-._.-.--_"--"'----...»_......-..._ 2 1 1 ............... 1 .._...................... 0 0 0 4 1 1 1 0 0 0 6 1 1 1 0 0 0 Page 87 ofe188 Members Member NJ NK Description Section Material d0 dL Ig factor ........................... -.._-..._._....._......._._.._ ..... _...... ___................... .__ [in] ........................ [in] ...----••- 1 1 3 Beam W 10X54 ........ ._._._.-._._....._._..-._.......... A992 Gr50 0.00 0.00 0.00 2 3 5 Beam W 10X54 A992 Gr50 0.00 0.00 0.00 3 5 7 Beam W 10X54 A992 Gr50 0.00 0.00 0.00 4 7 8 Beam W 10X54 A992 Gr50 0.00 0.00 0.00 5 2 3 Column TUBE 10x6x5_8 A500 GrC rectangular 0.00 0.00 0.00 6 4 5 Column TUBE 10x6x5_8 A500 GrC rectangular 0.00 0.00 0.00 7 6 7 Column TUBE 10x6x5_8 A500 GrC rectangular 0.00 0.00 0.00 Orientation of local axes Member Rotation Axes23 NX NY NZ [Deg] __-•------------- 5 -------. 90.00 .................... _....._...................--_.._.r. 0 0.00 0.00 _._..-..-._._.. 0.00 6 90.00 0 0.00 0.00 0.00 7 90.00 0 0.00 0.00 0.00 Current Date: 10/18/2016 12:05 PM Units system: English File name: T:\Structural\2016 Structural Jobs\2016-2850_HA Mattson Apartments\Gridlie 5.etz\ Load data GLOSSARY Comb : Indicates if load condition is a load combination Load conditions Condition Description Comb. Category ... ....................... DL ...--...----.......--_'----......_..._._._._..........--........._._................................_.._._.... Dead Load No DL LL Live Load No LL SL Snow Load No SNOW Wx Wind in No WIND EOx Seismic in X No EQ D7 1.4DL Yes D2 1.2DL+1.6LL Yes D3 1.2DL+0.5SL Yes D4 1.2DL+1.6LL+0.5SL Yes D5 1.2DL+1.6SL Yes D6 1.2DL+0.5Wx Yes D7 1.2DL+1.6SL+LL Yes D8 1.2DL+1.6SL+O.SWx Yes D9 1.2DL+Wx Yes 010 1.2DL+Wx+0.5SL Yes D11 1.2DL+Wx+LL Yes D12 1.2DL+Wx+LL+0.58L Yes D13 1.2DL+0.2SL Yes D14 1.2DL+EQx Yes D15 1.2DL+LL+0.2SL Yes D16 1.2DL+EQx+0.2SL Yes D17 1.2DL+EQx+LL Yes 018 1.2DL+EQx+LL+0.2SL Yes D19 0.9DL+Wx Yes D20 0.9DL+EQx Yes S1 DL Yes S2 DL+LL Yes S3 DL+SL Yes S4 DL+0.75LL Yes S5 DL+0.75SL Yes S6 DL+0.75LL+0.75SL Yes S7 DL+0.6Wx Yes S8 DL+0.7EQx Yes S9 DL+0.75LL+0.45Wx+0.75SL Yes S10 DL+0.525EQx Yes $11 DL+0.75SL Yes S12 DL+0.525EQx+0.75SL Yes S13 0.6DL+0.6Wx Yes S14 0.6DL+0.7EQx Yes Page PdIV 68 Distributed force on members Vt V2 d1 d2 Condition Member Dirt Vail Va12 Mall % Dist2 % ......._.........» ................._.......__......._...................................-----.........._._........_._............_ ............... .. [Kip/ft] [Kip/ft] [ft] [ft] -0.856 DL 1 Y -0.748 -0.748 0.00 Yes 5.00 No -6.458 6.00 Y -0.059 -0.059 0.00 Yes 100.00 Yes Y 2 Y -0.748 -0.748 2.00 No 6.00 No Y -0.059 -0.059 0.00 Yes 100.00 Yes Y -0.023 -0.023 6.00 No 100.00 Yes 3 Y -0.748 -0.748 12.50 No 16.50 No Y -0.059 -0.059 0.00 Yes 100.00 Yes Y -0.023 -0.023 0.00 No 12.50 No 4 Y -0.748 -0.748 1.00 No 100.00 Yes Y -0.059 -0.059 0.00 Yes 100.00 Yes LL 1 Y -0.525 -0.525 0.00 Yes 5.00 No Y -0.088 -0.088 0.00 Yes 100.00 Yes 2 Y -0.525 -0.525 2.00 No 6.00 No Y -0.088 -0.088 0.00 Yes 100.00 Yes Y -0.04 -0.04 6.00 No 100.00 Yes 3 Y -0.525 -0.525 12.50 No 16.50 No Y -0.088 -0.088 0.00 Yes 100.00 Yes Y -0.04 -0.04 0.00 No 12.50 No 4 Y -0.525 -0.525 1.00 No 100.00 Yes Y -0.088 -0.088 0.00 Yes 100.00 Yes SL 1 Y -0.26 -0.26 0.00 Yes 5.00 No 2 Y -0.26 -0.26 2.00 No 6.00 No 3 Y -0.26 -0.26 12.50 No 16.50 No 4 Y -0.26 -0.26 1.00 No 100.00 Yes Wx 1 X -0.0462 -0.0462 0.00 Yes 100.00 Yes 2 X -0.0462 -0.0462 0.00 Yes 100.00 Yes 3 X -0.0462 -0.0462 0.00 Yes 100.00 Yes 4 X -0.0462 -0.0462 0.00 Yes 100.00 Yes EQx i X -0.0462 -0.0462 0.00 Yes 100.00 Yes 2 X -0.0462 -0.0462 0.00 Yes 100.00 Yes 3 X -0.0462 -0.0462 0.00 Yes 100.00 Yes 4 X -0.0462 -0.0462 0.00 Yes 100.00 Yes Concentrated forces on members yp p, j P2 d� d2 Condition Member Dirt Valuel Distt % ...._._- ...._._._._Y [Kip] [ft] DL DL � ............... .. _._..........._5.00 ._.........No Y -0.856 0.00 Yes 2 Y -0.678 2.00 No Y -6.458 6.00 No Y -14.229 14.00 No 3 Y -0.678 16.50 NoJ Page 9%91368 Self weight multipliers for load conditions Self weiaht multlolier Condition Description Comb. MuItX MultY MultZ DL Y -8.458 12.50 No 0.00 Y -14.229 4.00 No 4 Y -0.678 1.00 No 0.00 Y -0.656 100.00 Yes LL 1 Y -0.903 5.00 No Seismic in X Y -0.275 0.00 Yes 2 Y -0.903 2.00 No 0.00 Y -6.248 6.00 No 0.00 Y -9.036 14.00 No 3 Y -0.903 16.50 No Yes Y -6.248 12.50 No 1.2DL+1.6SL Y -9.036 4.00 No 4 Y -0.903 1.00 No 0.00 Y -0.275 100.00 Yes SL 1 Y -0.393 5.00 No 0.00 Y -0.161 0.00 Yes 2 Y -0.393 2.00 No 1.20L+Wx+0.5SL Y -2.733 6.00 No D11 Y -2.636 14.00 No 3 Y -0.393 16.50 No 0.00 Y -2.733 12.50 No 0.00 Y -2.636 4.00 No 4 Y -0.393 1.00 No 1.2DL+LL+0.2SL Y 4161 100.00 Yes Self weight multipliers for load conditions Self weiaht multlolier Condition Description Comb. MuItX MultY MultZ DL Dead Load No 0.00 0.00 0.00 LL Live Load No 0.00 0.00 0.00 SL Snow Load No 0.00 0.00 0.00 Wx Wind in X No 0.00 0.00 0.00 EQx Seismic in X No 0.00 0.00 0.00 D1 1.4DL Yes 0.00 0.00 0.00 D2 1.2DL+1.6LL Yes 0.00 0.00 0.00 D3 1.2DL+0.5SL Yes 0.00 0.00 0.00 D4 1.2DL+1.6LL+0.5SL Yes 0.00 0.00 0.00 D5 1.2DL+1.6SL Yes 0.00 0.00 0.00 D6 1,2DL+0.5Wx Yes 0.00 0.00 0.00 D7 1.2DL+1.6SL+LL Yes 0.00 0.00 0.00 D8 1.2DL+1.6SL+0.5Wx Yes 0.00 0.00 0.00 D9 1.2DL+Wx Yes 0.00 0.00 0.00 D10 1.20L+Wx+0.5SL Yes 0.00 0.00 0.00 D11 1.2DL+Wx+LL Yes 0.00 0.00 0.00 D12 1.2DL+Wx+LL+0.5SL Yes 0.00 0.00 0.00 D13 1.2DL+0.28L Yes 0.00 0.00 0.00 D14 1.2DL+EQx Yes 0.00 0.00 0.00 D15 1.2DL+LL+0.2SL Yes 0.00 0.00 0.00 D16 1.2DL+EQx+0.2SL Yes 0.00 0.00 0.00 D17 1.2DL+EQx+LL Yes 0.00 0.00 0.00 D18 1.2DL+EQx+LL+0.2SL Yes 0.00 0.00 0.00 D79 0.9DL+Wx Yes 0.00 0.00 0.00 D20 0.9DL+EQx Yes 0.00 0.00 0.00 S1 DL Yes 0.00 0.00 0.00 Page 97'013168 S2 DL+LL Yes 0.00 0.00 0.00 S3 DL+SL Yes 0.00 0.00 0.00 S4 DL+0.75LL Yes 0.00 0.00 0.00 S5 DL+0.75SL Yes 0.00 0.00 0.00 S6 DL+0.75LL+0.75SL Yes 0.00 0.00 0.00 S7 DL+0.6Wx Yes 0.00 0.00 0.00 S8 DL+0.7EQx Yes 0.00 0.00 0.00 S9 DL+0.75LL+0.45Wx+0.75SL Yes 0.00 0.00 0.00 S10 DL+0.525EQx Yes 0.00 0.00 0.00 S11 DL+0.75SL Yes 0.00 0.00 0.00 S12 DL+0.525EQx+0.75SL Yes 0.00 0.00 0.00 S13 0.6DL+0.6Wx Yes 0.00 0.00 0.00 S14 0.6DL+0.7EQx Yes 0.00 0.00 0.00 Earthquake (Dynamic analysis only) Condition a/g Ang. Damp. [Deg] N ._...---------"-------.-..___._.__-._._-._...---._ DL 0.00 0.00 0.00 LL 0.00 0.00 0.00 SL 0.00 0.00 0.00 Wx 0.00 0.00 0.00 EQx 0.00 0.00 0.00 D1 0.00 0.00 0.00 D2 0.00 0.00 0.00 D3 0.00 0.00 0.00 D4 0.00 0.00 0.00 D5 0.00 0.00 0.00 D6 0.00 0.00 0.00 D7 0.00 0.00 0.00 D8 0.00 0.00 0.00 D9 0.00 0.00 0.00 D10 0.00 0.00 0.00 D11 0.00 0.00 0.00 D12 0.00 0.00 0.00 D13 0.00 0.00 0.00 D14 0.00 0.00 0.00 D15 0.00 0.00 0.00 D16 0.00 0.00 0.00 D17 0.00 0.00 0.00 D18 0.00 0.00 0.00 D19 0.00 0.00 0.00 D20 0.00 0.D0 0.00 Si 0.00 0.00 0.00 S2 0.00 0.00 0.00 83 0.00 0.00 0.00 S4 0.00 0.00 0.00 S5 0.00 0.00 0.00 S6 0.00 0.00 0.00 S7 0.00 0.00 0.00 S8 0.00 0.00 0.00 S9 0.00 0.00 0.00 S10 0.00 0.00 0.00 Sit 0.00 0.00 0.00 S12 0.00 0.00 0.00 Page R?168 S13 0.00 0.00 0.00 S14 0.00 0.00 0.00 PaOe5 Page 93 f 168 n ' . Current Date: 10/18/2016 12:06 PM Units system: English File name: TAStructural\2016 Structural Jobs\2016-2850_HA Mattson Apartments\Gridlle 5.etz\ Analysis result Translations Condition SL=Snow Load 1 0.00048 0.01063 Translations lint 0.00000 0.00000 Rotations [Radl 2 0.00000 Node TX TY TZ RX RY RZ ............ _._....._........... Condition ......................... DL -Dead Load _._.........................................._. -0.00034 4 0.00000 0.00000 0.00000 1 0.00109 0.03973 0.00000 0.00000 0.00000 -0.00048 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00058 3 0.00109 -0.00349 0.00000 0.00000 0.00000 -0.00121 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00005 5 0.00070 -0.00715 0.00000 0.00000 0.00000 0.00007 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00056 7 0.00034 -0.00356 0.00000 0.00000 0.00000 0.00112 8 0.00034 0.03297 0.00000 0.00000 0.00000 0.00038 _._...._ ............. Condition ................ LL=Live Load _..... ....._.._._.... _.._ ........... _....... .......-....._........................ 0.00000 ............._._._. .........._ 1 0.00102 0.04270 0.00000 0.00000 0.00000 -0.00056 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00049 3 0.00102 -0.00271 0.00000 0.00000 0.00000 -0.00101 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00004 5 0.00069 -0.00504 0.00000 0.00000 0.00000 0.00006 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00047 7 0.00039 -0.00277 0.00000 0.00000 0.00000 0.00094 8 0.00039 0.03729 0.00000 0.00000 0.00000 0.00049 Condition SL=Snow Load 1 0.00048 0.01063 0.00000 0.00000 0.00000 -0.00013 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00016 3 0.00048 -0.00110 0.00000 0.00000 0.00000 -0.00034 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00002 5 0.00037 -0.00146 0.00000 0.00000 0.00000 0.00003 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00015 7 0.00027 -0.00112 0.00000 0.00000 0.00000 0.00030 8 0.00027 0.00802 0.00000 0.00000 0.00000 0.00010 ... _.... _............................. ..........._........_......e.._ Condition Wx=Wlnd in X 0.02973 ........................ .... ........... ........................................ ........................ ... 1 -0.14861 -0.02972 0.00000 0.00000 0.00000 0.00041 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00185 3 -0.14859 -0.00012 0.00000 0.00000 0.00000 0.00041 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00200 5 -0.14857 0.00000 0.00000 0.00000 0.00000 0.00011 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00185 7 -0.14858 0.00012 0.00000 0.00000 0.00000 0.00041 8 -0.14861 0.02973 0.00000 0.00000 0.00000 0.00041 Condition EDx=Selsmic in X 1 -0.14861 -0.02972 0.00000 0.00000 0.00000 0.00041 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00185 3 -0.14859 -0.00012 0.00000 0.00000 0.00000 0.00041 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00200 5 -0.14657 0.00000 0.00000 0.00000 0.00000 0.00011 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00185 7 -0.14858 0.00012 0.00000 0.00000 0.00000 0.00041 8 -0.14661 _....._...._.._...._.._.._ ..................... 0.02973 ........................ 0.00000 ... .»............ 0.00000 _......_._........... 0.00000 ..... ............................ 0.00041 ._.. Page Mcntii Condition D1.1.41DL 0.06492 0.00000 0.00000 0.00000 -0.00079 i 1 0.00000 0.00156 0.05571 0.00000 0.00000 0.00000 -0.00067 �tt 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00082 p 3 -0.00009 0.00156 -0.00488 0.00000 0.00000 0.00000 -0.00169 0.00013 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00007 0.00094 5 0.00000 0.00102 -0.01001 0.00000 0.00000 0.00000 0.00010 0.00000 6 0.00000 ... .................. 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00078 7 1 0.00051 -0.00499 0.00000 0.00000 0.00000 0.00156 2 8 0.00000 0.00051 0.04623 0.00000 0.00000 0.00000 0.00054 -0.00425 .. ..... ...... Condition ..... ... D2=1.2DL+1.6LL ..... .......................... ..._............................. 4 ._.._._.._._........... V... W.___._..._..._.__......___. 0.00000 p 1 0.00101 0.00318 0.11662 0.00000 0.00000 0.00000 -0.00148 0.00014 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00149 -0.07831 3 0.00000 0.00318 -0.00852 0.00000 0.00000 0.00000 -0.00308 0.00000 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00012 5 0.00220 -0.01665 0.00000 0.00000 0.00000 0.00018 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00144 7 0.00127 -0.00870 0.00000 0.00000 0.00000 0.00285 8 0.00127 0.09969 0.00000 0.00000 0.00000 0.00125 --...................... Condition D3=1.2DL+0.5SL ..... _._....... ....... _._._...__._._ .................... ......._..._._._._.._ .____._..____..........»........._._.._ 1 0.00159 0.05308 0.00000 0.00000 0.00000 -0.00064 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00078 3 0.00159 -0.00474 0.00000 0.00000 0.00000 -0.00162 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00007 - 5 0.00107 -0.00931 0.00000 0.00000 0.00000 0.00010 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00075 7 0.00058 -0.00484 0.00000 0.00000 0.00000 0.00149 8- 0.00058- 0.04364 0.00000 0.00000 - 0.00000 - y 0.00051 - - ................ Condition D4=1.2DL+1.6LL+0.5SL ...._...__ ---------- _...._........................................... 1 0.00347 0.12205 0.00000 0.00000 0.00000 -0.00155 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00157 3 0.00347 -0.00907 0.00000 0.00000 0.00000 -0.00325 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00013 5 0.00243 -0.01739 0.00000 0.00000 0.00000 0.00019 j 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00151 I 7 0.00146 -0.00926 0.00000 0.00000 0.00000 0.00300 8 0.00146 0.10378 0.00000 0.00000 0.00000 0.00130 3 Condition D5=1.2DL+1.6SL 1 0.00217 0.06492 0.00000 0.00000 0.00000 -0.00079 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00096 3 0.00217 -0.00594 0.00000 0.00000 0.00000 -0.00199 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00009 5 0.00153 -0.01092 0.00000 0.00000 0.00000 0.00013 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00092 7 0.00094 -0.00607 0.00000 0.00000 0.00000 0.00182 8 0.00094 0.05256 0.00000 0.00000 »..... _._.......... ........ 0.00000 ... .................. 0.00062 ............. .., .................................... Condition D6=1.2DL+0.5Wx -....... .._........................................ 1 -0.07742 0.03200 0.00000 0.00000 0.00000 -0.00035 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00168 3 -0.07741 -0.00425 0.00000 0.00000 0.00000 -0.00123 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00101 5 -0.07787 -0.00858 0.00000 0.00000 0.00000 0.00014 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00031 7 -0.07831 -0.00421 0.00000 0.00000 0.00000 0.00156 8 -0.07832 0.05531 0.00000 0.00000 0.00000 0.00068 Page 999F;8 Condition D7.1.2DL+1.6SL+LL 1 0.00336 0.10805 0.00000 0.00000 0.00000 -0.00136 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00145 3 0.00336 -0.00865 0.00000 0.00000 0.00000 -0.00301 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00013 5 0.00240 -0.01597 0.00000 0.00000 0.00000 0.00019 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00140 7 0.00150 -0.00884 0.00000 0.00000 0.00000 0.00276 8 0.00150 0.09016 0.00000 0.00000 0.00000 0.00111 Condition D8=1.2DL+1.6SL+0.5Wx 1 -0.07823 0.04890 0.00000 0.00000 0.00000 -0.00056 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00196 3 -0.07822 -0.00601 0.00000 0.00000 0.00000 -0.00177 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00100 5 -0.07885 -0.01092 0.00000 0.00000 0.00000 0.00019 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00009 7 -0.07945 -0.00601 0.00000 0.00000 0.00000 0.00204 8 407946 0.06858 0.00000 0.00000 0.00000 0.00084 Condition D9=1.2DL+Wx 1 -0.15616 0.01629 0.00000 0.00000 0.00000 -0.00014 0.00000 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00267 0.00000 3 -0.15614 -0.00431 0.00000 0.00000 0.00000 -0.00102 0.00000 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00207 0.00000 5 -0.15660 -0.00858 0.00000 0.00000 0.00000 0.00020 -0.15741 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00130 6 7 -0.15704 -0.00415 0.00000 0.00000 0.00000 0.00177 0.00123 8 -0.15707 0.07103 0.00000 0.00000 0.00000 0.00090 0.00000 Condition D10=1.2DL+Wx+0.5SL 1 -0.15692 0.02147 0.00000 0.00000 0.00000 -0.00020 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00276 3 -0.15690 -0.00486 0.00000 0.00000 0.00000 •0.00118 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00208 5 -0.15741 -0.00931 0.00000 0.00000 0.00000 0.00021 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00123 7 -0.15790 -0.00471 0.00000 0.00000 0.00000 0.00193 8 -0.15793 0.07526 0.00000 0.00000 0.00000 0.00095 -_. . ................................. Condition ....... D11=1.2DL+Wx+LL ........ _........... ._-...-...._......_...._...._.._._._. 1 -0.16106 0.05815 0.00000 0.00000 0.00000 -0.00069 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00324 3 -0.16103 -0.00702 0.00000 0.00000 0.00000 -0.00202 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00212 5 -0.16182 -0.01363 0.00000 0.00000 0.00000 0.00026 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00090 7 -0.16257 -0.00691 0.00000 0.00000 0.00000 0.00273 8 -0.16259 0.10969 0.00000 0.00000 0.00000 0.00140 Condition D12=1.2DL+W x+LL+0.5SL 1 -0.16188 0.06335 0.00000 0.00000 0.00000 -0.00075 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00333 3 -0.16186 -0.00757 0.00000 0.00000 0.00000 -0.00218 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00212 5 -0.16270 -0.01436 0.00000 0.00000 0.00000 0.00027 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00083 7 -0.16349 -0.00747 0.00000 0.00000 0.00000 0.00289 8 -0.16351 0.11397 0.00000 0.00000 0.00000 0.00146 Page a%068 Condition D13=1.2DL+0.2SL 1 0.00143 0.04986 0.00000 0.00000 0.00000 -0.00060 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00073 3 0.00143 -0.00441 0.00000 0.00000 0.00000 -0.00152 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00006 5 0.00094 -0.00888 0.00000 0.00000 0.00000 0.00009 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00070 7 0.00049 -0.00450 0.00000 0.00000 0.00000 0.00140 8 0.00049 0.04121 0.00000 0.00000 0.00000 0.00048 Condition D14.1.2DL+EQx 1 -0.15616 0.01629 0.00000 0.00000 0.00000 -0.00014 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00267 3 -0.15614 -0.00431 0.00000 0.00000 0.00000 -0.00102 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00207 5 -0.15660 -0.00858 0.00000 0.00000 0.00000 0.00020 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00130 7 -0.15704 -0.00415 0.00000 0.00000 0.00000 0.00177 8 -0.15707 0.07103 0.00000 0.00000 0.00000 0.00090 Condition D15=1.2DL+LL+0.25L 1 0.00257 0.09288 0.00000 0.00000 0.00000 -0.00117 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00123 3 0.00257 -0.00711 0.00000 0.00000 0.00000 -0.00254 4 0.00000 0.000DO 0.00000 0.00000 0.00000 -0.00010 5 0.00176 -0.01392 0.00000 0.00000 0.00000 0.00015 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00118 7 0.00100 -0.00727 0.00000 0.00000 0.00000 0.00234 8 0.00100 0.07874 0.00000 0.00000 0.00000 0.00097 Condition D16=1.2DL+EQx+0.2SL 1 -0.15646 0.01836 0.00000 0.00000 0.00000 -0.00016 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00270 3 -0.15644 -0.00453 0.00000 0.00000 0.00000 -0.00108 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00207 5 -0.15692 -0.00888 0.00000 0.00000 0.00000 0.00021 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00127 7 -0.15739 -0.00437 0.00000 0.00000 0.00000 0.00183 8 -0.15741 0.07272 0.00000 0.00000 0.00000 0.00092 ._ Condition ......................................_....-___--..___.._.-...--.....--..-_____.._...._.._..__..........._.._.......___.........._.._. D17=1.2DL+EQx+LL ~ 1 -0.16106 0.05815 0.00000 0.00000 0.00000 -0.00069 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00324 3 -0.16103 -0.00702 0.00000 0.00000 0.00000 -0.00202 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00212 5 -0.16182 -0.01363 0.00000 0.00000 0.00000 0.00026 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00090 7 -0.16257 -0.00691 0.00000 0.00000 0.00000 0.00273 8 -0.16259 0.10969 0.00000 0.00000 0.00000 0.00140 Condition D18=1.2DL+EQx+LL+0.2SL 1 -0.16138 0.06023 0.00000 0.00000 0.00000 -0.00072 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00327 3 -0.16136 -0.00724 0.00000 0.00000 0.00000 -0.00208 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00212 5 -0.16217 -0.01392 0.00000 0.00000 0.00000 0.00026 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00087 7 -0.16294 -0.00714 0.00000 0.00000 0.00000 0.00279 8 -0.16296 0.11140 0.00000 0.00000 0.00000 0.00143 Page"9 /-oi 168 Condition D19m0.9DL+Wx 0.05045 0.00000 0.00000 0.00000 -0.00061 2 1 -0.15419 0.00477 0.00000 0.00000 0.00000 0.00000 0.00161 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00246 0.00000 3 -0.15417 -0.00326 0.00000 0.00000 0.00000 -0.00066 i 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00205 0.00000 5 -0.15451 -0.00644 0.00000 0.00000 0.00000 0.00018 0.00000 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00143 EII 7 -0.15485 -0.00308 0.00000 0.00000 0.00000 0.00143 i 8 -0.15487 0.06065 0.00000 0.00000 0.00000 0.00077 0.00000 ........ _................................ Condition D20=0.9DL+EOx ._.......».»..».... •0.00000 y . _ ^ _ 0.00192 -0.00552 1 -0.15419 0.00477 0.00000 0.00000 0.00000 0.00000 0.00000 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00246 0.00000 3 -0.15417 -0.00326 0.00000 0.00000 0.00000 -0.00086 0.00000 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00205 0.00182 5 -0.15451 -0.00644 0.00000 0.00000 0.00000 0.00018 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00143 7 -0.15485 -0.00308 0.00000 0.00000 0.00000 0.00143 8 -0.15487 0.06065 0.00000 0.00000 0.00000 0.00077 ... ...................................... Condition S7=DL . ... _. .._......... .»...».._....._._ .... _..... __..... _._�..__._._� 1 0.00109 0.03973 0.00000 0.00000 0.00000 -0.00048 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00058 3 0.00109 -0.00349 0.00000 0.00000 0.00000 -0.00121 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00005 5 0.00070 -0.00715 0.00000 0.00000 0.00000 0.00007 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00056 7 0.00034 -0.00356 0.00000 0.00000 0.00000 0.00112 8 0.00034 0.03297 0.00000 0.00000 0.00000 0.00038 _ ...... .._.................... Condition ........................................................_....._._........._.»._. S2=DL+LL 1 0.00221 0.08268 0.00000 0.00000 0.00000 -0.00104 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00107 3 0.00221 -0.00620 0100000 0.00000 0.00000 -0.00223 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00009 5 0.00149 -0.01220 0.00000 0.00000 0.00000 0.00013 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00103 7 0.00082 -0.00633 0.00000 0.00000 0.00000 0.00206 8 0.00082 0.07045 0.00000 0.00000 0.00000 0.00088 Condition S3=DL+SL 1 0.00161 0.05045 0.00000 0.00000 0.00000 -0.00061 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00074 3 0.00161 -0.00459 0.00000 0.00000 0.00000 -0.00154 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00007 5 0.00111 -0.00862 0.00000 0.00000 0.00000 0.00010 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00071 7 0.00065 -0.00469 0.00000 0.00000 0.00000 0.00142 8 0.00065 0.04106 0.00000 0.00000 0.00000 0.00048 Condition ........ S4=DL+0.75LL ................................................... .-................................................. ... 1 0.00192 0.07193 0.00000 0.00000 0.00000 -0.00090 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00095 3 0.00192 -0.00552 0.00000 0.00000 0.00000 -0.00197 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00008 5 0.00129 -0.01093 0.00000 0.00000 0.00000 0.00012 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00091 7 0.00069 -0.00564 0.00000 0.00000 0.00000 0.00182 8 0.00069 0.06107 0.00000 0.00000 0.00000 0.00075 Page 699068 Condition S5.DL+0.75SL 0.06549 0.00000 0.00000 0.00000 -0.00080 1 0.00148 0.04777 0.00000 0.00000 0.00000 -0.00058 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00070 3 0.00148 -0.00431 0.00000 0.00000 0.00000 -0.00146 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00006 5 0.00101 -0.00825 0.00000 0.00000 0.00000 0.00009 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00067 7 0.00057 -0.00440 0.00000 0.00000 0.00000 0.00134 8 0.00057 0.03903 0.00000 0.00000 0.00000 0.00046 ....................... Condition _..............._.__.._....................._._._.._._..........__.___..........._._...._.._._........... S6=DL+0.75LL+0.75SL 0.02339 . 0.00000 0.00000 _.». ............... 1 0.00233 0.08001 0.00000 0.00000 0.00000 -0.00100 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00107 3 0.00233 -0.00634 0.00000 0.00000 0.00000 -0.00222 4 0.00000 0.00000 • 0.00000 0.00000 0.00000 -0.00009 5 0.00161 -0.01203 0.00000 0.00000 0.00000 0.00014 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00103 7 0.00095 -0.00648 0.00000 0.00000 0.00000 0.00205 8 0.00095 0.06716 0.00000 0.00000 0.00000 0.00083 Condition 87=DL+0.6Wx 1 -0.09247 0.02105 0.00000 0.00000 0.00000 -0.00022 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00175 3 -0.09245 -0.00356 0.00000 0.00000 0.00000 -0.00095 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00122 5 -0.09284 -0.00715 0.00000 0.00000 0.00000 0.00014 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00061 7 -0.09321 -0.00349 0.00000 0.00000 0.00000 0.00137 8 -0.09322 0.05165 0.00000 0.00000 0.00000 0.00064 ............ Condition -"__-..... _................. .... S8=DL+0.7EOx _.... ._. ............ ____..._.._------- --_._._._ ..... ...._-..-............................. 1 -0.10806 0.01794 0.00000 0.00000 0.00000 -0.00017 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00195 3 -0.10804 -0.00357 0.00000 0.00000 0.00000 -0.00091 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00143 5 -0.10843 -0.00715 0.00000 0.00000 0.00000 0.00015 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00080 7 -0.10880 -0.00347 0.00000 0.00000 0.00000 0.00142 8 -0.10881 0.05477 0.00000 0.00000 0.00000 0.00066 Condition S9=DL+0.75LL+0.45Wx+0.75SL 1 -0.07054 0.06549 0.00000 0.00000 0.00000 -0.00080 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00198 3 -0.07053 -0.00640 0.00000 0.00000 0.00000 -0.00202 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00090 5 -0.07124 -0.01203 0.00000 0.00000 0.00000 0.00019 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00012 7 -0.07191 -0.00642 0.00000 0.00000 0.00000 0.00225 8 -0.07192 0.08168 0.00000 0.00000 0.00000 0.00103 _....... _...... Condition ............. ... ........... S70=DL+0.525EDx ._._.._....._...._................. W.__ ................. _... _...._.».»........_....._..__._........_... 1 -0.08077 0.02339 0.00000 0.00000 0.00000 -0.00025 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00160 3 -0.08076 -0.00355 0.00000 0.00000 0.00000 -0.00098 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00106 5 -0.08115 -0.00715 0.00000 0.00000 0.00000 0.00013 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00046 7 -0.08151 -0.00350 0.00000 0.00000 0.00000 0.00134 8 -0.08153 0.04932 0.00000 0.00000 0.00000 0.00061 Page DS068 Condition S71.DL+0.75SL 1 0.00148 0.04777 0.00000 0.00000 0.00000 -0.00058 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00070 3 0.00148 -0.00431 0.00000 0.00000 0.00000 -0.00146 4 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00006 5 0.00101 -0.00825 0.00000 0.00000 0.00000 0.00009 6 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00067 7 0.00057 -0.00440 0.00000 0.00000 0.00000 0.00134 8 0.00057 0.03903 0.00000 0.00000 0.00000 0.00046 Condition S12=DL+0.525EQx+0.75SL 1 -0.08118 0.03128 0.00000 0.00000 0.00000 -0.00035 I 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00174 -0.00217 3 -0.08116 -0.00438 0.00000 0.00000 0.00000 -0.00123 u 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00106 0.00000 5 -0.08163 -0.00825 0.00000 0.00000 0.00000 0.00015 0.00000 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00036 ' 0.00092 7 -0.08207 -0.00434 0.00000 0.00000 0.00000 0.00157 8 -0.08208 0.05552 0.00000 0.00000 0.00000 0.00068 Condition S13=0.6DL+0.6Wx 1 -0.09111 0.00547 0.00000 0.00000 0.00000 -0.00003 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00149 3 -0.09109 -0.00217 0.00000 0.00000 0.00000 -0.00047 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00121 5 -0.09132 -0.00429 0.00000 0.00000 0.00000 0.00011 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00081 7 -0.09155 -0.00206 0.00000 0.00000 0.00000 0.00092 8 -0.09156 0.03809 0.00000 0.00000 0.00000 0.00048 Condition S14=0.6DL+0.7EQz 1 -0.10640 0.00242 0.00000 0.00000 0.00000 0.00001 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00168 3 -0.10638 -0.00218 0.00000 0.00000 0.00000 -0.00043 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00142 5 -0.10661 -0.00429 0.00000 0.00000 0.00000 0.00012 6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00100 7 -0.10684 -0.00205 0.00000 0.00000 0.00000 0.00096 8 -0.10685 0.04114 0.00000 0.00000 0.00000 0.00053 Reactions MY Y C_s, t FY Mx z Fx Fz Adz Direction of positive forces and moments Page i 1017, 68 sl1M 0.00000 88.64500 0.00000 0.00000 0.00000 0.00000 Page PQYPM Ali Forces IKiol Moments IKiD*M Node FX FY FZ MX MY MZ .............................. Condition _.............. DL=Dead Load ......... ..._....._._._ ..___....._..._.._.._.......»........_._.__._. 2 0.82722 16.37105 0.00000 0.00000 0.00000 0.00000 4 -0.05520 33.57046 0.00000 0.00000 0.00000 0.00000 6 -0.77202 16.71599 0.00000 0.00000 0.00000 0.00000 SUM _ » 0.00000 _.._._.__._._... 66.65750 _ ._._._....._._........».. 0.00000 0.00000 ------------------ 0.00000 - - -- i 0.00000 Condition LL=Live Load I 2 0.69398 12.72273 0.00000 0.00000 0.00000 0.00000 4 -0.04262 23.66781 0.00000 0.00000 0.00000 0.00000 6 -0.65135 12.99347 0.00000 0.00000 0.00000 0.00000 _. .................. sl1M ................._._....._.....,...---.......-----_._..»......._.__.....__.._..__............._..__..._._.»..».».»--._._....__.. 0.00000 49.38400 0.00000 0.00000 0.00000 0.00000 Condition SL=Snow Load 2 0.22902 5.16423 0.00000 0.00000 0.00000 0.00000 4 -0.02015 6.86779 0.00000 0.00000 0.00000 0.00000 6 -0.20887 5.27998 0.00000 0.00000 0.00000 0.00000 ..»»..»........_.._ SUM ......... ............. 0.00000 __-_..... ......................... 17.31200 .._.........._...... 0.00000 _...................................... 0.00000 ..... 0.00000 _._..... .,.._.. 0.00000 Condition Wx=Wind in X 2 0.66811 0.55433 0.00000 0.00000 0.00000 0.00000 4 0.87973 0.00014 0.00000 0.00000 0.00000 0.00000 6 0.66975 -0.55447 0.00000 0.00000 0.00000 0.00000 ................ sl1M .............. __.______._._....._.....__.._._ 2.21760 0.00000 .............._._._........_........____.....___.._._..._.._...._.:_._.._.._...:. 0.00000 0.00000 0.00000 0.00000 Condition EOx=Seismic In X 2 0.66811 0.55433 0.00000 0.00000 0.00000 0.00000 1 4 0.87973 0.00014 0.00000 0.00000 0.00000 0.00000 6- 0.66975 -0.55447 0.00000 0»00000 0.00000 0.00000 SUM ..... _ - ^ 2.21760 - 0.00000 - - ' 0.00000 ' W 0.00000 _ _ ^ - -- 0.00000 ' 0.00000 Condition D1=1.4DL 2 1.15665 22.91831 0.00000 0.00000 0.00000 P 0.00000 4 -0.07711 47.00083 0.00000 0.00000 0.00000 0.00000 6 -1.07954 23.40136 0.00000 0.00000 0.00000 0.00000 --_-.-- .... sl1M ._............................................ 0.00000 ..__.__......----_-.........._....._.-_....._....-------------..._..._._.............». 93.32050 0.00000 0.00000 0.00000 0.00000 Condition D2=1.20L+1.6LL 2 2.09276 39.99330 0.00000 0.00000 0.00000 0.00000 4 -0.13334 78.16858 0.00000 0.00000 0.00000 0.00000 6 -1.95942 40.84152 0.00000 0.00000 0.00000 _.__._..____......_........_....__.._._.._._.___._._......._..._._.......... SUM 0.00000 159.00340 0.00000 _ ^ M0.00000 ._._.._ 0.00000 ........... 0.00000 0.00000 Condition D3=1.2DL+O.SSL 2 1.10569 22.22618 0.00000 0.00000 0.00000 0.00000 4 -0.07614 43.72067 0.00000 0.00000 0.00000 0.00000 6 -1.02954 22.69814 0.00000 0.00000 0.00000 0.00000 sl1M 0.00000 88.64500 0.00000 0.00000 0.00000 0.00000 Page PQYPM Ali Condition D4-1.2DL+1.6LL+0.5SL 2 2.20542 42.57389 0.00000 0.00000 0.00000 0.00000 4 -0.14321 81.60526 0.00000 0.00000 0.00000 0.00000 6 -2.06220 43.48025 0.00000 0.00000 0.00000 0.00000 SUM 0.00000 167.65940 0.00000 0.00000 0.00000 0.00000 Condition D5=1.2DL+1.6SL 2 1.35533 27.90498 0.00000 0.00000 0.00000 0.00000 j 4 -0.09806 51.27866 0.00000 0.00000 O.00D00 0.00000 6 -1.25727 _._._._.._.... 28.50456 0.00000 0.00000 0.00000 0.00000 I SUM 0.00000 ........... ..... 107.68820 ................................................................................. 0.00000 0.00000 0.00000 -„... 0.00000 Condition D6=1.2DL+0.5Wx 2 1.33023 19.93655 0.00000 0.00000 0.00000 0.00000 f 4 0.36614 40.28551 0.00000 0.00000 0.00000 0.00000 6 -0.58757 19.76694 0.00000 0.00000 0.00000 0.00000 SUM 1.10860 79.98900 0.00000 0.00000 0.00000 0.00000 Condition D7.1.2DL+1.6SL+LL 2 2.04231 40.62200 0.00000 0.00000 0.00000 0.00000 4 -0.13994 74.95705 0.00000 0.00000 0.00000 0.00000 6 -1.90237 41.49315 0.00000 0.00000 0.00000 0.00000 _.--_-______.______-_____._-__-_..__._.._...._._.__--_-_-__._.-_-__._ SUM 0.00000 157.07220 ................................... 0,00000 0.00000 0.00000 0.00000 Condition D8=1.2DL+1,6SL+0.5Wx 2 1.69379 28.20223 0.00000 0.00000 0.00000 0.00000 4 0.33385 51.27867 0.00000 0.00000 0.00000 0.00000 6 -0.91884 28.20730 0.00000 0.00000 0.00000 0.00000 SUM 1.10880 107.68820 0.00000 0.00000 0.00000 0.00000 Condition D9.1.2DL+Wx 2 1.66799 20.22830 0.00000 0.00000 0.00000 0.00000 4 0.79845 40.28560 0.00000 0.00000 0.00000 0.00000 I 6 --_»__--_ -0.24884 19.47510 0.00000 0.00000» 0.00000 0.00000 ---- SUM _---- ----..__._..-...-_..._,....._ 2.21760 ...--_..... 79.98900 ---'- . -....... 000000 .._.. 0.00000 0.00000 _ 0.00000 ` Condition D10=1.2DL+Wx+O,5SL II 2 1.78180 22.81308 0.00000 0.00000 0.00000 0.00000 4 0.78823 43.72078 0.00000 0.00000 0.00000 0.00000 6 -0.35243 22.11114 0.00000 0.00000 0.00000 0.00000 SUM -__...................... 2.21760 ........_....._..__..._....._....___•-_._._....._._._-.._....._.._._.........._......._..-__. 88.64500 0.00000 0.00000 0.00000 0.00000 4 Condition 011=12DL+Wx+LL 2 2.36129 32.96681 0.00000 0.00000 0.00000 0.00000 4 0.74810 63.96097 0.00000 0.00000 0.00000 0.00000 6 -0.89179 32.44522 0.00000 0.00000 0.00000 0.00000 .. SUM 2.21760 129.37300 0.00000 0.00000 0.00000 0.00000 Page POz'of168 Condition D12=1.2DL+Wx+LL+0.5SL 2 2.47452 35.55135 0.00000 0.00000 0.00000 0.00000 - 4 0.73787 67.39708 0.00000 0.00000 0.00000 0.00000 6 -0.99480 35.08057 0.00000 0.00000 0.00000 0.00000 i SUM 2.21760 138.02900 0.00000 0.00000 0.00000 0.00000 Condition D13=1.2DL+0.2SL 2 1.03751 20.67734 0.00000 0.00000 0.00000 0.00000 4 -0.07016 41.65954 0.00000 0.00000 0.00000 0.00000 6 -0.96735 21.11461 0.00000 0.00000 0.00000 0.00000 SUM 0.00000 83.45140 0.00000 0.00000 0.00000 0.00000 Condition 014=1.2DL+EOx 2 1.66799 20.22830 0.00000 0.00000 0.00000 0.00000 4 0.79845 40.26560 0.00000 0.00000 0.00000 0.00000 6 -0.24884 . ..... ......... 19.47510 _........ _._...... 0.00000 0.00000 0.00000 0.00000 St1M 2.21760 79.98900 ........... ..._........... 0.00000 .................................. 0.00000 ..... -_........................ 0.00000 .--... 0.00000 Condition D15=1.2DL+LL+0.2SL 2 1.72623 33.39581 0.00000 0.00000 0.00000 0.00000 4 -0.11222 65.33531 0.00000 0.00000 0.00000 0.00000 6 -1.61401 34.10429 0.00000 0.00000 0.00000 0.00000 _.__...._....----------- SUM 0.00000 132.83540 0.00000 ...... 0.00000 0.00000 0.00000 Condition D16=1.20L+EQx+0.2SL 2 1.71353 21.26222 0.00000 0.00000 0.00000 0.00000 4 0.79436 41.65965 0.00000 0.00000 0.00000 0.00000 6 -0.29029 20.52953 0.00000 0.00000 0.00000 0.00000 ............................. SUM _............... 2.21760 .__._....................................... 83.45140 0.00000 ......... ._._......._....._.._._. 0.00000 .................. 0.00000 _.r. 0.00000 Condition D17=1.2DL+EL1x+LL 2 2.36129 32.96681 0.00000 0.00000 0.00000 0.00000 4 0.74810 63.96097 0.00000 0.00000 0.00000 0.00000 6 -0.89179 __..... 32.44522 0.00000 0.00000 0.00000 0.00000 ------------------ SUM __------ _............................................ 2.21760 129.37300 .---------- 0.00000 ------ _.._.._._,_,.,_._.__..-_.,__._.__,_.___..,,__.__....... 0.00000 0.00000 0.00000 Condition 078=1.20E+EOx+LL+0.2SL I 2 2.40660 34.00063 0.00000 0.00000 0.00000 0.00000 4 0.74401 65.33539 0.00000 0.00000 0.00000 0.00000 6 -0.93300 33.49938 0.00000 0.00000 0.00000 0.00000 ... .................................... SUM ........ 2.21760 .-..---....... -.................... 132.83540 .... 0.00000 ...... ........ ................... 0.00000 ._.___._._._...._....._.»..... 0.00000 0.00000 Condition D19=0.9DL+Wx 2 1.41863 15.31004 0.00000 0.00000 0.00000 0.00000 4 0.81886 30.21318 0.00000 0.00000 0.00000 0.00000 6 -0.01989 14.46853 0.00000 0.00000 0.00000 0.00000 ........................ SUM ................................................... 2.21760 59.99175 _.................................. 0.00000 0.00000 .»................._........_._._.»..... 0.00000 0.00000 PagealNW168 Condition D20=0.9DL+EOx I 2 1.41863 15.31004 0.00000 0.00000 0.00000 0.00000 4 0.81886 30.21318 0.00000 0.00000 0.00000 0.00000 6 -0.01989 14.46853 0.00000 0.00000 0.00000 0.00000 ............... SUM .................................. 2.21760 .... .._._.____W_».._....._._.._._..____...._._.__........................... 59.99175 0.00000 0.00000 ------------------ 0.00000 - 0.00000 Condition Sl -DL 2 0.62722 16.37105 0.00000 0.00000 0.00000 0.00000 4 -0.05520 33.57046 0.00000 0.00000 0.00000 0.00000 6 -0.77202 16.71599 0.00000 0.00000 0.00000 0.00000 .__ ............ SUM .................... .._--__._...... 0.00000 .... ............................ 66.65750 ._....»....»...»........»_._.._.._.�_...__....___M.__...___» 0,00000 0.00000 0.00000 0.00000 Condition S2=DL+LL 2 1.51702 29.09040 0.00000 0.00000 0.00000 0.00000 4 -0.09736 57.24458 0.00000 0.00000 0.00000 0.00000 6 -1.41965 29.70651 0.00000 0.00000 0.00000 0,00000 ....................................... SUM ........._....._.»..._'"_._.__.__._._.____..___.___._...____.__-_ 0.00000 116.04150 0.00000 ........ 0.00000 .-_........... ..................... 0.00000 ... 0.00000 Condition S3=DL+SL 2 1.05471 21.53405 0.00000 0.00000 0.00000 0.00000 4 -0.07518 40.44054 0.00000 0.00000 0.00000 0.00000 6 -0.97954 21.99492 0.00000 0,00000 0.00000 0.00000 __.._................._..__._..._....__..._-_....._.._.__.___......_.._........._........................_._.....__....__...-___._..........__..»....._._ SUM 0.00000 83.96950 0.00000 0.00000 0.00000 0.00000 Condition S4-DL+0.75LL 2 1.34489 25.91082 0.00000 0.00000 0.00000 0.00000 4 -0.08686 51.32557 0.00000 0.00000 0.00000 0.00000 6 -1.25802 26.45910 0.00000 0.00000 0.00000 0.00000 __.....__.__._......___._..__.__._.._.__...... SUM 0.00000 __...... ._ 103.69550 ...... ... ....................................._...__ 0.00000 0.00000 ............................... 0.00000 0.00000 Condition S5=DL+0.75SL 2 0.99788 20.24333 0.00000 0.00000 0.00000 0.00000 4 -0.07019 38.72295 0.00000 0.00000 0.00000 0.00000 6 -0.92769 20.67521 0.00000 0.00000 0.00000 0.00000 ....... ....................... SUM ...____....__._._..._.._.-_._ 0.00000 79.64150 ....... ____-_._._... _ 0.00000 ................. .------------------- 0.00000 ...... ......... _._ 0.00000 ............ ... 0.00000 Condition S6=DL+0.75LL+0.75SL 2 1.51485 29.78253 0.00000 0.00000 0.00000 0.00000 4 -0.10178 66.47911 0,00000 0.00000 0.00000 0.00000 6 -1.41307 30.41785 0.00000 0.00000 0.00000 0.00000 ..... ..... .. SUM ................................... 0.00000 _.... ....... 116.67950 0.00000 .-.___._.._._-------- ------- 0.00000 _-_._._...__._-............. 0.00000 ...... ._.»-.- 0.00000 Condition S7-DL+0.6Wx 2 1.23217 16.71612 0.00000 0.00000 0.00000 0.00000 4 0.46516 33.57050 0.00000 0.00000 0.00000 0.00000 6 -0.36677 16.36888 0.00000 0.00000 0.00000 0.00000 ... _•-...................... SUM .--•_.-__........-.._._..._......_._......_..........._....._____..._._......_._...._......_....._._._............_.........___.__.. 1.33056 66.65750 0.00000 0.00000 0.00000 0.00000 Page PoaV & Condition SS-DL+0.7EQx 2 1.29960 16.77596 0.00000 0.00000 0.00000 0.00000 4 0.55188 33.57051 0.00000 0.00000 0.00000 0.00000 - 6 •0.29917 16.31102 0.00000 0.00000 0.00000 0.00000 SUM ... _........... 1.55232 ...... _........................ 66.65750 ___... 0.00000 ............... ...._._._._._._......... 0.00000 ....................... 0.00000 0.00000 Condition S9=DL+0.75LL+0.45Wx+0.75SL 2 1.82017 30.05171 0.00000 0.00000 0.00000 0.00000 i 4 0.28560 56.47911 0.00000 0.00000 0.00000 0.00000 i 6 -1.10786 30.14868 0.00000 0.00000 0.00000 0.00000 SUM .__.____._ . ....... 0.99792 ......... _............................... 116.67950 ....._.._._....�........_..._.._..._'__-._.___._..............__. 0.00000 0.00000 0.00000 0.00000 ! Condition S10=DL+0.525EQx 2 1.18158 16.67474 0.00000 0.00000 0.00000 0.00000 4 0.40011 33.57049 0.00000 0.00000 0.00000 0.00000 6 -0.41746 16.41227 0.00000 0.00000 0.00000 0.00000 f ...._._...................................................... SUM 1.16424 66.65750 ._.__.'._____._.__.....»...-........_..__.._._.__._.___.--......_........._._... 0.00000 0.00000 0.00000 0.00000 Condition S71.DL+0.75SL 2 0.99788 20.24333 0.00000 0.00000 0.00000 0.00000 4 -0.07019 38.72295 0.00000 0.00000 0.00000 0.00000 6 -0.92769 20.67521 0.00000 0.00000 0.00000 0.00000 SUM ...............»..._._...___..... 0.00000 _............................ 79.64150 _.._............ 0.00000 ............ ....... 0.00000 ........ .... ................. 0.00000 ............. 0.00000 Condition S12.DL+0.525EQx+0.75SL _ 2 1.35237 20.54963 0.00000 0.00000 0.00000 0.00000 4 0.38495 36.72297 0.00000 0.00000 0.00000 0.00000 6 -0.57308 20.36889 0.00000 0.00000 0.00000 0.00000 P ...... ......... SUM ........ ...... ....._..___.._.__._____._. 1.16424 79.64150 ............... ........................ 0.00000 -._-.............................................. 0.00000 0.00000 0.00000 Condition S13=0.6DL+0.6Wx i 2 0.90030 10.16425 0.00000 0.00000 0.00000 0.00000 4 0.49025 20.14138 0.00000 0.00000 0.00000 0.00000 6 -0.05999 9.68887 0.00000 0.00000 0.00000 0.00000 ! I __..............................._.______._._..___.__....__......_..„........_......._......_._____.._._._._...........____.....__._._.___._._.-_ SUM 1.33056 39.99450 0.00000 0.00000 0.00000 0.00000 Condition S14=0.6DL+0.7EQx ff f 2 0.96747 10.22110 0.00000 0.00000 0.00000 0.00000 4 0.57749 20.14140 0.00000 0.00000 0.00000 0.00000 6 0.00736 9.63200 0.00000 0.00000 0.00000 0.00000 .................. SUM _.......... ............................................ 1.55232 39.99450 0.00000 0.00000 -- W..._.........__.-... 0.00000 0.00000 Page PUo'oflT88 Current Date: 10/18/2016 12:06 PM Units system: English File name: TAStructural\2016 Structural JobsQO16-2850_HA Mattson Apartments\Gridlie 5.etz\ Steel Code Check Report: Summary- Group by description Load conditions to be included in design D1=1.4DL D2=1.2DL+1.6LL D3=1.2DL+O.SSL D4=1.2DL+1.6LL+0.5SL D5=1.2DL+1.6SL D6=1.2DL+0.5Wx D7=1.2DL+1.6SL+LL D 8=1.2 D L+ 1.6 S L+0.5 W x D9=1.2DL+Wx D10=1.2DL+Wx+0.5SL D11=1.2DL+Wx+LL 131 2=1.2DL+Wx+LL+0.58L D13=1.2DL+0.2SL D14=1.2DL+EQx D15=1.2DL+LL+0.2SL D16=12DL+EQx+0.2SL D17=1.2DL+EQx+LL D7 8=1.2DL+EQx+LL+0.2SL D19=0.9DL+Wx D20=0.9DL+EQx Description .... .... ............................ Section ........... Member Ctrl Eq. Ratio Status Reference Beam ..._.... _.............. W 10X54 _.......................... 2 .......... . o ... ._....... D4 at 100.00/ ................... 0.56 ............ OK ._............. _..... Eq. H1 -1b Column TUBE 1ox6x6 8 5 D12 at 100.00% 0.19 OK Eq. Hl -ib Page pO T168 E= Anchor DesignerTM (Sa_nyr_ rui Software Version 2.4.5673.270 1.Proact Information Customer company: Customer contact name Customer e-mail: Comment: 2. input Data 8 Anchor Parameters General Design method:ACI 318-08 Units: Imperial units Anchor Information: Anchor type: Cast -in-place Material: AB ­H Diameter (inch): 0.625 Effective Embedment depth, ha (inch): 6.000 Anchor category: - Anchor ductility: Yes hmm (Inch): 8.13 Cmin (inch): 1.25 Smia (inch): 2.50 Company: 12ate: 11011812016 Engineer: Page: 1/4 Project: Address: Phone: E-mail: Project description: BPI Location: Gridline 5 Fastening description: Base Material Concrete: Normal -weight Concrete thickness, h (inch): 24.00 Stale: Cracked Compressive strength, f. (psi): 2500 4r,v: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No Ignore Edo requirement: Yes Build-up grout pad: No P1 i'1 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3671 wxw.strongtie.com Page 107 of 168 Base Plate Load and Geometry Length x Width x Thickness (inch): 11.00 x 12.00 x 0.75 Load factor source: ACI 318 Section 9.2 Yield stress: 36000 psi Load combination: U = 0.91) + 1.0E + 1.6H Seismic design: Yes Profile typelsize: HSS10X6X5/8 Anchors subjected to sustained tension: Not applicable Strength reduction factor for brittle failure, On: 1.0 Apply entire shear load at front row: No Z Anchors only resisting wind and/or seismic loads: No <Figure 1> 1$668 Ib P1 i'1 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3671 wxw.strongtie.com Page 107 of 168 t�lr/ • Anchor Designer TM Software -!' Version 2.4.5673.270 <Figure 2> Company: Date: 10/18/2016 Engineer: Page: 2/4 Project: Address: Phone: E-mail: Recommended Anchor Anchor Name: PAB Pre -Assembled Anchor Bolt - PABSH (5/8"0) Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925,580.9000 Fax: 925.847.3871 www.stronglie.com Page 108 of 168 ®' Anchor DesignerTIA y l; Software p Version 2.4.5673.270 w Company: Date: 1011812016 Engineer: Page: 3!4 Project: Address: Phone: E-mail: 3, Resulting Anchor Forces Anchor Tension load, Shear load x. Shear load y, Shear load combined, Na. (lb) VY.. (lb) Vasy (Ib) q(Vu..)'+(Vwy)' (lb) 1 0.0 418.8 0.0 418.8 2 0.0 418.8 0.0 418.8 3 0.0 418.8 0.0 418.8 4 0.0 418.8 0.0 418.8 0.0 1675.0 Maximum concrete compression strain (%.): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 0 Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'N. (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'N1(inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'v. (inch): 0.00 Eccentricity of resultant shear forces in y-axis, a'" (inch): 0.00 8 Steel Strength of Anchor in Shear (Sec D.6.1) Va. (lb) O6 W 0 ,by.dQVsa (Ib) 16270 1.0 0.65 10576 9. Concrete Breakout Strength of Anchorin Shear (Sec. D.6.21 Shear perpendicular to edge in x -direction: Vh.=7(le/de)° Ndaigf,Car' s(Eq. D-24) <Figure 3> I. (in) da (in) A rc (psi) car (in) Vba (Ib) 5.00 0.63 1.00 2500 12.00 17434 01 o2 Y X o4 o3 0.750doVwg. = 0.75�dq (Avc/Avw)'Fmv V,v c,vVh,VVbx (Sec. D.3.3.3, D.4.1 & Eq. D-22) Avc(ing) Aw.(in') Veov v KV y'h.v Vb.(lb) 0 0.7504V b, (Ib) 288.00 648.00 1.000 0.758 1.000 1.000 17434 0.70 3085 Shear parallel to edge in x -direction: Vey = 7(l./ da)°Ncl.;14rcc.rr a (Eq. D-24) I. (in) ds (in) A Fc (psi) c.r (in) Vbr (lb) 5.00 0.63 1.00 2500 3.50 2746 0.750d0l/ bg. = 0.75¢dO(2)(Aw/Av-)'/�.,v'/'.avKv'/'h,vVar (Sec. D.4.1, D.6.2.1(c) & Eq. D-22) Avc (in') Awe (In') P%..v V'O v V'..v T'h,v Vey (lb) d 0.75OdOVebg. (lb) 84.00 55.13 1.000 1.000 1.000 1.000 2746 0.70 4394 10. Concrete Pryout Strength of Anchor In Shear (Sec. D.6.3) 0.75OdO Vcpg = 0.75¢r¢k.pN.bg = 0.75¢4k.p(AN./ANm) y'.C,NY'.a,NyoxY',.g,NNe (Eq. D-31) k.p ANc (in') AN.. (in') y'a.,N W.d,N KN 'PgN Nb (lb) 0 0.750dol/w (lb) 2.0 256.00 81.28 1.000 0.933 1.000 1.000 6252 0.70 19287 11. Results Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility, Simpson Strong -Tie Company Inc 5956 N,, Las Positas Boulevard Pleasanton, CA 94588 Phone: 925,660.9000 Fax: 925.847.3871 wwwatrongtie.com Page 109 of 168 Anchor DesignerTM Software Version 2.4.5673.270 m Company: IlDatw 10/18/2016 Engineer: I Page: 1414 Project: Address: Phone: E-mail: Interaction of Tensile and Shear Forces (Sec. D.71 Shear Factored Load, Vn. (Ib) Design Strength, aVn (Ib) Ratio Status Steel 419 10576 0.04 Pass T Concrete breakout x+ 1675 3085 0.54 Pass (Governs) II Concrete breakout y- 838 4394 0.19 Pass (Governs) Pryout 1675 19287 0.09 Pass PAB5H (5/8"0) with hef = 6.000 inch meets the selected design criteria. 12. Warnings - Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 0.8.1 and D.8.2 for torqued cast -in-place anchor is waived per designer option. - Per designer input, ductility requirements have been determined to be satisfied — designer to verify. Designer must exercise own judgement to determine if this design is suitable. Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Posites Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925,847.3871 www.strongtie.com Page 110 of 168 Anchor DesignerTM Software Version 2.4.5673.270 ct Information Customer company: Customer contact name: Customer e-mail: Comment: 2 Input Data & Anchor Parameters General Design melhod:ACl 318-08 Units: Imperial units Anchor Information: Anchor type: Cast -in-place Material: AB_H Diameter (Inch): 0.625 Effective Embedment depth, her (inch): 6.000 Anchor category: - Anchor ductility: Yes hmm (inch): 8.13 Cmm (Inch): 1.25 Smm (Inch): 2.50 Load and Geometry Load factor source: ACI 318 Section 9.2 Load combination: U = 1.20 + 1.6(Lr or S or R) + 1.OL Seismic design: No Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No Z <Figure 1> Company: jDater 10/14/2016 Engineer: I Page: 1/4 Project: Address: Phone: E-mail: 7655 Ib Project description: BP2 @ TB22 Location: Gridline 5 Fastening description: Base Material Concrete: Normal -weight Concrete thickness, h (inch): 24.00 State: Cracked Compressive strength, fe (psi): 2500 W,,.v: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No Base Plate Length x Width x Thickness (inch): 6.00 x 12.00 x 0.75 Yield stress: 36000 psi Profile type/size: HSS5X5X1/4 0 Ib y 0 ft -Ib Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847,3871 www.strongtie.ccm Page 111 of 168 ®' Anchor DesignerTIM _ Software Version 2.4.5673.270 <Figure 2> Company: Date: 10/14/2016 Engineer: Page: 2/4 Project: Address: Phone: E-mail: nn Recommended Anchor Anchor Name: PAB Pre -Assembled Anchor Boll - PA65H (5/8"0) Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.cam Page 112 of 168 Anchor DesignerTM Software F�14�.- �'_- Version 2.4.5673.270 m Company: Dale: 10114/2016 Engineer: Page: 3/4 Project: Address: Phone: E-mail: 3. Resulting Anchor Farces Anchor Tension load, Shear load x, Shear load y, Shear load combined, Nu. (Ib) V... (Ib) Vuay (Ib) q(VY..)'+(V..y)' (Ib) 1 1913.8 0.0 0.0 0.0 2 1913.8 0.0 0.0 0.0 3 1913.8 0.0 0.0 0.0 4 1913.8 0.0 0.0 0.0 Sum 7655.0 0.0 0.0 0.0 Maximum concrete compression strain (%.): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (Ib): 7655 Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'w (inch): 0,00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 4. Steel Strength of Anchor in Tension(Sec. D.5.11 Ns. (lb) O ONs. (lb) 27120 0.75 20340 5. Concrete Breakout Strength of Anchor in Tension (Sec D.5.2) No = kp7.4foh.r' 5 (Eq. D-7) ki, A r. (psi) h.r (in) No (Ib) 24.0 1.00 2500 6.000 17636 <Figure 3> 01 Y 02 __10- 04 X 03 ONS g =O (AwIANDD)V`xNT",NYIgNYI[ N% (Sec. D.4.1 & Eq. D-5) AN. (in 2) AICD (In°) T.N Ybge %'N 'F"N Na (Ib) ONm¢ (Ib) 298.13 324.00 1.000 0.817 1.00 1.000 17636 0.70 9277 ON, = 0%PNp = OKPBAW, (Sec, D.4.1, Eq. D-14 & D-15) KP Ano (in') f, (psi) O ONm (lb) 1.0 1.94 2500 0.70 27205 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5958 W. Las Posites Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 wwwstrongtie.com Page 113 of 168 F711'/� i Anchor DesignerTM Software Version 2.4.5673.270 Company: Date:10/14/2016 Engineer: I Page: 4/4 Project: Address: Phone: E-mail: 11. Results Interaction Tensile Shear Forces D.71 of and Tension ,(Sec. Factored Load, Naa (lb) Design Strength, oNa (Ib) Ratio Status Steel 1914 20340 0.09 Pass Concrete breakout 7655 9277 0.83 Pass (Governs) Pullout 1914 27205 0.07 Pass PAB5H (5/8"0) with hef = 6.000 inch meets the selected design criteria. 12. Warninnis - Minimum spacing and edge distance requirement of 6da per ACI 318 Sections D.8.1 and D.8.2 for torqued cast -in-place anchor is waived per designer option. - Designer must exercise own judgement to determine if this design is suitable. Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility, Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 926.560.9000 Fax: 925.847,3871 www.stronglie.com Page 114 of 168 Anchor DesignerTM 1 Software Version 2.4.5673.270 e 1 Protect Information Customer company: Customer contact name: Customer e-mail: Comment: 2. Inout Data & Anchor Parameters General Design method:ACl 318-08 Units: Imperial units Anchor Information: Anchor type: Bonded anchor Material: F1554 Grade 36 Diameter (inch): 0.625 Effective Embedment depth, ho (Inch): 6.000 Code report: ICC -ES ESR -2508 Anchor category: - Anchor ductility: Yes hmm (inch): 9.13 cac (Inch): 12.85 Cmm (inch): 1.75 Smio (inch): 3.00 Load and Geometry Load factor source: ACI 318 Section 9.2 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: No Strength reduction factor for brittle failure, ma: 1.0 Apply entire shear loo' -- ' Anchors only resistinc <Figure 1> Company: jDate, 110117/2016 Engineer: Page: 1/4 Project: Address: Phone: E-mail: Project description: HDU5 interior Location: Gridline 5 Fastening description: Base Material Concrete: Normal -weight Concrete thickness, h (inch): 10.00 State: Cracked Compressive strength, fa (psi): 2500 Wo,v: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No Hole condition: Dry concrete Inspection: Continuous Temperature range, Shorl/Long: 110!75°F Ignore Edo requirement: Not applicable Build-up grout pad: No Z 0 Ib Y Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Sirong-Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94688 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com Page 115 of 168 IMF ',►� Anchor Designer TM Software Version 2.4.5673.270 m <Figure 2> Company: Dale: 10/17/2016 Engineer: page: 1214 Project: Address: Phone: E-mail: Recommended Anchor Anchor Name: SET -XP® - SET -XP w/ 5/8"0 F1554 Gr. 36 Code Report: ICC -ES ESR -2508 Wb - F1 rYea j1 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94586 Phone: 925.560.9000 Fax: 925.847.3871 www,strongtie.com Page 116 of 168 ®' Anchor DesignerTIA FA =7 1 1 , Software �' ;.�- Version 2.4,5673.270 Company: Date: 10/17/2016 Engineer: Page: 3/4 Project: Address: Phone: E-mail: 3. Resulting Anchor Forces da (in) h.r(in) No (lb) Anchor Tension load, Shear load x, Shear load y, Shear load combined, N.. (Ib) V.., (Ib) V..y (Ib) 4(V�..)2+(V.er)' (lb) 1 2655.0 0.0 0.0 0.0 Sum 2655.0 0.0 0.0 0.0 Maximum concrete compression strain (N.): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 2655 Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'w (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'NY (inch): 0.00 4. Steel Strength of Anchor in Tension(Sec. D.5.11 Na. (lb) 4 ON.. (lb) 13110 0.75 9833 S. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.21 No = k.A4F.hal5 (Eq. D-7) k. d P. (psi) her (in) Nb (lb) 17.0 1.00 2500 6.000 12492 0.75Od¢N.n=0.750dO(AmIAN.o)WodNV'c.NV'.r,NNh (Sec. D.3.3.3, D.4.1 & Eq. D-4) Am (Ins) ANd. (ins V'.d,N VY,N V4r,N Na (lb) 0 0.750d^b (Ib) 324.00 324.00 1.000 1.00 1.000 12492 0.65 6090 6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3) oror=ao-f.had. r K..raNmre rq=(psi) f.bwa... K..r CUVWr� (psi) 855 1.00 1.00 1.00 855 Nao = rk,vad he(Eq. D-160 rka (psi) da (in) h.r(in) No (lb) 855 0.63 6.000 10073 0.750dmNa = 0.760do (AN./AN.o) T'edmn V'r,N.Nau (Sec. D.3.3.3, D.4.1 & Eq. D-168) AN. (ins) ANao (Ins) VSgrd. %,,N. N.o (lb) d 0.750doN. (Ib) 223.60 223.60 1.000 1.000 10073 0.65 4910 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility, Simpson Strong -Tie Company Inc 5956 W. Las Posilas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847,3871 www.slronglie,com Page 117 of 168 Anchor DesignerTM Software Version 2.4.5673.270 Company:Date: 10/17/2016 Engineer: Page: 414 Project: Address: Phone: E-mail: 11. Results Interaction Tensile Shear Forces (Sec. D.71 of Tension and Factored Load, N�. (Ib) Design Strength, eNn (lb) Ratio Status Steel 2655 9833 0.27 Pass - Concrete breakout 2655 6090 0,44 Pass Adhesive 2655 4910 0.54 Pass (Governs) SET -XP w/ 5/8"0 F1564 Gr. 36 with half a 6.000 inch meets the selected design criteria. 12. Warninas - When cracked concrete is selected, concrete compressive strength used in concrete breakout strength in tension, adhesive strength in tension and concrete pryout strength in shear for SET -XP adhesive anchor is limited to 2,500 psi per ICC -ES ESR -2508 Section 5.3. - This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and Is provided for historical purposes. - Minimum spacing and edge distance requirement of 6da per ACI 318 Sections D.8.1 and D.8.2 for torqued cast -in-place anchor is waived per designer option. - Per designer input, ductility requirements have been determined to be satisfied — designer to verify. - Designer must exercise own judgement to determine if this design is suitable. - Refer to manufacturers product literature for hole cleaning and installation instructions. Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc 5958 W. Las Posilas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.647.3871 www,slrongtie.com Page 118 of 168 U 3 in n a N N 0 3Im �: co > r w m of a rn a a u u � a C y g rn N ry N q N m a a n c a L N L L a ' II of N d y 16 u m V m Y J O _ O y N O m Y a N O a C N a 2 0 O 0 N > « O II II 11 p O > N N Z <p > II II 11 > a N IV Z v � � IL (.7 2 a D N LL V U J d u E m o� O - m LL N N b U a N ¢ p N N N m U m V ¢ o u `o rn In ~ - Q a, o w 6 U a C U u ° F -Y O d U U _ m E E It II O D p N Y a O cN�l a m N N F A E L p a ✓ C n O O C m o e •� r L 3 > o a ¢ a •� r j u p y W LL wp. C 5 O 3 m II C O R L c c O E N m E R Ln mM m C] O� N p N p L uaJ N L II II Y e II a d v u° .0. fm/l . �ro N 3 N ? C O 0 _ n N N iQ- Fa- O L E 4 o d E � E m n p 5 rn a a J II II ry II II II Q O D > n a N N 0 3Im �: co E > > N m N a a rn a H C 3 rn N ry N c > m a a n c L N L L a ' II of N d y 16 J L N N U p a O _ O y a p m Y a N Y C N a 2 0 C N > « O II II 11 p O > N N Z ° a U D a N N 3 � � IL (.7 2 N LL U N m O ° m N b a r ¢ U x 0 N N m rn ~ - U U m u O 10 rn 9 ~ d p N Y a O moi C 3 a ¢ a •� r j u p y W LL W r a O 3 m v C O n t U E N m E R Ln mM m C] O� N p N p L uaJ N L II II q II It II a � c . �ro 3 3 0 N N O > > E rn rn rn c c c (Q t L L L a N N 16 L L p a A O y a m Y a N Y C N N 2 0 C d « O C O O 3 N J 3 N IL (.7 2 I+age;9 of 168 !) !, (\ );" -cc k� \ - / k o § - i ! 2! 2 !& $!.6\a !! ! - )! It 11 \~� � \`� �M 10 CIO E ;G »\)2[ =D , ` k }:\= r0 \\\\E 7}°}°i _ . , },~0 to 0 }\)§) (IM ` !] $ 7\0 /\ \ 7/{ !k _ | f f { o § - i ! 2! 2 !& $!.6\a !! ! - )! \~� � �M 10 CIO »\)2[ =D , ` k }:\= r0 \\\\E _ to 0 !] | f f { § - i ! 2! 2 !& $!.6\a !! ! - )! Ei D 6 Y U r U s > > iin X O m N e C u H Y O N ip uN) O G O y N d n O a N C d a Y U L U OI g G ro p e > > u E N 3m Y Y O O rn N N r V tpp Q 0 1 y Y Q d u C 6 u N C y a OI t A Y U L U C > > C 3m Y O rn M t9 m u N Y O N N O a d O Y O y y d y C d v y C y a a ry d N N Yp a N SIO W Q�f R RN N > N d C > 0 y C II W N Y II ro r` Y II M W' Y J W O u O O J O 4 OJ O O > II N II N 11 Z C N > II N II N II Z C > N o > II N II fJ II Z C > N d > d > d m N d � 0 ll O U N ll 4 V N LL v� O M O in M O N O N to U IN o v { o cV N N d ip O d r Q o u ,K n ¢ o u v n O m N O) ro li M 0 OI t LL o o O) m o e v ¢ w o '" d m mo N ¢ co (M U a` w (m m y C U m d C m y C U r U r U 6 r U O U O II tl �y II O (p b II II O f0 ro II II O b i' CI r n m? r N m o r •� '� m •Cc r r n 'o Y r M o d *' c d c o d c A a rno O rna rno N ' o o �_ r > v> a w a> a w w rn C M C C S O CC T N �"d fO - N a co a 3 $pF MN 3 FpF M ; ACN 3 a F $ oN >p F9 p LL rC-� 0m y QQ 0 3 p L c 0$ p 3 0 9 C O rt m 3 N 9 c 0 g U o n M m E m t O m a o o E R N .n O n a m E O ,u CP N tp [O Oi N pW ^ O Oi N m 0 O� C of O m a a 0 J L V a J L O IL J L 17 a gIIIIII�a �111111 II It 11IIII�a c vM `c' �n 33 � d 33 C Qi Qi 33 d QI d d d O O m n1. Q 7 C C (p t L L L m y y f0 L V L N 9 L N p V In A 7i y m ro JdE V d Y N C m « 00C N C H « d Q U j u p dd C N U' J N IL J 07'age It of 168 y Y U U > y o c y Sin O O M N N C N h oy N Q U v C N d a of L Y V U > c Sin O m M IA N u y O In N V N q L Q U y h C N v a rn U U > > o c y Sin O O M N N N N a5 o 2 0 0 U y C v H 2U2 $I > V C > R C > b C G N G N G N II C C r' .1L II V O n' Y 11 V O r' Y Ip II II II C W > II II II C f` > II II II C N N Z D, yo N!J Z > o N IV Z 7 a > > •U N LL Oyi U N LL O U N 11 y N O N M O N M O o '_ N o - N o N o y .- o v •- o Ip LL O O m p LL O O OI m o D m o D m y D Q � Q m O d Q` w O N m u Of y g O1 co u m VO- p Y O F p Y O p Y O U U U �p II II O fp N II II O 0 N II II O (p d d O IS p L D p L D On S D pl O O) O QI O d ^ C d > tN0 E N i� 3 > N E b i cm > tN0 E N i 3 �> wrn .-> � n a W« S u N L n v a o 0 4 y O 0No e u° oCf) Tao w I° «N c 0 o o v O O D C az O DAv L E m E E E E ar E EEL Ul y O M y O N m o6 O pi m C6 II II q II II II � a II I ry II II 11 � a II II q II II II � a E rn m m c c e IO L t L L F U N W N N N p U q U ` y V q ty1 9> > V> O O C U' J Ul (JO S Yage 1O� y l of 168 lL E m W W p Y U U e > O c y O O rn in pi OJ M m o voi c o d O u n y W � ¢ v y a E m W p Y U U o ^ > u c 0 O O m in M D o rn r N cE 0 d O u n y v W ¢ W y p' g Y U U rn 8 W G E > u c y O O °' '^ y 0 o n n m c o d O u n u w ¢ v y (p N ry N jp N > O C > m C > N C p ¢ p J f N a m O O a a a a n> n n n c Oni N jy Z ai N IJ Z v N NZ > > Y >C6 W .M.. a n a w a •U LL LL m N N N U N LL V o N o w N o N N N N T N N N N N N Q o u t a d � o W LL O O O1 W LL m m N d N0 m ,Im `0 m � Q m 0 < N G O Q ro N m u O1 c ti 9 i0 u W OI c ti m m O7 ~ 0 0 10- 0 U O r o Y O O E u n O iD E n n O tp E n n O @ N c M L O) y N n M L rn y H a M L rn y Opj O O L O 0 O) O) .E oE o L 3 > o o L 3 OI C C C d 2 d 0 O N 0 LL (I`n D 30 C 0 0 30C C O -0 ¢ Q O -0 Q Q O0E u 0 o v E N 0 E 0 m E Nn0 E 0 0 OM O a L as L aIL L an. If IIco Q b a II II N �� II II fD a g F - m am 33'e 3 a, y y n N N a N N O D 7 O 7 D O 7 7 E m m m c c c N L L L L u W v l0 L y G 9 L y 9 L y Q d (W cc M O O C> W C 9> O C S C7 J N 2 U' J r0 Pag 21Of 168 E L A D U > e > 00 rn N M N m r r M o d g O U O f c 4 R 0 b a y U O — C jp y c > F F L c N U a a 0 c m V A Yp a y V > M J O c N M N m O n � L N y^ a n a ~ c � r •O m O y W > N N N J p Z v m 0 A U ' m N a D y w U c $ a LL M > n V N yN N O J Z IL D O N ys4 m N � � ro N O d N w LL m U N ro O o 0 LL m o m N u r ¢ o N A Y O M OI Q O IM N A d E n n _o in Q m m e~ d M F a N Y O ro « N O O v C L n n o Q n O a~ M ' _m r c N Ic A 7 �p C w � Y A M L O w C M O 3 CO Ca V E N rn h N m rn E L G01 y m m rn N o M 0 � � O Q A J A a II II m II 11 II � Q J a C 3 m F-V r0a n z a 00 d n �c°� N N Q L a O E � 7 A C > N N y U N a y r W J O Ig O N N m O yy a N D II II II C Om w U LL N O N O N o N N ro y r ~ { 0 O E II II O ,O A 9 Q r a N A R O n « CC O L O O) r > N E 0 L 3 w C_ I N L a ¢ F � u •� m 3 d I- v FQ- n t nr n E�a O o rn o t o N N E N rx 4 m o N! M N 0 Q J r oa II II 2 II II II J n 'p 3 � F- •- _ n 0 N O 7 � Y Y O O 10 c T N M N U Y A O > 0 N m h rn C M c n c F > In N U A Yp a y > M a c M v n L (!1 G 9 L N y^ n a ~ c � r •O m O y W Y W J p m 0 a D y h c $ a > n N N O J Z IL D N � O N w LL m U N O o 0 N u r ¢ N A LL M OI Q O IM N d F O Y O O E n n o Q n n a~ W n c N Ic A 7 �p L O w C O 3 Ca N G01 F A C N s o a r0a n z a 00 d �c°� V Q L a M E N n O d o V Q J t D a II II q II II II b Q 0 0 ¢ O 1 7 7 E m rn c c c 0 L N v L (!1 G 9 L N y^ O y W m O y W Y D y h c $ a 7o� NPage'Ulof O J N IL 168 d u d c y c y c y 3: m d y d m U M (A d a d ry N 1'p ry > II II II C N > II II II C W E LL� U y LL N U N N N N Q N m Q N oN O p d q d A IL N � 6 c N m 0 4 o G N W O m •- v C U m � v C O - � n II O io m n II O i0 d N rn F L�' m m 3 F- d �_ H q C i •� F f � � 7� Mo OIO j v a L 3 j a E a L 3 C C_ R « ` - o A L •co t 3 C N > d C N 0 4) p F V O IL 4 U) O LL H O) y o 3 N a a C 0 o ;" c� o a C 0 0 n c E 3 1- i¢- .c n c n£ m U aU _ t o E E L b E m fi N n o m E N n o ma�N A E��a d ad a J II II ry II II II � a J II II ry II II II � a 3 i a m O m 7 O 7 N El m m m c lO L c c L d L d L d L ❑ W ` x W m Y LL m O d = C7 J fn LL J rNge`If25m—of 168 3v N 3 in > I I y y v C d a > N m y v N Cy F d o > h O N > m W p y w y C v a ry N W N ry N > a C 7 q a C > ONi a C y 6 FN y O 0 y 6 9 190 HN 190 to '^ II v v th y II I.a�I c n'u , O Nvn C >c ffi�Nz c >M Z >C> C? N J Z> U [O O O w u 0 N •U `7 O w YI ¢ U N LL y N LL CMI O n M p N M O N O o N O a N o a N I 1p LL m N 01 m LL m <o OI m LL N M QI ¢` m o y ¢` m o ¢ 10 y 0) (0 V m d V IM F a Y O p Y O 1-0 Y O O O O O m II II iD m II II iO ro II II _O i0 a s s a Ud ¢ m o a@J ¢ A e~ .p� O m « C O w « C ol o « O O L V O L O n O MO OIO M0 >">In w w G C_ C 11 W L _ ° _ `- 11 H l7 ° l0 O Q 0 .fig y C_ i o 3 0 £� y C_ 4 0 3 dd 0 o y 1p O a ' L }i Q Q Vf W N LL (n B o O M D0 8 0 O M 0 0 S o O m p ¢ a `o — O v 4 ¢ o— g 0 v ¢ ¢ `o — n O L Ea,'2 n K a E d oE� L L E'o s r amE—To a E d L L vm`D a a v E v In .c OI O rn m m m m f o 0 $, rn vI ap m f M O N IL a U Q N q V Q N m U Q a J A L a II II a n u 11 to n 11 u n u eQ II u c II n rn II Q m ro n y 0 3 3� v y 7 0 7 O 7 7 01 1> j E rn m m c c c IO L L L L v v a m L m a L y a L y E Y N C M O C N O C^ p O00 9> ` a O C 000 0Page1" 26 --of 168 c> y J (A IL .�.. E a W O Y N U - > A2 Sin O O m N a m c N W Q W C d N L E n W O Y N U j E € > u Sin O O M N m m c o a y O O d C a E m§ t W O Y N U j u in O O rn M N c d O y v C d N U a N ry d N � d N jp d N > C > N C > V N C 17 O F C a n v v Y II v m m Y II a M o N V fi r N N W U U n N fYi J O O J O O J O O d d $ r r > II II II G j II II II C M j II II II C > N N 2 .M.� > N IV Z ._.. > 6 N IV Z �i U W yLL N Li N LL m U N LL N U y m O N O M N O O N 04 O Niv 0 04 M O O y u 4 n ¢ O O y r 04 N LL (0 O Oi W LL N N tm v o a (O 1pO �u m 17 o C Q ro O Ol a m O d OI W v U O �j m f ~ -C O ~ U ~ U U- U U V E II II O <O E II II O <O E II II O {p Q a rn o A f d a a m oF- Q m m W H a 1) N L O1 y y U1 'nc H N L' s Oi N y N C m N L n9 pl y y y q c C D v C p v Y C O v C O O c O L o D) O OIC v 33 M C_ E O 3 o g y C $ 0 3y N M (C L 3 Qdd Q rmt 3 ¢ a •fir p E o O m O O O a p V 9 C 0 _9 O ; M 9 C tp h O ¢ < `p -- n — O -O ¢ ¢ o — n — O 17 ;^, n O -O F F L E n e .r cf� n E d !2 E m F L !- L E a.. a E v o E 0 F L F N L E a N .r vii m E m L C m 0 N f N f U a C' W N N' f 0 a a m N m m N m N O J L N 'O a J L '0 a J L N 'O a II II ry II II II a II II II II II a II 11 d II II II a _ r- E OI C y O Ui C l0 L d t L y v u W W L y a y V t O) p 9 Y d U d > O U .o ; o c v; .c o V�1 rL C7 J N 2 Page of 168 u u u 0 0 U 0 0 U O O c E c E d c m n m o m N 2 0 C t> M N uo 0 C > m N u Y — O O O O 4 _ O d n m E d a m E v y > N M y > N d E m c L R t •p L t C R_ N ILL N c_ C m y _ ip y N y II Q a m' a J O •- N f m J O ' N f m U O J n o N m U O a a a a M > II II II O m J II II 11 C A > II II II C > NN Z 7 > NN Z ? > NN Z y y o u m � u m N u m y LL M 0) U y LL m O U y 11- N N _ U N N O N m O N m . o m N o m N o .0 N Q o o .. a Q o d r ¢ o r LL N M cm N LL N I� tm N ly VJ N O) ¢ m O M d ¢ <O ¢ m OIm N D N U m U m c d ~ U ~ U ~ C U U U O E II II O (p E II II O {O E II It O 10 a N i s m y a N t o N y a N t o N O O O L O W O O) r 0 r d t r > M Is w > > E N Ia0 m > w � > w Oi C C C lzF II N •.t, V g II .0 > F E w m a N m e v y m F O {L (n v 4 0 ImL « N p 3 M v C O 0 3 m o c 0 pP p 3 M 9 C 0 t a a O a `o a Z, a OO d ¢ ¢ ^ `o a O V F¢- E« F¢- 1¢- v n^ E« H n O O mW fp N co U OI N M OI N N Q p' N E U J LO a J L •O a J L G. II II R II II II Q II II 11 It II Q II II R II - Q a p 3 I- a a O 3 H r V a O 3 11 II F r _ o > > o > > o > E m c L R t •p L t y R_ N ILL N c_ O rn c_ L d L rn 9 N y C M 0 9 > : O C d O J �' Page 128 of 168 m c L d L N •p c Y O c U' J N ILL u 9 N C y 3 'w E rn e A L � f0 N o ^ 10 y u U C N C N 3i'n Sin U N O O U 00 a in c oflal m m ul c m N OO S N > 'm a C = m > ^ Il N a N II Z c = m II N II N II z C w > m C W O m w O N y �U N LL w O 'y y O N C fV o m fV o rn N � ,O N LL O O OI N LL m O 'p0) Old Q� to Gl Q m O m Cl �O, ~^ U G ~^ p am U E II a 0Fo V II a U oto 20 E N L '� O O Of o L 4) Ul r r v> tmC N w C QQQQQQ g y U CI)O g 0 LL M N Y 9 LL W 0 N O $ 3 v c o o ;° o v in c 'O D H H t a E y t a a a U IQ- IQ- d y` SI °j ^ o rn a mp a o f rn M m rn M O Ll i a A II II it a II II Il to a a J a p 3 E F- r J a pr O m c p c N L U) $ L y a N A O Y N jQ y N 0 � d 7 u O > Page 119 of 168 0 3 m b W M � m M b n P N v r --o M � m v u n N d y d 22 y a _ O1 C q N L a m L U c 0 d N O x D N n _a F- c b a 0 LL M O O1 O 0 N U y 0 C a n II II C N N Z io r --o M � m E OI C N 9 O1 C l0 � u L of L U d 0 d N W 0 N N m N d N M N V O y O y r 0 LL M O O1 O 0 N U y 0 C OC1 U O 0 page 1 M of 168 Y O o EII n io 6 0i N y L U O of — L C b A c � C m 0 0 N D a ( O E UEa rn b rn a o d _ E% r m m .n n D U Q N a to Q II II II a. M N 3 E OI C pi C O1 C l0 L L L L d d L W 0 N N m V y Y N 9 d N N Y N M N V O y O y O C N J C N O S>, O 0 D> O C 9> ? 0p C 0 C 0 page 1 M of 168 (7 J N S u u u C y C E E 3 v, 3w Sin Y y Y Y c Y Y O O O O O V O O E SS c E c yy V U C N Ip UNi [yn Cc L O N V C O N H N N O N N r V N M {� Y II a W ^ NON M N Y UO 11 < V W N J O � O J O o m J p� •- N m Q a 9 a yq N > II N II N II Z C v N > II II II C N > II II II C >$ > d VN .N •F N .n m w N ,N W N •U LL m t) LL O O LL W Z N O E m O N m O .Q 1O e O I$ N o v N N r N r N .- m LL Q W Ol cm m LL CI Im a d r U O m d C V C V ~ V U ~ U O Fes- o e O to E E 11 11 OE pp m ~ N C L W ~ N� •W F N C .1. r p L V p r V n O L Of 0 Ol o O) o O > 10 E W ; m E 0 L f ? E f0 W > > 3 w Co> Im r C It « V c O II �. L II££ 3 O y F f> C y H f >` C C N F F IL W w y S VJ ,yy O oo li y 'E C O o 0 E Oa r 0•OU Ey No E dC 9OW� 0 EN EE U E m J a II II N II II It Q II II W II II II a II 11 N II II II a A b C v� ro m o E Im C rn C a C W L L L W y v^ y v^ y v Q M jp M q y M jd y fl C Q lye O C M « O c N u O C i y O C i O G L Q O = 0 S y LL 2. O Page 131 of 168 O J LL PL U C 02 3 'm 3 m £ W o m n m v v v c v E m N v r c L m v N y C 9 a > N w N v � _ > N m v A N jp N > N a C a a_ c O v U v ' U n II N m a Y U II � J O a O J O- II II � C L > m � N N Z > II II II C m pp > y j 9 N u m U m LL m o U O N M O O a o m N r0' v N � rn H v N � U L W Ei N w O W o y O d � � w 0 No (V O No Y O p v U p d Q O O (O N a L O O II II N O f0 y d Q m v rn � U N 07 H f U U 0 F - N n �• o a a In t`- a m � 7 •� F- N 3 F j N C n O L � a C v}, � E r� 3 LL 0 U) CO = v �O Ev �nr�E� E E t ) 0 m N£ R O G a M m M V O E N m O N r J O N 2i Q Q y Y II 11 <6 L Q Q N � a r > v O m �- F � o N O v w 33.E 0) d) > > o > > EU E 5 M m E N m m a II II ry II II II � II II > o > o £ m m n m v c E m y r c L LL2 v N y C 9 a a !J w � _ u 3 `w rn c_ a t w j a � Y v � J m Page 1'T2 of 168 m c t m n m v a u E c v v y i ? c LL2 _ w � v n jp N > N a C a a_ c O v U v U n N N W U � a C m > II II II C > m N N Z V m y j 9 N u m U m LL m o U O N M O O N � v � N w m Q W o O d � � � Y O p Y O O (O a II II O f0 y ¢ m rn ~ y n �• In A !E N 3 F j N C a C v}, E r� 3 LL 0 U) CO = v �O Ev �nr�E� E E t ) 0 m N£ R O G a M m M V O N m Q 0 a IL r J N N a !9'0 a II 11 � II II II � a v w 33.E 0) d) > > o > > rn c_ a t w j a � Y v � J m Page 1'T2 of 168 m c t m v L w E a � y i ? c LL2 N uu .O E v E o •E c y c v c y 3 y 3 N 3 y U U U t X Y t Y Y r Y X U O O U O O U O O o rn 8 m 4 N rn m 4 > M N OO R> M N N p Eo Q M N d O p U p C u p 2 O n N N >$ t7 N N > b N > M d M N u N rp N > OI OJ 0 0 U y ry Nzz F N > '0m M V y Ip N N J C J D •C > N a cN {yV n N O. N 4 U nZ d N N fi i.i n d N N N Q m> It II II C d> II II If C n>" It II II C > M N N 2 u D J In N N Z O D > m N N Z v MO u 0 d 0 O N u m d •E ANO w •E LL M r- •E _ IL iMn :_ N B LL N M Q Q N I(I N p O N fa OI N Q O n 0 oN o (V o N CC d •� a ¢ o ,� a ¢ o ,� a m u m n Ol m li °' rn m u°• '�' m O7 Q ro N d Q m 0 N Cl Q m O M d 0 SC G 0 Fo- ` p d O R (.) II 11 fD N U II II O 10 b O II II O to W r _Q d Q O 0 9 r Q O p 5 r a Q N y r �_ � r �_ Q •� r m ` •Im p N �•' C p N " C p N •' C o t o r D o r D IMP rno rno ID m > m C OI G y G N NCo �i Q Q n •� i Q Q •Im i Q r r > 0 G N r r > u G LL Y N LL Yin L I6 O p fy G O ay It- E N m EyG N E y L E O Eya N c V9 n(O E N N(On EGO w C C LL L m M d m N tV m O V a O M R OMi m Q13 r N N 0 J N a 0 J a W J E N O a II II q II II II Q II II 11 II II Q II II II II II b Q N N N a N N n N O > > O 7 O > > L v v t0 fill -a N 6 E lLi1 v 0 d N Y � N O YUtl � N Yuu • V j JO C 'O j � �` C D j J �O C y page 133 Of 168 u 3 N M � y E m t�0 M y c D N L 3 L > � y � y 9 Q N W Y a 0 9 v o c N 0 0 O M N 0 b R t�0 M y D L 3 > t9i y a > N _ry ° o N c = v ^ N Q J O 4 tO O C 0 J II II II i •0 N j � N O N w U wrLw ro U O y O iy O d r O1 m LL m OI a X O F 3 X O U - O m U II II O to ,fpD� V Q N N~ y y N �� ~ C` m � y y to .to A L V a O O pl O 01 y C y H f >0 C y In O LL 2 U; C 0 0E'O � 0 rara�� a N y E O) N N IIDD N 0 A 0 G. a J II II ry II II II a 3 N mC N N p rn c L d C y j N d O J rn Page 73A of 168 STUD WALL CALCULATION 5 Floor Wall Location = Exterior Species = DF -L Stud Stud Width = 1.5 in Stud Depth IQ = 5.5 in L = 9 ft stud spacing = 1.33 It Fb = 700 psi F. = 850 psi F.i = 625 psi E = 1400000 psi Emin = 510000 psi CF = 1.00 for bending Cr = 1.00 for comp. II to grain A = 8.25 W S = 7.56 W Dead Loads: 0.8 Roof DL = 135.2 plf Floor DL = 0 pit wcL = 215.2 pit Live Loads: FSE/F c = Roof LL = 382.1 pit Floor LL = 0 pit WLL= 382.12 Load Case is Gravity Loads Only Load Combinations: P = D = 286 be D+L = 286 lbs D+S = 794 Ibs D+0.75(L)+0.75(S) = 667 lbs Co (D) = 0.9 Cc (D+L) = 1 Co (D+S) = 1.15 Cc (D+0.75(L)+0.75(S)) = 1.15 fb=f�L 96.3 psi 1087.2 19.6 in E'min = 510000 psi C = 0.8 FcE = 1087.2 F,= 978 psi FcE/F = 1.112 psi (1+FcE/F J/2c = 1.320 Cb = 0.726 P = 710.1 Check = OK psi Bearing of stud on wall plates: Cb = 1.25 P�L = 781 Check= OK psi Loadinas Roofing Material = Shingle/Tile Roof Pitch = 0.25 Angle = 1.2 Cs = 1.000 Increase for Drift= 1.378 Effective snow load = 48 psi Roof dead load = 17 psi Floor live load = 40 psf Floor dead load = 23 psi Trib. Area roof= 8 ft Trib. Area,,,,= 0 ft Add. Uniform Load = 80 pit Lateral Load = 47.05 psf Use: 2x6 DF -L Stud Grade @ 16" o.c. Load Case 2: Gravity Loads + Lateral Loads Co = 1.6 C, = 1.35 w= 62.6 pit M= 7603.3 in.lb fb = 1005.4 psi F'b = 1512.00 psi Check = OK Axial: (Idd.) = 19.6 in E'min = 510000 psi c = 0.8 FcE = 1067.2 psi Fn= 1360 psi FSE/F c = 0.799 (1+FSE/F .)/2c = 1.125 Cb = 0.609 P = 828.7 psi D+0.75(W)+0.75(L)+0.75(8) D+W f� = 80.9 34.7 psi Check = OK OK Combined Stress: FcE. = 1087.2 1087.2 psi Interaction Formula= 0.55 0.69 Check = OK OK Page 135 of 168 STUD WALL CALCULATION 2 Floor Wall Location = Exterior Species = DF -L Stud Stud Width = 1.5 In Stud Depth (d,) = 5.5 In L= 9 f stud spacing = 1.33 It Fb = 700 psi F� = 850 psi Foi = 625 psi E = 1400000 psi Emin = 510000 psi CF = 1.00 for bending CF = 1.00 for comp. II to grain A = 8.25 in` S = 7.56 in' Dead Loads: (I./d)„ = Roof DL = 135.2 pif Floor DL = 602.55 pif wcL = 1187.75 pif Live Loads: 1.2 Roof LL = 382.1 pit Floor LL = 1030 pit WLL= 1412.12 Load Case 1: Gravity Loads Only Load Combinations: Floor live load = D = 1580 lbs D+L = 2950 lbs D+S = 2088 lbs D+0.75(L)+0.75(5) = 2988 lbs Cc (D) = 0.9 Cc (D+L) = 1 Ce INS) = 1.15 Ce (D+0.75(L)+0.75(S)) = 1.15 I. = fpL = 362.2 psi (I./d)„ = 19.6 in E'mip = 510000 psi C = 0.8 F.E = 1087.2 F � = 978 psi F.E/F p = 1.112 psi (1+FSE/F J/2c = 1.320 CP = 0.726 F'p = 710.1 Check= OK psi Bearing of stud on wall plates: Cb = 1.25 F'pr = 781 Check = OK psi Loadings Roofing Material = Shinglelflle Roof Pitch = 0.25 Angle = 1.2 Cs = 1.000 Increase for Drift= 1.378 Effective snow load = 48 psf Roof dead load = 17 psf Floor live load = 40 psf Floor dead load = 23 psf Trib. Area,ppi= 8 it Trib. Area rim,= 25.75 It Add. Uniform Load = 450 pif Lateral Load = 47.05 psf Use: 2x6 DF -L Stud Grade @ 16" o.c. Load Case 2: Gravity Loads + Lateral Loads Co = 1.6 C, = 1.35 W = 62.6 pif M = 7603.3 in.lb fb = 1005.4 psi F% = 1512.00 psi Check= OK Axial: (le/d,) = 19.6 in E'mb, = 510000 psi C = 0.8 FSE = 1087.2 psi F p = 1360 psi FcE/F = 0.799 (1+FSE/F�)/2c= 1.125 Cp = 0.609 F'p = 828.7 psi Check = Combined Stress: F.E. = Interaction Formula = Check = Page 136 of 168 1.5 psi OK 1087.2 1087.2 psi 0.94 0.86 OK OK STUD WALL CALCULATION 2nd fl000r interior bearing Wall Location= Interior Loadings Species = DF -L W2 Roofing Material = Shingle/file Stud Width = 1.5 in Roof Pitch = 0.25 Stud Depth (d,) = 3.5 In Angle = 1.2 L = 9 It Cs = 1.000 stud spacing = 0.667 ft Increase for Drift= 1.000 Fb = 900 psi Effective snow load = 35 psf Fc = 1350 psi Roof dead load = 17 psf F, = 625 psi Floor live load = 40 psf E = 1600000 psi Floor dead load = 23 psf E.,, = 580000 psi Trib. Area row= 14.5 ft Cr = 1.10 for bending Trib. Area npp,= 43.5 ft CF = 1.05 for comp. II to grain Add. Uniform Load = 270 pit A = 5.25 in' S = 3.06 in' Lateral Load = 5.00 psi Dead Loads: Roof DL = 245.05 pit Floor DL = 1017.9 pit wDL= 1532.95 pit Use: (2) 2x4 DF -11- 92 Grade @ 16" o.c. Live Loads: Roof LL = 502.4 pit Floor LL = 1740 pit WLL= 2242.43 Load Case 1: Gravity Loads Only Load Case 2: Gravity Loads + Lateral Loads Load Combinations: CD = 1.6 D= 1022 lbs Cr= 1.15 D+L = 2183 lbs W = 3.3 plf D+S = 1358 lbs M = 372.1 in.lb D+0.75(L)+0.75(S) = 2144 lbs fb = 121.5 psi CD (D) = 0.9 Pb = 1821.60 psi CD (D+L) = 1 Check = OK Cc (D+S) = 1.15 Axial: CD (D+0.75(L)+0.75(S)) = 1.15 (Idd,) = 29.6 In fc = foL = 415.8 psi E'mib = 580000 psi (I./d)„= 29.6 in c= 0.8 E'mib = 580000 psi FcE = 545.2 psi C = 0.8 F c = 2268 psi FcE = 545.2 FcE/F c = 0.240 F c = 1418 psi (1+FcE/F'c)/2c = 0.775 FcE/F c = 0.385 psi Cp = 0.227 (1+FcE/F J/2c = 0.865 Pc = 514.9 psi Cp= 0.348 D+0.76(W)+0.76(L)+0.76S D+W Pc = 492.7 fc = 408.4 194.8 psi Check = OK psi Check = OK OK Bearing of stud on wall plates: Combined Stress: Cb = 1.25 F.E. = 545.2 545.2 psi F'cL = 781 Interaction Formula = 0.83 0.25 Check = OK psi Check = OK OK Page 137 of 168 STUD WALL CALCULATION 4th floor interior bearing Wall Location = Interior Loadings Species = DF -L #2 Roofing Material = Shingle/Tile Stud Width = 1.5 In Roof Pitch = 0.25 Stud Depth (dx) = 3.5 in Angle = 1.2 L = 9 It Cs = 1.000 stud spacing = 1.33 ft Increase for Drift= 1.000 Fp = 900 psi Effective snow load = 35 psi FO = 1350 psi Roof dead load = 17 psi FOL = 625 psi Floor live load = 40 psi E = 1600000 psi Floor dead load = 23 psi Emin = 580000 psi Trib. Area ,O,= 14.5 It CF= 1.10 for bending Tdb. Area floe,= 14.5 It CF = 1.05 for comp. II to grain Add. Uniform Load = 80 pit A= 5.25 in` S = 3.06 in' Lateral Load = 5.00 psi Dead Loads: Roof DL = 245.05 plf Floor OL = 339.3 plf WCL= 664.35 plf Use: 2x4 DF -L #2 Grade @ 16" o.c. Live Loads: Roof LL = 502.4 plf Floor LL = 580 plf W LL= 1082.43 Load Case 1: Gravity Loads Only Load Case 2: Gravity Loads+ Lateral Loads Load Combinations: Ce = 1.6 D = 884 lbs C, = 1.15 D+L = 1655 lbs w = 6.7 plf D+S = 1552 lbs M = 742.0 In.lb D+0.75(L)+0.75(5) = 1963 lbs fy = 242.3 psi Ce (D) = 0.9 Po = 1821.60 psi Cc (D+L) = 1 Check = OK Cc (D+S) = 1.15 Axial: Cc (D+0.75(L)+0.75(S)) = 1.15 (IJd,) = 29.6 in iO = fOL = 374.0 psi P.I. = 580000 psi (I,/d)„ = 29.6 In c = 0.8 E,o. = 580000 psi FOE = 545.2 psi C = 0.8 F = 2268 psi FOG = 545.2 FOE/F. = 0.240 FO= 1630 psi (1+FOE/FO)/2c= 0.775 FOE/F = 0.334 psi CP = 0.227 (1+FOE/F P)/2c = 0.834 PO = 514.9 psi CP= 0.307 D+0.75(W)+0.75(L)+0.75(S) D+W F -c = 500.8 fO = 374.0 168.3 psi Check= OK psi Check= OK OK Bearing of stud on wall plates: Combined Stress: Cb = 1.25 FOE„ = 545.2 545.2 psi P,,,L= 781 Interaction Formula = 0.85 0.30 Check = OK psi Check = OK OK Page 138 of 168 Project: 2016-2850 Location: Stair studs Base Values Multi -Loaded Multi -Span Beam Bending Stress: [2015 International Building Code(2012 NDS)] 1.5 IN x 7.251N x 13.5 FT(9+4.5) Fb'.= #2 - Douglas -Fir -Larch - Dry Use 10.88 int Section Adequate By: 61.5% C/=0.59 CF=1.20 Controlling Factor: Moment Shear Stress: DEFLECTIONS Center ffiw Live Load 0.05 IN L12044 0.08 IN 2U1416 Dead Load 0.00 in 0.00 in Total Load 0.05 IN U1973 0.08 IN 2U1368 Live Load Deflection Criteria: L/120 Total Load Deflection Criteria: 1./120 REACTIONS 9 B 1600 ksi Live Load 221 Ib 664 Ib 1600 ksi Dead Load 8 Ib 24 Ib Fc -1= Total Load 229 Ib 688 Ib Fc -1'= Bearing Length 0.24 in 0.73 in BEAM DATA Lkwff Bigiff Span Length 9 ft 4.5 It Unbraced Length -Top 0 ft 0 it Unbraced Length -Bottom 9 It 4.5 R Live Load Duration Factor 1.60 Notch Depth 0.00 MATERIAL PROPERTIES #2 - Douglas -Fir -Larch Controlling Moment: -688 ft -Ib Over right support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2, 3 Controlling Shear: -346 Ib At a distance d from right support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2, 3 Comparisons with required sections: Base Values Adiusted Bending Stress: Fb = 900 psi Fb'.= 1015 psi 10.88 int Cd=1.60 C/=0.59 CF=1.20 47.63 in4 Shear Stress: Fv= 180 psi Fv'= 288 psi 2088 lb Cd=1.60 Modulus of Elasticity: E = 1600 ksi E'= 1600 ksi Comp. Ito Grain: Fc -1= 625 psi Fc -1'= 625 psi Controlling Moment: -688 ft -Ib Over right support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2, 3 Controlling Shear: -346 Ib At a distance d from right support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2, 3 Comparisons with required sections: Reced Provided Section Modulus: 8.14 in3 13.14 in3 Area (Shear): 1.8 in2 10.88 int Moment of Inertia (deflection): 4.18 in4 47.63 in4 Moment: -688 ft -Ib 1111 ft -Ib Shear: -346 lb 2088 lb ®Jack Miller LEI Surveyors and Engineers 3302 North Main Street Lof Spanish Fork, Utah F%co 1, r ft5 S 11 it Pt.1Q R5 10/19/2016 9:02:36 AM A 66 plf 66 plf sft -g— 4.5n Uniform Live Load 66 plf 66 plf Uniform Dead Load 0 plf 0 plf Beam Self Weight 2 plf 2 plf Total Uniform Load 68 olf 68 cif Page 139 of 168 FORTE MEMBER REPORT Level Wall: Stud 1 pieces) 11/2" x 7 1/4" 1•SE TimberStrand® LSL @ 16" OC !ng is concep"I Wall Height: 28'9" Member Height: 28' 4 1/2" PASSED 0. C. Spacing: 16.00" Design Results Actual Allowed Result LDF Load: Combination Slenderness 40 50 Passed (80%) Compression (Ibs) 676 4197 Passed 16%) 1.15 1.0 D + 1.0 S Plate Bearing lips) 676 5777 Passed (12%) -- 1.0 D + 1.0 S Lateral Reaction (Ibs) 247 1.60 1.0 D + 1.0 W Lateral Shear (Ibs) 236 5858 Passed (4ob) 1.60 1.0 D + 1.0 w Lateral Moment (Ft -lbs) 1750 @ mid -span 4190 Passed 42%) 1.60 1.0 D+ 1.0 w Lateral Deflection (In) 2.50 @ mld-span 2,84 Passed (1!136) — 1.0 D+ 1.0 W Bending/Compression 1 0.50 1 1 1 Passed (50%) 1 1.60 1 1.0 D+ 1.0 W • lateral de0ectlon criteria: Wind (V120) • Arial load eccentricity for this design Is 1/6 of applicable member side dimension. • Applicable calculations are based on NDS. • A bearing area factor of 1.25 has been applied to base plate bearing capacity. • A 4% Increase in the moment capacity has been added to account for repetitive member usage. Supports Type Material System: Wall Top li ON 2X Spruce -Pine -Fir Member Type : Stud Base I 2X 5 ruce-Pine-Fir BWlling Code :IBC Max Unbraced —Length Comments Design Methodology : ASD 1' Dead I Snow tical Load :cupancy Category (m, Hurricane Prone Region (No), 1 IN IBC Table 1604.3, foomote f: Deflection checks are 13.0 Topographic Factor (1.0), Wind Directionality Factor (0.55), Basic Wind =fined using full member span and Crib. width. of this lateral wind load. rhaeuser warrants that the sizing of its products will be In accordance with Weyerhaeuser product design criteria and published design values. rhaeuser expressly disclaims any ouar warranties related to the software. Refer to current Weyerhaeuser literature for installation details. r.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software Is not Intended to nvent the need for a design professional as determined by the authority having jurisdiction. The designer or record, builder or framer Is responsible to e that this calculation Is compatible with the overall protect. Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable ry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR -1153 and ESR -1357 and/or tested ,ordance with applicable ASTM standards. For current code evaluation reports refer to http://viww.woodbywy.mm/services/s_CodeReports.aspx. rmduct application. Input desion loads, dimensions and support Information have been provided by Foie Software OCerator a Software Operator I Job Noleo t Miller Donsulling Engineers and Surveyors ) 636 7233 ecla-eng.cam Pagel SUSTAINABLE FORESTRY INITIi 10/19/2016 9:02:39 AM Forte v5.0, Design Engine Ver: V6.4.0.40 2016-2850.4te Page 1 of 1 KING STUD CALCULATION Leff study Species = DF -L Stud Stud Width = 6 in Stud Depth (dx) = 5.5 in L= 9 f opening width = 9.5 ft stud spacing = 5.42 ft Fb = 700 psi F, = 850 psi FDL = 625 psi E = 1400000 psi E., = 510000 psi CF = 1.00 for bending CF = 1.00 for comp. II to grain A = 33 in` S = 30.25 In' Dead Loads: 0.609 Roof DL = 84.5 pit Floor DL = 117 pit w❑L = 281.5 pit Live Loads: Roof LL = 173.3 pit Floor LL = 500 pit WLL= 673.25 Load Case 1: Gravity Loads Only Load Combinations: D = 1526 lbs D+L = 4236 be D+S = 2465 lbs D+0.75(L)+0.75(8) = 4262 be CD (D) = 0.9 CD (D+L) = 1 Co (D+S) = 1.15 C❑ (D+0.75(L)+0.75(S)) = 1.15 f. = f�L 129.2 psi (la/d)x= 19.6 in E',i = 510000 psi C = 0.8 FSE = 1087.2 F � = 978 psi Fie/F = 1.112 psi (1+F.E/F J/2c = 1.320 Cp = 0.726 P = 710.1 Check= OK psi Bearing of stud on wall plates: Cb = 1.06 P = 664 Check= OK psi Loadings Roofing Material = Shingle/file Roof Pitch = 0.25 Angle = 1.2 Cs = 1.000 Increase for Drift= 1.000 Effective snow load = 35 psi Roof dead load = 17 pet Floor live load = 100 psi Floor dead load = 23 psi Trib. Area ram= 5 ft Trlb. Area rw= 5 It Add. Uniform Load = 80 pit Lateral Load = 20.33 psi Use: (2) 2x6 Full Height King Studs Load Case 2: Gravity Loads + Lateral Loads Co- 1.6 Cr = 1.15 w= 110.2 pit M= 13385.4 in.lb fb = 442.5 psi F'b= 1288.00 psi Check= OK Axial: Check= OK Odd.) = 19.6 In 510000 psi c = 0.8 F.s = 1087.2 psi F = 1360 psi FoE/F = 0.799 (1+F.E/F c)/2c = 1.125 Co = 0.609 F'c= 828.7 psi fc = 129.21 46.2 psi - - Check= OK OK Combined Stress: F�&= 1087.2 1087.2 psi Interaction Formula= 0.32 0.36 Check= OK OK _ Page 141 of 168 KING STUD CALCULATION Left Exersice Species = DF -L Stud Stud Width= 7.51n Stud Depth IQ = 5.5 In L= 9k opening width = 19 It stud spacing = 10.17 ft Fp = 700 psi Fc = 850 psi F�L = 625 psi E = 1400000 psi Emi„ = 510000 PSI CF = 1.00 for bending CF = 1.00 for comp. I I to grain A = 41.25 in` S = 37.61 in' Dead Loads: (le/d), = Roof DL= 50.7 plf Floor DL = 140.4 pit wcL = 211.1 pn Live Loads: 1.2 Roof LL = 104.0 pit Floor LL = 240 pit WLL= 343.95 Load Case 1: Gravity Loads Only Load Combinations: Floor live load = D = 2757 lbs D+L = 5198 lbs D+S = 3614 lbs D+0.75(L)+0.75(5) = 5381 lbs Co (D) = 0.9 Co (D+L) = 1 Co (D+S) = 1.15 Cc (D+0.75(L)+0.75(S)) = 1.15 f� = f�, = 130.4 psi (le/d), = 19.6 in E'mi„ = 510000 psi c = 0.8 FSE = 1087.2 F,= 976 psi F.E/F c = 1.112 psi (1+Fc,/F J/2c = 1.320 Cp = 0.726 F, = 710.1 Check= OK psi Bearing of stud on wall plates: Co = 1.05 F -,L 656 Check = OK psi Loadings Roofing Material = Shingle/Tile Roof Pitch = 0.25 Angle = 1.2 Cs = 1.000 Increase for Drift= 1.000 Effective snow load = 35 psi Roof dead load = 17 psi Floor live load = 40 psi Floor dead load = 23 psi Trib. Area ,= 3 it Trib. Area ,,,,= 6 It Add. Uniform Load = 80 pit Lateral Load = 20.33 psi Use: (2) 2x6 Full Height King Studs Load Case 2: Gravity Loads + Lateral Loads Cc = 1.6 Cr = 1.15 W = 206.7 off M = 25116.2 in.lb fs= 664.2 psi F'e = 1288.00 psi Check = OK Axial: (I./d,) = 19.6 in 2.i; = 510000 psi C = 0.8 F.E = 1087.2 psi F o = 1360 psi F.e/F c = 0.799 (1+FSE/F J/2c = 1.125 Ce = 0.609 F = 828.7 psi 4= Check = Combined Stress: FcEx = Interaction Formula = Check = Page 142 of 168 16.8 psi OK 1087.2 1087.2 psi 0.46 0.56 OK OK T CI O LL C O U N N N F a V O o M e c 0 u N N p pp �'J pp N pNO tyO m �� O w U) O .� O' O 0- V N O C i0 r N m N f7 N C O U y N d � cl OO e N� W Ow N N N suoi}einoleo peyoeuu aaS m tz c 0 U v y a LL N t0 m U) O 0 Ow .M 8Om NmN OW1pN"0 M N d O Z � c E N E E cc!.� c m c 0 0 r 0 0 ? ¢ 1 7 m ¢ H 0 -a ° n O c ti E O aoi 'ami 8 8 c 11� `�2 z 8 a o° a a a a s o u a° w °o 02�CL tl QU WCL IL ILF f: f:3 3 3 3 31 R LL V Page 143 of 168 Use menu item Settings> Printing & Title Block to set these five lines of Information for your program. 'his Wall in File: tAstructurah2016 structural RateinPro(c)1967-2016, Build 11.16.07.15 Criteria 3,544 psi OK Retained Height = 10.00 it Wall height above soil = 0.00 ft Slope Behind Wall = 0.00 Height of Soil over Toe = 6.00 in Water height over heel = 0.0 ft Surcharge Loads Surcharge Over Heel = 50.0 psi Used To Resist Sliding & Overturning Surcharge Over Toe = 0.0 psi Used for Sliding & Overturning Axial Load Applied to Stem j Axial Dead Load = 690.0 lbs Axial Live Load = 857.0 lbs Axial Load Eccentricity = 0.0 in Design Summary Wall Stability Ratios Overturning = 1.74 OK Slab Resists All Sliding I Total Bearing Load = 6,251 lbs ...resultant ecc. = 12.89 In Soil Pressure 0 Toe = 3,544 psi OK Soil Pressure 0 Heel = 0 psi OK Allowable - 4,500 psi Soil Pressure Less Than Allowable ACI Factored @ Toe = 4,962 psi ACI Factored @ Heel = 0 psi Footing Shear W Toe = 22.9 psi OK Footing Shear 0 Heel = 20.6 psi OK Allowable = 75.0 psi illding Calcs Lateral Sliding Force = 2,096.0 Itis Title FT1C. FW10 Page: 1 Job # : Dsgnr: J. Miller Date: 18 OCT 2016 Description.... Cantilevered walls for basement .2850_ha mattson apartments12016-285[ Cantilevered Retaining Wall Soil Data 0.0 #/h Allow Soil Bearing = 4,500.0 psi Equivalent Fluid Pressure Method Active Heel Pressure = 32.0 psi/ft Passive Pressure 250.0 psf/0 Soil Density, Heel = 110.00 pcf Soil Density, Toe = 0.00 pcf FootingIlSoil Friction = 0.400 Soil height to ignore Rebar Placed at = for passive pressure = 12,00 in Lateral Load Applied to Stem Lateral Load = 0.0 #/h ...Height to Top = 0.00 a ...Height to Bottom = 0.00 ft Load Type = Wind (W) Design Method = (Service Level) Wind on Exposed Stem = 0.0 psi (Service Level) # 5 'ertical component of active lateral soil pressure IS IOT considered in the calculation of soil bearing .oad Factors Building Code Dead Load Live Load Earth, H Wind, W Seismic, E IBC 2012,ACI 1.200 1.600 1.600 1.000 1.000 Stem Construction _ ` 2nd Footing Width = Stem OK Design Height Above Fig a= 3.00 Wall Material Above "Ht' _. Concrete Design Method = LRFD Thickness = 10.00 Rebar Size = # 5 Rebar Spacing = 12.00 Rebar Placed at = Edge Design Data - fb/FB+fa/Fa = 0.324 Total Force 0 Section Service Level lbs = Strength Level Itis = 1,417.3 Moment.... Actual Service Level 114 = Strength Level ft-#= 3,497.1 Moment..... Allowable 1t-#= 10,783.7 Service Level Strength Level Shear..... Allowable Anet (Masonry) Rebar Depth 'd' Masonry Data - rm Fs Solid Grouting Modular Ration' Wall Weight Short Term Factor Equiv. Solid Thick. Masonry Block Type Masonry Design Method Concrete Data fc Fy psi = psi = 14.4 psi= 67.1 Int = in= 8.19 Code: IBC 2012,ACI 318-11,ACI 530-11 Adjacent Footing Load Adjacent Footing Load = 0.0-Tbs Footing Width = 0.00 it Eccentricity = 0.00 in Wall to Fig CL Dist = 0.00 It Footing Type Line Load Base Above/Below Soil _ at Back of Wall - 0.0 ft Poisson's Ratio = 0.300 Stem OK 0.00 Concrete LRFD -RFD 10.00 # 5 6.00 Edge 0.476 2,792.7 9,697.0 20,291.7 28.4 67.1 8.19 psi = psi = psi = 125.0 125.0 = Medium Weight = ASD psi= 2,000.0 2,000.0 psi= 60,000.0 60,000.0 Page 144 of 168 Use menu Item Settings > Printing & Title Block to set these five lines of information for your program. This Wall in File: t.\structural\2016 structural Title FT1Cr FW10 Page: 2 Job 9: Dsgnr: J. Miller Date: 18 OCT 2016 Description.... Cantilevered walls for basement -2850 he mattson apartmentst2016-2850 Cantilevered Retaining Wall Concrete Stem Rebar Area Details 2nd Stem Vertical Reinforcing As (based on applied moment) : 0.0988 In2/ft (4/3) " As : 0.1317 in2/ft 200bd/fy : 200(12)(8.1875)/60000: 0.3275 in2/ft 0.0001 bh : 0.0001(12)(10) : 0.012 in2/ft Required Area Provided Area: Maximum Area: Bottom Stem As (based on applied moment) : (4/3)' As: 200bd/fy : 200(12)(8.1875)/60000 0.0001 bh : 0.0001(12)(10) : 0.1317 in2/ft 0.31 in2/ft 0.8873 in2/ft Vertical Reinforcing 0.2739 In2/ft 0.3651 in2/ft 0.3275 In2/ft 0.012 in2/ft Required Area : 0.3275 in2/ft Provided Area : 0.62 in2/ft Maximum Area: 0.8873 in2/ft Footing Dimensions & Strengths Toe W idth = 1.25 ft Heel Width = Total Footing Width ._3_25__ = 4.50 Footing Thickness = 12.00 In Key Width = 0.00 in Key Depth = 0.00 in Key Distance from Toe = 2.00 it f'c = 2,500 psi Fy = 60,000 psi Footing Concrete Density = 150.00pcf Min. As % = 0.0018 Cover @ Top 2.00 @ Btm� 3.00 in Horizontal Reinforcing Code: IBC 2012,ACI 318-11,ACI530-11 Min Stem T&S Point Area 1,680 int Min Stem T&S Reinf Area per it of stem Height: 0.240 int/fl Horizontal Reinforcing Options : One layer of : Two layers of: #4@ 10.00 in #4@ 20.00 In #5@ 15.50 In #5@ 31.00 in #6@ 22.00 In #6@ 44.00 in Horizontal Reinforcing Min Stem T&S Reinf Area 0.720 in2 Min Stem T&S Paint Area per it of stem Height: 0.240 in2/ft Horizontal Reinforcing Options : One layer of : Two layers of: #4@ 10.00 in #4@ 20.00 in #5@ 15.50 in #5@ 31.00 in #641 22.00 in #6@ 44.00 in Footing Design Results Tie Heel Factored Pressure m 4,962 0 psi Mu': Upward = 3,419 706 ft-# Mu'! Downward 192 4,614 it-# Mu: Design 3,227 3,908 it-# Actual l -Way Shear = 22.91 20.63 psi Allow 1 -Way Shear = 75.00 75.00 psi Toe Reinforcing = # 5 @ 6.00 in Heel Reinforcing - # 5 @ 12.00 in Key Reinforcing = None Spec'd Other Acceptable Sizes & Spacings Toe: #4@ 9.26 in, #5@ 14.35 in, #60 20.37 in, #70 27.78 in, #8@ 36.57 in, #9@ 46 Heel: #4@ 9.26 in, #5@ 14.35 In, #6@ 20.37 in, #7@ 27.78 In, #8@ 36.57 in, #9@ 46 Key: No key defined Min footing T&S taint Area Min footing T&S reinf Area per foot If one layer of horizontal bars: #40 9.26 In #50 14.35 in #6@ 20.37 In Page 145 of 168 1.17 In2 0.26 in2 #t If two layers of horizontal bars: #40 18.52 in #5@ 28.70 in #6@ 40.74 In Use menu item Settings> Printing & Title Block Title FT1C r FW10 Page: 3 to set these five lines of information Job #: Dsgnr: J. Miller Date: 18 OCT 2016 for your program. Description.... Cantilevered walls for basement 'his Wall In File: tAstructurah2016 structural jobs\2016.2850_he mattson apartmenlst2016-2850.rpx tetair,Pro (c)1967.2016, Build 11.16.07.18 .icense: KW -06060294 Cantilevered Retaining Wall Code: IBC 2012,ACI 318-11,ACI 530.11 .icense To :LEI Englneera end Surveyors Summary of Overturning & Resisting Forces & Moments .....OVERTURNING.,... .....RESISTING..... Force Distance Moment Force Distance Moment Item be ft ft-# _ lbs ft ft-# Heel Active Pressure = 1,936.0 3.67 7,098.7 Soil Over Heel = _ 2,658.3 3.29 _ 8,750.3 Surcharge over Heel = 160.0 5.50 880.0 Sloped Soil Over Heel = Surcharge Over Toe = Surcharge Over Heel = 120.8 3.29 397.7 Adjacent Footing Load = Adjacent Footing Load = Added Lateral Load = Axial Dead Load on Stem= 690.0 1.67 1,150.0 Load @ Stem Above Soil = ' Axial Live Load on Stem = 857.0 1.67 1,428.3 = Soil Over Toe = 0.63 Surcharge Over Toe = Total 2,096.0 O.T.M. 7,g7g,7 Stem Weight(s) = 1,250.0 1.67 2,083.3 Earth @ Stem Transitions= Footing Weight = 675.0 2.25 1,518.8 Resisting/Overturning Ratio = 1.74 Key Weight = 2.00 Vertical Loads used for Soil Pressure = 6,251.2 lbs Vert. Component — Total= 5,394.2 he R.M: 13,900.2 Axial live load NOT included in total displayed or used for overturning resistance, but is included for soil pressure ce(culation. Vertical component of active lateral soll pressure IS NOT considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance. Tilt - Horizontal Deflection at Too of Wall due to settlement of soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 250.0 pcl Horizontal Dell @ Top of Wall (approximate only) 0.219 In Tho_Lbove c_ticcla(1cnl is r nl valid it the heel soil_Isgninclpmsvure exreepsIhgtl ),Ille toe.. because the wall would then tend to rotate into the retained soil. Page 146 of 168 Strip Footing Uplift Capacity - FT213 `'concrete = 150 pcf bfooting = 18 In dfoorng = 12 in L = 10 It Wsiab = 2 ft tsleb = 4 in As = 0.4 inA2 Pup = 2665 lbs M = 6662.315 Ib -ft Mu = 10659.7 Ib -ft Muanow= 13600 lb -ft OK wfoogng = 2250 Ib wsiab = 1000 Ib Mow = 3250 Ib OK 1. Determine the effective length of footing that can be used to resist the uplift forces based on the capacity of the footing to act as a beam. This can be done in EnerCalc or with the allowable moment above (they give about the same answer). 2. If the uplift Is too high for the footing, try increasing the rebar, the width or the finally the depth. If there is only one or two, use a spot footing to resist any load beyond the capacity of the strip footing. If you have more than that, use a larger strip footing before using spot footings. Page 147 of 168 Title Block Line 1 Project Title: You can change this area Engineer: Project ID: using the "Settings" menu item Project Descr: and then using the "Printing & Material Properties Title Block' selection. -4.805 k -ft Title Block Line li NhNd: 17 OCT Beam on Elastic Foundation File= liStmoWra112016SImcrurel JobsWI6-2850_HAMaasm ApaNnenls@0 FT2 - CODE REFERENCES 0.975: 1 Maximum Deflection Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7.10 Load Combinations Used: IBC 2015 Max Downward L+Lr+S Deflection Material Properties Mu : Applied -4.805 k -ft Fc 112= ' 3.0 ksl m Phi Values Flexure : 0.90 fr= f'c 7.50 = 410.792 psi Shear: 0.750 W Density = 145.0 pct p t = 0.850 X Lt Wt Factor = 1.0 Elastic Modulus = 3,122.0 ksl Span If i Sol SubgradeModulus = 250.0 psi/(inch deflection) Load Combination 1BC 2015 fy - Main Rebar = 60.0ksi Fy- Stirrups = 40.0ksi E - Main Rebar 29,000.0 ksi E - Stirrups = 29,000.0 ksi Stirrup Bar Size # _ It 3 Number of Resisting Legs Per Stirrup 2 Beam is supported on an elastic foundation. W(-5.466) 18"wx10"h Span=8.0 ft Cross Section & Reinforcing Details Rectangular Section, Width =18.0 in, Height =10.0 in Span #1 Reinforcing.... 244 at 3.0 in from Bottom, from 0.0 to 8.0 it in this span Applied Loads _ Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load : D = 1.234, L =1.080, S = 0.3150 k/ft, Tributary Width =1.0 it Point Load: W =-5.466 k 0 4.0 it DESIGN SUMMARY 1381714 Service loads entered. Load Factors will be applied for calculations. Maximum Bending Stress Ratio = 0.975: 1 Maximum Deflection Section used for this span Typical Section Max Downward L+Lr+S Deflection 0.000 in Mu : Applied -4.805 k -ft Max Upward L+Lr+S Deflection 0.000 in Mn ` Phi : Allowable 4.929 k -ft Max Downward Total Deflection 0.046 in Load Combination +1.20D+0.50L+0.50S+W+1.6 Max Upward Total Deflection -2.689 in Location of maximum on span 4.047 it Span # where maximum occurs Span If i Maximum Soil Pressure = Allowable Soil Pressure = 1.664 ksf at 4.00 ft LdComb: +D+L+H 4.50 ksf OK Shear Stirrup Requirements Entire Beam Span Length : Vu < PhiVG2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Maximum Forces & Stresses for Load Combinations Load Combination Location (#) Bending Stress Results_ (kdt ) Segment Length Span # In Span Mu :Max Phe nx Stress Ratio MA%ImumBendingtri ebpe Span If 1 1 7.906 -0.00 1?a�ls 148 of 1 W A.40N1.60H Span # 1 1 7.906 -0.00 1213 0.00 Design OK Title Block Line 1 Project Title: You can change this area Engineer: Proiect ID: using the 'Settings" menu item Project Descr: and then using the 'Printing & Title Block' selection. Title Block I.ine6_ nrmieo:nocTzoisiasaia Beam on Elastic Foundation File=1:13tmclura82016 Stmclurel Jobs120*28M-HA Mattson Apartments@0162850.ec6 cuannmc iuc roan.vnia Description: FT2-Check Load Combination Location (8) Bending Stress Results_ ( k-6 ) Segment Length Span # N Span Mu: Max phi'Mnx Stress Ratio +1.20D+0.50Lr+1.60L+1.60H 'd' Vu (k) - Mu Span # 1 1 7.906 -0.00 12.13 0,00 +1.20D+1.60L+0.50S+1.60H Load Combination Number (ft) (in) Span # 1 1 7.906 -0.00 12.13 0.00 +1.20D+1.60Lr+0.50L+1.60H Req'd Suggest +1200+1.60L+0.50 +1.60 -10.00 Span # 1 1 7.906 -0.00 12.13 0.00 +1.20D+1.60Lr+0.50W+1.60H 10.58 Vu <PhiVd2 Not Reqd 0,00 Span#1 1 7.906 -0.00 12.13 0.00 +120D+1.60Lr-0.50W+1.60H 0.18 0.00 1.00 10.55 Span # 1 1 3.953 2.40 12.13 0.20 +1.20 D+0.50 L+1.6 0 S+1.60 H 0.19 7.00 0.22 0.22 Span # 1 1 7.906 -0.00 12.13 0.00 +120 D+1.60S+0.50W+1.60H 0100 +1.20D+0.50L+0.50S-W+1.601 1 0.28 Span # 1 1 7.906 -0.00 12.13 0.00 +1200+1.605.0.50W+1.60H Vu <PhiVcl2 Not Reqd 0100 0.00 Span # 1 1 3.953 2.40 12.13 0.20 +1.20D+0.50Lr+0.50L+W+1.60H 0,03 1.00 10.58 Vu <PhiVcl2 Span # 1 1 7.906 -0,00 12.13 0.00 +1.20D+0.50Lr+0.50L-W+1.60H 7.00 0,37 0,37 0.05 Span # 1 1 3.953 4.80 12.13 0.40 +120D+0,50L+0.50S+W+1.60H +120D+0.501 -+0.505-W+1.601 1 0.56 7.00 Span # 1 1 7.906 -0.00 12.13 0.00 +1.20D+0.50L+0.505-W+t.60H Not Reqd 0.00 0.00 +1.20D+0.50L+0.50S-W+1.601 Span # 1 1 3.953 4.80 12.13 0.40 +1.20D+0.50L+0.70S+E+1.60H 1.00 10.58 Vu <PhlVd2 Not Reqd Span # 1 1 7.906 -0.00 12.13 0.00 +1.20D+0.50L+0.705-E+1.60H 0.52 0.52 0.14 1.00 Span # 1 1 7.906 -0.00 12.13 0.00 +0.90D+W+0.90H 1 0.85 7.00 0.57 Span # 1 1 7.906 -0.00 12.13 0.00 +0.90D-W+0.90H 0.00 0.00 +1.20D+0.50L+0.50S-W+1.601 1 Span # 1 1 3.953 4.80 12.13 0.40 +0.90D+E+0.90H 10.56 Vu<PhiVd2 Not Reqd 0.00 Span It 1 1 7.906 -0.00 12.13 0.00 +0.90D-E+0.90H 0.68 0.27 1.00 10.58 Span # 1 1 7.906 -0.00 12.13 0.00 Overall Maximum Deflections - Unfactored Loads 0.74 0.74 Load Combination Span Max. '-° Dell Location in Span Load Combination Max. "+" Dell Location in Span _ 1 0.0000 0.000 Span 1 -2.6894 4.000 Detailed Shear Information Span Distance 'd' Vu (k) Mu d'VWMu Phi'Vc Comment Phi'VS Spacing (in) Load Combination Number (ft) (in) Actual Design (k -fl) (k) (k) Req'd Suggest +1200+1.60L+0.50 +1.60 -10.00 7.00 0,17 0.17 0,00 1.00 10.58 Vu <PhiVd2 Not Reqd 0,00 0.00 +1.20D+0.50L+0.50S-W+1.601 1 0.09 7.00 0.18 0.18 0.00 1.00 10.55 Vu <PhiVcl2 Not Reqd 0.00 0.00 +1.20D+0.50L+0.50S-W+1.601 1 0.19 7.00 0.22 0.22 0.01 1.00 10.58 Vu <PhWc/2 Not Reqd 0.00 0100 +1.20D+0.50L+0.50S-W+1.601 1 0.28 7.00 0.27 0,27 0.02 1.00 10.58 Vu <PhiVcl2 Not Reqd 0100 0.00 +1.20D+0.50L+0.50S-W+1.601 1 0.38 7.00 0,32 0,32 0,03 1.00 10.58 Vu <PhiVcl2 Not Raqd 0100 0.00 +1.20D+0.501 -+0.50S -W+1.601 1 0.47 7.00 0,37 0,37 0.05 1.00 10.58 Vu <PhlVd2 Not Reqd 0,00 0.00 +120D+0.501 -+0.505-W+1.601 1 0.56 7.00 0,42 0.42 0.08 1.00 10.68 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+0.50L+0.50S-W+1.601 1 0.66 7.00 0.47 0.47 0.11 1.00 10.58 Vu <PhlVd2 Not Reqd 0,00 0.00 +1.20D+0.50L+0.50S-W+1.601 1 0.75 7.00 0.52 0.52 0.14 1.00 10.58 Vu <PhIVd2 Not Reqd 0,00 0,00 +1.20D+0.50L+0.50S-W+1.601 1 0.85 7.00 0.57 0.57 0.18 1.00 10.58 Vu <PhiVd2 Not Reqd 0.00 0.00 +1.20D+0.50L+0.50S-W+1.601 1 0.94 7.00 0.63 0.63 0.22 1.00 10.56 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.20D+0.50L+0.50S-W+1.601 1 1.04 7.00 0.68 0.68 0.27 1.00 10.58 Vu<PhiVoJ2 Not Reqd 0.00 0.00 +1.200+0.501-+0.5094+1.601 1 1,13 7.00 0.74 0.74 0.32 1.00 10.58 Vu<PhIVd2 Not Reqd 0.00 0.00 +1.20D+0.50L+0.50S-W+1.601 1 1,22 7.00 0.79 0.79 0.38 1.00 10.58 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.20D+0.50L+0.505-W+1.601 1 1,32 7.00 0.85 0185 0.45 1.00 10.58 Vu<PhiVd2 Not Reqd 0.00 0.00 +1.200+0.50L+0.50S-W+1.601 1 1,41 7.00 0.91 0.91 0,52 1.00 10.58 Vu<PhiVd2 Not Reqd 0,00 0.00 +1.20D+0.50L+0.50S-W+1.601 1 1.51 7.00 0,97 0.97 0.59 1.00 10.58 Vu<PhiVd2 Not Reqd 0.00 0.00 +1200+0.501-+0.50S.W+1.601 1 1.60 7.00 1.03 1.03 Pag0R49 of tl'gg 10.58 Vu < PhiVd2 Not Reqd 0.00 0.00 +120D+0,50L+0.50S-W+1.601 1 1.69 7.00 1,10 1.10 0,76 1.00 10.58 Vu<PhiVd2 Not Reqd 0.00 0.00 title Block Line 1 Project Title: lou can change this area Engineer: Project ID; (sing the "Settings' menu item Protect Descr: Ind then using the "Printing 8 Phl'Vc -itle Block' selection. Phi'Vs itle Block Line 6 envied: 17 OCT 2016 12aP1 Beam on Elastic Foundation rile=Nslmclurah2m16slmclum.IJobs12016-2850_HAMahnnApedmems12o162B5o.ec6 (in) ENERCALC, INC. 1983.2018, Build:6.16.721, Ver.6.16,7.21 115111 r,r1,. •r •. . - Description: FT2-Check Detailed Shear Information Span Distance 'd' Vu (k) Mu d'Vu/Mu Phl'Vc Comment Phi'Vs Spacing (in) cad Combination Number (a) (in) Actual Design (k -h) (k) (k) Req'd Suggest 1.20D+0.50L40.50S-W+1.691 1 1,79 7.00 1.16 1.16 0.85 1.00 10.58 Vu<PhiVd2 Not Reqd 0.00 0.00 120D+0.50L+0.50S-W+1.601 1 1.88 7.00 1.23 123 0.95 1.00 10.58 Vu<PhiVG2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S-W+1.601 1 1,98 7.00 1.29 1.29 1.06 1.00 10.58 Vu<PhiVcl2 Not Regd 0.00 0.00 1.20D+0.S0L+0.50S-W+1.601 1 2.07 7.00 1.36 1.36 1.17 1.00 10.58 Vu<PhIVG2 Not Regd 0.00 0.00 1.20D+0.50L+0.50S-W+1.601 1 2.16 7.00 1.42 1.42 1.28 1.00 to.58 Vu<PhlVG2 Not Reqd 0.00 0.00 120D+0.50L+0.50S-W+1.601 1 2,26 7.00 1.49 1.49 1.41 1.00 10.58 Vu<PhiVc/2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S-W+1.601 1 2.35 7.00 1.56 1.56 1.54 1.00 10.58 Vu <PhIVcl2 Not Reqd 0.00 0.00 1.20D+0.50L+0.508-W+1.601 1 2.45 7.00 1.63 1.63 1.67 IM 10.58 Vu<PhlVc/2 Not Reqd 0.00 0.00 1.20D+0.501 -+0.50S -W+1.601 1 2.54 7.00 1.70 1.70 1.82 1.00 10.58 Vu <PhlVc/2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S-W+1.601 1 2.64 7.00 1.78 1.78 1.97 1.00 10.58 Vu<PhlVc/2 Not Reqd 0.00 0.00 120D+0.50L+0.508-W+1.601 1 2.73 7.00 1.85 1.85 2.12 1.00 10.58 Vu <PhlVG2 Not Reqd 0.00 0.00 120D+0.50L+0.50$-W+1.601 1 2.82 7.00 1.92 1.92 2.29 1.00 10.58 Vu <PhIVG2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S-W+1.601 1 2.92 7.00 2.00 2.00 2.46 1.00 10.58 Vu <PhiVG2 Not Reqd 0.00 0.00 120D+0.50L+0.50S-W+1.601 1 3.01 7.00 2.07 2.07 2.64 1.00 10.58 Vu <PhiVd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50$-W+1.601 1 3.11 7.00 2.15 2.15 2.82 1 10.58 Vu <PhiVc(2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S-W+1.601 1 3.20 7.00 2.22 2.22 3.01 1.00 10.58 Vu < PhiVc/2 Not Reqd 0.00 0.00 1.200+0.50L+0.50S-W+1.601 1 3.29 7.00 2.30 2.30 3.21 1.00 10.58 Vu < PhiV62 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S-W+1.601 1 3.39 7.00 2.38 2.38 3.42 1.00 10.58 Vu < PhiVG2 Not Reqd 0.00 0.00 1.20D+0.50L+0.60S-W+1.601 1 3.48 7.00 2.45 2.45 3.63 1.00 10.513 Vu <PhiVG2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S-W+1.601 1 3.58 7.00 2.53 2.53 3.85 1.00 10.58 Vu < PhiVc/2 Not Reqd 0.00 0.00 1.20D+0.50L+0.505-W+1.601 1 3.67 7.00 2.61 2.61 4.08 1.00 10.58 Vu <PhlVc/2 Not Reqd 0.00 0.00 120D+0.50L+0.50S-W+1.601 1 3.76 7.00 2.69 2.69 4.31 1.00 10.58 Vu < PhIVG2 Not Reqd 0.00 0.00 1.20D+O.SOL+0.50S-W+1.601 1 3.86 7.00 2.77 2.77 4.55 1.00 10.58 Vu <PhiVc/2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S-W+1.601 1 3.95 7.00 2.84 2.84 4.80 1.00 10.58 Vu<PhlVG2 Not Reqd 0.00 0.00 1.20D+0.50L+0.505+W+1.60 1 4.05 7.00 2.77 2.77 4.80 1.00 10.58 Vu<PhlVG2 Not Reqd 0.00 0.00 1.20D+0.50L+0.509+W+1.60 1 4,14 7.00 2.69 2.69 4.55 1.00 10.58 Vu<PhlVG2 Not Reqd 0.00 0.00 1.20D+0.50L+0.508+W+1.60 1 4.24 7.00 2.61 2.61 4.31 1.00 10.58 Vu <PhIVG2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S+W+1.60 1 4.33 7.00 2.53 2.53 4.08 1.00 10.58 Vu <PhiVcl2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S+W+1.60 1 4.42 7.00 2.45 2.45 3.85 1.00 10.58 Vu <PhiVG2 Not Reqd 0.00 0.00 1.20D+0.50L+0.505+W+1.60 1 4,52 7.00 2.38 2.38 3.63 1.00 10.58 Vu <PhIVd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.505+W+1.60 1 4.61 7.00 2.30 2.30 3.42 1.00 10.58 Vu < PhIVG2 Not Reqd 0.00 0.00 1.20D+0.50L+0.505+W+1.60 1 4,71 7,00 2,22 222 3.21 1.00 10.58 Vu <PhiVd2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S+W+1.60 1 4.80 7.00 2.15 2.15 3.01 1.00 10.58 Vu <PhiVc12 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S+W+1.60 1 4.89 7.00 2.07 2.07 2.82 1.00 10.58 Vu<PhiVG2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S+W+1.60 1 4.99 7.00 2.00 2.00 2.64 1.00 10.58 Vu <PhiVC12 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S+W+1.60 1 5.08 7.00 1.92 1.92 2.46 1.00 10.58 Vu <PhiVG2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S+W+1.60 1 5.16 7.00 1.85 1.85 2.29 1.00 10.58 Vu <PhiVC/2 Not Reqd 0.00 0.00 1.20D+0.50L+0.505+W+1.60 1 5.27 7.00 1.78 1.78 2.12 1.00 10.58 Vu<PhiVG2 Not Reqd 0.00 0.00 120D+0.50L+0.505+W+1.60 1 5.36 7.00 1.70 1.70 1.97 1.00 10.58 Vu<PhiVG2 Not Reqd 0.00 0.00 1.20D+0.50L+0.S0S+W+1.60 1 5.46 7.00 1.63 1.63 1.82 1.00 10.58 Vu<Ph1VG2 NotRegd 0.00 0.00 1.20D+0.50L+O.SOS+W+1.60 1 5.55 7.00 1.56 1.56 1.67 1.00 10.58 Vu<PhiVc/2 Not Reqd 0.00 0.00 1.20D+0,50L+0.505+W+1.60 1 5.65 7.00 1.49 1.49 1.54 1.00 10.58 Vu<PhlVG2 Not Reqd 0100 0.00 1.20D+0.50L+0.505+W+1.60 1 5.74 7.00 1.42 1.42 1.41 1.00 10.58 Vu<PhiVG2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S+W+1.60 1 5.84 7.00 1.36 1.36 1.28 1.00 10.58 Vu<PhiVG2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S+W+1.60 1 5.93 7.00 1.29 1.29 1.17 1A0 10.58 Vu<PhiVG2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S+W+1.60 1 6.02 7.00 1.23 1.23 1.06 1.00 10.58 Vu<PhiVG2 Not Reqd 0.00 0.00 1.20D+0.50L+0.50S+W+1.60 1 6.12 7.00 1.16 1.16 0.95 1.00 10.58 Vu<PhiVG2 Not Reqd 0.00 0.00 120D+0.50L+0.50S+W+1.60 1 6.21 7.00 1.10 1.10 0.85 1.00 10.58 Vu<PhlVc/2 Not Reqd 0.00 0.00 .20D+0.50L+0.50S+W+1.60 1 6.31 7.00 1.03 1.03 0.76 1.00 10.58 Vu<PhlW2 Not Reqd 0.00 0.00 .20D+0.50L+0.50S+W+1.60 1 6.40 7.00 0.97 0.97 0.67 1.00 10.58 Vu<PhiVG2 Not Reqd 0.00 0.00 .20D+0.50L+0.50S+W+1.60 1 6.49 7.00 0.91 0.91 0.59 1.00 10.58 Vu<PhlVG2 Not Reqd 0100 0.00 .200+0,50L+0.508+W+1.60 1 6.59 7.00 0.85 0.85 0.52 1.00 10.58 Vu<PhiVG2 Not Reqd 0.00 0.00 .20D+0.50L+0.50S+W+1.60 1 6.68 7.00 0.79 0.79 Pag®41§0 of 1%.% 10.58 Vu <PhiVG2 Not Reqd 0.00 0.00 20D+0.50L+0.505+W+1.60 1 8.78 7.00 0.74 0.74 0.36 1.00 10.58 Vu<PhiVG2 Not Reqd 0.00 0.00 Title Block Line 1 You can change this area using the "Settings" menu item and then using the 'Printing & Title Block' selection. Title Block Line 6 Beam on Elastic Foundation FT2-Check Detailed Shear Information Span Load Combination Number +1.20D+O.SOL+0.50S+ +1.60 1 +1.20D+0.50L+0.50S+W+1.60 i +1.20 D+0.50 L+0.50 S+W+1.60 1 +1200+O.SOL+0.50S+W+1.60 1 +1.20D+0.50L+0.50S+W+1.60 1 +1.20D+0.50L+0.503+W+1.60 1 +1.20D+0.50L+0.50S+W+1.60 1 +1.20D+0.50L+0.50S+W+1.60 1 +1.20D+O.SOL+0.50S+W+1.80 i +1.20D+0.50L+0.508+W+1.60 1 +1.200+0.50L+0.508+W+1.60 1 +1.20D+1.60L+0.50S+1.60H 1 Distance V Vu (k) Reqd Mu (ft) (in) Actual Design (k -ft) 6.87 7.00 0.68 0.68 0.32 6.06 7.00 0.63 0.63 0.27 7.06 7.00 0.57 0.57 0.22 7.15 7.00 0.52 0.52 0.18 7.25 7.00 0.47 0.47 0.14 7.34 7.00 0.42 0.42 0.11 7.44 7.00 0.37 0.37 0.08 7.53 7.00 0.32 0.32 0.05 7.62 7.00 0.27 0.27 0.03 7.72 7.00 0.22 0.22 0.02 7.81 7.00 0.18 0.18 0.01 7.91 7.00 0.17 0.17 0.00 Project Title: Engineer: Project Descr. PVu/Mu Phi"Vc Comment Reqd (k) Not Regd 1.00 10.58 Vu<PhiVc/2 1.00 10.58 Vu<PhiVc/2 1.00 10.58 Vu<PhiVd2 1.00 10.58 Vu<PhiVd2 1.00 10.58 Vu<PhlVc12 1.00 10.58 Vu<PhIVd2 1.00 10.58 Vu<PhiVc/2 1.00 10.58 Vu<PhiVcl2 1.00 10.58 Vu<PhiVd2 1.00 10.58 Vu<PhiVo/2 1.00 10.58 Vu<PhiVP/2 1.00 10,58 Vu<PhiVc/2 Page 151 of 168 Project ID: Pwted A ] OGT 201 e. 190PM Phi'Vs Spacing (in) (k) Reqd Suggest Not Regd 0.00 0.00 Not Regd 0.00 0.00 Not Regd 0.00 0.00 Not Reqd 0.00 0,00 Not Reqd 0.00 0,00 Not Reqd 0.00 0,00 Not Reqd 0.00 0.00 Not Reqd 0.00 0.00 Not Reqd 0.00 0.00 Not Reqd 0.00 0.00 Not Reqd 0.00 0.00 Not Reqd 0.00 0,00 Title Block Line 1 You can change this area using the 'Settings' menu item and then using the 'Printing & Title Block' selection. Title Block Line 6 General Footina FT4 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7.10 Load Combinations Used; IBC 2012 General Information Material Properties rc : Concrete 28 day strength = fyy : Rebar Yield = Ec : Concrete Elastic Modulus = Concrete Density = N Values Flexure = Shear = Analysis Settings Min Steel % Bending Point. Min Allow %Temp Point. Min. Overturning Safety Factor Min. Sliding Safety Factor Add Fig Wt for Soil Pressure Use fig wt for stability, moments & shears Add Pedestal Wt for Soil Pressure Use Pedestal wt for stability, mom & shear Dimensions Width parallel to X -X Axis Length parallel to Z -Z Axis = Footing Thickness = Pedestal dimensions... px : parallel to X -X Axis = pz : parallel to Z -Z Axis Height = Rebar Centerline to Edge of Concrete.., at Bottom of fooling Project Title: Engineer: Project Descr: File= 1:1Struclura[016 Simclural Project ID: PmW 17 OCT 2016, 11 .19414 3.50 fl 3.50 it 12.0 in 12.0 In 12.0 in 30.0 in 3.0 in Reinforcing Soil Design Values Bars parallel to X -X Axis 2.50 ksi Allowable Soil Bearing = 4.50 ksf 60.0 ksi Increase Bearing By Footing Weight = No 3,122.0 ksi Soil Passive Resistance (for Sliding) = 250.0 pcf 145.0 pcf Soil/Concrete Friction Coeff. = 0.30 0.90 Direction Requiring Closer Separation n/a 0.750 Increases based on footing Depth N Bars required on each side of zone We Footing base depth below soil surface = 2.50 ft Allow press, increase per foot of depth = ksf = 0.00180 when footing base is below = it = 1.0:1 = 1.0 :1 Increases based on footing plan dimension Yes Allowable pressure increase per foot of depth Yes No when max, length or width is greater than — ksf No N = it 3.50 fl 3.50 it 12.0 in 12.0 In 12.0 in 30.0 in 3.0 in Reinforcing Bars parallel to X -X Axis Number of Bars = 7.0 Reinforcing Bar Size = ii 4 Bars parallel to Z -Z Axis Number of Bars = 7.0 Reinforcing Bar Size = # 4 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a k Bars required within zone n/a N Bars required on each side of zone We Applied Loads I I I r�v�eale � I D Lr L SW E H P: Column Load = 23.960 19.230 7.230 k OB: Overburden ksf M-xx k -ft M-zz = k -ft V -x = 0.880 0.880 k V -z = k Page 152 of 168 Title Block Line i Project Title: You can change this area using the "Settings' menu item Engineer: Project ID: Project Descr: and then using the "Printing & 4.50 Title Block' selection. Item Title Block Line _6_ _ _ _ General Footing P(ded:17 OCT He=19Slruclurea2016 Stmolural J0bs12016.2850_HA Mattson Apanmenls120 ENERCALC. INC. 16832019. eulld:6.1812t.1 DESIGNSUMMARY 4.50 X -X, +D+L 4.50 X -X. +D+S 4.50 Min. Ratio Item Applied Capacity Governing Load Combination PASS 0.910 Soil Bearing 4.095 ksf 4.50 ksf +DA 750L+0.750S+0.5250E about Z -Z a PASS n/a Overturning -X-X 0.0 Wt 0.0k -ft No Overturning PASS 13.438 Overturning -Z-Z 2.156 k -N 28.972 Wt +0.60D+0.70E PASS 10.904 Sliding -X-X 0.6160 to 6.717 k +0.60D+0.70E PASS n/a Sliding - Z -Z 0.0 k 0.0 k No Sliding PASS n/a Uplift 0.0 k 0.0 to No Uplift PASS 02613 Z Flexure (+X) 4.012 k - ft 15.353 k -ft +1200+1.60L+0.50S PASS 0.2613 Z Flexure (-X) 4.012 k - ft 15.353 Wit +1.20D+1.60L+0.50S PASS 0.2613 X Flexure (+Z) 4.012 k -ft 15.353 k -ft +120D+1.60L+0.50S PASS 0.2613 X Flexure (-Z) 4.012 k -ft 15.353 k -ft +120D+1.60L+0.50S PASS 0.3330 1 -way Shear (+X) 24.975 psi 75.0 psi +1.20D+1.60L+0.50S PASS 0.3330 1 -way Shear (-X) 24.975 psi 75.0 psi +120D+1.60L+0.50S PASS 0.3330 1 -way Shear (+Z) 24.975 psi 75.0 psi +1.200+1.60L+0.50S PASS 0.3330 1 -way Shear (-Z) 24,975 psi 75.0 psi +120D+1.60L+0.50S PASS 0.4163 2 -way Punching 62.438 psi 150.0 psi +120D+1.60L+0.50S Detailed Results Soil Bearing_ Rotation Axis & Load Combination... Gross Allowable X -X. D Only 4.50 X -X, +D+L 4.50 X -X. +D+S 4.50 X -X. +D+0.750L 4.50 X -X, +D+0.750L+0.750S 4.50 X -X. +D+0.60W 4.50 X -X. +D+0.70E 4.50 X-X.+D+0.750L+0.450W 4.50 X -X. +D+0.750L+0.750S+0.450W 4.50 X -X. +D+0.750L+0.750S+0.5250E 4.50 Overturning Stability Rotation Axis & Load Combination... X -X. X -X. X -X. X -X. X -X, X -X. X -X, X -X. X -X, X -X. X -X. X -X. 4.50 4.50 4.50 4.50 Xecc Zecc Actual Eoll Beaiing Siress @ Location ActualI Allow Infinity (in) Bottom, -Z Top, +z Left, _X Right, +X_ gatlo _ n/a 0.0 2.252 2.252 n/a We 0.500 n/a 0.0 3.822 3.822 n/a n/a 0.849 n/a 0.0 2.843 2.843 n/a n/a 0.632 n/a 0.0 3.430 3.430 Na n/a 0.762 n/a 0.0 3.872 3.672 rda We 0.860 n/a 0.0 2.252 2.252 n/a Na 0.500 We 0.0 2.252 2.252 n/a n/a 0.500 n/a 0.0 3.430 3.430 n/a n/a 0.762 n/a 0.0 3.872 3.872 nla We 0.860 We 0.0 3.872 3.872 n/a n/a 0.860 We 0.0 1.351 1.351 We Na 0.300 n/a 0.0 1.351 1.351 n/a n/a 0.300 0.0 n/a n/a We 2.252 2.252 0.500 0.0 n/a n/a Na 3.822 3.822 0.849 0.0 n/a n/a Na 2.843 2.843 0.632 0.0 We n/a We 3.430 3.430 0.762 0.0 We n/a We 3.872 3.872 0.860 0.8037 We Na n/a 1.998 2.507 0.557 0.9376 We We n/a 1.956 2.549 0.566 0.3959 We We n/a 3.239 3.621 0.805 0.3506 n/a n/a n/a 3.682 4.063 0.903 0.4090 nla We n/a 3.650 4.095 0.910 1.339 n/a n/a n/a 1.097 1.606 0.357 1.563 Na We n/a 1.055 1.648 0.366 Overturning Moment None None None None None None None None None None None None Resisting Moment Stability Ratio Status 0.0 k -ft Infinity OK 0.0 k -ft Infinity OK 0.0 k -ft Infinity OK 0.0 Wt Infinity OK 0.0 Wt Infinity OK 0.0 Wt Infinity OK 0.0 k -ft Infinity OK 0.0 lo -it Infinity OK 0.0 k -ft Infinity OK 0.0 k -ft Infinity OK 0.0k -ft Infinity OK 0.0k -ft Infinity OK Page 153 of 168 Title Block Line 1 You can change this area using the 'Settings" menu item and then using the "Printing & Title Block' selection. Title Block Line 6 General Footing Description : Overturning Stability Rotation Axis & _ Load Combination... Z -Z. D Only Z -Z, +D+L Z -Z, +D+S Z -Z, Z -Z. Z -Z. Z -Z. Z -Z, Z -Z. Z -Z, Z -Z, Z -Z. Sliding Stability Force Application Axis Load Combination... X -X, D Only X -X, +D+L X -X. +D+S X -X. +D+0.750L X -X. +D+0.750L+0.750S X -X. +D+0.60W X -X. +D+0.70E X-X.+D+0.750L+0.450W X -X, +D+0.750L+0.750S+0.450W X-X.+0+0.750L+0.750S+0.5250E X -X, +0.60D+0.60W X -X. +0.60D+0.70E Z -Z. D Only Z -Z, +D+L Z -Z, +D+S Z -Z. +D+0.750L Z -Z. +D+0.750L+0.750S Z -Z. +D+0.750L+0.750S+0.5250E Z -Z. +0.60D+0.60W Z -Z. +0.60D+0.70E Z -Z. +D+0.60W Z -Z. +D+0.70E Z -Z. +D+0.750L+0.450W Z -Z. +0+0.750L+0.750S+0.450W Footing Flexure Project Title: Engineer: Protect Descr: Project ID: PWd. File= IASImcNrak2016 Slmctural Job020162850_HAMattson ADaM Overturnin Moment Resisting Moment Stability Ratio Status None 0.0k -ft Infinity OK None 0.0 k -ft Infinity OK None 0.0 k4t Infinity OK None 0.0 k -ft Infinity OK None 0.0k -ft Infinity OK 1.848 k4t 48.287 k -ft 26.129 OK 2.156 k -fl 48.287 k -fl 22.397 OK 1.386k -fl 73.526k -ft 53.049 OK 1.386 k4t 83.016 k -ft 59.896 OK 1.617 k -ft 83.016 k -ft 51.339 OK 1.848 k -ft 28.972 k -ft 15.678 OK 2.156 k -fl 28.972 k -ft 13.438 OK 0.0 k 15.797 k No Slidinq All units k Sliding Force Resisting Force Stability Ratio Status 0.0 k 10.028 k No Sliding OK 0.0 k 15.797 k No Slidina OK 0.0 k 12.197 k No Slidina OK 0.0 k 14.355 k No Slidina OK 0.0 k 15.981 k No Slidina OK 0.5280 k 10.028 k 18.992 OK 0.6160 k 10.028 k 16.279 OK 0.3960 k 14.355 k 36.249 OK 0.3960 k 15.981 k 40.357 OK 0.4620 k 15.981 k 34.591 OK 0.5280 k 6.717 k 12.721 OK 0.6160 k 6.717 k 10.904 OK 0.0 k 10.028 k No Slidina OK 0.0 k 15.797 k No Slidinq OK 0.0 k 12.197 k No Slidina OK 0.0 k 14.355 k No Slidinq OK 0.0 k 15.981 k No Sliding OK 0.0 k 15.981 k No Sliding OK 0.0 k 6.717 k No Sliding OK 0.0 k 6,717 k No Slidinq OK 0.0 k 10.028 k No Slidina OK 0.0 k 10,028 k No Slidina OK 0.0 k 14.355 k No Sliding OK 0.0 k 15,981 k No Slidinq OK Flexure Axle & Load Combinatlon Mu Side Tension As Req'd Gym. As k -ft Surface in12 102 X-X.+1.40D 2.124 +Z Bottom 0.2592 Min TemD% X -X, +1.40D 2.124 -Z Bottom 0.2592 Min Temp % X-X,+1,20D+1.60L 3.782 +Z Bottom 0.2592 Min TemD% X-X.+1.20D+1.60L 3.782 -Z Bottom 0.2592 Min Term) % X-X,+1.20D+1.60L+0.50S 4.012 +Z Bottom 0.2592 Min Term) % X -X, +120D+1.60L+0.50S 4.012 -Z Bottom 0.2592 Min Temp % X-X.+120D+0.50L 2.433 +Z Bottom 0.2592 Min TemD% X-X.+120D+0.50L 2.433 -Z Bottom 0.2592 MinTemD% X-X,+120D+0.50W 1.820 +Z Bottom 0.2592 MinTemD% X -X, +120D+0.50W 1.820 -Z Bottom 0.2592 Min TeMD % X -X, +120D+0.50L+1.60S 3.171 +Z Bottom 0.2592 Min Two % X -X, +120D+0.50L+1.60S 3.171 -Z Bottom 0.2592 Min TemD % X-X.+120D+1.60S+0.50W 2.558 +Z Bottom 0.2592 Min Temp %, X-X.+120D+1.60S+0.50W 2.558 -Z Bottom 0.2592 Min TemD% X -X. +1.20D+0.50L+W 2.433 +Z Bottom 0.2592 Min Temp %, X -X, +120D+0.50L+W 2.433 -Z Bottom 0.2592 Min TemD % X -X, +120D+0.50L+0.508+W 2.664 +Z Bottom 0.2592 Min TemD % X -X, +1.20D+0.50L+0.50S+W 2.664 -Z Bottom 0.2592 Min Temp % Page 154 of 168 Actual As Phi'Mn IM2 k -ft 15.353 15.353 15.353 15.353 15.353 15.353 15.353 Status OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK Title Block Line 1 You can change this area using the "Settings' menu item and then using the "Printing & Title Block' selection. Title Block Une 6 General Footing Footing Flexure Flexure Axis & Load Combination X -X, +1.200+0,50L+0.70S+E X -X, +1.20D+0.50L+0.70S+E X -X, +0.90D+W X -X, +0.90D+W X -X. +0.90D+E X -X. +0.90D+E Z -Z, +1.40D Z -Z, +1.40D Z -Z, +1.20D+1.60L Z-Z,+1.20D+1.60L Z -Z. +120D+1.60L+0.50S Z -Z, +1.200+1.60L+0.50S Z-Z.+1.20D+0,50L Z -Z, +120D+0.50L Z -Z. +1.20D+0.50W Z -Z. +1.20D+0.50W Z -Z. +1.20D+0.50L+1.60S Z -Z. +1.20D+0.50L+1.60S Z -Z. +120D+1.605+0.50W Z -Z, +1.20D+1.608+0.50W Z -Z, +1.20D+0,50L+W Z -Z, +1.20D+0.50L+W Z -Z, +120D+0.50L+0.50$+W Z -Z, +1,20D+0.50L+0.50S+W Z -Z, +1.20D+0.50L+0.70S+E Z -Z. +120D+0.50L+0.70S+E Z -Z, +0,90D+W Z -Z, +0.90D+W Z -Z, +0.90D+E Z-Z,+0.90D+E One Way Shear Load Combination... +1,40D _.._ +1.20D+1.60L +120D+1,60L+0.50S +1.20D+0.50L +120D+0,50W +1.20D+0.50L+1.609 +1.20D+1.60S+0.50W +1.20D+0.50L+W +1.20D+0.50L+0.50S+W +1.20D+0.50L+0.70S+E +0.90D+W +0.90D+E Punching Shear Load Combination.,. +1.40D +1.20D+1.60L +1.20D+1.60L+0.50S +1.20D+0.50L +1.20D+0.50W +1.20D+0.50L+1.60S +120D+1.605+0.50W +120D+0.50L+W +120D+0.50L+0.50S+W +120D+0.50L+0.70S+E +0.90D+W +0.90D+E Project Title: Engineer: Project Descr: File=t:1Blm (WV016 Project ID: Priplad. 17 OCT 2016. 1$.19AM HA Mattson Apadments12016 2850.ec6 183.2016, Builds.16.7.21, Ver.6.15.7.21 Mu Side Tension As Req'd Gvrn. As Actual As Phi'Mn Status k -ft _Surface 0.202 102 InA2 InA2 k -k _ 2.756 +Z Bottom 02592 Min Temo % 0.40 15.353 OK 2.756 -Z Bottom 0.2592 Min Temo % 0.40 15.353 OK 1.365 +Z Bottom 0.2592 Min Two % 0.40 15.353 OK 1.365 Z Bottom 0.2592 Min Temp % 0.40 15.353 OK 1.365 +Z Bottom 0.2592 Min Temo % 0.40 15.353 OK 1.365 -Z Bottom 0.2592 Min Temp % 0.40 15.353 OK 2.124 X Bottom 0.2592 Min Temp % 0,40 15.353 OK 2.124 +X Bottom 0,2592 Min Temp % 0.40 15.353 OK 3,782 -X Bottom 0.2592 Min Temp % 0.40 15.353 OK 3.782 +X Bottom 0.2592 Min Two % 0.40 15.353 OK 4.012 -X Bottom 0.2592 Min Temo % 0.40 15.353 OK 4.012 +X Bottom 0.2592 Min Temo % 0.40 15.353 OK 2.433 -X Bottom 0.2592 Min Temp % 0.40 15.353 OK 2.433 +X Bottom 0.2592 Min Temp % 0.40 15.353 OK 1.692 •X Bottom 0.2592 Min Temp % 0.40 15.353 OK 1,949 +X Bottom 0.2592 Min Two % 0.40 15.353 OK 3.171 •X Bottom 0.2592 Min Temo% 0.40 15.353 OK 3.171 +X Bottom 0.2592 Min Temo % 0.40 15.353 OK 2.430 -X Bottom 0.2592 Min Temo% 0.40 15.353 OK 2.686 +X Bottom 0.2592 Min Temo % 0.40 15.353 OK 2.177 -X Bottom 0.2592 Min Temp% 0.40 15.353 OK 2.690 +X Bottom 0.2592 Min Two % 0.40 15.353 OK 2.407 •X Bottom 0.2592 Min Temp% 0.40 15.353 OK 2.920 +X Bottom 0.2592 Min Temo % 0.40 15.353 OK 2.499 -X Bottom 0.2592 Min Temp % 0.40 15.353 OK 3.012 +X Bottom 0.2592 Min Temo % 0.40 15.353 OK 1.109 -X Bottom 0.2592 Min Temo % 0,40 15.353 OK 1.622 +X Bottom 0.2592 Min Temo % 0.40 15.353 OK 1.109 -X Bottom 0.2592 Min Temo % 0.40 15.353 OK 1.622 +X Bottom 0.2592 Min Temo % 0.40 15.353 OK Vu @ -X VU @ +X Vu @ -Z Vu @ +Z Vu:Maz_ 13.219 Dsi 13.219 Dsi 13.219 osi 13.219 osi 13.219 osi 23.54 Dsi 23.54 osi 23.54 osi 23.54 osi 23.54 osi 24.975 psi 24.975 psi 24,975 osi 24.975 osi 24.975 Dsi 15.146 osi 15.146 osi 15.146 osi 15.146 nsi 15.146 osi 10.44 osi 12.221 Dsi 11.331 osi 11.331 osi 12.221 Dsi 19.737 Dsi 19.737 osi 19.737 osi 19.737 osi 19,737 Dsi 15.031 osi 16,812 Dsi 15,921 osi 15.921 osi 16.812 Dsi 13.365 Dsi 16.927 psi 15.146 osi 15.146 Dsi 16.927 Dsi 14.8osi 18.362 osi 16.581 osi 16.581 psi 18.362 Dsi 15.374 osi 18.936 osi 17.155 psi 17.155 Dsl 18.936 osi 6,717 Dsi 10.279 net 8.498 Dsi 8.498 psi 10.279 osi 6.717 Dsi 10.279 osi 8.498 psi 8.498 Dal 10.279 psi Pd 33.049 osi 58.851 psi 62.438 osi 37.866 osi 28.327 Dsi 49,342 Dsi 39.804 psi 37.866 osi 41.452 osi 42.887 Dsi 21.246 Dsi 21.246 osi Phl'Vn 150Dsi 150Dsi 150asi 150psi 150psi 150osi 150Dsi 150osi 150Dsi 150Dsi 150Dsi 150Dsi Page 155 of 168 Vu / Phi'Vn 0.2203 0.3923 0.4163 0.2524 0.1888 0.3289 0.2654 0.2524 0.2763 0.2859 0.1416 0.1416 Phi Vn Vu / Phi'Vn Status 75 osl 0.1763 OK 75 osl 0.3139 OK 75 osi 0.333 OK 75 osl 0.202 OK 75 osi 0.163 OK 75 psi 0.2632 OK 75 Dsi 0.2242 OK 75 osi 0.2257 OK 75 osl 0.2448 OK 75 Dsi 0.2525 OK 75 psi 0.1371 OK 75 Dsi 0.1371 OK All units k Status OK OK OK OK OK OK OK OK OK OK OK OK Fitts Block Line 1 fou can change this area ising the 'Settings' menu item Ind then using the "Printing & little Block' selection. title Block Line 6 General Footing i[mirM,41,12#14 rr.. Description : FT5 Code References Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 -oad Combinations Used: IBC 2012 General Information Project Title: Engineer: Project Descr: Project ID: _ Pfnied:17ocr2016. msanr FIe= 1.0trucNreA2016 SlmcluraLbbs12016285LHA Menson Aparhenis12016.2850.ec6 ENERCALC. INC. 19113-2016. Bulida.16.7.21. Ver6.16.7.21 Material Properties Soil Design Values ft : Concrete 28 day strength = 2.50 ksi Allowable Soil Bearing fy : Rebar Yield = 60.0 ksi Increase Beading By Footing Weight Ec : Concrete Elastic Modulus 3,122.0 ksi Soil Passive Resistance (for Sliding) Concrete Density = 145.0 pcf Soil/Concrete Friction Coefl. N Values Flexure = 0.90 1g Z -Z Axis Shear = Analysis Settings 0.750 Increases based on footing Depth Min Steel % Bending Reinf. = Footing base depth below soil surface Allow press. increase per foot of depth Min Allow %Temp Reinf. = 0.00180 when footing base is below Min. Overturning Safety Factor = 1.0 :1 3.918 Min. Sliding Safety Factor = 1.0 :1 Increases based on footing plan dimension Add Fig Wt for Soil Pressure Yes Allowable pressure increase per foot of depth Use ftg wt for stability, moments & shears Yes /-z = Add Pedestal Wt for Soil Pressure No when max. length or width is greater than Use Pedestal wt for stability, mom & shear No Dimensions Width parallel to X -X Axis = 3.50 it Length parallel to Z -Z Axis = 2.0 it Footing Thickness = 12.0 in Pedestal dimensions px : parallel to X -X Axis = 12.0 in pz : parallel to Z -Z Axis = 12.0 in Height = 30.0 in Rebar Centerline to Edge of Concrete... at Bottom of footing = 3.0 in Reinforcing Bars parallel to X -X Axis Number of Bars = 3 Reinforcing Bar Size # 4 Bars parallel to Z -Z Axis Number of Bars = 5 Reinforcing Bar Size = # 4 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation 1g Z -Z Axis # Bars required within zone 72.7% ;._ # Bars required on each side of zone 27.3% 4pplied Loads D Lr • Column Load 3.918 OB: Overburden = N-xx = v1-zz = /-x = /-z = FA L_ 10.576 Page 156 of 168 S c 4.50 ksi No 250.0 pcf 0.30 2.50 it ksf it 5.868 2.178 0.6520 0.2420 ksf it H k ksf k -0t k -ft k k Title Block Line 1 You can change this area using the "Settings' menu item and then using the "Printing & Title Block' selection. Title Block Line 6 General Footing Description : DESIGN SUMMARY Project Title: Engineer: Project Descr: Project ID: Pnnted:170CT2016, 196PId File=tAStWUra62016 Structural Jobs12016.2650 HA Mattson Apadmentst2016¢950.ec6 Design OK Detailed Results Soil Bearing_ Rotation Axis & Load Combination... Overturning Stability Rotation Axis & Load Combination... X -X. D Oniv X -X, +D+L X -X. +D+0.750L X -X, +D+O.60W X -X. +D+0.70E X -X. +D+0.750L+0.45oW X -X. +D+0.750L+0.5250E X-X.+0.60D+0.60W X-X,+0.60D+0.70E Z -Z. D Onlv Z -Z, +D+L Z -Z. +D+0.750L Z -Z, +D+0.60W Z -Z, +D+0,70E Z -Z, +D+0.750L+0.450W Z -Z. +D+0.750L+0.5250E Z-Z.+0.60D+o.60W Z-Z,+o.60D+0.70E Min. Ratio Item Applied Capacity Governing Load Combination PASS 0.6856 Soil Besting 3.085 ksf 4.50 ksf +0.60D+0.60W about Z -Z axis PASS n1a Overturning -X -X 0.0k -it 0.0 Wt No Overturning PASS 1.272 Overturning -Z-Z 4.890 Wt 6.219 k -ft +0.60D+0,60W PASS 5.282 Sliding - X -X 0.3912 k 2.066 k +0.60D+0.60W PASS n/a Sliding - Z -Z 0.0 k 0.0 k No Sliding PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.2159 Z Flexure (+X) 2.521 k -ft 11.674 k -fl +0.90D+W PASS 0.2048 Z Flexure (-X) 2.390 k -ft 11.674 k -R +1.20D+1.60L PASS 0.03435 X Flexure (+Z) 0.3826 k -ft 11.139 k -ft +1.200+1,60L PASS 0.03435 X Flexure (-Z) 0.3826 k -ft 11.139 Wit +1.20D+1,60L PASS 0.2967 1 -way Shear (+X) 22.249 psi 75.0 psi +0.90D+W PASS 0.1984 1 -way Shear (-X) 14.879 psi 75.0 psi +1.20D+1.60L PASS Na 1 -way Shear (+Z) 0.0 psi 75.0 psi n/a PASS n/a 1 -way Shear (-Z) 0.0 psi 75.0 psi n/a PASS 0.1071 2 -way Punching 16.059 psi 150.0 psi +1.20D+1.60L Detailed Results Soil Bearing_ Rotation Axis & Load Combination... Overturning Stability Rotation Axis & Load Combination... X -X. D Oniv X -X, +D+L X -X. +D+0.750L X -X, +D+O.60W X -X. +D+0.70E X -X. +D+0.750L+0.45oW X -X. +D+0.750L+0.5250E X-X.+0.60D+0.60W X-X,+0.60D+0.70E Z -Z. D Onlv Z -Z, +D+L Z -Z. +D+0.750L Z -Z, +D+0.60W Z -Z, +D+0,70E Z -Z, +D+0.750L+0.450W Z -Z. +D+0.750L+0.5250E Z-Z.+0.60D+o.60W Z-Z,+o.60D+0.70E Overturning Moment None None None None None None None None None None None None 4.890 k -ft 2.118 k -ft 3.668 k - ft 1.588 k -ft 4.890 k -ft 2.118 k4t -_ - -- Actual Sall Bearing Streas 4� Locaiion Xecc Zeoc Gross Allowable Left, -X - R ht, +X 4.50 n/a 0.0 4.50 n/a 0.0 4,50 n/a 0.0 4.50 We 0.0 4.50 We 0.0 4.50 We 0.0 4.50 n/a 0.0 4.50 n1a 0.0 4.50 We 0.0 4.50 0.0 rda 4.50 0.0 n/a 4.50 0.0 Na 4.50 9.907 n/a 4.50 4.290 n1a 4.50 3.176 n/a 4.50 1.376 n/a 4.50 16.512 n/a 4.50 7.150 n/a Overturning Moment None None None None None None None None None None None None 4.890 k -ft 2.118 k -ft 3.668 k - ft 1.588 k -ft 4.890 k -ft 2.118 k4t -_ - -- Actual Sall Bearing Streas 4� Locaiion Actual /Allow Bottom, -Z Top, +Z Left, -X - R ht, +X Ratio 0.8461 0.8461 n/a n/a 0.188 2.357 2.357 fire n/a 0.524 1.979 1.979 n/a n/a 0.440 0.8461 0.8461 n/a We 0.188 0.8461 0.8461 n/a n/a 0.188 1.979 1.979 n/a n/a 0.440 1.979 1.979 n/a fire 0,440 0.5077 0.5077 n/a n/a 0.113 0.5077 0.5077 n/a n1a 0.113 nia n/a 0.8461 0.8461 0.188 n/a n/a 2.357 2.357 0.524 Na n/a 1.979 1.979 0.440 fire n/a 0.0 2.113 0.470 n/a n/a 0.3362 1.356 0.301 n/a n/a 1.096 2.862 0.636 We We 1.597 2.362 0.525 n/a n/a 0.0 3.085 0.686 Na We 0.0 1,018 0.226 Page 157 of 168 Resisting Moment 0.0 k -it 0.0 k -ft 0.0 k -ft 0.0 k -fl 0.0 kdt 0.0 k -ft 0.0 k -1t 0.0 k -1t 0,0 k -it 0.0 k -it 0.0 Wt 0.0 k -ft 10.365 k -t 10.365 k -ft 24.246 k -ft 24.246 k -ft 6.219 k -ft 6.219 k -ft Stability Ratio ritle Block Line 1 Project Title: You can change this area Engineer: Project ID: using the "Settings' menu item Project Descr: and then using the 'Printing & Title Block' selection, Title, Block Line$ wmten:170cr2016. General Footina File=t:1SlmcNmb2016 Simdural Jobs120162650_HA Mattson Apenments12016-2E Description : FT5 Sliding Stability All units k Force Application Axis Load Combination... - Sliding Force Resisting Force Stability Ratio _ Status_ X -X, D Onlv 0.0 k 2.777 k No Slidinq OK X -X. +D+L 0.0 k 5.950 k No Sliding OK X -X. +D+0.750L 0.0 k 5.157 k No Slidina OK X -X. +D+0.60W 0.3912 k 2.777 k 7.098 OK X•X, +D+0.70E 0.1694 k 2.777 k 16.393 OK X•X, +D+0.750L+0.450W 0.2934 k 5.157 k 17.575 OK X-X,+D+0.750L+0.5250E 0.1271 k 5.157k 40.586 OK X -X, +0.60D+0.60W 0.3912 k 2.066 k 5.282 OK X-X,+0.60D+0.70E 0,1694k 2.066k 12.197 OK Z -Z, D Onlv 0.0 k 3.527 k No Sliding OK Z -Z, +D+L 0.0 k 6.70 k No Slidina OK Z -Z. +D+0.750L 0.0 k 5.907 k No Slidinq OK Z -Z. +D+0.60W 0.0 k 3.527 k No Sliding OK Z-Z,+D+0.750L+0.5250E 0.0 k 5.907 k No Sliding OK Z -Z, +0.60D+0.60W 0.0 k 2.816 k No Slidino OK Z -Z, +0.60D+0.70E 0.0 k 2.816 k No Sliding OK Z-Z.+D+0.70E 0.0 k 3.527 k No Slidina OK Z-Z•+D+0.750L+0.450W 0.0 k 5.907 k No Slidino OK Footing Flexure Flexure Axis &Load Combination Mu Side Tensio n As Req'd Gvrn. As Actual As Phi'Mn Status k -ft _ Surface_ in^2 IO2 _ _i_M2 k -h X -X, +1.40D - 0.09383 +Z Bottom 0.2592 Min Temo % 0.2657 11.139 OK X -X. +1.40D 0.09383 -Z Bottom 0.2592 Min Temo % 0.2857 11.139 OK X -X, +1.20D+1.60L 0.3826 +Z Bottom 0.2592 Min Temo % 0.2857 11.139 OK X -X, +1.200+1.60L 0.3826 -Z Bottom 0.2592 Min Two % 0.2857 11.139 OK X•X. +1.20D+0.50L 0.1749 +Z Bottom 0.2592 Min Temo % 0.2857 11.139 OK X -X, +1.20D+0.50L 0.1749 -Z Bottom 0.2592 Min Temo % 0.2857 11.139 OK X•X. +1.20D+0.50W 0.08042 +Z Bottom 0.2592 Min Temp % 0.2857 11.139 OK X -X. +1.20D+0.50W 0.08042 -Z Bottom 0.2592 Min Temo % 0,2857 11.139 OK X -X. +1.20D+0.50L+W 0.1749 +Z Bottom 0.2592 Min Temp % 0.2857 11.139 OK X-X.+120D+0.50L+W 0.1749 -Z Bottom 0.2592 Min Temo% 0.2857 11.139 OK X -X. +120D+0.50L+E 0.1749 +Z Bottom 0.2592 Min Temp % 0.2857 11.139 OK X-X,+1.20D+0.50L+E 0.1749 •Z Bottom 0.2592 Min Temo% 0.2857 11.139 OK X -X, +0.90D+W 0.06032 +Z Bottom 0.2592 Min Temo % 0.2657 11.139 OK X -X, +0.90D+W 0.06032 •Z Bottom 0.2592 Min Temo % 0.2857 11.139 OK X-X,+0.90D+E 0.06032 +Z Bottom 0.2592 Min Temo% 0.2657 11.139 OK X-X.+0.90D+E 0.06032 Z Bottom 0.2592 Min Temp% 0.2857 11.139 OK Z -Z, +1.40D 0.5862 -X Bottom 0.2592 Min TWO % 0.30 11.674 OK Z -Z, +1.40D 0.5862 +X Bottom 0.2592 Min Temo % 0.30 11.674 OK Z -Z, +1.20D+1.60L 2.390 -X Bottom 0.2592 Min Temo % 0.30 11.674 OK Z -Z, +1.20D+1.60L 2.390 +X Bottom 0.2592 Min Temo % 0.30 11.674 OK Z -Z, +1.20D+0.50L 1.092 -X Bottom 0.2592 Min Temp % 0.30 11.674 OK Z-Z.+1.20D+0.50L 1.092 +X Bottom 0.2592 Min Temo% 0.30 11.674 OK Z-Z,+1.20D+0.50W 0.09130 -X Tao 0.2592 Min Temo% 0.30 11.674 OK Z -Z. +1.20D+0.50W 1.096 +X Bottom 0.2592 Min Temo % 0.30 11.674 OK Z -Z. +1.20D+0.50L+W 0.08198 -X Too 0.2592 Min Temo % 0.30 11.674 OK Z -Z, +1.20D+0.50L+W 2.287 +X Bottom 0.2592 Min Temp % 0.30 11.674 OK Z -Z. +1.20D+0.50L+E 0.6516 -X Bottom 0.2592 Min Temo % 0.30 11.674 OK Z -Z. +1.20D+0.50L+E 1.533 +X Bottom 02592 Min Temp % 0.30 11.674 OK Z-Z.+0.90D+W 02179 X Top 0.2592 Min Temo% 0.30 11.674 OK Z -Z, +0.90D+W 2.521 +X Bottom 0.2592 Min Temo % 0.30 11.674 OK Z -Z. +0.90D+E 0,06392 -X Too 0.2592 Min Two % 0.30 11.674 OK Z -Z, +0.90D+E 0.8176 +X Bottom 0.2592 Min Temo % 0.30 11.674 OK One Way Shear Load Combination... Vu @ -X Vu a +X Vu @ -Z Vu @ +Z Vu:Max Phi Vn Vu I Phi'Vn Status +1.40D 3.649 psi 3.649 osi 0 osi 0 osi 3.649 psi 75 osl 0.04865 OK +120D+1.60L 14.879 osi 14.879 osi 0 psi 0 osi 14.879 osi 75 osi 0.1984 OK +1.20D+0.50L 6.8 osi 6.8 osi 0 osl 0 osi 6.8 osi 75 osi 0.09066 OK +1.20D+0.50W 0.996 osi 7251 osi 0 osi 0 osi 7.251 osi 75 osi 0.09668 OK +120D+0.50L+W 1.32 osi 15.104 osi 0 osi 0 psi 15.104 psi 75 osi 0.2014 OK Page 158 of 168 Title Block Line 1 You can change this area using the 'Settings" menu item and then using the "Printing & Title Block" selection. Title Block Line 6 General Footing Description: FT5 +1.20D+0.50L+E Project Title: Engineer: Protect Descr: He= 3.739 psi 9.861os! 0 osi Page 159 of 168 Project 10: _ Pdaled:110CTPet6. IMPM1 ura1120166VucMAJ446162650_HAMa6son Apanmenis120162b60,ec6 t ENEACALC, INC. 19832016, Build:6.16.7.21, Vec6.16.7.21 I 0 Dsi 9.861 Dal 75 osi 0.1315 OK Title Block Line 1 You can change this area ising the "Settings' menu item and then using the "Printing & rite, Block' selection. rills Blgqk Line 6 General Footing One Way Shear Load Combination +0.90D+W +0.90D+E Punching Shear Load Combination... +1.40D +1.20D+1.60L +1.20D+0.50L +1.20D+0.50W +1.20D+0.50L+W +1200+0.50L+E +0.90D+W +0.90D+E Vua-X Vu®+X 1.356 osi 22.2490si 0.71540si 5.407 Dsi Vu 3.938 psi 16.059 Dsi 7.339 psi 3.376 osi 7.372 osi 7.339 osi 4.102 DSI 2.532 psi Project Title: Engineer: Project Descr: Project ID: Punled:170CT20% 196PM File= 1.lSOuctura5201681MIural Jobs@016-2650}IA Maeson ApaAmen1sa201&2B50.ec6 ENEFICALC, INC. 1983-2016. Bulld:e.16.7,21. Vec8.16.7.21 Vu @ •Z Vu @ +Z Vu:Maz Phi Vn Vu / Phi'Vn Status 0 cal 0 Dsl 22.249 osi 75 Dsi 0.2967 OK 0 Dsl 0 DO 5.407 Dsi 75 Dsi 0.07209 OK All units k _Phi*_ n_ 1500si 150Dsi 1500si 1500si 150osi 150Dsi 1500si 150osi Page 160 of 168 Vu / Phi'Vn Status 0.02626 OK 0.1071 OK 0.04893 OK 0.02251 OK 0.04915 OK 0.04893 OK 0.02735 OK 0.01688 OK Post Calculations Example Calculations: Ib it Post Max P 1 (2) 2x4 3725 8 (2) 2x6 8990 8 (3) 2x4 5805 8 (3)2x6 14295 8 (4) 2x4 7745 8 (4)2x6 19080 8 (5) 2x4 9680 8 (5) 2x6 23860 8 4x4 4340 8 6x6 11200 8 3 1/2" x 3 1/2" PLP 7440 8 3 1/2" x 5 1/4" PLP 11035 8 5 1/4" x 5 1/4' PLP 27915 8 31/8" x 7 1/2" OLP 11495 8 3 1/8' x 9" GLP 13790 8 5 1/8" x 6" GLP 26595 8 5 1/8" x 7 1/2" GLP 33240 8 Load Charts: F, Fa Fol E, Et it it in in 2"-4' Thick 5"x5°and Larger 0.00 1.15 Timber DF -L#2 Timber DF -L#2 Parallam Glulam Comb 114 1350700 6 2500 2100 900 750 2400 1900 900 750 2400 2200 1600000 1300000 18000001 1900000 1600000 1300000 18000001 1900000 psi psi psi psi psi 8 1 0.61 0.00 1.15 27.4 4.0 10.5 6 5 355 582 1551 1708 0.6 OK 8 1 0.96 0.00 1.15 17.5 4.0 16.5 15 8 545 1013 1344 1547 0.7 OK 6 1 0.61 0.00 1.15 27.4 2.7 15.75 9 12 369 582 1785 1964 0.6 OK 8 1 0.96 0.00 1.15 17.5 2.7 24.75 23 19 578 1019 1547 1779 0.7 OK 8 1 0.61 0.00 1.15 27.4 2.0 21 12 21 369 582 1785 1964 0.6 ON 8 1 0.96 0.00 1.15 17.5 2.0 33 30 33 578 1022 1547 1779 0.7 OK 6 1 0.61 0.00 1.15 27A 1.6 26.25 15 33 369 582 1785 1984 0.6 OK 6 1 0.96 0.00 1.15 17.5 1.6 41.25 38 52 578 1023 1547 1779 0.7 OK 8 1 0.61 0.00 1.15 27.4 3.4 12.25 7 7 354 571 1034 1035 0.7 OK 8 1 0.96 0.00 1.15 17.5 2.2 30.25 28 28 370 663 862 863 0.8 OK 1 8 0.00 0.61 1.15 3.4 27.4 12.25 7 7 607 953 3171 3174 1.0 OK 1 8 0.00 0.61 1.15 2.3 27.4 18.38 16 11 601 953 3032 3036 1.0 OK 1 8 0.00 0.92 1.15 2.3 18.3 27.56 24 24 1013 1889 3034 3036 1.0 OK 1 8 0.00 0.55 1.15 1.6 30.7 23.44 29 12 490 802 2181 2935 0.9 OK 1 8 0.00 0.55 1.15 1.3 30.7 28.13 42 15 490 802 2180 2935 0.9 OK 1 8 0.00 0.90 1.15 2.0 18.7 30.75 31 26 865 1773 2184 2783 0.8 OK 1 8 0.00 0.90 1.15 1.6 18.7 38.44 48 33 865 1773 2184 2783 0.8 OK 1 _8 _ 0.00 0.90 1.15 1.3 18.7 46.13 69 39 865 1773 2183 2783 0.8 OK 0 8 6 8 061 0.61 1.15 27.4 27.4 12.25 7 7 0 571 1031 1035 0.0 OK Roof Loads (1) 2 x4 2215 1855 1570 1340 (1) 2 x6 5150 4630 4140 3695 (2) 2 x4 4450 3725 3150 2690 (2) 2 x6 9535 8990 8325 7430 (3) 2 x4 6960 5805 4890 4160 (3) 2 x6 15165 14295 13180 11720 (4) 2 x 4 9290 7745 6520 5550 (4) 2 x 6 20245 19080 17580 15630 (5) 2 x 4 11615 9680 8150 6935 im o v Rl 9R74e 99RRn Mood 1 omiK (2) 2 x 4 2905 2350 1930 1605 (2) 2 x 6 4670 3775 3095 2570 (3) 2 x 4 6605 5590 4750 4065 (3) 2 x 6 11575 9985 8575 7380 (4) 2 x 4 9290 7745 6520 5550 (4) 2 x 6 18155 16500 14830 13245 (5) 2 x 4 11615 9680 8150 6935 (5) 2 x 6 23935 22215 20425 18635 4 x 4 5185 4340 3670 3135 6 x 6 12040 11200 10330 9460 31/2' x 3 1/2' PLP 9000 7440 6225 5270 31/2' x 5 1/4' PLP 13330 11035 9245 7840 5 1/4" x 5 1/4" PLP 31850 27915 24355 21295 31/8' x 7 1/2' 13795 11495 9680 8245 3 1/8' x 9" 16555 13790 11620 9895 5 1/8' x 6" 29565 26595 23720 21095 5 1/8" x 7 1/2" 36955 33240 29650 26370 5 118"x 9" 44350 39890 35580 31645 Floor Loads 7 i 8 i Sit 10 it 2100 1775 1505 1290 4695 4270 $855 3470 0 4215 3560 3025 2595 y 8500 8080 7615 6970 0 6620 5560 4710 4025 13510 12845 12105 11020 0 8830 7415 6280 5365 18035 17145 16155 14700 11035 9265 7850 6710 12m 22555 21440 20200 18375 2800 2285 1885 1575 4500 3670 3025 2525 6205 5310 4550 3915 10745 9405 8170 7090 8830 7415 6280 5365 c 16425 15120 13760 12425. 11035 9265 7650 6710 iu 21465 20125 18695 17235 0 4915 4145 3525 3025 0 10790 10130 9430 8720 c 8595 7155 6015 5115 a 12720 10600 8930 7600 8e m 29340 26080 23000 20250 0 13115 11005 9320 7970 15735 13205 11185 9565 26900 24510 22110 19840 33625 30640 27640 24805 40350 36765 33170 29765 Page 161 of 168 Notes: 1. Example calculations show posts braced In one direction. 2. Loads have been adjusted to accommodate for the worst case of the following eccentric conditions: .175 of column thickness or. 175 of column width. ct: 2016-2850 Lei ®Jack Miller ion: P5 @ TB3 with loads above LEI Surveyors and Engineers in 3302 North Main Street International Building Code(2012 NDS)] Spanish Fork, Utah .51N x 5.51N x 9.0 FT r'•Gf n' louglas-Fir-Larch - Dry Use In Adequate By: 4.6% PL A1SEk5 StruCalc Version 9.0.2.5 10/18/2016 12:03:38 PM (TIONS ninatlons to be nailed together per National Design Specifications for Wood Construction Section 15.3.3.1 TICAL REACTIONS Base Values Ad'uste Load: Vert-LL-Rxn = 18035 Ib I Load: Vert-DL-Rxn = 10630 Ib I Load: Vert-TL-Rxn = 28665 Ib UMN DATA ling Stress (X -X Axis): I Column Length: 9 k My = aced Length (X -Axis) Lx: 9 ft Cd=1.00 CF= 1,30 Cr -1.15 aced Length (Y -Axis) Ly: 9 ft ling Stress (Y -Y Axis): mn End Condtion-K (e): 1 Fby' = Load Duration Factor 1.00 Cd=1.00 CF=1.30 Cr -1.15 Douglas -Fir -Larch mn Calculations (Controlling Case Only): oiling Load Case: Axial Total Load Only (L+ D) it Compressive Stress: Base Values Ad'uste able Compressive Stress: pressive Stress: Fc = 1350 psi Fc' = 728 psi Mx -ex = ntricity Moment (Y -Y Axis): Cd=1,00 C1=1. 10 Cp=0.49 snt Due to Lateral Loads (X -X Axis): ling Stress (X -X Axis): Fbx = 900 psi Fbx' = 1346 psi My = ing Stress Lateral Loads Only (X -X Axis): Fbx = Cd=1.00 CF= 1,30 Cr -1.15 Fbx' = ling Stress (Y -Y Axis): Fby = 900 psi Fby' = 1346 psi Fby' = Dined Stress Factor: Cd=1.00 CF=1.30 Cr -1.15 ilus of Elasticity: E = 1600 ksi E'= 1600 ksi nn Section (X -X Axis): dx = 5.5 in nn Section (Y -Y Axis): dy = 7.5 in A = 41.25 int on Modulus (X -X Axis): Sx = 37.81 in3 on Modulus (Y -Y Axis): Sy = 10.31 in3 lernessRatio: Lex/dx= 19.64 Ley/dy = 14.4 mn Calculations (Controlling Case Only): oiling Load Case: Axial Total Load Only (L+ D) it Compressive Stress: Fc = able Compressive Stress: Fc' = ntricily Moment (X -X Axis): Mx -ex = ntricity Moment (Y -Y Axis): My-ey = snt Due to Lateral Loads (X -X Axis): Mx = silt Due to Lateral Loads (Y -Y Axis): My = ing Stress Lateral Loads Only (X -X Axis): Fbx = able Bending Stress (X -X Axis): Fbx' = ing Stress Lateral Loads Only (Y -Y Axis): Fby = able Bending Stress (Y -Y Axis): Fby' = Dined Stress Factor: CSF = 695 728 0 0 0 0 0 1346 0 1346 0.95 psi psi ft -Ib ft -Ib ft -Ib ft -Ib psi psi psi PSI B 9s AXIAL LOADING Live Load: PL = 18035 Ib Dead Load: PD = 10550 Ib Column Self Weight: CSW = 80 Ib Total Load: PT= 28665 Ib Page 162 of 168 Project: 2016-2850 Location: P10 Column [2015 International Building Code(AISC 14th Ed ASD)] HSS 5 x 5 x 1/4 x 9.0 FT /ASTM A500-GR.B-46 Section Adequate By: 78.8% VERTICAL REACTIONS Live Load: Vert-LL-Rxn = 13746 Ib Dead Load: Vert-DL-Rxn = 6595 Ib Total Load: Vert-TL-Rxn = 20341 Ib COLUMN DATA Total Column Length: 9 It Unbraced Length (X -Axis) Lx: 9 It Unbraced Length (Y -Axis) Ly: 9 ft Column End Condtion-K (e): 1 COLUMN PROPERTIES HSS 5 x 5 x 1/4 - Square Steel Yield Strength: Fy = 46 ksi Modulus of Elasticity: E = 29 ksi Column Section: dx= 5 in dy = 5 in Column Wall Thickness: t= 0.233 in Area: A = 4.3 in Moment of Inertia (deflection): lx= 16 in4 ly = 16 in4 Section Modulus: Sx = 6.41 in3 Sy = 6.41 in3 Plastic Section Modulus: Zx = 7.61 in3 Zy = 0 In3 Rad. of Gyration: rx = 1.93 in ry = 1.93 in Column Compression Calculations: KL/r Ratio: KLx/rx = 55.96 KLy/ry = 55.96 Controlling Direction for Compr. Calcs: (Y -Y Axis) Flexural Buckling Stress: Fcr= 37.26 ksi Controlling Equation F7-1 Nominal Compressive Strength: Pc= 96 kip Combined Stress Calculations: H1 -1a Controls : 0.21 paw Jack Miller LEI Surveyors and Engineers 3302 North Main Street m Spanish Fork, Utah +.ia:v.rns Version 9.0.2.5 Dead Load: Column Self Weight: 9n A 10/18/2016 12:03:58 PM PL= 13746 lb PD= 6453 lb CSW = 142 Ib ct: 2016-2850 ion: P11 International Building Code(2012 NDS)] I x9,25 IN x9 FT 'arallam - Level Trus Joist In Adequate By: 23.9% TICAL REACTIONS Load: Vert-LL-Rxn = 13056 Ib I Load: Vert-DL-Rxn = 7729 Ib ILoad: Vert-TL-Rxn = 20785 Ib UMN DATA I Column Length: 9 It aced Length (X-A)is) Lx: 9 ft aced Length (Y -Axis) Ly: 9 ft mn End Condtion-K (e): 1 Load Duration Factor 1.00 UMN PROPERTIES Parallam -Level Trus Joist dx= 9.25 Base Values Addusted presslve Stress: Fc = 2900 psi Fc' = 843 psi AXIAL LOADING Cd=1,00 Cp=0.29 32.38 ling Stress (X -X Axis): Fbx = 2900 psi Fbx' = 2985 psi 49.91 Cd=1.00 CF=1.03 on Modulus (Y -Y Axis): ling Stress (Y -Y Axis): Flay = 2900 psi Fby' = 2985 psi terness Ratio: Cd --1.00 CF=1.03 11.68 dus of Elasticity: E = 2000 ksi E'= 2000 ksi nn Section(X-X Axis): dx= 9.25 in nn Section (Y -Y Axis): dy = 3.5 in AXIAL LOADING A = 32.38 int on Modulus (X -X Axis): Sx = 49.91 in3 on Modulus (Y -Y Axis): Sy = 18.89 in3 terness Ratio: Lex/dx = 11.68 Column Self Weight: CSW = 91 Ib Ley/dy = 30.86 ft -Ib ®Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork, Utah r:ctititrr,+ P t t. i 9'e B 10/18/2016 12:04:02 PM mn Calculations (Controlling Case Only): rolling Load Case: Axial Total Load Only (L + D) AXIAL LOADING rl Compressive Stress: Fc = 642 psi Live Load: PL = 13058 Ib able Compressive Stress: Fc' = 843 psi Dead Load: PD= 7638 Ib mricily Moment (X -X Axis): Mx -ex = 0 ft -Ib Column Self Weight: CSW = 91 Ib ntricity Moment (Y -Y Axis): My-ey = 0 ft -Ib Total Load: PT= 20785 lb enl Due to Lateral Loads (X -X Axis): Mx= 0 ft -Ib ant Due to Lateral Loads (Y -Y Axis): My = 0 ft -Ib ing Stress Lateral Loads Only (X -X Axis): Fbx = 0 psi able Bending Stress (X -X Axis): Fbx' = 2985 psi ing Stress Lateral Loads Only (Y -Y Axis): Fby = 0 psi able Bending Stress (Y -Y Axis): Fby' = 2985 psi bined Stress Factor: CSF = 0.76 Project: 2016-2850 Location: P12 Column [2015 International Building Code(2012 NDS)] 3.5 IN x 7.O IN x 9 FT 1.8E Parallam Column - iLevel Trus Joist Section Adequate By: 23.8% VERTICAL REACTIONS dx = Live Load: Vert-LL-Rxn = 8874 Ib Dead Load: Vert-DL-Rxn = 5261 Ib Total Load: Vert-TL-Rxn = 14135 Ib COLUMN DATA A= Total Column Length: 9 ft Unbraced Length (X -Axis) Lx: 9 ft Unbraced Length (Y -Axis) Ly: 9 ft Column End Condtion-K (e): 1 Axial Load Duration Factor 1.00 1n3 Slenderness Ratio: COLUMN PROPERTIES 1.8E Parallam Column - iLevel Trus Joist 15.43 Base Values Adlusted Compressive Stress: Fc = 2500 psi Fc' = 757 psi 30.86 Cd=1.00 Cp=0.30 Bending Stress (X -X Axis): Fbx = 2400 psi Fbx' = 2548 psi psi Cd=1.00 CF=1.06 Bending Stress (Y -Y Axis): Fitly = 2400 psi Fby' = 2548 psi Allowable Bending Stress (Y -Y Axis): Cd=1.00 CF=1.06 Modulus of Elasticity: E= 1800 ksi E'= 1800 ksi Column Section (X -X Axis): dx = 7 in Column Section (Y -Y Axis): dy = 3.5 in Area: A= 24.5 int Section Modulus(X-X Axis): Sx= 28.58 in3 Section Modulus (Y -Y Axis): Sy = 14.29 1n3 Slenderness Ratio: Lex/dx= 15.43 ft -Ib Bending Stress Lateral Loads Only (X -X A)ds): Fbx = Ley/dy= 30.86 Allowable Bending Stress (X -X Axis): Column Calculations (Controlling Case Only): Controlling Load Case: Axial Total Load Only it. + D) Actual Compressive Stress: Fe = 577 psi Allowable Compressive Stress: Fc' = 757 psi Eccentricity Moment (X -X Axis): Mx -ex = 0 ft -Ib Eccentricity Moment (Y -Y Axis): My-ey = 0 ft -Ib Moment Due to Lateral Loads (X -X Axis): Mx= 0 ft -Ib Moment Due to Lateral Loads (Y -Y Axis): MY= 0 ft -Ib Bending Stress Lateral Loads Only (X -X A)ds): Fbx = 0 psi Allowable Bending Stress (X -X Axis): Fbx' = 2548 psi Bending Stress Lateral Loads Only (Y -Y Axis): Fby = 0 psi Allowable Bending Stress (Y -Y Axis): Fby' = 2548 psi Combined Stress Factor: CSF = 0.76 Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork, Utah 1.1 9 f 10/18/2016 12:0416 PM Live Load: PL = 8874 Ib Dead Load: PD= 5192 Ib Column Self Weight: CSW = 69 Ib Total Load: PT= 14135 lb Page 165 of 168 Title Block Line 1 You can change this area using the "Settings' menu item and then using the "Printing & Title Block" selection. Title Block Steel Base Plate Project Title: Engineer: Protect Descr: Project ID: PMled: 14 OCT 2016.10:I6AM File = INSWoturaP2016 Slmclurel JobsT0164850—HA Menson Aparlmenls12016-2850.ec6 ENERCALC. INC. 1983-2016. Buld:6.16.7.21. Vec6.16.7.21 Code References Calculations per AISC Design Guide # 1, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: IBC 2012 General Information Material Properties AISC Design Method Load Resistance Factor Design Mu: Max. Moment ..................... Steel Plate Fy = 36.0 ksi fb: Max. Bending Stress ............... Concrete Support fc - 3.0 ksi M -X Assumed Bearing Area :Full Bearing 23.960 k 0.0 k Column & Plate L: Live ....... 19.230 k Column Properties 0.0 k -ft Lr: Roof Live ......... Steel Section: HSS10x6x5/8 0.0 k 0.0 k -ft Depth 10 in Area 0.0 k Width 6 in Ixx 0.0k Flange Thickness 0,581 in lyy E: Earthquake .............. Web Thickness 0 in 0.0 k 0.0 k -ft A o : LRFD Resistance Factor Allowable Bea ng Fp per J8 16.4 in^2 201 !nM 69.4 iM4 Plate Dimensions Support Dimensions N : Length 12.0 in Width along'X' 12.0 in B: Width 13.0 in Length along 'Z' 13.0 in Thickness 0.750 in Column assumed welded to base plate, r-. _ i - ---. , Applied Loads Mu: Max. Moment ..................... Plate DBSIen SOmmary fb: Max. Bending Stress ............... P•Y V•Z M -X D: Dead Load ......, 23.960 k 0.0 k 0,0 k-0 L: Live ....... 19.230 k 0.0 k 0.0 k -ft Lr: Roof Live ......... 0.0 k 0.0 k 0.0 k -ft S: Snow ................ 7.230 k 0.0 k 0.0 k -ft W:Wind................ 0.0k 0.0k 0.0 k -ft E: Earthquake .............. 0.0 k 0.0 k 0.0 k -ft H: Lateral Earth ......... 0.0 k 0.0 k 0.0 k-11 'P'= Gravity load,'+'sign isdownward. "+" Moments create higher soil pressure at +Z edge. "+' Shears push plate towards +Z edge. 0.60 2.550 ksi i ,OVERNING DESIGN LOAD CASE SUMMARY Mu: Max. Moment ..................... Plate DBSIen SOmmary fb: Max. Bending Stress ............... Design Method Load Resistance Factor Design Fb : Allowable: Governing Load Combination +1.20D+1,60L+0.505+1.60H Fy' Phi Governing Load Case Type Axial Load Only Bending Stress Ratio Design Plate Size 1'-0" x V-1" x 0.3/4" Pu: Axial........, 63.135k fu: Max. Plate Bearing Stress .... Mu: Moment........ 0.000 k -ft Fp: Allowable: min( 0.85'fc'sgn(A2/Al),1.7' fc)'Phi Bearing Stress Ratio Page 166 of 168 2.696 k -In 19.171 ksi 32.400 ksi 0,592 Bending Stress OK 0.405 ksi 1.530 ksl 0.265 Bearing Stress OK Title Block Line 1 Project Title: You can change this area Engineer: Project ID: using the 'Settings' menu item Project Descr: and then using the "Printing & Title Block' selection. Steel Base Plate Description : File =1ASlructurarM tnx;kiral Code References Calculations per AISC Design Guide # 1, IBC 2012, CBC 2013, ASCE 7.10 Load Combination Set : IBC 2012 Generallnformation j Material Properties AISC Design Method Load Resistance Factor Design <6 c : LRFD Resistance Factor Steel Plate Fy 36.0 ksi Concrete Support Pc - 3.0 ksi Assumed Bearing Area:Full Bearing Allowable Bearing Fp per J8 Column & Plate Column Properties Steel Section: HSS5x5x1/4 Depth 5 in Area 4.3 inA2 Width 5 in Ixx 16 inA4 Flange Thickness 0.233 in lyy 16 inA4 Web Thickness 0 in Plate Dimensions Support Dimensions N : Length 6.0 in Width along "X" 12.0 in B: Width 12.0 in Length along 'Z 13,0 in Thickness 0.750 in Column assumed welded to base plate. �- Applied Loads P -Y V -Z M -X D: Dead Load....... 6.453 k 0.0 k 0.0 k -ft L: Live ....... 10.642 k 0.0 k 0.0 k -ft Lr: Roof Live......... 0.0 k 0.0 k 0.0 k -ft 8: Snow ................ 3.104 k 0.0 k 0.0 k -ft W: Wind ................ 0.0k 0.0k 0.0 k -ft E : Earthquake .............. 0.0 k 0.0 k 0.0 k -ft H: Lateral Earth ......... 0.0 k 0.0 k 0.0 k -ft P'= Gravity load,'+'sign is downward. "+" Moments create higher soil pressure at+Z edge. "+" Shears push plate towards+Z edge. 14 OCT M16 11:57M Ver.6.16.7.21 0.60 2.763 ksi i GOVERNING DESIGN LOAD CASE SUMMARY Mu : Max. Moment ..................... 2.402 k -in Plat -0p ma fb:Max. Bending Stress ............... 17.081 ksl Design ethod Load Resistance Factor Design Fb : Allowable: 32.400 ksi Governing Load Combination +1.20D+1.60L+0.50S+1.60H Fy' Phi Governing Load Case Type Axial Load Only Bending Stress Ratio 0.527 Design Plate Size 6" x V-0" x 0.3/4" Bending Stress OK Pu : Axial ......... 26.323 k fu : Max. Plate Bearing Stress .... 0.366 ksl Mu: Moment ........ 0.000 k -ft Fp: Allowable: 1.658 ksi min( 0.85?c'sgd(A2/A1), 1.7' fc)'Phl Bearing Stress Ratio 0.221 Bearing Stress OK Page 167 of 168 POST/ SHEAR WALL/FOOTING/FOUNDATION WALL SCHEDULE mal all are neceaaaay ua" Post Schedule Degi nation Past Sime P1 (1)2,1 P2 (2)2x P3 3)2x P4 (4) 2x P5 (612x PB 4.4 PT 6x6 Pe HSS S' x 5' x W16' A500 GOB Pit HSS 19' x (E x 50 A500 GnB P1D HSS S" x 5' x 1/4' A500 Gs Pit 31/2'x91/4"Parallel Post P12 1312' 17- Pamllam Post otea:1, qa...........I lmmmer roads Mien apacmad al headers. All other postskeirratlons.alone lull freight has same U N O. 2, nMell (I) hMmarslutl end It) kng slutl w<M1 sae of each opening UN O, 3. NNeM 121 Vin nrtluds eedl4ldB of opennga gmalal ioi UN 4, nMall (2) lung studs wch sae of openings greeter than 6-0'UN.O. 5. 2x W II -up Pasts shell be the wm0 WBN of Iha wall in which ley ere Ira Inad U N 0. S. Nall each ply of 2.. bullFap Poeta W and sella @ a' o c. akggeretl UN 0. T. Posts Ina are sol forms! wlhn a and Well shall be braced with 80 or AC post cap and PC or ABA poet bass UN0, Shear Wall Schedule's Designation Materiel 'A la ma.. serum Bd Neils Capacity Note Edge Fail Edge Field Wind $¢19miC 1 7116" OSB or CDX plywood 3/' 12" 6- 12" 360 260 r."s 2 7/i6"0SBor GDXplywood 4' 12' 530 350 3 Tli6" OSBar GDXpfywg0d 3' 12' fiB5 480 ass 4 7,16'OSS.r CDXplywood 2' 12' 695 640 ?d$,B alae:1 Studs am to bewae a 2, Unit aheerwpactiw are based on AFSPASDPWS Table 43A (IBC 2305.3) 3, Use (2) long Muds at each and of Meet Poole shwer Well GMr is) UND, 4. All penal all shall be blocked Mh 2inch nominal or%Wrr Immng aaA edge MMg at all vupporm and papal there U N.O. (Al SOFAS 4.37.1 role I) S Who. .net. me.,rnd o bath faces of a wall and nal apacng b less Than 6' oc, or, inner We. Panalol es shall be affect to fall on d5lerenl same, member, 5. Frchim, al etljoni t, panel ad,.. and sill plate shell be 3 min nominal or wart for edge mi 31oG or lass. Nails at adjolnn0 an91e BaeM igo sW IeleS.hall be Me aced AFBPASOPW5437.Inole3 Foundation Wall Schedule give Reinforcement FW3A- 3' Foundation Wall N4 bars 024" ox. serboal,344 bars horizontal FW3B- 3' Foundation Well 112' took) 04 hours 024'o.c. vertical, 3 l4 bars hodzon181(2 ought FW4.4' Founrialion Wall N4 bars 024" o.c, vertical, (4) x4 bats hodzOnml FW10 10FOundati0n Well IS bars 0 12' ox, radical, 95 bars 012' ox. horizontal See Offal 13/51.1 FW14 -14' Foundation Wall N5 bar, 0 12' O.C, vertlosl, g5 bars 0 12- o.c, horizontal Sea Doll 10SIA 44: I. Uw YO'danmr xT' om ozlwrbogs@32'e1,W3Y1w1/4'(0.22g'1laolewW�onM IWerorwM phowwetls IINO. 2. Vey 3.000 Ed, fe=60,000 pal No special nepeclbn required 3.%ace 1814 bar belawod on eacM1 sae of eedt openh0eM(2)pd bus above ouch apenn0 Barabellbeplacedailm 2'alone Wenips andepend 24' bepnd Ise edge of Ne...sup : vertical bars may minarets 3' Irom the lop of the eoncrU. Openng 4 Top amebnolMbmhbarsshellll bsa "hb4w' aolflthmenlloopowdboo,n om of the wll. 5. Place renlo¢amenl h cenlerol well DN O. Page 168 of 168 Footing Schedule Designation Length Width Depth Lengthwise Reinforcement Croeswiae Reinforcement Oly. ids. LenglM1 spacing Oly. 31ze Length spring Capacity Note FT1A Con[. 20" 10" 2 94 Cars. EQ, 7500 PLF FTIB Cont 54" 12" 6 04 Cont. EQ. 05 4B" 12"o.c. 20250 PLF FT2A Com. IB" 10" 2 04 Cone. EQ. 6750 PLF FT2B Gon, i6" la, 2 N4 Dont. EQ. 6750PLF g0loPt2lbonom 1,73 30" 30' 10' 3 94 24" EQ. 3 R4 24' ED. 20126 LBS FT4 42' 42' 10' 4 114 36" EQ. 4 04 36' E0. $5125 LBS FT5 4T 24' 12" 3 04 36" EQ. 5 R4 18' EQ. 31500 LBS FT6 186" 132" 12" 11 N5 1'.. EO. 14 45 126" EQ. 693000 LBS electysl, Y= pal o.pece nepednn who re . 2. PrMngs shell bear on mutual must aoUs or simsturl compacted AM (95% compaction). cpscYled and tested bye registered gaolxJmcal embruar. 3. All lootngs shell bwrbelow the irovilme of the Ioceliry.130' U N O.1 Pmvae 12'dmmabrawo-lube el eneiwrepoolootng.per de1a120f50.1 4, PmW a lobar to msnh venae) IouMafsn mall rWamemenl waM1 24'mnmum VD spoke Isla IouMalnn wan. 5. CenlerlwfnfirmialoundalbnwallUN.O. Foundation Wall Schedule give Reinforcement FW3A- 3' Foundation Wall N4 bars 024" ox. serboal,344 bars horizontal FW3B- 3' Foundation Well 112' took) 04 hours 024'o.c. vertical, 3 l4 bars hodzon181(2 ought FW4.4' Founrialion Wall N4 bars 024" o.c, vertical, (4) x4 bats hodzOnml FW10 10FOundati0n Well IS bars 0 12' ox, radical, 95 bars 012' ox. horizontal See Offal 13/51.1 FW14 -14' Foundation Wall N5 bar, 0 12' O.C, vertlosl, g5 bars 0 12- o.c, horizontal Sea Doll 10SIA 44: I. Uw YO'danmr xT' om ozlwrbogs@32'e1,W3Y1w1/4'(0.22g'1laolewW�onM IWerorwM phowwetls IINO. 2. Vey 3.000 Ed, fe=60,000 pal No special nepeclbn required 3.%ace 1814 bar belawod on eacM1 sae of eedt openh0eM(2)pd bus above ouch apenn0 Barabellbeplacedailm 2'alone Wenips andepend 24' bepnd Ise edge of Ne...sup : vertical bars may minarets 3' Irom the lop of the eoncrU. Openng 4 Top amebnolMbmhbarsshellll bsa "hb4w' aolflthmenlloopowdboo,n om of the wll. 5. Place renlo¢amenl h cenlerol well DN O. Page 168 of 168 I