Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
CO & DOCS - 04-00419 - Subway - New Building
a a° II CITY OF REXBUkG AMERICAS FAMILY COMMUNITY Building Permit No: Applicable Edition of Code: Site Address: Use and Occupancy: Type of Construction: Design Occupant Load: Sprinkler System Required: Name and Address of Owner: Contractor: Special Conditions: Occupancy: CERTIFICATE OF OCCUPANCY City of Rexburg Department of Community Development 19 E. Main St. / Rexburg, ID. 83440 Phone (208) 359 -3020 / Fax (208) 359 -3022 0400419 321 N 2nd E Fullmer Ronald L Etux P O Box 536 Sugar City, ID 83448 Silvertree Homes % Brett Hasti This Certificate, issued pursuant to the requirements of Section 909 of the International Building Code, certifies that, at the time time of issuance, this building or that portion of the building that vies inspected on the date listed vies found to be in compliance vuth the requirements of the code for the group and division of occupancy and the use for which the proposed occupancy vies classified. Date G.O. Issued C.O Issued by: There shall be no further change in the existing occupancy classification of the building nor shall any structural changes, modifications or additions be made to the building or any portion thereof until the Building Official has reviewed and approved said future changes. Water Departmen • Fire State of Idaho Electrical Department CITY OF REXBURG BUILDING PERMIT APPLICATION 19 E MAIN, REXBURG, ID. 83440 208- 359 -3020 X326 PARCEL NUMBER: SUBDIVISION: 0400419 Subway #1 321 E 2nd lI [nC @ 4uC 56 lvu uvw uv- "Frlj — W y M N Go 3��2 s P kpphcation! _.,r non applicable UNIT# BLOCK# LOT# OWNER: pr vueV-4 CONTACT PHONE # -� J - y2 J PROPERTY ADDRESS: PHONE #: Home ( Work ( Cell ( OWNER MAILING ADDRESS: CITY: STATE: ZIP: APPLICANT (If other than owner) (If applicant if other than owner, a statement authorizing applicant to act as agent for owner must accompany this application.) MAILING ADDRESS OF APPLICANT CITY: STATE; ,T & ZIP �S3 PHONE #: Home ( ) Work ( ) Cell CONTRACTOR: 5i) Vc'�TrF< PHONE: Home# 3se ssj Work# - or/co Cell S - MAILING ADDRESS: Jd,�w art" iJ CITY gf: x STATE -1—d ZIP � 3y cl o How many houses are located on this property? Did you recently purchase this property. -..oi es (If yes give owner's name) Is this a lot split? 4� YES (Please bring copy of new legal description of property) PROPOSED USE: (i.e., Single Family Residence, Multi Family, Apartments, Remodel, Garage, Commercial, Addition, Etc.) APPLICANT'S SIGNATURE, CERTIFICATION AND AUTHORIZATION Under penalty of perjury, I hereby certify that I have read this application and state that the information herein is correct and I swear that any information which may hereafter be given by me in hearings before the Planning and Zoning Commission or the City Council for the City of Rexburg shall be truthful and correct. I agree to comply with all City regulations and State laws relating to the subject matter of this application and hereby authorized representatives of the City to enter upon the above - mentioned property for inspections purposes. NOTE: The building official may revoke a permit on approval issued under the provisions of the 2000 International Code in cases of any false statement or misrepresentation of fact in the application or on the plans on which the permit or approval was based. Permit void if not started within 180 days. Permit void if work stops for 180 days. 'Applicant DATE WARNING — BUILDING PERMIT MUST BE POSTED ON CONSTRUCTION SITE! Plan fees are non - refundable and are paid in full at the time of application beginning January 1. 2005. City of Rexburg's Acceptance of the plan review fee does not constitute plan approval "Building Permit Fees are due at time of application" "Building Permits are void if you check does not clear" NAME 5"h w � L PROPERTY ADDRESS 3 a dV SUBDIVISION Dwelling Units: SETBACKS FRONT �S IDE Parcel Acres:_ SIDE Front Footage (if applicable) ! 0 2 :ION Permit# SURFACE SQUARE FOOTAGE: (Shall include the exterior wall measurements of the building) . First Floor Area I A' Second floor/loft area --� Third floor/loft area Shed or Barn Remodel (Need Estimate) $ Unfinished Basement area Finished basement area Garage area ---� Carport/Deck (30" above grade)Area PLUMBING PLUMBERS NAME - T - lg [� ADDRESS CITY STATE ZIP PHONE FIXTURE COUNT CLOTHES WASHING MACHINE DISHWASHER FLOOR DRAIN GARBAGE DISPOSAL HOT TUB /SPA SINKS (Lavatories, kitchens, bar, mop) WATER METER COUNT WATER METER SIZE -� HEAT (Circle all that applyGo Oil Coal Fireplace Electric Commercial Buildings & Apartments with 3 or more PLUMBING ESTIMATE $ 7 �� STORM WATER LENGTH FRONT FOOTAGE STRUCTURES DESCRIPTION 5 u �, �� , a a w� k 5 # 0 • -� USE BEDROOMS (IfApplicable) TYPE OF CONSTRUCTIONAS PER IBC APT. UNITS (If Applicable) ROOF CLASSIFICATION OCCUPANCYLOAD HEAT TYPE FLOOD ZONE OCCUPANCY (As Per IBC) l SPRINKLERS -- TUB /SHOWERS — 2 TOILET/URINAL z — WATER HEATER WATER SOFTENER 2 Plan Checklist for the 2003 International Building Code Name of Project: USE AND OCCUPANCY o y oo All 9 1. Classification as per Sections 302.1 & 303 thru 312 2. Incidental use areas see Table 302.1.1 SID 3. Identify if mixed oc up 4ncy i Yes or No_ GK If no then skip #3 below. Accessory Space (1 o r ) Nonseparated Mixe cu as per Section 302.3.1 Separated Mixed O c y a er Table 302.3.2 Identify on plans Fire Barrier Walls and/or Separated Assemb 'e n u in the rating 3. If Assembly Occup cy exists, is it 750 sq. ft. or less as per Section 303.1 or less than 50 occupants as per Section 303.1.1 C'! m40s; To $ Y&ES 4. Covered Malls, see Secti n 40 . At ' see Section 404. Underground Buildings see Section 405. Motor Vehicle Occ an es, s e S c 'on 406. I -2 Occupancies see Section 407. I -3 Occupancies see Section 408. Tv o io Pic a of ction Rooms see Section 409. Stages and Platforms see section 410. Spec' 1 se en u' ings see Section 411. Aircraft Related Occupancies see Section 412. Co m ust b e or a se Section 413. Hazardous Materials see Section 414. H- Occupancies see S ctio 4 pplica ion of Flammable Finishes see Section 416. Drying Rooms see Section 417. rgani Coatings see Section 418. HEIGHT AND AREA 1. Area, First Floor /8 1 0 , Second Floor N114 , Third Floor N // 2. Area meets requirements as per Table 503. (Basements need not be included as per Section 503.1.1) Yes X No 3. Height meets requirements as per Table 503. YesX No 4. Buildings on same Lot? Yes No_�K_ If no then skip #5 below. 5. Regulated as Separate or Regulated as one Building as per Section 503.1.3�� 6. Height modified as per Section 504. Yes NoX If yes , sprinklers are required. 7. Area modified as per Section 506. Yes No_ X_ If yes use the area provided below to calculate increase. I VIA Total Area Allowed after Increase N / iL Suy Area Shown on Plans / S I f 9 8. Zero Lot Line Buildings see S tion 705. For Mezzanines see Section 505. Unlimited Area Buildings see Section 507. TYPES OF CONSTRUCTION AND FIRE RESISTANCE. 1. Identify the Type of Construction as per Section 602 V 2. Check allowable material for Type I and II build' s as per Section 603 3. Table 601 - Identify Building Element Ratings 4. Table 602 - Identify the Fire Resistance Ratings of Exterior Walls 5. Check Op ' gs in Exterior Walls for compliance with Table 704.8.(If sprinklered, see Section 704.8. 1) 6. Projections meet requirements of Section 704.2 Xi 7. Check for window vertical exposure from roof below as per Section 704.10 - N/A 8. Check that Parapets are not required as per Section 704.1 1 'X 9. Are Firewalls used or required? Yes No If no, skip #10 below. 10. Check Firewalls for Structural Stability Fire Resistance Rating as per Table 705.4 Made of Noncombus 1 I n t rials(except Type V) Horizontal Continuity Vertical Continuity Co e Exterior Walls as per Section 705.5.1 Extend to Horizontal Projectin per Section 705.5.2 Openings (no windows) as per Section 705.8 h Penetrations meet requirements of Section 712 Ducts and Air Transfer Openings in Firewall meet requirements of Section 705.11. 11. Are Fire Barriers used or required? (as required by table 302.3.2) Yes No If no skip #12 below. 12. Check Fire for structural stability as per Section 706.4. Open' s limited to 25% of wall.Maximum opening size of 120 sq. ft. (unless sprinklered)__YCheck that Penetrations meet the requirements of Section 712. Ducts and Air Transfer Openings meet the requirements of Section 712 and 716. 13. Are Shaft Enclosures used or required? Yes No X If no then skip #14 below. 14. Shaft Enclosures meet the requirements of Section 707 15. Are Fire Partitions used or required? Yes No >G If no then skip #16 below. 16. Check Fire Partitions fo St c Stability and Continuity as per Section 708.4. Dwelling units that are sprinklere ar d V2 hr. separations versus 1 hr. Check that Penetrations meet the r q ' e of Section 712. Ducts and Air Transfer Openings meet the requirements of Se io 1 an 716. 17. Fire Rated Ceiling Panels me e requirements as per Section 711.3.1. 18. All Penetrations Fire Resistive Walls and Horizontal Assemblies meet the requirements of Section 712. 19. Fire Resistive Joint Systems meet the requirements of Section 713.-gA- 20. Doors and Shutters in Fire Resis 've Assemblies meet the requirements of Table 715.3. 21. Fire Doors are Self Closing. 22. Fire Windows or Glazing conform to Section 715.4 and T ble 715.4..d V/4 23. Fire and Smoke Dampers conform with Section 716.AVA 24. Fire Blocking and Draft Stopping is provided as per Section 717 k (Draft Stopping is not required at partition line in dwelling units with combined space of less than 3000 Sq. Ft and not required if in sprinklered building with sprinklered concealed spaces) 25. Wall and Ceiling Finishes meet the requirements of Table 803.5 and Section 803. PTt-D 26. Floor Finish meets requirements of Section 804.- FIRE PROTECTION SYSTEM 1. Is a Fire Protection System required for this building in order to meet area, height etc. requirements? Yes No C If no skip #2 below. 2. List the type of system that is required AJ, /& 3. Other requirements re iring ire Pr to on Systems (check if needed): Group A (As per Sect 903 2.1) Group E (As per Sect 9032.2) Group F -1 (Asper S t n 9 3.2.3 Group H (As per Se io 90 .2.4 Group I (As per Sec on 0 .2.5 Group M (As per S do 9 3. .6) Group R (As per S tion .7) Group S -1 (Asper ectio 3.2. ) Group S -2 ((As per ectio 3.2. ) All Buildings except R -3 d U (Asper Section 903.2.10 Ducts conveying Hazardous Exhausts (As per Section 903.2.12.1) Commercial Cooking Operations (As per Section 903.2.12.2) As per Table 903.2.13 4. If Sprinklers needed as identified in #3 list type of system required. M I A 5. If Sprinlqirs required by any of the above, Are Monitors and Alarms provided as per Section 903.4? 6. If an ternat'v Automatic Fire Extinguishing System is identified, does I meet the requirements of Section 904?lr Ilk 7. Are Fire AlkniW required as per Sections 907 or 908? Yes No_X if no then skip #8 below. 8. Do Alarms meet the requirements listed in Sections 907 or 908?-NIA- 9. Is smoke control required ?(as per Sections 402, 404, 405 or 410) Yes No X If yes, see Sections 909. 10. H Occupancies may require smoke and heat vents as per Sections 415.6 and 410. MEANS OF EGRESS 1. Minimum height of 7'as per Section 1003.2. 2. Any protruding objects meet the requirements of Section 1003.3. 3. The occupant load shown on plans. 9 4. The occupant load as per calculated by Table 1004.1.2. 5. Occupant load posted in every assembly occupancy as per Section 1004.3. 6. Egress width is identified on plans. X 7. Egress width meets requirements as calculated per Table 1005.1 8. Multiple means of egress sized so that the loss of any one means of egress shall not reduce the available egress capacity to less than 50% of total required. X 9. Door encroachment does not reduce the required egres width to less than 50% required. x 10. Means of egress is illuminated as per Section 1006. 11. Illumination emergency power is shown for means of egress as per Section 1006.3. 12. An enclosed exit stairway is shown. Yes No_)6 if no, skip #13, #14 and #15 below. 13. Enclosed sta' an area of refuge(as per Section 1007.6) or is sprinklered. 14. Area of refug ay communications, instructions and is identified as per Sections 1007.6.3, 1007.6.4 and 15. Door clear widths are a minimum of 32 ". Except as allowed by exception of Section 1008.1.1. '.< 16. Doors swing in the direction of travel where serving 0 or more persons or in a H occupancy. 17. Specialty doors meet the requirements of 1008.1.3 18. All egress doors have a landing on both sides as per Sections 1008.1.4 and 1008.1.5._ 19. Thresholds are identified as a maximum of 1 /2" high, for swing doors and 3 /4" for sliding doors as per Section 1008.1.6. �' 20. Space between two doors is less than 48 "(except R2 &R3 non Type A units). 21. Locks and latches meet requirements of 1008.1.8. ),( 22. Panic hardware is shown at required locations (Section 1008.1.9). �C 23. Does a stairwa exist. Yes No X If no, skip #24 thru #28. 24. Stairway or d of open over stairs. 25. Stairways a um es and minimum tread is 11 inches. of 44" wide(except where occupant load is 50 or less or as per Section 1009.1). 26. Maximu r r 27. A landing is r v ed t the top and bottom of each stairway. 28. Maximum v ca rise without a landing is 12'. 29. Handrails are identified that meet the requirements of Section 1009.11. 30. Handrails return to wall, etc. or are continuous to next stair handrails- �1 31. Elevation change of over 1 /20 is designed as a ramp as per Section 10�0�1 32. Exit signs are identified when over 2 doors are required for exitin .�► 33. Exit signs are spaced no more than 100' apart or to the door // 34.42" guardrails are shown whenever a walking surface is over 30" above grade. -V(- 35. Any roof mechanical equipment within 10' from edge has a guardrail shown. -i(Ar 36. Egress does not pass through intervening spaces unless the space is accessory to the area served and the intervening space is not hazardous. X 37. If multiple tenant spaces exist, egress from any one does not pass through another. 38. Length of egress travel does not surpass requirements as per Section 1013.3. x 39. Required egress aisle adjacent to tables shall comply with Section 1013.4.2. X 40. Spaces with one means of egress meet the following maximum occupancy loads: x a. Occupancy A,B,E,F,M & U - 50 occ. b. Occupancy H -1, H -2, & H -3 - 3 occ. C. Occupancy H -4, H- 5.1 -1, I -3, I -4, & R -10 occ. d. Occupancy S - 30 occ. 41. Where two or more exits are required, they are a minimum of %z the diagonal distance of the space served apart or where the space is served by an automatic sprinkler system, the distance is 1 /3.N 42. If boiler or furnace rooms over 500 sq. ft. with btus over 400,000, two exits are provided. N 43. Refrigeration machinery rooms and refrigerated rooms over 1000 sq. ft. have two exits. 44. Stage means of egress comply with Section 1014.6. a 45. Exit Access travel distance meets requirements of Table 1015.1. x 46. Exterior ex' ( balconies constructed in accordance with Section 1015.1 have 100' added to their travel distance. Al 47. Corridors are rated as per Table 1016.1. A11 48. Corridor widths meet requirements of Section 1016.2. I 49. Corridor dead ends are less tan 20' or 50' for sprinklered occupancies B and F. Corridor not used as plenum unless in a tenant ace of less than 1000 s . ft. N 50. p space q -�' 51. The minim number of exits for occupant load meets the following: 1 -500 requires 2 exits 501 -1000 requires 3 exits More than 1000 requires 4 exits 52. Buildings with one exit meet the requirements of Section and Table 1018.2. NIA 53. Interior stairwells required as a means of egress met the requirements of Section 10 19.1 �Jx 54. Space under stairs is identified as 1 -hour rated. 55. Exterior ramps or stairs are open on one side and have a minimum of 35 sq. ft. of open space not less than 42" above any floor level. 56. Exterior ramps and stairways are protected from the inside of building as per Section 1022.6. 57. Exterior balconies, stairways and ramps are over 10' from lot lines and other buildings on the lotlV 58. Egress courts meet the requirements of Section 1023.5 59. Assembly occupancies meet the requirements of Section 1024.1 60. Window egress or better is provided in every sleeping room and any habitable basement. ACCESSIBLITY 1. An accessible route connects all accessible buildings, accessible facilities, accessible elements, accessible spaces and the public right -of- way(except as excepted by Section 1104). NOW 2. In addition to the required accessible entrances, 50% of all public entrances are accessible. k 3. Accessible parking is provided as per Table 1106.1.E 4. 10% of hospital outpatient parking is accessible and 20% of rehab or physical therapy. 5. Van spaces are provided.(one out of six and any portion) __ 6. Accessible parking is provided on shortest route from accessible parking to the accessible building entrance. )( 7. Group I occupancies meet accessibility requirements as set forth in Section 1107.5. 8. Group R -1 occupancies meet the requirements of Section 1107.6 and Table 1107.6.1.1. 9. Where 4 or more apartment units, one level town homes or condos are located in one structure, all units are design as Type B units as per ICC /ANSI 117.1 unless on a upper level without elevator service. 10. Where more than 20 apartment unit, one level town homes or condos are locateo in a project, 2% but not less than one are designed as Type A units as per ICC /ANSI 117.1 11. Wheelchair spaces (and companion seat per Section 1108.2.5) are provided in Assembly Occupancies as per Table 1108.2.2.1 12. Assistive listening systems are provided in Assembly cupancies where audible communications are integral to the use of the space.j� 13. Any Assembly occupancy performance area has an accessible route per Section 1108.2.8. 14. Any dining area in an Assembly Occupancy is fully accessible. 15. Self service storage facilities shall provide accessible spaces as per Section 1108.3. 16. Toilet and bathing facilities are accessible(unless in a private office)as per Section 1109.2. 17. Unisex toilets and bathing rooms are supplied as per Section 1109.2.1. 18. Where sinks are provided, 5 %, but not less than 1 is accessible. X 19. Where a kitchen or kitchenette is provided, it is accessible(unless in Type B dwelling). 20. Storage cabinets, lockers, etc. one of each type is accessible as per Section 1109.8._ INTERIOR ENVIROMENT AND ENERGY CONSERVATION 1. Attic ventilation exists that is 11150 of the floor space or 1/300 with vapor barrier. 2. 50% of the attic ventilation is 3 ft. above eaves. / 3. Crawl space ventilation complies with Section 1203.3. 4. Natural ventilation (windows, doors, louvers etc.) is a muumum of 4% of floor space 5. Interior spaces that do not have openings directly to outside meet requirements of Section 1203.4.1. X 6. Bathrooms containing bathtubs, showers or spas are mechanically vented. 7. Natural or Artificial light is provided that meets the req ments of Section 1205. 8. Courts shall meet the requirements of Section 1206.3. 9. Dwellings party walls and floors meet the requirements of Section 1207. 10. All habitable rooms shall be a minimum of 7' wide, and a minimum of 70 sq. ft. in area. 11. Dwelling units(except Section 1208.4 efficient units) have one habitable room of 120 sq 12. All ceilings are a minimum of 7'6" with no more than 1/3 at 7'0 ". x 13. Attics and crawl spaces have access openings as per Section 1209 14. An energy review has been submitted that meets the requirements of the International Energy conservation code.--.,k- EXTERIOR WALLS AND ROOFS 1. Exterior Wall Vapor retarder provided unless another approved means to avoid condensation and leakage has been provided. )C 2. Water resistant barrier shown on sheathing as per Section 1402.2. V 3. Masonry veneer is flashed at bottom and has weep holes. ,V/,A, 4. Masonry veneer shall be mechanically attached as per Section 1405.5. /V/h- 5. Stone Veneer is anchored as per Section 1405.6 -&Ik 6. Sidings shall be applied as per Section 1405. X 7. Fire separation distance for combustible veneers(siding) meet that of Table 1406.2.1.2. 8. Balconies that protrude shall meet the requirement of Table 601 for floors 4 11A 9. Metal Composite Materials(MCM) shall meet the requirements of Section 1407i 10. Roof coverings meet the requirements of Table 1505.1. K 11. Double underllyment is provided in asphalt roofs with minimum slope of 2:12 up to and including a 4:12 slope. # 12. An ice dam membrane (one continuous sheet or two sheet cemented together) for all asphalt roofs is provided from the roof edge to 24" inside of the inside of the exterior wall._ 13. Drip edge metal is provided along all roof edge.�/� 14. Metal roofs meet the requirements of Section 1507.4. AIIA_ 15. Built -up roofs meet the requirements of Section 1507.10. 16. Single Ply Plastic Roofing meet requirements of Section 1507.12 and 1507.13. 17. All other roofing types meet the requirements of Section 1507 STRUCTURAL DESIGN AND SPECIAL INSPECTIONS 0j ki Structural Use Group (as per Table 1604.5) // Structural documents for light frame wood buildings as per chapter 23 include floor roof and live loads, ground snow load, basic wind speed, wind exposure, seismic design category and site class. X All plans except as described in #1 above shall include the following: a. Floor live load including any reductions. x b. Roof live load as per Section 1607.11._ C. Roof Snow load, including the flat roof snow load, the snow exposure factor, the snow load importance factor and the thermal factor. ''C d. Wind design data, including basic wind speed, wind importance factor with building category, wind exposure, applicable internal pressure coefficient and the design wind pressure used for the design of components and cladding. e. Earthquake design data including seismic importance factor, seismic use group, mapped spectral response accelerations, site class, spectral response coefficients, seismic design category, basic seismic- force - resisting systems, design base shear, seismic response coefficients, response modification factors and the analysis procedure used. X 4. Flood zone is identified(if in flood zone see Section 1603.1.6) tyO -b 5. Design of floor live loads in access of 50 lbs per sq. ft. also identify that signs must be posted. 6. Structural design calculations meeting the requirements of chapter 16 have been provided. - 7. Architectural, mechanical and electrical components meet the seismic requirements of Section 1621._ 8. Where special fabrication (usually steel) is performed off sight, the fabricator has provided a certificate of compliance as per Section 1704.2.2. 9. Special inspections are identified for welding. ?< 10. Special inspections are identified for high strength bolting. Uk (.1 -eA✓L IN P44" . to T Je.CO. 11. Special inspections are identified for concrete construction except as excluded by Section fo^- TbC r 1704.4._? S /?, d )t5 40 OV 6 A 12. Special inspection are identified for masonry as per Section 1704.5. 13. Special inspections are identified for fills greater than 12" deep where a load is applied. 14. Special inspections are identified for all pier and pile foundations. 15. Special inspections are identified for sprayed on fire resistance app cations.) 16. Special inspections are identified for smoke control systems. 17. Quality assurance plan for seismic resistance is provided (exce t for design light frame as per chapter 2308 or reinforced masonry less than 25 feet high) 18. Special inspections are provided for seismic force resisting systems. jlA- 19. Structur observations as per Section 1709 are identified for structures in Seismic Use Groups II or III. SOILS AND FOUNDATIONS 1. Allowable soil foundation bearing pressure (as per Table 1804.2). 2-0 O o 2. Soil investigation meets the requirements of Section 1802.2. ? N 61 pksvtoev 3. Grading is a minimum of 2% for concrete or asphalt surfaces or 5% for natural surfaces. - K 4. Information provided as per Section 1803.5 for any structural fill. M� 5. Footings (except for 1 story category 1 buildings no bigger than 400 sq. ft.) are 36" below grade for frost protection. )VOTeV 6. Buildings on or adjacent to greater than 3/1 slopes meet requirements of Section 1805.3. A/ A 7. Top of foundation is a minimum of 12" above the adjacent street gutter (unless a drainage path is identified and approved by the building official) 8. Footings designed so that the allowable bearing capacity of the soil is not exceeded-,&- 9. Foundation meets the requirements of Section 1805.5 (including tables 1805.5 _). >C 10. Except for Group R and U occupancies of light framed constructs n of seismic design D and less than 3 stories in hieght, concrete is a mini of 3000 p.s.i..� 11. Retaining walls are designed with a lateral sliding and overturning factor of safety of 1.5.14A 12. Foundation d;ai ge system or water - proofing (Section 1807.3) is provided where water table warrants._` 13. Damproofing shown under slabs as per Section 1807.2.1. JV 14. Damproofing shown for foundation walls. 15. Minimum of 4" of gravel is shown under all slabs._ 16. Foundation drain is installed (except in well- drained gravel areas) as per Section 1807.4.2 and 1807.4.3. 17. Piles meet requirements of Section 1808, 1809, 1810 and 1811." 18. Piers are a minimum of 2' wide and meet requirements of 1808.2.23. and 1812. CONCRETE and MASONRY 1. Construction documents show compressive strength of concrete, strength or grade of reinforcement and the size and location of reinforcement. X 2. Structures assigned to Seismic Design ategory D contain a statement identifying if slab -on -grade is designed as a structural diaphragm 3. Concrete exposed to freezing weather has air entrainment as per Table 1904.2.1 and meets the requirements of Section 1904.2.2 and Tables 1904.2.2(1) and 1904.2.2(2). X 4. Masonry shear walls are provided in both directions so that their cumulative dimension in each direction is a minimum of 0.4 times the long length of the building (as per Section 2109.2.1.2) 5. Floor and roof diaphragm width to length;atios for masonry buildings meet Table 2109.2.1.3.(Empirical Design Only) /I/ 6. Masonry wall ateral support is identified in engineering documents or empirically by Table 2109.4.1. A- 7. Masonry thic ess of bear' g walls for one story is a minimum of 6" and 8" for two story buildings as per Section 2109.5.2.E 8. Masonry foundation walls meet all of the requirements of Section 2109.5.6. 12/14/04 TUE 17:11 FAX 208 359 2271 12/1.4/04 TUE 09:46 FAX 801 298 1.1.32 TANNER SMITH BARFUSS & ASSOCIATES, Inc. Structural Engineers 0 233 North 1250 West 0201 J Centerville, Utah 84014 Tel (801) 298 - Fax (801) 298 -1132 1132 B A tsba @aros_net JRW & Associates 1152 Bond Avenue Rexburg, Idaho 83440 Attn: Gary Richardson Re: Rexburg Subwav Gentlemen: JRW & ASSOC. 1' S B A >» JRW December 14, 2004 The structural calculations were made using Site Class C because the Rexburg Deseret industries was a Site Class C and it is close to the Subway site. The buildings at BYU Idaho designed by this office have also been designed using Site Class C and because of this the Subway was also designed for Site Class C. The calculations have been re -made using Site Class D which changed. the Seismic Design Category to D and increased the base shear from 0.058 to 0.068 times the weight of the building. The roof shear and the out of plane wall loads were still based on wind loads and no change was required on the drawings. If you have any questions, please contact us. Sincerely, Leon W. Tanner, S.B. for Tanner Smith Barfuss & Associates Qo Z003 Leon W. Tanner, S.E. David R. Smith, S.E. Donald L. eariUSS Jr, P.E. 12/14/04 TUE 17:12 FAX 208 359 2271 JRW & ASSOC. U004 12/14/04 TUE 09:45 FAX 801. 298 1.1.32 '1 S B A JRW 01001 1L/ 14_/U4 :I'Uh U : s3 PAX 208 359 2271 JRW & ASSOC. T W S A 0001 �dAIVI P10, U I YJ r, L P.0 Bax 260 'pp ���� OF i 10 E total% SC 11,2/ BUNG Rexburg. Idaho 83440 AM MASMMIT CdMMUnmr Phone (208) 356 -3020 Review Action Fsx (208) 358 December 3, 2004 RF-VI-Clops Permit Number: 04 00419 Project Name; Subway North Project Type Commercial New Review Item Ark QwLR sl r_Elwroval _ —App Complies with approved Site Plan Review Water and Sewer Service Plumbing Potable Water Review Plumbing Stone Drain Review Plumbing Sewer Drain Review Interior Environment Energy Conservation Compliance Review Exiting Review Building Code Fire Compliance Review Height and Area Review Building Type Compliance Miscellaneous Accessibility Review Mechanical Review The site plan has been approved by the Building 12/01/2004 Department. Nine parking spaces are required and fourtaen are provided. Required to be Installed, tested and inspected 12/02/2004 befors covering. Water Ones are required to be installed, tested 1210212004 and inspected before covering. Must be Installed according to plans provided. 121Ct2/2004 Required to be Installed according to the 12/0212004 uniform plumbing code. Ceiling and wall finish must meet requirements 12/0212004 of Section 803 of the IBC. Meets the requirements of the 2000 12/03/2004 International Energy Consorvation Code. Exiting complies with the International Building 12/03/2004 Code (IBC). Complies with the IBC. 12103/2004 Height and area COMply with IBC. 12!03/2004. Building is a Type VB. 12/03/2004 Provide flood zone certificate. Provide pedestrian access to public way without using driveway. Prior to installation, provide seismic connection information for mechanical components or other component As per IBC Section 1621. Mechanical units closer than 10' from a roof edge require guardrails_ Either move The structural calculations were made using Seismic Design Category a and Site Class C. How was Site Class C arrived at? If a soil 12/14/04 TUE 17:11 FAX 208 359 2271 JRW & ASSOC. IM 003 1L/14/04 TUF 09:46 FAX 801 298 1.1.31 T S IS A >y� JRW [11002 vo_oY rnn cuo a:)y E<!1 T S B A�:jUI;. jl T W S A 002 2004 11: 59AM No. U M r. i PA Box 260 CITY OF _ 19 E 14d a St REXBURG fbxburg, Idaho 86440 A MBUCA 5MMUCOfA%Wh' tt Rw (208) 339 Review Act Fox (2 08) 359-3022 0ecemb90, 2004 Permit Number: d4 00419 Project Name: Subway North Project Type: . Review I tem Commercial New invesfgand - r Ws not performed. then the default Site Glass should be D and the Seismic Design Category would then be D. Please supply a Solis Report or than tmm th e s tructu ral engineer. Palrml # RPRIAMDL000050 Lce>~ 1911 /nA TT TT, n9-in rmv /DY NA nACgT FEB -9 -1999 06:12A FROM: TO:3593022 P:2/3 DPC 17 04 10:59a SCHLESS & ASSOC- (20e)522 -9232 p.l FEDERAL EMERGENCY MANAGEMENT AGENCY 0_M13. No- 3057 -0077 NATIONAL FLOOD INSURANCE PROGRAM Expires December 31, 2005 ELEVATION CERTIFICATE Im rtant: Read the incrtrtrctions on pages 1 - 7, SECTION A - PROPERTY OWNER INFORMATION For Insuranre Company Use: aLIiLDINGOW ME �Q�6� PWIOyNUmbPr Fltill„ DlNC fiTRFFT DI]RFSS (Including A 6, Unit, Suite, antler tdg. No.) OR P.0 ROUTE AND BDX NO. Company laude Nrunher CITY P-4 ` N BUILDING U5E ( @,g., R Non- reskiardlal, Addition Au es , etc. Uc , LA71TU4E/LONGITUDF. (OPTIONAL HOKUON'I'A �D ( W - ##'- ##.W or ft.ihhbllh4tl ° ) L � ,I NAD 1927 NAD 1863 S1 ATE ZIP XDE 3asoription, etc j �'*` 2 4- 2 a Comments area, If neemary.) n SOURCE' I,y W trypel; { USGS Quad Map LI Other SECTION a -FLOOD INSURANCE RATE MAP (FIRM) INFORMA110N R I. NFIP COMMUNITY NAME 8 COMMUNITY NUMBER kit. COUNTY NAME 1i9, STATE D4, MAP AND PAN 55. eVFFIX BS. FIRA INDEX 17, FIRM PANEL BB. FLOOD 99. BA9E FLOOD [LCVATION(.i) NUMBER DATE EFFECTIVF /RFVIRFn DATF ZONE(S) (2br10 use depth of flooding) I b o I�l i \ .S um 3, I `1 B10. Indicate the source of the Baas Flnod Elevation (BPE) data or base flood depth entered in B9. / r_ I FIS Profllo I.J FIRM IX Community DRIArminArl I,_ J Other (Describe): (_�i� 1 ✓� ��N �.s •- B11. Indicate the elevation datum used for the rSFF In nSi: Ikl-N( 1529 IJ NAVO 1908 IJ Other ( acrlbe): B12. Is the building located in a Coastal Borrior RQSOurces System (CDR$) aria or Otherwise Protected Area (OPA)? IJ Yed JI NQ Designation Date: SECTION C - BUILDING ELEV ATION INFOM"TIDN (SURVEY REQUIRED) C.i Buikflny elevations ore bated on: I_V�Construetlan orevaing9' IJ9uliding Under Construction" I— IFlntghod Conslruclron 'A now Elovptiol) Cerdflcate will be mqulrad when construction of the building is complete. C2, Building Diagram Number A (Select the building diagram most similar to 1)te building for tM lch this corttflcate Is being completed -see pages G and 7. If no diaUrarn %QQueAtely represents the building, provide a sketch or pl rdogroph.) 03. Flev»tions - Zones Al A30, AE, AH, A (with BFE), VE, V1 -V30, V (with BFE), AR, ARIA, ARIAI=, AWAI- 1130, AR/AH, ARIAO Complete Items C3.a -i below acmirding to the building diagram specified In Item C2, State Ihn datum used. If the datum Is dlfrerent from the datum used for the BFE in Section B, aenyurt the datum to that used for the BFE, Stow field measurements and datum oonvarclon calculation Use the space provided or the Commontr rea of Section D or Soctlon G. as `�pmpdatA, to document the datum Conversion. tuaturn ConyerslonlCommenta Cr f da O Srh.te Elevation rorcronoo mark used___ _�!.�et. Aa �L -Does the elevation reference mark used appear nn the EII,M't IJ Yee No ❑ a) Top of bottom floor (including b4semant or enclosure) f WYD� ❑ b) Top of next higher floor U e Bottom of lowest harizonlal 31ruc.lural member IV zanas only)_ ft.(m) t � U d) Alimehad yaraga (lop of stab) di U e) Lowest elevation of rrieuhinury erkbor uquipmcnt Q servicing ft building (Describe in a Comments area _ R,[m} 2. 9 U f) Lowest adjacent (nnisnea) grade (LAG) -- . m) � n UA O g) Highest adjacent (finishod) yrnda (I JAG) _ R.(11) $ 13 h) No. of permanent openings (flood vents) within 1 ft. above adjacent urdde rS A OF ❑ i) Total area of all permanent openings (flood vent✓) in (:3.h Sol in. (Sw Cm) j• S E CTION D - SURVEYOR, ENGINEER, OR ARCH I T ECT CERTIFICAT This certification is to be signed and scaled by a land Surveyor, engineer, or architect nuthortzed by law to eertiry 00vatio Information . i certify that the intomiation in Sections A, B, end C on this eer ifieate represents my had errtartv to inferprat the data avadzibfo. I understand that any false sfafernynt ry?ay be punisltablo by rrne or r(sonment under 10 0.6_ Code, Section 7001. CERmFIEWS NAMit ` S }j / LICENSE NUMOt'R p TITI F COMPANY NMI❑ �� �.tlrexare- e.�i.►CrSS c ff-SSOGt¢.R`� AO RESS CITY f f !� z r r I S STATE I D CODE 1 s+ -v-ia YMM I L IM- — UA I C 1 tLtrMN� r , -/ - O ¢ 7�� Sz FEMA Fofm 81- 314 JW Sea reverse side for continuation. Rapiscea all previous editions FEU- 9 -1999 TLIE 05 :49AM ID: PALdE:1 FEB -9 -1999 06:13A FROM: TO:3593022 P:3/3 Doe 17 04 10s59a SCHIFSS S ASSOC, 12091522 -9232 p.2 IMPORTANT: In (hose s copy the carre5ponding Inlbrm3tion from Section A. F4cr Insurance Compnny Use' BUILDING STREET ADDRE59 (Including Apt., Unit, Suite. and/or bldg. Nu.) OR F.O. ROUTE AND sox NO. „PoDry Nranbor CITY STATE - CODE CarnDanY RMC Number S ECTION D - SURVEYOR, ENGINEER, OR ARCHITECT CERTIFICATION (CONTINUED) Copy b oth sides of this Flevallon Cd r t ineate for (1) community officiol, (2) ins uranoe agenVoornpany, and (3) building ow ner•. COMMENTS 1, I Chock here If anaachments SECTION E - BUILININO ELEVATION INFORMATION (SURVEY NOT REQUIRED) FOR ZONE AD AND ZONE A (WITHOUT BFI:[ For Zone AO and Zone A (without BFE), complete ltema E1. through E5. If the Eloyatlon Conlilcate Is ititended use as supporting Information for a LOMA or LOMR +, soetion G must be doinpleled. Fl. Building Diagram Number _ (Select the building diagram most similar to the building for which this certificate is being cornph -W- l - see pages 6 and 7. If no diagram accurately represents the building. provide a sketch or photograph.) E2. The top of the bottom floor (including biasramPnt a t ancroeure of the building Is IJ -1 ft. (m) I-_..i —I In. (cm) 1_1 above or L,I below (check one) the hig heat adjacent grade. (Use natural grodo, N tivallable.) E3. For Building Dlagroma 6-6 with openings (see page 7), the next higher floor or elevated floor (elevetitx, b) of tt,e building is I -J -1 ft. (m) 1_1_11n. (cm) above the hfghesl adjacent grade_ Complete Items C3.h and C3.1 on front of farm. E4. The top of the platform of machinery and/or equipment servicing the building is 1 -1_j ft. (m) 1_1 In. (cm) 1_1 above or 1 -1 below (Check one) the highest adjacent grade_ (Use natural grade, if avallahlA.) E5. For Zone AO only: If no tinnd depth number Is available, Is the top of the bottom floor clovated in wmvrdanue with the community's floodplain manogament ordinanoe? I I Yes I I No I I Unknnwn The local offlotal must certify this Information in Section 0 SECTION F - OWNER'S The property owner or owner's wrthortred representative who Completes Seotions A, 8, C (Items C3.h and 03 only), rind E far Zune A (without a FEMA- issutad or community- irauAd 8FE) or 7,.ono AO must eig h here. Tho statements ki Sections A, B, Q and E al corrocr to the best ofmy_knowledgs, _ PROPERTY OWNER'S OR OWNER1 AU rHORIZED REPRESENTATIVE'S NAME ADORES CITY STATE 23P COOT SIGNATURE DATE 1'ELEPHONE COMMENTS �_.JA Amick ham If o w.hmnms SECTION G - COMMUNITY INFORMATION (OPTIONAL) The local ofbaal who is authur iaxl by law or ordinanoo to administer the cornrnunity's Ikuxtplttin manmyernont ordinanve can =nplete $salons A, S, C (or E), and G of this Elevation Certificate. Complete the applicable Itorn(o) and sign below. G1. I,,,1 The Information in Section C was token from other documontatlon that has been signed and embossed by a licensed survoyor, anginear, or architect whn IF suthnrbrsrt by.1Mnte or Ine-al low to rertity olavotfon Informatic)n. (Indicoto the souroa and data of the elevation data in the Comments aroo below.) 02. 1J A Community oifioisl completed Section E for a build located in Zone A (without a FEMA- ieausd or community- issued titE) or Zone AO_ G-1. {„_1 Tho following infon=don ( Items 04 -09) is provided for community floodplain management purposes. G4. PERMIT NUMBER �G5. DATE PERMIT ISSU Fr) � I SSUE C WIFICATE OP COMDI IANCF1OVCUPANCY G /.. I his permit has been Issued for: I_ J Now Construction 1-_15ubetantlal Improvement G8. Elevation of as -built lowest floor (including basement) of the building is. _ . _ ft. (m) Datum: G9 BFF or (in Zone AO) depth of flooding 2t tho building site is. _ ft. (m) Datum-,.__ LOCAL OFFICIAL'S NAME TITLE OCWMUNITY NAME TELEPHONE SIGNATURE DATE comminrq 16 U .hook here if attachments FEMA form 81-31, January 2003 Replacas all previous editions FEB -9 -1999 TUE 05:50AM I01 PAGE :2 11/24/04 WED 09:17 FAX 801 298 1132 1 T S B A � 0400419 Subway North 321E 2nd N 1 1 444 JRW [a 001 F �OV 2 9 2004 STRUCTURAL ENGINEERING CALCULATIONS i for the Rexburg Subway 1 for Subway Architect JRW & Associates Prepared by ' Tanner Smith Barfuss & Associates Structural Engineers November, 2004 _ 11/24104 WED 09:17 FAX 801 298 1132 I TSSE ' TANNER SMITH BARFUSS & ASSOCIATES STRUCTURAL ENGINEERS 442 North Main Street Bountiful, Utah 84010 Phone 801- 298 -8795 ' Fax 801- 298 -1132 DESIGN CRITERIA USED T S B A PROJECT: Our Job #: Engineer. Date: JRW Rexburg Subway 04088 LWT 10/01/04 Uniform Building Code Used 2003 IBC Live Loads: Roof 40 psf Snow Drift included where required Floor NA psf Reducible Live Load No Wind: Wind Exposure B Basic Wind Speed 90 mph 3 Second Gust I = 1 P 9 @> psf Bldg ® 2 Seismic Building Frame System: Bearing Wall: Shear Wall WCW Vertical Irregularities No Plan Irregularities No Seismic Use Group 2 Reentrant Comers Seismic Design Category = C I = 1 Site Class = C R= 5 SS= 0.512 O = 2.5 S1= 0.166 E11.4 = 0.058 W P = 1.000 Geotechnical: Allowable Soil Pressure 2000 psf Wail Footings n/a Lateral Earth Pressure 35 pd n/a Friction Coefficient 0.4 Frost Depth 42 inches MATERIAL AND STRENGTH REQUIREMENTS Concrete: Design Weight 150 pcf Columns NIA psi Footings 4000 psi Elevated Deck- N/A psi Foundation Walls 4000 psi Beams N/A psi Slabs on Grade Interior 4000 psi Exterior 4500 psi w/ 6% Air +/- 1 % Masonry: CMU P = 2000 psi Mortar Type: S Is Special Inspection Required? = Y Steel: Beams 50 ksi Columns: PL's 36 ksi Pipe 36 ksi Ledger Bolts A307 Tube 46 ksi Foundation Bolts A307 Rolled Sections 36 ksi Steel to Steel Bolts A325 Reinf Steel: Concrete & Masonry Construction 60 ksi 11/24/04 WED 09:18 FAX 801 298 1132 ' TSBA ' Design Loads Roof DL Roofing 6 Deck 3 ' Joist 4 Insulation 3 ' Mechanical Ceiling 3 4 Misc. 2 LL 40 Total Load ' Level Mechanical Level DL Flooring Deck ' Joist Partitions Mechanical ' Ceiling LL Total Load Level Main Level ' DL Flooring Deck Joist ' Partitions Mechanical Ceiling ' Misc. ' LL Total Load I T S B A Design Criteria / Loads 25 40 65 0 0 0 0 0 Level -�-) DL Flooring Deck Joist Partitions Mechanical Ceiling LL Level DL Flooring Deck Joist Partitions Mechanical Ceiling LL Level DL Flooring Deck Joist Partitions Mechanical Ceiling Total Load Total Load 0 0 0 0 0 0 LL 0 Total Load 0 0 0 0 0 0 0 0 11/24/04 WED 09:18 FAX 801 298 1132 Maporaina.com - REXBURG T S B A Company Solutions Products Services Technology Customers News V I I I 4D REXBURG (ID) - USA MOPO Store and retrieve New search Th• w0*14 Ay W Qv L Export the map Lj L J By Email To PDA On printer E d P-3rd*Na"h Itineraries 56 1 Y Z L� Drive Me From L123d z 98 2 1 _ 99 ; �i a N M +S r ye 4 199 292 IN ' �,.] -W- Drive Me To a Z S 8 490 ' ; . W isi'N . E: � 1 gt_ ... Personalise your map j 1 2 d L ► -fl I— --V"-E 4— N 2 f Ion V90 201 LJ1 M (37OX263) I .1p LJ Standard Lt� Km F No points of interest Click on the amp to Recenter Recenter & Zoom in Move the target Information Lat4-ong: 43'4W 52", -111" 46 44" 43.8313,-111.7789 Q Maporama International 2004 - Copyrights - Send us your comments - Add to favorites JRW 2004 Page I of I Your language: English Look Hotel Rest wJth: (.- Iml Hotel Rest Viffih: r in Hotel Rest with: C 80 Hotel Rest WWI: r ]a ' 11/24/04 WED 09:18 FAX 801 298 1132 I I I I I I I I I I I I I I I I I I I I I I � I � I T 5 B A MCE Parameters - Conterminous 48 States Latitude= 43.8313, Longitude= - 111.7789 Data are based on the 0.10 deg grid set Period SA (sec) ( %g) 0.2 051.2 Map Value, Soil Factor of 1.0 1.0 016.6 Map Value, Soil Factor of 1.0 444 JRW [a 005 � I _ 11/11/ 1 11 WED r 09:19 FAX 801 298 1132 T S B A ��� JRW ' TSBA OccCat V I i I W Ss SI Input IBC 2003 SC R Project: Rexburg Subway ' ID: JRW ASSOCIATES Cd ASCE 7 -02 Occupation Category 2 II _Typical (Not I, x0[, nor M •► ' Seismic Use Group I Importance Factors suggestion 1 I 1.00 1 i 1.00 1 ' IN 1.00 1 Wind (IBC simplified 1609.6) ' Speed 0 sec. gust) 90 mph 90 mph: 90 rnp Importance 1.00 Exposure B B B- (default) numerous 1 far* hoi W 2 Roof Angle 0 deg Seismic S 0.512 g S, 0.166 g Site Class C C C 3 ' Bearing Wag - Special Reinforced masonry shear wall 3 R 5.0 5 W 2.5 2.5 C 3.5 3.5: OccCat =2 Ss 0.512 R =5 ' IF, = I St =0.166 fl = 2.5 I S I SC = "C" Cd = 3.5 I I Lot 10/1/2004 [A 006 1 of 6 Input IBC2003 06- 16-04.mcd 11/24/04 WED 09:19 FAX 801 298 1132 T S B A I I IN II 1 I ��-> JRW TSBA (9.4.1.2.4 -1) 2 of 6 Input IBC 2003 SDS := 2 -SMS T S Updated: 06 -16-04 2 Map Ss (0.2 second) " Ss = 0.512 3 B A Map S1 (1 second) * S1 = 0.166 Site Class Sc = "C" Seismic Use Group " SUG := if(OccCat = 1, 1, OccCat - 1) SUG = 1 0.8 0.8 0.8 0.8 0.8 R (Table 1617.6) ' R = 5 1.0 1.0 1.0 1.0 1.0 TabFa := 1.2 1.2 1.1 1.0 1.0 0 (Table 1617.6) • 0 =2.5 1.6 1.4 1.2 1.1 1.0 Cd (Table 1617.6) ' Cd = 3.5 2.5 1.7 1.2 0.9 0.9 Building Height * Ht := 20-ft 0.02, 0.03 EBF, 0.028 SMRF, Period Coefficient ` CT :w 0.02 0.016 Conc.MRF 0.8 0.8 0.8 0.8 0.8 Period "x" factor *riod 0.75 0.75, 0.8 SMRF, 0.9 Conc.MRF 1.0 1.0 1.0 1.0 1.0 Redundancy " p:= 1.0 TabFv = 1.7 1.6 I.5 1.4 1.3 2.4 2.0 1.8 1.6 1.5 Regular 5 stories or less " REG := "N" 'T "es or "N "o ( 3.5 3.2 2.8 2.4 2.4 Find interpolated table values for Fa and Fv r.= if(SC = "A" ,O,if(SC ='B" , l ,if(SC = "C" ,2,if(SC = "D ",3, if(SC ="E",4,999))))) acl := ceil Ss - - 1 ( Ss acl = 2 ac2 := floo (.25 - - 1 ac2 = 1 ac2 := if(ac2 > 4,4,if(ac2 < 0,0,ac2)) acl ;= if(vcl > 4,4,acl)acl = 2 a int:= 25 -acl a int =0.05 vcl := ceill S1 - I� vc1 = 1 vc2 := floo s - l� vc2 = 0 vc2 := if(vc2 > 4,4,if(vc2 < 0,0,vc2); 1 f 1 J vci := if(vcl > 4,4,vcl)vcl = 1 v - int := Sl - vcl v int = 0.66 Fal := TabFa Fal = 1.10 Fat := TabFa Fa2 = 1.20 Fa := Fa2 - (Fa2 - Fal) -a int � ac2 Fvl := TabFvr,vcl Fvl = 1.60 Fv2 := TabFvr,vc2 Fv2 = 1.70 Fv := Fv2 - (M - Fvl)•v_int X period T:= CT -6 -ft I) (9.5.5.3.2 -1) T = 0.189 SMS := Fa -SS (9.4.1.2.4 -1) SM1 := Fv - S1 (9.4.1.2.4 - 2) SDS := 2 -SMS (9.4.1.2.5 -1) 3 2 SDI := - -SMI (9.4.1.2.5 -2) 3 SMS = 0.612 SMl = 0.271 SDS = 0.408 SDI = 0.181 D* 10/1/2004 Input IBC2003 06- 16- 04.mcd 11/24/04 WED 09:19 FAX 801 298 1132 ' TSBA T S B A RegFactorS := if(REG = "Y" ,if Ss > 1.5, 1.5 ,1 )") \ Ss ' ( ),I) (955.2.1 last paragraph) RegFactorl := iff REG = "Y"ifSI > 0.6, s6, I . . SDS•RegFactorS Cs :_ (9.5.5.2.1 - 1) Calculated R I SDS- RegFactorS Csmax :_ (9.5.5.2.1 - 2) Maximum R R -T I Csmin:= 0.044 - SDS- IE- RegFactorS (9.5.5.2.1 -3) Minimum Csmin2 := 0.5• SI •RegFactorl — (9.5.5.2.1 -4) when in E or F R I E:= if(Csmax < Cs, Csmax, if(Csmin > Cs,Csmin,Cs)) ->44 JRW IM 008 3 of 6 RegFactorS = 1 RegFactorS = 1 __ �. E:= if(SC = "E" ,if(Cs < Csmin2,Csmin2,E),if(SC = "F" ,if(Cs < Csmin2,Csmin2,E),EJ ?.5.5 E (Chose appropiate Cs) Vertical Component (Mainly LRFD Methods) ' Evert if (SDS <- 0.125,0,0.2• SDS) (9.5.2.7) Calculate the Seismic Design Category (TABLES 1616.3(1) 81616.3(2)) ' i_SDS := ceil(SDS•6) SDS = 0.408 1 = 3 i `- DLB i SDI =3 "A" "An i =3 i =2 SDtabl = SDtab2:= " 10/1/2004 Input IBC2003 06-16- 04.mcd i_SDI := ceil(SDI.15) SDI = 0.181 i:= if(i_SDS > i SDI,i_ SDS, i_SDI) i:= if(i > 4,3,i - 1) ' SDC:= if( SUG= 3,SDtab2 ' SDC := if (S 1 > 0.75, if(SUG = 3, "F" , "Ell), SDC) i `- DLB i SDI =3 "A" "An i =3 i =2 SDtabl = SDtab2:= " 10/1/2004 Input IBC2003 06-16- 04.mcd 11/24/04 WED 09:20 FAX 801 298 1132 T S B A 44� JRW 0009 TSBA 4 of 6 Unit wt to diaphragm wp := 1 -K m Unit wt of wall "' ww = 1-kif SDC "A" (9.5.2.6.1) Connections Fpl := max(0.133•SDS,0.05) Anchoraae of Conc. or Mas. Walls Fp2:= max(0.133- SDS,0.05) SDC "B" (9.5.2.6.2) Connections Fpl := max(0.133- SDS,0.05) Conc. or Mas. Walls and their anchorage Fp2:= max(0.4- SDS- I Fp2min := 0.4•SDS•1 Diaphragm Force Fp3 := 0.2- SDS•IE 9.5.2.6.2.1 9.5.2.6.2.2 9.5.2.6.2.3 9.5.2.6.2.4 9.5.2.6.2.5 9.5.2.6.2.6 9.5.2.6.2.7 9.5.2.6.2.8 9.5.2.6.2.9 9.5.2.6.2.10 9.5.2.6.2.11 (9.5.2.6.1.1) (9.5.2.6.1.1) (280 plf min.) (9.5.2.6.1.1) OWN (9.5.2.6.2.8) (9.5.2.6.2.8) .. (9.5.2.6.2.7) 1 + offset force req'd. (Min. of diaph. supported seismic force.) P -Delta Effects, see 9.5.5.7.2 Openings, transfer forces Direction of Seismic Load, 2 orthogonal directions. Discontinuites in Vert. System, vert. irregularity type 5 Nonredundant Systems Collector Elements Diaphragms, see above. Deflection shall note exceed permissible of elements. Anchorage of Conc. or Masonry Walls, see above. Inverted Pendulum -Type Structures. Anchorage of Nonstructural Systems, see 9.6 Elements Supporting Discontinuous Walls or Frames, special load case 9.5.2.7.1 DLB 10!1!2004 Input IBC2003 06- 16- 04.mcd ' 11/24/04 WED 09:20 FAX 801 298 1132 T S B A ->->4 JRW 10 010 ti 1 1 1 1 1 1 1 1 TSBA SDC "C" (9.5.2.6.3) Connections Fpl := max(0.133•SDS,0.05) Anchorage of Conc. or Mas. Walls (9.5.2.6.1.1) .._::.,,a... Fp2flex:= 0.8 -SDS I (9.5.2.6.3.2 flex. diaph.) L'.n.. .. .. a.i Fp2min := 0.4•SDS- IE•klf (9.5.2.6.3.2) a := 1.0 R := 2.5 z:= 1 h:= 1 F := 1.0 0.4•a •SDS• r Fp2rigid I 1 + 2 ! Fp2rigid = 0.196 R P ` ) Fp2rigidmax := 1.6 -SDS -I Fp2rigidmax = 0.653 Fp2rigidmin := 0.3- SDS•I Fp2rigidmin = 0.122 Fp2rigid := if(Fp2rigidmax < Fp2rigid ,Fp2rigidmax,if(Fp2rigidmin > Fp2rigid,Fp2rigidmin,Fp2rigid)) Diaahraom Force Fp3 := 0.2- SDS -I (9.5.2.6.2.7) (Min. of diaph. supported seismic for+ce.) 9.5.2.6.2.1 P -Delta Effects, see 9.5.5.7.2 9.5.2.6.2.2 Openings, transfer forces 9.5.2.6.2.3 Direction of Seismic Load, 2 orthogonal directions. 9.5.2.6.2.4 Discontinuites in Vert. System, vert. irregularity type 5 9.5.2.6.2.5 Nonredundant Systems 9.5.2.6.3.1 Collector Elements, use CrE load combinations except tight frame walls. 9.5.2.6.2.7 Diaphragms, see above. Deflection shall note exceed permissible of elements. 9.5.2.6.2.8 Anchorage of Conc. or Masonry Walls, see above. 9.5.2.6.2.9 Inverted Pendulum -Type Structures. 9.5.2.6.2.10 Anchorage of Nonstructural Systems, see 9.6 9.5.2.6.2.11 Elements Supporting Discontinuous Walls or Frames, special load case 9.5.2.7.1 SDC "D" (9.5.2.6.4) See SDC "C' above plus the following items 9.5.2.6.4.1 Collector Elements must resist forced from 9.5.2.6.4.4 below 9.5.2.6.4.2 Plan or Vert. Irreg: Diaph. to vent. elements force increase by 25 %, see section. 9.5.2.6.4.3 Vert. Seismic Forces: Cantilevers, see section. 9.5.2.6.4.4 Diaphragms, see triangulation formula in section. SDC "E or F" (9.5.2.6.5) See SDC "D" above plus the followina items ' DLB 9.5.2.6.5.1 Plan or Vert. Irreg: NOT PERMITED Plan, Type I (Extreme Torsional) Vert., Type 1 b (Stiffness / Soft Story) Vert., Type 5 (Discontinuity in Lateral Strength / Weak Story) 10/1/2004 5 of 6 Input IBC2003 06- 16- 04.med 11/24/04 WED 09:21 FAX 801 298 1132 t TSBA General Mechanical Equipment - ap =2.5 Rp=2.5 T S B A ' a := 2.5 R := 2.5 z— 1 h:= 1 1 := 1.0 0.4•aP•SDS•IP ( z Fp := RP 1 1 + 2 h) Fpmax := 1.6•SDS•I / ' Fpmin := 0.3•SDS•I Fp2rigid := if(Fpmax < Fp,Fpmax,if(Fpmin > Fp, Fpmin, Fp)) ' a := 1.0 R := 2.5 z:= .1 h:= '1 I := 1.0 ' 0.4•a •SDS• z Fp:= R •�1 +2. P h) Fpmax := 1.6•SDS•I Fpmin := 0.3 -SDS-1 :�J Fp2rigid := if(Fpmax < Fp, Fpmax, if(Fpmin > Fp, Fpmin, Fp)) 1 a P := 1.0 R P := 2.5 z:= 1 h:= 1 1 P := 1.0 ' 0.4•a -SDS -I Fp := R •(1 + 2• P ` J Fpmax := 1.6•SDS•1 Fpmin := 03•SDS -I Fp2rigid := i €(Fpmax < Fp, Fpmax, if(Fpmin > Fp, Fpmin, Fp)) J 7"C iFU ZOT173 44 Fp = 0.49 Fpmax = 0.653 Fpmin = 0.122 Fp = 0.196 Fpmax = 0.653 Fpmin = 0.122 Fp = 0.196 Fpmax = 0.653 Fpmin = 0.122 IM oil 6 of 6 Input IBC2003 0S- 16-04.mcd 11/24/04 WED 09:21 FAX 801 298 1132 T S B A TSBA Simplified Wind Design Wind Deslan Loads for the Main Wind Force Resisting System IBC 2003 (section 1609.6) Note: Check 1609.6.1 for Ornitatlol Eave Height = Mean Roof Height = Least horizontal Dimension = ' Basic Wind Speed = Exposure = Hurricanine Prone Region ? ->-->4 JRW Z012 I S Simplified Method OK Eave Ht 20 20 ft Wall L 61 20.0 ft 28 ft 90 mph: 3 second gust speed Mean Roof Ht 20 - ridge - B Wall L 28 N Roof Angle = 0.4 degrees ' importance Factor (1) = 1 (ASCE 7 Tabie 6.1) Alt. ASD Load Combination = 1.3 (1.3 for Alt., otherwise 1.0) I = 1 1 Lesser of No Less than Edge Strip (a) = 3 2.8 8 1.12 3 ' End Zone (2a) = 6 Ad justed Main Windforce- Restisting System Loads (per Load Direction Horizo Lneda vertical Ln®ds one one ntenor one ver ang A B C D E = G H EoH G Load Case 1 Load Case 2 16.6 -8 -7 1 0 -0 0.0 111 52 0.0 0.0 -28.0 -11.4 1 0.0 0.0 -13.9 -8.8 0.0 0.0 -28 -1 - 0.0 0.0 0 1 - war.. # '•'.`' --� - � i -- o ° Transverse..,� RGURE 1609 .6.2.1 MAIM WINDFORCE LOADING DIAGRAM DLB 1011,'2004 EwZ= Wind IBC2003 11/24/04 WED 09:22 FAX 801 298 1132 TSBA Zone Area Pressure ' 1 10 5.9 -14.6 20 5.6 -14.2 50 5.1 -13.7 ' 100 4.7 -13.3 2 10 5.9 -24.4 20 5.6 -21.8 ' 50 5.1 -18.4 100 4.7 -15.8 3 10 5.9 -36.8 20 5.6 -30.5 50 + 5.1 -22.1 100 4.7 -15.8 4 10 14.6 -15.8 20 13.9 -15.1 50 13 -14.3 100 500 12.4 -13.6 10.9 -12.1 5 10 14.6 -19.5 20 13.9 -18.2 ' 50 13 - 16.5 °' 44 JRW 1 Hip Roof (7 < 8 S 27 � ,o0 12.4 -15.1 Gable Roof (9 < 7 °) Gable Roof (7 < e < 45 % 500 10.9 -12.1 ' ❑ Interior Zones ® End Zones ■ Comer Zones Noah -Zane 5lYriY -Zow4 Root -Zane 21 w&b -z" S Noah -tow 7 ' DCB T S B A Si ~ Wind Design f OM IT CII Wind IBC2003 rl-& M--x 11/24/04 WED 09:22 FAX 801 298 1132 TSBA IBC Snow Drift Updated: 05 -07 -03 IBC 2000 / ASCE 7 -98 Section 7 input Check Input T S B A Project: Rexburg Subway Location /ID: Rexburg, Idaho JRW T S B A Ground snow load " Pg := 53 -psf Snow Exposure " Cc := 1.0 See Table at right Snow Thermal Factor * Ct := 1.0 Typ. 1.0, Unheated 1.2, & Freezerl .1 Snow Importance Factor * 1:= 1.o Flat Roof Projected Snow Pf := 0.7•Ce•Ct•I•Pg Pf = 37.1 psf (7.3) Pfinin := if ft > 20 -psf ,1.20•psf ,1•Pg) Pfinin = 20 psf Flat roof snow load Pf if(Pf < Pfinin, Pfinin, Pf) T r: Sloped Roof Slope 'Slope := 1,2-deg ata 2 J = 1,193 deg Slope = 1.2 deg Warm(1) /Cold(2) Roof " Temp := 1 l Slippery sufaces (metal, slate, glass, and bituminous, rubber, and plastic membranes) Slippery (1) / Non- slippery(2) " slip := 2 initial := if(Temp = 2, if(slip = 1,15 -deg, 45• deg), if(slip = 1,5•deg,30•deg)) initial =30 deg Slope — initial 70 -deg — initial Cs := if(Slope > 70-deg,0,if(Slope < initial, l , Csl)) Cs = 1 Ps := Cs -Pf 1/4 DLB 10/1/2004 IBC 2000 Snow Drift. mcd 11/24/04 WED 09:22 FAX 801 298 1132 TSBA Drift, Hi -Low Roof Length of Lower Roof * 1a1:= 28•ft Length of Upper Roof * hro:= 28-ft T S B A 444 JRW IM 015 214 25' min. Projection? (0.75) Other (1.0) * pro j := 0.75 25' min. Height Diff. Hi -Low * hdiff:= ?.ft Leeward Drift using upper length hd1:= 0.43• luu rl` Pg•psf + 10 1.5.11 hdt = 2.18x1 Windward Drift using lower length hdN�� := 0.75.0.4;• T hil•ft F'g•psf - 1 + 10- 1.5 •ft1hd%N = 1.63 ft ' Use the maximum ht of hdl & hdw hdd:= if(hdl> hdw,proj•hdl,proj•hdw) hdd = 1.63 ft Upper Roof ' xa =.00 r'r 1.8 ft o pif Drift Load ' Pf -37.1 jmf Snow Load 37.1 psf Tolal Snow Load Drift Length = hdiff lid hb pd " Pf 1 Ir t ' DLB 10!1!2004 .o ft hb = 1.78ft he = 0.22 ft hdd =Oft hd = 0.00 ft 71 ;e sk change = 0.0 pcf Lower Roof IBC 2000 Snow Drift.mcd Snow Density its equal to: ' y:= i430•pcf> 0.13•$ 1 •Pg+ 14•pef,0.13.8 1 •Pg+ 14•pcf,30•pcf) Roof Snow Load Height hb := Pf Max. Drift Height he := hdiff - hb ' Is Drift Calc Necessary? hdd := ifr 1x. < 0.2,0• ft, hdd hb ' Do not exceed he hd := if(hdd> 0• ft, if(hdd> ho, hc,hdd),0•ft) 2 Drift width %J := it hdd > hc, 4 lid 4 hd he ' Drift weight pd := y•hd Approximate change per foot change := pd W hdiff 2.00 ft pd _ 0.00 psf lul 0.00 ft a 0.00 ft ' hb 1.78 ft Pf 37.10 psf Upper Roof ' xa =.00 r'r 1.8 ft o pif Drift Load ' Pf -37.1 jmf Snow Load 37.1 psf Tolal Snow Load Drift Length = hdiff lid hb pd " Pf 1 Ir t ' DLB 10!1!2004 .o ft hb = 1.78ft he = 0.22 ft hdd =Oft hd = 0.00 ft 71 ;e sk change = 0.0 pcf Lower Roof IBC 2000 Snow Drift.mcd 11/24/04 WED 09:23 FAX 801 298 1132 T S B A 444 JRW Q016 TSBA 114 !BC Snow Drift Project: Rexburg Subway Updated: OS -07 -03 Location /ID: Rexburg, Idaho T IBC 2000 / ASCE 7 -98 Section 7 " input B A Check Input Ground snow load * Pg := 53 -psf Snow Exposure * Ce := LO See Table at right Snow Thermal Factor * Ct := 1.0 Typ. 1.0, Unheated 1.2, & Freezerl .1 Snow Importance Factor * L= 1.0 Flat Roof Projected Snow Pf := 0.7•Ce•Ct•I•Pg Pf = 37.1 psf (7.3) Pfmin:= ifft> 20•psf,I- 20•psf,I -Pg) Pfmin= 20psf Flat roof snow load Pf := if(Pf < Pfmin,Pfmin,Pf) PFD Sloped Roof Slope *Slope ;= 1.2 deg 'Al _ = 1.193 deg Slope = 1.2 deg 12 Warm(1) /Cold(2) Roof * Tewp := 1 Slippery sufaces (metal, slate, glass, and bituminous, rubber, and plastic membranes) Slippery (1) / Non- slippery(2) * slip := 2 initial:= if(Temp = 2,if(slip = 1, 15-deg,45-deg),if(slip = 1,5- deg,30 -deg)) initial = 30deg Slope — initial C'sl := 1 — Csl = 1.72 70• deg — initial Cs := if(Slope > 70•deg,0,if(Slope < initial, l ,Csl)) Cs = 1 Ps := Cs -Pf DLB 10/1/2004 IBC 2000 Snow Drift.mcd 11/24/04 WED 09:23 FAX 801 298 1132 TSSA Drift, Hi -Low Roof T S B A 44 2/4 Length of Lower Roof " lul := 28.13 25' min. Projection? (0.75) Other (1.0) ' proj := 0.75 Length of Upper Roof " 11111 := 28-ft 25' min. Height Diff. Hi -Low hdit} = 4.ft 3 4 1 Leeward Drift using upper length hdl := 0.43• luu -W- Pg -psf + 10 - 1.5-ft hd1= 2.18 ft 3 4 1 1 ft Windward Drift using lower length hdhv := 0.75 0.43 lul t3 Pg•psf + 10 - 1.5. 1,lhdiv = 1.63 Use the maximum ht of hdl & hdw hdd := if(hd1> hdw,proj•hdl,proj•hdw) hdd = 1.63 ft Snow Density is equal to: y := 430•pcf> 0.13-ft 1 •Pg + 14•pcf,0.13•t1 1 •Pg + 14•pcf,30•pcf) Roof Snow Load Height fib := 1 t hh = 1.78 ft Max. Drift Height he := hdiff - hb he = 2.22 ft Is Drift Calc Necessary? hdd : = itQ e < 0.2,0•ft,hdd) hdd = 1.634 ft Do not exceed he hd:= if(hdd> 0•ft,1f(hdd> hc,hc,hdd),0•ft) hd= 1.63 ft Drift width NN - := it hdd> h hd c,4 2 4•hd >< � u_ 1a , he .. - - -- Drift weight pd := y•hd! Approximate change per foot change := Pd change = 5.2 W pcf pd 34.13 psf XV 6.54 ft IT 37.10 psf 1.63 rt 34.1 psf Drift Load Pf =37.1 lwf Snow Load 1�ovwr Roof 71.2 psf T otal Snow Load Drift Lengt = 6.5 ft DLB 10/1/2004 IBC 2000 Snow Drift.mcd 11/24/04 WED 09:23 FAX 801 298 1132 ' TSBA IBC Snow Drift Updated: 05 -07 -03 IBC 2000 / ASCE 7 -98 Section 7 * input Check T S B A 4-> 1/4 Project: Rexburg Subway Location /ID: Rexburg, Idaho T S B A See Table at right Typ. 1.0, Unheated 1.2, & Freezerl .1 Pf := 0.7•Ce -1•Pg ' (7.3) Plmin := if(Pg > 20•psf ,1-20•psf , I•Pg) Flat roof snow load Pf := if(Pf < Pl'min,Pfmin,Pf) Sloped Roof ' Slope * Slope := 1.2 -deg Warm(1) /Cold(2) Roof * Temp:= 1 atai( rl2 = 1.193 deg Slope = 1.2 deg 1 Slippery sufaces (metal, slate, glass, and bituminous, rubber, and plastic membranes) Slippery (1) / Non- slippery(2) * slip := 2 initial := if(Temp= 2,if(slip = 1, 15•deg,45•deg),if(slip = 1,5-deg,30•deg)) initial = 30deg ' CS] := 1 — Slope — initial Csl = 1.72 70-deg — initial ' Cs := if(Slope > 70•deg,0,if(Slope < initial,l,Csl)) Ps:= Cs -Pf ' DLB 10/1/2004 Pf = 37.1 psf Pfmin = 20 psf Cs = 1 IBC 2000 Snow Drift. mcd Input Ground snow load * Pg := 53 -psf ' Snow Exposure * Cc := 1.0 Snow Thermal Factor " Ct := 1.0 ' Snow Importance Factor * 1:= 1.0 Fin+ Roof Pro'eMed Snowr T S B A See Table at right Typ. 1.0, Unheated 1.2, & Freezerl .1 Pf := 0.7•Ce -1•Pg ' (7.3) Plmin := if(Pg > 20•psf ,1-20•psf , I•Pg) Flat roof snow load Pf := if(Pf < Pl'min,Pfmin,Pf) Sloped Roof ' Slope * Slope := 1.2 -deg Warm(1) /Cold(2) Roof * Temp:= 1 atai( rl2 = 1.193 deg Slope = 1.2 deg 1 Slippery sufaces (metal, slate, glass, and bituminous, rubber, and plastic membranes) Slippery (1) / Non- slippery(2) * slip := 2 initial := if(Temp= 2,if(slip = 1, 15•deg,45•deg),if(slip = 1,5-deg,30•deg)) initial = 30deg ' CS] := 1 — Slope — initial Csl = 1.72 70-deg — initial ' Cs := if(Slope > 70•deg,0,if(Slope < initial,l,Csl)) Ps:= Cs -Pf ' DLB 10/1/2004 Pf = 37.1 psf Pfmin = 20 psf Cs = 1 IBC 2000 Snow Drift. mcd I 11/24/04 WED 09:24 FAX 801 298 1132 TSBA Drift, Hi -Low Roof Length of Lower Roof Length of Upper Roof Snow Density is equal to: 7:= i430 -pcf> 0.134C 1 Pg + 14-pef,0.13- 1 •Pg + 14•pcf,30•pcf) T S B A ->->4 JRW * 1u1:= 28.8 25' min. Projection? (0.75) Other (1.0) ' proj := 0.75 * hw := 2841 25' min. Height Diff. Hi -Low "" hdiff := 6.$ Leeward Drift using upper length hdl := ().43. hnt•ft er P-psf 1 + 10- 1.5. ft hdl = 2.1811 Windward Drift using lower length hdw := 0.75-(0.43)hil-tl Pg-psf 1 + 10 - 1.5 -ft lidw = 1.631t Use the maximum ht of hdl & hdw hdd := if(hdl> hdw,proyhdl,proj•hdw) hdd = 1.63 ft Roof Snow Load Height hb := Pf Max. Drift Height he := hdiff - hb Is Drift Calc Necessary? hdd := if he < 0.2,0• ft, hdd hb Do not exceed he hd := if(hdd> 0•ft,if(hdd> hc,hc,hdd),0•ft) 2 hd Drift width Al := if hdd > hc, 4. .4•hd he Drift weight pd := y•hd Approximate change per foot change := Pd W hditt 6.00 ft pd 34.13 psf hd 1,63 ft 6.54 ft hb 1.78 ft Pf 37.10 psf Upper Roof hi-6.0 ft Hd =1.63 ft 3.4 ft 34,1 pvf Drift Load Pf tmf Snow Load 71.2 psf Tolal Saari Load Ih Length = 6.5 ft hb = 1.78 ft Z019 2/4 he = 4.22 ft hdd = 1.634 ft hd = 1.63 ft change = 5.2 pcf 1,o«er Roof DLB 10/1/2004 IBC 2000 Snow Drift. mcd 11/24/04 WED 09:24 FAX 801 298 1132 ' TSBA IBC Snow Drift Updated: 05 -07 -03 IBC 20001 ASCE 7 -98 Section 7 ' * input Check ' Input T S B A JRW a 020 114 Project: Rexburg Subway Location /ID: Rexburg, Idaho T S B A Ground snow load * 1'g := 53-psf ' Snow Exposure * Ce := 1.0 Snow Thermal Factor * Ct := 1.0 Snow Importance Factor * 1:= 1.0 See Table at right Typ. 1.0, Unheated 1.2, & Freezerl .1 Flat Roof Projected Snow Pf := 0.7- Ce•Ct -I -Pg ' (7.3) Pfmin .= if ft > 20•psf,1.20•psf ,I•Pg) Flat roof snow load Pf := if(Pf < Pfmin,Pfinin,Pf) ' Sloped Roof Slope " Slope:= 1.2-deg ' Warm(1) /Cold(2) Roof ' Temp:= 1 Man 25 ) = 1.19; deg 12 Pf = 37.1 psf Pfmm = 20 psf Slope = 1.2 deg ' Slippery sufaces (metal, slate, glass, and bituminous, rubber, and plastic membranes) Slippery (1) / Non- slippery(2) * slip := ?- initial := if Tem 2 if(sli 1 15 -de 45•de if(sli 1,5-de 30•de initial = 30de ' Csl := 1 — Slope — initial Cs] = 1.72 70 — initial ' Cs := if(Slope> 70- deg,0,if(Slope < initial, l,Csl)) Ps:= CS-Pf ' DLB 10/1/2004 Cs = I IBC 2000 Snow Drift.mcd 11/24/04 WED 09:29 FAX 801 298 1132 TSBA Drift, Hi -Low Roof T S B A 44 [a 001 214 hdiff 2.00 ft lid am ft hb 1.78 ft Pd 0.00 psf R Ofx:) ft Pf 37.10 psf 0 ft I I 1 I I .11 psf Drift Load Pf =37.1 nsf Snow Load 37.1 psf Total Smnr Land Drift Length = .0 ft 10/1/2004 1,oREr Roof IBC 2000 Snow Drift.mcd Length of Lower Roof * lul := 60.13 25' min. Projection? (0.75) Other (1.0) * proj :_ .75 Length of Upper Roof * hni := 6041 25' min. Height Diff. Hi -Low * hdiff := 2. ft Leeward Drift using upper length 4 hell := 0.43• hm•ft Pg•nsf- 1 + 10 - 1.5•ft hell= 3.2413 ' Windward Drift using lower length hd�} := 0.75 - (0.43 - ! 11 t12 Pg•psf- 1 + 10 - 1.5- tt,hdm = 2, 4 3 ft Use the maximum ht of hell & hdw hdd:= if(hdl> hdw,pro}•hdl,proj•hdw) hdd = 2.43 ft Snow Density is equal to: y:= i430•pof> O.I3.8 1 Pg + 14•pcf,0.13 -ft 1 •Pg + 14•pcf,30 -pcf) Roof Snow Load Height hb := Pt hb = 1.78 ft Max. Drift Height he := hdiff - hb he = 0.22 ft Ile ' Is Drift Calc Necessary? hdd := it < 0.2.O -ft,hdd hdd = OR hb Do not exceed he hd: =if (hdd >0- ft,if(hdd >hc,hc,hdd),0•ft) hd =0.00ft Drift width hd a := it hdd> hc,4• —,4 -h, -1) he_ .....:... ...... .. ' Drift weight pd := y•hd Approximate change per foot change := Pd W change = 0.0 pcf hdiff 2.00 ft lid am ft hb 1.78 ft Pd 0.00 psf R Ofx:) ft Pf 37.10 psf 0 ft I I 1 I I .11 psf Drift Load Pf =37.1 nsf Snow Load 37.1 psf Total Smnr Land Drift Length = .0 ft 10/1/2004 1,oREr Roof IBC 2000 Snow Drift.mcd 11/24/04 WED 09:29 FAX 801 298 1132 1 TSBA IBC Snow Drift N' Updated: 05 -07 -03 IBC 2000 / ASCE 7 -98 Section 7 * input ' •RR Check T S B A JRW Q 002 1/4 Project: Rexburg Subway Location /ID: Rexburg, Idaho T S B See Table at right Typ. 1.0, Unheated 1.2, & Freezerl .1 Pf := 0.7.Ce-Ct -I -Pg ' (7.3) P&nin:= if(Pg> 20•psf,l- 20•psf,l-Pg) Flat roof snow load Pf := if(Pf < Pfmin,Pfnin,Pf) Sloped Roof Slope * Slope := 1.2 -deg ' Warm(1) /Cold(2) Roof * Ternp:= 1 atan� + = 1.193 deg 12 Pf = 37.1 psf Pfmnn 20psf Slope = 1.2 deg Slippery sufaces (metal, slate, glass, and bituminous, rubber, and plastic membranes) Slippery (1) / Non- slippery(2) *slip := 2 initial:= if(Temp= 2,if(slip= 1,15- deg,45•deg),if(slip= 1,5-deg,30•deg)) initial = 30deg ' Slope — initial Csl = 1.72 70 -deg — initial ' Cs := if(Slope > 70• deg, 0,if(Slope < initial, 1, Cs 1)) Cs 1 Ps:= CS -Pf ' DLB 11/17/2004 IBC 2000 Snow Drift 3.mcd ' Input Ground snow load * Pg := 53 -psf Snow Exposure Snow Thermal Factor * Ce := 1.0 * Ct := 1.0 Snow Importance Factor * 1:= 1.0 Flat Roof Projected Snow See Table at right Typ. 1.0, Unheated 1.2, & Freezerl .1 Pf := 0.7.Ce-Ct -I -Pg ' (7.3) P&nin:= if(Pg> 20•psf,l- 20•psf,l-Pg) Flat roof snow load Pf := if(Pf < Pfmin,Pfnin,Pf) Sloped Roof Slope * Slope := 1.2 -deg ' Warm(1) /Cold(2) Roof * Ternp:= 1 atan� + = 1.193 deg 12 Pf = 37.1 psf Pfmnn 20psf Slope = 1.2 deg Slippery sufaces (metal, slate, glass, and bituminous, rubber, and plastic membranes) Slippery (1) / Non- slippery(2) *slip := 2 initial:= if(Temp= 2,if(slip= 1,15- deg,45•deg),if(slip= 1,5-deg,30•deg)) initial = 30deg ' Slope — initial Csl = 1.72 70 -deg — initial ' Cs := if(Slope > 70• deg, 0,if(Slope < initial, 1, Cs 1)) Cs 1 Ps:= CS -Pf ' DLB 11/17/2004 IBC 2000 Snow Drift 3.mcd 11/24/04 WED 09:30 FAX 801 298 1132 TSBA T S B A JRW Drift, Hi -Low Roof Length of Lower Roof * lul 285-ft 25' min. Projection? (0.75) Other (1.0) * proj := 1.0 Length of Upper Roof * hm := 60411 25' min. Height Diff. Hi -Low * hdiff := 6. ft 4 Leeward Drift using upper length hdl - 043 hiu tt` Pg• psf - 1 + 10 - 1.5 -ft hdl = 3.2411 Y V' - 1 Windward Drift using Power length hdi�- := 0.75. C 0.43• lul -ft • F g T• p sf + 10 - 1.5 -ft,hd« = 4,85 ft Use the maximum ht of hdl & hdw hdd = if(hdl > hdw,proj -hdw) hdd = 4.85 ft Snow Density is equal to: y:= 40•pcf> 0.13 1 •Pg + 14- pef,0.13•ft 1 •Pg + 14•pcf,30•pcf) Roof Snow Load Height hb := Pt i Max. Drift Height he := hdiff - hb Is Drift Calc Necessary? hdd := it he — < 0.2 , 0• ft, lid d hb ) Do not exceed he hd:= if(hdd> 0•ft,1f(hdd> hc,hc,hdd),0•ft) Drift width hd2 AN := it hdil> hc,4 e 11 Ile Drift weight pd := y•hd Approximate change per foot change := Pd W hditY 6.00 ft pd 88.24 psf hd 4.22 ft NN 16.90 ft hb 1.78 ft Pf 37.10 psf ht -6.Q Jppe Roof 22 ft 88.2 psf Drift Load Pf =37.1 nsf Snow Load 125,3p#* Toldd Smm- .Load Britt Length = 16.9 ft hb = 1.78 ft he = 4.22 ft hdd = 4.854 ft hd = 4.22 ft IM 003 2/4 change = 5.2 pcf Lovtrr Roof DLB 11/17/2004 IBC 2000 Snow Drift 3.mcd 11/24/04 WED 09:30 FAX 801 298 1132 TSBA IBC Snow Drift Updated: 05 -07 -03 IBC 2000 / ASCE 7 -98 Section 7 " input * "* Check T S B A JRW [a 004 1/4 Project: Rexburg Subway Location /ID: Rexburg, Idaho TS B See Table at right Typ. 1.0, Unheated 1.2, & Freezerl .1 Pf := 0.7- Ce- Ct -I.Pg ' (7.3) Pfinin:= if(Pg> 20.psf,1.20- psf,I -Pg) Fiat roof snow load Pf := if(Pf < Pfmin,Pfmin,Pf) ' Sloped Roof Slope * , Slope := 1.2-deg ' Warm(1) /Cold(2) Roof * Temp := 1 25 12 atat — = 1.193 deg Slope = 1.2 deg ' Slippery sufaces (metal, slate, glass, and bituminous, rubber, and plastic membranes) Slippery (1) / Non- slippery(2) * slip := 2 ' initial:= if(Temp= 2,if(slip= 1,15- deg,45- deg),if(slip= 1,5- deg,30 -deg)) initial= 30deg Csl := 1 – Slope– initial Csl = 1.72 70-deg – initial Cs := if(Slope> 70•deg,0,if(Slope < initial, l,Csl)) Ps:= CS-Pf ' DLB 10/112004 Pf = 37.1 psf Pfimin = 20 psf Cs = 1 `fft, IBC 2000 Snow Drift.mcd ' Input Ground snow load * Pg :- 53 -psf ' Snow Exposure Snow Thermal Factor * Ce := 1.0 * Ct := 1.0 Snow Importance Factor * 1:= 1.0 Flat Roof Projected Snow TS B See Table at right Typ. 1.0, Unheated 1.2, & Freezerl .1 Pf := 0.7- Ce- Ct -I.Pg ' (7.3) Pfinin:= if(Pg> 20.psf,1.20- psf,I -Pg) Fiat roof snow load Pf := if(Pf < Pfmin,Pfmin,Pf) ' Sloped Roof Slope * , Slope := 1.2-deg ' Warm(1) /Cold(2) Roof * Temp := 1 25 12 atat — = 1.193 deg Slope = 1.2 deg ' Slippery sufaces (metal, slate, glass, and bituminous, rubber, and plastic membranes) Slippery (1) / Non- slippery(2) * slip := 2 ' initial:= if(Temp= 2,if(slip= 1,15- deg,45- deg),if(slip= 1,5- deg,30 -deg)) initial= 30deg Csl := 1 – Slope– initial Csl = 1.72 70-deg – initial Cs := if(Slope> 70•deg,0,if(Slope < initial, l,Csl)) Ps:= CS-Pf ' DLB 10/112004 Pf = 37.1 psf Pfimin = 20 psf Cs = 1 `fft, IBC 2000 Snow Drift.mcd 11/24/04 WED 09:30 FAX 801 298 1132 TSBA Drift, Hi -Law Roof Length of Lower Roof * Jul := 6041 Length of Upper Roof * hm := 60-ft 25' min. Projection? (0.75) Other (1.0) * pro i := 0.75 25' min. Height Diff. Hi -Low * hdiff := 4.ft 4 Leeward Drift using upper length hdl 0.43. 1ini.e. Pt•nsf 1 + 10 - 1.541 Wt.= 3.24 ft Windward Drift using lower length 0.75• ( 0.43• hil ft 4 pg-psf - 1 + 10 - 1.5 ft, hdw = 2.4; t} Use the maximum ht of hdl & hdw hdd := if(hdl > hdw,pro}•hdl,proyhdw) hdd = 2.43 ft ' y:= Snow Density is equal to: 1 •Pg 1 •Pg if 30•pcf> 0.13.8 + 14•pcf,0.13•ft + 14•pcf,30•pcf) Roof Snow Load Height hb := PI y Max. Drift Height he := hdiff - hb Is Drift Calc Necessary? hdd := iir lie < () 2,0 ft,hdd hb Do not exceed he hd:= if(hdd> 0• ft, if(hdd> he, he, hdd), 0 - ft) 2 lid Drift width W:= it lidd > lie, 4 - — , 4 -hd ' Drift weight he pd := y•hd Approximate change per foot change .= P d W hdiff 4.(X) ft pd 46.46 psf Lid 2.22 ft « 8.90 ft lib 1.78 ft . _ Pf 37.10 psf Upper Roof hr-4.0 ft Hit =2.22 11 4.0 ft 46.5 pyf Drift Load Pf =37.1 f Snow Load 83.6 psf Tota► Smov Load Drift 1 hdiff l i d hb pd " P1 9 g T S B A JRW IM 005 214 8.9 ft Y = 1EAii: hb = 1.78 ft he = 2.22 ft hdd = 2.432 ft hd = 2.22 ft change = 5.2 pcf Loner Roof DLB 10/1/2004 IBC 2000 Snow Drift. mcd 11/24/04 WED 09:31 FAX 801 298 1132 TSBA IBC Snow Drift Updated: 05 -07 -03 ' IBC 2000 / ASCE 7 -98 Section 7 * input Check ' Input T S B A -->4 JRW IM 006 1/4 Project: Rexburg Subway Location /ID: Rexburg, Idaho T S B A See Table at right Typ. 1.0, Unheated 1.2, & Freezerl .1 Flat Roof Projected Snow Pf:= 0.7•Ce•Ct•I•Pg (7.3) PSnin:- if(Pg> 20•psf,I.20•psf,l•Pg) Flat roof snow load Pf := if(Pf < Pfinin, Pfinin, Pf) ' Sloped Roof Slope * Slope := ).2-deg ' Warm(1) /Cold(2) Roof * Temp,- 1 ata 25 = 1.193 deg `12 Slope = 1.2 deg l ' Slippery sufaces (metal, slate, glass, and bituminous, rubber, and plastic membranes) Slippery (1) / Non- slippery(2) * slip := ? ' initial:= if(Temp= 2,if(slip= 1, 15•deg,45•deg),if(sli 1,5•de 30•de p = g, g )) initial = 30deg Csl := 1 - Slope - initial Csl = 1.72 70•deg - initial Cs := if(Slope > 70•deg,0,if(Slope < initial, l ,Csl)) Ps := CS-Pf DLB 10/1/2004 Pf = 37.1 psf Pfini n 20psf Cs = 1 l�s IBC 2000 Snow Drift. mcd Ground snow load Pg :- 53•psf ' Snow Exposure Snow Thermal Factor * Ce := 1.0 * Ct := l.o Snow Importance Factor * I:= 1.0 T S B A See Table at right Typ. 1.0, Unheated 1.2, & Freezerl .1 Flat Roof Projected Snow Pf:= 0.7•Ce•Ct•I•Pg (7.3) PSnin:- if(Pg> 20•psf,I.20•psf,l•Pg) Flat roof snow load Pf := if(Pf < Pfinin, Pfinin, Pf) ' Sloped Roof Slope * Slope := ).2-deg ' Warm(1) /Cold(2) Roof * Temp,- 1 ata 25 = 1.193 deg `12 Slope = 1.2 deg l ' Slippery sufaces (metal, slate, glass, and bituminous, rubber, and plastic membranes) Slippery (1) / Non- slippery(2) * slip := ? ' initial:= if(Temp= 2,if(slip= 1, 15•deg,45•deg),if(sli 1,5•de 30•de p = g, g )) initial = 30deg Csl := 1 - Slope - initial Csl = 1.72 70•deg - initial Cs := if(Slope > 70•deg,0,if(Slope < initial, l ,Csl)) Ps := CS-Pf DLB 10/1/2004 Pf = 37.1 psf Pfini n 20psf Cs = 1 l�s IBC 2000 Snow Drift. mcd 11/24/04 WED 09:31 FAX 801 298 1132 TSBA Drift, Hi -Low Roof T S B A 44 JRW Q 007 2/4 Length of Lower Roof * lul := 60-ft 25' min. Projection? (0.75) Other (1.0) * proj := 0.75 Length of Upper Roof * luu:= 60.11 25' min. Height Diff. Hi-Low * hdiff:= 6.ft ' Leeward Drift using upper length hdl:= 0 4 hmft •. Pg.psf 1 + 10- 1.5.11 lhdl = 3.24ft Windward Drift using lower length hdw := 0.75.(0.43. 1111 ft Pg -psf 1 + 10 - 1.5•ft� hdNi = 2.43 ft ' Use the maximum ht of hdl & hdw hdd := if(hdl> hdw,proj•hd1,proj•hdw) hdd = 2.43 ft Snow Density is equal to: i430-pcf> 0.13.8 1 •Pg + 14•pcf,0.13•ft 1 •Pg + 14pcf,30•pcf) �t Roof Snow Load Height hb Pf ' hb = 1.78 ft y Max. Drift Height he := hdiff - hb he = 4.22 ft ' Is Drift Calc Necessa he Necessary? hdd:= it — <0,2,0•it, hdd I hdd= 2.432 ft h1) Do not exceed he hd := if(hdd> 0•ft,if(hdd> hc,hc,hdd),0•ft) hd = 2.43 ft hd 2 Drift width IV := it hdd > he , 4 • — . 4-lhd he ' Drift weight pd := y•hd J Approximate change per foot change := pd ch ange = 5.2 cf ch P hdiff 6.00 ft pd 50.80 psf hd 2.43 ft IN' 9.73 ft ' hb 1.78 ft F'f 37.10 psf Upper Roof hr- ft Hd -2.43 tt 4.2 ft 51:1.8 txsf Drift Load Pf -37.1 nsf Snow Load 1,mier Roof 8T 9 psf Totat.Snaw Load Drift Length = 9.7 ft 10/1/2004 IBC 2000 Snow Drift.mcd I I 11/24/04 WED 09:32 FAX 801 298 1132 T S B A TANNER SMMi BARFUSS do ASSOCIATES STRUCTURAL ENGINEERS T 442 North Main Street Bo untifu l . ( Utah 84010 Phone (801 298 -8795 ETA Fax (801; 29$ -1132 E —mall teba0aros.net ->--> IM 008 PROJECT � yw1 —"6,1 " 6,1 ` PROJECT PAGE' J ARCHITECT LOCATION ENGINEER DATE OF 11/24/04 WED 09:32 FAX 801 298 1132 T S B A JRW 009 TSSE SIMPLE SPAN BEAM - SHEAR, MOMENT, AND DEFLECTION Project: Rexburg Subway I D: Roo} Jolste Updated: 5 -28-99 1800 ksl Glu Lam E User Input E 1800 ksi Beam Fv tv Length 29.00 ft. Uniform L#f I ea w 0.087 k#t Triangle 110 InA4 w at Left End 0 k/ft 90 2600 psi 3880 w at Right End 0 Mft U 360 785.91 inA4 W 0.00 kips Pt Load 7.43 inA2 0.16 kips at 2.18 ft. from left 1.41 kips 4 sim is 0.16 kips at 26.82 ft. from left Max neg A O.oO kips at 9.26 ft. from left 9.47 kip -ft Max neg 0.00 kips at 18.00 ft. from leR Max pos Steel E 29000 ksi kips at 28.00 ft. from left Partial Uniform S (- diftee) I k/ft from to fb W1 Fb 0 10.50 23.00 36 ksi w2 M1 10.3 0.00 2.38 61.6 w3 2 (2)18 56.0 0.00 16.00 Partial Triangular 431 Unbraced Length k/ft on Rt side from to M12xto.4 10.9 10.90 65 a a +b 34 W1 10.43 0 43.00 59.00 Steal w2 3 mlvil.a 8.00 12.00 12.00 w3 asewy 550 25.00 30.00 11111111111 UNIFOR .a" TRIANGLE POINT PARTIAL UNIFORM 1 1 PARTIAL TRIANGLE E ■� 1800 ksl Glu Lam E User Input E 1800 ksi 2400 psi Fv tv Width Desired 1b 69.2 L#f I ea 800 in S 1 110 InA4 LVL E 1800 ksi 90 2600 psi 3880 285 psi 48 U 360 785.91 inA4 S 29.3 hA3 7.43 inA2 Reaction Left 1.41 kips Reaction Right 1.41 kips 4 sim is Shear Max pos 1.41 kips Max neg A 23.4 inA2 Max pos 9.47 kip -ft Max neg 0.00 klp -ft 3167 Deflection Max pos Steel E 29000 ksi - 1.0024 inch Steel True S S (- diftee) I Fb Fv fb fb Fb U# Fy 36 ksi 1 M1 10.3 10.30 61.6 c.093TY 2 (2)18 56.0 11.04 23.78 431 Unbraced Length 2 ft 2 M12xto.4 10.9 10.90 65 aWWF 34 285 10.43 23.78 454 Steal Reld 3 mlvil.a 12 12.00 71.9 asewy 550 5 (3)14 9.47 23.78 603 S 4.78InA3 (F =.e6F 4 W10x12 10.9 10.90 53.8 0.910•q 10.43 23.78 376 1 51.49 inA4 5 w12x14 14.9 14.90 88.6 0.600•Fy 7.63 23.78 619 Doug Fir E 1600 ksi OF A True S S. I tv Fv fb Fb L/# Fb 876 psi 1 #NIA #N1A #N /A #N /A #N /A #NIA 95 #NIA #WA 1NJIA Fv 95 psi 2 4NIA #N /A #WA #N /A #N /A #N/A 95 #WA #NIA *vA Cf on (1) off (2) 1 3 4140A #N /A #WA #N /A #N /A #WA 95 #N/A #WA 4wA Req'd 4 WA #NIA #WA #N /A #N /A #WA 95 #WA #NIA mA 1 933.27 ir" 5 WA MA #N /A #WA MA #NIA 95 #NIA #NIA ewA S 129.91 W3 S• includes Cr A 22.29 inA2 Glu Lam E 1800 ksi Fb 2400 psi Fv 166 psi Width Desired 5,126 in 69.2 Raq'd 1 829.57 inA4 S 47.36 inA3 A 12.83 inA2 LVL E 1800 ksi Fb 2600 psi Fv 285 psi 591 Req'd 1 785.91 inA4 S 43.72 h A 7.43 inA2 Reaction Left 1.41 kips Reaction Right 1.41 kips 4 sim is Shear Max pos 1.41 kips Max neg •1.41 kips 411 Moment Max pos 9.47 kip -ft Max neg 0.00 klp -ft 3167 Deflection Max pos 0.0000 inch Max neg - 1.0024 inch U 347 GLB A S I tv Fv fb Fb U# 1 51=13.5 69.2 155.7 1051 31 165 730 2400 456 2 simms 78.9 192.2 1441 28 165 591 2400 626 3 5 USx18.s 84.6 232.5 1919 25 165 489 2400 833 4 sim is 92.3 276.8 2491 23 165 411 2400 1,oe1 5 5 vss19.5 99.9 324.8 3167 21 185 350 2400 1,374 LVL A S 1 tv Fv fb Fb LN 1 (2114 49.0 114.3 800 43 285 994 2600 387 2 (2)18 56.0 149.3 1195 38 285 761 2600 547 3 42)10 63.0 189.0 1701 34 285 501 2800 779 4 (414 73.5 171.5 1201 29 285 663 2600 550 5 (3)14 84.0 224.0 1792 25 285 507 2600 ail At x = 0.00 ft 29.00 ft At x = 14.50 ft 0.00 ft At x = 0.00 ft 14.50 ft 2 SHEAR DIAGRAM 1 x 0 N _1 0.00 2,40 6.80 8.70 11.60 14.50 17,40 20.30 23.20 26.10 20.00 DIstones L/240 1.45 inch L/360 0.97 knell L/800 0.58 inch 10 MOMENT DIAGRAM k a 11 6 0 4 PE 2 0 MOD 2.90 5.00 470 11,60 14.50 17.40 2130 23.20 25.10 29.00 IDIOM- 0,000 DEFLECTION DIAGRAM Z .o Soo I 4 -1 000 -1 sca 0 2.9 5.8 8.7 11.6 14.5 17.4 20.3 231 28,1 29 DWaarw 11/24/04 WED 09:33 FAX 801 298 1132 T S B A ��--> JRW IM010 J F TANNER SMITH BARFUSS & ASSOCIATES STRUCTURAL ENGINEERS T 233 North 1250 West. 0201 Centerville. Utah 64014 Phone 0601) 296 -765 raw (60 1) 266 -1 6 132 E —mail LebaOaroe. net PROJECT ARCHITECT PROJECT / GATE LOCATION ENC116ER OF �7 .................. ....... .............. ............... ............................. . . ....... ....... ....... 11/24/04 WED 09:33 FAX 801 298 1132 T S B A JRW 9 011 1 TANNER SMITH BARFUSS do ASSOCIATES STRUCTURAL ENGINEERS 233 North 1250 West. 0201 ' Csntor Utah 84014 Phone 601 Zee —a7e5 Fox 801 Zee -1 132 E —mail tsb000ros.not p1mAcr AKNTECT Ppoirct / PAGE: BITE OF 11/24/04 WED 09:34 FAX 801 298 1132 T S B A 1 TANNER SMITH 8ARFUSS & ASSOCIATES STRUCTURAL ENGINEERS 233 North 1230 west, #201 ' Centerville, Utah 84014 Phone 801 288 -8795 Fox 801 2li8 -1 1 S2 E —mail t PROJECT JRW PROACT / ARZHITEGT OATS LmnoN ENGINEER PAGE: OF 11/24/04 WED 09:35 FAX 801 298 1132 TSSE N 40 SIMPLE SPAN BEAM - SHEAR, MOMENT, AND DEFLECTION ' Project: Rexburg Subway 1 D; Roof Joists at Canopy U d - 5 2 444 JRW 111111111111 UNIFORM POINT nTil PARTIAL UNIFORM PARTIAL TRIANGLE P ae . 899 1800 ksl 1 Ueer Input E 1800 ksl i Beam 2400 psi I = U Length 6.501, I S Uniform !n "4 in ^3 376 w 0.161 k/ft 2 It wax7.5 Triangle 4.82 W3 A w at Left End 0 k/ft 241 LVL E 1900 ksi Steel E w at RigK End 0.043 loft ' True S 3 (- dfhed) I W 0.14 kips Fy Pt Load 1 0.00 kips at 16.00 ft. from left 7.2 o.6ndxy W2 3.24 it 0.00 kips at 109.00 ft. from left s3x5.7 1.68 1.68 0.00 kips at 9.25 ft. from loft Steel Req'd 3 0.00 k1 ps at 18.00 ft from left 18.5 o.e0o•Fy L/A S klpe at 28.00 ft, from left anex73 Partial Uniform 6.57 328 k/ft from to 1 1.17 M4 wt sws 0 '10.50 23.00 2.93 0.ew -Fy W2 ws Doug Fir E Fb 1600 ks! 675 psi 0.00 2.98 0.00 16.00 DF 216 Partial Triangular True S 13.1 S. 15.6 k/ft on Rt side from to Fv 95 psi 2 211e 13.9 a a +b 23.5 98.9 w1 Cr on (1) off (2) 0 10.00 30.00 (7) 2x6 16.5 W2 19,7 41.6 6.00 12.00 Req'd ws 2x12 16.9 25.00 30.00 444 JRW 111111111111 UNIFORM POINT nTil PARTIAL UNIFORM PARTIAL TRIANGLE fv 85.0 66.6 56.0 54.8 46.5 Fv 95 96 95 95 95 fb U# 395 2,107 fb Fb U# 4.82 21.60 2,222 6.89 23.76 770 2.50 23.76 s,7o6 1.76 23.76 10,122 5.93 23.76 904 fb Fb U# 734 1060 all 492 963 1,604 5138 1138 Tae 366 876 3 293 788 4,051 GLB E _= 1800 ksl 1 Ueer Input E 1800 ksl fb Fb 2400 psi I = U 800 fn ^4 360 psi 5.12.12 5 In I S 1 29.3 !n "4 in ^3 376 1 18.79 W4 2 It wax7.5 S 4.82 W3 A 29.4 MA2 241 LVL E 1900 ksi Steel E 29000 ket 2600 psi Steel True S 3 (- dfhed) I Fb Req'd Fy 36 ksi 1 M6XM 2.4 2.18 7.2 o.6ndxy W2 3.24 it Unbraced Length 2 ft 2 s3x5.7 1.68 1.68 2.52 0.66o•FV 14,136 Steel Req'd 3 Max" 4.62 4.82 18.5 o.e0o•Fy L/A S 0.49 !n"3 (F - mF 4 anex73 6.57 6.57 328 o sffl F 491 1 1.17 M4 5 sws 1.95 1.95 2.93 0.ew -Fy 1,124 Doug Fir E Fb 1600 ks! 675 psi 1 DF 216 A 10.9 True S 13.1 S. 15.6 I 47.6 ' Fv 95 psi 2 211e 13.9 21.4 23.5 98.9 2,629 Cr on (1) off (2) 1 3 (7) 2x6 16.5 15.1 19,7 41.6 / �J Req'd 4 2x12 16.9 31.6 31.6 178.0 1 21A4 lnA4 5 2x14 19.9 43.9 39.6 290.8 S 13.22 MR3 S" Includes CF fv 85.0 66.6 56.0 54.8 46.5 Fv 95 96 95 95 95 fb U# 395 2,107 fb Fb U# 4.82 21.60 2,222 6.89 23.76 770 2.50 23.76 s,7o6 1.76 23.76 10,122 5.93 23.76 904 fb Fb U# 734 1060 all 492 963 1,604 5138 1138 Tae 366 876 3 293 788 4,051 GLB A 9.73 In "2 1 Glu Lam E 1800 k81 fb Fb 2400 psi 1 5 fraxe Fv Width Desired psi 5.12.12 5 In 92 30 Req'd 376 1 18.79 W4 2 It wax7.5 S 4.82 W3 180 A 5.60. W2 241 LVL E 1900 ksi 3 5112.9 Fb 2600 psi 311 Fv 285 psi 167 2400 Req'd 4 3 in"" 1 17.81 in ^4 494 17 4.45 123 A A W2 3.24 it 5 stahl2 Reaetlon Left 0.57 kips 738 Reaction Right 0.62 kips fv 85.0 66.6 56.0 54.8 46.5 Fv 95 96 95 95 95 fb U# 395 2,107 fb Fb U# 4.82 21.60 2,222 6.89 23.76 770 2.50 23.76 s,7o6 1.76 23.76 10,122 5.93 23.76 904 fb Fb U# 734 1060 all 492 963 1,604 5138 1138 Tae 366 876 3 293 788 4,051 GLB A S 1 iv Fv fb Fb L/# 1 5 fraxe 30.8 30.8 92 30 165 376 2400 1,787 2 It wax7.5 38,4 48.0 180 24 165 241 2400 3,451 3 5112.9 46.1 69.2 311 20 165 167 2400 5,ae4 4 3 in"" 53.8 94.2 494 17 185 123 2400 6,470 5 stahl2 61.5 123.0 738 15 165 94 2400 14,136 LVL A S ! fv Fv fb Fb L/A 1 5112 9.6 8.8 24 96 285 1311 2600 491 2 71x4 12.7 16.3 56 73 285 755 2800 1,124 3 9114 16.2 25.0 115 57 285 464 2600 2,334 4 9112 16.6 26.3 125 56 285 440 2600 2,629 5 V) 6 to 19.3 17.e 49 48 285 656 2600 sal T S B A SMEAR DIAGRAM � 0.5 0 00 -0.5 0.00 0.65 1 30 1.95 3.60 3.25 3.90 4.55 5 20 5.05 6.50 Dlftance L/240 0.33 Inch L/360 0.22 Inch U600 0.13 Inch MOMENT DIAGRAM 1 , DEFLECTION DIAGRAM F 1 0,8 z0 F -O.OD2 0.6 J w 0.00 0.65 1.30 1.95 2.60 325 3.00 455 5.20 5.65 6.50 0 00.5 1 3 14 20 3.25 3.9 455 5.2 5.65 6.5 blltance Distance Shear At x - Max pas 0.57 kips 0.00 ft Max neg -0.62 kips 8.50 ft Moment At x= Max pas 0.96 kip-ft 3.32 ft Max neg 0,00 kip-1t 0.00 it Deflection At x= Max Poo 0.0000 Inch 0.00 ft Max neg - 0.0051 Inch 3.25 R U 15,324 SMEAR DIAGRAM � 0.5 0 00 -0.5 0.00 0.65 1 30 1.95 3.60 3.25 3.90 4.55 5 20 5.05 6.50 Dlftance L/240 0.33 Inch L/360 0.22 Inch U600 0.13 Inch MOMENT DIAGRAM 1 , DEFLECTION DIAGRAM F 1 0,8 z0 F -O.OD2 0.6 J w 0.00 0.65 1.30 1.95 2.60 325 3.00 455 5.20 5.65 6.50 0 00.5 1 3 14 20 3.25 3.9 455 5.2 5.65 6.5 blltance Distance 11/24/04 WED 09:35 FAX 801 298 1132 TSBA Wood Connectors - Bolts 1997 NDS REVISED 6-8 -99 Rexburg Subway Side Member Main Member C Ct = Theta T S B A 444 JRW Thickness Material F used Angie F F H 2.30 in Douglas F - Larch North 2,500 90 deg 2,500 psi 5,500 psi 6.00 In Concrete (Use 6" min embed.) 6,000 90 deg 6,000 psi 6,000 psi 1 wet service factor 0 = parallel 9 temperature factor 90 = perpendicular 90 degrees Load Duration 1 1.33 (wend /Selsmic In -house Value) Bolts Single Sh Bolt Dia. �3 /4 " Diameter = 0.75 inches R 2.40 K theta 1.25 R = 2.40 F = 45,000 psi k = 1.63 k = 1.69 k3= 1.19 C 1.33 8.2 -1 7,182.0 Ibs m I 8.2 -2 1,246.9 Ibs s t 8.2 -3 2,255.3 Ibs II 8.2-4 2,620.8lbs m m 8.2 -5 1,015.0 Ibs s m 8.2 -6 1,360.9 Ibs IV Z' = 9,015 Ibs Adjusted Members Chosen O.K. Bolts to Concrete or Masonry Use is = wood member Use tm= 2xmember(conc. or mas.) 8.3 - 7,182.0lbs m 8.3 - 2,493.8lbs s 8.3 - 2,030.0lbs s 8.34 2,721.7lbs Z'= 2,030 Ibs Adiusted Note - To match Table 82A Values use the following angle combinations: Q 014 Side Main 0 0 Both Parallel 0 90 Main Perpendicular 90 0 Side Perpendicular 90 90 Both Perpendicular Single Shear Double Shear Spacin PLF Spacin PLF 12 o.c. 1015 12 o.c. 2030 16 o.c. 761 16 o.c. 1523 18 o.c. 677 18 o.c. 1353 24 o.c. 508 24 o.c. 1015 32 o.c. 381 32 o.c. 761 36 o.c. 338 36 o.c. 677 48 o.c. 254 48 o.c. 508 DLB 11/17/2004 Nail - Screw - Bolt Connections 1997 11/24/04 WED 09:36 FAX 801 298 1132 444 JRW IM 015 T S B A Sheed MASONRY BEAM DESIGN PROJECT: Clair E Gale Jr WORKING STRESS DESIGN I IDENTIFICATION: Roof Masonry Beams UNIFORM LOAD= KLF SPAN= FT WIDTH INCHES DEPTH INCHES DEPTH d - INCHES SPAN LOAD /FT WIDTH DEPTH d TOTAL DEPTH MOMENT F K As v v @d p AS 4 1.525 7.6 21 24 3.05 0.28 11 0.081 22 3 0 11 2.125 7.6 52 56 32.14 1.71 19 0.343 34 7 0 6 1.725 7.6 28 32 7.76 0.50 16 0.154 28 6 0 4 1.135 7.6 21 24 2.27 0.28 8 0.060 16 2 0 6 0.67 7.6 13 16 3.02 0.11 28 0.129 23 15 0 23 2.025 7.6 92 96 133.90 5.36 25 0.809 38 13 0 0.00 0.00 #DIV/01 9DIV 101 #DIV /01 #DIV /01 O 0.00 0.00 #DIV 101 #DIV/01 #DIV /01 #DIV /01 0 0.00 0.00 #DIV 101 #DIV /01 #DIV0 #DIV /01 0 0.00 0.00 #DIV /01 #DIV 101 #DIV/0I #DIV /01 0 0.00 0.00 #DIV /01 #DIV /01 #DIV /01 #DN 101 0 0.00 0.00 #DIV101 #DIV /01 #DN101 #DIV/01 0 0.00 0.00 #DIV101 #DIV/01 #DIV 101 #DIV /01 0 Page 1 11/24/04 WED 09:36 FAX 801 298 1132 T S B A TANNER SMITH BARFUSS do ASSOCIATES STRUCTURAL ENGINEERS 233 North 1230 west. /201 Centerville. Utah 04014 Phone 001 290 -0700 Fax 0013 200 -1132 E —moll teba0arOe.net ->�� JRW PROTECT , PROTECT / PAGE: LOCATION I ENMEER DATE U 016 OF �l J .........,... ... .... '. .... ........... ........ .... ... .....�....... ...�.,�.,�.�. �...�..� ............ ... .............. ...... ........... ..........,.., ... .......... ..... ,......... ....... . ... :. .:......... .....:...: .. ... „ ', .. ...........:................... el ....... :............ ... ............. .......... ... ....� ` ........ �: .�......�..,............... ........., ................. .. ............... .... .... J ..................... 11/24/04 WED 09:37 FAX 801 298 1132 T S B A TANNER SMITH BARFUSS & ASSOCIATES STRUCTURAL ENGINEERS 233 North 1250 West. /201 I Centerville. Utah 84014 Phone 801 28t1 —e795 Fox 801 298 --1132 E —mail tsb000ros.not 1 44-> JRW PAmcr / AKHff= I DATE Ca 017 LOCATION ENDMIEER Of 11/24/04 WED 09:37 FAX 801 298 1132 1 TSBA T S B A 44 Bi Masonry Beam IBC Allowable Stress T 1.1� IBC 2003 Project: . 2•A. ' Updated: 03 -17 -04 Location /ID: BI A 549 ' Masonry Str- * &n := 2500-psi -221 28.0 2989 Beam Depths Stirrup Spacing 36.0 Steel - Allowable Stress * Fs := 24000 -psi 44.0 7381 0.194 Beam Width * h:= 7.625.111 ' 16 in B= 13725 1214 Steel Modulus * Es := 290001si -0.28 24 22021 ' 84.0 Masonry Modulus * Em -.= 900 -tin Em = 2250 ksi 92.0 12 1588 100.0 38125 Bottom Steel Area * As := .62 -111" -669 40 8 1962 Top Steel Area * Asp := .62-in 2 -0.21 48 48 -797 16 -0.19 2335 -861 Distance to Top Steel * dp := 4.li1 Ht := 64 ui st s = - 24 ui Distance to Bott. Steel Es * Bait rise := 4 .in 11:= — 72 32 Shear Reinf. Area * A� :_ .( ?(I�ui2 Em {(I 40 n = 12.89 8 zz := rows(st — s) zz -5 Allowable Masonry Stress Fb := I -tin Fb = 833 psi (2.3.3.2.2) 96 := .. z 0 zz - 1 3 104 Beam d Distances ii := rows(Ht) i := 0.. ii - 1 ii = 12 d := Ht. - Bot rise Quadratic A B and C values for various d distances h•(d i ) 2 A := B :_ 2 [ As•n + Asp- (2 -n — 1) ] d C . := •- A - 1) + Ad•n� d.. L i Bi - 4- A - J(B - B. + (B.)" - 4•A. -C;. 1.1� ' 2•A. . 2•A. ' A 12.0 549 0.338 20.0 1525 -221 28.0 2989 654 36.0 4941 -044 44.0 7381 0.194 52.0 10309 3 ' d= in A = 60.0 in B= 13725 1214 68.0 17629 -0.28 76.0 22021 ' 84.0 26901 -541 92.0 32269 1588 100.0 38125 ' 1775 -669 .0.139 DLB 1962 Bi - 4- A - J(B k2.:_ i)2 ' 2•A. I 280 -157 0.338 -0.85' 467 -221 0.257 -0.56 654 -285 0.218 -044 841 -349 0.194 -0.36 1028 •-413 0.177 -0.32 1214 -•477 3 0.164 -0.28 in . C - � 1 - k2 - 1401 -541 0.154 -0.26 1588 -605 0.146 -0.24 1775 -669 .0.139 -0.22 1962 -733 0.133 -0.21 2149 -797 0.127 -0.19 2335 -861 0.123 -0.18, 11/141 20001 Beam IBC 2003 Allowable Stress 03- 17- 04.mcd IM 018 1 of 3 11/21/04 WED 09:38 FAX 801 298 1132 TSBA T S B A 444 JRW 2 of 3 v - k := if(kl > O,kl Fs-k. -d. -Em check := it ' ' > Fh,1,0 (If check= 1, masonry is at max stress I (` - l ` i ` E ' if check = 0, steel is at max stress.) Calculate the stresses for the masonry and top and bottom steel Fs-k.-d.-Em fiiun := it check. = 1, Fh ' (d. l - k . - d.) -Es Fb -(d. - k. •d.) -Es fs := it check = 0, Fs, k.-.-Em il (833) r (ki d - dp tsp := fiiun - (2 -n- 1) k. d. Calculate the Moment taken about nuetral axis k ., Nhn := tnun - b, i , Mm = kips-ft Ms = kips • ft Msp = ' 16 Ms. := fs. -As• d. - k • d 11.5 , 0.2 62.9 Msp := fsp • Asp• (k -d. - dp) 22.3 6.6 Mm + Ms. + Msp. ' M. 72.0 31.7 2.9 8.6 40 3.6 41.3 18.4 81.2 48 4.1 1.1 27.1 56 90.4 4.6 5.1 kips•ft Ht = 36.0 7.9 1.3 99.6 64 44.9 8.3 108.8 5.6 53.9 DLB Mm = kips-ft Ms = kips • ft Msp = f = f 645 520 448 400 366 339 317 300 285 272 260. psifs 21.1 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 , check = I f ksi fsp = 0.0 ' 16 6.1 11.5 , 0.2 62.9 24 22.3 6.6 32 72.0 31.7 0.7 40 7.0 41.3 0.9 81.2 48 ' 1.1 7.5 56 90.4 kips•ft Ht = 7.9 1.3 99.6 64 8.3 108.8 72 80.1 DLB f = f 645 520 448 400 366 339 317 300 285 272 260. psifs 21.1 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 , check = I f ksi fsp = 0.0 16 11.5 , 0.2 24 22.3 0.5 32 31.7 0.7 40 41.3 0.9 48 51.0 1.1 56 60.7 kips•ft Ht = in M = 1.3 64 70.4 1.4 72 80.1 1.6 80 89.8 1.7 88 99.5 1.8 96 109.2 1.9 104 118.9, 1 0 0 0 0 0 0 0 0 0 0 0, 0.3 3.6 4.5 4.7 4.8 4.8 4.8 4.7 4.6 4.5 4.4 4.3 . I ksi kips-ft 11/LQ(§ 4j Beam IBC 2003 Allowable Stress 03- 17- 04•med 11/24/04 WED 09:38 FAX 801 298 1132 TSBA SHEAR IIMI T S B A 44 4 JRW 3of3 Fvur = 50 psi Fvr = 150 psi FFUr:= it' fin -psi> 50-psi, 50 -psi, tin•Osi) (Unreinforced 2 -20) ' Fvr := Af 3 fin psi> 150•psi,150•psi, 3 fin psi (Reinforced 2 -23) Calculate the shear capacity Vur.:= Fvur -b -d. 16 > > Vrmax := Fvr -b•d 4; 16.0 24.0 Calculate the shear ca p acity based upon the stirrup size and spacing d. Ai- in Vr. = it -Fs -d. st s > - ,0- lips, ' 0.0 1,z' - z 2 st s .10.7 24 -Z 40 ' Vr. := if(Vr. > Vnnax . , Vrmax. , Vr. ) 0.0 t,z � ,z i t ► ,z T S B A 44 4 JRW 3of3 Fvur = 50 psi Fvr = 150 psi ' 16 st_s = (8.0 4; 16.0 24.0 32.0 24 in 7.6 ' 0.0 32 0.O .10.7 24 40 ik0 13.7 0.0 0.0 48 t6.8 0.0 0.0 0.0 56 19.8 0.0 Ht = 0.0 in Vw = 0.0 kips 48 0.0 64 0.0 22.9 0.0 56 72 0.0 25.9 0.0 0.0 80 in Vr = 29.0 t 88 lips 32.(') 0.0 0.0 96 0.0 35.1 72 104 ; 8.1 0.0 0,0 0.0 0.0 80 0.0 0.0 ' 0.0 0.0 DLB T S B A 44 4 JRW 3of3 Fvur = 50 psi Fvr = 150 psi Av = 0 in 11 /AW604j Beam IBC 2003 Allowable Stress 03 17 04.mcd IM 020 st_s = (8.0 16.0 24.0 32.0 40.0) in 16 0.0 0.0 0.0 0.O 0.() 24 0.0 ik0 0.0 0.0 0.0 32 0.0 0.0 0.0 0.0 0.0 40 0.0 0.0 0.0 01.) 0.0 48 0.0 0.0 0.0 0.0 0.0 56 0.0 0.0 0.0 0.0 0.0 in Vr = lips 64 0.0 0.0 0.0 0.0 0.() 72 0.0 0.0 0,0 0.0 0.0 80 0.0 0.0 0.0 0.0 0.0 88 0.(.) 0.0 0.0 0.0 0.0 96 0.0 0.0 0,0 0.0 0.0 104 0,0 0.0 0.0 0.0 0.0 Av = 0 in 11 /AW604j Beam IBC 2003 Allowable Stress 03 17 04.mcd IM 020 11/24/04 WED 09:38 FAX 801 298 1132 TSBA T S B A 44 JRW 1 of 3 Masonry Beam IBC Allowable Stress T S IBC 2003 Project: Updated: 03 -17 -04 Location /ID: Masonry Str. * tin := 2500vi Beam Depths Stirrup Spacing Steel - Allowable Stress * Fs := 24000 psi Beam Width * I 7.625 in 0.338 Steel Modulus * Es := 29000•ksi 20.0 Masonry Modulus * Em := 900-fai Em = 2250ksi Bottom Steel Area * As := .62-in -221 Top Steel Area * Asp := .62•in Distance to Top Steel * (JP := 4-in Distance to Bott. Steel * Bot rise := 4-iii, 11:= 11:= - Shear Reinf. Area -, * Av := .22-in` Em 0.218 n= 12.89 H uowame Masonry stress Fb := --fin Fb = 833 psi (2.3.3.2.2) 3 Beam d Distances d.:= Ht. - Bot rise I I - Quadratic A. B. and C values for various d distances h•(d.) ` I 104 ii := rows(Ht) i:= 0'. ii - 1 ii = 12 A B :_ [ As -n + Asp•(2-n - 1) 1-d C := TAsp- dp•(2•n - 1) + As -d -B, + J(B) - 4•A.•C:. -B. - (B.� - 4•A. -C. k1.:= k2. . I 2 -A. ' 2 -A. I I d =1 12.0 M A Beam Depths Stirrup Spacing 16 280 24 0.338 32 -0.85 20.0 40 1525 467 -221 48 -0.56 28.0 2989 16 -285 � 56' 0.218 -0.44 Ht :_ ui st s := 24 -in 64 - 0.194 -0.36 44.0 7381 1029 72 -413 0.177 -0.32 52.0 40 10309 3 80 3 -477 88 zz := rows(st - s) -0.28 zz =5 in A= 96 z •= 0 zz - 1 H uowame Masonry stress Fb := --fin Fb = 833 psi (2.3.3.2.2) 3 Beam d Distances d.:= Ht. - Bot rise I I - Quadratic A. B. and C values for various d distances h•(d.) ` I 104 ii := rows(Ht) i:= 0'. ii - 1 ii = 12 A B :_ [ As -n + Asp•(2-n - 1) 1-d C := TAsp- dp•(2•n - 1) + As -d -B, + J(B) - 4•A.•C:. -B. - (B.� - 4•A. -C. k1.:= k2. . I 2 -A. ' 2 -A. I I d =1 12.0 549 280 -157 0.338 -0.85 20.0 1525 467 -221 0.257 -0.56 28.0 2989 654 -285 0.218 -0.44 36.0 4941 841 -349 0.194 -0.36 44.0 7381 1029 -413 0.177 -0.32 52.0 10309 3 1214 3 -477 3 0.164 -0.28 in A= m B= In C= in kl = k2 = 60.0 13725 1401 -541 0.154 -0.26 68.0 17629 1588 -605 0.146 -0.24 76.0 22021 1775 -669 0.139 -0.22 84.0 26901 1962 -733 0.133 -0.21 92.0 32269 2149 -797 0.127 -0.19 100.0 38125 2335 -861 0.123 -0.18, IM 021 DLB 11IM20041 Beam IBC 2003 Allowable Stress 03- 17- 04.mod 11/24/04 WED 09:39 FAX 801 298 1132 1 TSBA 1 T S B A k := if(kl > O,k1 Fs•k.- d.•Eni Check. := it ' I > Fb, l ,(.. {If check= 1, masonry is at max stress ' (`; -1 `;'d;) - Es if check = 0, steel is at max stress.) 1 Calculate the stresses forthe masonry and top and bottom, steel Fs-k.-d.-Fin fimn := it check = I,Fb, i (di - k d •Es Fb•(d - k.•d.) -Es ta := it check = O,Fs, 1 ' ' L. Em 833) (1 i •d - dp) k. d. Calculate the Moment taken about nuetral axis fmm = ( - di) 2 Mni.:= tnun..1 1 1 3 Mm = kips-ft Ms = kips-ft Msp = f 6.1 62.9 6.6 72.0 ' 7.0 81.2 7.5 90.4 7.9 99.6 8.3 108.8 1 DLB 645 520 448 400 366 339 317 300 285 272 260 l psi fs = 4�-> JRW '21.1 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 check = I ksi fsp = I 0.0 16 11.5 , 0.2 24 22.3 0.5 32 31.7 0.7 40 41.3 0.9 48 51.0 1.1 56 60.7 kips • ft Ht = in M = 1.3 64 70.1 1.4 72 80.1 1.6 80 59.8 1.7 88 99.5 1.8 96 109.2 1.9 104 118.9, 2of3 1 0 0 0 0 0 0 0 0 0 0 0, 0.3 3.6 4.5 4.7 4.8 4.8 4.8 4.7 4.6 4.5 4.4 4.3 I ksi kips - 11 11/U112000j Beam IBC 2003 Allowable Stress 03- 17- 04.mcd [a 022 Ms.:= fs. -As d. - k -d. Msp := fsp Asp•(k•d_ - dp) M.:= Mm. , , + 2.9 8.6 ' 3 3.6 1 18.4 4.1 2 27.1 4.6 3 36.0 5.1 4 44.9 5.6 5 53.9 kips-ft Ms = kips-ft Msp = f 6.1 62.9 6.6 72.0 ' 7.0 81.2 7.5 90.4 7.9 99.6 8.3 108.8 1 DLB 645 520 448 400 366 339 317 300 285 272 260 l psi fs = 4�-> JRW '21.1 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 check = I ksi fsp = I 0.0 16 11.5 , 0.2 24 22.3 0.5 32 31.7 0.7 40 41.3 0.9 48 51.0 1.1 56 60.7 kips • ft Ht = in M = 1.3 64 70.1 1.4 72 80.1 1.6 80 59.8 1.7 88 99.5 1.8 96 109.2 1.9 104 118.9, 2of3 1 0 0 0 0 0 0 0 0 0 0 0, 0.3 3.6 4.5 4.7 4.8 4.8 4.8 4.7 4.6 4.5 4.4 4.3 I ksi kips - 11 11/U112000j Beam IBC 2003 Allowable Stress 03- 17- 04.mcd [a 022 645 520 448 400 366 339 317 300 285 272 260 l psi fs = 4�-> JRW '21.1 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 check = I ksi fsp = I 0.0 16 11.5 , 0.2 24 22.3 0.5 32 31.7 0.7 40 41.3 0.9 48 51.0 1.1 56 60.7 kips • ft Ht = in M = 1.3 64 70.1 1.4 72 80.1 1.6 80 59.8 1.7 88 99.5 1.8 96 109.2 1.9 104 118.9, 2of3 1 0 0 0 0 0 0 0 0 0 0 0, 0.3 3.6 4.5 4.7 4.8 4.8 4.8 4.7 4.6 4.5 4.4 4.3 I ksi kips - 11 11/U112000j Beam IBC 2003 Allowable Stress 03- 17- 04.mcd [a 022 2of3 1 0 0 0 0 0 0 0 0 0 0 0, 0.3 3.6 4.5 4.7 4.8 4.8 4.8 4.7 4.6 4.5 4.4 4.3 I ksi kips - 11 11/U112000j Beam IBC 2003 Allowable Stress 03- 17- 04.mcd [a 022 11/24/04 WED 09:39 FAX 801 298 1132 TSBA SHEAR Ht= I T S B A 4�� JRW Fvur = 50 psi Fvr = 150psi Fv1u := it� fin psi > 50•psi, 50 psi, fm psi (Unreinforced 2 - 20) ' Frr := i1t3 1111 psi > 150•psi,1511•psi, 3 t (Reinforced 2 -23) ' Calculate the shear capacity Vur.:= Fvur•b•d. 16 4.6 ' Vrmax ;= Fvr-b•d 24 40.0) 7.6 Calculate the shear capacity based upon the stirrup size and spacing d. AN-.Fs•d. 1 Vr it st_s t 0.0 z := ,0•kips, 2 St s 0.0 ' - Z 40 Vr if(Vr Vrmaxi,Vrmaxi,Vri 0.0 z := z) T S B A 4�� JRW Fvur = 50 psi Fvr = 150psi ' 16 4.6 16.0 24.0 24 40.0) 7.6 ' 32 0.0 10.7 0.0 0.0 40 13.7 0.0 0.0 0.0 48 16.8 18.5 0.0 56 0.0 19.8 40 Ht = 23.8 in Vur = 0.0 kips 0.0 ' 48 64 29.0 22.9 0.O 0.0 0.0 72 25.9 17.2 11.4 0.0 80 29.0 ill Vr = ' 88 32.0 kips 641 96 19.8 15.1 0,0 ' 104 18.1 44.9 22.4 15.0 11.2 0.0 80 50.2 25.1 16.7 12.5 DLB T S B A 4�� JRW Fvur = 50 psi Fvr = 150psi Av = 0.22 ill 3 of 3 11 /AW60Ky Beam IBC 2003 Allowable Stress 03- 17- 04.mcd Z 023 st_s = (8.0 16.0 24.0 32.0 40.0) iii 16 0.0 0.0 0.0 0.0 0.0 24 13.2 0.0 0.0 0.0 0.0 32 18.5 0.0 0.0 0.0 0.0 40 23.8 11.9 0.0 0.0 0.0 48 29.0 14.5 0.O 0.0 0.0 56 14.3 17.2 11.4 0.0 0.0 ill Vr = kips 641 39.6 19.8 11.2 0,0 0.0 72 44.9 22.4 15.0 11.2 0.0 80 50.2 25.1 16.7 12.5 0.0 88 554 27.7 18.5 13.9 11.1 96 60.7 30.4 20.2 15.2 .12.1 104 66.0 33.0 22.0 16.5 11.2 Av = 0.22 ill 3 of 3 11 /AW60Ky Beam IBC 2003 Allowable Stress 03- 17- 04.mcd Z 023 11/24/04 WED 09:40 FAX 801 298 1132 TSBA T S B A JRW 1 of 3 Masonry Beam IBC Allowable Stress T IBC 2003 Project: Updated: 03 -17 -04 Location /ID: Masonry Str. * tin := 2500-psi 549 Steel - Allowable Stress * F, 24000 -psi Beam Width * b:= 7.62i.i i 0.371 Steel Modulus * Es := 29000•ksi 20.0 Masonry Modulus * Em:= 900-fin Em = 2250ksi Bottom Steel Area * As := ,88 —314 Top Steel Area * Asp := .88.61 Distance to Top Steel * dp := 4•u1 Distance to Bott. Steel * Bot rise := 4 -in n:= Ea Shear Reinf. Area * AN := .20.111` Em 0.244 n = 12.89 36.0 1 4941 b A Beam Depths Stirrup Spacing 16 24 32 40 8 48 16 56 Ht := 64 -in st — s := 24 -iii 72 1 80 0 88 zz := rows(st — s) zz =5 96 z := 0 .. zz - 1 Allowable Masonry Stress 1''b := -•fin Fb = 833 psi (2.3.3.2.2) Beam d Distances d.:= Ht. Bot rise Quadratic A. B. and C_values for various d distances b•(:1 2 1044 ii := rows(Ht) i := 0.. ii — 1 ii = 12 A :_ B :_ [ As•n + Asp•(2•n — 1) ]•d C :_ JAsp•dp•(2•n — 1) + As•d n] —B + (B) — 4-A i C —B — J(B i ) 2 — 4-A i C i 2•A. 2•A. i I d =i 12.0 549 398 —223 0.371 —1.10 20.0 1525 663 —314 0.286 —0.72 28.0 2989 928 --405 0.244 —0.55 36.0 4941 1193 —496 0.218 —0.46 44.0 7381 1458 —586 0.200 —0.40 52.0 10309 3 1724 3 —677 3 0.186 —0.35 in A = in B = in C = in k] = k2 = 60.0 13725 1989 —768 0.175 —0.32 68.0 17629 2254 —858 0.166 —0,29 76.0 22021 2519 —949 0.158 —0.27 84.0 26901 2784 —1040 0.152 —0.26 92.0 32269 3049 —1131 0.146 —0.24 100.0 38125 3315 —122I 0.141 —023 DLB 11 /M20ft Beam IBC 2003 Allowable Stress 03- 17- 04.mcd 11/24/04 WED 09:40 FAX 801 298 1132 1 TSBA 1 T S B A k := if(k1 > O,kl Fs -k. - d - -E)n check := it ' ' > Fb,1,0 (If check = 1, masonry is at max stress (` - ki.d;} Es if check = 0, steel is at max stress.) Calculate the stresses for the masonry and top and bottom steel Fs -k- • d. •Ent I titutt := it check. = 1, Fh, 1 (d. - k. A Es Fb•(d- - k. A -Es 1 �" fs := i check _ ( ?,Fs, k d in, 833) (k -d - dp) tsp := titLZt, • (2 • n - 1) kA. d. 1 Calculate the Moment taken about nuetral axis Brun W 1 (k-, '`ii)2 � J iVlln := tiiuit � b 3 Mm = kips -ftMs = kips -ft Msp = 16 Ms • := fs. -As d - k. -d. 13.6 0.7 87.1 Msp := fsp • Asp- (ki -d - dp) 31.O 10.0 M := Mm + Ms + Msp 32 99.8 44.5 1.8 3.5 10.1 10.7 5.2 112.6 25.1 48 11.4 6.0 37.2 I 6.8 7.6 49.5 138.3 2.9 12.8 151.2 62.0 3.2 72 8.4 113.0 74.5 Mm = kips -ftMs = kips -ft Msp = 745 602 520 465 425 395 370 350 333 318 I psi fs = JRW 2of3 18.2 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 I 0 0 0 0 0 check = 0 0 0 0 0 0 ( ksi fsp = 0.1 16 9.2 13.6 0.7 87.1 24 31.O 10.0 32 99.8 44.5 1.8 10.7 58.1 112.6 48 11.4 2.6 125.4 85.5 12.1 in M = 138.3 2.9 12.8 151.2 99.2 3.2 72 DLB 113.0 745 602 520 465 425 395 370 350 333 318 I psi fs = JRW 2of3 18.2 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 I 0 0 0 0 0 check = 0 0 0 0 0 0 ( ksi fsp = 0.1 16 13.6 0.7 24 31.O 1.3 32 44.5 1.8 40 58.1 2.2 48 71.9 2.6 56 85.5 kips•ft Ht = in M = 2.9 64 99.2 3.2 72 113.0 3.4 80 126.7 3.6 88 140,5 3.8 96 154.2 4.0 104 168.(), 2.1 5.5 6.2 6.3 6.3 6.2 6.1 5.9 5.8 5.7 5.5 5.4 , I ksi I kips •ft 11 /11®MMV Beam IBC 2003 Allowable Stress 03- 17- 04.mcd IM 025 11/24/04 WED 09:40 FAX 801 298 1132 TSBA SHEAR T S B A F� := 4 fin •psi > 50-psi, 50 -psi, fin psi (Unreinforced 2 -20) FN it0 fin psi> 150-psi, 150 -psi, 3 tin•psi) (Reinforced 2 -23) 444 JRW Fvur = 50 psi Fvr = 150 psi Calculate the shear capacity Vur. ;= Fvur -b -d. i I Vrmax.:= Fvr -b -d. i i Calculate the shear capacity based upon the stirrup size and spacing Vr = it st s > i ,z - z 2 st s -Z Vr z := il(Vri Z > Vrmax , Vrmax , Vr Z ) Ht = I Av = 0.2 In kips 3 of 3 UO26 DLB 11 /AQffl604j Beam IBC 2003 Allowable Stress 03- 17- 04.mcd st T = (8.0 16.0 24.0 32.0 40.0 ) it 16 4.6 16 0.0 0.0 O.f.) ().0 O.0 ' 24 7.6 24 12.0 0.0 0.0 0.0 0.0 32 10.7 32 16.8 0.0 0.0 0.0 0.0 40 13.7 40 21.6 10.8 0.0 0.0 0.0 48 16.8 48 26.4 11.2 0.0 0.0 0.0 56 19.8 56 31.2 15.6 10.4 0.0 0.0 in Vur = kips Ht = ill Vr = 64 22.9 64 36.0 18.0 12.0 0.0 0.0 72 25.9 72 40.8 20.4 13.6 10.2 0.0 80 29.0 80 45.6 22.8 15.2 11.4 0.0 88 32.0 88 50.4 25.2 16.8 12.6 10.1 96 35.1 96 55.2 27.6 18.4 13.8 11.0 iO4 38.1 104 Ci0.0 3t).0 20.0 15.0 12.0 Av = 0.2 In kips 3 of 3 UO26 DLB 11 /AQffl604j Beam IBC 2003 Allowable Stress 03- 17- 04.mcd 11/24/04 WED 09:41 FAX 801 298 1132 TSBA T S B A JRW 1 of 3 ' Vertical Load * P:= (7000).plf Vertical Eccentricity * C.= 0.5-in ' Out of Plane Load * S:= 20•psf Allowable Stresses ' Hi = 64.9 ' r 2 2 Fa := i Ht < 99, 1 fm_[ I _ C Ht 1 1 fm ( rl Incr (2-12 & 2 -13) r 4 `140 -r 4 Ht ) ' Fb := 1 - -frn -Incr (2.3.3.2.2) 3 Fs:= Fs -Incr ' DLB Fs = 32 ksi 11/19/2004 Masonry Wall Out of Plane IBC 04- 14- 03.mcd T S B A Em = 2250 ksi Working Stress Fa = 654 psi Fb = 1111 psi Masonry Wall Out of Plane Design IBC 2000 Allowable Stress Project: Rexburg Subway 1 r9 Y Updated: 04 -14 -03 Location/ID: Piers * input *** Check ' Compressive Str * fm := 2500-psi Allowable Stress of Steel * Fs := 24000. psi ' Allowable Stress Increase * Incr := 1.333 Modulus of Steel * Ey := 29000.ksi Modulus of Masonry Em := 900 -fin ' 700 *fm brick or 9001m CMU Height of Wall * Ht := 14-ft Thickness of Wall * t:= 7.625 -in Equivelent Thickness of Walt* eqt := 4,64n ' Rebar Spacing * b:= 32 -in Radius of Gyration * r:= 2.59 -in Flange Thickness * tf := 1.25 -in ' d Distance to Steel * d:= 3.8. in Area of Steel * A := .31-in 2 ' Grouted Solid (1) =Yes * grout = 1 ' Vertical Load * P:= (7000).plf Vertical Eccentricity * C.= 0.5-in ' Out of Plane Load * S:= 20•psf Allowable Stresses ' Hi = 64.9 ' r 2 2 Fa := i Ht < 99, 1 fm_[ I _ C Ht 1 1 fm ( rl Incr (2-12 & 2 -13) r 4 `140 -r 4 Ht ) ' Fb := 1 - -frn -Incr (2.3.3.2.2) 3 Fs:= Fs -Incr ' DLB Fs = 32 ksi 11/19/2004 Masonry Wall Out of Plane IBC 04- 14- 03.mcd T S B A Em = 2250 ksi Working Stress Fa = 654 psi Fb = 1111 psi 11/24/04 WED 09:41 FAX 801 298 1132 TSBA Actual Stresses fa := P eqt T S B A JRW fa = 126.8 psi n := EY Calculations for fb & fs are base on Amrhein's n = 12.89 Em Reinforced Masonry Engineering Handbook for As both rectagular sections and T- sections. p: b -d p = 0.00255 FIT 2 2 2 np +2 (d) IM 028 2of3 k1:= I n p} + 2 n•p A < tf, {n-p} + 2•n -p — n p, tf kl = 0.226 n • p + --- d j kl •d = 0.86 in k:= i out = JFG- + 2 -n•p — n•p],kl] k = 0.226 k•d = 0.86 in k 3 j = 0.925 2 M S.b. 8 + P•b•e M = 2.08kips•ft 8 M = 25.0 kips in fbl := i k•d <tf, M•2 11 fbl = 518.9psi k- j -b -d2 � + k k d tf M•2 ).b.tf .( d — Z J fb := if grout = I, j- 2 , 0,1 fb = 518.9 psi k• j•b•d fsl := if k•d <tf, M , M A 1 = 23.0 ksi 2 ( tf 1 P•j•b•d p•b•d• d — 2 ) fs := if grout = 1, m , fs 1 fs = 23.0 ksi p•j•b•d 2 Unity Checks fa + =0.661 f =0.718 Fa Fb Fs DLB 11/19/2004 Masonry Wall Out of Plane IBC 04- 14 -03.mcd ' 11/24/04 WED 09:41 FAX 801 298 1132 TSBA T S B A -->-> 3of3 Consider Axial Load xbar := xx l.2• in on wall for the steel x.l t- 0-in stress. x2 t ' delta 4- 100•kips•ft while Ideltal >0.01-kips-in ' feb < P•b t - -xx b 2 ' —•xx — n• -As 2 xx fcb C b•xx• --- f 2 — xxl T n•fcb• l JJ -As xx P2 <- C -T b delta F- C•I d -'f'�� - M l 3 J ' xx2 F if delta > 0•kips•in, x2 + 2-xx I II + 2•xx 3 3 ) U x1 E— if[(delta> 0•kips•in),xx,xl] ' x2 E— if[(delta> 0•kips•in),x2,xx] xx F xx2 xx xx := xbar xx = 7.32 in ' fcb := P b fcb = 0.157ksi t — xx b 2 — xx —n -As ' 2 xx C:= b•xx• f� C = 18.366 kips ' T:= n•fcb• 2 t — xx) •As T = —0.3 kips xx P2:= C b T P2 = 7 x 10 plf ' M2:= C d — xx — M M2 = — 0.036kips•in l fs := T fs = —0.968 ksi As 1 DLB xbar = 7.3201 in fs -- _ —0.03 Fs 11/19/2004 Masonry Wall Out of Plane IBC 04- 14- 03.mcd Q 029 11/24/04 WED 09: 52 FAX 8 01 298 1132 T S B A JRW TANNER SMITH BARFUSS do ASSOCIATES j� - ©p 8 STRUCTURAL ENGINEERS PROJECT V C � PROJECT f T S 442 North Main Street / �/ Bountiful. Utah a4010 ARCFAEOT GATE Ib 4 Phone 901 296 -9795 BA Pax 9013 296 - D[ E —mall taba®aros.net LOCAIM ENGINEER 1 J [a 001 OF :. ........ K am r�i r I : G'i� :.Can�"�� V = : ID 8 {►� can:..1���.� 'Il I.. 3rP 11 /24/ 04 WED 09 ^53 F 80 1 298 1132 T S B A JRW fa 002 ' TANNER SMITH BARFUSS & ASSOCIATES �j W � 1, C) 4f 49B STRUCTURAL ENGINEERS PROJECT I y � SECT # PAGE. 442 North Main Street Bountiful. Utah 84010 N:r IATE T S b C5 ' Fox n• (8013 15 1 13 2915— 2 �J p n E—mail tuba®aros.net LOCATION ENGINEER OF u h..J..1) ........:....... .. . -. 31±...: . ...Imo . . . . ... :...:........:.... =..8:" Ga u'..... .....: .:. :.. . Z...oC � :..... :...:.. .......55??f36 .. ..... .. . at, ... ....... :. s ..1- IN((.:.. ... . ..... ...... .......... ..... ........ .... ......... .. ... 11k Lan .. . _ G:d' �V fi ti �� /� °,� JT `.. ► SOU CV a by c lilA , CEwb'{ L�l�� . fuar5 t Co� � 1 l ��� .... :. l % .. Lk ._....) ..CeI�. am, ..... 0.5 ,.....� 1 :7.:..:. Sri u3 c� G��� Gy ;nyr���✓I ............. .. . .. .... .:.....:..... :..... ...........:.... ............... .......:........... .......... _ .......:.........5 ............ Uz i ;... .. :..:.. 1�' 11/24/04 WED 09:53 FAX 801 298 1132 TSBA 1 STORY LATERAL BOX Designed by: Donald Barfuss 08 -26 -03 Generic Factors (Allowable Stress) Information Wai12 Wa1tWt2 Plant I%val12 IivalhvU DiaphWt2 V F OutPlaxie Anchorage Pressure2 T S B A I of 4 -->-)4 JRW PROJECT: Subway - Rexburg ID / LOCATION: Building Walls Flt Parapet Shared Flt, Length Gable a Wt up 18.0 ft 3.0 ft 0A ft 55.0 ft 0.0 ft 60 psf Dow n. 18.0 ft 3.0 ft 0.0 ft $5.0 ft 0.0 ft 60 psf Left: 18.0 ft 3.0 ft 0.0 ft 25.0 ft 0.0 ft 60 psf Right? 18.0 ft 3,0 ft 0.0 ft 25.0 ft 0.0 ft 60 psi Intermediate Walls Direction M Length wt Total Wt u-D 11.0 ft 0.0 ft 60 psf L -R 11.0 ft 0.0 ft 60 psf Diaphragm Direction Total L Chord L Ratio Wt. u-D 30.0 ft 27.0 it 2.1852 L -R 60.0 ft 59.0 ft Lateral Factors Diaphragm VA 35 psf V or E11.4 0.0580 gp L. 0.0580 Out of Flan ' 0.1900 Anchorage 0.3260 Wind Pressure 15 psi 0.0 ft int. walls Il to aD dir r --- ---- - --- --- 1 I I 1 I I 1 U P ' 27.0 ft 30.0 ft 1 t? I ... Dawn 1 __ 59.0 ft 0.0 ft ' int. walls 11 to L -R dir. 60.0 ft Wall := Wal12.8 WailWt := WaIIWt2 -psf Plan := Plan2•ft Iwall :- Iwall2•ft Iwallwt := Iwallwt2•psf DiaphWt := DiaphWt2•psf Pressure := Pressure1psf DLB 11/16/2004 1 Story Box 08 -26 -03 Subway Rexburg.mcd 11/24/04 WED 09:54 FAX 801 298 1132 TSBA 18 3 0 55 0 iwwtew = 0.0 k 18 3 0 55 0 Wall = WWt, := DiaphWt -Plan O •Pian l 0 + iwwtns + iwwtew ft 18 3 0 25 0 Wall 2 -- wall i > Wall , Wall 18 3 0 25 0 I I 01 Wall. — Wall i ,. Iwall = ( ft .2 Walli 2 < Will '- 0' 11 0 JI 2 2 V = 0.058 Wallwt. Fp = 0.058 Seismic Calculations: Wt Calc: T S B A 2 of 4 60 WallWt = 160 60 psf 60 Iwallwt = (60 60 psf � OutPlane = 0.19 Anchorage = 0.326 JRW Plan = ( 60 30 27 a 59 DiaphWt = 35 psf Pressure= 15 psf Iwa11 0 •hvall 0' 1 I�valln't I%vall %valiv. -t iwwtns := 2 i +t +vtew := l iwwtew = 0.0 k 2 iwwms = 0.0 k WWt, := DiaphWt -Plan O •Pian l 0 + iwwtns + iwwtew 11, i.= 1..3 W Wt = 63.0 k TribHT above := 4Watli,2 = Walli 0, Walli V i'�Wa" Wall 2 -- wall i > Wall , Wall . 2 1 0, 2 i i Wall. — Wall i ,. Wall i.0) TribHTbcioxv := it .2 Walli 2 < Will '- 0' 2 2 Wallwt. Wall _Wt := i W alli,, = Walli 0, � WallWt� 60 2 J 1 60 WaWt = TribHTabove Wall i 3- Wall Wti Wall = B0 psf WbWt := TribHTbelow Wall i 3•Wall_Wt 60 i 3 9 9.9 29.7 TribHTabove = 3 ft TribH'Ibelow = 9 ft WaWt = 9.9 k WbWt = 29.7 k 3 9 4.5 13.5 3 9 4.5 13.5 WWt +I := (WaWt + WbWt + WWt Wt := WWt Wt = 178 -2k BaseShear:= V -Wt BaseShear= 1034k DLB 11/16/2004 1 Story Box 08 -26 -03 Subway Rexburg.mcd 11/24/04 WED 09:54 FAX 801 298 1132 TSBA Wind: T S B A 4of4 -)44 JRW 12 WindHT := TribHTabove + TribHTbelow + Wall i 4 12 WindHT = $ 12 h := Wall i3O + Wall I + Wall i,4 12 Windwperp := WindHT i •Pressure Wind_ns ilwindwperp Windwperp Plan, 0 , Windwperp, -Plan 1,0 Pressure= 15psf Wind ew := igWindwperp > Windwperp Windwperp Plan Windwperp `` Wind ns Wind ear• Wutd_Diapltragm Shear a :_ — Wntd Diaphragni_Sltear n := — 2 Plan 1 2- Plan l, l Plan 1, 0 YlanO, 0 W_Chord n := Wind ns W_Chord_e := Wind e% 8 plan l.i W Shear n := Wind ew W Shear a := Wind ns -.5 Wind Summary: 180 Wind ew = 5.4 k 180 Windwperp = 180 plf Windns = 10.8 k 180 W Shear n = 2.7 k W Shear e = 5.4 k Witnl_Diaphragni ,Shear n = 45.8 plf Wind_Diaphragtu_Shear _ e = 200p1f W Chord n = 3 k W Chord e = 0.343 k IM 005 DLB 11/16/2004 1 Story Box 08 -26 -03 Subway Rexburg.mcd ' 11/24/04 WED 09:54 FAX 801 298 1132 T S B A JRW Q006 � � V-1 TSBA Masonry Shear Pier Design IBC 2003 Allowable Stress Project: Subway - Rexburg Updated: 09 -15 -04 Location /ID: 04088 East Wall T S B A Input Wall Wt 60 psf Compressive Str 1500 psi Allowable Stress of Steel 24000 psi Allowable Stress Increase 1.333 Modulus of Steel 29000 ksi Modulus of Masonry Factor 900 'fm .(700 brick or 900 CMU) Length of Wall 14 It Height of Wall 18 ft Thickness of Wall ' 8 in Suggested based on pier 1 grout Equiv. Thick. of Wall 4.9 in 4.9' Shear Force 1 5.5 kips ........... Shear Force I Elev. 18 It Shear Force 2 0 kips : .Shear Force 2 Elev. 13 it Additional Factored Moment 0 kip *ft Additional Dead Load 1 klf Piers Ht Len gfh t Grout Fixity Equiv. t r ft ft in Spacing ! 1=f-p, elsef -f in 1 9 5 8 32 1 4,9 2,59 2 9 5 8 32 1 4.9 2.59 3 0 0 10 48 1 5.5 3.33 4 0 0 10 48 1 5.5 3.33 5 0 0 10 48 1 5.5 3.33 6 0 0 10 48 1 5.5 3.33 7 0 0 10 48 1 5.5 3.33 8 0 0 10 48 1 5.5 3,33 9 0 0 10 48 1 5.5 3.33 10 0 0 10 48 1 5.5 3.33 1 of 5 � 1 DLB 11/16/2004 Masonry Shear Pier East Wall.mcd 11/24/04 WED 09:55 FAX 801 298 1132 TSBA Wall Weight ' Compressive Str Allowable Stress of Steel ' Allowable Stress Increase Modulus of Steel ' Modulus of Masonry Length of Wall ' Height of Wall Thickness of Wall ' Equivelant Thickness of Wall Shear Force 1 ' Shear Force 1 Elev. Shear Force 2 ' Shear Force 2 Elev. Addition Factored Moment Addition Dead Load 1.. 10 InpP 1 •ft L :— InpPi ft 2. 1 9 1 5 2 9 z s ' 0 4 0 4, 0 H= 5 Oft L= 0t} 6 7 0 0 6.' -: 0 7 -: 0 0 g `. 0 ' 9 1 0 9 0 i0. 0 t4 0 11 #3 Bar ' Abar := 2 -in 1. 31 ) 2 #4 Bar #5 Bar ' n2:= rows(Abar) j := L. n2 n2 = 3 DLB T S B A JRW 2of5 WWT:= IupW fm := InpW -psi Fs := InpW -psi Incr := InpW Ey := InpW ksi Em := InpW6 fin Wall _L = InpW Wall_Ht = InpW Wall — t := Inp W 10 in Wall_egt := InpW f in LatFl := InpF -kips LatFlHt := InpF LatF2 := InpF LORHt := InpF ft M — Add := InpF k ips•ft DL Add := InpF W WT = 60 psf fin = 1500 psi Fs = 24000 psi Incr = 1.333 Ey = 29000 ksi Em = 1350 ksi Wall — L = 14 ft wall _Ht= 18 ft Wall _t = sin Wall eqt = 4.9 in LatF 1 = 5.5 kips LatF1Ht = 18 ft LatF2 = 0 kips LatF2Ht = 0 ft M Add = 0 kips- ft DL Add = 1 kif t = Inpp 3 -in Fx := InpP i,S egt := InpP i,6 in t= in Fs = eqt = W Pier L := Y L W Pier L= 101 in n:= rows(H) n= 10 11/16/2004 Masonry Shear Pier East Wall.mcd 11/24/04 WED 09:55 FAX 801 298 1132 TSBA LatF := Laff l + LatF2 Ag := Wall_L•Wall_egt T S B A ��--> JRW [it 008 3of5 LatF = 6 kips Ag = 823 in H d := x — 4-in d := il(d < 0• in, 0• in, d H L = LatFl- LatFIHt + LatF2-LatF2Ht L M ratio := M ratio= 18 ft La F ' t 1 + La defl := i1�Fx = 1, (egt )– 1 [ X�3 + 3 H L ],(eqtx)– 1• [l H z) + 3-R _L ] ].in 2 x � x [ Rigid := i deft = 0,0, dell x ) —1 g SumRi id := lRigid J ' SumRigid = 4.094d' 1 Rigid PercentForce • 100 x SumRigid Rigid = V -H M V := LatF•PercentForce •001 M — MVd := x x s Fx . x V •d s � 1 PereentForce = V = 1 0.17 2 0.17 0 4 � 5 0 0 7 0 0 0 9: 0 10 o kips !ME Unreinforced Vall Aliowables Fv_ur := ii MVd < 1, (4 – MVd psi, tm psi Fv – ur max x LL � x \ MV l (2 -21 & 2 -22) ' := i MVd < 1,(80 – 45•d x) P si si 35• P ' Fv – u x := (i jFv_u x > Fv – ur max Fv ur max Fv_u X)) -Incr Reinforced all Allowables ' FN-_r := iMVd < 1, 2 •(4 – MVdj tm psi, 1.5 x si (2 -24 & 2 -25) ' Fv – r ma x := if Wd < 1,(120 -- 45•MVd Fv r := (i jFv_r > Fv r max , Fv r max {, Fv rj)•Incr MVd = kips DLB 11/16/2004 Masonry Shear Pier East Wall.mcd 11/24/04 WED 09:56 FAX 801 298 1132 TSBA Actual $hear in Wall V eqt� d� 1kily Eguations Unih_�� t 1 Fr_ur T S B A Shear Reinforcement Snacina in Wall Abor�•Fs•d; lncr s — '•. V + .01 -1bf h' _ x Unit. r " —\ FA.- Fv — ur — 1 i psi Fr- - r = 1 46.7 2 46.7 3 68.8 4 . 68.8 5 68.8 6 68.8 7 68.8 8' 68.8 9 68.8 i0 68.8 1 2 3 1 1 72 1 10.0 . 0: 2 10.0 3 0.0 4, 0.0 psi A' _ 5 0.0 psi 0 6 0.0 6 7 0.0 Un tx uz 8 0,0 Uxiity_r: S 8.00 so Q.o #3 Bar #4 Bar #5 Bar 1 2 3 4 ->-> JRW 72 1 2 0 2 72 130 e 4;j . 0: 2 . 0 ! 2 3 QOQ 3 0:410 0 4 8 6 4 OOQ Un tx uz g ::G,0 f Uxiity_r: S 8.00 6•pp. 6 0.00 7 :: fi.Qa 7 DO W 8 a 4)pfl. 9t.QQ 10 0.00. 10 0:00` Sendina f M X := iFx� = 2,0• kips. ft,(DL Add + WWT•H) x) 2 : 2 M2 := iqM — MT > 0•kips•B,M — My ,Q•kips•8) 4 ->-> JRW 72 t3t1: 2 0 2 72 130 202 0: 0 . 0 ! 0 0' 8 6 Q p. Q 0:1 0 0 8 I) Q009 4of5 Righting Moment from DL. Do not use when f -f condition. Mwr := (DL Add + WWT -Wall Ht)- (Wall + 2 Mwr = 203.84 kips•ft Assume initial j = .9 and solve by iteration M�'• As E� x x dx x µ Em x s Fs -ll — t Mw := if(LatF•M_ratio + M Add — Mwr> 0•kips•ft,LatF•M ratio + M Add — Mwr,O•kips•ft)• = 0.0 kips -ft DLB 11/16/2004 Masonry Shear Pier East Wall.mcd 11/24/04 WED 09:56 FAX 801 298 1132 TSBA 1 1 1 1 1 1 1 1 N 1 19.25 19.25 0 0 Mr = 0 kips-ft 0 0 0 0 0 dw := Wall - L - 6-in jwl := .9 Asry :_ Mry Fs•Incr•jrvl -dry A srY pw :_ ' Z ll t•dry dw = 13.5 ft Asw =0m 0.04 0.04 0.00 0.00 As = 0. 2 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.00 0.00 As = 0.00 L1 2 0.00 0.00 0.00 0.00 0.00 Calculate k based upon As and recalculate As. 0 `:= F(n 2• n P� - P, JJx :_ ! - 0.060 0 0.060 M2. 0.000 As - Ps ;_ 1 0.0000 ,jl _. Fs•Incr d t` -dx k= 0.0000 0 krr 1`jv := n ry 2 + 2 •n ry - n rr P } P P ,jrv1:= 1 - - 0.0000 0.0000 0.0000 MIv Asry := Asry Prr" �_ 0.0000 Fs Incr jr�1 d�� Wall t•dw 0.0000 kw = Calculate new k based upon As and recalculate As once more. Wi 4 4 JRW 7 0.980 7 0.980 0 . - 1.000 1.000 jj = 1.000 1.000 1.000 1.000 1.000 1.000 0.0000 jw1= 1.000 2 ; 0.0583 0.981 k _ (! + 2 - n•ps - n'Ps Lj := 1 - 3 0.0583 0.981 M2 0.000 1.000 As := 0.0000 1.000 Fs•Incr• jj dr k= 0.0000 ,ii 1.000 = 0.0000 1.000 knr 0.0000 1.000 krr _ (n prr } + 2 •trpry - n•pry jrv1:= 1 - -- 0.0000 1.000 3 Asry :_ Mw 0.0000 1.000 0.0000 1.000 Fs-Incr- jwl-dw kw = 0.0000 jw1= 1.000 OLB T S B A 24.75 24.75 0 0 M = 0 kips-ft 0 0 0 0 0 Asw = 0.00 i,1 11116/2004 Masonry Shear Pier East Wall.mcd 5.5 5of5 0 0 0 M2 = 0 0 k kips- 0 0 0 0 0 0.90 0.90 0.90 0.90 11 = 0 0.90 0.90 0.90 0.90 0.90 0.90 2 ; 0.0583 0.981 k _ (! + 2 - n•ps - n'Ps Lj := 1 - 3 0.0583 0.981 M2 0.000 1.000 As := 0.0000 1.000 Fs•Incr• jj dr k= 0.0000 ,ii 1.000 = 0.0000 1.000 knr 0.0000 1.000 krr _ (n prr } + 2 •trpry - n•pry jrv1:= 1 - -- 0.0000 1.000 3 Asry :_ Mw 0.0000 1.000 0.0000 1.000 Fs-Incr- jwl-dw kw = 0.0000 jw1= 1.000 OLB T S B A 24.75 24.75 0 0 M = 0 kips-ft 0 0 0 0 0 Asw = 0.00 i,1 11116/2004 Masonry Shear Pier East Wall.mcd 5.5 5of5 0 kw = 0.0000 jw1= 1.000 OLB T S B A 24.75 24.75 0 0 M = 0 kips-ft 0 0 0 0 0 Asw = 0.00 i,1 11116/2004 Masonry Shear Pier East Wall.mcd 5.5 5of5 0 11/24/04 WED 09:57 FAX 801 298 1132 TSBA T S B A Masonry► Shear Pier Design !8C 2003 Allowable Stness Project: Subway - Re*wg Updated: 09 -15 -04 Locati xAD: 04088 North Wag 4 ->4 JRW T S B A InPW j InPP _ Wall Wt _ 60 psf _.._. .. . Compressitie Str 1500 psi ABowabie Stress of Steel 24000 psi Allowable Stress increase' 1.333 Modulus of Steel 29000 ksi Modulus of Masonry Factor 900 `fin {700 brick or 900 CMLq Length of Wall . 31 . It Meigld of Waa 18 It Thickness of wall 8 in Suggested based on pier I grout Equiv. Thick. of Wa11 4.9 in 4.9'. Shear Force 1 5.5 kips :Shear Force 1 Elev. 18 It Shear Force 2 0 kips Shear Force 2 Elev_ 13 It Additional Factored Moment 0 kip'ft : Additional Dead toad 1 Piers lit Length It Grout .............. Fixity . Equiv- t: r ft in =f p, elsd4 in 1 8 31 8 32 1 4.9 2.59 . 2 8 7 8 32 1 4.9 2.59 3 0 0 10 48 1 5.5 3.33 4 0 0 10 48 1 5.5 3.33 5 0 0 10 48 1 5.5 3.33 _ - 6 0 0 10 48 1 5.5 3.33 7 0 0 10 48 1 5.5 3.33 8 0 0 10 48 1 5.5 3.33 9 0 0 10 48 1 5.5 3.33 10 0 0 10 48 1 5.5 3,33 1 of 5 Z011 DLB 1111612004 Masonry Shear Pier North Wall.mcd 11/24/04 WED 09:57 FAX 801 298 1132 TSBA Wall Weight Compressive Str Allowable Stress of Steel Allowable Stress Increase Modulus of Steel Modulus of Masonry Length of Wall Height of Wan Thickness of Wall Equivelant Thkiness of VftV Shear Force 1 Shear Force 1 Eller Shear Force 2 Shear Force 2 Elear- Addition Factored Moment Addition Dead Land i:= L.10 H. = dpi 1 .8 L = Wi 2 -0 H= tt L = (_11 #3 Bar Altar = ? • in #4 Bar 1 - 31 #5 Bar n2 := rows(Abar) J == L. n2 n2 =3 It t = T. JRW 2of5 WWT := InpW -psf fin := InpWi psi Fs = InpW psi Incr:- Inpw Ey = InpW Em := €npW6 5n Wan L = Iupw, -It Wall := Iytw 2 wall t = IspW to Wail ap = InPW fin LOW] _ UpF -kips LaIF1Ht = bPF 8 LatF2 = InpF -IPs M Add::- InpFfkips -# 16 DL Add g-ldf WWT = 60psf fin = 1500 psi Fs = 24000 psi Is= = 1.333 Ey = 29000 ksi Em = 1350 ksi Walt — L = 31 A Wall aft = 182 wan t = 8 in wall eo = 4.9 its LNFl = 5.5 kips 1AWI ft = 108 LatF2 = 0 kips Lift = 0 0 M Add = 0 kips -fl DL —Add = € klf t . ! 3 -ia Fx�. - 'WPi,5 — i, 6 ns W Pier L := V L W Pier L= 38 & in Fs = eqt = M n:= sows(If) n= 10 l3LB 11116/2004 Masonry Shear Pier North Wall.mcd 11/24/04 WED 09:58 FAX 801 298 1132 TSBA LatF := LatFl + LatF2 ' Ag := Wall - L- wall - 00 T S B A 44 4 JRW 3of5 LatF = 6 kips Ag = 1823 m ' X := i H d = . x — 4-in d := if( x < 0- in,0- in, di H L _ :_ LatFl •LatFIHt + LatF2•LatF2Ht ' � L M ratio = M ratio = 18 f} s I dF 1 + hatF2 de0 ; i# F z = 1 �(� z) -1 4.(H X�3 + 3•H 1, ],(Oq'x)— 1. [(" x) + 3-H L in ' b d = i Rigid e deg — 1 = g x � � x = 0 0 ,� � � SumRigid : (FRigid) ' SumRigid = 76.012 ft I Rigid PercentFurce 'x -1011 ' x SumRigid Rigid = V F M V := LatF- PercentForc X ` -0.01 M := — \- ' z MVd := x F x Vx -dx PercentForce = V = ! • 5.81 2 0.52 ' 3 0 4 0 5. 0 6, 0 7. 0 a 0 ' 9 0 10 0 kips m ' I�nreir — d WaN Altombles Fr_�m = ifMVd < 1, 3 (4 - MVd.) tm psi, tna psil (2 - 8 2 - 22) ' Fv u max " < 1'(80 - 4 - r - x := i � x ,� S MVd -psq ' Fv - u X = (rf(Fr u X> Fv - ur max or ma x,Fv urx)) -Tncr Reinforced Wail Allmables Fv r = fMVd__ < 1, � -(4 — MVd fm•psi,1,5 fin -psi 2 -24 & 2 -25) x ' Fv r mm := fMVd < 1,(120 — 45-MVd •psi,75 -psi] Fv rX = h6v�rX> Fv r u x,Fvv r max�,Pv z))- 1nc v ` i DLB Lps-ft MVd = 11/16/2004 Masonry Shear Pier North Wall.mcd 11/24/04 WED 09:58 FAX 801 298 1132 TSBA Actual Shear in Wall :– V x e4.1t,_-d Unity Equations T S B A ->�-> JRW 4 of 5 Shear Reinforcement Sp. cina in Wall Abar.-Fs-d -Mcr 3 . := — i x X•j V + .01-1bf x F%7 - ur x Fv f Rhow Su m m a ry Un Wi 0.0 psi fi- = . — 5 0.0 Psi 6 0.0 71 0.0 1 Bendina Mr x i f Fx x = 2,0-kips-ft,(DI.,_Add + WWT-Hj-(LI) 2 . 21 &V x q – Mr x > 0-kips-fi,M x – Mr x O.kips-ft) #3 Bar #4 Bar #5 Bar 71 64.3 ' 7� 2. 46.7 .2 3 68.8 3 4 68.8 1 4 F " - -� uf 6 8.8 psi F = 1 ,5 ' 6 68.8 6 .7 68.8 T ' M 8 68 8 8 9 68.8 9 io 68,8 OT. 7 ss 0 1 2 0 0 1 3 0:: 4 5 6 7 .:,.&00 8 0.0p 9 ::io.00 10, Ub Un Wi 0.0 psi fi- = . — 5 0.0 Psi 6 0.0 71 0.0 1 Bendina Mr x i f Fx x = 2,0-kips-ft,(DI.,_Add + WWT-Hj-(LI) 2 . 21 &V x q – Mr x > 0-kips-fi,M x – Mr x O.kips-ft) #3 Bar #4 Bar #5 Bar Righting Moment from OL. Do not use when f-f condition. Mwr:= (DL Add + WWT-waiLHt).(walLL) 2 _ . 2 Mwr = 999.44 kips•ft Assume initial j = .9 and solve by Aeration Er M2 As x n: = %x := .9 As .- Ju EM Fs-lwr-.d,-d x "' - t -d . x x Mw= if(IAW + M Add – Mwr> O•kips-ft,Law-m + M Add– Mwr,O-kjps•fty = o.okip DLB I 11116120041 Masonry Shear Pier North Wall.mcd 1?1014 3 7� 7234:: t 622 Ilk 1753: 0 0 M 0 :cy 0, ► 0 0 OT. 0 1 0 0 1 01 0:: Righting Moment from OL. Do not use when f-f condition. Mwr:= (DL Add + WWT-waiLHt).(walLL) 2 _ . 2 Mwr = 999.44 kips•ft Assume initial j = .9 and solve by Aeration Er M2 As x n: = %x := .9 As .- Ju EM Fs-lwr-.d,-d x "' - t -d . x x Mw= if(IAW + M Add – Mwr> O•kips-ft,Law-m + M Add– Mwr,O-kjps•fty = o.okip DLB I 11116120041 Masonry Shear Pier North Wall.mcd 1?1014 11/24/04 WED 09:59 FAX 801 298 1132 T S B A TSBA N 711.14 36.26 0 0 Mr = 0 kips-ft 0 0 a 0 0 dw := Wall - L - 6• in jwl : .9 Mw As„' :_ Fs -Incr- jwt•dw _ As„- P «' Wall t•d v 0 0 0 5of5 dw = 30.5 ft Asw = 0 in 0.00 0.00 0.00 0.00 As = 0.00 In 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 As = 0.00 In 2 0.00 0.00 0.00 0.00 0.00 Asw = 0.00 in Calculate k based upon As and recalculate As. 0 -»4 JRW M2 = 0 kips•tt 0.0000 0 1.000 0 3 0.0000 0 1.000 0 As 0.0000 0 1.000 As := p ' 0.90 0.0000 1.000 0.90 Fs- Inor• d ` t k = 0.0000 0.90 1.000 k := n w 2 + 2•n- .v - n „ P � p p 0.90 0.0000 0.0000 T 1.000 0.90 � 0.90 1.000 Asw 0.90 0.0000 1.000 0.90 Fs- Incr•jwl•dw Wall t -div 0.0000 0.90 1.000 kw = 0.0000 Calculate new k based upon As and recalculate As once more. jwl = 1.000 0.90 r( a-px }2 + 2 n n• P� - Ps k � : 2 (n p) + 2•n p� - n p� ; U 1 ' 0.0000 1.000 3 0.0000 1.000 M2 As 0.0000 1.000 As := p ' - 0.0000 1.000 Fs- Inor• d ` t k = 0.0000 u = 1.000 k := n w 2 + 2•n- .v - n „ P � p p jw1:= 1 -- kr, 0.0000 0.0000 1.000 1.000 � 0.0000 1.000 Asw M„ As := p „- := 0.0000 1.000 Fs- Incr•jwl•dw Wall t -div 0.0000 1.000 kw = 0.0000 Calculate new k based upon As and recalculate As once more. jwl = 1.000 k :_ r( a-px }2 + 2 n n• P� - Ps i JJ := 1 - 0.0000 1.000 ; 0.0000 1.000 M2 0.0000 1.000 As = ' 0.0000 1.000 Fs•Incr - jj i d k= 0.0000 = 1.000 J.I 0.0000 1.000 k,v (irpwy k-Av 0.0000 1.000 :_ + 2 - - p�v - n•p,v j,v1:= 1 - - 0.0000 1.000 3 M,v 0.0000 1.000 0.0000 1.000 Fs•Incr• j%vl-d„ kw = 0.0000 jw1= 1.000 Dl_B 40.379 3.621 0 0 M = 0 kips-ft 0 0 0 0 a 11/16/2004 Masonry Shear Pier North Wall.mcd [a 015 11/24/04 WED 10:00 FAX 801 298 1132 TSBA T S B A Masonry Wall Out of Plane Design IBC 2000 Allowable Suess Project Sum - R>g Updated: 04 -14 -03 LocationAD: 04088 Typical 'Wall input Check Compressive Sir * f n = I500 -psi Allowable Stress of Steel * F := 24(M.psi Allowable Stress Increase * Incr = 1333 Modulus of Steel * E% 2900() -ksi Modules of Masonry Em := 9461 700'rm brick or 90EM(m CMU Height of (Mall * Ht := 18 -t3 Thickness of Wan * 1 := 7_625 -in Equiyelant Thickness of Wail` ej( := 4.9 -i Reber Spacing * b.-- 32 -in Radius of Gyration ` r:= 2.59 -in Flange Thickness ' tt:= 1.25 -in d Distance to Steel ; d:= 3.8 -in Area of Steel ' As.— .3 t -in Grouted Solid (1 )=Yes = 0 Vertical Load ; P = ( l00o)-pif Vertical Eccentricity * = t -in Out of Plane Load ABawable Stresses Ht -- 83.4 r Ht 1 7t)-r ) 2 ]_I ncr Fa < 951,- fine- 1 i44 r 4 ( (2 -12 b 2 - -13) r Fb = r - fm -Lncr (2.3.32.2) 3 Ft.= Fs -hwr ->--> 1 of 3 T S B A Em = 1350 ksi Working Stress Fa = 322 psi Fb = 667 psi Fs = 32 ksi DLB 11116/2004 Masonry W811 Out of Piane IBC 04-14-03 11/24/04 WED 10:00 FAX 801 298 1132 TSBA Actual Stresses fa := P eqt T. JRW 2 of 3 to = 17.0 psi n := E} Calculations for fb & fs are base on Amrhein's n = 21.48 Em Reinforced Masonry Engineering Handbook for ' As both rectagular sections and T- sections. P b•d p = 0.00255 ' _ j . ( I f 2 2 np + 2 d� kl := . [ �wp� + 2 -irp - npld < tf, {mp } + 2 n p - n p, kl = 0.281 If n . p + d J k.l•d= 1.07 in k.= i&mt = JT(wpy + 2 -n 7p - nrpj,klj 3 1 - 1 2 M S -b - lit + P•b -e 8 ' tbl :_ ' k d < n, M•2 hl 2 If k 1•b -d2 �1 + 1. k d � �•b -tf -�d - 2 / M -2 tr := grout = t , ,1b ! k- j -b -d f51 := i 1. d < If, M M P'j•b p-b -d•(d - If 2 f 9r,out = 1, M p -j•b•d Unit Checks fs #b f — +-- =0.617 — =0.647 Fa Fb Fs k = 0.281 k- d = 1.07 in j = 0.906 M = 1.84kips•8 M = 22.1 kips -in 1b1 = 376.1 psi #b = 376.1 psi fs! = 20.7 ksi fs = 20.7 ksi IM 017 DLB 11/16/2004 Masonry Wall Out of Plane IBC 04- 14- 03.mcd 11/24/04 WED 10:00 FAX 801 298 1132 TSBA T S B A 444 JRW 'balr:_ x Consider Axial Load on Wall for the St"I A 0-0-in Y2 2t) in - Idelta *-- 10,0-kips-ft mdWe Ideltal > Obl-kipsi. fcb P-b x b -, T - x vi - n -As ' 2l' Y C b-xx- fcb — 2 T wfcb• (2 .•As P2 +— C - T VX b delta +- C-(d - m 2 + 2-xx xi + 2-x-, xx,2 +- it(delta > 0-kips-in, . 3 3 xx xi — itj(deita > x2 — iff(delta > 0 Q, xx] xx — xx2 ' ICY xx := xbar P-b t 2 xx - W(� -As xx 2 XX am fcb = ksi C = a kips T = a Lips P2 = a Of M2 = a lips -in fs = a ksi xbIr = a in •S Fs 3 of 3 Q018 11/16f2004 Masonry Wall Out of Plane IBC 04-14-03.mcd feb 2 ( - X-- T:= wfcb• As XX P2 := C T 1 M2:= C-(d - m T As DLB XX am fcb = ksi C = a kips T = a Lips P2 = a Of M2 = a lips -in fs = a ksi xbIr = a in •S Fs 3 of 3 Q018 11/16f2004 Masonry Wall Out of Plane IBC 04-14-03.mcd 11/24/04 WED 10:00 FAX 801 298 1132 TSBA T S B A 44 4 JRW Masonry Wall Out of Plane Design IBC 2000 Allowable Stress Project: Subway - Rexburg Updated: 04 -14 -03 Location/ID: 04088 4' trib - 2 cells * input '** Check Compressive Str * fin .= 1500 -psi Allowable Stress of Steel * FS.— 24O00-psi ' Allowable Stress Increase * hwr := 1.333 Modulus of Steel * Ev := 29000•ksi ' Modulus of Masonry Fm := 9110 - fist. 700 brick or 9W*ft CMU Height of Wall * Ht := 18.8 ' Thickness of Wall * t:= 7.623 -in Equivelant Thickness of Wall* ftp := 4.9 -in Rebar Spacing * b := 8 -i, Radius of Gyration * r:= 2.19 -in Flange Thickness * tf 1.25-in d Distance to Steel * d;= 3.8 - 1 0 U Area of Steel * As 3 l - in 2 1 Grouted Solid (1) =Yes * grout:= 0 ' Vertical Load * p : = 42000) -p1f Vertical Eccentricity * g e e := Mn ' Out of Plane Load ;- 30-p Allowable St ymes Ht -- = 98.6 r ' 2 Fa := ' Ht < 99, fim 1 — I r) 4 �.( r) .tncr (2 -12 $ 2 -13) Ht ' Fb :_ 1 - lm -Incr 2.3.3.2.2 3 { ) Fs := Fs - Incr � DLB T S B A Em = 1350 ksi Working Stress Fa = 252 psi Fb = 667 psi Fs = 32 ksi 1 of 3 11 /16/2004Masonry Wail Out of Plate IBC 0414-03 4ft.mcd Z019 11/24/04 WED 10:01 FAX 801 298 1132 TSBA Actual Stresses to P eqt 1 T S B A — -) JRW 2of3 fa = 34.0 psi Calculations for fb & fs are base on Amrhein`s n = 21.48 Reinforced Masonry Engineering Handbook for ' As both rectagular sections and T- sections. P == bd p = 0.01020 ' 2 k1 := it LYlnP� + 2'n'P - np], < tf, (n + 2 - - - n•p, k1 - 0.498 ' tf + d j kl•d = 1.89in k:= dff out 1 ,[ ln•P1 + 2•n•p - n•p],kl] J ; M S -b• Ht + P•b•e 8 ' ib 1 f k -d < tf, M - 2 M•2 l i.b-d �1 + k -d d t o l b-tf-rd - 2 f K = 0.498 k•d = 1.89in j = 0.834 M = 0.92kips•ft M = 11.1 kips-in fbi = 519.6psi ib = 519.6 psi 1s1= 11.2ksi fs = 11.2 ksi 11/16/2004Aasonry Wall Out of Plane IBC 04 -14-03 4ft.mcd Q020 kb := it grout = 1, M .2 , ffi 1 k• • b j -d ' fS 1 := k d< tf, M M P• j•b-d p-b-d -rd – �J 2 M f9rout = 1, , £s 1 Z p•j•b•d M AIN Checks ' fa fa ib & =0.915 fs A - 0.351 Fa Fb Fs DLB K = 0.498 k•d = 1.89in j = 0.834 M = 0.92kips•ft M = 11.1 kips-in fbi = 519.6psi ib = 519.6 psi 1s1= 11.2ksi fs = 11.2 ksi 11/16/2004Aasonry Wall Out of Plane IBC 04 -14-03 4ft.mcd Q020 11/24/04 WED 10:01 FAX 801 298 1132 TSBA I T S B A JRW 3 of 3 �' Consider Axial Load XX*—,5.ift on wall for the steel xl <-- 0,0-in stress. x2 <-- 20•in delta +- 100-kips-ft -while Ideltal > 0-01-k fcb P•b -As feb C b-mv- 2 ' t T 4-- n-fcb- 2 -As XX P2 , C - T b delta <-• C - d *_ m ( x-,2 +- it delta > 0•kaps-in, x2 + 2•xv xl + 2•-vc 3 3 xl — itl(delta > 0-kips-jn),x-.,,,xlj x2 — if[(delta> 0•k xN +- L� ' xs , Lx := xbar fcb := P b t xx -As 2 xx XX = I in fcb = m ksi C = i kips T = @kips P2 = e Of M2 = a kips-in fs = a ksi xbar = v in A Fs 11116/2004Masonry Wall Out of Plane IBC 0414-03 4ft.mcd UO21 fcb C 2 t (T - X-1)•As T n- fcb- xx C T P2 b M2 C-(d X - m is := T �i As DLB XX = I in fcb = m ksi C = i kips T = @kips P2 = e Of M2 = a kips-in fs = a ksi xbar = v in A Fs 11116/2004Masonry Wall Out of Plane IBC 0414-03 4ft.mcd UO21 11/24/04 WED 10:01 FAX 801 298 1132 TSBA T S B A 444 JRW Masonry Wall Out of Plane Design IBC 2000 Alterable Stress Project Subway - Rexburg Updated: 04 -14 -03 LocationRD: 04088 8' trio - 4 cells ' input *** Check ' Compressive Str * fm := 1500 -psi Allowable Stress of Steel * Fs := 24000-psi Allowable Stress Increase * Incr := 1.333 Modulus of Steel * Ec = 25000 -ksi Modulus of Masonry Em ;= 900-fm ' 700'kn Drk:k or 901 b CMU Height of Wail * HI := I8 -lot ' Thickness of Wall * I := 7.625 -in Equiveiant Thickness of Wall* eqt := 4.9 -in ' Rebar Spacing * b:= 8 -in Radius of Gyration * r:- 2.19-in Flange Thickness • If := 1.25 -in ' d Distance to Steel * d:= 3.8 -.in Area of Steel * As— _31-M Grouted Solid (1 )--Yes *grout =lot ' Vertical Load * P:= f 20001.pi Vertical Eccentricity *= I -; Out of Plane Load * = 30-psf Allowable Shasses ' Ht — = 98.6 r 2 2 99, 1 _fin I - 1HU -r) Imo-. 70-r) IMF (2 -12 & 2 -13) Ht ' Fb = i 3 - fin -1wr (2.3.3.2.2) ' Fs :;= Fs -Incr DLB T I S. B-A Em = 1350 ksi Working Stress Fa = 252 psi Fb = 667 psi Fs = 32 ksi 1 of 3 19f1s12004Uasanry Walf Out of Plane IBC 04 -14.03 8ft.mod 10022 11/24/04 WED 10:02 FAX 801 298 1132 TSBA Ac tual Stems fa .= P eqt T S B A ->4--> JRW 2 of 3 fa = 34.Opsi ' n := Ev Calculations for fb & fs are base on Amrhein's — � n - 21.48 Reinforced Masonry Engineering Handbook for ' As both rectagular sections and T- sections. P := bd p = 0.01020 ' n p + ' 1 .( - 5 � 2 l Pf p — n-p -d < tf, rr 2•n kl = 0.498 tf d j kl-d= 1.89 in k:= it[raut= I,{ �np� + 2 -n-p - np],kl] j: = k 1 —; 2 M ,S-b-- + P -b•e 8 fb i 1. d< t, M -2 M -2 k• j - �1 f k k - d tt� b•tf - �d — 2 K = 0.498 k -d = 1.89 in j = 0.834 M = 0- 92kips•ft M = 11.1 kips-in fbl = 519.6 psi lb = 519.6 psi 61 = 11.2ksi fs = 11.2 ksi 11 /16 /2004Aasonry Wall Out of Plane IBC 0414-03 8ft.mcd 121 023 ' fb = groat = 1, M-2 k- , lb L 3•b•d ' fs 1 : k -d < tf, M , M p- j -b -d tf p- b -d -(d — 2 M fs = i 9 rout= 1, ,f'sl p- j•b -d Uttlty Checks ' fa fb fa fs +fb =0.915 =0.351 Fa Fb Fs DLB K = 0.498 k -d = 1.89 in j = 0.834 M = 0- 92kips•ft M = 11.1 kips-in fbl = 519.6 psi lb = 519.6 psi 61 = 11.2ksi fs = 11.2 ksi 11 /16 /2004Aasonry Wall Out of Plane IBC 0414-03 8ft.mcd 121 023 11/11/14 WED 10:12 FAX 801 218 1132 TSBA T S B A 444 JRW IIIIIIIII R024 3 of 3 Consider Axial Load x-x +- -- "in on wall for the steel \I 0-0-in Strom. x2 20-in delta +• 100•Ups-ft while Ideltal > 0.01-kips•in fcb E P-b XX b 2 _Ivc - n — -As 2 XX feb C b•x 2 ( 2 - x-x + T n•fcb- As xt P2 +-- C T b delta i C. M ( 3 xx2 elta > 0- kips -in, x2 + 2 -v.c xI + 2-oc 3 3 ll M dj(delta > 0-kips-in).xx,xIj x2 itl(delta > 0-kips-i,), x2, vKj xx xx2 XX x. xbar fcb:= P-b b. t xx - -As 2 _vc XX= am &b = i ksi C = a kips T = a kips P2 = a Of M2 = a kips-in fs = a ksi xbar = a M' fs Fs 111I6/2004Masonry Wall Out of Plane IBC 041403 8ft.mcd C feb 2 C T t - XX ) T:= n-fcb--.A.-q C T P2:= b M2 := C•(d - M 3 ) �' is As DLB XX= am &b = i ksi C = a kips T = a kips P2 = a Of M2 = a kips-in fs = a ksi xbar = a M' fs Fs 111I6/2004Masonry Wall Out of Plane IBC 041403 8ft.mcd