Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
MULT DOCS - 04-00140 - Wingers Restaurant - Site Plan
p.2 MILLCREEK ENGINEERING COMPANY 2469 E 7000 S SLC, UTAH 84121 Ph: (801) 944 -0777 Fax: (801) 944-0660 September 30, 2004 Mr. Dan Westwood TND Construction P.O. Box 2043 St. George, UT 84771 Via Fax: (435) 628 -0903 Ref: Wingers' Restaurant — Rexburg, Idaho Dear Dan, As per your request, I have changed the design for the bathroom exhaust fans EF -1 and EF -2 to vent through a single 10" duct and vent through the roof. Each bathroom fan must be provided with a backdraft damper at the fan outlet. Provide 6" ducts from each fan to the vertical 10" duct through the roof. Provide the roof termination with rain cap and rodent screen at minimum 12" above maximum snow depth. Duct sizes are for round and may be converted to square or rectangle as needed based on SMACNA Criteria. Please feel free to contact me at (801) 541 -4346 if you have any questions. Sincerely, Millcreek w ineering Company Rick Hoggan, P.E. NAC r� 4�GISTER�o 10888 OF10�` P� RD .� STRUCTURAL ENGINEERING THAT'S RELIABLE STRUCTURAL CALCULATIONS forthe WINGERS RESTAURANT PROTO -TYPE 3600 Teton River Village Rexburg, IQ FEBRUARY 27, 2004 J. 4 ' 2 `G for WINGERS USA INC. ., J.M. WILLIAMS and Associates, Inc. 2875 South Decker Lake Drive - Suite 275 - Salt Lake City, Utah 84119 Phone: 801.575.6455 - Fax: 801.575.6456 - Web Page: jmwa.com INDEX Structural Analysis 1.0 STRUCTURAL DESIGN BASIS 1.1 Project Information ....................... ............................... ...........................Page 3 1.2 Design Criteria .............................. ............................... ...........................Page _�L_ 1.3 Scope of Services Rendered ....... ............................... ...........................Page _1, 2.0 STRUCTURAL DESIGN LOADS 2.1 Design Dead Loads (D) ............... ............................... ...........................Page 5 2.2 Design Live Loads ( L) .................. ............................... ...........................Page Ib 2.3 Design Snow Loads (S) ............... ............................... ...........................Page mil' 2.4 Design Rain Loads ( R) ................. ............................... ...........................Page _ I.2_ 2.5 Design Wind Loads ( W) ................ ............................... ..........................Pag 2.6 Design Seismic Loads ( E) ............ ............................... ...........................Page �b 2.7 Design Loads (all other) ............... ............................... ...........................Page 3.0 GRAVITY ANALYSIS 3.0 Joists, Girders, Headers, Posts, etc. (all stories) ......... ...........................Page aq 4.0 LATERAL ANALYSIS 4.0 Shear Walls, Diaphragms, etc. (all stories) ................. ...........................Page L6__ 5.0 FOUNDATION ANALYSIS 5.0 Foundation Walls, Footings, etc ... ............................... ...........................Page _L�, Prepared by: .......................................................................... RLH, on: February 18, 2004 1.0 STRUCTURAL DESIGN BASIS Prepared by: .......................................................................... RLH, on: February 18, 2004 1.1 Project Information Project: WINGERS (3600 S.F. PROTOTYPE) JMWA Job #: 04037 Location: Teton River Village Rexburg, ID Elevation: (not known) Owner: Wingers Contact: (not known) Architect: Horn & Partners Building Official: 284 W. 400 N. Contact: SLC, UT 84103 Contact: Rob Merrick (801) 933 -4676 Project Manager: (not known) Contact: (not known) Building Official: Rexburg City Contact: Val Christensen or John (208) 359 -3020 ex. 324 or ex. 314 Scope: Structural Analysis & Design of Restaurant. Structural Plans for Restaurant. Structural Specification (review only). Referenced Documents Geotechnical Report: (none) Prepared by: .......................................................................... RLH, on: February 27, 2004 W 1.2 Design Criteria Design Code: 2000 International Building Code (IBC '00) Loads: Code: Chapter 16 Standard: ASCE 7 -98 References: Section 2.0 (Structural Calculations) S1.01 (Structural Plans) Concrete Design: Code: Chapter 19 Standard: ACI 318 -99 Analysis Method: LRFD Concrete: ASTM C150, Type I or Type II f'c = 2,500 psi (used for design) Reinforcing: ASTM A615, grade 60 (deformed) ASTM A615M, grade 40 (field bent) ASTM A185 (welded wire fabric) References: S1.01 (Structural Plans) Div. 5 (Project Specification) Steel Design: Code: Standard: Analysis Method: Structural: Columns (HSS): Columns (pipe): Plate: Bolts: Welds: References: Wood Design: Code: Standard: Analysis Method: Dimens. / Timber: Engineered: Chapter 22 AISC ASD '89 ASD ASTM A992, grade 50 (fy = 50 ksi) ASTM A500, grade B (fy = 46 ksi) ASTM A53, Type E or S (fy = 36 ksi) ASTM A36 (fy = 36 ksi) ASTM A325 -N (steel to steel) ASTM A307 (embedded in concrete) E70xx (comply with AWS) E7018 (seismic components, as noted) S1.01 (Structural Plans) Div. 5 (Specification) Chapter 23 NDS '97 (& Supplement) ASD Douglas Fir -larch #2 (beams) Douglas Fir -larch #1 (posts) Redwood or pressure treated (mud -sill) 24F -V4 (glu -lam, single span) 24F -V8 (glu -lam, continuous spans) 1.9 E (LVL) 2.0 E (PSL) 1.5 E (LSL) Prepared by: .......................................................................... RLH, on: February 18, 2004 . [ . r I joists (see plans) Open -web joists (see plans) Connections: Simpson References: S1.02 (Structural Plans) Div. 6 (Specification) Foundation Design: Code: Chapter 18 Bearing Pressure: qa = 2,000 psf (allowable, assumed) Back Fill Pressure: E.F.P = 35 pcf (assumed) Structural Fill: Native Soils (or see geotechnical report) Frost Depth: 36 inches References: Section 5.0 (Structural Calcs.) S2.01 (Structural Plans) Seismic Design: Code: Chapter 16 Standard: ASCE 7 -02 Analysis Method: Equivalent Lateral Force Procedure Lateral System: Wood Diaphragm & Wood Shear Walls Response Mod.: R = 5 Soil Site Class: D Use Group: I Importance: le = 1.0 Design Category: D References: Section 2.0 & 4.0 (Structural Calcs.) Wind Design: Code: Chapter 16 Standard: ASCE 7 -98, Section 6.0 Analysis Method: Simplified Procedure (Method 1) - Components: Simplified Procedure (Method 1) Lateral System: Wood Diaphragm & Wood Shear Walls Wind Speed: 90 mph (3 sec. gust) Exposure: B Importance: Iw = 1.0 References: Section 2.0 & 4.0 (Structural Calcs.) S Prepared by: .......................................................................... RLH, on: February 18, 2004 1.3 Scope of Services Rendered Not provided in this calculation packet. Please see Structural Plans, page S1.01. LEI Prepared by: .......................................................................... RLH, on: February 18, 2004 4 . 2.1 Desiqn Dead Loads (D) Location: Roof Type: Wood Components (ASCE 7 -02) Framing (open -web trusses): fr := 3.00psf (calculated) Sheathing (5/8" plywood): sh := 2.00psf (Tab. C3 -1) Roofing (asphalt shingles): ro := 3.00psf (Tab. C3 -1) Insulation: in := 2.50psf (Tab. C3 -1) Ceiling: ce := 2.00psf (Tab. C3 -1) Sprinkler: sp := 1.00psf (calculated) Mechanical / Electrical: me := 3.50psf (Tab. C3 -1) Miscellaneous: mi := 3.00psf Total: D:= fr + sh + ro + in + ce + sp + me + mi D'`= 20.00psf roll D:\ MyFiles \Projects\Commercial\2004 \Wingers 3600\21 D - roof - wood.mcd by: RLH, on: 2/18/2004, Page 1 of 1 2.1 Design Dead Loads (D) Location: Exterior Walls Type: Wood Components (ASCE 7-02) Framing (studs @ 16 "o.c.): fr:= 1.60psf (calculated) Sheathing: sh := 1.50psf (Tab. C3 -1) Finish (gypboard): gb := 3.13psf (Tab. C3 -1) Barriers: ba := 1.00psf (Tab. C3 -1) Insulation: in := 1.50psf (Tab. C3 -1) Veneer (stucco): ve := 5.00psf (Tab. C3 -1) Miscellaneous: mi := 1.27psf Total: D:= fr + sh + gb + ba + in + ve + mi D =15.00 sf D:\MyFiles \Projects \Commercial\2004 \Wingers 3600\21 D -walls -wood. mcd by: RLH, on: 2/18/2004, Page 1 of 1 t r h IG� 2.2 Design Live Loads (L) Location: Roof Type: Commercial Live Loads QBC '03 Construction: L := 20.Opsf (uniform) (Tab. 1607.1) Snow (if greater): = S, (see Section 2.3) Rain (if greater): = R, (see Section 2.4) D: \MyFiles\ Projects \Commercial\2004 \Wingers 3600\22 L - commercial - office.mcd by: RLH, on: 2/18/2004, Page 1 of 1 . e 1 . 2.3 Design Snow Loads (S) Flat Roof Snow Load Assumptions: Exposure Factor: Thermal Factor: Importance Factor: Ground Snow Load: Flat Roof Snow Load: Check Min. Allowable: Flat Roof Snow Load: Roof slope less than or equal to 5 deg. C := 1.0 C t := 1.0 I := 1.0 p := 50.Opsf p 0.7•C " Pmin if(p < 20psf, I I Pf if (Pf < Pmin , Pmin , Pf) Pf = 35.0 psf Slowed Roof Snow Load Assumptions: Hip & gable roofs (non - curved). Acts on the horizontal projection of the roof surface. Slope Factor: C := 1.0 Ice Dams on Eaves: Sloped Roof Snow Load: Ps C s - Pf Pe 2 • 0 'Pf P = 35.0 psf Pe =.70.0,psf (ASCE 7 -98) (Tab. 7 -2) (Tab. 7 -3) (Tab. 7-4) (per Build. Dept.) (Eq. 7 -1) (Sec. 7.3.4) (ASCE 7 -98) (Fig. 7 -2) (Eq. 7 -2) / (Sec. 7.4.5) (ASCE 7 -98) Unbalanced Snow Load Leeward Side: Windward Side: P:= 10.5 if lw <_ 1.0 0.33 +0.167•lw if 1.0 <lw :54.0 1.0 if Iw ? 4.0 W <or =20ft W >20ft 1.5•ps 1.2.1.0+ P)•p Pub1 •= C Pub2 C e e Pub1 = 52.51?sf (none) Pub2 = 554{'sf Pub3:= 0.3•ps Pub3 = 10.5psf (Sec. 7.6.1) D:\MyFiles \Projects \Commercial\2004 \Wingers 3600\23 S - IBC'00.mcd by: RLH, on: 2/20/2004, Page 1 of 3 . C . . Drifts on Lower Roofs / Against Parapets Schematic: (Figure 7 -8) Assumptions: (hc / hb) > 0.2 (otherwise, drift need not be applied) (ASCE 7 -98) Upper Roof Length (25 ft min): l u1 := 25-ft Snow Density: Lower Roof Length: I u2 := 60-ft 1 y := 0.13• ft •p + 14•pcf (Eq. 7-4) Roof Height Difference: h 4-ft Ymax := 30pcf (Sec. 7.7.1) Height of Balanced Snow: P f h := Y = if (Y < Ymax , Y Ymax) Y Clear Height: h := h - h Y = 20.5 pcf hC = 2.3 ft h � Check: h := if � <_ 0.2, Oft, h (Sec. 7.7. 1) h b h =1.7ft For Leeward Drift: For Windward Drift: (Fig. 7 -9) Drift Height: 3 4 1 ( 3 4 h = 0.43• l u1 pg + 10 - 1.5 ft h 3 l . 0.43 u2 pg + 10 -1.5 ft dl • h dw := � ft psf ) 4 � ft psf Check: h dl := hdl if hdl < he h dw := hdw if hdw:- he h if h > h h if hd > he (Sec. 7.7.1) hdl = 2.0 ft h 2.3 ft Drift Width: w := 4.0 • h if h <- h w := 4.0 • h if h <_ h (Sec. 7.7.1) h 2 2 h 4.0 • hll if h > h c 4.0 • h if h > h c Check: w if(wl >- 8.0•h w if(wd >- 8.0•h (Sec. 7.7. 1) w = 8:O ft wd = 9.2 ft Drift Intensity: Pdl := Y• Pdw Y•hdw (Sec. 7.7.1) Pdl = 41.0 psf pdw = 47.0 psf /17 D:\MyFiies\ Projects \Commercial\2004 \Wingers 3600\23 S - IBC '00.mcd by: RLH, on: 2/20/2004, Page 2 of 3 Iu2 41 L Sliding Snow (ASCE 7 -98) Assumptions: Req'd for slippery upper roofs w/ slopes greater than 1/4" in 12" Req'd for non - slippery upper roofs w/ slopes greater than 2" in 12" Eave to Ridge Distance: W = 19.0 ft (horizontal, upper roof) Sliding Load: p := 0.4•pf•W (Sec. 7.9) (per unit length of eave) psi = 266.0 -plf Distribute: Distributed uniformly on the lower roof over a distance of 15 ft. from the upper roof eave, or reduce proportionally. Rain -on -snow Surcharge Load (ASCE 7 -98) Assumptions: 5.0 psf, applied when pf < 20 psf & slope < 1/2" in 12" Ponding Instability (ASCE 7 -98) Assumptions: For slopes < 1/4" in 12 ", roof deflections caused by full snow loads shall be investigated when deermining the likelihood of ponding instability from rain -on -snow or from snow meltwater. Existing Roofs (ASCE 7 -98) Assumptions: Consider when higher roof is consturcted within 20 ft. /3 D:WIyFiles \Projects \Commercial\2004 \Wingers 3600\23 S - IBC'00.mcd by: RLH, on: 2/20/2004, Page 3 of 3 ) k 1 # / J M WILLIAMS and Associates Lateral Analysis Designed By: RLH Percent of snow to include in seismic calculations for roof dead load: Elevation (in 1000 feet) A:= 5.0 Snow Load: P:= 35•psf Snow to include: Ws :_ [ 0.20 + 0.025•(A - 5)) P Ws = 7psf , 0 1 . 2.4 Design Rain Loads (R) Components Assumption: Depth of water to secondary inlet (undeflected roof): Add'tl depth of water above secondary inlet: Rain Load: Primary roof drainage system blocked. d := 0.5ft d : ='.Oft R:= 5.2•pcf•(d + d R' == 7.8 psf (ASCE 7 -981 (Sec. 8.3) (Sec. 8.1) (Sec. 8.1) (Eqn. 8 -1) 15 D:\ MyFiles \Projects\Commercial\2004 \Wingers 3600\24 R - IBC'00.mcd by: RLH, on: 2/20/2004, Page 1 of 1 . 4 1 . 2.5 Design Wind Loads (W) Building Geometry h:= 12ft Number of Stories (max.= 4): N:= 1 Length of Eave Overhang: Length* Story 4: 1 0 -ft Story 3: 1 0 -ft Story 2: 1 := 0 -ft Story 1: 1 60 -ft Parapet: Mean Roof Height: h:= 12ft Least Horizontal Dimension: I min := 60ft on Length of Eave Overhang: 1 := 0 -ft End Zones: a := 0.1 •Imin a := 0.4-h Check Minimums: a:= if(min(a) <0.04 -Imin, 0.04- Imin,min(a)) a:= if(min(a) < 3ft, 3ft, min(a)) a = 4i8 ft Design Criteria & Coefficients IB( C '00) >p Assumptions: Main Wind Force - resisting System must meet all (Sec. 1609.6. 1) criteria per Section 1609.6.1. R Reference:D: \MyFiles \Standards \Calculations\2.0 Loads \W \References - Wind \Figure 1609(4) (adjust) - IBC '00.mcd Basic Wind Speed: V:= 90 -mph (3 -sec. gust) (Fig. 1609) Importance Factor: I := 1.0 (Tab. 1604.5) Exposure Category: B:= 1 C:= 2 D:= 3 (Sec. 1609.4) exp := B Adjustment Coefficient: X Xh ex (Tab. 1609.6.2.1(4)) (exposure, mean roof height) mr> p X =1.00 *Length = parallel to ridge line "Width = perpendicular to ridge line Width* Story Height Roof Slope: d 0 -ft hs 4 := 0 -ft Y:= 0.25 d 0-ft hs3 X:= 12 := 0 -ft (Y) atan — d 0 -ft h 0 -ft 6 deg d 60-ft h := 12 -ft 1 8 = 1.2 * h := 4 -ft s� N +1) D:\MyFiles\ Projects \Commercial\2004 \Wingers 3600\25 V (wind) - IBC '00.mcd by: RLH, on: 2/20/2004, Page 1 of 4 ,. /7 Design Wind Pressures IBC '00 Assumptions: (Sec. 1609.6.2.1) ❑o Reference: D: \MyFiles \Standards \Calculations\2.0 Loads \W \References - Wind \Figure 1609(1) (90 mph) - IBC '00.mc Wind Pressures: P ? ' l w'Ps30 Horizontal Wind Pressures (Load Case 1): Zone A: psa,1 12.80 psf Zone B: Ps a7 2 -6.70 psf Zone C: PS a, 37 8.50 psf Zone D: PS a, 4 = - 00 psf Vertical Wind Pressures (Load Case 1): Zone E: Ps a, 5 = 15.40 psf Zone F: Ps a, 6 -8.80 psf Zone G: PS 7 -10.70 psf Zone H: Ps (X 8 = - psf Wind Pressures on Overhangs (Load Case 1): Zone Eoh: PS 9 = -21.60 psf Zone Goh: PS «,1a = —16.90 psf Minimum Pressures Applied P := if p < 10•psf,10•psf, p to Lateral Resisting System: a,1 � a,1 (X ,1) P :— if p < 10•psf,10•psf, P a,2 � a,2 a,2) Ps :— if P < 10•psf,10•psf, P a,3 � a,3 a,3) p := if p < 10•psf,10•psf, p sa 4 I Ps 4 Ps 4) (Sec. 1609.6.2.1) (Sec. 1609.1.2) D:WIyFiles\ Projects \Commercial\2004 \Wingers 3600\25 V (wind) - IBC '00.mcd by: RLH, on: 2/20/2004, Page 2 of 4 Applied Diaphragm Loads PERPENDICULAR TO L: hs + hst .\ Applied Diaphragm Load: (floors) Adjustment factor for hip: Fpl Ps a 3 2 adjl1 := 1.0 PERPENDICULAR TO D: +h s (x +1) s FPd - Psa,3 h 2 h Applied Diaphragm Load: F PI := Ps N + Ps •2•(h - hn)•adjll + ps ' (roof): N a,3 2 a,4 a,3 (N +1) Adjustment factor for hip /gable: adi := 1.0 Applied Diaphragm Loads Story 4: Story 3: Story 2: Story 1: h N FPd Ps a,3 2 + Psa 3 .2•(h - hn)•adjdl + Ps a,3 hs (N +1) Fp = plf Fp1 = ■ plf Fpl = plf Fp 1 =100 plf FPd4 = ■: plf FPd3 = r plf FPd2 = plf FPd 1 = 10p plf h h Applied Diaphragm Load: Fpez := vs sx +h s(x +1) s sx +h s(x +1) P Fpezd = at End Zones (floors) x a,1 2 x a,1 2 Adjustment factor for hip: ad' 1.0 112 �_ h Applied Diaphragm Load: Fpez := P N + Ps 2•(h - hn)•adjl2 + Ps h s at End Zones (roof) N a,1 2 a, 2 a,1 (N +1) Adjustment factor for hip /gable: adj := 1.0 Applied Diaphragm Load at End Zones: Story 4: Story 3: Story 2: Story 1: h Fpez := Ps N + Ps •2•(h - hn)•adjd2 + Ps h s N a,1 2 a,1 a,1 (N +1) Fpez 4 =;8 plf Fpezl 3 = I plf Fpezl = a plf Fpez 1 = 128 plf Fpezd = plf 4 Fpezd 3 = plf Fpez = ■ plf Fpezd 1= 128plf D:\MyFiles \Projects \Commercial\2004 \Wingers 3600\25 V (wind) - IBC '00.mcd by: RLH, on: 2/20/2004, Page 3 of 4 Vertical Distribution Story Shear: Story 4: Story 3: Story 2: Story 1: Total Base Shear: Added Load at End Zones: Story 4: Story 3: Story 2: Story 1: PERPENDICULAR TO L: F := Fp • I F1 4 _ ■ ib F13 = ■ lb F = ■ lb ,2 Fl = 6000 lb N V := F i i =1 V = 6000 lb Fez, x x Fpez - Fpi x� •2•a • � Fez, = s 4 lb Fez, = a 3 lb Fez, 2 = rib Fez = 269 lb PERPENDICULAR TO D: F Fp Fd = ■ Ib Fd = ■ lb Fd = alb F 1 6000 lb N V := Fdi i =1 Vd = 60001b Fezd x � Fpezd x - Fpd x) •2•a Fezd 4 = ■ lb Fezd 3 = ■ lb Fezd 2 = ■ lb - Fezd = 2691b /9 D: \MyFiles\ Projects \Commercial\2004 \Wingers 3600\25 V (wind) - IBC '00.mcd by: RLH, on: 2/20/2004, Page 4 of 4 2.6 Desiqn Seismic Loads (V) Building Geometry Number of Stories (max.= 4): N:= 1 Buildina Weiaht *Length = parallel to ridge line Length* Story 4: 1 0-ft Story 3: 1 0-ft Story 2: 1 := 0-ft Story 1: 1 := 60 -ft Parapet: h 0-ft Buildina Weiaht *Length = parallel to ridge line N +1 hs *Width = perpendicular to ridge line h := i Width* Story Height Story DL d 0-ft h 0-ft D 0•psf d := 0-ft h 0-ft D 0•psf d 0-ft h O-ft D 0•psf d 60-ft h := 12-ft D := 27•psf * h := 4-ft s (N +1) T = 0.16 Diaphragms: wd := Dx•lx.dx l Walls: hsx hs (x +1) I ww L °wx 2 + °w (x +1) 2 J Story Weight: w := wd + ww + 2•d Building Weight: W:= E w W =153.2 k Buildina Period Wall DL D 4 := 0•psf D 3 := 0 - psf D := 0 • psf D 1 := 15•psf D := 15•psf W (N +1) (ASCE 7 -98) (Tab. 9.5.5.3.2) (Tab. 9.5.5.3.2) (Eqn. 9.5.5.3.2 -1) (Tab. 9.5.5.3.1) (Sec. 9.5.5.3) D:WIyFiles \Projects \Commercial\2004 \Wingers 3600\26 V (seis) - IBC'00.mcd by: RLH, on: 2/20/2004, Page 1 of 4 N +1 hs Eave Height (feet): h := i ft i =1 C := 0.020 X:= 0.75 Appx. Fundamental Period: T a : = C T = 0.16 Check Upper Limit: C := 1.5 T:= if(T >T Cu, T Fundamental Period: T = 0.16 Wall DL D 4 := 0•psf D 3 := 0 - psf D := 0 • psf D 1 := 15•psf D := 15•psf W (N +1) (ASCE 7 -98) (Tab. 9.5.5.3.2) (Tab. 9.5.5.3.2) (Eqn. 9.5.5.3.2 -1) (Tab. 9.5.5.3.1) (Sec. 9.5.5.3) D:WIyFiles \Projects \Commercial\2004 \Wingers 3600\26 V (seis) - IBC'00.mcd by: RLH, on: 2/20/2004, Page 1 of 4 1-i Ground Motion �B( C '00) Soil Site Class: D (Tab. 1615.1.1) Spectral Response Accel.: S := 0.505 (short periods) (Fig. 1615(5)) S1 := 0.163 (1 sec. period) (Fig. 1615(6)) SiteCoeffficients: F 1.40 (Tab. 1615.1.2(1)) F := 2.15 (Tab. 1615.1.2(2)) Design SRA Parameters: S ds := 0.67•F (Eqn. 16 -18) Sd = 0,47 Sd1 := 0.67•F (Eqn. 16 -19) Sd 1 = 0.23 Design Criteria & Coefficients IB( C '00) Seismic Use Group: I (Sec. 1616.2) Seismic Design Category*: cat := catD (Sec. 1616.3) catA = 1 catB = 2 catC = 3 catD - 4 catE = 5 catF = 6 *For plan or vertical irregularity, see Section 1616.5 Response Modification: R:= 6.5 (Tab. 1617.6) Importance Factor: l := 1.0 (Tab. 1604.5) Design Seismic Loads (Base Shear) IB( C '00) Analysis Procedure: Equivalent Lateral Force Analysis (Sec. 1617.4) Seismic Response Coeff.: Csmin 0.044•S (Eqn. 16 -37) (Short Periods) C smin = 0.021 Seismic Response Coeff.: C = Sds (Eqn. 16 -35) (Calculated) (R l( l e) C = 0.073 S d1 Seismic Response Coeff.: Csmax (Long Periods) R (� ) •T (Eqn. 16 -36) e) C smax = 0.226 D:\MyFiles\ Projects \Commercial\2004 \Wingers 3600\26 V (seis) - IBC '00.mcd by: RLH, on: 2/20/2004, Page 2 of 4 . A ;ZIP Select Cs: C := if ( < C smin , C smin , C s) C := if ( > C smax , C smax , C s) C = 0.073 Check Min. (Cat. E & F): Csef 0.5•S1 (Eqn. 16 -38) R 1 l C sef = 0.013 C s Csef if (cat >- 5). (C < Csef) Csef if (S ? 0.6)•(C < Csef) C otherwise Design Response Coeff.: C = 0.073 Total Base Shear: V:= C (Eqn. 16 -34) V = 9707 lb Vertical Distribution IB( C 'QO) (11 Distribution Exponent: k1 := t1 :_ (0.5 ) (Sec. 1617.4.3) l(2) 12.5) k:= 1 if T<0.5 linterp(t1 , k1 , T) if 0.5 <- T -< 2.5 2 if T > 2.5 w hs k Distribution Factor: C vx N - x x) (Eqn. 16-42) �— L wx. l hs x) k J x =1 Story Shear: F C 'V (Eqn. 1641) X Story 4: F4 = ,1b Story 3: F = *Ib Story 2: F2 alb Story 1: F19707'lb D: \MyFiles \Projects \Commercial\2004 \Wingers 3600\26 V (seis) - IBC '00.mcd by: RLH, on: 2/20/2004, Page 3 of 4 Applied Diaphragm Loads IBC '00 PERPENDICULAR TO L: PERPENDICULAR TO D: wdx I ( Wdx 1 Applied Diaphragm Load: F pl1 := 0.2- l -- + 2.ww Fp := 0.2 -l -S — + 2.ww (Design Category A - C) x `( I x `( d ) (Eqn. 16-62) Applied Diaphragm Load: (Design Category D - F) (Eqn. 16-65) Minimum / Maximum: (Sec. 1620.3.2) Applied Loads: Story 4: Story 3: Story 2: Story 1: N E Fi i =x Fp := N I wi i =x F pmin x : = 0.15 - Sds -l e F pmax x := 0.30 - S ds -l e Fpx if Fpx < F pmin x I F pmin x I Fpx Fpx if�Fpx' F pmax x , F pmax x , Fpx wdx I ( wdx l Fp12x := Fp + 2.ww Fp := Fp -� + 2 -wwx) I x x Fpl := Fp if cat <_ 3 Fp := Fp if cat _5 3 x x x x Fp if cat >_ 4 Fp if cat >_ 4 x x Fp := Fp Fpl = 1 plf Fpl = I plf Fp = r <plf Fp1 =140 plf Fp Fp Fpd 4 = O Fp = 11 plf Fpd2 = a plf Fp = 140plf 0�3 D:WIyFiles \Projects \Commercial\2004 \Wingers 3600\26 V (seis) - IBC '00.mcd by: RLH, on: 2/20/2004, Page 4 of 4 3.0 GRAVITY ANALYSIS Prepared by: .......................................................................... RLH, on: February 18, 2004 J.M. WILLIAMS and ASSOCIATES • Structural Engineering 363 South 500 East • Suite 210 • Salt Lake City, Utah 84102 • (801) 575 -6455 • Fax (801) 575 -6456 C T11:1 1433 South State Street • Orem, Utah 84097 • (801) 229 -2014 • Fax (801) 229 -2015 1 PROJECT DATE ISHEET OF P5 V Cn J.M. WILLIAMS and ASSOCIATES * Structural Engineering 363 South 500 East • Suite 210 • Saft Lake City, Utah 84102 • (801) 575 -6455 • Fax (801) 575-6456 1433 South State Street . Orem, Utah 84097 • (801) 229 -2014 • Fax (801) 229 -2015 PROJECT JDATE SHEET OF .-,Ii J.M. WILLIAMS and ASSOCIATES 9 Structural Engineering C 910 363 South 500 East . Suit 210 • Saft Lake City, Utah 84102 • (801) 575-6455 • Fax (801) 575 -6456 1433 South State Street • Orem, Utah 84097 • (801) 229 -2014 • Fax (801) 229 -2015 PROJECT Z' >7-rA - I t Q'c� p �k DATE DESIGNED BY SHEET OF JOB NO. Goad Tables /Snow (115 Allowable Uniform Load (pif) 1�1 • • TIL T� TM Series Parallel Chord • Open -Web Series TJ LTm Series FL =Flat roof Jess than 'is" in 12" slope. SL= Sloped roof greater than Vs" in 12" slope. 1. Values shown are maximum allowable load capacities. Open -web trusses will be custom designed to the specified loads. 2. Straight line interpolations may be made between depths and spans. 3. Values shown are maximum allowable load capacities of the trusses in pounds per lineal foot (pif) based on: • simple span, uniformly loaded conditions. • an assumed 25% ratio of dead load to total load (eg.: 30 psf live /10 psf dead). These tables maybe non - conservative if the actual ratio is higher than 25 %. A more accurate analysis can be obtained by using the TJ- Beam software program. • top chord no -notch bearing clips with 1 bearing. Higher values may be possible with other types of bearing clips. 4. These tables may also be used for bottom chord bearing trusses (maximum bottom chord slope of 1"/12") with or without cantilevers - at one or both ends. Cantilevers are limited to 1 /3 of the main span provided the inboard shear for cantilevered conditions is limited to 2,500 lbs. 5. Values in gray ® areas may be increased 7% for repetitive member usage if the criteria on page 9.7 are met. REV. 6/97 W 6.9 TJ LXTm Series Check with your local Trus Joist MacMillan representative on availability of the TJLX° Series in your area. .;z -� 3.0 Design of Flexural Member - Dimensional Lumber Design Schematic Location: Member: Material: Beam Width: Beam Depth: Span Length: Rafters at Entry 2 x 12" @ 24" o.c. Douglas Fir -larch No. 2 b:= 1.5-in d:= 11.25-in 1:= 11.5-ft Fioure 10.8 Service Loads a P c Dead Loads / Tributary: D:= 20 •psf l := 2-ft Pd := 0 • Ib (Sec. 2.1) Dead Loads (wall) /Tributary: D 0•psf l 0-ft p := 0•Ib (Sec. 2.1) W L:= 0•psf I := 0-ft a:= 0-ft (Sec. 2.2) Live Loads / Tributary: I c:= I -a (Sec. 2.2) R1 OBC '03 Uniform Dead Load: R2 Service Loads Uniform Concentrated (Calculations) Dead Loads / Tributary: D:= 20 •psf l := 2-ft Pd := 0 • Ib (Sec. 2.1) Dead Loads (wall) /Tributary: D 0•psf l 0-ft p := 0•Ib (Sec. 2.1) Live Loads / Tributary: L:= 0•psf I := 0-ft a:= 0-ft (Sec. 2.2) Live Loads / Tributary: L 60•psf Itlr:= 2 -ft c:= I -a (Sec. 2.2) Load Combinations & Design Loads OBC '03 Uniform Dead Load: w := D•I + D Uniform Live Load: wl := L•Itl + L r' I tlr Alternative Basic L.C.: W:= w + wl P:= P + p (Eqn. 16 -13) Uniform Load (plf): w =10e plf p = 4.01b Reactions: Rw1 w•I w•I := Rw2 := p_c p_a R R 2 2 I 1 R = 920.0 lb R = 920.0 lb R = 0.0 lb R = 0.0 lb Maximum Shear: umax := max(Rw1 + R p1 , R w2 + R P2) Vmax = 920.01b Maximum Moment: M max : = 2 w -1 0.0-lb 8 P-1 if w = 0.0•plf 4 (w•c P•a•c •a + ) 2 I otherwise Mmax" 2645A1b�ft DAProject Records \Commercial\2004 \Wingers 3600 \30 b5.mcd by: RLH, on: 2/27/2004, Page 1 of 3 3a Adiustment Factors Load Duration: Temperature: Beam Stability: Form: Incising: Repetitive Use: Wet Service: Flat Use: Size: Flexural Design Allowable Bending Stress: Adjusted Bending Stress: Required Section Modulus/ Actual Section Modulus: Shear Design Allowable Shear Stress: Adjusted Shear Stress: Required Area/ Actual Area: C := 1.0 C t := 1.0 C L := 1.0 Cf := 1.0 Ci:= 1.0 C := 1.15 CM := 1.0 Cf := 1.0 C := 1.0 Fb:= 900-Ps' F b := Fb•CD•CM•C M max b • d S := F b S := 6 Sr = 30.7' in, 3 < S = 31.6 iri3 F := 95-psi F F -C 3 Vmax - w•d Ar. 2 F v Af = 12.2 in Serviceability Modulus of Elasticity: E := 1600000-psi Adjusted Modulus: E:= E•CM•C 3 b•d Moment of Inertia I :_ 12 Allowable Deflection: Aat:= I — (Total Service Loads) 240 Allowable Deflection: Aal:= I (Service Live Loads) 3 D:\Project Records \Commercia1\2004 \Wingers 3600\30 b5_mcd A b•d A = %2 in2 NDS -01 (Tab. 2.3.2) (Tab. 2.3.3) (Sec. 3.3.3) (Tab. 3.3.4) (Tab. 4.3.8) (Tab. 4A - Sup.) (Tab. 4A - Sup.) (Tab. 4A - Sup.) (Tab. 4A - Sup.) NDS -01 (Tab. 4.3.1) (rectangular sec.) ASD -01 (Tab. 4.3. 1) (rectangular sec.) IBC '03 (rectangular sec.) (Tab. 1604.3) (Tab. 1604.3) by: RLH, on: 2/27/2004, Page 2 of 3 , Y . Y Actual Deflection: (Total Service Loads) Actual Deflection: (Service Live Loads) g 5•w-l Amaxt 384•E•I if p = 0.0-lb 3 p I if w = 0.0•plf 48•E•1 we 2 2 �1 - 2.1•c + c + P a c otherwise 24•E•1 3E I 1 Amaxt =?0.221 in < Q = 0.3&3 in Amaxl 5 w 1 if p= 0.0•Ib 384•E•1 pl•I 3 if 48•E•I w= 0.0•plf WI c •(1 - 2•I•c + c + P I a 2 c 2 I otherwise L24-E-1 3•E•1.1 J Amax, = 0.166 in < ©at 0.575 in DAProject Records \Commercial\2004 \Wingers 3600\30 b5.mcd by: RLH, on: 2/27/2004, Page 3 of 3 &" 3.0 Desiqn of Flexural Member - Dimensional Lumber Desiqn Schematic Location: Member: Material: Beam Width: Beam Depth: Span Length: Typ. Exterior Headers (2)2x10" Douglas Fir -larch No. 2 b:= 3.0 -in d:= 9.25 -in 1:= 3.0 -ft Fiaure 10.8 Service Loads Uniform Concentrated Dead Loads / Tributary: D:= 20 -psf l := 16 -ft P := 0 -lb Dead Loads (wall) / Tributary: D := 15 -psf Itw := 9 -ft p := 0 -lb Live Loads / Tributary: L:= 0 -psf i := 0 -ft a:= 0 -ft Live Loads / Tributary: L 60 -psf I tlr 16 -ft c:= I -a Load Combinations & Design Loads Uniform Dead Load: Uniform Live Load: Alternative Basic L.C.: Uniform Load (plf): Reactions: wd := D -l + D -I wl := L -Itl + L r' l tlr w: =w +w P: =Pd +p w= 14150plf p =O.Olb w -I w -I p_c R 2 R 2 R P I Rw1 = 2122.51b Rw2 = 2122.51b R = O.O lb Maximum Shear: umax := max(R + R R + R u max = 2122.51b 2 Maximum Moment: M max w —I 8 0.0 -lb P 11 if w = 0.0 -plf 4 (w -c p -a -c ) 2 . a+ I J otherwise Mmax = 1591.9lb -ft (Calculations) (Sec. 2.1) (Sec. 2.1) (Sec. 2.2) (Sec. 2.2) IBC '03 (Eqn. 16 -13) R pp — p2 I R = 0.0 lb D:\ MyFiles \Projects\Commercial\2004 \Wingers 3600 \30 b1.mcd by: RLH, on: 2/20/2004, Page 1 of 3 p a c w W I R1 R2 Service Loads Uniform Concentrated Dead Loads / Tributary: D:= 20 -psf l := 16 -ft P := 0 -lb Dead Loads (wall) / Tributary: D := 15 -psf Itw := 9 -ft p := 0 -lb Live Loads / Tributary: L:= 0 -psf i := 0 -ft a:= 0 -ft Live Loads / Tributary: L 60 -psf I tlr 16 -ft c:= I -a Load Combinations & Design Loads Uniform Dead Load: Uniform Live Load: Alternative Basic L.C.: Uniform Load (plf): Reactions: wd := D -l + D -I wl := L -Itl + L r' l tlr w: =w +w P: =Pd +p w= 14150plf p =O.Olb w -I w -I p_c R 2 R 2 R P I Rw1 = 2122.51b Rw2 = 2122.51b R = O.O lb Maximum Shear: umax := max(R + R R + R u max = 2122.51b 2 Maximum Moment: M max w —I 8 0.0 -lb P 11 if w = 0.0 -plf 4 (w -c p -a -c ) 2 . a+ I J otherwise Mmax = 1591.9lb -ft (Calculations) (Sec. 2.1) (Sec. 2.1) (Sec. 2.2) (Sec. 2.2) IBC '03 (Eqn. 16 -13) R pp — p2 I R = 0.0 lb D:\ MyFiles \Projects\Commercial\2004 \Wingers 3600 \30 b1.mcd by: RLH, on: 2/20/2004, Page 1 of 3 33 Adiustment Factors Load Duration: Temperature: Beam Stability: Form: Incising: Repetitive Use: Wet Service: Flat Use: Size: Flexural Design Allowable Bending Stress: Adjusted Bending Stress: Required Section Modulus/ Actual Section Modulus: Shear Design Allowable Shear Stress: Adjusted Shear Stress: Required Area/ Actual Area: C := 1.0 C := 1.0 C := 1.0 Cf := 1.0 C := 1.0 C := 1.0 C := 1.0 Cf := 1.0 CF := 1.1 F := 900 -psi Fb:= Fb•CD- CM- Ct- CL -CF- Cf Ci -C M max b -d Sr. Fb Sa. 6 S =19.3 in < S = 42.8 in F v := 95 -psi F := F CD- CM -C -C 3 Umax - w -d Ar. _ 2 F v A ='1 in Serviceability Modulus of Elasticity: E := 1600000 -psi Adjusted Modulus: E:= E- C -C -C 3 b -d Moment of Inertia I :_ 12 Allowable Deflection: Aat:= I — (Total Service Loads) 240 Allowable Deflection: Aal:= I — (Service Live Loads) 360 D:\MyFiles\ Projects \Commercial\2004 \Wingers 3600 \30 bl.mcd A := b -d A = 27.8 in NDS -01 (Tab. 2.3.2) (Tab. 2.3.3) (Sec. 3.3.3) (Tab. 3.3.4) (Tab. 4.3.8) (Tab. 4A - Sup.) (Tab. 4A - Sup.) (Tab. 4A - Sup.) (Tab. 4A - Sup.) ND( S-01) (Tab. 4.3. 1) (rectangular sec.) A( SD-01) (Tab. 4.3.1) (rectangular sec.) IB( C '03) (rectangular sec.) (Tab. 1604.3) (Tab. 1604.3) by: RLH, on: 2/20/2004, Page 2 of 3 Actual Deflection: (Total Service Loads) Actual Deflection: (Service Live Loads) A maxt 5•w-l if 384•E•I p = 0.0-lb 3 p 1 if w= 0.0•plf 48•E•1 2 2 w c �1 - 2.1•c + c + p a c otherwise [i4. 3 E I I Qmaxt = 0.008 in < Aal = 0.100 in 5 w 1 Amaxl 384•E•I if p = 0.0•Ib pl•I 3 if 48•E•I w = 0.0 • pif wl•c 3 2 3) pl•a I - 2.1•c + c + otherwise L24-E-1 3•E•1.1 J Amaxl =, 0.006 in < A at = 0.150 in D:\MyFiles\ Projects \Commercial\2004 \Wingers 3600\30 bl.mcd by: RLH, on: 2/20/2004, Page 3 of 3 35 3.0 Design of Flexural Member - Dimensional Lumber Desian Schematic Location: Member: Material: Beam Width: Beam Depth: Span Length: Exterior Headers (3)2x10" Douglas Fir -larch No. 2 b:= 4.5-in d:= 9.25-in 1:= 5.0 -ft Fiaure 10.8 Service Loads a p c Dead Loads / Tributary: D:= 20•psf l := 16-ft p := 0•Ib Dead Loads (wall) / Tributary: D 15•psf I 9-ft p := 0-lb Vol L:= 0•psf I := 0-ft a:= 0-ft Live Loads / Tributary: I I tlr := 16-ft c:= I -a R1 R2 Service Loads Uniform Concentrated Dead Loads / Tributary: D:= 20•psf l := 16-ft p := 0•Ib Dead Loads (wall) / Tributary: D 15•psf I 9-ft p := 0-lb Live Loads / Tributary: L:= 0•psf I := 0-ft a:= 0-ft Live Loads / Tributary: L 60•psf I tlr := 16-ft c:= I -a Load Combinations & Design Loads Uniform Dead Load: w := D•I + Dw•Itw Uniform Live Load: wl := L • I tl + L r "tlr Alternative Basic L.C.: w:= w d + w l p pd + PI Uniform Load (plf): w= 1415.Oplf p = 041b Reactions: w•I w•I p_c Rw1:= 2 Rw2:= 2 Rp1:= I R = 3537.51b R vv2 = 3537.51b R = O.O lb Maximum Shear: umax max(R + R R + R umax = 3537.51b 2 Maximum Moment: M max w —I 0.0-lb 8 P-1 if w = 0.0 • plf 4 (w•c p-a•c •a + J otherwise 2 I Mmax ` 4421.9115•ft a Rp2:= p_ I R = 0.0 lb (Calculations) (Sec. 2.1) (Sec. 2.1) (Sec. 2.2) (Sec. 2.2) IB( C , 03) (Eqn. 16 -13) D:\MyFiles \Projects \Commercial\2004 \Wingers 3600 \30 b2.mcd by: RLH, on: 2/20/2004, Page 1 of 3 4 r Adiustment Factors Load Duration: Temperature: Beam Stability: Form: Incising: Repetitive Use: Wet Service: Flat Use: Size: Flexural Design Allowable Bending Stress Adjusted Bending Stress: Required Section Modulus/ Actual Section Modulus: Shear Design Allowable Shear Stress: Adjusted Shear Stress: Required Area/ Actual Area: C := 1.0 C := 1.0 C := 1.0 C f := 1.0 C := 1.0 C := 1.0 C := 1.0 C := 1.0 C := 1.2 F := 900-Ps' F b : = F b• C D• C M• C t• C L -C F• C fu•G• C r• C f M max b • d S := F S := 6 b S = 49.1 in < S 64:24n3 F := 95-psi F := F 3 Vmax - w•d Ar. _ 2 F v Ar = 38.6 in2 Serviceability Modulus of Elasticity: E := 1600000-psi Adjusted Modulus: E:= E•C 3 b•d Moment of Inertia I :_ 12 Allowable Deflection: D := (Total Service Loads) 240 Allowable Deflection: Aal:= I — (Service Live Loads) 360 D:\MyFiles \Projects \Commercial\2004 \Wingers 3600 \30 b2.mcd A := b•d < A = 41.6 in NDS -01 (Tab. 2.3.2) (Tab. 2.3.3) (Sec. 3.3.3) (Tab. 3.3.4) (Tab. 4.3.8) (Tab. 4A - Sup.) (Tab. 4A - Sup.) (Tab. 4A - Sup.) (Tab. 4A - Sup.) N( DS -01) (Tab. 4.3.1) (rectangular sec.) ASD-01 (Tab. 4.3.1) (rectangular sec.) IBC '03 (rectangular sec.) (Tab. 1604.3) (Tab. 1604.3) by: RLH, on: 2/20/2004, Page 2 of 3 a , Actual Deflection: (Total Service Loads) Actual Deflection: (Service Live Loads) A maxt 97 5•w-l 384•E•I if p = 0.0•Ib 3 p I if w = 0.0•plf 48•E•1 we 2+c3)+ 2 2 (1 - 2.1-c P a c otherwise 24•E•I 3•E•1.1 A maxt = 0.042 in < Q 0.767`in A maxl 5w if 384•E•I p= 0.0•lb p 3 if 48•E•I w = 0.0•plf w1•c ( 3 - 2.1•c + c3) 3) + pl' I otherwise L24-E-1 3•E•1.1 J A maxl = 0.02a in < 0 = 0.250 n D:\MyFiles\ Projects \Commercial\2004\Wingers 3600 \30 b2.mcd by: RLH, on: 2/20/2004, Page 3 of 3 98 3.0 Design of Flexural Member - Dimensional Lumber Desian Schematic Location: Member: Material: Beam Width: Beam Depth: Span Length: Typ. Interior Headers (3) 2 x 10" Douglas Fir -larch No. 2 b:= 4.5-in d:= 9.25-in 1:= 4.0-ft Figure 10.8 Service Lo ads Uniform Concentrated Dead Loads / Tributary: D:= 20 -psf l := 30 -ft p := 0-lb Dead Loads (wall) / Tributary: D := 10 -psf Itw := 5 -ft p := 0 -lb Live Loads / Tributary: L:= 0 -psf I := 0•ft a:= 0 -ft Live Loads / Tributary: L 35 -psf I tlr 30 -ft c:= I -a Load Combinations & Design Loads Uniform Dead Load: w := D•l + Dw•ltw Uniform Live Load: wl L • I tl + L r -l tlr Alternative Basic L.C.: W:= w + wl P:= P + P Uniform Load (plf): w = 1700 0plf p = O.O lb Reactions: p_ Rw1:= w•I 2 Rw2:= w•I 2 R I Rw1 = 3400.0 lb R = 3400.0 lb R = 0.0 lb Maximum Shear: umax max(R + R R + R u max = 3400.01b Maximum Moment: Mmax w•1 13 P II a if w = 0.0•plf 4 c (w-c P•a•c 2 •a + ) otherwise I 1 R1 R2 Service Lo ads Uniform Concentrated Dead Loads / Tributary: D:= 20 -psf l := 30 -ft p := 0-lb Dead Loads (wall) / Tributary: D := 10 -psf Itw := 5 -ft p := 0 -lb Live Loads / Tributary: L:= 0 -psf I := 0•ft a:= 0 -ft Live Loads / Tributary: L 35 -psf I tlr 30 -ft c:= I -a Load Combinations & Design Loads Uniform Dead Load: w := D•l + Dw•ltw Uniform Live Load: wl L • I tl + L r -l tlr Alternative Basic L.C.: W:= w + wl P:= P + P Uniform Load (plf): w = 1700 0plf p = O.O lb Reactions: p_ Rw1:= w•I 2 Rw2:= w•I 2 R I Rw1 = 3400.0 lb R = 3400.0 lb R = 0.0 lb Maximum Shear: umax max(R + R R + R u max = 3400.01b Maximum Moment: Mmax w•1 0.0 -lb P II if w = 0.0•plf 4 (w-c P•a•c 2 •a + ) otherwise I Mmax = 3400.0'lb•ft (Calculations) (Sec. 2.1) (Sec. 2.1) (Sec. 2.2) (Sec. 2.2) IBS C '03) (Eqn. 16 -13) R pp — p2:= I R = 0.0 lb D:WIyFiles \Projects \Commercial\2004 \Wingers 3600 \30 b3.mcd by: RLH, on: 2/20/2004, Page 1 of 3 Adiustment Factors Load Duration: Temperature: Beam Stability: Form: Incising: Repetitive Use: Wet Service: Flat Use: Size: Flexural Design Allowable Bending Stress: Adjusted Bending Stress: Required Section Modulus/ Actual Section Modulus: Shear Design Allowable Shear Stress: Adjusted Shear Stress: Required Area/ Actual Area: C := 1.0 C := 1.0 C := 1.0 C := 1.0 C := 1.0 C := 1.0 C := 1.0 C := 1.0 C := 1.2 Fb:= 900-Ps' Fb := Fb'CD'CM'Ct'CL'CF'Cfu'Ci'Cr'Cf M max b•d S := F b S := 6 S = 37.8'in3 C S 64.2 in F := 95 -psi F F A 3 Vmax - w•d r 2 Fv A = 33.0 in Serviceability Modulus of Elasticity: E := 1600000-psi Adjusted Modulus: E:= E•CM•C 3 b•d Moment of Inertia I :_ 12 Allowable Deflection: Dat:= I — (Total Service Loads) 240 Allowable Deflection: Aal := I — (Service Live Loads) 360 D:WIyFiles\ Projects \Commercial\2004 \Wingers 3600\30 b3.mcd A b•d < A = 41.6 in v NDS -01 (Tab. 2.3.2) (Tab. 2.3.3) (Sec. 3.3.3) (Tab. 3.3.4) (Tab. 4.3.8) (Tab. 4A - Sup.) (Tab. 4A - Sup.) (Tab. 4A - Sup.) (Tab. 4A - Sup.) WI I (Tab. 4.3.1) (rectangular sec.) AS( D-01) (Tab. 4.3. 1) (rectangular sec.) IBC '03 (rectangular sec.) (Tab. 1604.3) (Tab. 1604.3) by: RLH, on: 2/20/2004, Page 2 of 3 j Actual Deflection: (Total Service Loads) Actual Deflection: (Service Live Loads) A maxt 5•w-l 384•E•1 if p= 0.0•Ib P - 1 3 if w = 0.0•plf 48•E•1 we 2 2 (1 - 2-1-c 2 + c + p a c otherwise 24•E•1 3 E I I Amaxt = 0.021 in < Q = 0.133 in A maxi 5 w 1 384•E•I if p= 0.0•lb p 3 48•E•I if w = 0.0 • pif I w c .(13 - 2•I•c + c 2 3) + pl•a2.c2 1 otherwise L24-E-1 3•E•1.1 J Amax, =.0.013 in < D at '= 0.200 in D:\MyFiles \Projects \Commercial\2004 \Wingers 3600 \30 b3.mcd by: RLH, on: 2/20/2004, Page 3 of 3 3.0 Design of Flexural Member - Dimensional Lumber Design Schematic Location: Interior Header Member: 5 1/4 x 9 1/2" PSL Material: Paralam Beam Width: b:= 5.25-in Beam Depth: d:= 11.88-in Span Length: 1:= 10.0-ft Fioure 10.8 Service Loads Uniform Dead Loads / Tributary: D:= 20•psf l := 30-ft Dead Loads (wall) / Tributary: D := 10•psf l := 5-ft Live Loads / Tributary: L:= 0•psf I := 0•ft Live Loads / Tributary: L 35•psf Itlr:= 30-ft Load Combinations & Design Loads Uniform Dead Load: w := D•I + D Uniform Live Load: w l L - Itl + L r' I tlr Concentrated p d := 0•Ib p := 0•Ib a:= 0-ft c: =1 -a Alternative Basic L.C.: W:= w + w P Pd + PI Uniform Load (plf): w`= 1700.Oplf p = 0.01b Reactions: R p_c R p_a Rw1:= w'I 2 Rw2:= w-I 1 := I p2 := I Rw1 = 8500.Olb R = 8500.01b R = O.O lb R = 0.0 lb Maximum Shear: Vmax max(R + R R + R Vmax = 8500.01b 2 Maximum Moment: M max w —I 0.0-lb 8 P-1 if w= 0.0•plf 4 Zc •a + p a c ) otherwise Mmax = 21250.0 lb-ft (Calculations) (Sec. 2.1) (Sec. 2.1) (Sec. 2.2) (Sec. 2.2) IB( C , 03) (Eqn. 16 -13) D: \MyFiles\ Projects \Commercial\2004 \Wingers 3600 \30 b4.mcd by: RLH, on: 2/20/2004, Page 1 of 3 a p c L. W I R1 R2 Service Loads Uniform Dead Loads / Tributary: D:= 20•psf l := 30-ft Dead Loads (wall) / Tributary: D := 10•psf l := 5-ft Live Loads / Tributary: L:= 0•psf I := 0•ft Live Loads / Tributary: L 35•psf Itlr:= 30-ft Load Combinations & Design Loads Uniform Dead Load: w := D•I + D Uniform Live Load: w l L - Itl + L r' I tlr Concentrated p d := 0•Ib p := 0•Ib a:= 0-ft c: =1 -a Alternative Basic L.C.: W:= w + w P Pd + PI Uniform Load (plf): w`= 1700.Oplf p = 0.01b Reactions: R p_c R p_a Rw1:= w'I 2 Rw2:= w-I 1 := I p2 := I Rw1 = 8500.Olb R = 8500.01b R = O.O lb R = 0.0 lb Maximum Shear: Vmax max(R + R R + R Vmax = 8500.01b 2 Maximum Moment: M max w —I 0.0-lb 8 P-1 if w= 0.0•plf 4 Zc •a + p a c ) otherwise Mmax = 21250.0 lb-ft (Calculations) (Sec. 2.1) (Sec. 2.1) (Sec. 2.2) (Sec. 2.2) IB( C , 03) (Eqn. 16 -13) D: \MyFiles\ Projects \Commercial\2004 \Wingers 3600 \30 b4.mcd by: RLH, on: 2/20/2004, Page 1 of 3 �4a Adiustment Factors Load Duration: Temperature: Beam Stability: Form: Incising: Repetitive Use: Wet Service: Flat Use: Size: Flexural Design Allowable Bending Stress: Adjusted Bending Stress: Required Section Modulus/ Actual Section Modulus: Shear Design Allowable Shear Stress Adjusted Shear Stress Required Area/ Actual Area: C := 1.0 C := 1.0 C := 1.0 C := 1.0 C := 1.0 C := 1.0 C := 1.0 C := 1.0 C := 1.0 F := 2900-psi F F M max b•d S := F S := 6 b S = 87.9 in < S 123.5 in F := 290-psi F F 3 Vmax - w•d Ar. _ 2 F v A = 35.3 in Serviceability Modulus of Elasticity: E := 2000000-psi Adjusted Modulus: E:= E•CM•C 3 b•d Moment of Inertia I :_ 12 Allowable Deflection: Aat := t — (Total Service Loads) 240 Allowable Deflection: A al : = — (Service Live Loads) 360 D:\MyFiles \Projects \Commercial\2004 \Wingers 3600\30 b4.mcd A := b•d 2 < A = 62A in NDS -01 (Tab. 2.3.2) (Tab. 2.3.3) (Sec. 3.3.3) (Tab. 3.3.4) (Tab. 4.3.8) (Tab. 4A - Sup.) (Tab. 4A - Sup.) (Tab. 4A - Sup.) (Tab. 4A - Sup.) NDS -01 (Tab. 4.3.1) (rectangular sec.) AS( D -01) (Tab. 4.3.1) (rectangular sec.) IB( C , 03) (rectangular sec.) (Tab. 1604.3) (Tab. 1604.3) by: RLH, on: 2/20/2004, Page 2 of 3 Actual Deflection: (Total Service Loads) Actual Deflection: (Service Live Loads) A maxt 7.3 5•w-l 384•E•1 .. p = 0.0-lb 3 p I if w = 0.0 • plf 48•E•1 w 1 2 2 �1 - 2.1-c 2 + c3/ + P a c otherwise 24•E•I 3 E I I 4maxt = 0.261 in < Aal`= 0.333 in A maxl := 5w 384•E•1 if p = 0.0-lb p 3 if 48•E•I w = 0.0 • pif I wl.c 2 31 pl• I .(13 - 2•I•c + c /1 + otherwise L24•E•I 3•E•1.1 J Arnaxl- `0.161 in < A = 0.500 in D:\MyFiles \Projects \Commercial\2004 \Wingers 3600 \30 b4.mcd by: RLH, on: 2/20/2004, Page 3 of 3 4 101:7 0 1pom WOOD POST WITH NO MOMENT E] Reference:C:\Mathcad Tables \Wood Values.mcd DESIGN CRITERIA Column Length - clear span: lu := 12-ft Column Load: P:= 8.5•k Buckling factor: K:= 1.0 Effective column length: le:= lu•K WORKING STRESS DESIGN Material: Allowable bending stress Fb Allowable axial stress Fc: Modulus of elasticity E: USE: (4) 2 x 6" Studs Area: Formula constants: (For sawn members use 0.3) (For laminated use 0.418) (For sawn members use 0.8) (For laminated use 0.7) C = Size factor (sawn lumber only) fc := P — A fc = 257.576 psi UNITY CHECK: le = 12 ft ROOF FRAMI Typ. Post i:= STUD Cd = load duration factor: CD := I Fb = 675 psi Cr = repetitive use factor: C,:= 1 Fc = 825 psi Solid or Built -up solid := 1 builtup := 2 E = 1400000 psi member := builtup b:= 6.0-in (Total thickness) A:= b•d K := if(i > 2,0.418,0.3) K = 0.418 c := if(i > 2,0.7,0.8) c = 0.7 d:= 5.5-in (Depth of individual member) A = 33 in NDS Sec 3.7.1.5 b := if (d >_ b,b,d) C := if(d > 4•in,if(d > 6•in,if(d > 8•in,1.0,1.05),1.1),1.15) C := if (d > 10• in, if(d > 12• in, 0.9,1.0),C C if > 2,1,C // KcE'E i C = 1 Fc' := Fc F := 2 Fc' = 825 psi ( le) i d) F = 853.7 psi Fc' := ifi d > 50, 0 i psi,Fc' Fc' = 825 psi 2 I 1 + FcE 1 + FcE FcE Fc'. i)] Fc' Fc i L 2•c L 2•c J c J Fc' = 542.1 psi fc = 0.702 < 1.0 06• Fc'. I va 4.0 LATE RAL ANALYSIS Prepared by: .......................................................................... RLH, on: February 18, 2004 M 4.0 Design of Deep Flexural Member - Plywood Diaphragm Desiqn Schematic Location: Diaphragm: Material: Case: Nailing: Panel Thickness: Diaphragm Length: Diaphragm Width: Chord: Material: Chord Depth: Chord Thickness: Diaphragm Loads Wind Loads: Seismic Loads: Roof 19/32" APA Exp. 1 Plywood (Schematic Diagram) Case 1, Unblocked 10d @ 6" o. c. Perimeter & Edges t := 0.59375•in I := 60-ft d := 60-ft (2) 2 x 6" Douglas Fir -larch Stud d := 5.5-in t 3.0-in Perpendicular to L: Perpendicular to D: (Calculations) (Sec. 2.5) (Sec. 2.6) F plw := 100 • plf F pls := 140•plf F := 100 • plf F pds := 140•plf Load Combinations & Design Loads C := 1.6 Assumptions: Applied horizontal dead and live loads are equal to zero. Alternative Basic LC: w 1.3 • Fplw w 1.3 • Fpdw C := 1.0 Size (Chord Only): F pls Fpds _ wl 2 1.4 wd 2 1.4 w l' I x w d'dx Diaphragm Shear: f :_ vl f vd := 2 d x 2.I x w •I w •d Chord Force: T := T d :_ 8•d 8-I Allowable Stress Desiqn - Adiustment Factors Load Duration: C := 1.6 Wet Service: CM := 1.0 Temperature: C := 1.0 Size (Chord Only): C := 1,0 Incising (Chord Only): Ci := 1.0 IB( C •03) (Eqn. 16 -14) (Eqn. 16 -17) r `' ff (Tab. 2.3.2) (Assumed) (Tab. 2.3.3) (Tab. 4A - Sup.) (Tab. 4.3.8) D:WIyFiles \Projects \Commercial\2004 \Wingers 3600\10 diap- roof.mcd by: RLH, on: 2/24/2004, Page 1 of 3 Y 7 Shear Design - Web Action Tabulated Shear Capacity: F := 285•plf Wind Design: Wind Design: C D Allowable Shear Capacity: Fvw := FV•1.4 •CM•Ct 1.6 Allowable > Actual Shear: Fvw = 399.0 Of > f = 65:0 plf F = 399.Q pif > f udl = 65.O;plf Seismic Design: Seismic Design: CD Allowable Shear Capacity: F := Fv• — .CM.Ct 1.6 Allowable > Actual Shear: Fp m-285.0 pif > f = 50,41f F ;,= 285.0:pif > f yd2 = 5010 plf Flexural Design - Chord Tension Tabulated Tension Stress: F := 450-psi Wind & Seismic Design: Wind & Seismic Design: Allowable Tension Stress: F t : = F t• C D• C M• C t - Ci•CF Required Area < Actual Area: Arl max(T := < A c t c' d c Ard max(Td) < Ac t c' d c Ft Ft Arl =1.4 in2 < A =16.5 in 2 A 14 in < A 16.5 in' Deflection - Diaphragm Modulus of Elasticity (chords): E := 1600000-psi Adjusted Modulus: E:= E•CM•C IBC '03 (Tab. 2306.3.1) (Tab. 4A - Sup.) IB( C '03) D:\MyFiles \Projects \Commercial\2004 \Wingers 3600\40 diap - roof.mcd by: RLH, on: 2/24/2004, Page 2 of 3 7p E no Iffivilirl cc I um z A =7F, 3 FIN III hl Ls - ------------ L - -_ -J 1 L - -_ -J 1 L - - - -J L ---- J IQ 7:1 M w�N� : ��, : (� . �000 �e� � SOS: s4z-ko 7-9 J.M. WILLIAMS and Associates c-rLbo 57 West South Temple, Suite 210, Salt Lake City, Utah 84101 (801) 575 -6455 1433 South State Street, Parvenu Plaza, Orem, Utah 84097 (801) 229 -2014 LATERAL ANALYSIS -1 STORY WOOD SHEAR WALL DESIGN - 2000 IBC Front Walls - Wind Loads STORY 1 PIERS Length Height Tributary # Piers in Shear Line: nl := 3 (n = 8 max) 1: 11 := 7-ft hl := 12-ft ti := 16-ft Story Shear: Fa := 1.3.6000•lb 2: 11 := 5-ft hl := 12-ft t1 16-ft Shear Attributed To Line: Va := 4170•1b 3: 11 := 4-ft h1 := 12-ft t1 := 16-ft Story DL: DL := 20•psf 4: 11 := 0-ft hl 0-ft t1 0-ft Wall DL: DLw := 15•psf 5: 11 := 0-ft hl := 0-ft t1 := 0-ft Story Length & Width: L := 60-ft D := 60-ft 6: 11 := 0-ft hl := 0-ft t1 := 0-ft Story Height: h := 12-ft 7: 11 := 0-ft hl 0-ft t1 0-ft Sill Plate Length: Ls := 60-ft 8: 11 := 0-ft hl := 0-ft t1 := 0-ft REDUNDANCY 1W := 4-ft (smallest pier length) Max. Element -Story Ratio: rmaxl Va 10 (1617.2.2; p.359) III Fa Redundancy Factor: p 1 := 2 — 20 (Eqn. 16 -32; p.359) rmax L P1 if(PI < 1.0,1.0,if(P1 ? 1.5,1.5,P1)) SHEAR CALCULATIONS Unit Shear (for walls): P1 = P1•Va V := y11 OVERTURNING CALCULATIONS it •= 1 nl Overturning Moment: P 1•Va l •h l M 1 • I1 ANCHOR BOLTS Unit Shear (for bolts): 1/2" bolt in 1 1/2" sill vbl P1•Val :_ Ls 1 (615•1b)• 1.33 s0.5 == vb 1 (878• lb)• 133 0 i1 — � ) 11 it 5/8" bolt in 1 1/2" sill: x0.625 vb I 1 . (11 Resisting Moment: Mrlil := 0 67. rr � (DL1•tl (1.1 F il l•I1 i1 • I 2 ) I + L( 2��� Nominal Overturning Tension at Pier Ends: DEFLECTION CALCULATIONS MI. M01 Mrlil M1 T1. it i1i1 Wood Shear Wall Design Revised January, 2002 Pa e 1 of 2 6 SUMMARY, STORY 1 Unit Shear v = 261 plf Pier 1: Pier 2: Pier 3: Pier 4: Pier 5: Pier 6: Pier 7: Pier 8: Uplift HOLD DOWN Pier Deflection T1 = 1963 I T1 22981b T1 24651b T1 =�Ib T1 =�Ib TI =ilb T1 =�Ib T8= b SHEAR WALLS Sheathing: 7/16 ", APA, Exp. 1 Blocking: All Panel Edges Edge Nailing: Field Nailing: ANCHOR BOLTS 1/2" A. Bolts 5/8" A. Bolts USE: st1.5 = 1 41 in sp,625 ° 201 in 1/2" dia. x 12" J -bolts Spacing = 32" o.c. Wood Shear Wall Design Revised January 2002 Pa e 2 of 2 �6 J.M. WILLIAMS and Associates C _no 57 West South Temple, Suite 210, Salt Lake City, Utah 84101 (801) 575 -6455 1433 South State Street, Parvenu Plaza, Orem, Utah 84097 (801) 229 -2014 LATERAL ANALYSIS -1 STORY WOOD SHEAR WALL DESIGN - 2000 IBC STORY 1 PIERS Length # Piers in Shear Line Story Shear: nl := 3 Fa ;= 9700 Ib 1 1.4 Va := 3465-lb DL := 20•psf DLw := 15•psf L := 60-ft h := 12-ft Ls := 60-ft (n =8max) 11 := 7-ft 11 5-ft 11 := 4-ft 11 0-ft 11 := 0-ft 11 := 0-ft 11 0-ft 11 := 0-ft Iw := 4-ft Shear Attributed To Line: Story DL: Wall DL: Story Length & Width: Story Height: Sill Plate Length: REDUNDANCY Max. Element -Story Ratio: (1617.2.2; p.359) D := 60-ft Va 10 rmax 1 - 111 Fa l Redundancy Factor: P l := 2 - 20 (Eqn. 16 - 32; p.359) rmax L D P1 if(PI < 1.0,1.0,if(P1 ? 1 . 5 , 1 . 5 >P1)) P1 =1.0 Front Walls - Seismic Loads Height Tributary hl := 12-ft ti := 16•11 h1 12-ft t1 16-ft h1 12-ft t1 16-ft hl 0-ft t1 0-ft h1 := 0-ft t1 := 0-ft hl 0-ft t1 0-ft hl 0-ft t1 0-ft hl := 0-ft ti := 0-ft (smallest pier length) SHEAR CALCULATIONS ANCHOR BOLTS l Unit Shear (for walls): v Unit Shear (for bolts): vb P1•Val I P1•Va l :_ III Ls OVERTURNING CALCULATIONS it := l..nl 1/2 bolt in 1 1/2 sill: s (615•1b)•1.33 vb P1•Va hl Overturning Moment: Mol i1 •_ ]l ii 5/8 bolt in 1 1/2 0 sill: s (878•lb)•1.33 625 vbl (11 Resisting Moment: Mrl. := 0.67. rr (11 F 1 F DL tl.) I1 ( )J + I �DLw hl 11. l 2 �� J il L 1 �1 it L 1 it it Nominal Overturning: Ml := Molil - Mrlil Tension at Pier Ends: T1 Ml i :_ t 11 i DEFLECTION CALCULATIONS Wood Shear Wall Design Revised January, 2002 Pa e 1 of 2 5� SUMMARY, STORY 1 Unit Shear v = 217 plf Pier 1: Pier 2: Pier 3: Pier 4: Pier 5: Pier 6: Pier 7: Pier 8: Uplift HOLD DOWN Pier Deflection T1 = 14261b T1 = 1761 lb T13; = 1929 lb T1 = 1b T1 = 1b T1 = 1b T17 =' lb TI8 i ]b SHEAR WALLS Sheathing: 7/16 ", APA, Exp. 1 Blocking: All Panel Edges Edge Nailing: Field Nailing: ANCHOR BOLTS 1/2" A. Bolts 5/8" A. Bolts USE: s0 170 in sp625 = 243 in 1/2" dia. x 12" J -bolts Spacing = 32" o.c. Wood Shear Wall Design Revised January, 2002 Page 2 of 2 5' 3 J.M. WILLIAMS and Associates 57 West South Temple, Suite 210, Salt Lake City, Utah 84101 (801) 575 -6455 1433 South State Street, Parvenu Plaza, Orem, Utah 84097 (801) 229 -2014 LATERAL ANALYSIS 1 STORY WOOD SHEAR WALL DESIGN - 2000 IBC Back Walls - Wind Loads STORY 1 PIERS Length Height Tributary # Piers in Shear Line: nl := 2 (n = 8 max) 1: 11 := 27-ft hl := 12-ft tl 1 := 13-ft Story Shear: Fa := 1.3.6000 -lb 2: 11 := 28.5-ft hl := 12-ft t1 := 13 -ft Shear Attributed To Line: Va := 4170-lb 3: 11 := 0-ft hl := 0 -ft t1 := 0 -ft Story DL: DL := 20 -psf 4: 11 0 -ft hl := 0-ft t1 := 0-ft Wall DL: DLw := 15•psf 5: 11 := 0-ft hl := 0-ft tl := 0-ft Story Length &Width: L := 60-ft D := 60-ft 6: 11 := 6 0-ft := hl 6 0-ft := tl 6 0-ft Story Height: h := 12 -ft 7: 11 := 0 -ft 7 hl := 0-ft 7 tl := 0- ft 7 Sill Plate Length: Ls := 60-ft 1 8: := 11 8 0-ft := hl 8 0-ft := tl 8 0-ft REDUNDANCY Iw := 27-ft (smallest pier length) Max. Element -Story Ratio: rmax -_ l Va t 10 (1617.2.2; p.359) y11 Fa Redundancy Factor: p t := 2 _ 20 (Eqn. 16 -32; p.359) rmaxl L1-D, P1 = if(P1 S 1.0,1.0,if(P1 >_ 1.5,1.5,P1)) P1 =1.0 SHEAR CALCULATIONS ANCHOR BOLTS P1•Val P1•Val Unit Shear (for walls): v ;= l Unit Shear (for bolts): vb l :_ y11 Ls OVERTURNING CALCULATIONS i1: =1..n1 1/2 bolt in 11/2 sill: s (615• lb) •1.33 vb P Overturning Moment: Molil'= �ll 1 *11 il � 5/8' bolt in 1 1/2 �� sill: s 0.625 �= (878•Ib)•l.33 vbl 1 rr ( f ( Resisting Moment: Mrlil := 0.67• tlil)•Iliq 2 )J + L (DLw I hl 2�JJ Nominal Overturning: Mlil:= Mol — Mrlil Tension at Pier Ends: T1. :_ M1i1 �1 llit DEFLECTION CALCULATIONS Wood Shear Wall Design Revised January 2002 \ Pa e 1 of 2 5� SUMMARY, STORY 1 Unit Shear v = 75 pf Pier 1: Pier 2: Pier 3: Pier 4: Pier 5: Pier 6: Pier 7: Pier 8: Uplift HOLD DOWN Pier Deflection T1 -3078 Ib TI = - 32991b T1 = Ib T1 ='alb T1 =� Ib T1, = Ib T1 ='� Ib TI = Ib SHEAR WALLS Sheathing: 7/16 ", APA, Exp. 1 Blocking: All Panel Edges Edge Nailing: Field Nailing: ANCHOR BOLTS 1/2" A. Bolts 5/8" A. Bolts USE: s0 = 141 in s0.625 =,202- in 1/2" dia. x 12" J -bolts Spacing = 32" o.c. Wood Shear Wall Design Revised January, 2002 Pa q e 2 of 2 55 J.M. WILLIAMS and Associates 57 West South Temple, Suite 210, Salt Lake City, Utah 84101 (801) 575 -6455 C - 9130 1433 South State Street, Parvenu Plaza, Orem, Utah 84097 (801) 229 -2014 LATERAL ANALYSIS -1 STORY WOOD SHEAR WALL DESIGN - 2000 IBC STORY 1 PIERS Length Back Walls - Seismic Loads Height Tributary # Piers in Shear Line: nl := 2 (n = 8 max) 1: 11 := 27-ft hl := 12-ft tl := 13-ft Story hear: rY 9700 Fa :_ —.lb 1.4 2: 11 28.5-ft h1 12-ft t1 13-ft Shear Attributed To Line: Va := 3465•lb 3: 11 := 0-ft h1 := 0-ft t1 := 0-ft Story DL: 1 := DL 20•psf 4: 11 := 0-ft 4 hl := 0-ft ti := 0-ft 4 4 Wall DL: DLw := 15•psf 1 5: 11 := 0-ft 5 hl := 0-ft ti := 0-ft 5 5 Story Length & Width: L := 60-ft D := 60-ft 6: 11 := 0-ft hl 0-ft t1 := 0-ft Story Height: h := 12-ft 7: 11 := 0-ft hl 0-ft t1 0-ft Sill Plate Length: Ls := 60-ft 8: 11 0-ft hl 0-ft ti := 0-ft REDUNDANCY ]w := 27-ft (smallest pier length) Max. Element -Story Ratio: rmaxl := Val 10 (1617.2.2; p.359) y11 Fat Redundancy Factor: P 1 2 – 20 �_ (Eqn. 16 -32; p.359) rmax L P1 = if(P1 1.0,1.0,if(pl >_ 1.5,1.5,P1)) P1 =1.0 SHEAR CALCULATIONS ANCHOR BOLTS Unit Shear (for walls): 1 v P1•Va 1 := Unit Shear (for bolts): vb Pl•Va1 :_ Y, 11 1 Ls OVERTURNING CALCULATIONS it := l..nl 1/2 " ,� bolt in 1 1/2 sill: (615•1b)•l.33 s0.5 �_ vb1 P1•Va Overturning Moment: Molil := 1' 5/8" bolt in 1 1/2" sill: s 0.625 = (878•1b)•l.33 Ell vb 1 Il 11i 111 Resisting Moment: Mrl := 0.67•I I (DL 2 )J + I (DLw blil)•11iq 2 �JJ Nominal Overturning: Mli1 := Mol – Mrlil Tension at Pier Ends: T1. :_ Ml tl 11i1 DEFLECTION CALCULATIONS Wood Shear Wall Design Revised January, 2002 Pa e 1 of 2 5�1 SUMMARY, STORY 1 Unit Shear v = 62 plf Pier 1: Pier 2: Pier 3: Pier 4: Pier 5: Pier 6: Pier 7: Pier 8: Uplift HOLD DOWN Pier Deflection TI I = -- 32311b TI = -3452 Ib TI 3 , =j Ib T1 = Ib TI = lb TI 6 = Ib Ti u1b Tl =aIb SHEAR WALLS Sheathing: 7/16 ", APA, Exp. 1 Blocking: All Panel Edges Edge Nailing: Field Nailing: ANCHOR BOLTS 1/2" A. Bolts 5/8" A. Bolts USE: $045 =,17Q in s0.625—:243 in 1/2" dia. x 12" J -bolts Spacing = 32" o.c. Wood Shear Wall Desi n Revised January, 2002 Pape 2 of 2 J.M. WILLIAMS and Associates c_r1_bEj 57 West South Temple, Suite 210, Salt Lake City, Utah 84101 (801) 575 -6455 1433 South State Street, Parvenu Plaza, Orem, Utah 84097 (801) 229 -2014 LATERAL ANALYSIS -1 STORY WOOD SHEAR WALL DESIGN - 2000 IBC Left Walls - Wind Loads STORY 1 PIERS Length Height Tributary # Piers in Shear Line: nl := 3 (n = 8 max) 1: 11 := 19-ft hl := 12-ft ti 1 := 2-ft Story Shear: Fa := 1.3.6000•lb 2: 11 := 7.5. ft h1 := 12-ft t1 := 2-ft Shear Attributed To Line: Va := 4170-lb 3: 11 := 9-ft hl := 12-ft t1 := 2-ft Story DL: DL := 20•psf 4: 11 := 0-ft hl 0-ft t1 := 0-ft 5: 11 := 0-ft hl := 0-ft ti := 0- ft Wall DL: DLw := 15•psf 5 5 5 Story Length & Width: L := 60-ft D := 60-ft 6. 11 := 0-ft hl 0-ft t1 := 0-ft 7: 11 := 0-ft hl := 0-ft tl := 0-ft Story Height: h := 12-ft 7 7 7 Sill Plate Length: Ls := 60-ft 8: 11 := 0-ft hl := 0-ft ti := 0-ft REDUNDANCY lw := 7.5-ft (smallest pier length) Max. Element -Story Ratio: rmax - Va 10 (1617.2.2; p.359) Yli Fa Redundancy Factor: pl 2 — 20 (Eqn. 16 -32; p.359) rmax L pl := if(pl S 1.0, 1.0, if(p 1 > 1.5,1.5,P1)) P1 =1.0 SHEAR CALCULATIONS ANCHOR BOLTS Unit Shear (for walls): v := P1•Val Unit Shear (for bolts): vb P1•Val I l :_ �11 Ls OVERTURNING CALCULATIONS it := l ..nl 1/2 " �� s0.5 �_ bolt in 1 1/2 sill: (615.1b)•l.33 vb Pl•Va hl Overturning Moment: Mol it :_ 1 5/8" bolt in 1 1/2" sill: s = (878.1b). 1.33 �11 ) 0625 vbl Resisting Moment: Mrl := 0.67• rr I I (DLl•tl (11 r il l•ll il • I f I + DLwI•hl (11i1)11 2 L( il �•li;l.l( 2)J] Nominal Overturning: Ml Mol — Mrlil Tension at Pier Ends: T1 Ml i :_ t 11 i DEFLECTION CALCULATIONS Wood Shear Wall Design Revised January, 2002 Page 1 of 2 I� SUMMARY, STORY 1 Unit Shear v = 117 plf Pier 1: Pier 2: Pier 3: Pier 4: Pier 5: Pier 6: Pier 7: Pier 8: Uplift HOLD DOWN Pier Deflection TI 1 `= 91b TI 2 = 8571b T13 = 7461b T1 =rlb T1 = Ib TI 1b T1 =�Ib T1 Ib SHEAR WALLS Sheathing: 7/16 ", APA, Exp. 1 Blocking: All Panel Edges Edge Nailing: Field Nailing: ANCHOR BOLTS 1/2" A. Bolts 5/8" A. Bolts USE: sp,s = 141; n W'625 = 202 in 1/2" dia. x 12" J -bolts Spacing = 32" o.c. Wood Shear Wall Design Revised January, 2002 Page 2 of 2 5 J.M. WILLIAMS and Associates 57 West South Temple, Suite 210, Salt Lake City, Utah 84101 (801) 575-6455 C —no 1433 South State Street, Parvenu Plaza, Orem, Utah 84097 (801) 229-2014 LATERAL ANALYSIS -1 STORY WOOD SHEAR WALL DESIGN - 2000 IBC STORY 1 PIERS Length Left Walls - Seismic Loads Height Tributary # Piers in Shear Line: nl:= 3 (n 8 max) 1: 11 19•ft hl I 12•ft ti I 2•ft Story Shear: 9700 Fa --Ib 1.4 2: 11 7.5•ft h1 12•ft t1 2•ft Shear Attributed To Line: Va 3465•lb 3: 11 9•ft hl 3 12•ft t1 2•ft Story DL: DL 20-psf 4: 11 4 0-ft hl 4 0-ft ti 4 0•ft Wall DL: DLw := 15-psf 5: 11 5 0•ft hl 5 0-ft ti 5 0-ft Story Length & Width: L 60•ft D 60•ft 6: 11 0•ft hl 6 0•ft tl 6 0•ft Story Height: h 12•ft 7: 11 0•ft hl 7 0•ft t1 0•ft Sill Plate Length: Ls 60•ft 8: 11 8 0-ft hl 8 0-ft ti 8 0•ft REDUNDANCY 1w 7.5•ft (smallest pier length) Max. Element-Story Ratio: Val 10 rm—, (1617.2.2; p.359) Fa III I Redundancy Factor: P 2 — 20 (Eqn. 16-32; p.359) rmax • F f D, P1 = if(p I 1 .0, 1 .0, if (p 1 > 1.5,1.5, p 1)) P1 =1.0 SHEAR CALCULATIONS ANCHOR BOLTS Unit Shear (for walls): v pl•Va Unit Shear (for bolts): vb pl•Va I III Ls I OVERTURNING CALCULATIONS i1:= I.. nI 1/2" bolt in 1 1/2" sill: sO.5:= (615•1b)•l.33 pl-Va I'h ' ] ." il vb I Overturning Moment: Mol 5/8" bolt in 1 1/2" sill: sO.625 := (878.1b)•l.33 y 11 ) vb I FF (Ili,)] F Resisting Moment: Mrl 0.67. DL ti + ) _j (DLw hl 2 I- 1 2 JJ Nominal Overturning: mi Mol —Mrl Tension at Pier Ends: TI Mlil il 11 il DEFLECTION CALCULATIONS Wood Shear Wall Design Revised January, 2002 Page 1 7of2] MO SUMMARY, STORY 1 Unit Shear v = 98 plf Pier 1: Pier 2: Pier 3: Pier 4: Pier 5: Pier 6: Pier 7: Pier 8: Uplift HOLD DOWN Pier Deflection Tl,l = —229ab T1 6191b TI 3 = 508 lb Tt = I lb T1 - Ib T1 =alb Ti 7 = lb T1 —_i lb SHEAR WALLS Sheathing: 7/16 ", APA, Exp. 1 Blocking: All Panel Edges Edge Nailing: Field Nailing: ANCHOR BOLTS 1/2" A. Bolts 5/8" A. Bolts USE: 5 0.5 = ; 1,70in 5 0,625'= 243 in 1/2" dia. x 12" J -bolts Spacing = 32" o.c. 0 Wood Shear Wall Design Revised January, 2002 Page 2 of 2 �o I J.M. WILLIAMS and Associates C _no 57 West South Temple, Suite 210, Salt Lake City, Utah 84101 (801) 575 -6455 1433 South State Street, Parvenu Plaza, Orem, Utah 84097 (801) 229 -2014 LATERAL ANALYSIS - 1 STORY WOOD SHEAR WALL DESIGN - 2000 IBC STORY 1 PIERS Length # Piers in Shear Line: Story Shear: Shear Attributed To Line: Story DL: Wall DL: Story Length & Width: Story Height: Sill Plate Length: REDUNDANCY Max. Element -Story Ratio: (1617.2.2; p.359) Redundancy Factor: (Eqn. 16 -32; p.359) nl := 2 (n = 8 max) Fa := 1.3.6000•lb Va := 4170 -lb DL := 20•psf DLw := 15•psf L := 60-ft D := 60 -ft h := 12-ft Ls := 60-ft Va 10 rmax 1 — 111 Fal Klgnt walls - wind Loaas Height Tributary 1: 11 := 27-ft hl := 12. ft tl := 2-ft 2: 11 5.5 -ft hl 12 -ft t1 2-ft 3: 11 := 0 -ft h1 := 0-ft t1 := 0-ft 4: 11 0-ft hl 0 -ft t1 0 -ft 5: 11 := 0-ft hl := 0 -ft t1 := 0-ft 6: 11 0 -ft 111 0 -ft t1 0-ft 7: 11 0 -ft h1 0 -ft t1 0 -ft 8: 11 0 -ft hl := 0 -ft ti := 0-ft iw := 5.5 -ft (smallest pier length) P1: = 20 rmax L P1 := if(pl < 1.0,1.0,if(P1 ? 1.5,1.5,pl)) P1 =1.0 SHEAR CALCULATIONS ANCHOR BOLTS P1•Va P1•Va Unit Shear (for walls): v := Unit Shear (for bolts): vb 111 Ls OVERTURNING CALCULATIONS it := l ..nl 1/2 bolt in 1 1/2 sill: s (615•1b)•l.33 vb Pl•Va hl Overturning Moment: Mol il := I' 5/8 " 0 625 bolt in 1 1/2 sill: s (878.1b)•l.33 1 Ell I vb 1 rr (11 F (11 Resisting Moment: Mrl. 1 := 0.67 1 hl I L (DL ti it )•11 i •� 2 J J + �(DLw 1 • it )•11. t - 2 � L ` t ` i Nominal Overturning: Ml := Mol — Mrlil Tension at Pier Ends: T1. :_ Ml it llil DEFLECTION CALCULATIONS Wood Shear Wall Design Revised January 2002 Page 1 of 2 Ll-�- SUMMARY, STORY 1 Unit Shear Uplift v = 128 plf Pier 1: T1 = -450 Ib Pier 2: TI = 11341b Pier 3: T13 = lb Pier 4: T1 = Ib Pier 5: TI =1 lb Pier 6: T1 = w lb Pier 7: T1 i Ib Pier 8: TI = lb SHEAR WALLS HOLD DOWN Pier Deflection Sheathing: 7/16 ", APA, Exp. 1 Blocking: All Panel Edges Edge Nailing: Field Nailing: ANCHOR BOLTS 1/2" A. Bolts 5/8" A. Bolts USE: $0.5 = 141 in s0.625 = 202' in 1/2" dia. x 12" J -bolts Spacing = 32" o.c. Wood Shear Wall Design Revised January 2002 Page 2 of 2 X03 J.M. WILLIAMS and Associates C _no 57 West South Temple, Suite 210, Salt Lake City, Utah 84101 (801) 575 -6455 1433 South State Street, Parvenu Plaza, Orem, Utah 84097 (801) 229 -2014 LATERAL ANALYSIS -1 STORY WOOD SHEAR WALL DESIGN - 2000 IBC Right Walls - Seismic Loads STORY 1 PIERS Length Height Tributary # Piers in Shear Line: nl := 2 (n = 8 max) 1: 11 := 27-ft hl := 12-ft t i := 2 -ft Story Shear: Fat := 91.4 lb 2: 11 := 5.5-ft hl := 12 -ft t1 := 2 -ft 1.4 := := := Shear Attributed To Line: Va := 3465•1b 3: 11 0-ft hl 3 3 0-ft ti 3 0-ft := := := Story DL: DL := 20•psf 4: I1 0-ft hl 0-ft ti 4 4 4 0-ft 5: 11 := 0-ft hl := 0-ft tl := 0-ft Wall DL: DLw := 15•psf 5 5 5 6: 11 := := := Story Length &Width: L := 60 -ft D := 60-ft 6: 0 -ft hl 6 0-ft ti 6 0 -ft 7: 11 := 0-ft hl := 0-ft ti := 0 -ft Story Height: h := 12-ft 7 7 7 := := := Sill Plate Length: Ls 8: 11 0-ft hl 0-ft ti 1 := 60-ft 8 8 8 0-ft REDUNDANCY ]w := 5.5 -ft (smallest pier length) Max. Element -Story Ratio: rmaxl Va 10 (1617.2.2; p.359) Y, 11 Fa1 Redundancy Factor: p 1 2 - 20 (Eqn. 16 -32; p.359) rmax LCD P1 if(pl <_ 1.0,1.0,if(PI ? 1.5,1.5,p1)) P1 = SHEAR CALCULATIONS ANCHOR BOLTS Unit Shear (for walls): v := P1•Va1 Unit Shear (for bolts): vb pl•Va1 l III Ls OVERTURNING CALCULATIONS it := l..nl 1/2' bolt in 1 1/2 sill: s 05:= (615.1b)•l.33 P1•Va vbl Overturning Moment: M01 := I llil 5/8" bolt in 1 1/2" sill: s = (878•lb)•l.33 11 f 0.625 • vb 1 l rr / (Il r (11 Resisting Moment: Mrl := 0.67• I (DL 2 � I + I (DLw1•hlil 2 )JJ Nominal Overturning: M1 i1 := M01 i1 — Mrlil Tension at Pier Ends: T1 Ml i :_ t 11i1 DEFLECTION CALCULATIONS Wood Shear Wall Design Revised January 2002 Pa e 1 of 2 ' 1 ,A & SUMMARY, STORY 1 Unit Shear v = 107 plf Pier 1: Pier 2: Pier 3: Pier 4: Pier 5: Pier 6: Pier 7: Pier 8: Uplift HOLD DOWN Pier Deflection T11 = —711 Ib T1 =874 lb T13 = Ib T1 = Ib TI = Ib TI 6 = Ib TI =alb T1 =sib SHEAR WALLS Sheathing: 7/16 ", APA, Exp. 1 Blocking: All Panel Edges Edge Nailing: Field Nailing: ANCHOR BOLTS 1/2" A. Bolts 5/8" A. Bolts USE: s0.5 =.,170 in 50 = -243 in 1/2" dia. x 12" J -bolts Spacing = 32" o.c. Wood Shear Wall Design Revised January, 2002 Page 2 of 2 i.G J.M. WILLIAMS and ASSOCIATES • Structural Engineering 363 South 500 East • Suite 210 • Salt Lake City, Utah 84102 • (801) 575 -6455 • Fax (801) 575 -6456 1433 South State Street • Orem, Utah 84097 • (801) 229 -2014 • Fax (801) 229 -2015 IPROJECT DATE [SHEET OF DESIGNED BY I JOB NO. l + � & 5.0 FOUNDATION ANALYSIS 1 � 1 co Prepared by: ............RLH, on: February 18, 2004 ............................... ............................... A a r . 011: Footing - Load Calculation EXTERIOR: roof :_ (60 + 20)• 16-plf floor:= 0•plf walls := (15)• 16•plf fndwall:= 150.0.67.4•plf Etotal := roof + floor + walls + fndwall INTERIOR: roof :_ (35 + 20)•29•plf floor:= 0•plf walls := (10)• 12•plf fndwall := 0•plf Itotal := roof + floor + walls + fndwall Etotat= 1.922 x 10 plf hotal = 1 7 1 5 x 1 U plf & -7 50 Foot - loads.mcd Revised June, 1999 Page 1 .' 1 Y,✓' rreuminary Footings and Foundation Design: Assumed soil bearing pressure: p:= 2000•psf Continuous wall load F1: wl := 2000•plf Continuous wall load F2: w2:= 1800•plf Spread footing F3: P3 :- 8.5-k Spread footing F4: P4 := 0•k Spread footing F5: P5 := 0•k Spread footing F6: P6:= 0•k Concrete foundation: (See Plans) Interior wall cont. footings: wl w = 12 in use FC2.0 P Exterior wall cont. footings: w2 w := — w = 10.8 in use FC2.0 P Spread footing no. F3: w:= P3 w = 2.062 ft use FC2.0 P Spread footing no. F4: P4 w:— w =oft P Spread footing no. F5: F L P5 w =o w ft Spread footing no. F6: w:= F LP6 w =oft W O 50 Foot.mcd Revised June, 1999 Page 1 U) W W CL F— (`) � O z 00 Q < F— W F- � z Z > Q h z (� _ 0 N � W z O3:zwx z Z w < ~ w w O w Z = w Z � O t 0 �� 00 W 0 p cn 0 '? W a � OIJJ LL, w W O g�oUcn �� n w z w w w�'Wa wawa as =Q W a = p z n �zaa� o w � O 00��U- (D ' y W w p Z a n a w z W E z Z W pn.a Z W J O a J F-K O a W O � w I-- N w < O � � 2 va LL a¢ U) O z w u ' F- w 0 U LO v w c� M O w O 00 g UJ J C) M O ry 11.1 j z z m x O C O Lli f° D W F aOf 0-� w W Y .g J am Q U) k"'� z O co co N 0 � O _M O O W F- U w W w z g O J C) ry 11.1 j C z m x O C O Lli f° X W aOf 0-� r .02