Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
CO, MULT DOCS - 04-00112 - Wingers Restaurant
0 CITY OF REXBURG AMERICA'S BMW COMMUNM Building Permit No: Applicable Edition of Code: Site Address: Use and Occupancy: Type of Construction: Design Occupant Load: Sprinkler System Required: 0400112 International Building Code :2000 Type V -N, Unprotected Commercial Restaurant Yes Name and Address of Owner: Intermountain Real Properties 6777 W 10050 N Highland, UT 84003 Contractor: Tnd General Contractors Special Conditions: Occupancy: Assembly, less than 1000, with a legiti mate stage This Certificate, issued pursuant to the requirements of Section 109 of the International Building Code, certifies that, at the time time of issuance, this building or that portion of the building that vies inspected on the date listed sties found to be in compliance vith the requirements of the code for the group and division of occupancy and the use for Mich the proposed occupancy vies classified. Date C.O. Issued: November 15 . 5A C.O Issued by: Building Official There shall be no further change in the eiasting occupancy classification of the building nor shall any structural changes, modifications or additions be made to the building or any portion thereof until the Building Official has reviewed and approved said future changes. Water Department: CERTIFICATE OF OCCUPANCY City of Rexburg Department of Community Development 19 E. Main St. / Rexburg, ID. 83440 Phone (208) 359 -30201 Fax (208) 359 -3022 State of Idaho Electrical CITY OF R-EXBUR-G AMERICA'S FAMILY COMMUNITY DATE City of Rexburg P.O. Box 280 12 North Center Street Rexburg, Idaho 83440 Phone: (208) 359 -3020 FAX: (208) 359 -3024 TO: FAX TRANSMITTAL FORM NAME: �" c `� )X o COMPANY: FAX NUMBER: 35 & - q. L i L( PHONE NUMBER: FROM: NAME: CATHY WINTERS PHONE NUMBER: x 322 Message: &Qexs- PAGE I OF Z— Please forward this fax transmittal to the above named individual. APPLICATION FOR BUILDING PERMIT CITY OF REXBURG, IDAHO Date of Application OWNER Permit No. Nam r..tey,+itwin Q�.� �ivfJts Site Address Mailing Address W. Mora f /.E{ 44-j ��,�p e 3 City /State /Zip Telephone/ Fax /Mobile ©/- 76G - r -@0 7 -zrgj CONTRACTOR Name _ 7''& D ( Mailing Address (ACy¢ kJ l o Mi%/ City /State /Zip (, { Qt y s 4 Telephone/Fax/Mobile b*_� :7 - - +(� Fjt1-7C7 -2410 PROJECT INFORMATION DEPARTMENT APPROVAL Property Zone: Is existing use compatible with zoning, (screening parking, etc) When was this building last occupied Architect/ Engineer Firm trS Plan Name Low 4!c'ns Subdivision n06 lA)0facce -- Lot Block (C Circle One Residential ommercial Educational Government Remodel Other Circle One New House Addition/Remodel to House New Commercial Commercial Remodel Circle One Basement: None/ Finished/ Lot Square Footage ZSj Unfinished Other one Patio/ Lot Width Carport/ Awning N/A Square Feet _36ar> Garage Square Feet Number of Stories Height of Building What will structure be used for: Home Home Business Apartment ommerci Other g & Q6, y ,.,,,-f Will there be an apartment? lto�0 If so, how many units Total Estimated Cost ✓ aer> Are you in a flood plain Signature of Code Zone Building Type Building Permit Fees o 2 4f Plan Check Fees o� (9 • S. Plumbing Permit Fees Digging Permit Fees Water & Sewer Fees �7 71) Front Footage Fee (Parks, Fire, and Police) Impact Fees p�7 TOTAL $ Zal l sue 7 -3. - Signature of Inspector Issued by REQUEST TO EXAMINE /COPY PUBLIC RECORDS TO: ;i G�q ,(J - DATE: `" Z J . -� I hereby request, pursuant to Idaho Code Section 9 -338. to examine and/or copy the following public records: These records specifically pertain to myself. 0 I wish to merely examine these records. I wish copies of these records. t? r n 4 '�; Printed Name: Mailing Address: 0 q�S� Telephone Number: Signature: ac owle ge signature the records sought by this request will not be used for a mailing elephone list as se forth in Idaho Code Section 9 -348. Please allow us ten working days to complete your request. This request has been reviewed by city attorney on the day of 200_. Said request is hereby: ❑ Approved ❑ Denied City Attorney ' p...u4 C ti + CITY O F 12 North Center, Rexburg, ID Phone: 208.359.3020 Fax nnvrv. rexbuq.org Fax- 208.359.3024 A—z., Famil C To: Mark Henry From: Gary Leikness Fax: 801 - 773 -8996 Pages: 3 including cover Phone: Date: / Z� Re: Wingers- Rexburg, Idaho cc: ❑ Urgent ❑ For Review ❑ Please Comment ❑ Please Reply ❑ Please Recycle Comments: of R ex eU > �O y� U � January 18, 2008 Mark Henry Re: 469 N 2n East — Wingers Restaurant Dear Mr. Henry: C I T Y OF REX BURG Americas family Community Per your request, I am sending this letter to verify the zoning district that the current Wingers restaurant is located in and to clarify any issues regarding "front yard" setback encroachments. The zoning district which the restaurant is entirely located within is our Community Business Center (CBC). Within this zone, restaurants are considered an allowed use. My understanding of the question you have regarding our front yard setbacks is that the north side of the Wingers building appears to encroach into the required front yard setback for the CBC Zone, which is 20 feet. Looking at the property history, I have found that a plat was approved by the City of Rexburg and was recorded showing lot #3 as being an internal lot. In order to have a "front yard" as defined by the City of Rexburg, you would need a "front lot line," which is, "the property line separating the front of the lot from the public right -of- way." In other words, you do not have a "front yard." You have, it would appear, 3 side yards and possibly a 4 however that needs further review. The encroachment you are concerned about is determined a side yard by me and therefore has a zero setback requirement, per current code This would change if a public or private street were platted at the location you are concerned with. Attached is a copy of the Certificate of Occupancy that was on file for this property. I hope that we have answered your inquiry satisfactorily. Please call if you have any other questions or concerns. Sincerely, Gary Leikness Planning & Zoning Administrator Gary Leikness Planning and Zoning Administrator 19 E. Main Rexburg, ID 83440 P. O. Box 280 Pbone (208) 359.3020 ext. 314 Fax (208) 359.3022 gag1@rexburg.org — rexburg.oq I > Departmental Approvals Plans, Preliminary jeckAn Site Pla and Final Plots) Approved - Disapproved - N/A tti > ti AV12roval Da Iniah 1� c; %A 0 + 4 7' C5 �2 CJ 1 tv ci: ib City I > Departmental Approvals Plans, Preliminary jeckAn Site Pla and Final Plots) Approved - Disapproved - N/A tti > ti AV12roval Da Iniah 1� c; %A 0 — quildingDepartment. 7 1 Fire Department Engineering Department W&WDepwtmeut------ N! E t,T 0 4i - -4 p4b E Sri! Go w 4th s6uth st VICINITY MAP M QDL T1 "wC n 4 NOTE: SEE PAGES C.3 FOR CURB AND PAVEMENT NOTES AND DETAILS OVERALL AREAS TOTAL SITE AREA= 526,346 sq. ft. — 12,08 acres LANDSCAPE UNDISTURBED AREA = 176,494 sq. ft. — 4.05 acres = 33.53% of Total Property ASPHALT f CONCRETE AREA = 275,464 sq. ft. — 6.32 acres = 52.34% of Total Property BUILDING AREA = 74,388 sq. ft. 1,71 acres 14.13% of Total Property a GRAPHIC SCAI-.,E 50 0 25 50 1(M3 ( IN FEET ) 1 inch = 50 ft- 200 DUMPSTEF LOCATION -CONSTRUCTION N07T5 4" WIDE YELLOW PARKING STRIP \_ J PAINTED RIGHT TURN ARROW /7 24"X24" "NO LEFT TURN SIGN (R3-2 PAINTED FIRE LANE W/ RED CURB HANDICAP PARKING 1 (1 2L8 28.3' 19.8 WINGERS 0 c) FF=4866.2 6 0 ko 3,715 sq. ft, of 24,0' Typ, ounOX38 JO ui� tv 0 z udv + — quildingDepartment. 7 1 Fire Department Engineering Department W&WDepwtmeut------ N! E t,T 0 4i - -4 p4b E Sri! Go w 4th s6uth st VICINITY MAP M QDL T1 "wC n 4 NOTE: SEE PAGES C.3 FOR CURB AND PAVEMENT NOTES AND DETAILS OVERALL AREAS TOTAL SITE AREA= 526,346 sq. ft. — 12,08 acres LANDSCAPE UNDISTURBED AREA = 176,494 sq. ft. — 4.05 acres = 33.53% of Total Property ASPHALT f CONCRETE AREA = 275,464 sq. ft. — 6.32 acres = 52.34% of Total Property BUILDING AREA = 74,388 sq. ft. 1,71 acres 14.13% of Total Property a GRAPHIC SCAI-.,E 50 0 25 50 1(M3 ( IN FEET ) 1 inch = 50 ft- 200 DUMPSTEF LOCATION -CONSTRUCTION N07T5 4" WIDE YELLOW PARKING STRIP \_ J PAINTED RIGHT TURN ARROW /7 24"X24" "NO LEFT TURN SIGN (R3-2 PAINTED FIRE LANE W/ RED CURB HANDICAP PARKING 1 (1 2L8 28.3' 19.8 WINGERS 0 c) FF=4866.2 6 0 ko 3,715 sq. ft, of 24,0' Typ, ounOX38 JO ui� tv 0 z udv %4M W. C.1 OF 3 SHEVS r0P?A (?) 2001 NC E: ALL RIGHTS RESCRtf U 4 7' C5 �2 CJ 1 tv ci: ib %4M W. C.1 OF 3 SHEVS r0P?A (?) 2001 NC E: ALL RIGHTS RESCRtf U t 'V s l E � 0 R Q) D a: W L cc � z 0 J J r ° I Ii Q; [T� z `aC � ! q, a: (j) W ..,. J > z 0 P D a: W C D p � z 0 J J r ° I Ii z > C1J a: (j) W ..,. J > Cr 0. ' o { 0 CO = F- x !— W Li CC �-- � 0 CO J � 1 t1.1 Joe NO. 20206.0364 April 20, 2004 ow►yw� er TLW CHECM W JJF REVPJXM ! GATE aF 3 S"&M CCi -WIGHT iD 2001 ql,- Aa RIGH7S R ESERWD. now mm W Wook 10mg . d =C: RIVER VILLA rw. w a tr.aa -d . +..r. a m ywrs.� M 1.r�.H Arr+r .IMF I�YJM uw «....w...a..r..wTw.✓w . r«.n . w..ww« ,4Y rSOMK.W TD TKE LYIY OF 14EXBLlRGL iU0M1' C4tA'VIY. AGiEW +. YNR .t. W u.•..tt1 a...'Yw. v a.t..r. at �. w �.' �`�'...' « i u"' v"�"`•+o. `r' AW Or .5EG7JOV 78. T, 6 A, R V l rH DEPT. CERTIFICATE t' t wad 'r bt aaaalrq• wabaa" OP PAW fr Akrltr go* beta so � go I A m am «6060 OW a* OW 6 &.w,wo t�.�..r.+4 r IRRIGATION WATER RIGHTS RELEASE +agypp d all 00 ..aatti11 i91* 7 =W 82M Or KALM �Hrt far aw '^+"' 4n.• �r .! M r(un.a tr Y Z4-nfr �' &r::.arts O.a.r Dt{ tt A b.raaMMar Jaarra hl.dMlf AaOY�dre bd lllr REASURER'S AND ASSESSORS CERTIFICATE u �''�' A/ DRT9J STR ! f7 IY to Mtr Wownp..f is WWW h wad tw w emw of dMAWK S * at M064 RECORDER'S CERTIFICATE `;: , r ttr Jaµra=% aw co !JD -fJp4 Ao Ar+ep. oar0►Y Mat W awwy /�rawy { A"v �alY aw Mo fa+r0 W AW of No aw Wwo tw mew ales Ar w /ntrrafp rtabeae b Mb Jrgaect aw tarraatG A- a w Ar � h oft AWWO.W Mav?it(!a!4 wf �W of wad nawaW rr C"W An~ tarot uaa YTY ACCEPTANCE . wry .. .w ?.•r��.� Cp Qp* ,.. - f / SCALD I " -loo l / f 't J i t • i i .Z. i x ti 4x w TEM AMER EXAMINING SURVEYOR M i rtto' ? Art 1 Aaw awwa.ad /rir AW ad $.d rf Y AW m ow w w irabM 30 -f.�t mWo dd PA- �a4 00W #PAW" M t char,, as AMa .wm* ..t era• m m&v MtY -eo _ 1 I Jioaaerr OMattAa -Ta+tw itntaq Vw.tlaat, L.L.G aw' � SM • Wi hl 2rA IM j:Xt5Ch U)T♦ &AMM "'v LEGEND x WIV4V arm.. 60000 0~ rarwrr 114A 44 � r sat 44W.- t o tad v* t' so 1/SSaf AW Md .ere+ pa=th' -ow atalro ALS MW '^+"' e'eataaoad l✓tab' wreaab aw ►l' • ---••• .wilt wltra attrw aMatt.ta.. P.0A POW of Iape+tiq t-- fw ..•ttwtt /trier at hawonefwt &Orx l &" owes xW34 AXalO Grit 1tl15S Owl► f.1llFlltif � rJt .. s.. •a.e..r,:. iJaid `F4.R LEA - VIM , B 1 YY5r►• K+4ts �pyp +.t i ttida6d bmk An Mt a OataaB 4W. /l0. Mar fast ,aw /G4iGx •AeMA Aaw �4m W-mo .I .. 1 1 .. ' ::. t: t t..s. % I —to ,... ,. _.._ __ ACKNOWLEDGMEW """" h *pox" R WAJM � � STAII � �ktl.i. trt/at.ta a 1 04 OW _[�. r@r M �CtL in 4p 16 M E _ ' =tiny iataad e o w►.� A. m•r�.+....aw�4,� almo=n=d of mmookw i6'1!t' E 340.Od' • MW oar err lM AW oat AW Matt alt Iolf FaAad t TINY MfAre'bT / taw + •.' .(,r <�� aWW saw ►M atp.,r of �M"A!C. Lifetuiwn 10 Y " rURVE 'RTIFICATE `T"` 00 to t i 4 aeoCCMt .aauq of ak a"kbi.in «.,, .v o e1Q►.+aw� ' k...yy avr arot rYyal4ta w OW -A it bbl erL,walr{BrtAi i a1 ores t JA .1 y ! k.loa�Aarpe at1N My eeoot+laat * w pw w taarMabatiJr�a. Iowa.► PAXM LaseiPA y ly un n:Nf: ' i s St:: $�7 6.: iilr4 w1wa6 y1L'Kf .X10. rn.� I . = tJ.s . . r, trntaF :• W •J tY. lot 2 • t i ! BOUNDARY DESCRIP77ON , 4I AW d Ma AC Y d Saatim fR re stria f Amt ^VW 0 44. Uraltaa AWNX *WW d aaraii air .. d t l d L we *W way «r oe •./ s ��e ham & W mvW w< swat soffm is awd wwrw0 wam N N'3ea *4 Meare N ld<'iour K $$A" aaat am" N O7ti7YY JY, fia fcw* ' .hol d/ way of AW Ibim Awm ilalda". iheeaM tY .11710oY aatttq or avid ' • M -rqy �f (k►in+ pock AMMMd b Mr io�M+M W MK MM Ind log e]wn,4,staaF.kba Matt t Mtit+ty. UaA'an A ttt.t. it trrw u c 7d1.8 1W aaq w a"a bawoar we W" bawa s golix4r C IAJ4 104 aana. N ~or G =M Iowa a►a OR* tot1 #& pw of r WA fwd foot smut raaaa s crt -ra* atwp few 4*W-a-a%v M At MOW M h+vCrtiy� f I1roM att.ttortr !&Af wear ; . c OWNER'S DEDICA77ON a boot of ae.t ho we! *^4 w lWaMi W ak.aplao ware.. teraaYr aw tM omm to M P.WW awd /Wad bb mu" Aar, waf avemiL do& 4t ARM r be ^w **a it for OKr M A—"-- A"mq IE Jf R1RllIOf KM711K aaet M w M+M►' ak.fiel. 4 ba Alf. w1�'M aArrw tiv.p.t I4et a.r WW OMW w.f br w M a✓ MwiMVi`C wt iu resat aM IW as "aMIMd w atCaf�w .rd aawRewwe r Mr fow oaf oraaAd MWAMM i► N &W Jtta7 k •mow ward .wort awt MuF haw al• ambr so aw" tY Iad AManf r a" AWW mWW & Mw /oatt�atl• atrr atV' G..W% aaI mwv hart and atufft WW ow W raaebW nrimm «warn aqf p1MaY tagy wwttat.a «.W twt.att� 04 w t>ty.nd.ar w puaWaiar error a m b» bM awt. at am" err tear Aaatr a wmm b 1.waw. ad err >,a.t war Meet a.WW wata.a AW .arabraer err, tzar• A am W* W «. :..rte � Mot Mr'.f .IMbba NAW 449tat. oaf DW bet WRoe it N!NW is M%P -MWM :# Aft 7AW ('• iro wf i�e �' •� ., IdWl if twtgtarr W M.a tmw abnt MAW4 or .pr a.pr 1 1. .say: • tts�i+ad Or AW a art. OWL OM "Wei l J :• t tt ee�� t i ts 1' Ctrl OF R9%bUlV •.era TETON RW R �li...rl.aaaw.�t „- .,... �Itx�•, r�Ilrr�t�� ';,�t�ati�leeeine�tr- +rr��c, AXalO Grit 1tl15S Owl► f.1llFlltif � rJt .. s.. •a.e..r,:. iJaid `F4.R LEA - VIM , B 1 YY5r►• K+4ts �pyp +.t i ttida6d bmk An Mt a OataaB 4W. /l0. Mar fast ,aw /G4iGx •AeMA Aaw �4m W-mo .I .. 1 1 .. ' ::. t: t t..s. % I —to ,... ,. _.._ __ ACKNOWLEDGMEW """" h *pox" R WAJM � � STAII � �ktl.i. trt/at.ta a 1 04 OW _[�. r@r M �CtL in 4p 16 M E _ ' =tiny iataad e o w►.� A. m•r�.+....aw�4,� almo=n=d of mmookw i6'1!t' E 340.Od' • MW oar err lM AW oat AW Matt alt Iolf FaAad t TINY MfAre'bT / taw + •.' .(,r <�� aWW saw ►M atp.,r of �M"A!C. Lifetuiwn 10 Y " rURVE 'RTIFICATE `T"` 00 to t i 4 aeoCCMt .aauq of ak a"kbi.in «.,, .v o e1Q►.+aw� ' k...yy avr arot rYyal4ta w OW -A it bbl erL,walr{BrtAi i a1 ores t JA .1 y ! k.loa�Aarpe at1N My eeoot+laat * w pw w taarMabatiJr�a. Iowa.► PAXM LaseiPA y ly un n:Nf: ' i s St:: $�7 6.: iilr4 w1wa6 y1L'Kf .X10. rn.� I . = tJ.s . . r, trntaF :• W •J tY. lot 2 • t i ! BOUNDARY DESCRIP77ON , 4I AW d Ma AC Y d Saatim fR re stria f Amt ^VW 0 44. Uraltaa AWNX *WW d aaraii air .. d t l d L we *W way «r oe •./ s ��e ham & W mvW w< swat soffm is awd wwrw0 wam N N'3ea *4 Meare N ld<'iour K $$A" aaat am" N O7ti7YY JY, fia fcw* ' .hol d/ way of AW Ibim Awm ilalda". iheeaM tY .11710oY aatttq or avid ' • M -rqy �f (k►in+ pock AMMMd b Mr io�M+M W MK MM Ind log e]wn,4,staaF.kba Matt t Mtit+ty. UaA'an A ttt.t. it trrw u c 7d1.8 1W aaq w a"a bawoar we W" bawa s golix4r C IAJ4 104 aana. N ~or G =M Iowa a►a OR* tot1 #& pw of r WA fwd foot smut raaaa s crt -ra* atwp few 4*W-a-a%v M At MOW M h+vCrtiy� f I1roM att.ttortr !&Af wear ; . c OWNER'S DEDICA77ON a boot of ae.t ho we! *^4 w lWaMi W ak.aplao ware.. teraaYr aw tM omm to M P.WW awd /Wad bb mu" Aar, waf avemiL do& 4t ARM r be ^w **a it for OKr M A—"-- A"mq IE Jf R1RllIOf KM711K aaet M w M+M►' ak.fiel. 4 ba Alf. w1�'M aArrw tiv.p.t I4et a.r WW OMW w.f br w M a✓ MwiMVi`C wt iu resat aM IW as "aMIMd w atCaf�w .rd aawRewwe r Mr fow oaf oraaAd MWAMM i► N &W Jtta7 k •mow ward .wort awt MuF haw al• ambr so aw" tY Iad AManf r a" AWW mWW & Mw /oatt�atl• atrr atV' G..W% aaI mwv hart and atufft WW ow W raaebW nrimm «warn aqf p1MaY tagy wwttat.a «.W twt.att� 04 w t>ty.nd.ar w puaWaiar error a m b» bM awt. at am" err tear Aaatr a wmm b 1.waw. ad err >,a.t war Meet a.WW wata.a AW .arabraer err, tzar• A am W* W «. :..rte � Mot Mr'.f .IMbba NAW 449tat. oaf DW bet WRoe it N!NW is M%P -MWM :# Aft 7AW ('• iro wf i�e �' •� ., IdWl if twtgtarr W M.a tmw abnt MAW4 or .pr a.pr 1 1. .say: • tts�i+ad Or AW a art. OWL OM "Wei l J :• t tt ee�� t i ts 1' Ctrl OF R9%bUlV •.era TETON RW R 1 prfat was du�y� aw O'��� -• . MOWN t� OPM Y EAyY�lM' S I,//!74C. J I r / f If If f t� t t t • N 89'46' 18" E 40 If . s r t ;' I IF f il l N - 1737 W TETON RIVER t £XAII I)VING SURV£YDR t c" Y mat / . �la�►rG>;•d � pw Ord tad A` to c t ft coma klwho Qaa °� AV $scam d0- 1,31?S PVl W AL GIP 1 i i ' OT 4 i NORTH 2na EAST CHURCH SUMVISION PART i i S W13'42* E 741.91' 16 N 89'46' 18" E 31 �1:ti(w,' •� � EASEMENT � A 1 Y 20 um nr LOT 4 +: / ii EA$ IT 8.45 a" L' 1,!t9 r I<A�iEME1t= 682.5o' LEGEND N eir 1 8'42 SK*." aan&*1 varr►" 158.44 �-- Sat 518 0 am rod wo pbrb"aw rnov*id P,LS 107im t-- Sot ll 4 ` km mdd wm ~-*W ara~ P.L.S 107,16 pewoard MW oaswrmnta am 13' P.Q.B. PsaW of 8aywu9ng Y 1 i 1 i I' 1 r E r � y ACCE'Sts AND S �':b.OQ LOT i 49LQCX 1 r 2.49 aorta fA 1 1 30' ACCESS AND 1 UUM EASMENT ^J�.4^I �.�`•�?�7l'� - 7��C"7t�s�� 5 �Y'Sl'11� O w..w w., � ,� / 24l�7 1 ", 3 c ;$ 24s Z W N 89'34'44` W 451.94 CITY of REMAo P• TETON RIVER &*&"mt Pow Of 'rtuvinrcaan . .. .•= :.aLa•.:.••...0 -r. urL�.r Y:..w.:Owi .w :.J�ti_ -. ..w. ...v. f XOW OrY &W. TS rAP Age j m _ r STRUCTURAL ENGINEERING THAT'S RELIABLE STRUCTURAL CALCULATIONS for the WINGERS RESTAURANT PROTO -TYPE 3600 Teton River Village Rexburg, ID FEBRUARY 27, 2004 A � f i.. .1 A e?�.� for WINGERS USA, INC. J.M. WILLIAMS and Associates, Inc. 2875 South Decker Lake Drive - Suite 275 - Salt Lake City, Utah 84119 Phone: 801.575.6455 - Fax: 801.575.6456 - Web Page: jmwa.com INDEX Structural Analysis 1.0 STRUCTURAL DESIGN BASIS 1.1 Project Information ....................... ............................... ...........................Page 3 1.2 Design Criteria .............................. ............................... ...........................Page LL 1.3 Scope of Services Rendered ....... ............................... ...........................Page tL 2.0 STRUCTURAL DESIGN LOADS 2.1 Design Dead Loads (D) ............... ............................... ...........................Page _ 3 2.2 Design Live Loads (L) ............................................. ............................... Page 1 2.3 Design Snow Loads (S) ............... ............................... ...........................Page " 2.4 Design Rain Loads ( R) ................. ............................... ...........................Page 15 2.5 Design Wind Loads ( W) ............... ............................... ...........................Page 140 2.6 Design Seismic Loads ( E) ............ ............................... ...........................Page �b 2.7 Design Loads (all other) ............... ............................... ...........................Page 3.0 GRAVITY ANALYSIS 3.0 Joists, Girders, Headers, Posts, etc. (all stories) ......... ...........................Page a4 4.0 LATERAL ANALYSIS 4.0 Shear Walls, Diaphragms, etc. (all stories) ................. ...........................Page L � 5.0 FOUNDATION ANALYSIS 5.0 Foundation Walls, Footings, etc ... ............................... ...........................Page _L,4,_ Prepared by: .......................................................................... RLH, on: February 18, 2004 1.0 STRUCTURAL DESIGN BASIS Prepared by: .......................................................................... RLH, on: February 18, 2004 t J 1.1 Project Information Project: WINGERS (3600 S.F. PROTOTYPE) JMWA Job #: 04037 Location: Teton River Village Rexburg, ID Elevation: (not known) Owner: Wingers Contact: (not known) Architect: Horn & Partners 284 W. 400 N. SLC, UT 84103 Contact: Rob Merrick (801) 933 -4676 Project Manager: (not known) Contact: (not known) Building Official: Rexburg City Contact: Val Christensen or John (208) 359 -3020 ex. 324 or ex. 314 Scope: Structural Analysis & Design of Restaurant. Structural Plans for Restaurant. Structural Specification (review only). Referenced Documents Geotechnical Report: (none) Ir Prepared by: .......................................................................... RLH, on: February 27, 2004 A 1.2 Design Criteria Design Code: 2000 International Building Code (IBC '00) Loads: Code: Chapter 16 Standard: ASCE 7 -98 References: Section 2.0 (Structural Calculations) S1.01 (Structural Plans) Concrete Design: Code: Chapter 19 Standard: ACI 318 -99 Analysis Method: LRFD Concrete: ASTM C150, Type I or Type I I f'c = 2,500 psi (used for design) Reinforcing: ASTM A615, grade 60 (deformed) ASTM A615M, grade 40 (field bent) ASTM A185 (welded wire fabric) References: S1.01 (Structural Plans) Div. 5 (Project Specification) Steel Design: Code: Standard: Analysis Method: Structural: Columns (HSS): Columns (pipe): Plate: Bolts: Welds: References: Chapter 22 AISC ASD `89 ASD ASTM A992, grade 50 (fy = 50 ksi) ASTM A500, grade B (fy = 46 ksi) ASTM A53, Type E or S (fy = 36 ksi) ASTM A36 (fy = 36 ksi) ASTM A325 -N (steel to steel) ASTM A307 (embedded in concrete) E70xx (comply with AWS) E7018 (seismic components, as noted) S1.01 (Structural Plans) Div. 5 (Specification) Wood Design: Code: Chapter 23 Standard: NDS '97 (& Supplement) Analysis Method: ASD Dimens. / Timber: Douglas Fir -larch #2 (beams) Douglas Fir -larch #1 (posts) Redwood or pressure treated (mud -sill) Engineered: 24F -V4 (glu -lam, single span) 24F -V8 (glu -lam, continuous spans) 1.9 E (LVL) 2.0 E (PSL) 1.5 E (LSL) Prepared by: ............................................ ...........................RLH, on: February 18, 2004 S I joists (see plans) Open -web joists (see plans) Connections: Simpson References: S1.02 (Structural Plans) Div. 6 (Specification) Foundation Design: Code: Chapter 18 Bearing Pressure: qa = 2,000 psf (allowable, assumed) Back Fill Pressure: E.F.P = 35 pcf (assumed) Structural Fill: Native Soils (or see geotechnical report) Frost Depth: 36 inches References: Section 5.0 (Structural Calcs.) S2.01 (Structural Plans) Seismic Design: Code: Chapter 16 Standard: ASCE 7 -02 Analysis Method: Equivalent Lateral Force Procedure Lateral System: Wood Diaphragm & Wood Shear Walls Response Mod.: R = 5 Soil Site Class: D Use Group: I Importance: le = 1.0 Design Category: D References: Section 2.0 & 4.0 (Structural Calcs.) Wind Design: Code: Chapter 16 Standard: ASCE 7 -98, Section 6.0 Analysis Method: Simplified Procedure (Method 1) - Components: Simplified Procedure (Method 1) Lateral System: Wood Diaphragm & Wood Shear Walls Wind Speed: 90 mph (3 sec. gust) Exposure: B Importance: Iw = 1.0 References: Section 2.0 & 4.0 (Structural Calcs.) Prepared by: .......................................................................... RLH, on: February 18, 2004 L/ 1.3 Scope of Services Rendered Not provided in this calculation packet. Please see Structural Plans, page S1.01. Prepared by: .......................................................................... RLH, on: February 18, 2004 2.0 STRUCTURAL DESIGN LOADS Prepared by: .......................................................................... RLH, on: February 18, 2004 1 Y 2.1 Design Dead Loads (D) Location: Roof Type: Wood Components (ASCE 7 -02) Framing (open -web trusses): fr := 3.00psf (calculated) Sheathing (5/8" plywood): sh := 2.00psf (Tab. C3 -1) Roofing (asphalt shingles): ro := 3.00psf (Tab. C3 -1) Insulation: in := 2.50psf (Tab. C3 -1) Ceiling: ce := 2.00psf (Tab. C3 -1) Sprinkler: sp := 1.00psf (calculated) Mechanical / Electrical: me := 3.50psf (Tab. C3 -1) Miscellaneous: mi := 3.00psf Total: D:= fr + sh + ro + in + ce + sp + me + mi D = 20.00 psf D:\MyFiles \Projects \Commercial\2004 \Wingers 3600\21 D - roof - wood.mcd by: RLH, on: 2/18/2004, Page 1 of 1 r t 2.1 Design Dead Loads (D) Location: Exterior Walls Type: Wood Components (ASCE 7 -02) Framing (studs @ 16 "o.c.): fr:= 1.60psf (calculated) Sheathing: sh := 1.50psf (Tab. C3 -1) Finish (gypboard): gb:= 3.13psf (Tab. C3 -1) Barriers: ba := 1.00psf (Tab. C3 -1) Insulation: in := 1.50psf (Tab. C3 -1) Veneer (stucco): ve := 5.00psf (Tab. C3 -1) Miscellaneous: mi := 1.27psf Total: D:= fr + sh + gb + ba + in + ve + mi ©` 15:00�psf 1 7 D:\MyFiles \Projects \Commercial\2004 \Wingers 3600\21 D - walls - wood.mcd by: RLH, on: 2/18/2004, Page 1 of 1 /b 2.2 Design Live Loads (L) Location: Roof Type: Commercial Live Loads IB( C , 03) Construction: L 20.Opsf (uniform) (Tab. 1607.1) Snow (if greater): = S, (see Section 2.3) Rain (if greater): = R, (see Section 2.4) D:WyFiles\ Projects \Commercial\2004 \Wingers 3600\22 L - commercial - office.mcd by: RLH, on: 2/18/2004, Page 1 of 1 2.3 Design Snow Loads (S) Flat Roof Snow Load (ASCE 7 -98) Assumptions: Roof slope less than or equal to 5 deg. Exposure Factor: C := 1.0 (Tab. 7 -2) Thermal Factor: C := 1.0 (Tab. 7 -3) Importance Factor: I := 1.0 (Tab. 7-4) Ground Snow Load: p := 50.Opsf (per Build. Dept.) Flat Roof Snow Load: p 0.7•C " (Eq. 7 -1) Check Min. Allowable: Amin := if(p < 20psf, I I (Sec. 7.3.4) Pf _ if (Pf < Pmin , Pmin , Pf) Flat Roof Snow Load: Pf = 35:0 psf Sloped Roof Snow Load (ASCE 7 -98) Assumptions: Hip & gable roofs (non - curved). Acts on the horizontal projection of the roof surface. Slope Factor: C := 1.0 Ice Dams on Eaves: (Fig. 7 -2) Sloped Roof Snow Load: Ps C s - Pf P 2•0•Pf (Eq. 7 -2) / (Sec. 7.4.5) pS = 35.0 psf Pe 70.0 psf Unbalanced Roof Snow Load (ASCE 7 -98) Assumptions: Hip & gable roofs w/ slope less than 70 deg. (or) Hip & gable roofs w/ slope greater than 70/W + 0.5 deg. Eave to Ridge Distance: W:= 30-ft Ridge Length: L:= 60-ft (3 := 0.5 if Iw <_ 1.0 (Sec. 7.6.1) 0.33 + 0.167 • lw if 1.0 < Iw <_ 4.0 1.0 if Iw >_ 4.0 Unbalanced Snow Load: W < or = 20 ft W > 20 ft 1.5•ps 1.2.1.0 + 2) .ps Pub1 •= C Pub2 C e e Leeward Side: Pub! ,= 52.5psf P = 55.9 psf Windward Side: (none) Pub3 := 0•3'Ps Pub3 = 10.5 psf D:\MyFiles \Projects \Commercial\2004 \Wingers 3600\23 S - IBC '00.mcd by: RLH, on: 2/20/2004, Page 1 of 3 t 1 Drifts on Lower Roofs / Against Parapets Ill Schematic: (Figure 7 -8) Assumptions: (hc / hb) > 0.2 (otherwise, drift need not be applied) (ASCE 7 -98) Upper Roof Length (25 ft min): l u1 := 25-ft Snow Density: Lower Roof Length: l u2 := 60-ft 1 y:= 0.13• ft •p + 14•pcf (Eq. 7-4) Roof Height Difference: h 4-ft P f Ymax := 30pcf (Sec. 7.7.1) Height of Balanced Snow: h := Y:= if (Y < Ymax y , ymax) Y Clear Height: h := h - h y = 20.5 pcf he - 2.3 ft h Check: h := if h b J (Sec. 7.7.1) hb = 1.7ft For Leeward Drift: For Windward Drift: (Fig. 7 -9) Drift Height: ( 3 F hdI := 0.43 Ift -1.5 1 ( 3 7�sf •ft hdw:_ •0.43• I ft + 10 - 1.5 I ft J Check: h dl := hdI if hdI < h e h dw := hdw if h :5 h h if hdl > h h if hd > he (Sec. 7.7.1) hdI = 2.0 ft h = 2.3 ft Drift Width: w := 4.0-h if h h w := 4.0-h if h -< h (Sec. 7.7.1) h 2 2 h 4.0- tdll if h > h c 4.0 • h if h > h c Check: wl:= if(wI >- 8.0•h w if(wd >- 8.0•h (Sec. 7.7. 1) wl = 8.0 #t w = 91ff Drift Intensity: Pdl := y Pdw:= y•hdw (Sec. 7.7.1) Pdl = 41.0'psf Pdw = 47.0 psf 0 D: \MyFiles \Projects \Commercial\2004 \Wingers 3600\23 S - IBC'00.mcd by: RLH, on: 2/20/2004, Page 2 of 3 Sliding Snow Assumptions: Eave to Ridge Distance: (horizontal, upper roof) Sliding Load: (per unit length of eave) Req'd for slippery upper roofs w/ slopes greater than 1/4" in 12" Req'd for non - slippery upper roofs w/ slopes greater than 2" in 12" W = 19.0 ft p : = 0.4•p psl = 266O.plf Distribute: Distributed uniformly on the lower roof over a distance of 15 ft. from the upper roof eave, or reduce proportionally. Rain -on -snow Surcharge Load Assumptions: 5.0 psf, applied when pf < 20 psf & slope < 1/2" in 12" Ponding Instability Assumptions: Existing Roofs Assumptions: For slopes < 1/4" in 12 ", roof deflections caused by full snow loads shall be investigated when deermining the likelihood of ponding instability from rain -on -snow or from snow meltwater. Consider when higher roof is consturcted within 20 ft. (ASCE 7 -98) (Sec. 7.9) (ASCE 7 -98) (ASCE 7 -98) (ASCE 7 -98) /3 D:WIyFiles\ Projects \Commercial\2004 \Wingers 3600\23 S - IBC'00.mcd by: RLH, on: 2/20/2004, Page 3 of 3 /4 J M WILLIAMS and Associates Lateral Analysis Designed By: RLH Percent of snow to include in seismic calculations for roof dead load: Elevation (in 1000 feet) A:= 5.0 Snow Load: P:= 35•psf Snow to include: Ws :_ [ 0.20 + 0.025•(A — 5) ] P Ws = 7psf 16 2.4 Design Rain Loads (R) Components Assumption: Depth of water to secondary inlet (undeflected roof): Add'tl depth of water above secondary inlet: Rain Load: Primary roof drainage system blocked. d := 0.5ft dh : ='.Oft R:= 5.2•pcf•(d + d R = 7.8 psf (ASCE 7 -98) (Sec. 8.3) (Sec. 8.1) (Sec. 8.1) (Eqn. 8 -1) D:\MyFiles \Projects \Commercial\2004 \Wingers 3600\24 R - IBC'00.mcd by: RLH, on: 2/20/2004, Page 1 of 1 + Ap 2.5 Design Wind Loads (W) Building Geometry Number of Stories (max.= 4) Story 4: Story 3: Story 2: Story 1: Parapet: Mean Roof Height: Least Horizontal Dimension Length of Eave Overhang: End Zones: Check Minimums: *Length = parallel to ridge line N:= 1 *Width = perpendicular to ridge line Length* Width* Story Height Roof Slope: 1 0-ft d 0-ft hs 4 := 0-ft Y:= 0.25 1 0-ft d 0-ft h 0-ft X:= 12 (Y ) 1 := 0 -ft 2 d := 0-ft z atan h := 0-f W s2 a :_ I := 60-ft d := 60-ft deg h := 12-ft ' e =1.2 * * h := 4 -ft s (N +1) Design Criteria & Coefficients IBC '00 Assumptions: Main Wind Force - resisting System must meet all (Sec. 1609.6.1) criteria per Section 1609.6.1. 0 Reference: D: \MyFiles \Standards \Calculations\2.0 Loads \W \References - Wind \Figure 1609(4) (adjust) - IBC 'OO.mcd Basic Wind Speed: V:= 90-mph (3 -sec. gust) (Fig. 1609) Importance Factor: I := 1.0 (Tab. 1604.5) Exposure Category: B:= 1 C:= 2 D:= 3 (Sec. 1609.4) exp := B Adjustment Coefficient: X:= X (Tab. 1609.6.2.1(4)) (exposure, mean roof height) hmr, exp X = 1 =_.00 D:\MyFiles\ Projects \Commercial\2004 \Wingers 3600\25 V (wind) - IBC '00.mcd by: RLH, on: 2/20/2004, Page 1 of 4 1 /7 Design Wind Pressures iB� C '00) Assumptions: (Sec. 1609.6.2.1) E] Reference: D: \MyFiles \Standards \Calculations\2.0 Loads \W \References - Wind \Figure 1609(1) (90 mph) - IBC '00.mc Wind Pressures: P "w•Ps30 (Sec. 1609.6.2.1) Horizontal Wind Pressures (Load Case 1): Zone A: P =12.80 psf a,1 Zone B: P$ = -6.70 psf a,2 Zone C: Psa 3 = 8.50 psf Zone D: Ps 4 =-4.00 psf Vertical Wind Pressures (Load Case 1): Zone E: Psa 5 = -15.40 psf Zone F: Ps 6 = -8.80 psf Zone G: PS a , 7 = -10.70 psf Zone H: ps a, 8 = -6.80 psf Wind Pressures on Overhangs (Load Case 1): Zone Eoh: Psa 9 = -21.60 psf Zone Goh: Ps a,1Q = -16.90 psf Minimum Pressures Applied P :- if P < 10•psf,10•psf, p to Lateral Resisting System: a,1 `( a,1 a,1) P :- if p <10•psf,10•psf,p Sa 2 I S 2 P s a 21 P :- if p < 10•psf,10•psf, p / sa 3 1 s 3 s a , 3) P : if p < 10•psf,10•psf, p Sa 4 I P s 4 s 4 1 (Sec. 1609.1.2) D:\MyFiles \Projects \Commercial\2004 \Wingers 3600\25 V (wind) - IBC'00.mcd by: RLH, on: 2/20/2004, Page 2 of 4 I t Applied Diaphragm Loads PERPENDICULAR TO L: PERPENDICULAR TO D: h h Applied Diaphragm Load: Fp := p Fp d := p (floors) I x s sx +h s(x +1) s a,3 2 x s sx + h (x +1) a,3 2 Adjustment factor for hip: adj := 1.0 -3 D:\MyFiles \Projects \Commercial\2004 \Wingers 3600\25 V (wind) - IBC'00.mcd by: RLH, on: 2/20/2004, Page 3 of 4 h Applied Diaphragm Load: Fp := p N I N s a,3 2 + p 2•(h - h) ' adj + p •h sa,4 n 11 s a,3 s (N (roof): +1) Adjustment factor for hip /gable: adjd := 1.0 h Applied Diaphragm Loads: Fpd := ps N N a,3 2 + p 2 (h - hn) ad jd1 + Ps ' (N a,3 a,3 +1) Story 4: Fp = plf Fp = I plf 4 4 Story 3: Fp = plf Fp = # plf Story 2: Fp = plf Fp = plf Story 1: Fp =100 plf FpdI I = 100 pif h sx h +h s(x +1) sx +h s(x +1) Applied Diaphragm Load: Fpezl := ps Fpezd := ps ' at End Zones (floors) x a,1 2 x a,1 2 Adjustment factor for hip: adj12 := 1.0 h Applied Diaphragm Load: Fpezl := ps N + p 2•(h - hn)•adjl2 + Ps h s N 2 (N at End Zones (roof) a,1 a,2 a,1 +1) Adjustment factor for hip /gable: adj := 1.0 h Applied Diaphragm Load Fpez := p N N a,1 2 + Ps 2•(h - hn)•adjd2 + Ps h s (N at End Zones: a,1 a,1 +1) Story 4: Fpezl =■ plf Fpez = plf Story 3: Fpezl = ` r plf Fpez = plf 3 3 Story 2: Fpezl = ■ pif Fpez�l = a plf Story 1: Fpez 128plf Fpez 128pif 1 -3 D:\MyFiles \Projects \Commercial\2004 \Wingers 3600\25 V (wind) - IBC'00.mcd by: RLH, on: 2/20/2004, Page 3 of 4 � r Vertical Distribution Story Shear: Story 4: Story 3: Story 2: Story 1: Total Base Shear: PERPENDICULAR TO L: F Fp F14 = lb F13 = ■ lb F12 _ .■ lb F = 6000 lb 1 N V F i i =1 V, = 6000 lb Added Load at End Zones: Story 4: Story 3: Story 2: Story 1: Fezl x x Fpez — Fpl x� •2•a • � Fezl = 4 s lb Fezl = 3 rib Fez, 2 =rib - Fezl 269 lb /9 PERPENDICULAR TO D: F := Fp Fd 4 =■lb F = ■ ib Fd = ■lb F 4 = 60001b N V := Fdi i =1 V = 6,000 lb Fezd x Fpezd x — Fpd x� •2•a l Fezd = ■ 4 lb Fez = ■ lb 3 Fezd = ■ Ib Fezd 2691b D:\ MyFiles \Projects\Commercial\2004 \Wingers 3600\25 V (wind) - IBC '00.mcd by: RLH, on: 2/20/2004, Page 4 of 4 Y 1 C96 2.6 Design Seismic Loads (V) Building Geometry hs 4 := 0 -ft Number of Stories (max.= 4): N:= 1 hs 3 := 0 -ft Length* Story 4: 1 0 -ft Story 3: 1 := 0 -ft Story 2: 1 := 0 -ft Story 1: 1 60 -ft Parapet: MENEM Buildina Weiaht *Length = parallel to ridge line *Width = perpendicular to ridge line Width* Story Height Story DL d 0 -ft hs 4 := 0 -ft D 0 -psf d 0 -ft hs 3 := 0 -ft D 0 -psf d 0 -ft hs 2 := 0 -ft D 0 -psf d 60 -ft hs 1 := 12-ft D 27 -psf * h := 4 -ft s (N +1) Diaphragms: wd Dx.lx-dx l I Walls: ww Dw hs x + Dw hs (x +1) I x L x 2 (x +1) 2 J Story Weight: w := wd + ww -I + 2.d Building Weight: W:= I w W =133.2.k Buildina Period N +1 hs• Eave Height (feet): hn ft i =1 C := 0.020 X:= 0.75 Appx. Fundamental Period: T := Ct.hnX T = 0.16 Check Upper Limit: C := 1.5 T:= if(T >T Cu, T *C Fundamental Period: T = 0.16 Wall DL D N , := 0 -psf 4 D 3 := 0 -psf D 0 -psf D := 15 -psf 1 D := 15 -psf w (N +1) (ASCE 7 -98) (Tab. 9.5.5.3.2) (Tab. 9.5.5.3.2) (Eqn. 9.5.5.3.2 -1) (Tab. 9.5.5.3.1) (Sec. 9.5.5.3) D:\MyFiles\ Projects \Commercial\2004 \Wingers 3600\26 V (seis) - IBC '00.mcd by: RLH, on: 2/20/2004, Page 1 of 4 r Ground Motion Soil Site Class: Spectral Response Accel Site Coeffficients: Design SRA Parameters: D S := 0.505 (short periods) S := 0.163 (1 sec. period) F := 1.40 F := 2.15 Sd := 0.67 • F a' S s Sd = 0.47 Sd1 := 0.67•Fv•S1 Sd 0.23 Desian Criteria & Coefficients Seismic Use Group: Seismic Design Category*: cat := catD catA = 1 cat6 = 2 catC = 3 catD = 4 catE = 5 catF = 6 *For plan or vertical irregularity, see Section 1616.5 Response Modification: R:= 6.5 Importance Factor: l := 1.0 Desian Seismic Loads (Base Shear Analysis Procedure: Equivalent Lateral Force Analysis Seismic Response Coeff.: C smin 0.044 • S ds• l e (Short Periods) C smin = 0.021 Seismic Response Coeff.: C - S ds (Calculated) ( R) l e) C = 0.073 Sd1 Seismic Response Coeff.: C smax •- (Long Periods) ( R1 . T e) C smax = 0.226 IBC '00 (Tab. 1615.1.1) (Fig. 1615(5)) (Fig. 1615(6)) (Tab. 1615.1.2(1)) (Tab. 1615.1.2(2)) (Eqn. 16 -18) (Eqn. 16 -19) IB( C '00) (Sec. 1616.2) (Sec. 1616.3) (Tab. 1617.6) (Tab. 1604.5) IBf C '00) (Sec. 1617.4) (Eqn. 16 -37) (Eqn. 16 -35) (Eqn. 16 -36) D:\MyFiles \Projects \Commercial\2004 \Wingers 3600\26 V (seis) - IBC '00.mcd by: RLH, on: 2/2012004, Page 2 of 4 r Select Cs: Cs if ( < Csmin , C smin , C s) C := if ( > C smax , C smax , C s) C = 0.073 Check Min. (Cat. E & F): Csef 0.5•S1 1 (Eqn. 16 -38) R le) C sef = 0.013 Cs Csef if (Cat >_ 5). ( < C sef) Csef if (S 1 >_ 0.6) • (C < Csef) C otherwise Design Response Coeff.: C = 0.073 Total Base Shear: V:= C (Eqn. 16 -34) V"'= 97 lb Vertical Distribution IB( C '00) (11 (0. Distribution Exponent: k1 := t1 :_ l(2) �2.5 ) (Sec. 1617.4.3) k:= 1 if T < 0.5 linterp(t1 , k1 , T) if 0.5 <— T —< 2.5 2 if T > 2.5 wh k x sx) Distribution Factor: — C vx : (Eqn. 16-42) N k L x =1 Story Shear: F := C •V x (Eqn. 16 Story 4: F = Ob Story 3: F3 = alb Story 2: F2 = s lb Story 1: F11 = 9707 lb D:\MyFiles \Projects \Commercial\2004 \Wingers 3600\26 V (seis) - IBC '00.mcd by: RLH, on: 2/20/2004, Page 3 of 4 � r Applied Diaphragm Loads IBC '00 D:WIyFiles\ Projects \Commercial\2004 \Wingers 3600\26 V (seis) - IBC '00.mcd by: RLH, on: 2/20/2004, Page 4 of 4 PERPENDICULAR TO L: PERPENDICULAR TO D: (wdx 1 ( wdx 1 Applied Diaphragm Load: (Design Category A - C) Fp := 0.2- l -- + 2 -ww x I ) Fp := 0.2.l — + 2 -ww x d (Eqn. 16 -62) N I F Applied Diaphragm Load: i = Fpx :_ x (Design Category D - F) N (Eqn. 16 -65) wi i =x Minimum / Maximum: F pmin := 0.15 •Sds -l e (Sec. 1620.3.2) x F pmax x : = 0.30 • S ds• l e F px : = if � F px < F pmin x I F pmin x , Fpx Fpx := if Fpx > F pmax x , F pmax x , FPx (wdx 1 (wdx Fp12x := Fp + 2•wv x I x Fp := Fp + 2•ww x Fp := Fp if cat <_ 3 Fp := Fp if cat <_ 3 x x x x Fp12 if cat >_ 4 Fp if cat >_ 4 x x Applied Loads: Fpl := Fpl F pd := F pd x x x x Story 4: FpI = ■ plf Fpd = pif 4 _4 Story 3: FpI = ■ plf Fpd = s plf 3 3 Story 2: Fp = a plf Fpd = ■ plf 2 2 Story 1: Fp =140 plf Fpd = 140 plf 1 1 D:WIyFiles\ Projects \Commercial\2004 \Wingers 3600\26 V (seis) - IBC '00.mcd by: RLH, on: 2/20/2004, Page 4 of 4 1 1 X q 3.0 GRAVITY A NALYSIS Prepared by: .......................................................................... RLH, on: February 18, 2004 J.M. WILLIAMS and ASSOCIATES • Structural Engineering 363 South 500 East • Suite 210 • Salt Lake City, Utah 84102 • (801) 575 -6455 • Fax (801) 575 -6456 C 910 1433 South State Street • Orem, Utah 84097 • (801) 229 -2014 • Fax (801) 229 -2015 (PROJECT DATE ISHEET OF F5 117 PROJECT J.M. WILLIAMS and ASSOCIATES • Structural Engineering 363 South 500 East • Suite 210 • Salt Lake City, Utah 84102 • (801) 575 -6455 • Fax (801) 575 -6456 1433 South State Street • Orem, Utah 84097 • (801) 229 -2014 • Fax (801) 229 -2015 DATE SHEET OF DESIGNED BY JOB NO. fz 4b t 2 i 0 f t 1� t _ 2c2 15 ? M (SAY 4zk 0 , 1 -- 7 C-910 PROJECT J.M. WILLIAMS and ASSOCIATES • Structural Engineering 363 South 500 East • Suite 210 • Salt Lake C4, Utah 84102 • (801) 575 -6455 • Fax (801) 575 -6456 1433 South State Street . Orem, Utah 84097 • (801) 229 -2014 • , Fax (801) 229 -2015 DATE SHEET OF J DESIGNED BY JOB NO. n J 2 �i . e _ A ........ . . joV _ _ X 4 13• rn O C5 -t) J 1($ • • • Load Tables /Snow ( 115 %) Allowable Uniform Load (plf) T1IM'M S TIM Series Parallel Chord • Open -Web Series TJ LTm Series FL =Flat roof less than Va" in 12" slope. SL= Sloped roof greater than Va" in 12" slope. 1. Values shown are maximum allowable load capacities. Open -web trusses will be custom designed to the specified loads. 2. Straight line interpolations may be made between depths and spans. 3. Values shown are maximum allowable load capacities of the trusses in pounds per lineal foot (plf) based on: • simple span, uniformly loaded conditions. • an assumed 25% ratio of dead load to total load (eg.: 30 psf live /10 psf dead). These tables maybe non - conservative if the actual ratio is higher than 25 %. A more accurate analysis can be obtained by using the TJ- Beam"' software program. • top chord no -notch bearing clips with 1 3 /4" bearing. Higher values may be possible with other types of bearing clips. 4. These tables may also be used for bottom chord bearing trusses (maximum bottom chord slope of 1 "712 ") with or without cantilevers - at one or both ends. Cantilevers are limited to 1 /3 of the main span provided the inboard shear for cantilevered conditions is limited to 2,500 lbs. 5. Values in gray ® areas may be increased 7% for repetitive member usage if the criteria on page 9.7 are met. REV. 6/97 W 6.9 TJ LX'rm Series Check with your local Trus Joist MacMillan representative on availability of the TJLX'" Series in your area. U r 3.0 Design of Flexural Member - Dimensional Lumber Desiqn Schematic Location: Member: Material: Beam Width: Beam Depth: Span Length: Rafters at Entry 2 x 12" @ 24" o.c. Douglas Fir -larch No. 2 b:= 1.5-in d:= 11.25-in 1:= 11.5-ft Fioure 10.8 Service Loads a P c LO D:= 20•psf l := 2-ft p := 0•Ib Dead Loads (wall) / Tributary: D := 0•psf I := 0-ft p := 0•Ib W L:= 0•psf i := 0-ft a:= 0-ft Live Loads / Tributary: I I tlr := 2-ft c:= I -a R1 R2 Service Loads Uniform Concentrated Dead Loads / Tributary: D:= 20•psf l := 2-ft p := 0•Ib Dead Loads (wall) / Tributary: D := 0•psf I := 0-ft p := 0•Ib Live Loads /Tributary: L:= 0•psf i := 0-ft a:= 0-ft Live Loads / Tributary: L 60•psf I tlr := 2-ft c:= I -a Load Combinations & Design Loads Uniform Dead Load: w := D•l + D Uniform Live Load: wl := L • I tl + L r• I tlr Alternative Basic L.C.: w:= w + w P Pd + PI Uniform Load (plf): w' =160,0plf p, 0,01b Reactions: p_ Rw1 w•I w•I := 2 R := 2 R I R = 920.0 Ib R = 920.0Ib R = O.O lb Maximum Shear: umax max(R + R R vv2 + R Vmax = 920,:0 lb 2 Maximum Moment: M max w -1 0.0-lb 8 P 11 if w = 0.0•plf 4 (w•c P•a•c •a + J otherwise 2 1 max = 2645.Olb =ft DAProject Records \Commercial\2004 \Wingers 3600 \30 b5.mcd R pp — p2:= 1 R = 0.0 lb (Calculations) (Sec. 2.1) (Sec. 2.1) (Sec. 2.2) (Sec. 2.2) IBC '03 (Eqn. 16 -13) by: RLH, on: 2/27/2004, Page 1 of 3 t Adiustment Factors Load Duration: Temperature: Beam Stability: Form: Incising: Repetitive Use: Wet Service: Flat Use: Size: Flexural Design Allowable Bending Stress: Adjusted Bending Stress: Required Section Modulus/ Actual Section Modulus: Shear Design Allowable Shear Stress: Adjusted Shear Stress: Required Area/ Actual Area: C := 1.0 C := 1.0 C := 1.0 Cf := 1.0 C := 1.0 C := 1.15 C := 1.0 Cf := 1.0 C := 1.0 Fb:= 900-Ps' F b : = F b• C D• C M• C t• C L• C F•Cfu•G•Cr•Cf M max b•d Sr � F b Sa 6 Sr = 30.7 in < $ = 31.6 in F := 95-psi F F 3 Vmax — w•d Ar. 2 F v A =12.2 in2 Serviceability Modulus of Elasticity: E := 1600000-psi Adjusted Modulus: E:= E•C 3 b•d Moment of Inertia I ;_ 12 Allowable Deflection: A at := (Total Service Loads) 240 Allowable Deflection: Aal:= I (Service Live Loads) 3 D:\Project Records \CommerciaK2004 \Wingers 3600 \30 b5.mcd A := b•d A 16.9 in 30 NDS -01 (Tab. 2.3.2) (Tab. 2.3.3) (Sec. 3.3.3) (Tab. 3.3.4) (Tab. 4.3.8) (Tab. 4A - Sup.) (Tab. 4A - Sup.) (Tab. 4A - Sup.) (Tab. 4A - Sup.) N( DS-01) (Tab. 4.3.1) (rectangular sec.) A( SD-01) (Tab. 4.3.1) (rectangular sec.) IBC '03 (rectangular sec.) (Tab. 1604.3) (Tab. 1604.3) by: RLH, on: 2/27/2004, Page 2 of 3 r Actual Deflection: (Total Service Loads) Actual Deflection: (Service Live Loads) A maxt gl 5 -w -1 384 -E -1 if p = 0.0 -lb 3 P I if w = 0.0•plf 48•E•1 w l 2 2 (1 - 2.1 -c + c3/ + P a c otherwise 24•E•I 3 E I•I A maxt = 0.221 in < A 0.383 in A maxl 5 -w 384•E•1 if p = 0.0-lb P • I 3 if 48-E .1 w = 0.0•plf wI•c (3 2 3) I pl•a - 2.1-c + c / + otherwise L24-E-1 3•E•1.1 Amax, =0.166 in < A at = 0:575 in D:\Project Records \Commercial\2004 \Wingers 3600\30 b5.mcd by: RLH, on: 2/27/2004, Page 3 of 3 F f &"I 3.0 Design of Flexural Member - Dimensional Lumber Design Schematic Location: Member: Material: Beam Width: Beam Depth: Span Length: Typ. Exterior Headers (2)2x10" Douglas Fir -larch No. 2 b:= 3.0-in d:= 9.25-in 1:= 3.0-ft Figure 10.8 Service Loads a p c Dead Loads / Tributary: D:= 20•psf l := 16-ft p := 0•Ib (Sec. 2.1) Dead Loads (wall) / Tributary: D 15•psf I 9-ft p := 0•Ib (Sec. 2.1) W L:= 0•psf Itl := 0-ft a:= 0-ft (Sec. 2.2) Live Loads / Tributary: I c:= I - a (Sec. 2.2) R1 IBC '03 Uniform Dead Load: R2 Service Loads Uniform Concentrated (Calculations) Dead Loads / Tributary: D:= 20•psf l := 16-ft p := 0•Ib (Sec. 2.1) Dead Loads (wall) / Tributary: D 15•psf I 9-ft p := 0•Ib (Sec. 2.1) Live Loads / Tributary: L:= 0•psf Itl := 0-ft a:= 0-ft (Sec. 2.2) Live Loads / Tributary: L 60•psf Itlr:= 16-ft c:= I - a (Sec. 2.2) Load Combinations & Design Loads IBC '03 Uniform Dead Load: w := D•I + D Uniform Live Load: wl := L•ItI + L r' I tlr Alternative Basic L.C.: w:= w + wl P:= p + p (Eqn. 16 -13) Uniform Load (plf): w = 1415 0plf p = O.O lb Reactions: w•I w•I Rw1:= Rw2:= R p_c R p_a p1 := p2 := 2 2 I I R = 2122.51b R = 2122.51b R = 0.0 lb R = 0.0 lb Maximum Shear: Vmax:= max(R + R , R + R V max = 222.51b Maximum Moment: M max = 2 w —I 0.0-lb 8 P 11 if w= 0.0•plf 4 (w•c p•a•c •a + ) otherwise 2 I M max = 1591.9lb•ft D:\MyFiles\ Projects \Commercial\2004 \Wingers 3600 \30 bl.mcd by: RLH, on: 2/20/2004, Page 1 of 3 Adjustment Factors Load Duration: Temperature: Beam Stability: Form: Incising: Repetitive Use: Wet Service: Flat Use: Size: Flexural Design Allowable Bending Stress: Adjusted Bending Stress: Required Section Modulus/ Actual Section Modulus: Shear Design Allowable Shear Stress: Adjusted Shear Stress: Required Area/ Actual Area: C := 1.0 C := 1.0 C := 1.0 Cf := 1.0 C := 1.0 C r := 1.0 CM := 1.0 Cf := 1.0 C := 1.1 F := 900 -psi Fb:= Fb- CD- CM- Ct- CL- CF- Cf Ci -C M max b -d S := F S := 6 b 5r =19.3 in C S = 42.8 in F := 95 -psi F F C C -C -C 3 V max - w•d Ar - 2 F v Ar = 163 'in2 Serviceability Modulus of Elasticity: E:= 1600000 -psi Adjusted Modulus: E:= E.C -C -C 3 b -d Moment of Inertia I ;_ 12 Allowable Deflection: Aat:= I — (Total Service Loads) 240 Allowable Deflection: — D := I (Service Live Loads) 360 D: \MyFiles \Projects \Commercial\2004 \Wingers 3600 \30 bl.mcd A := b -d < A = 27 8 in2 33 NDS -01 (Tab. 2.3.2) (Tab. 2.3.3) (Sec. 3.3.3) (Tab. 3.3.4) (Tab. 4.3.8) (Tab. 4A - Sup.) (Tab. 4A - Sup.) (Tab. 4A - Sup.) (Tab. 4A - Sup.) ND( S -01) (Tab. 4.3.1) (rectangular sec.) AS( D-01) (Tab. 4.3.1) (rectangular sec.) IB( C , 03) (rectangular sec.) (Tab. 1604.3) (Tab. 1604.3) by: RLH, on: 2/20/2004, Page 2 of 3 t Actual Deflection: (Total Service Loads) Actual Deflection: (Service Live Loads) A maxt �- 5•w•1 If p = 0.0 Ib 384 -E -1 3 p I if w = 0.0•plf 48•E•1 we 2 2 otherwise (1 - 2.1•c + c + p a c 24•.1•1 3 E I•I Qmaxt = 0.008 in < 0 = 0.100 in 5 w 1 Amaxl 384•E•I if p = 0.0•Ib PI •I 3 if 48 -E•I w = 0.0 -plf 1 w l -c (3 2 3) pl•a I I - 2.1•c + c + otherwise L24•E•I 3•E•1.1 J A max) = 0.006 in < ©at = 0.150 in D:\MyFiles\ Projects \Commercial\2004 \Wingers 3600\30 bl.mcd by: RLH, on: 2/20/2004, Page 3 of 3 ! 135 3.0 Design of Flexural Member - Dimensional Lumber Design Schematic Location: Member: Material: Beam Width: Beam Depth: Span Length: Exterior Headers (3)2x10" Douglas Fir -larch No. 2 b:= 4.5-in d:= 9.25-in 1:= 5.0 -ft Fioure 10.8 Service Loads a p c Dead Loads / Tributary: D:= 20 -psf l := 16 -ft p := 0•Ib (Sec. 2.1) Dead Loads (wall) /Tributary: D 15•psf I 9-ft p 0•Ib (Sec. 2.1) W L:= 0 -psf I := 0•ft a:= 0•ft (Sec. 2.2) Live Loads / Tributary: I c:= I -a (Sec. 2.2) R1 IB( C '03) Uniform Dead Load: R2 Service Loads Uniform Concentrated (Calculations) Dead Loads / Tributary: D:= 20 -psf l := 16 -ft p := 0•Ib (Sec. 2.1) Dead Loads (wall) /Tributary: D 15•psf I 9-ft p 0•Ib (Sec. 2.1) Live Loads / Tributary: L:= 0 -psf I := 0•ft a:= 0•ft (Sec. 2.2) Live Loads / Tributary: L 60•psf Itlr := 16-ft c:= I -a (Sec. 2.2) Load Combinations & Design Loads IB( C '03) Uniform Dead Load: w := D -I + D Uniform Live Load: wl := L -I tl + L r -l tlr Alternative Basic L.C.: W:= w + wl P:= p + p (Eqn. 16 -13) Uniform Load (plf): w= 1415.Oplf p = 0,0lb Reactions: w -1 Rw1 w•I := Rw2:= pp pc c R p -a R p1 := p2 := 2 2 I I Rw1 = 3537.51b R = 3537.51b R = 0.0 lb R = 0.0 lb Maximum Shear: Vmax:= max(R + R R + R Vmax = 3537.5Ib Maximum Moment: M max : = 2 W -1 0.0 -lb 8 P-1 if w = 0.0 -plf 4 (W-C p-a-S •a + J otherwise 2 I Mmax = 4421.9lb -ft D:\MyFiles \Projects \Commercial\2004 \Wingers 3600 \30 b2.mcd by: RLH, on: 2/20/2004, Page 1 of 3 e Adjustment Factors Load Duration: Temperature: Beam Stability: Form: Incising: Repetitive Use: Wet Service: Flat Use: Size: Flexural Design Allowable Bending Stress: Adjusted Bending Stress: Required Section Modulus/ Actual Section Modulus: Shear Design Allowable Shear Stress: Adjusted Shear Stress Required Area/ Actual Area: C := 1.0 C := 1.0 C := 1.0 C := 1.0 C := 1.0 C r := 1.0 C M := 1.0 Cf := 1.0 C := 1.2 F := 900-Ps' F Fb•C M max b•d F S := S := 6 b S = 49.1 in < $ = 64.24n 3 F := 95-psi F F 3 Umax — w•d A : 2 F v A r = 38.6'in2 Serviceability Modulus of Elasticity: E := 1600000-psi Adjusted Modulus: E:= E- C 3 b•d Moment of Inertia I :_ 12 Allowable Deflection: Aat := (Total Service Loads) 240 Allowable Deflection: Aal:= I (Service Live Loads) 3 D:\MyFiles \Projects \Commercial\2004 \Wingers 3600 \30 b2.mcd A := b•d A a = 41.6 in2 IRL NDS -01 (Tab. 2.3.2) (Tab. 2.3.3) (Sec. 3.3.3) (Tab. 3.3.4) (Tab. 4.3.8) (Tab. 4A - Sup.) (Tab. 4A - Sup.) (Tab. 4A - Sup.) (Tab. 4A - Sup.) N( DS-01) (Tab. 4.3.1) (rectangular sec.) ASD -01 (Tab. 4.3. 1) (rectangular sec.) IBC '03 (rectangular sec.) (Tab. 1604.3) (Tab. 1604.3) by: RLH, on: 2/20/2004, Page 2 of 3 r Actual Deflection: (Total Service Loads) Actual Deflection: (Service Live Loads) Amaxt :_ 97 5•w•1 if p= 0.0•Ib 384•E -1 3 p I if w = 0.0•plf 48•E -1 we l 2 2 •(1 — 2.1-c 2 +C 3/ + p a c otherwise 24•E•I 3•E•I•I ©maxt = 0.042 in < A = 0.iff in A maxl 5 w, 1 - if p= 0.0•Ib 384•E•1 p 3 4.8-E-1 if w = 0.0 • plf 2 2 1 1 wl c •(1 — 2.1•c + c3/ + I a c otherwise L24-E-1 3•E•1.1 J Amaxl = 0.028 in < A at = 0150 in D:WIyFiles \Projects \Commercial\2004 \Wingers 3600 \30 b2.mcd by: RLH, on: 2/2012004, Page 3 of 3 r 98 3.0 Design of Flexural Member - Dimensional Lumber Desian Schematic Location: Member: Material: Beam Width: Beam Depth: Span Length: Typ. Interior Headers (3)2x10" Douglas Fir -larch No. 2 b:= 4.5-in d:= 9.25-in 1:= 4.0-ft Service Loads Uniform Dead Loads / Tributary: D:= 20•psf Dead Loads (wall) / Tributary: D := 10•psf Live Loads / Tributary: L:= 0•psf Live Loads / Tributary: L 35•psf Fiaure 10.8 Concentrated I := 30-ft Pd := 0•Ib l := 5-ft p := 0•Ib I := O-ft a:= 0-ft I tlr := 30 -ft c:= I -a Load Combinations & Design Loads Uniform Dead Load: w := D•I + D Uniform Live Load: wl := L ' I tl + L r' l tlr Alternative Basic L.C.: W:= w + wl P Pd + p Uniform Load (plf): w = 1700Oplf p = 0.0Ib pc Reactions: Rw1 := 2 w•I Rw2 := Z w•I Rp1 , I Rw1 = 3400.0 lb R = 3400.0 lb R = 0.0 lb Maximum Shear: Vmax max(R + Rp1, Rw2 + R Vmax = 34KOlb Maximum Moment: Mmax w•1 " p = 0.0-lb 8 P-1 if w = 0.0•plf 4 (w•c P 2 •a + I ) otherwise M max = 3400.0lb•ft R pp — p2:= I R = 0.0 lb (Calculations) (Sec. 2.1) (Sec. 2.1) (Sec. 2.2) (Sec. 2.2) IB( C , 03) (Eqn. 16 -13) D:\MyFiles\ Projects \Commercial\2004 \Wingers 3600 \30 b3.mcd by: RLH, on: 2/20/2004, Page 1 of 3 a P c W I R1 R2 Concentrated I := 30-ft Pd := 0•Ib l := 5-ft p := 0•Ib I := O-ft a:= 0-ft I tlr := 30 -ft c:= I -a Load Combinations & Design Loads Uniform Dead Load: w := D•I + D Uniform Live Load: wl := L ' I tl + L r' l tlr Alternative Basic L.C.: W:= w + wl P Pd + p Uniform Load (plf): w = 1700Oplf p = 0.0Ib pc Reactions: Rw1 := 2 w•I Rw2 := Z w•I Rp1 , I Rw1 = 3400.0 lb R = 3400.0 lb R = 0.0 lb Maximum Shear: Vmax max(R + Rp1, Rw2 + R Vmax = 34KOlb Maximum Moment: Mmax w•1 " p = 0.0-lb 8 P-1 if w = 0.0•plf 4 (w•c P 2 •a + I ) otherwise M max = 3400.0lb•ft R pp — p2:= I R = 0.0 lb (Calculations) (Sec. 2.1) (Sec. 2.1) (Sec. 2.2) (Sec. 2.2) IB( C , 03) (Eqn. 16 -13) D:\MyFiles\ Projects \Commercial\2004 \Wingers 3600 \30 b3.mcd by: RLH, on: 2/20/2004, Page 1 of 3 Adjustment Factors Load Duration: Temperature: Beam Stability: Form: Incising: Repetitive Use: Wet Service: Flat Use: Size: Flexural Design Allowable Bending Stress: Adjusted Bending Stress: Required Section Modulus/ Actual Section Modulus: Shear Design Allowable Shear Stress: Adjusted Shear Stress: Required Area/ Actual Area: C := 1.0 C := 1.0 CL := 1.0 Cf := 1.0 C i := 1.0 C := 1.0 CM := 1.0 Cf := 1.0 C F := 1.2 F b := 900•psi F Fb•CD•CM•C M max b•d S := F S := 6 b Sr = 37.8 in < S 64.2 in F v := 95-psi F F 3 umax - w•d Ar: 2 F v A = 33.0 in Serviceability Modulus of Elasticity: E := 1600000-psi Adjusted Modulus: E:= E•CM•C b.d3 Moment of Inertia 12 Allowable Deflection: Aat:= I — (Total Service Loads) 240 Allowable Deflection: A al := I — (Service Live Loads) 360 D:WIyFiles\ Projects \Commercial\2004 \Wingers 3600\30 b3.mcd A b•d < A = 41.6 in M NDS -01 (Tab. 2.3.2) (Tab. 2.3.3) (Sec. 3.3.3) (Tab. 3.3.4) (Tab. 4.3.8) (Tab. 4A - Sup.) (Tab. 4A - Sup.) (Tab. 4A - Sup.) (Tab. 4A - Sup.) NDS -01 (Tab. 4.3. 1) (rectangular sec.) ASD -01 (Tab. 4.3. 1) (rectangular sec.) IBS C , 03) (rectangular sec.) (Tab. 1604.3) (Tab. 1604.3) by: RLH, on: 2/20/2004, Page 2 of 3 r Actual Deflection: (Total Service Loads) Actual Deflection: (Service Live Loads) A maxt *d 5w1 384•E•I if p = 0.0 -lb p 13 if w = 0.0•plf 48•E•1 w•c p.a2 c2 (I 3_ 2.1-c 2 + c 3 ) otherwise + 24 -E•1 3 E I I Amaxt = 0.021 in < Aal = 0.133 in A maxl 5. wl 1 if 384•E•I p= 0.0•lb pl•I 3 if 48•E•I w = 0.0 • plf 1 w l -c (3 2 3) pl•a - 2.1•c + c + otherwise L24 -E•1 3•E•1.1 J Amaxl =-0.013 in < dat = 0.200n D:W IyFiles \Projects\Commercial\2004 \Wingers 3600 \30 b3.mcd by: RLH, on: 2/20/2004, Page 3 of 3 I 3.0 Design of Flexural Member - Dimensional Lumber Design Schematic Fioure 10.8 Location: Interior Header a P c Member: 5 1/4 x 9 1/2" PSL Material: Paralam w` Beam Width: b:= 5.25-in � 1 Beam Depth: d:= 11.88-in Span Length: 1:= 10.0-ft R1 R2 Service Loads Uniform Concentrated (Calculations) Dead Loads / Tributary: D:= 20•psf l := 30-ft Pd := 0•Ib (Sec. 2.1) Dead Loads (wall) / Tributary: D 10•psf I 5-ft p := 0•Ib (Sec. 2.1) Live Loads / Tributary: L:= 0•psf Itl := 0-ft a:= 0-ft (Sec. 2.2) Live Loads / Tributary: L 35•psf Itlr := 30-ft c:= I -a (Sec. 2.2) Load Combinations & Design Loads IB( C , 03) Uniform Dead Load: w := D•l + D Uniform Live Load: wl := L • I tl + L r' l tlr Alternative Basic L.C.: w:= w + wl P:= p + p (Eqn. 16 -13) Uniform Load (plf): w = 1700.0pif p = O.O lb Reactions: Rw1 w•l w I := Rw2:= c pp _ R p 1:= p2:= p a R — 2 2 I l R = 8500.01b R = 8500.01b R = 0.0 lb R = 0.0 lb Maximum Shear: Vmax:= max(R + R , R vv2 + R V rnax = 8500.0Ib 2 Maximum Moment: M max : = ww -1 if p = 0.0•Ib 8 P-1 if w = 0.0•plf 4 p a c Zc a+ otherwise M max -` 21250.0lb -ft D: \MyFiles\ Projects \Commercial\2004 \Wingers 3600 \30 b4.mcd by: RLH, on: 2/20/2004, Page 1 of 3 R P Adiustment Factors Load Duration: Temperature: Beam Stability: Form: Incising: Repetitive Use: Wet Service: Flat Use: Size: Flexural Design Allowable Bending Stress: Adjusted Bending Stress: C := 1.0 C := 1.0 C := 1.0 C 1.0 Ci := 1.0 C := 1.0 CM := 1.0 C := 1.0 CF := 1.0 F := 2900-psi F Fb•CD•CM•C Required Section Modulus/ Actual Section Modulus: Shear Design Allowable Shear Stress: Adjusted Shear Stress: Required Area/ Actual Area: M max b•d F S := S := 6 b Sr = 87.9 in < S 123:5 in F := 290-psi F F 3 umax – w•d Ar. 2 F v A = 35.3 in A := b•d < A = 62A in Serviceability Modulus of Elasticity: E := 2000000-psi Adjusted Modulus: E:= E•C b.d3 Moment of Inertia 1:= 12 Allowable Deflection: A at := (Total Service Loads) 240 Allowable Deflection: Aal:= I — (Service Live Loads) 360 D:\MyFiles\ Projects \Commercial\2004 \Wingers 3600 \30 b4.mcd �4a NDS -01 (Tab. 2.3.2) (Tab. 2.3.3) (Sec. 3.3.3) (Tab. 3.3.4) (Tab. 4.3.8) (Tab. 4A - Sup.) (Tab. 4A - Sup.) (Tab. 4A - Sup.) (Tab. 4A - Sup.) N( DS -01) (Tab. 4.3.1) (rectangular sec.) ASD -01 (Tab. 4.3.1) (rectangular sec.) IBC '03 (rectangular sec.) (Tab. 1604.3) (Tab. 1604.3) by: RLH, on: 2/20/2004, Page 2 of 3 f Actual Deflection: (Total Service Loads) Actual Deflection: (Service Live Loads) A maxt �3 5•w•1 if p= 0.0•Ib 384•E•1 3 p 1 if w = 0.0•plf 48•E•1 2 w•c 2 �1 - 2.1•c + c + p a c otherwise [i4 •E•I 3 E I I Qmaxt = 0.261 in < Aai = 0.333 in A maxl 5W if p = 0.0•Ib 384•E•1 PI.1 3 if 48•E•I w = 0.0•plf l WI c •(1 - 2.1-c 2 + c3/ P + I 2 a c 2 otherwise L24-E•1 3•E•1•I I Amaxl - 0.161 in < D = 0.500 in D:WIyFiles \Projects \Commercial\2004 \Wingers 3600 \30 b4.mcd by: RLH, on: 2/20/2004, Page 3 of 3 6 17 0 : 1 oqm WOOD POST WITH NO MOMENT ROOF FRAMING Q Reference:C:\Mathcad Tables \Wood Values.mcd Typ. Post DESIGN CRITERIA Column Length - clear span: lu := 12-ft Column Load: P:= 8.5•k Buckling factor: K:= 1.0 Effective column length: le := lu.K le = 12 ft WORKING STRESS DESIGN Material: Allowable bending stress Fb: Allowable axial stress Fc: Modulus of elasticity E: USE: (4) 2 x 6" Studs Area: Formula constants: (For sawn members use 0.3) (For laminated use 0.418) (For sawn members use 0.8) (For laminated use 0.7) C = Size factor (sawn lumber only) fc .= P A fc = 257.576 psi UNITY CHECK: i:= STUD Cd = load duration factor: CD := 1 Fb = 675 psi Cr = repetitive use factor: C,:= I Fc = 825 psi Solid or Built -up solid := 1 builtup := 2 E = 1400000 psi member := builtup b:= 6.O-in (Total thickness) A:= b•d d:= 5.5-in (Depth of individual member) A = 33 in K := if(i > 2,0.418,0.3) KcE = 0.418 NDS Sec 3.7.1.5 c := if(i > 2,0.7,0.8) c =0.7 b:= if (d >_ b,b,d) C if(d > 4•in,if(d > 6•in,if(d > 8•in,1.0,1.05),1.1),1.15) C := if (d > 10•in,if(d > 12•in,0.9,1.0),C C := if > 2,1,Ci) C. = 1 K i Fc' := Fc F := 2 Fc'. = 825 psi lel ' l d) F = 853.7 psi Fc' := ifi a > 50,0•psi,Fc' i Fc'. = 825 psi i 2 1 + FcE �I + FcE FcE Fc' .:= Fe'.• Fc'i — JL I Fc' _ F L 2•c 2•c J c I Fc'. = 542.1 psi i fc 0.792 1.0 06 11 1 �y 4.0 LATERAL ANALYSIS Prepared by: .......................................................................... RLH, on: February 18, 2004 0 4.0 Design of Deep Flexural Member - Plywood Diaphragm Design Schematic Location: Roof (Schematic Diagram) Wet Service: Diaphragm: 19/32" APA Exp. 1 Plywood Temperature: C := 1.0 Material: Size (Chord Only): C := 1.0 (Tab. 4A - Sup.) Case: Case 1, Unblocked (Tab. 4.3.8) Nailing: 10d @ 6" o. c. Perimeter & Edges Panel Thickness: t := 0.59375•in Diaphragm Length: I := 60-ft Diaphragm Width: d := 60-ft Chord: (2) 2 x 6" Material: Douglas Fir -larch Stud Chord Depth: d := 5.5-in Chord Thickness: t := 3.0-in Diaphragm Loads Perpendicular to L: Perpendicular to D: (Calculations) Wind Loads: F plw := 100 • plf F := 100 • plf (Sec. 2.5) Seismic Loads: F pls := 140•plf F pds := 140•plf (Sec. 2.6) Load Combinations & Design Loads IBC '03 Assumptions: Applied horizontal dead and live loads are equal to zero. Alternative Basic LC: w := 1.3 • F w := 1.3 • F pdw (Eqn. 16 -14) Fpls Fpds wl _ 2 1.4 wd .= 2 1.4 (Eqn. 16 -17) W I .Ix wd dx Diaphragm Shear: f := vl f vd 2•d x 2•I x 2 wl'Ix 2 wd•dx Chord Force: T := Td •— 8•d 8-I Allowable Stress Design - Adjustment Factors NDS -01 Load Duration: C := 1.6 (Tab. 2.3.2) Wet Service: C := 1.0 (Assumed) Temperature: C := 1.0 (Tab. 2.3.3) Size (Chord Only): C := 1.0 (Tab. 4A - Sup.) Incising (Chord Only): C := 1.0 (Tab. 4.3.8) D:\MyFiles \Projects \Commercial\2004 \Wingers 3600\40 diap - roof.mcd by: RLH, on: 2/24/2004, Page 1 of 3 41 0 Shear Design - Web Action Tabulated Shear Capacity: F := 285-plf IBC '03 (Tab. 2306.3.1) Flexural Design - Chord Tension Tabulated Tension Stress: F := 450-psi Wind & Seismic Design: Wind & Seismic Design: Allowable Tension Stress: F := Ft•CD•CM•Ct•Ci.CF Required Area < Actual Area: Arl max(TI) < A c t c' d c Ard max�Td) < Ac t c' d c F F Ar 1.4 in, < A =16.5 in A = 1.4'in2 < A 16.54n. 2 Deflection - Diaphragm Modulus of Elasticity (chords): E := 1600000. psi Adjusted Modulus: E:= E•CM•C (Tab. 4A - Sup.) IB( C '03) Y 7 D:\ MyFiles \Projects\Commercial\2004 \Wingers 3600\40 diap - roof.mcd by: RLH, on: 2/24/2004, Page 2 of 3 Wind Design: Wind Design: CD Allowable Shear Capacity: Fvw:= Fv•1.4• — •CM•Ct 1.6 Allowable > Actual Shear: F vw = 399.0 Of > fvl = 65.0 plf Fvw = 399.0 plf > fvd = 65.0 plf 1 1 Seismic Design: Seismic Design: CD Allowable Shear Capacity: F vs : = Fv' — 'CM'Ct 1.6 Allowable > Actual Shear: FV = 285.0 plf > f = 50,0 plf F = 285.0 plf > f = 50.0 plf 2 3- Flexural Design - Chord Tension Tabulated Tension Stress: F := 450-psi Wind & Seismic Design: Wind & Seismic Design: Allowable Tension Stress: F := Ft•CD•CM•Ct•Ci.CF Required Area < Actual Area: Arl max(TI) < A c t c' d c Ard max�Td) < Ac t c' d c F F Ar 1.4 in, < A =16.5 in A = 1.4'in2 < A 16.54n. 2 Deflection - Diaphragm Modulus of Elasticity (chords): E := 1600000. psi Adjusted Modulus: E:= E•CM•C (Tab. 4A - Sup.) IB( C '03) Y 7 D:\ MyFiles \Projects\Commercial\2004 \Wingers 3600\40 diap - roof.mcd by: RLH, on: 2/24/2004, Page 2 of 3 7p t -_ . Kk m e IMM m cc I (D 0 A 000 SOS C - 2-) S4(,:::s-ko 00 - J.M. WILLIAMS and Associates c _Flloo 57 West South Temple, Suite 210, Salt Lake City, Utah 84101 (801) 575 -6455 1433 South State Street, Parvenu Plaza, Orem, Utah 84097 (801) 229 -2014 LATERAL ANALYSIS - 1 STORY WOOD SHEAR WALL DESIGN - 2000 IBC Front Walls - Wind Loads STORY 1 PIERS Length Height Tributary # Piers in Shear Line: nl := 3 (n = 8 max) 1: 11 := 7-ft hl I := 12-ft ti I := 16-ft Story Shear: Fa := 1.3.6000•lb 2: 11 := 5-ft hl := 12. ft t1 16. ft Shear Attributed To Line: Va := 4170.1b 3: 11 := 4-ft h1 := 12-ft t1 := 16. ft Story DL: DL := 20•psf 4: 11 := 0-ft hl := 0-ft t1 := 0-ft Wall DL: DLw := 15•psf 5: 11 := 0-ft hl := 0-ft t1 := 0 -ft Story Length & Width: L := 60-ft D := 60-ft 6: 11 := 0-ft hl := 0-ft ti 0-ft Story Height: h := 12-ft 7: 11 := 0-ft hl := 0-ft t1 0-ft Sill Plate Length: Ls := 60 -ft 8: 11 := 0-ft hl := 0-ft t1 0-ft REDUNDANCY 1W := 4-ft (smallest pier length) Max. Element -Story Ratio: rmax Va 10 l :_ — (1617.2.2; p.359) Z11 Fa l Redundancy Factor: 20 p l := 2 - (Eqn. 16 -32; p.359) rmax L P1 = if(pl <- 1.0, 1.0, if(p I >: 1 . 5 , 1 . 5 ,P1)) P1 = SHEAR CALCULATIONS ANCHOR BOLTS P1•Va P1•Va Unit Shear (for walls): v := Unit Shear (for bolts): vb Ell Ls OVERTURNING CALCULATIONS it := l..nl 1/2 bolt in 1 1/2 sill: s (615•1b)•1.33 vb pl•Va •h Overturning Moment: Mol it := 1 1 11 11 5/8 bolt in 1 1/2 sill: s (878.1b)•l.33 �11 I 0 625 vb l rr (ll F (hil Resisting Moment: Mrlil := 0.67• (DL 2 I] + I (DLw *hl i0 -11 il•� 2 )]j Nominal Overturning: Ml ii := Mol - Mrlit Tension at Pier Ends: T1 Ml i :_ t 11 i DEFLECTION CALCULATIONS Wood Shear Wall Design Revised January, 2002 Pa gel of 2 f • 60 SUMMARY, STORY 1 Unit Shear v l = 261 plf Pier 1: Pier 2: Pier 3: Pier 4: Pier 5: Pier 6: Pier 7: Pier 8: Uplift HOLD DOWN Pier Deflection T1 = 19631b T12 = 22981b T1 2465 lb TI = Ib Tl =alb TI lb TI = Ib T18 1b SHEAR WALLS Sheathing: 7/16 ", APA, Exp. 1 Blocking: All Panel Edges Edge Nailing: Field Nailing: ANCHOR BOLTS 1/2" A. Bolts 5/8" A. Bolts USE: S06 141 in 40"02,5'',201-In 1/2" dia. x 12" J -bolts Spacing = 32" o.c. Wood Shear Wall Design Revised January 2002 Page 2 of 2 J.M. WILLIAMS and Associates C — MOD 57 West South Temple, Suite 210, Salt Lake City, Utah 84101 (801) 575 -6455 1433 South State Street, Parvenu Plaza, Orem, Utah 84097 (801) 229 -2014 � LATERAL ANALYSIS -1 STORY WOOD SHEAR WALL DESIGN - 2000 IBC STORY 1 PIERS Length # Piers in Shear Line: Story Shear: nl := 3 Fa := 9700 lb 1 1.4 Va := 3465.1b DL := 20 -psf DLw := 15•psf L := 60 -ft h := 12-ft Ls := 60-ft (n =8max) 11 := 7 -ft 11 5-ft 11 := 4 -ft 11 := 0 -ft 11 := 0 -ft 11 := 0 -ft 11 0 -ft 11 := 0 -ft lw := 4-ft Shear Attributed To Line: Story DL: Wall DL: Story Length & Width: Story Height: Sill Plate Length: REDUNDANCY Max. Element -Story Ratio: (1617.2.2; p.359) D := 60-ft Va 10 rmax 1 :_ — Yll Fal Front Walls - Seismic Loads Height Tributary hl I := 12-ft ti I := 16-ft hl 12-ft t1 16-ft hl 12-ft t1 16-ft hl 0-ft t1 0-ft hl := 0-ft t1 := 0 -ft hl 0-ft t1 0-ft hl 0-ft t1 0-ft hl 0-ft t1 0-ft (smallest pier length) Redundancy Factor: p 1 := 2 — 20 (Eqn. 16 - 32; p.359) rmax F, •D P1 := if(p1 5 1.0,1.0,if(p1 >_ 1.5,1.5,P1)) P1 =1.0 SHEAR CALCULATIONS ANCHOR BOLTS P1•Va P1•Va Unit Shear (for walls): v := Unit Shear (for bolts): vb :_ Ell Ls OVERTURNING CALCULATIONS it := I..nl 1/2 bolt in 1 1/2 sill: s (615•1b)•l.33 pl -Va •h vbl Overturning Moment: Mol il' = 11 1 11 it 5/8 bolt in 1 1/2 " 0 sill: s 625 :_ (878•1b)•l.33 I vb rr (I F ( Resisting Moment: Mrl := 0.67•LL( DL 2 I + I (DLw " il�� 2 )J J Nominal Overturning: Ml it := M01 it — Mrl it Tension at Pier Ends: T1. :_ Ml it it 11 it DEFLECTION CALCULATIONS Wood Shear Wall Design Revised January, 2002 Page 1 of 2 5� SUMMARY, STORY 1 Unit Shear v = 217 plf Pier 1: Pier 2: Pier 3: Pier 4: Pier 5: Pier 6: Pier 7: Pier 8: Uplift HOLD DOWN Pier Deflection T1 = 14261b T12;= 1761 lb T1 1929 lb Tla =alb T1 = 1b TI 6 lb T1 =�.1b T1 = Ib SHEAR WALLS Sheathing: 7/16 ", APA, Exp. 1 Blocking: All Panel Edges Edge Nailing: Field Nailing: ANCHOR BOLTS 1/2" A. Bolts 5/8" A. Bolts USE: s0.5 = 170 in x0.62$ = 243 in 1/2" dia. x 12" J -bolts Spacing = 32" o.c. Wood Shear Wall Design Revised January, 2002 Page 2 of 2 f J.M. WILLIAMS and Associates C _no 57 West South Temple, Suite 210, Salt Lake City, Utah 84101 (801) 575 -6455 1433 South State Street, Parvenu Plaza, Orem, Utah 84097 (801) 229 -2014 LATERAL ANALYSIS - 1 STORY WOOD SHEAR WALL DESIGN - 2000 IBC STORY 1 PIERS Length # Piers in Shear Line: Story Shear: Shear Attributed To Line: Story DL: Wall DL: Story Length & Width: Story Height: Sill Plate Length: REDUNDANCY Max. Element -Story Ratio: (1617.2.2; p.359) Redundancy Factor: (Eqn. 16 -32; p.359) SHEAR CALCULATIONS Unit Shear (for walls): nl := 2 (n = 8 max) Fa := 1.3.6000•lb Va := 4170-lb DL := 20•psf DLw := 15•psf L := 60-ft D := 60-ft h := 12-ft Ls := 60-ft Va 10 rmax — Y11 Fal 53 MACK vvalls - vvina LoaaS Height Tributary 1: 11 := 27-ft hl := 12-ft ti := 13-ft 2: 11 28.5-ft hl 12-ft t1 13-ft 3: 11 := 0-ft hl := 0-ft t1 := 0-ft 4: 11 0-ft hl 0-ft t1 0-ft 5: 11 := 0-ft hl := 0-ft t1 := 0-ft 6: 11 0-ft hl := 0-ft tl 0 -ft 7: 11 0-ft hl 0-ft tl 0-ft 8: 11 0-ft hl := 0-ft t1 := 0-ft 1W := 27-ft (smallest pier length) P1 : =2— 20 rmax F, •D P1 if(P1 < 1.0,1.0,if(PI ? 1.5,1.5,p1)) P1 = Pl•Va V := y11 OVERTURNING CALCULATIONS it := 1 ..nl Overturning Moment: P 1•Va l •h l M 1 •— 11 ANCHOR BOLTS Unit Shear (for bolts) 1/2" bolt in 1 1/2" sill: P I -Va vb :_ 1 Ls (615•1b)• 1.33 s0.5 vb l (878•lb)• 1.33 ° it ' I 111 II it 5/8" bolt in 1 1/2" sill: s 0.625 / vbl rr 1 I r (1111 Resisting Moment: Mrlil := 0.67• L (DL I *tl 2 I] + �(DLw,-hl il )-"il-l( 2 � J J Nominal Overturning: Tension at Pier Ends: DEFLECTION CALCULATIONS Mlil := M01 ii — Mrl il Ml il T1. :_ it 11 i Wood Shear Wall Design Revised January 2002 Page 1 of 2 5� SUMMARY, STORY 1 Unit Shear v = 75 plf Pier 1: Pier 2: Pier 3: Pier 4: Pier 5: Pier 6: Pier 7: Pier 8: Uplift HOLD DOWN Pier Deflection T1 = - 3078Ib T1 = -3299 lb T1 lb T1 = 1b T1 =�Ib T1 =�1b T1 =alb Tl =alb SHEAR WALLS Sheathing: 7/16 ", APA, Exp. 1 Blocking: All Panel Edges Edge Nailing: Field Nailing: ANCHOR BOLTS 1/2" A. Bolts 5/8" A. Bolts USE: s0.5 = 141 in s0.625 =2 in 1/2" dia. x 12" J -bolts Spacing = 32" o.c. Wood Shear Wall Design Revised January 2002 Page 2 of 2 s 55 J.M. WILLIAMS and Associates C —MOD 57 West South Temple, Suite 210, Salt Lake City, Utah 84101 (801) 575 -6455 1433 South State Street, Parvenu Plaza, Orem, Utah 84097 (801) 229 -2014 LATERAL ANALYSIS -1 STORY WOOD SHEAR WALL DESIGN - 2000 IBC Back Walls - Seismic Loads STORY 1 PIERS Length Height Tributary # Piers in Shear Line: nl := 2 (n = 8 max) 1: 11 := 27-ft hl := 12-ft tl := 13 -ft Story Shear: Fal := 91.4 .lb 2: 11 := 28.5-ft hl 12-ft ti2:= 13-ft 1.4 := := := Shear Attributed To Line: Va := 3465-lb 3: 11 0-ft hl 3 3 0 -ft ti 3 0-ft 4: 11 := 0-ft hl := 0 -ft ti := 0-ft Story DL: DL := 20•psf 4 4 4 5: 11 := 0-ft hl := 0-ft ti := 0- ft Wall DL: DLw := 15 -psf 5 5 5 := := := Story Length &Width: L := 60 -ft D 6: 11 0 -ft hl 0-ft ti 1 := 60-ft 6 6 6 0-ft 7: 11 := 0-ft hl := 0 -ft ti := 0-ft Story Height: h := 12-ft 7 7 7 := := := Sill Plate Length: Ls 8: 11 0-ft hl 0-ft ti l := 60-ft 8 8 8 0-ft REDUNDANCY Iw := 27-ft (smallest pier length) Max. Element -Story Ratio: rmaxl _ Vat F a (1617.2.2; p.359) Ell l Redundancy Factor: p l := 2 _ 20 (Eqn. 16 -32; p.359) rmax L P1 if(P1 <_ 1.0,1.0,if(P1 >_ 1.5,1.5,P1)) P1 =1.0 SHEAR CALCULATIONS ANCHOR BOLTS Unit Shear (for walls): v := P1•Val Unit Shear (for bolts): vb Pl•Val I l :_ �11 Ls OVERTURNING CALCULATIONS it := I..nl 1/2 bolt in 1 1/2 sill: s (615.1b)•1.33 vb P 1•Va Overturning Moment: Mol il •= J 5/8" bolt in 1 1/2" sill: s 0 = (878-1b). 1.33 E li ) .625 vbl rr (Ili, F (Il Resisting Moment: Mrl - 0.67• (DL 2 )] + L (DLw l - hI il )•Il iq 2 )JJ Nominal Overturning: Ml Mol - Mrl Tension at Pier Ends: T1. :_ Ml it 11i1 DEFLECTION CALCULATIONS Wood Shear Wall Design Revised January 2002 Page 1 of 2 5C1 SUMMARY, STORY 1 Unit Shear v = 62p1f Pier 1: Pier 2: Pier 3: Pier 4: Pier 5: Pier 6: Pier 7: Pier 8: Uplift HOLD DOWN Pier Deflection T1 = �3231Ib T1 = —3452 Ib T1 = �Ib T1 = Ib Ti = Ib T1 = Ib T1 u 1b TI u Ib SHEAR WALLS Sheathing: 7/16 ", APA, Exp. 1 Blocking: All Panel Edges Edge Nailing: Field Nailing: ANCHOR BOLTS 1/2" A. Bolts 5/8" A. Bolts USE: sd =.170 in s0,625 = 243.in 1/2" dia. x 12" J -bolts Spacing = 32" o.c. Wood Shear Wall Design Revised January, 2002 Page 2 of 2 J.M. WILLIAMS and Associates C _rU= 57 West South Temple, Suite 210, Salt Lake City, Utah 84101 (801) 575 -6455 1433 South State Street, Parvenu Plaza, Orem, Utah 84097 (801) 229 -2014 LATERAL ANALYSIS -1 STORY WOOD SHEAR WALL DESIGN - 2000 IBC STORY 1 PIERS Length # Piers in Shear Line: Story Shear: Shear Attributed To Line: Story DL: Wall DL: Story Length & Width: Story Height: Sill Plate Length: REDUNDANCY Max. Element -Story Ratio: (1617.2.2; p.359) Redundancy Factor: (Eqn. 16 -32; p.359) SHEAR CALCULATIONS Unit Shear (for walls): nl := 3 (n = 8 max) Fa := 1.3.6000•lb Va := 4170-lb DL := 20•psf DLw := 15•psf L := 60-ft D := 60-ft h := 12-ft Ls := 60-ft Va 10 rmax 1 — E11 Fal 57 Left Walls - Wind Loads Height Tributary 1: 11 := 19-ft hl := 12-ft ti := 2-ft 2: 11 7.5-ft hl 12-ft t1 2-ft 3: 11 := 9-ft hl := 12-ft tl := 2-ft 4: 11 0-ft hl 0-ft t1 0-ft 5: 11 0-ft hl := 0-ft t1 := 0-ft 6: 11 0-ft hl 0-ft t1 0-ft 7: 11 0-ft hl 0-ft t1 0-ft 8: 11 0-ft hl := 0-ft t1 := 0-ft lw := 7.5. ft (smallest pier length) P1: = 20 rmax L -D P1 if(P1 < 1.0, 1.0, if(p I >– 1 . 5 , 1 . 5 ,P1)) P1 = P1•Va v �11 ANCHOR BOLTS Unit Shear (for bolts): 1/2" bolt in 1 1/2" sill: OVERTURNING CALCULATIONS it := l..nl PI Overturning Moment: Mol ii := ll il 5/8" bolt in 1 1/2" sill: P1•Va vb 1 :_ Ls 1 (615.1b)- l.33 s0.5 vb l (878.1b)-l.33 III ) s0.625 = vb 1 Resisting Moment: Mrl := 0.67 rr I I (DL d ( r 1 il l ll I 2 ) I + I (DLw hl (11;,)11 l l ll I 2 ) Nominal Overturning: Tension at Pier Ends: MI Mol – Mrlil Ml il T1. �1 11i1 DEFLECTION CALCULATIONS Wood Shear Wall Design Revised January, 2002 Page 1 of 2 0 r SUMMARY, STORY 1 Unit Shear Uplift v = 117 plf Pier 1: TI t = 91b Pier 2: T12 = 8571b Pier 3: T1 = 746 Ib Pier 4: TI = Ib Pier 5: TI = Ib Pier 6: TI = Ib Pier 7: T1 = Ib Pier 8: TI = r Ib SHEAR WALLS I HOLD DOWN Pier Deflection Sheathing: 7/16 ", APA, Exp. 1 Blocking: All Panel Edges Edge Nailing: Field Nailing: ANCHOR BOLTS 1/2" A. Bolts 5/8" A. Bolts USE: s0.5 =14 in s0:62= 102 .in 1/2" dia. x 12" J -bolts Spacing = 32" o.c. Wood Shear Wall Design Revised January, 2002 Page 2 of 2 . 59 C —no J.M. WILLIAMS and Associates 57 West South Temple, Suite 210, Salt Lake City, Utah 84101 (801) 575 -6455 1433 South State Street, Parvenu Plaza, Orem, Utah 84097 (801) 229 -2014 LATERAL ANALYSIS -1 STORY WOOD SHEAR WALL DESIGN - 2000 IBC Left Walls - Seismic Loads STORY 1 PIERS Length Height Tributary # Piers in Shear Line: nl := 3 (n = 8 max) 1: 11 := 19 -ft hl := 12-ft ti 1 := 2-ft Sto Shear: 9700 Story Fa :_ 1.4 . lb 2: 11 7.5-ft h1 := 12-ft t1 2-ft Shear Attributed To Line: Va := 3465-lb 3: 11 := 9-ft h1 := 12 -ft t1 := 2-ft Story DL: DL 20•psf 4 4 4 4: 11 := 0 -ft hl := 0-ft ti := 0-ft 1 := Wall DL: DLw := 15•psf 5: 11 := 0-ft hl := 0-ft ti := 0-ft Story Length & Width: L := 60-ft D := 60-ft 6. 11 0-ft h1 := 0-ft t1 0-ft Story Height: h := 12-ft 7: 11 := 0-ft hl := 0-ft t1 := 0-ft 1 8: 11 := := := Sill Plate Length: Ls := 60-ft 8: 0-ft hl 8 0-ft ti 8 0-ft REDUNDANCY Iw := 7.5-ft (smallest pier length) Max. Element -Story Ratio: rmax l Va F a (1617.2.2; p.359) III l Redundancy Factor: P1 :_ 2 _ 20 (Eqn. 16 -32; p.359) rmax F, •D P1 if(P1 1.0,1.0,if(p1 >_ 1.5,1.5,p1)) P1 =1.0 SHEAR CALCULATIONS ANCHOR BOLTS Unit Shear (for walls): v P1•Va l := Unit Shear (for bolts): vb P1•Val l ;_ 111 Ls I OVERTURNING CALCULATIONS it := l ..nl 1/2 bolt in 1 1/2 sill: s (615.1b)•l.33 Pl•Va vbl Overturning Moment: MOl := l' 5/8" bolt in 1 1/2" sill: s = (878•1b) -1.33 y 11 I 0.625 vbl 11 11; 111 ( 1 Resisting Moment: Mrl. := 0.67. DL tl 1 11 •I ( Ili,) ] )] + � F (DLw hl I1• l 2�JJ it ` 1 it it \ \ 1 it it Nominal Overturning: Ml := M01 Mrlil Tension at Pier Ends: T1. :_ Ml it llil DEFLECTION CALCULATIONS Wood Shear Wall Design Revised January 2002 Page 1 of 2 0 • & SUMMARY, STORY 1 Unit Shear v = 98 plf Pier 1: Pier 2: Pier 3: Pier 4: Pier 5: Pier 6: Pier 7: Pier 8: Uplift HOLD DOWN Pier Deflection T1 = —2291b T1 6191b T1 508 I TI lb -'gab TI ='i-lb T1 =alb TI =' °� lb TI =alb SHEAR WALLS Sheathing: 7/16 ", APA, Exp. 1 Blocking: All Panel Edges Edge Nailing: Field Nailing: ANCHOR BOLTS 1/2" A. Bolts 5/8" A. Bolts USE: s0'.5 = 170 in s0;625.= 243 in 1/2" dia. x 12" J -bolts Spacing = 32" o.c. Wood Shear Wall Design Revised January, 2002 Page 2 of 2 • J.M. WILLIAMS and Associates C —MOD 57 West South Temple, Suite 210, Salt Lake City, Utah 84101 (801) 575 -6455 1433 South State Street, Parvenu Plaza, Orem, Utah 84097 (801) 229 -2014 LATERAL ANALYSIS -1 STORY WOOD SHEAR WALL DESIGN - 2000 IBC Right Walls - Wind Loads STORY 1 # Piers in Shear Line Story Shear: Shear Attributed To Line: Story DL: Wall DL: Story Length & Width: Story Height: Sill Plate Length: REDUNDANCY Max. Element -Story Ratio: (1617.2.2; p.359) nl := 2 (n = 8 max) Fa := 1.3.6000•lb Va := 4170-lb DL := 20 -psf DLw := 15 -psf L := 60 -ft D := 60 -ft h := 12 -ft Ls := 60 -ft Va 10 rmax — 11, Fal PIERS Length Height Tributary 1: 11 := 27 -ft hl := 12 -ft ti := 2 -ft 2: 11 5.5 -ft hl 12 -ft t1 2 := 2 -ft 3: 11 0 -ft hl 0-ft t1 0 -ft 4: 11 0 -ft h1 0 -ft ti 0 -ft 5: 11 0 -ft h1 := 0-ft t1 5 := 0 -ft 6: 11 0 -ft hl 0 -ft t1 6 := 0 -ft 7: 11 0 -ft hl 0-ft t1 0 -ft 8: 11 0 -ft hl 0 -ft t1 0 -ft iw := 5.5. ft (smallest pier length) Redundancy Factor: (Eqn. 16 -32; p.359) P1: = 20 rmax L D P1 if(Pl < 1.0,1.0,if(P1 ? 1.5,1.5,pl)) P1 = SHEAR CALCULATIONS ANCHOR BOLTS P1•Va P1•Va Unit Shear (for walls): v := Unit Shear (for bolts): vb :_ III Ls OVERTURNING CALCULATIONS it := l..nl 1/2 bolt in 1 1/2 sill: s (615•1b) -1.33 vb P1•Va Overturning Moment: M01 i1 '_ 1' 11 ii I II 5/8 bolt in 1 1/2 " sill: s (878•1b)•1.33 0 625 = vb I / 1 II (hil)] r (Il Resisting Moment: Mrlil := 0.67• L (DL 1 •tl il ) -ll 2 )J + L (DLw l hlil)•Iliq 2 )JJ Nominal Overturning: Ml := M01i1 – Mrlii Ml Tension at Pier Ends: T1 . :_ rl 11i1 DEFLECTION CALCULATIONS Wood Shear Wall Design Revised January 2002 Page 1 of 2 • • la.�- SUMMARY, STORY 1 Unit Shear vl = 128 plf Pier 1: Pier 2: Pier 3: Pier 4: Pier 5: Pier 6: Pier 7: Pier 8: Uplift HOLD DOWN Pier Deflection T1 = - -4501b TI = 11341b T1 = Ib Tl =�Ib T1 = Ib TI =�Ib TI / v Ib T1 =ilb SHEAR WALLS Sheathing: 7/16 ", APA, Exp. 1 Blocking: All Panel Edges Edge Nailing: Field Nailing: ANCHOR BOLTS 1/2" A. Bolts 5/8" A. Bolts USE: s0 = 141 in s0,625 = 202 in 1/2" dia. x 12" J -bolts Spacing = 32" o.c. Wood Shear Wall Design Revised January 2002 Pa e 2 of 2 * 1 J.M. WILLIAMS and Associates C —MOD 57 West South Temple, Suite 210, Salt Lake City, Utah 84101 (801) 575 -6455 1433 South State Street, Parvenu Plaza, Orem, Utah 84097 (801) 229 -2014 LATERAL ANALYSIS -1 STORY WOOD SHEAR WALL DESIGN - 2000 IBC STORY 1 PIERS Length # Piers in Shear Line: Story Shear: Shear Attributed To Line: Story DL: Wall DL: Story Length & Width: Story Height: Sill Plate Length: REDUNDANCY Max. Element -Story Ratio: (1617.2.2; p.359) Redundancy Factor: (Eqn. 16 -32; p.359) nl := 2 Fa 9700 1 1.4 Va := 3465.1b DL := 20 -psf DLw := 15•psf L := 60-ft h := 12-ft Ls := 60-ft (n = 8 max) D := 60 -ft Va 10 rmaz 1 — I11 Fal P1: = 20 rmax L P1 if(P1 < 1.0,1.0,if(p1 > 1.5,1.5,p1)) P1 = SHEAR CALCULATIONS Unit Shear (for walls): P1•Va v := YI1 OVERTURNING CALCULATIONS it := 1 nl Overturning Moment: P 1•Va l •h l 1 Mol •= I.11 (03 Fright Walls - Seismic Loads Height Tributary 11 := 27 -ft hl := 12 -ft ti := 2 -ft 11 5.5 -ft hl := 12 -ft tl 2 -ft 11 := 0 -ft hl := 0 -ft t1 := 0 -ft 11 0 -ft hl 0 -ft t1 0 -ft 11 0-ft hl := 0 -ft t1 0-ft 11 0 -ft hl := 0 -ft t1 0 -ft 11 0 -ft hl := 0 -ft t1 0 -ft 11 0 -ft hl := 0 -ft ti := 0-ft lw := 5.5 -ft (smallest pier length) ANCHOR BOLTS Unit Shear (for bolts): 1/2" bolt in 1 1/2" sill P1•Va vb :_ 1 Ls (615-1b)- l.33 s0.5 vb l III it 5/8 bolt in 1 1/2 sill: s (878 1.33 FF it �� �� 0 625 �_ vb ( Ili,) ] r llil Resisting Moment: Mrlil - 0.67 LL (DL 2 ) , L ` + I (DLw hl 2 )jj .11 J � 2 JJ Nominal Overturning Tension at Pier Ends: DEFLECTION CALCULATIONS Mlil := Molil – Mrlil Ml il T1. :_ it 11 i Wood Shear Wall Design Revised January, 2002 Page 1 of 2 • I M (a' 4 SUMMARY, STORY 1 Unit Shear v = 107 plf Pier 1: Pier 2: Pier 3: Pier 4: Pier 5: Pier 6: Pier 7: Pier 8: Uplift HOLD DOWN Pier Deflection T1 = — 711 -1b T12'= 874'1b TI r lb T1 - 1b TI = Ib T1 = Ib TI lb T1 = Ib SHEAR WALLS Sheathing: 7/16 ", APA, Exp. 1 Blocking: All Panel Edges Edge Nailing: Field Nailing: ANCHOR BOLTS 1/2" A. Bolts 5/8" A. Bolts USE: s0.5:= 170in 5 0.625 = 2434n 1/2" dia. x 12" J -bolts Spacing = 32" o.c. Wood Shear Wall Design Revised January, 2002 Page 2 of 2 eZ , J.M. WILLIAMS and ASSOCIATES • Structural Engineering 363 South 500 East • Suite 210 • Salt Lake City, Utah 84102 • (801) 575 -6455 • Fax (801) 575 -6456 C 910 1433 South State Street • Orem, Utah 84097 • (801) 229 -2014 • Fax (801) 229 -2015 PROJECT JDATE ISHEET OF DESIGNED BY I JOB NO. AP 4 5.0 FOUNDATION ANALYSIS �vLo Prepared by: .......................................................................... RLH, on: February 18, 2004 le ( 4 Footing - Load Calculation EXTERIOR: roof := (60 + 20)• 16•plf floor := 0•plf walls := (15)•16•plf fndwall:= 150-0.67.4•plf Etotal := roof + floor + walls + fndwall INTERIOR: roof := (35 + 20)•29•plf floor := 0•plf walls := (10)• 12•plf fndwall := 0•plf Itotal := roof + floor + walls + fndwall Etotal = 1.922 10� plf ItOOL ; 1.71.5 x 10 plf & 50 Foot - loads.mcd Revised June, 1999 Page 1 M • r+ 1i mom Preliminary Footings and Foundation Design: Assumed soil bearing pressure: p:= 2000•psf Continuous wall load F1: wl := 2000•plf Continuous wall load F2: w2:= 1800-plf Spread footing F3: P3 := 8.5•k Spread footing F4: P4:= 0•k Spread footing F5: P5 := 0•k Spread footing F6: P6 := 0•k Concrete foundation: (See Plans) Interior wall cont. footings: w := W 1 w= 12 in use FC2.0 P Exterior wall cont. footings: W:= W2 w = 10.8 in use FC2.0 P Spread footing no. F3: w := P3 w = 2.062 ft use FC2.0 P Spread footing no. F4: w:= FLN w =Oft P Spread footing no. F5: w:= P5 w =oft P Spread footing no. F6: w:= FL P6 w =Oft i 50 Foot.mcd Revised June, 1999 Page 1 a . , At. !01:: Temperature Steel - Foundation Walls and Footings Design Criteria (Walls) Wall Height: h:= 4-ft Wall Thickness: tw := 8-in Unit Width: w:= 12-in Horizontal Steel Ash := 0.0020-h•tw A = 0.768 in (4) #4 BARS Vertical Steel Asv := 0.0012•tw•w A = 0.115 in #4 BARS @ 18" O.C. (MINIMUM) Design Criteria (Cont. Footing) Footing Width: wfc:= 24-in Footing Thickness: tfc := 12-in A := 0.0018•wfc•tfc A = 0.518 in (3) #4 BARS CONTINUOUS Co 50 FW.mcd Revised June, 1999 Page 1