Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
CO, ALL DOCS - 04-00115 - Tuscany Place Apartments - Bldg 3 & Clubhouse
0 �� 6 ; R-EXBURIG w AMERICAS FAMILY COMMUNITY Building Permit No: Applicable Edition of Code: Site Address: Use and Occupancy: Type of Construction: Design Occupant Load: Sprinkler System Required: 0400115 International Building Code :2000 440 S 2nd W Single Student Housing for BYU -Idaho Type V, 1 Hour Young Womens Student Housing Yes Name and Address of Owner: Erickson Rex W P O Box 315 Rexburg, ID 83440 Contractor: Sainbury Construction Co Inc Special Conditions: Occupancy: Residential, hotels, apartments, more than 10 persons This Certificate, issued pursuant to the requirements of Section 109 of the International Building Code, certifies that, at the time time of issuance, this building or that portion of the building that vies inspected on the date listed saes found to be in compliance vuth the requirements of the code for the group and division of occupancy and the use for which the proposed occupancy saes classified. Date C.O. Issued: C.O Issued by: Building Official There shall be no further change in the existing occupancy classification of the building nor shall any structural changes, modifications or additions be made to the building or any portion thereof until the Building Official has reviewed and approved said future changes. Water Department: CERTIFICATE OF OCCUPANCY City of Rexburg Department of Community Development 19 E. Main St. / Rexburg, ID. 83440 Phone (208) 359 -3020 / Fax (208) 359 -3022 Fire Department: State of Idaho Electrical Department (208- 356- 4830): APPLICATION FOR BUILDING PERMIT CITY OF REXBURG, IDAHO Date of Application Permit No. OWNER y� /� Name A ( 1 A 7 1 Q t^-L dOi C o rn m oYc s 3! d. Site Address '//-r+� r 1 /011 '7'� �l ST i��id � /g tf W. Mailing Address ^^�� [� 9 M ��� SL�� kit') E I lr' k1 ko .LZ" 1 o City /State /Zip .l.LJ di FAA -(-S �-D;�cA OO x'6 4 01 Telephone/Fax/Mobile '? pg z ('! 4 )'y o S5 a - 57 A )5 CONTRACTOR Name e t A16RU Ae �D/llS7 K Mailing Address City /State /Zip Telephone/Fax/Mobile PROJECT INFORMATION DEPARTMENT APPROVAL Property Zone: ADP-- Is existing use compatible with zoning, (screening parking, etc) When was this building last occupied Architect/ Engineer Firm J � != 6W-Tbt L Plan Name Subdivision Lot Block Circle One Residential Commercial Educational Government Remodel Other 19git17 K� Circle One New House Addition/Remodel to House C New Comm ciao Commercial Remodel Circle One Basement: None/ Finished / Unfinished Other: None/ Patio/ Carport/ Awning N/ Lot Square Footage /�z (o 59 00 Lot Wid Square Feet 38,Q70 Garage Square Fee Number of Stories 3 Height of Building to � What will structure be used for: Home Home Business 1artme Commercial Other Will there be an apartment? of S If so, how many units 3✓Q Total Estimated Cost Are you in a flood plain AM Signature of Code S � Building Permit Fees to, 3 � 3 � FCAASH REXBURG Plan Check Fees (2 3 ' Plumbi Zone ermit Fees 1,P Building Type � 2004 g � 30to Digging Permit Fees Water & Sewer Fees Front Footage Fee (Parks, Fire, and Police) Impact Fees —/-0-/ ygs• '`� TOTAL L $ 3Z o03• Signature of Inspector �2X'L� �' � b l Issued by 33,0 33. 3 REQUEST FOR A CONDITIONAL BUILDING PERMIT FOR PARTIAL BUILDING CONSTRUCTION TO: Building Official for the City of Rexburg Pursuant to the provisions of the International Building Code 2000, the undersigned requests that a building permit be issued for: Footings and Foundations only at: Sainsbury Construction Company, Inc. 4 South 2 nd West Rexburg, ID 83440 Acknowledgment is made that the plans for the complex are not complete and that final approval of the building will not be given until the final plans have been approved. We recognize that proceeding with partial construction at this time is entirely at the risk of the Architect/Owner with there being no assurance that the final Certificate of Occupancy for the entire building or structure will be granted. We further absolve the City of Rexburg and officers and employees thereof, of all responsibility for the issuance of a partial permit and further agree that any work performed under this permit will be removed or otherwise corrected to be in accord with the requirements of the final approved plans when a permit for the entire building or structure is finally granted. Dated: Monday, March 15, 2004 By Sainsbury Construction Co. Inc. Alan Cook — Construction Manager Approved: Monday, March 15, 2004 CITY OF REXBURG By ��`C DwG�Gts Quinton Owens REXBURG MADISON COUNTY EMERGENCY SERVICES 26 NORTH CENTER STREET REXBURG, IDAHO 83440 208- 359 -3010 Sainsbury Construction C/O Tom Sainsbury 4829 North Haroldsen Drive Idaho Falls, Idaho 83401 Dear Mr. Sainsbury, May 19, 2004 This letter is in regard to the fire sprinkler systems required in the Tttfteffl Ift-c-e Housing project located in Rexburg, Idaho. As per city attorney Steve Zollinger the requirement for having the attics sprinklered in buildings #3 and #4 have been amended. Although not required by the City of Rexburg it is highly recommend the attics on these occupancies be equipped with fire sprinklers. The accessibility to the buildings from the north, through a neighboring property, may come into question in the future, hindering the fire department from potentially saving lives and protecting your property. If you have any questions please feel free to contact me regarding this matter. Sincerely, Chris Huskinson Fire Inspector CC: Val Christenson, Building Inspector Lamar Hayward, 3D Fire Protection Shawn Larsen, Rexburg City Mayor Telephone: (208) 523 -6918 G & S Structural Engineers 1600 John Adams Parkway Suite 200 Idaho Falls, ID 83401 E -mail: gs @dataway.net Fax: (208) 523 -6922 May 17, 2004 #04060 Mr. Tom Sainsbury Sainsbury Construction 4697 N. Haroldsen Drive Idaho Falls, Idaho 83401 Re: Womens Student Housing Buildings Rexburg, Idaho Dear Mr. Sainsbury, This letter is to certify that G & S Structural Engineers has reviewed the building plans for the above referenced project received in our office May 17, 2004 and has determined that the 2' -0" wall offsets and the relocated and resized windows do not modify the structural requirements for these buildings as set forth in the structural portion of these drawing sets. If there are any questions or I can be of further assistance, please don't hesitate to call. Sincerely, Mardy Weekes i = , a ;E e, at { .a. 1 ' j 4: LI j 13 �/lv�i G1SGS Iz l 3 g`I SO L Tf� . UN�C . ' . ,au C 7 5'17e C — /- 3 9 Sv Z / l J SPI C 5 W5tk' c. ' DIE` S 1 C.Ij CA-7f &oxy As. per, wzs do /& . ? C /-up 9 (,p /(- - 3 Cz) V 73 Use- 4ag�P u S Z Glce /S (") (4 00 ). COMMITMENT FOR TITLE INSURANCE Order No: 3040413724 -A SCHEDULE A 1. Effective date: 1/05/2004 at 7:30 A.M. 2. Policy or Policies to be issued: (a) ALTA Owner's Policy 0 Standard Coverage = Extended Coverage Amount: $740,000.00 Premium: $2,195.00 Proposed Insured: Tom Sainsbury or assigns or accommodator (b) ALTA Loan Policy 0 Standard Coverage 0 Extended Coverage Amount: $ Premium: $ (c) Endorsements: Proposed Insured: Amount: $ 3. The estate or interest in the land described or referred to in this commitment and covered herein is: Fee Simple 4. Title to the estate or interest in said land is at the effective date hereof vested in: Tract 1: Rex W. Erickson and Beverly S. Erickson, Husband and Wife and Tract 2: Neil Erickson and Eric Erickson 5. The land referred to in this Commitment is described as follows: Tract 1: Commencing at the Northeast corner of Lot 1, Block 12 of the Parker Addition to the City of Rexburg Townsite, Madison County, Idaho, and running thence West 185 feet; thence South 330 feet; thence West 475 feet; thence South 99 feet; thence East 660 feet; thence North 429 feet to the point of beginning. Tract 2: The North 99 feet of Lots 5 and 6, Block 12 Parker Addition to the Rexburg Townsite, Madison County, Idaho. 03/18/2004 16:51 2085236922 GS STRUCTURAL PAGE 01 G & S Structural Engineers 1600 John Adams Parkway Suite 200 Idaho Falls, ID 83401 Telophono: (208) $23 -6918 E -mall: 9s@datawsv.net Fax: (208) 523 -6922 Fwc To: Val Christenson Faw 359 -3022 From Bob Gustafson Deb: March 18, 2004 Phe"I 369 - 3020 -324 Pages: 5 Including FAX cover Rw Clubhouse stident housing Cc: © U rsoM Cl For Review Cl Please Conwnent 0 Pleeso Reply © Please Recycle •Con wnents: Please call if you have any questions. Bob G 03/1812004 16:51 2085236922 GS STRUCTURAL PAGE 02 Clubhouse student housing Date and Time: 3/1812004 4:49:32 PM MCE Parameters - Conterminous 48 States Zip Code - 83440 Central Latitude = 43.763462 Central Longitude = - 111.609017 Data are based on the 0.10 deg grid set Period SA (sec) (°%9) 0.2 060.6 Map Value, Soil Factor of 1.0 1.0 019.3 Map Value, Soil Factor of 1.0 MCE Parameters x Specified Soil Factors 0.2 080.0 Soil Factor of 1.32 1.0 039.2 Soil Factor of 2.03 MCE Parameters - Conterminous 48 States Zip Code - 83440 Central Latitude = 43.763462 Central Longitude = - 111.609017 Data are based on the 0.10 deg grid set Period SA (sec) ( 0.2 060.6 Map Value, Soil Factor of 1.0 1.0 019.3 Map Value, Soil Factor of 1.0 MCE SPECTRUM x SOIL FACTORS Fe = 1.32 Fv = 2.03 Period SA (sec) ( %g) 0.000 032.0 0.4FaSs 0.098 080.0 To 0.200 080.0 T =0.2, FaSs 0.490 080.0 Ts 0.500 078.5 0.600 065.4 0.700 056.1 0.800 049.1 0.900 043.6 1.000 039.2 T =1.0, FvS1 1.100 035.7 1.200 032.7 1.300 030.2 1.400 028.0 1.500 026.2 1.600 024.5 1.700 023.1 1.800 021.8 1.900 020.7 2.000 019.6 31.- 03/1812004 16:51 2085236922 GS STRUCTURAL PAGE 03 Designer: Robert J Gustafson pate: 3/10/2006 Project: I Clubhouse student housing G S S Structural Engineers 1600 John Adams parkway Idaho Falls, Idaho 83401 SEISMIC DESIGN: Type of Occupancy: (Table 1504 and Table 1607.1) Commerical Building Category or Seismic Use Group: ( T V bl e 1604.9 and 1619.2) Building Celegory � I Seismic Importance Factor (T able 1604.5) 4 a 1.0 Soil Site Class: (1615.1.1) site Class . C Response Modification Coeff. R: (fable 1617.6) R = 0 Building Location. (Latitude & Longitude, or Zip Code) Approximate Fundamental Period, T,: N T Height (feet) above base to highest level of building hn = c, = Building Period Coefficient (see 1617.4.2.1) Ct r< 0.02 CAM GelCUlate Approidmate Fundamental Period, T.: C "h„ To s Maximum Considered Earthquake Response Accelerations: Short Periods, Ss: (CD rom) Ss = 0 g 1 Second Period, S1: (CD rom) S 0.193 g Earthquake Response Acceleration; Adjusted for Site Class Effects: Site Coefficients: F, = 1.320 g F (Table 1615.1.2(1) or CD rom) = 2.030 g F • (fable 1615.1.2(2) or CD rom) S S g S = F,S, (Eq, 16- 16 or CD rom) $ = F (Eq. 1647 or CD rom) S,., = 0.392 g Design Spectral Response Acceleration Parameters: (1615 = 0� s ■ 213$ _ (Eq. 16-18) Bra Sol = g 0.261 g S " 213Sm1 s (Eq. 16.19) Nature Seismic Table 1616.3.1 Table 1616.3.2 Largest SDC from SDC* to Of Use Tables 1616.3.(1) &(2) Use for Occupancy Group SQS SDC' so, SDC" Design Commerical I 0.533 D'`"'' 0.261 D" D ** D.* Si = 0,493 " SDC Is the "Seismic Design Category" Seismic Use Groups I and U structures located on sites with mapped maximum considered earthquake spectral response acceleration at 1 second periodm S1, equal to or greater thatn 0.75g, shall be assigned to seismic Design Category E, and Seismic Use Group III structures located on such sites shell be assigned to Seismic Design Category F. i?j 03/18/2004 16:51 2085236922 GS STRUCTURAL PAGE 04 Designer: Robert J Gustafson Date: 311812M Project: Rolsurn/Ward General Procedure Response Spectrum: Tow.28d1/Sdsm Tex$d1 /Sds= For periods :5 To: Ts - a For periods z To: Sa= .6(SdslTo)*T +.4Sds Sa = Sd s 0.600 1= 0.500 ul W 0.400 W w 0.300 0.200 J G A 8 Structural Engineers 1600 John Adams Parkway Idaho Falls, Idaho 83401 (1616.1.4) To = Ts = For periods > Ts' Sa = Sd1fT 1011610 w H 0.000 0.0 0.1 0.5 0.6 0.8 1.0 1.2 PERIOD T Seismic Response Coefficient, Cs: (1617.4.1.1) Since Seismic Design Category is D and 51 is less than 0.6 thus Ca min = 0.044Sds(le) C# shall not be lass #on: C = 0.044Sds(le) = 0.0231 (Eq. 1631) Ce calculated Cs = Sds/(R/le) = 0.089) (Eq, 16-35) Cs need not exceed: Cs = Sd1 /((R /le)*T) = 0.142) (Eq. 15-36) Cs used for design of Seismic bass shear = Seismic Bass Shear: V s Cs*W (Eq. 16.34) Sea Section 1617 for the E to use in the load combinations of Section 1606.4. QE = The effect of horizontal seismic forces = Seismic base shear (V) = Cs *W Seismic load effect E. Where the effects of gravity and the seismic ground motion are additive, seismic load, E, for use in Formulas 16-5, 10, and 17 shall be defined by: E = p * QE + 0.2 *Sos *D (Eq, 16^29) Where the effects of gravity and seismic ground motion counteract, the seismic load, E, for use in Formulas 16-6, 12, and 18 shall be defined by' E = p *QF - 0.2 *SDs *l) (Eq. 16.29) 0.4909 T +pi Sa/9 0.0 0.213 0.1 0.533 0.5 0.533 0.6 0.435 0.8 0.326 1.0 0.261 1.2 0.218 1.4 0.187 1.6 0.163 1.8 0.145 2.0 0.131 MA 1.4 1.6 1.6 2.0 03/18/2004 16:51 2085236922 Prniart GS STRUCTURAL Project No. Designed By PAGE 05 Dat I �, r$ f + 1 ) X . G &S Structural Englneers Sheet 3 State ofldaho DIRK KEMPTHORNE DEPARTMENT OF INSURANCE Governor MARY L. HARTUNG 700 West State Street, 3rd Floor Director Boise, Idaho 83720 -0043 Phone (208)334 -4370 MARK LARSON FAX # (208)334 -4375 State Fire Marshal PLAN REVIEW FOR FIRE SPRINKLER SYSTEMS PROJECT: `�—i,t CAC STREET ADDRESS: T7I cc 5 ati r FIRE PROTECTION CONTRACTOR: 3 CITY 12E AZ�rrscrle�ty ADDRESS: "P- '�:x CITY. Zb pbtCJ STAT PHONE NO; 2¢ S ZS^ B 37 7 FAX NO: ZIP: S IGNATURE ON PLAN: G. Z°�'-S' $ a 8 DATE PLAN RECEIVE y ITEM CODE DATE PLAN REVIEWED: NO. REFERENCE DEFICIENCY NOTED l 2anl w 'yF I ou r D a K tLf�.w( 4�vOa NOTE: SYSTEMS EXCEEDING 10 SPRINKLERS IN SIZE SHALL BE CONSTA CENTRAL LOCATION - I.F.C. 903.4 NTLY SUPERVISED AT A NOTE: IT I9 ACKNOWLEDGED THAT AN UNAPPROVED BACKFLOW PREVENTER IS INSTALLED PER THE DEMAND OF THE LOCAL WATER PURVEYER. DUE TO THE HIGH PRUPORTEB.URE RATE, STATE FIRE MARSHAL'S O D FA FFICE, AND ITS PERSONNEL, DOES NOT APPROVE OF OR TAKE ANY RESPONSIBILITY FOR THE BACKFLOW DEVICE. REVIEWED BY: Idaho Enterprises PLANS REVIEW R: PO Box 9 Me] Fletcher Fairfield, Idaho 83327 Ph 208/764-233 7 Fax 208 -764 -2090 CC TO: Mark Larson Idaho Surveying & Rating APPROVED — If deficiencies noted File above are corrected and subject to a field A.H.J. — ❑ inspection. � -tBuQG �' . D' D — Resubmit with items f 3 5 -o LZ noted' corrected. Equal Opportunity Employer I'd 0602-Ir8L802 4 wk dST =E0 *'0 TZ Jdu Clubhouse- Student Housing Rexburg, Idaho STRUCTURAL DESIGN CALCULATIONS Client: Sainsbury Construction, Inc. Idaho Falls, Idaho Designed by: Bob Gustafson Project # 04061 TABLE OF CONTENTS PAGE 1 -2 3 -7 8 -22 23 -31 32-41 END DESCRIPTION Load Calculations Framing Sketches Beam Designs Footing Designs Lateral Design I TONAL QQ O p1STI 7v QF RD S G & S Structural Engineers 1600 John Adams Parkway Suite 200 Idaho Falls, ID 83401 Telephone: (208) 523 -6918 E -mail: gs @dataway.net Fax: (208) 523 -6922 Designer: Bob Gustafson Date: 2/23/2004 Project: Clubhouse - Student Housing Roof Dead Load Calculation: Roofing: asphalt Cold Roof Framing 5/8" Plywood Sheathing Wood Framing 5/8" Gypsum Board Insulation Metal suspension system Misc. 2.5 PSF 0.0 PSF 1.8 PSF 2.1 PSF 2.8 PSF 2.4 PSF 0 PSF 1.5 PSF G & S Structural Engineers 1600 John Adams Parkway Idaho Falls, Idaho 83401 Total 13.1 PSF USE 15.0 PSF Floor Dead Load Calculations: 1" Hardwood 4.0 PSF 3/4" Tile 0.0 PSF Carpet and Pad 0.0 PSF Concrete Topping 0.0 PSF 3/4" Plywood Sheathing 2.5 PSF Wood Framing 3.3 PSF 5/8" Gypsum Board 2.8 PSF Misc. 1.5 PSF Total 14.1 PSF USE 15.0 PSF Wall Dea Load Calculations: Veneer 40 PSF Siding 0 PSF 1/2" Plywood Sheathing 1.5 PSF 2 x 6 Wood Stud Framing 1.7 PSF Insulation 1.2 PSF 5/8 "Gypsum Board 2.8 PSF Misc. 1.5 PSF Total 48.7 PSF USE 50.0 PSF wI 1*41fL 10 PSF Ly /b (jl?.�GL. 0 Designer: Bob Gustafson Date: 2/23/2004 Project: Clubhouse- student housing Wall A G & S Structural Engineers 1600 John Adams Parkway Idaho Falls, Idaho 83401 Wall B Tributary Length( ft ) Dead Load Total DL PSF PLF Level DL PLF Live Load PSF Total LL PLF Level LL PLF Level Total Total PLF Roof Level Wall Level total 10.71 8 15 10 160.65 80 240.65 35 374.85 0 374.851 615.5 535.5 80 Level 4 Wall 0 0 130 0 0 70 200 0 0 Level Total 0 0 0 0 0 0 0 0 0 Level Wall 10.71 8 15 10 160.65 80 0 40 0 428.4 0 0 0 589.05 80 Level Total 2 8 15 10 30 80 240.65 40 0 80 0 428.4 669.05 110 80 Level Wall 10.71 10 15 10 160.65 100 110 40 0 428.4 0 80 190 589.05 100 Level total 2 10 15 10 30 100 260.65 40 0 80 0 428AI 689.05 110 100 Ground Level Foundation 0 3 0 125 0 375 130 0 0 0 0 80 210 0 375 Ground Level Foundation 0 3 0 125 0 375 0 0 0 0 0 375 Total 1116.95 1231.65 2348.6 Wall B Tributary Length( ft) Dead Load Total DL PSF PLF Level DL PLF Live Load PSF Total LL PLF Level LL PLF Level Total Total PLF Roof Level Wall 2 10 15 10 30 100 35 70 0 100 100 Level total 130 70 200 Level 4 Wall 1 0 0 0 0 0 0 Level Total 0 0 0 Level 3 Wall 2 8 15 10 30 80 40 0 80 0 110 80 Level Total 110 80 190 Level Wall 2 10 15 10 30 100 40 0 80 0 1 110 100 Level total 130 80 210 Ground Level Foundation 0 3 0 125 0 375 0 0 0 0 0 375 Total 745 230 975 Project Designed By Project No Date 1,,s7i in f,,9)9VA - r/Od &0 Sheet 3 G &S Structural Engineers Project 4Ur k1 6 Project No. Date " a� Designed By �` kt �v /V !Gt . I�A'M 104� 7\ v G &S Structural Engineers Sheet 4" Project z cO (�9 Project No._ Date b4 Designed By D �V TttlRV (- rp-,w 1p� , G &S Structural Engineers Sheet Project _ �U1gN — � IIJy�I�IZy Co Project No. 0+0611 Date Designed By G &S Structural Engineers Sheet 6/ Project Project No. Date Designed By bY44- PPL, Icy 1449 4-x4- LL 3 iq37 i L 1, s }0 • G� �`' PW rx4r J vL � Iq.S3 c L-A 12.1 G &S Structural Engineers Sheet IV I . &Y� x �b`ly 66XI Yw ' 11►`�1 - 7 �L = 7E3.- �L 4111 ✓� p gg�y wi8x7� vL - I1 s3z bL LC.- ISq�jp L-L=3"it-� , 1 4 4� 4. 4,4 U =861 i L 1, s }0 • G� �`' PW rx4r J vL � Iq.S3 c L-A 12.1 G &S Structural Engineers Sheet Criterion COMPANY PROJECT Desi WoodWorks ® G S Structural Engineers 1600 0 John Adams Parkway Shear fv = 128 Suite 200 290 fv /Fv' = 0.53 1 Idaho Falls, Idaho 83401 2160 Fb' = 2273 Feb. 24, 2004 09:55:43 Beam1 0.62 = Design Check Calculation Sheet 2.5 Sizer 2004 2 LOADS: ( Ibs, psf, or plf ) 1.00 = Load Type Distribution Magnitude Location [ft] Pattern 2.5 Start End Start End Load? 1.00 1 Dead Full Area 15.00(19.58)* No 2 Live Full Area 40.00(19.58)* No - *Tributary width (ft) MAXIMUM REACTIONS (IbS) and BEARING LENGTHS (in) : ° 20' Dead 3193 Live 7832 3193 Total 11025 7832 Bearing: 11025 2 LC number Len g th Glulam - Unbal., West Species, 24F -V4 DF, 6- 3/4x16 -1/2" Self Weight of 25.64 plf automatically included in loads; Lateral support: top= full, bottom= at supports; Load combinations: ICC -IBC; SECTION vs. DESIGN CODE NDS -2001: ( stress =psi, and In) ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fb'+ 2400 1.00 1.00 1.00 1.000 0.947 1.00 1.00 1.00 1.00 - 2 Fv' 240 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Bending( +): LC# 2 = D +L, M = 55127 lbs -ft Shear : LC# 2 = D +L, V = 11025, V design = 9509 lbs Deflection: LC# 2 = D +L EI= 4548.20e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). Criterion Anal Value Desi Value Anal Shear fv = 128 Fv' = 290 fv /Fv' = 0.53 Bending( +) fb = 2160 Fb' = 2273 fb /Fb' = 0.95 Live Defl'n 0.62 = 2.5 L/360 2 Total Defl'n 1.00 = L/290 2.5 Criterion Anal Value Desi Value Anal Shear fv = 128 Fv' = 290 fv /Fv' = 0.53 Bending( +) fb = 2160 Fb' = 2273 fb /Fb' = 0.95 Live Defl'n 0.62 = L/387 0.67 = L/360 0.93 Total Defl'n 1.00 = L/290 1.00 = L/290 1.00 Dead 3193 PROJECT Desi n WoodWorks 12) ® 16 COMPANY G & S Structural Engineers 00 John Adams Parkway Shear 3193 Total Suite 200 Start End Load? SOFFWARE FOR WOOD DESIGN Idaho Falls, Idaho 83401 Full Area 15.00(19.58)* 2 Feb. 24, 2004 09 :57:03 Beam1 Snow Design Check Calculation Sheet 35.00(19.58)* Sizer 2004 No LOADS: ( Ibs, psf, or plf ) 0.92 = Load Type Distribution Magnitude Location [ft] Pattern 2.3 L/240 0.92 Tributary Width (ft) MAXIMUM REACTIONS (113S) and BEARING LENGTHS (in) : ° 20' Glulam - Unbal., West Species, 24F -V4 DF, 6- 3/4x16 -1/2" Self Weight of 25.64 plf automatically included in loads; Lateral support: top= full, bottom= at supports; Load combinations: ICC -IBC; SECTION vs. DESIGN CODE NDS -2001: ( stress =psi, and in) ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fb'+ 2400 1.15 1.00 1.00 1.000 0.947 1.00 1.00 1.00 1.00 - 2 Fv' 240 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Bending( +): LC# 2 = D +S, M = 50232 lbs -ft Shear : LC# 2 = D +S, V = 10046, V design = 8665 lbs Deflection: LC# 2 = D +S EI =4548.20e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). Dead 3193 Value Desi n Live 6853 Shear 3193 Total Start End Start End Load? 1 Dead Full Area 15.00(19.58)* 2 No 2 * Snow Full Area 35.00(19.58)* L/360 No Dead 3193 Value Desi n Live 6853 Shear 3193 Total 10096 276 6853 Bearing: fb = 1968 10096 2 fb /Fb' = 0.75 Live Defl'n LC number Len 2.3 L/360 2 Total Defl'n 0.92 = L/260 2.3 Criterion Anal Value Desi n Value Anal Shear fv = 117 Fv' = 276 fv /Fv' = 0.92 Bending( +) fb = 1968 Fb' = 2619 fb /Fb' = 0.75 Live Defl'n 0.59 = L/442 0.67 = L/360 0.81 Total Defl'n 0.92 = L/260 1.00 = L/240 0.92 - 1 Q ' COMPANY PROJECT 12) Wood Wo rks® G S Structural Engineers 1600 John Adams Parkway Suite 200 SOFTWARE FOR WOOD DESIGN Idaho Falls, Idaho 83401 Feb. 20, 2004 11:49:40 Beam1 Design Check Calculation Sheet S¢er 2004 LOADS: ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Pattern Start End Start End Load? 1 Dead Full Area 15.00(19.58)* No 2 Live Full Area 40.00(19.58)* No *Tributary Width (ft) MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 0. 29' Dead 4917 Live 11358 4917 Total 16275 11358 Bearing: 16275 LC number 2 Len th 2.9 2 1_ 2 . 9 Glulam- Unbal., West Species, 24F -V4 DF, 8- 3/4x22 -1/2" Self Weight of 45.33 plf automatically included in loads; Lateral support: top = full, bottom= at supports; Load combinations: ICC -IBC; SECTION vs. DESIGN CODE NDS -2001: ( stress =psi, and in) Criterion Anal sis Value Design Value Anal sis/Desi n Shear fv = 108 Fv' = 240 fv/Fv' = 0.45 Bending( +) fb = 1918 Fb' = 2068 fb /Fb' = 0.93 Live Defl'n 0.83 = L/417 0.97 = L/360 0.86 Total Defl'n 1.38 = L/253 1.45 = L/290 0.95 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fb 2400 1.00 1.00 1.00 1.000 0.862 1.00 1.00 1.00 1.00 - 2 FV' 240 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Bending( +): LC# 2 = D +L, M = 117991 lbs -ft Shear : LC# 2 = D +L, V = 16275, V design = 14170 lbs Deflection: LC# 2 = D +L EI= 14949.96e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). - 1 Q ' Criterion COMPANY PROJECT Desi Wood Wo r ks® G & S Structural Engineers 1600 John Adams Parkway ClubHouse Student Housing Beam1 fv = 118 Suite 200 276 fv /Fv' = 0.93 SOFTWARE FOR WOOD DESIGN Idaho Falls, Idaho 83401 Feb. 1 0, 1 004 11 1978 Fb' = Design Check Calculation Sheet fb /Fb' = 0.82 Sizer 2004 0.78 = LOADS: ( Ibs, psf, or plf ) 3.9 Load Type Distribution Magnitude Location [ft] Pattern 0.81 Start End Start End Load? 1.39 = 1 Dead Full Area 15.00(19.58)* No 3 4 2 Snow Full Area 35.00(19.58)* No 0.93 * Tributary Width (ft) MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 0' 29' Dead 4799 Live 9937 9799 Total 19736 9937 Bearing: 19736 LC number 2 2 - Len g th Glulam - Unbal., West Species, 24F -V4 DF, 6- 3/4x24" Self Weight of 37.3 plf automatically included in loads; Lateral support: top= full, bottom= at supports; Load combinations: ICC -IBC; SECTION vs. DESIGN CODE NDS -2001: ( stress =psi, and in) ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fb'+ 2400 1.15 1.00 1.00 1.000 0.879 1.00 1.00 1.00 1.00 - 2 Fv' 240 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Bending( +): LC# 2 = D +S, M = 106838 lbs -ft Shear : LC# 2 = D +S, V = 14736, V design = 12704 lbs Deflection: LC# 2 = D +S EI= 13996.57e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). Criterion Anal Value Desi Value Anal sis / Desi Shear fv = 118 Fv' = 276 fv /Fv' = 0.93 Bending( +) fb 1978 Fb' = 2426 fb /Fb' = 0.82 Live Defl'n 0.78 = 3.9 L/360 0.81 Total Defl'n 1.39 = L/258 3 4 Criterion Anal Value Desi Value Anal sis / Desi Shear fv = 118 Fv' = 276 fv /Fv' = 0.93 Bending( +) fb 1978 Fb' = 2426 fb /Fb' = 0.82 Live Defl'n 0.78 = L/446 0.97 = L/360 0.81 Total Defl'n 1.39 = L/258 1.95 = L/240 0.93 (1 COMPANY PROJECT Wo od Works 0 G S Structural Engineers 1600 0 John Adams Parkway Suite 200 SOFTWARE FOR WOOD DESIGN Idaho Falls, Idaho 83401 Feb. 24, 2004 09 :39 :08 Beam1 Design Check Calculation Sheet Sizer 2004 LOADS ( lbs, psf, or plf ) -------- I .. iu jai xi. �/ Load Type Distribution Magnitude Location [ft] Pattern Dead Live Total Bearing: 3569 8615 12179 fv /Fv' = 0.49 3564 6615 12179 2 2.8 Start End Start End Load? 2.8 2 1 Dead Full Area 15.00(19.58)* No Total Defl'n 0.89 = L/296 2 *Tri h"f., Live ,-., w; Full Area 40.00(19.58)* No -------- I .. iu jai xi. �/ Criterion MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : Desi n Value a 22' Shear Dead Live Total Bearing: 3569 8615 12179 fv /Fv' = 0.49 3564 6615 12179 2 2.8 fb = 1879 Fb' = 2214 LC number Len th 2.8 2 Live Defl'n Glulam- Unbal., West Species, 24F -V4 DF, 6- 3/4x19 -1/2" 0.73 = L/360 Self Weight of 30.3 plf automatically included in loads; Lateral support: top= full, bottom= at supports; Load combinations: ICC -IBC; SECTION vs. DESIGN CODE NDS -2001: ( stress =psi, and in) Total Defl'n ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fb'+ 2400 1.00 1.00 1.00 1.000 0.922 1.00 1.00 1.00 1.00 - 2 Fv' 240 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Bending( +): LC# 2 = D +L, M = 66986 lbs -ft Shear : LC# 2 = D +L, V = 12179, V design = 10380 lbs Deflection: LC# 2 = D +L EI= 7507.44e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAK bearing length based on smaller of Fcp(tension), Fcp(comp'n). Criterion Analysis Value Desi n Value An sis /Desi n Shear fv = 118 Fv' = 240 fv /Fv' = 0.49 Bending( +) fb = 1879 Fb' = 2214 fb /Fb' = 0.85 Live Defl'n 0.55 = L/480 0.73 = L/360 0.75 Total Defl'n 0.89 = L/296 1.10 = L/290 0.81 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fb'+ 2400 1.00 1.00 1.00 1.000 0.922 1.00 1.00 1.00 1.00 - 2 Fv' 240 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Bending( +): LC# 2 = D +L, M = 66986 lbs -ft Shear : LC# 2 = D +L, V = 12179, V design = 10380 lbs Deflection: LC# 2 = D +L EI= 7507.44e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAK bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT WOOd ® 1 S Structural Engineers Clubhouse Student housing 1600 0 John Adams Parkway Rexburg, Id. Suite 200 Columnl I Idaho Falls, Idaho 83401 Design Check Calculation Sheet Sizer 2004 LOADS: ( Ibs, psf, or plf ) MAXIMUM REACTIONS (lbs): 0' 8' Dead Live gp Total 80 80 80 LVL n -ply, 1.8E, 2600Fb, 1- 3/4x5 -1/2 ", 4 -Plys Self Weight of 11.1 plf automatically included in loads; Pinned base; Loadface = width(b); Built-up fastener. nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Lateral support: top = Lb, bottom = Lb; Load combinations: ICC -IBC; SECTION vs. DESIGN CODE NDS -2001: (lbs, Ibs -ft, or in) Criterion Anal sis Value Design Value Anal sis /Desi n Shear fv = 3 Fv' = 456 fv/Pv' = 0.01 Bending( +) fb = 54 Fb' = 4811 fb /Fb' = 0.01 Axial fc = 809 Fc' = 1163 fc /Fc' = 0.70 Axial Bearing fc = 809 Fc* = 2645 fc /Fc* = 0.31 Combined (axial compression + side load bending) Eq.3.9 -3 = 0.28 Live Defl'n 0.01 = <L/999 0.53 = L /180 0.02 Total Defl'n 1 0.01 = <L/999 0.53 = L /180 0.02 ADDITIONAL DATA: FACTORS: F CD CM Ct CL /CP CV Cfu Cr Cfrt CF LC# Fb'+ 2600 1.60 - 1.00 1.000 1.11 - 1.04 1.00 - 4 Fv' 285 1.60 - 1.00 - - - - 1.00 - 4 Fcp' 750 - - 1.00 - - - - 1.00 - - Fc' 2300 1.15 - 1.00 0.440 - - - 1.00 - 2 Fc'comb 2300 1.60 - - 0.352 - - - - - 3 E' 1.8 million - 1.00 - - - - 1.00 - 4 Fc* 2300 1.15 - 1.00 - - - - 1.00 - 2 Bending( +): LC# 4 = .6D +W, M = 160 lbs -ft Shear : LC# 4 = .6D +W, V = 80, V design = 80 lbs Deflection: LC# 4 = .6D +W EI= 43.67e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Axial LC# 2 = D +S, P = 31129 lbs Kf = 0.60 Combined LC# 3 = D +.75(S +W); (1 - fc /FcE) = 0.73 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 1 SCL - Columns (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 1t�� Load Type Distribution Magnitude Location [ft] Pattern 1 Dead Axial Start End - (Eccentricity Start End Load? 2 9718 = 0.00 in) Snow Axial 21322 (Eccentricity = 0.00 in) 3 Wind Full UDL 20.0 No MAXIMUM REACTIONS (lbs): 0' 8' Dead Live gp Total 80 80 80 LVL n -ply, 1.8E, 2600Fb, 1- 3/4x5 -1/2 ", 4 -Plys Self Weight of 11.1 plf automatically included in loads; Pinned base; Loadface = width(b); Built-up fastener. nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Lateral support: top = Lb, bottom = Lb; Load combinations: ICC -IBC; SECTION vs. DESIGN CODE NDS -2001: (lbs, Ibs -ft, or in) Criterion Anal sis Value Design Value Anal sis /Desi n Shear fv = 3 Fv' = 456 fv/Pv' = 0.01 Bending( +) fb = 54 Fb' = 4811 fb /Fb' = 0.01 Axial fc = 809 Fc' = 1163 fc /Fc' = 0.70 Axial Bearing fc = 809 Fc* = 2645 fc /Fc* = 0.31 Combined (axial compression + side load bending) Eq.3.9 -3 = 0.28 Live Defl'n 0.01 = <L/999 0.53 = L /180 0.02 Total Defl'n 1 0.01 = <L/999 0.53 = L /180 0.02 ADDITIONAL DATA: FACTORS: F CD CM Ct CL /CP CV Cfu Cr Cfrt CF LC# Fb'+ 2600 1.60 - 1.00 1.000 1.11 - 1.04 1.00 - 4 Fv' 285 1.60 - 1.00 - - - - 1.00 - 4 Fcp' 750 - - 1.00 - - - - 1.00 - - Fc' 2300 1.15 - 1.00 0.440 - - - 1.00 - 2 Fc'comb 2300 1.60 - - 0.352 - - - - - 3 E' 1.8 million - 1.00 - - - - 1.00 - 4 Fc* 2300 1.15 - 1.00 - - - - 1.00 - 2 Bending( +): LC# 4 = .6D +W, M = 160 lbs -ft Shear : LC# 4 = .6D +W, V = 80, V design = 80 lbs Deflection: LC# 4 = .6D +W EI= 43.67e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Axial LC# 2 = D +S, P = 31129 lbs Kf = 0.60 Combined LC# 3 = D +.75(S +W); (1 - fc /FcE) = 0.73 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 1 SCL - Columns (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 1t�� COMPANY PROJECT Wood Wo r ks® G & S Structural Engineers 1600 John Adams Parkway Clubhouse Student housing Rexburg, Id. Suite 200 Columnl 50E7WARE FOR WOOD DESIGN Idaho Falls, Idaho 83401 Design Check Calculation Sheet Sizer 2004 LOADS: ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Pattern Start End Start End Load? 1 Dead Axial 4799 (ECCent icity = 0.00 in) 2 Snow Axial 9937 (Eccent icity = 0.00 in) 3 Wind Full UDL 20.0 No MAXIMUM REACTIONS (lbs): 0' 14, Dead Live 140 Total 140 140 140 LVL n -ply, 1.8E, 2600Fb, 1- 3/4x5 -1/2 ", 4 -Plys Self Weight of 11.1 plf automatically included in loads; Pinned base; Loadface = width(b); Built -up fastener: nails; Ke x Lb: 1.00 x 14.00= 14.00 [ft]; Ke x Ld: 1.00 x 14.00= 14.00 [ft]; Lateral support: top = Lb, bottom = Lb; Load combinations: ICC -IBC; SECTION vs. DESIGN CODE NDS -2001: (lbs, Ibs -ft, or In) Analysis Value Design Value Anal /Design fv = 5 FV' = 456 fv Fv' = 0.01 7Axial fb = 167 Fb' = 4811 fb /Fb' = 0.03 fc = 387 Fc' = 465 fc /Fc' = 0.83 ng fc = 387 Fc * = 2645 fc /Fc* = 0.15 xia compression + s de load bending) Eq.3.9 -3 = 0.51 'n 0.10 = <L/999 0.93 = L /180 0.11 Total Defl'n 0.10 = <L/999 1 0.93 = L /180 0.11 ADDITIONAL DATA: FACTORS: F CD CM Ct CL /CP CV Cfu Cr Cfrt CF LC# Fb 2600 1.60 - 1.00 1.000 1.11 - 1.04 1.00 - 4 Fv' 285 1.60 - 1.00 - - - - 1.00 - 4 Fcp' 750 - - 1.00 - - - - 1.00 - - Fc' 2300 1.15 - 1.00 0.176 - - - 1.00 - 2 Fc'comb 2300 1.60 - - 0.128 - - - - - 3 E' 1.8 million - 1.00 - - - - 1.00 - 4 Fc* 2300 1.15 - 1.00 - - - - 1.00 - 2 Bending( +): LC# 4 = .6D +W, M = 490 lbs -ft Shear : LC# 4 = .6D +W, V = 140, V design = 140 lbs Deflection: LC# 4 = .6D +W EI= 43.67e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Axial LC# 2 = D +S, P = 14891 lbs Kf = 0.60 Combined LC# 3 = D +.75(S +W); (1 - fc /FCE) = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 3. SCL - Columns (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. COMPANY PROJECT WoodWorks G & S Structural Engineers 1600 John Adams Parkway Suite 200 SOFTWARE FOR WOOD DESIGN Idaho Falls, Idaho 83401 Feb. 20, 2004 11:56:12 Beam1 Design Check Calculation Sheet Sizer 2004 LOADS: ( Ibs, psf, or plf ) -------- I ...... %-, Load Type Distribution Magnitude Location [ft) Pattern 29' Fv' = 240 1 16302 Bending( +) Start End Start End Load? 28992 8862 Dead ea 15.00(19.58)* No Total Defl'n Bearing: 2 Live LFull ea 90.00(19.58)* LC number No 3 Live 6.5 19191 7.00 No - Length 4 Snow 16793 7.00 No Self Weight of 77.96 plf automatically included in loads; 5 *Trifi..f Dead ter., m;.i mot. Icy. 19389 7.00 No -------- I ...... %-, Criterion MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : Design Value ° Shear 29' Fv' = 240 Dead 16302 Bending( +) fb = 1804 Fb' = 1959 Live 28992 8862 0.50 = L/696 Total 95299 15990 Total Defl'n Bearing: 1.45 = L/240 0.64 24852 LC number 3 6.5 2 - Length 3.6 Glulam - Unbal., West Species, 24F -V4 DF, 10- 3/4x31 -112" Self Weight of 77.96 plf automatically included in loads; Lateral support: top= full, bottom= at supports; Load combinations: ICC -IBC; SEC TION vs. DESIGN CODE NDS -2001: ( stress =psi, and in) ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fb'+ 2400 1.00 1.00 1.00 1.000 0.816 1.00 1.00 1.00 1.00 - 2 Fv' 240 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Bending( +): LC# 2 = D +L, M = 267211 lbs -ft Shear : LC# 2 = D +L, V = 42219, V design = 39187 lbs Deflection: LC# 3 = D +.75(L +S) EI= 50399.28e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSUAITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). Criterion Analysis Value Design Value Anal sis /Desi n Shear fv = 174 Fv' = 240 fv /Fv' = 0.72 Bending( +) fb = 1804 Fb' = 1959 fb /Fb' = 0.92 Live Defl'n 0.50 = L/696 0.97 = L/360 0.52 Total Defl'n 0.93 = L/375 1.45 = L/240 0.64 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fb'+ 2400 1.00 1.00 1.00 1.000 0.816 1.00 1.00 1.00 1.00 - 2 Fv' 240 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Bending( +): LC# 2 = D +L, M = 267211 lbs -ft Shear : LC# 2 = D +L, V = 42219, V design = 39187 lbs Deflection: LC# 3 = D +.75(L +S) EI= 50399.28e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSUAITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). F WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Beam1 WoodWorks® Sizer 2004 Feb. 20, 2004 11:46:28 Critical Results REACTION [lbs] Maximum... Uplift: 0 Bearing: 43545 X43545 0' SHEAR [lbs] +V max: 40413 2424 27' I Load Combina ion #2: D+ i I � i I I I 0' 2r Design shear < maximum due to notching or loads ignored within distance "d" of support. BENDING [lbs -ft] +M max: 254666 Load Combination #2: D +L 254666 I I I I I 0. 7 ' 27' 1 DEFLECTION [in] Max Live: 0.47 Max Total: 0.87 Load Combination #3: D +.75(L +S) i . 0 13' -6" 04 ;, I G WOOdWOrks® Sizer SOFTWARE FOR WOOD DESIGN Beam1 Woodworks® Sizer 2004 Feb. 20, 2004 11:46:29 Load Combination 01: D only LOAD ENVELOPE T 1753334.25 � I 1 0 •, I I 0' 7' i REACTION [lbs] Maximum... Uplift: 0 Bearing: 15623 X15623 0 ' SHEAR [lbs] +V max: 15623 4703 0' Design shear < maximum d ue to BENDING [lbs -ft] +M max: 100325 i 0 ' DEFLECTION [in] Max Live: 0 Max Total: 0.4 L 7' or loads ignored within distance "d" of 27' 8697 27' J 27' 0' 13' -6" 27' I f'% ILI WoodWorks® Sizer SOF FOR WOO D Beam1 Load Combination 92: D +L LOAD ENVELOPE I T 6428891.5 I I I � I 1 0 Woodworks® Suer 2004 Feb. 20, 2004 11:46:29 I I REACTION [lbs) Maximum... Uplift: 0 Bearing: 40413 0' 27' I I i 24247 1 0413 0 27' h SHEAR [lb.) +V max: 40413 5 I i I i I i 0' I Design shear < maximum due to notching or loads ignored within distance "d" of support 27' BENDING [lbs -ft) i +M max: 254666 -M max: -0 254666 -0 I DEFLECTION [in] Max Live: 0.44 Max Total: 0.84 I' EX 7' 13' -6" 2r i 27' WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Beaml Woodworks® Sizer 2004 Feb. 20, 2004 11:46:29 Load Combination #3: D+.75(L +S) LOAD ENVELOPE I T 5260002.5 i I I l o I i 0' 7' 27' I REACTION (lbs) Maximum... Uplift: 0 Bearing: 43545 23625 3545 I � 27' SHEAR (lb.) +V max: 43545 6 i L , 0' 27' Design shear < maximum due to notching or loads ignored within distance "d" of support BENDING [lbs -ft) +M max: 281387 -M max: -0 281387 i 0. 7 27' I DEFLECTION (in) Max Live: 0.47 Max Total: 0.87 i 0' 13' -6" 27' w L1 Woodworks(g) Sizer SOFTWARE FOR WOOD DESIGN Beam1 Load Combination #4: D +S LOAD ENVELOPE T 1753334.25 1 0 Woodworks® S[zer 2004 Feb. 20, 2004 11:46:30 1 i j 0' I REACTION [lbs] Maximum... Uplift: 0 Bearing: 28062 I 28062 0' I SHEAR [lbs] I 7142 V design: 2 142 i 0' Design shear < maximum d ue to 7' BENDING [lbs -ft] +M max: 187400 I 0' I DEFLECTION [in] Max Live: 0.19 Max Total: 0.59 7' 27' i I i 13051 I I 27 i I i I i � I I I I i 27' or loads ignored within distance "d" of support. i 7400 I I 27' 0' 13' -6" 27' ��� V w TJ -Beam V�((EE��!! (TM) 6.10 Serial Number7003002591 User. 2 2120/2004 12 :0120 PM Typical Floor Joist 16" TJI@ 360 @ 16" O/C Pagel Engine version: 1. 10.3 THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE APPLICATION AND LOADS LISTED - Deflection Criteria: STAN DARD(LL: U480,TL: U240). - Deflection analysis is based on composite action with single layer of 23/32" Panels (24" Span Rating) GLUED & NAILED wood decking. - Bracing(Lu): All compression edges (top and bottom) must be braced at 2'8" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability. TJ -Pro RATING SYSTEM -The TJ -Pro Rating System value provides additional floor performance information and is based on a GLUED & NAILED 23/32" Panels (24" Span Rating) decking. The controlling span is supported by walls. Additional considerations for this rating include: Ceiling - None. A structural analysis of the deck has not been performed by the program. Comparison Value: 1.94 ADDITIONAL NOTES: - IMPORTANT! The analysis presented is output from software developed by Trus Joist (TJ). TJ warrants the sizing of its products by this software will be accomplished in accordance with TJ product design criteria and code accepted design values. The specific product application, input design loads, and stated dimensions have been provided by the software user. This output has not been reviewed by a TJ Associate. -Not all products are readily available. Check with your supplier or TJ technical representative for product availability. -THIS ANALYSIS FOR TRUS JOIST PRODUCTS ONLY! PRODUCT SUBSTITUTION VOIDS THIS ANALYSIS. - Allowable Stress Design methodology was used for Building Code IBC analyzing the TJ Distribution product listed above. PROJECT INFORMATION: Student Housing Copyright Co 2003 by Trus Joist, a Weyerhaeuser Business TJI® and TJ -Beam® are registered trademarks of Trus Joist. e -I Joist °,Pro° and TJ -Pro° are trademarks of Trus Joist. OPERA INFORMATION: Robert Gustafson G & S Structural Engineers 1600 John Adams Parkway Suite 200 Idaho Falls, ID 83401 Phone: (208) 523-6918 Fax :(208) 523-6922 gs@dataway.net I `G� Product Diagram is Conceptual. LOADS: Analysis is for a Joist Member. Primary Load Group - Residential - Living Areas (psf): 40.0 Live at 100 % duration, 12.0 Dead SUPPORTS: Input Bearing Vertical Reactions (Ibs) Detail Other Width Length Live /Dead /UpliftfTotal 1 Stud wall 3.50" 2.25" 520 / 156 / 0 / 676 A3: Rim Board 1 Ply 1 1/4" x 16" 0.8E TJ- Strand Rim Board® 2 Stud wall 3.50" 2.25" 520 /156 / 0 / 676 A3: Rim Board 1 Ply 1 1/4" x 16" 0.8E TJ- Strand Rim Board® -See TJ SPECIFIER'S / BUILDERS GUIDE for detail(s): A3: Rim Board DESIGN CONTROLS: Maximum Design Control Control Location Shear (Ibs) 662 -656 2190 Passed (30 %) Rt. end Span 1 under Floor loading Vertical Reaction (Ibs) 662 662 1202 Passed (55 %) Bearing 2 under Floor loading Moment (Ft -Lbs) 3156 3156 8405 Passed (38 %) MID Span 1 under Floor loading Live Load Defl (in) 0.197 0.477 Passed (U999 +) MID Span 1 under Floor loading Total Load Defl (in) 0.255 0.954 Passed (U896) MID Span 1 under Floor loading TJPro 52 50 Passed Span 1 - Deflection Criteria: STAN DARD(LL: U480,TL: U240). - Deflection analysis is based on composite action with single layer of 23/32" Panels (24" Span Rating) GLUED & NAILED wood decking. - Bracing(Lu): All compression edges (top and bottom) must be braced at 2'8" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability. TJ -Pro RATING SYSTEM -The TJ -Pro Rating System value provides additional floor performance information and is based on a GLUED & NAILED 23/32" Panels (24" Span Rating) decking. The controlling span is supported by walls. Additional considerations for this rating include: Ceiling - None. A structural analysis of the deck has not been performed by the program. Comparison Value: 1.94 ADDITIONAL NOTES: - IMPORTANT! The analysis presented is output from software developed by Trus Joist (TJ). TJ warrants the sizing of its products by this software will be accomplished in accordance with TJ product design criteria and code accepted design values. The specific product application, input design loads, and stated dimensions have been provided by the software user. This output has not been reviewed by a TJ Associate. -Not all products are readily available. Check with your supplier or TJ technical representative for product availability. -THIS ANALYSIS FOR TRUS JOIST PRODUCTS ONLY! PRODUCT SUBSTITUTION VOIDS THIS ANALYSIS. - Allowable Stress Design methodology was used for Building Code IBC analyzing the TJ Distribution product listed above. PROJECT INFORMATION: Student Housing Copyright Co 2003 by Trus Joist, a Weyerhaeuser Business TJI® and TJ -Beam® are registered trademarks of Trus Joist. e -I Joist °,Pro° and TJ -Pro° are trademarks of Trus Joist. OPERA INFORMATION: Robert Gustafson G & S Structural Engineers 1600 John Adams Parkway Suite 200 Idaho Falls, ID 83401 Phone: (208) 523-6918 Fax :(208) 523-6922 gs@dataway.net I `G� 0 � ljflf� Typical Floor Joist Ti- Beamgm) 6.10 serial) Nam '700300 ss1 16" TJI@ 360 16" @ o/c Page 2 Enggi eVersiorr 1.10.3 THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE APPLICATION AND LOADS LISTED Load Group: Primary Load Group 19 1.00" ^ Max. Vertical Reaction Total (lbs) 676 676 Max. Vertical Reaction Live (lbs) 520 520 Selected Bearing Length (in) 2.25(W) 2.25(W) Max. Unbraced Length (in) 32 Loading on all spans, LDF = 0.90 , 1.0 Dead Design Shear (lbs) 151 -151 Max Shear (lbs) 153 -153 Member Reaction (lbs) 153 153 Support Reaction (lbs) 156 156 Moment (Ft -Lbs) 729 Loading on all spans, LDF = 1.00 , 1.0 Dead + 1.0 Floor Design Shear (lbs) 656 -656 Max Shear (lbs) 662 -662 Member Reaction (lbs) 662 662 Support Reaction (lbs) 676 676 Moment (Ft -Lbs) 3156 Live Deflection (in) 0.197 Total Deflection (in) 0.255 PROJECT INFORMATION: Student Housing Copyright 0 2003 by Trus Joist, a Weyerhaeuser Business TJI® and TJ -Beam® are registered trademarks of Trus Joist. e -I ,and and TJ -Pro° are trademarks of Trus Joist. OPERA INFORMATION: Robert Gustafson G & S Structural Engineers 1600 John Adams Parkway Suite 200 Idaho Falls, ID 83401 Phone: (208) 523-6918 Fax :(208) 523 -6922 gs @dataway.net �9 Company G & S Structural Engineers February 24, 2004 Designer Bob Gustafson Job Number : G & S Structural Engineers Clubhouse Checked By: Sketch 4\ x „A B 44 12 in v w e O Z o D C D - ¢ C 1 ft 0 D5 in Z �a L ,�D a 0 1 ft Controlling Z direction steel requires the following placement: Region 1 (starts at A): 3 in Steel: .03 in #4 @NA) Region 2 (middle): 12 in Steel: .26 in #4 @12 in) Region 3 (ends at D): 3 in Steel: .03 in 2 (1 #4 @NA) Bottom Rebar Plan Geome try, Materials and Criteria C Footing Elevation Length :1 ft eX : 0 in Gross Allow. Bearing :2000 psf Steel fy :60 ksi Width :1.5 ft eZ : 0 in Concrete Weight :145 pcf Minimum Steel :.0018 Thickness :10 in pX :8 in Concrete fc :2.5 ksi Maximum Steel :.0075 Height :0 in pZ :12 in Design Code : ACI 318 -02 Footing Top Bar Cover :3.5 in Overturning Safety Factor :1 Phi for Flexure :0.9 Footing Bottom Bar Cover :3.5 in Coefficient of Friction :0.2 Phi for Shear :0.75 Pedestal Longitudinal Bar Cover :1.5 in Passive Resistance of Soil : 0 k Phi for Bearing :0.65 Loads P (k ) Vx k Vz k Mx (k -ft) Mz (k -ft) Overburden s DL 1.12 240 LL 1.23 +P +Vx +Vz � ± � z + Over � C� L1 1 1-1 A D D C D C A D _ rl�) RISAFoot Version 2.0 [Untitled.rft] Pa 6 1 -- 9 Company G & S Structural Engineers February 24, 2004 Designer Bob Gustafson Job Number: G & S Structural Engineers Clubhouse Checked By: Soil Bearin_q Description Categories and Factors Gross Allow. (psf) Max Bearing psf) Max/Allowable Ratio ASCE 2.4.1 -1 1 1 DL I 2000 1000.79 A 5 ASCE 2.4.1 -2 1DL +1 LL 2000 1820.74 (A) .91 A B A B D C D C 1 DL 1 DL +1 LL QA: 1000.79 psf QA: 1820.74 psf QB: 1000.79 psf QB: 1820.74 psf QC: 1000.79 psf QC: 1820.74 psf QD: 1000.79 psf CID: 1820.74 psf NAZ: -1 in NAZ: -1 in NAX: -1 in NAX: -1 in Footin_g Flexure Design (Bottom Bars) Description Cate ories and Factors Mu -XX (k -ft ) Z Dir As in ) Mu -ZZ (k -ft) X Dir As (in ACI 9 -1 1.4DL +1.7LL 5.241 a -7 1.86347e -8 1 .243 1 .009 Note: Overburden and footing self weight are included in the DL load case. Footing Shear Check Two Way (Punching) Vc: NA One Way (X Dir. Cut) Vc 11.251 k One Way (Z Dir. Cut) Vc: 7.5 k Punching X Dir. Cut Z Dir. Cut Description Cate ories and Factors Vu(k) Vu /,oVc Vu(k) Vu /fzSVc Vu(k) Vu /,OVC ACI9 -1 1.4DL +1.7LL NA I A 1 .002 1 0 1 .002 1 0 Note: Overburden and footing self weight are included in the DL load case. Concrete Bearing Check (Vertical Loads Only) Bearing Bc : 206.125 k Description Categories and Factors Bearing Bu (k) Bearing Bu /oBc ACI 9 -1 1 1.4DL +1.7LL 4.193 .031 Note: Overburden and footing self weight are included in the DL load case. Overturning Check (Service) Description Categories and Factors Mo -XX k -ft Ms -XX k -ft Mo -ZZ k -ft Ms -ZZ k -ft OSF -XX OSF -ZZ AS 2.4.1 -1 1 DL 1 .08 .831 .12 1 1.246 110.383 110.383 1 ASCE 2.4.1 -2 1 DL +1 LL .08 1.446 1 .12 1 2.169 18.071 118.071 Mo -XX: Governing Overturning Moment about AD or BC Ms -XX: Governing Stablizing Moment about AD or BC OSF -XX: Ratio of Ms -XX to Mo -XX RISAFoot Version 2.0 [Untitled.rft] Page 2 Company G & S Structural Engineers February 24, 2004 Designer Bob Gustafson Job Number : G & S Structural Engineers Clubhouse Checked By: Sliding _Check (Service) Description Categories and Factors Va -XX k Vr -XX k Va -ZZ k Vr -ZZ k SR -XX SR -ZZ ASCE 2.4.1 -1 1 DL t. 0 .3 0 .3 NA NA ASCE 2.4.1 -2 1 DL +1 LL 0 .546 0 .546 NA NA Va -XX: Applied Lateral Force to Cause Sliding Along XX Axis Vr -XX: Resisting Lateral Force Against Sliding Along XX Axis SR -XX: Ratio of Vr -XX to Va -XX RISAFoot Version 2.0 [Untitled.rft] Page 3 Company G & S Structural Engineers February 24, 2004 Designer Bob Gustafson Job Number : G & S Structural Engineers Clubhouse Checked By: Sketch 1.917 ft f, X w c 12 in o N I M Z D C 4.834 ft Details 4 a W '1 � v M N F -Ji O 1 #4@7.29 in 4j w V M OD a #-0@8.5 in D C 4.834 ft X Dir. Steel: 1.43 in (8,#4) Z Dir. Steel: 1.2 in (7 #4) Bottom Rebar Plan Z #3( a .14 �D Footing Elevation 12 in a 4 #3 'rq a m H H Pedestal Rebar Plan Geometry Materials and Criteria a 0 A Length :4.834 ft eX :0 in Net Allowable Bearing :2000 psf Steel fy :60 ksi Width :4.834 ft eZ :0 in Concrete Weight :145 pcf Minimum Steel :.0018 Thickness :10 in pX :8 in Concrete fc :2.5 ksi Maximum Steel :.0075 Height :24 in pZ :12 in Design Code : ACI 318 -02 Footing Top Bar Cover :3.5 in Overturning Safety Factor :1 Phi for Flexure :0.9 Footing Bottom Bar Cover :3.5 in Coefficient of Friction :0.2 Phi for Shear :0.75 Pedestal Longitudinal Bar Cover :1.5 in Passive Resistance of Soil : 0 k Phi for Bearing :0.65 RISAFoot Version 2.0 [Untitled.rft] Page 1 Company G & S Structural Engineers February 24, 2004 Designer Bob Gustafson Job Number : G S S Structural Engineers Clubhouse Checked By: Loads P k Vx k Vz k Mx k -ft Mz k -ft Overburden s DL 14.75 240 LL 30.67 +P ... +Vx ,.., +Vz f.—+Mx � +Mz +Over A D D C D C A D Soil Bearin_q Description Categories and Factors Gross Allow.( Max Bearing (psf) Max/Allowable Ratio ASCE 2.4.1 -1 1DL 1 2362.26 1 993.451 A ) .421 ASCE 2.4.1 -2 1 1 DL +1 LL 1 2362.26 1 23n5.9 (A% I a7a A B D C 1DL QA: QA: 993.451 psf QB: 993.451 psf QC: 993.451 psf QD: 993.451 psf NAZ: -1 in NAX: -1 in A B D C 1 DL +1 LL QA: 2305.9 psf QB: 2305.9 psf QC: 2305.9 psf QD: 2305.9 psf NAZ: -1 in NAX: -1 in Footing Flexure Design (Bottom Bars) Description Categories and Factors Mu -XX (k -ft) Z Dir As (in 2 ) Mu -ZZ (k -ft) X Dir As (in ) AC19 -1 1 1.4DL +1.7LL 1 32.174 T 1.2 38.011 1 1.431 Note: Overburden and footing self weight are included in the DL load case. Footin_g Shear Check Two Way (Punching) Vc: 81.25 k One Way (X Dir. Cut) Vc 36.256 k One Way (Z Dir. Cut) Vc: 36.256 k Punching X Dir. Cut Z Dir. Cut Description Categories and Factors Vu (k) Vu /,oVc Vu k Vu /f6Vc Vu (k) Vu /QA ACI9 -1 1.4DL +1.7LL 78.099 1.282 24.446 .899 27.365 11.006 Note: Overburden and footing self weight are included in the DL load case. RISAFoot Version 2.0 [Untitled.rft] Page-2 Company G & S Structural Engineers February 24, 2004 Designer Bob Gustafson Job Number: G & S Structural Engineers Clubhouse Checked By: Pedestal Desian Shear Check Results (Envelope): Shear Along X Direction Vc:7.125 k Vs: 13.116 k Vu: 0 k Vu /0 Vn: 0 0:.75 Shear Along Z Direction Vc: 7.95 k Vs: 21.951 k Vu: 0 k Vu /0 Vn: 0 Shear Bars: #3 @ 6 in Bending Check Results (Envelope): Unity Check: .568 Pn: 183.655 k Pu :72.982 k Mux:O k -ft Mnoz : NA Phi: .7 Longitudinal Bars: 4 #3 Compression Development Length Pedes Lreq.: 9 in Lpro.: 5.125 in Mnx: NA Mnz: NA Muz: 0 k -ft Mnox:NA Parme Beta: .65 tal Bars (Envelope): Lreq. /Lpro.: 1.756 Concrete Bearing Check (Vertical Loads Only) Bearing Bc : 408 k uescn tion Categories and Factors Bearing Bu k Bearing Bu /0Bc ACI 9 -1 1.4DL +1.7LL 1 84.641 1 .319 Note: Overburden and footing self weight are included in the DL load case. Overturnin_a Check (Service) Description - Categories and Factors Mo -XX (k -ft) Ms -XX k -ft Mo -ZZ (k -ft) Ms -ZZ (k -ft) OSF -XX OSF -ZZ ASCE 2.4.1 7 1 1DL 0 56.113 0 56.113 NA NA ASCE 2.4.1 -2 1 DL +1 LL 0 130.244 0 1 130.244 1 NA I NA Mo -XX: Governing Overturning Moment about AD or BC Ms -XX: Governing Stablizing Moment about AD or BC OSF -XX: Ratio of Ms -XX to Mo -XX Sliding Check (Service) Description Categories and Factors Va -XX k Vr -XX k Va -ZZ k Vr -ZZ k SR -XX SR -ZZ ASCE 2.4.1 -1 1 DL 0 4.643 0 4.643 NA NA ASCE 2.4.1 -2 1 1 DL +1 LL 0 10.777 0 10.777 NA I NA Va -XX: Applied Lateral Force to Cause Sliding Along XX Axis Vr -XX: Resisting Lateral Force Against Sliding Along XX Axis SR -XX: Ratio of Vr -XX to Va -XX RISAFoot Version 2.0 [Untitled.rftj Page 3 Company G & S Structural Engineers February 24, 2004 Designer Bob Gustafson Job Number : G & S Structural Engineers Clubhouse . Checked By: Sketch r� X w a o H to _ p C � 0 :, LO 5.501 ft Bottom Rebar Plan ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■■ /� X a Z 0 # .n 6 1 -4 ° MD C Footing Elevation 12 in 16#3 a N a Pedestal Rebar Plan Geome try, Materials and Criteria Length :6.601 ft eX :0 in Net Allowable Bearing :2000 psf Steel fy :60 ksi Width : 5.501 ft eZ : 0 in Concrete Weight :145 pcf Minimum Steel :.0018 Thickness :10 in pX :12 in Concrete fc :2.6 ksi Maximum Steel :.0075 Height :4 in pZ :12 in Design Code : ACI 318 -02 Footing Top Bar Cover :3.6 in Overturning Safety Factor :1 Phi for Flexure :0.9 Footing Bottom Bar Cover :3.5 in Coefficient of Friction :0.2 Phi for Shear :0.75 Pedestal Longitudinal Bar Cover :1.5 in Passive Resistance of Soil : 0 k Phi for Bearing :0.65 RISAFoot Version 2.0 [Untitled.rft] Page 1 Company G & S Structural Engineers February 24, 2004 Designer Bob Gustafson Job Number : G & S Structural Engineers Clubhouse . Checked By: Loads P (k Vx k Vz k Mx k -ft Mz k -ft Overburden s DL 19.53 30 LL 37.61 +Vx , +Vz +Mx � +7 +Over � A D D C D C A D Soil Bearinq Description Categories and Factors Gross Allow.(psf) Max Bearin (psf) Max/Allowable Ratio ASCE 2.411 -1 1DL 2151.44 796.848 Al 37 ASCE 2.4.1 -2 1 DL +1 LL 2151.44 2039.75 (A) 948 A B A B D C D C 1DL 1DL +1 LL QA: 796.848 psf QA: 2039.75 psf QB: 796.848 psf QB: 2039.75 psf QC: 796.848 psf QC: 2039.75 psf QD: 796.848 psf QD: 2039.75 psf NAZ: -1 in NAZ: -1 in NAX: -1 in NAX: -1 in Footing Flexure Design (Bottom Bars) Description Categories and Factors Mu -XX (k -ft) Z Dir As (in ) Mu -ZZ (k -ft) X Dir As (in ) ACI9 -1 1.4DL +1.7LL 44.972 1 1.698 1 44.972 1 1.698 Note: Overburden and footing self weight are included in the DL load case. Footin_q Shear Check Two Way (Punching) Vc: 91.25 k One Way (X Dir. Cut) Vc 41.257 k One Way (Z Dir. Cut) Vc: 41.257 k Punching X Dir. Cut Z Dir. Cut De scription Categories and Factors Vu(k) Vu /,e�Vc Vu(k) Vu /,ZVc Vu(k) Vu / ACI9 -1 1 1.4DL +1.7LL 90.227 11. 1.318 30.718 1 .993 1 30.718 1 .993 Note: Overburden and footing self weight are included in the DL load case. v! RISAFoot Version 2.0 [Untitled.rft] Page 2 Company G & S Structural Engineers February 24, 2004 Designer Bob Gustafson Job Number : G & S Structural Engineers Clubhouse Checked By: Pedestal Desian Shear Check Results (Envelope): Shear Along X Direction Vc:11.925 k Vs: 21.951 k Vu: 0 k Vu/0 Vn: 0 0:.75 Shear Along Z Direction Vc:11.925 k Vs: 21.951 k Vu: 0 k Vu /0 Vn: 0 Shear Bars: #3 @ 6 in Bending Check Results (Envelope): Unity Check:.399 Pn: 326.619 k Mnx: NA Mnz: NA Pu :91.327 k Mux O k -ft Muz: 0 k -ft Mnox:NA Mnoz : NA Phi: .7 Parme Beta: .65 Longitudinal Bars: 16 #3 Compression Development Length Pedestal Bars (Envelope): Lreq.: 9 in Lpro.: 5.125 in Lreq. /Lpro.: 1.756 Concrete Bearing Check (Vertical Loads Only Bearing Bc : 612 k Description Categories and Factors Bearing Bu k Be n Bu /0Bc ACI 9 -1 1.4DL +1.7LL 97.695 .246 Note: Overburden and footing self weight are included in the DL load case. Overturnin_g Check (Service) — Description Categories and Factors Mo -XX k -ft Ms -XX k -ft Mo -ZZ k -ft Ms -ZZ k -ft OSF -XX OSF -ZZ ASCE 2.4.1 -1 1DL 0 66.32 0 66.32 NA NA ASCE 2.4.1 -2 1 DL +1 LL 0 169.765 0 169.765 NA NA _ Mo -XX: Governing Overturning Moment about AD or BC Ms -XX: Governing Stablizing Moment about AD or BC OSF -XX: Ratio of Ms -XX to Mo -XX Slidin_q Check (Service Description Categories and Factors Va -XX k Vr -XX k Va -ZZ k Vr -ZZ k SR -XX SR -ZZ ASCE 2.4.1 -1 1 1DL 0 4.823 0 4.823 NA NA ASCE 2.4.1 -2 1 DL +1 LL 0 12.345 0 12.345 NA NA Va -XX: Applied Lateral Force to Cause Sliding Along XX Axis Vr -XX: Resisting Lateral Force Against Sliding Along XX Axis SR -XX: Ratio of Vr -XX to Va -XX RISAFoot Version 2.0 [Untitled.rft] Page 3 Clubhouse student housing Date and Time: 2/24/2004 1:17:54 PM MCE Parameters - Conterminous 48 States Zip Code - 83440 Central Latitude = 43.763462 Central Longitude = - 111.609017 Data are based on the 0.10 deg grid set Period SA (sec) ( %g) 0.2 060.6 Map Value, Soil Factor of 1.0 1.0 019.3 Map Value, Soil Factor of 1.0 MCE Parameters x Specified Soil Factors 0.2 060.6 Soil Factor of 1.00 1.0 019.3 Soil Factor of 1.00 MCE Parameters - Conterminous 48 States Zip Code - 83440 Central Latitude = 43.763462 Central Longitude = - 111.609017 Data are based on the 0.10 deg grid set Period SA (sec) ( %g) 0.2 060.6 Map Value, Soil Factor of 1.0 1.0 019.3 Map Value, Soil Factor of 1.0 MCE SPECTRUM x SOIL FACTORS Fa = 1.00 Fv = 1.00 Period SA (sec) ( %g) 0.000 024.3 0.4FaSs 0.064 060.6 To 0.200 060.6 T =0.2, FaSs 0.319 060.6 Ts 0.400 048.3 0.500 038.7 0.600 032.2 0.700 027.6 0.800 024.2 0.900 021.5 1.000 019.3 T =1.0, FvS 1 1.100 017.6 1.200 016.1 1.300 014.9 1.400 013.8 1.500 012.9 1.600 012.1 1.700 011.4 1.800 010.7 1.900 010.2 2.000 009.7 Designer: Robert J Gustafson Date: 2/24/2004 Project: Clubhouse - Student Housing SEISMIC DESIGN: G & S Structural Engineers 1600 John Adams Parkway Idaho Falls, Idaho 83401. Type of Occupancy: (Table 1604.5 and Table 1607.1) Commerical Table 1616.3.1 Building Category or Seismic Use Group: (Table 1604.5 and 1616.2) Building Category = I Seismic Importance Factor: (Table 1604.5) le = 1.00 Soil Site Class: (1615.1.1) Site Class = D Response Modification Coeff. R: (Table 1617.6) R = 6 Building Location: (Latitude & Longitude, or Zip Code) C C Approximate Fundamental Period, T,: h„ = Height (feet) above base to highest level of building. h„ = 38 C = Building Period Coefficient (See 1617.4.2.1) Ct = 0.02 Calculate Approximate Fundamental Period, T,: CT *h„'t' T. = 0.306 Maximum Considered Earthquake Response Accelerations: Short Periods, Ss: (CD rom) S = 0.606 g 1 Second Period, S1: (CD rom) S 1 = 0.193 g Earthquake Response Accelerations Adjusted for Site Class Effects: Site Coefficients: Fa: (Table 1615.1.2(1) or CD rom) F — , - 1.000 g F,: (Table 1615.1.2(2) or CD rom) F„ = 1.000 g SMs: = FaSs (Eq. 16 -16 or CD rom) Sens = 0.606 g SM1: = FvS1 (Eq. 16 -17 or CD rom) SM1 = 0.193 g Design Spectral Response Acceleration Parameters: (1615.1.3) SDS - 2 13S = (Eq. 16 -18) SDS = 0.404 g SD s 2 /3S = (Eq. 16-19) S = 0.129 g Nature of Occupancy Seismic Use Group Table 1616.3.1 Table 1616.3.2 Largest SDC from Tables 1616.3.(1) &(2) SDC* to Use for Design SDS SDC* S DI SDC* Commerical I 0.404 C 0.129 B C C * SDC is the "Seismic Design Category" 51 = 0.193 ** Seismic Use Groups I and II structures located on sites with mapped maximum considered earthquake spectral response acceleration at 1- second periodm S1, equal to or greater thatn 0.75g, shall be assigned to Seismic Design Category E, and Seismic Use Group III structures located on such sites shall be assigned to Seismic Design Category F. Designer: Robert J Gustafson Date: 2/2412004 Project: I G & S Structural Engineers 1600 John Adams Parkway Idaho Falls, Idaho 83401 (1615.1.4) To = Ts = For nerinds > Ts- General Procedure Response Spectrum: To =.2Sd1 /Sds= Ts =Sd1 /Sds= For periods <_ To: Ts >_ For periods >_ To: S .6(Sds *T +.4Sds Sa = Sds O 0.450 f- 0.400 LU 0.350 w v 0.300 Z 0.250 a 0.200 LU 0.150 0.100 L) 0.050 w CL 0.000 Sa = Sd1/T 0.0 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 PERIOD T Seismic Response Coefficient, Cs: (1617.4.1.1) Since Seismic Design Category is C and S1 is less than 0.6 thus Cs min = 0.044Sds(le) Cs shall not be less than: C = 0.044Sds(le) = 0.018) (Eq. 16 - 37) Cs calculated Cs = Sds /(R /le) = 0.067) (Eq. 16-35) Cs need not exceed: Cs = Sd1 /((R /le) *T) = 0.070) (Eq. 16 -36) Cs used for design of Seismic base shear = 0.067 Seismic Base Shear: V = Cs * (Eq. 16 -34) See Section 1617 for the E,„ to use in the load combinations of Section 1605.4. Q = The effect of horizontal seismic forces = Seismic base shear (V) = Cs *W Seismic load effect E. Where the effects of gravity and the seismic ground motion are additive seismic load, E, for use in Formulas 16 -5, 10, and 17 shall be defined by: E = p *Q + 0.2 *Sos * (Eq. 16-28) Where the effects of gravity and seismic ground motion counteract, the seismic load, E, for use in Formulas 16-6, 12, and 18 shall be defined by: E = p *Q - 0.2 *Sp *D (Eq. 16 -29) 0.064 g 0.318 g T =p( Sa /g 0.0 0.162 0.1 0.404 0.3 0.404 0.5 0.257 0.7 0.184 0.9 0.143 1.1 0.117 1.3 0.099 1.5 0.086 1.7 0.076 1.9 .0.068 C��' Project Designed By kwtgl >41 Project No . 2 ( 3 r) , 1 P5r Date t. 3q x ( 20 f /,+) of V4 c4vq (�z V6 - + I- W4- ,10 u 14,4 14 ;1.2 G &S Structural Engineers Sheet Project Designed By Project No - `� -``- -- k "Dt1Tt O#J ) . _ (217s) C 1,,a) ( Z ) = 5. f I- "Uv f � P— 147 (';V) 4-) J Da � � J r M Pip 2•�z d- '1� 3 = l4f PLF 9, G4 38¢ q.f 2•RL+ 2AC, 413 Pt<f t G &S Structural Engineers Sheet _P Project Designed By Project No Date T = e = 1(10)/z ' _ / , �-� QL � 10 , 7 vim- zx.G t14- Fes 576 V 6 Sffigxlo plz�rx2. G &S Structural Engineers Sheet 1 Project Project No. Date Designed By I6' - Z -b- cr 2.4,Z (� ,��� - 14G Ito) ���p - x•33 ( (�)((o�1A'j - I1.1 F - I - 1<1,� > wOr oK- �o� = 2,52 (20 � �.� (I I•��� — ��(¢6 ,° � (!G�'8)�I+�' " ?�G�(f��)�w�� /�, I�• ?(� I " f *rL- 1,1- 1 33 3 ,- L ' r l 4- l ¢ F - ?.Z + 3 •G� - I M,& G &S Structural Engineers I�'•W? Sheet_ Project Project No. Designed By Date ( vv {�ar t = 4-, v o') (tv�(�,S) = 57a,z fr- t�s I' G F ti rZ- I , 4•l 1 t` z 1.7q G &S Structural Engineers Sheet WOOD D I APHRA&M SCHEDULE MARK WDI � WD2 WD� V WD4 i SPAN RATING I SHEATHING I BLOCKING I FRAMING MI NIMUM NIIDTH 48/24 6 .. 0 — 23/32" G -D APA RATED NONE REOV. INTERMEDIATE 12" O.G. BOUNDARY SHEATHING W/ T.4G. PLYWOOD i `'"'-48/24. b" O.G. 23!32" T D -'-APA RAE�7 - PL'PVlOQD W/ ..2x INTERMEDIATE 12" O.G. NDARY SHEATHING ® PANEI"' INTERMEDIATE 12" O.G. EDGES IG/32" r--r-> 40120 APA RATED NONE I W SHEATHING .19132" G -D 4012 0 - , APA:.RATED 2x ® ,PANEL -" SHEATHING ED6E5' – DIAPHRAGM BOUNDARY – — -- — — — NAILING ® 5HEAR WALL OR BUILDING EDGE -� SHEATHING PANELS EDGE NAILING SUPPORTED PANEL EDGE5 NO BLOCKING ® PANEL JOINT EDGE NAILING ® SUPPORTED PANEL EDGE INTERMEDIATE NAILING ® SUPPORTS 2x4 BLOCKING (FLAT) GUT d FITTED BETWEEN J015T5 ® 5HEATHING r -- 'P ANEL EDGES (TYP.) NAILING (0. "mx2V2" MIN.) BOUNDARY 6 .. 0 — SUPPORTED EDGES .r-. 6 INTERMEDIATE 12" O.G. BOUNDARY 6.1 O.G. — 6 O.G. INTERMEDIATE 12" O.G. BOUNDARY b" O.G. 5UPPORTED EDGES 6" O.G. INTERMEDIATE 12" O.G. NDARY b" O.G. INTERMEDIATE 12" O.G. WOOD JOISTS ' BLOCKED DIAPHRAGM UNBLOCKED DIAPHRAGM TYPICAL HORIZONTAL DIAPHR NAILIMr, 1/3/02 2:00 PM FA5TD \5GHED5\DIAPH56H l_i (SEE FRAMING PLAN FOR SHEAR WALL HOLDOWN5) WOOD WALL SCHEDULE (SEE APPROPRIATE SECTION FOR BOTTOM PLATE NAILING OR BOLTING) 77" . RK WALL SILL PLATE ANCHOR 2x2x3 /I6 PLATE WALL TOP PLATE NAILING " 5TUD5 BOLTS WASHERS BLOCKING DETAIL APA RATED (0.128 "mx2 1/2" MIN) LATERAL (2) (3) (4) (5) (6) SHEATHING SHEAR LD. EDGES INTERMED. BW 2x4 0 112" m 1 16" O.G. 2x 0 6' -0" O.G NO 24 x O X/5X WA WA WA WA 7" EMBED 4' -0' O.G. BW 2xb o 1/2" m I6' O.G. 2x 96-0 NO 2x6 O X/SX WA WA WA WA 7" EMBED 4' -0" O.G. BW 2x4 0 1/2" m 24' O.G. 2x o 6' -0" O.G NO 2x4 o X/5X WA WA WA WA 7" EMBED 4' -0 O.G. BW 2xb O 112" m 4 24" O.G. 2x o 6' -0" ac NO 2xb o w5X WA WA WA WA 7 EMBED 4' -0" O.G. BW 2x8 0 2x " I/2 m O 6' -0" O.C. NO x8 ® w -� I6' O.G. X/5X WA WA WA WA 7' EMBED 4' -0" O.G. w m SW 2x6 0 I6' 2x o 4' -0" O.C. ,! 2xb o X/SX ONE SIDE o 6" O.G. 0 12" O.G. O.G. l' EMBED � PANEL JT. 245 PLF w w N SW 2x6 0 518 m " Z. 16 O.G. 2x 0 2' -8" O.G. T 'A % x 0 26 X/5X ONE SIDE o 4" O.G. 0 12" O.G. 350 PLF EMBED PANEL JT. SW (8)(9) 5/8" m p 3x(, O I6' O.G. 2x o I'-4' O.G. YES 3xb O w5X ONE 51DE 0 4" O.G. O 12" O.G. J �_ 365 PLF 7' EMBED PANEL JT. 5 W Tw5X (8) (9) 3x6 0 5/8" m p 3x6 O Z I6' O.G. 2x O L—B C. 7• EMBED YES PANEL JT. ONE 51DE o 3" O.G. O 12" O.G. J 470 PLF �W 2x6 (0) 3/4" m 2x6 O (10) 0 I6" O.G. 2x o I' -4" O.G. 7" EMBED YES PANEL JT. w5X BOTH SIDES o 6" O.G. o 12" O.G. 490 PLF (8) (9) > 5W 11 IbX pG O.G 5/8" m o 4' -0" O.C. NO 3x6 o X /5X ONE SIDE 0 4" O.G. 0 12" O.G. 365 PLF 7" EMBED PANEL JT. SW (8) (9J 3x6 O 3x 5/8" m O 2'_8. O.G. NO 3x6 O w5X ib' O.G. 7" PANEL ONE SIDE o 3" O.G. O 12" O.G. 470 PLF EMBED JT. SW (8) (9) 3x6 O 3x 3/4' m O 2' -8" O.G. NO 3xb O w5X I6" O.G. ONE 51DE 0 2" O.G. 0 12" O.G. 620 PLF 7" EMBED PANEL JT, SW (5) 5/8" m (10) 2x6 O Ib' O.G. 3 o 2' -8" O.G. NO 2xb O X /SX B BOTH SIDES o b' O.G. O 12" O.G. 490 PLF 7" EMBED PANEL JT. SW (8) 5/8" m (10) 2x6 0 I6" O.G. 3x o 2' -0" O.G. NO 2x6 o X/SX BOTH SIDES 0 4" O.G. 0 12" O.G. 700 PLF 7" EMBED PANEL JT. (8) 5 m (10) 3x6 I6 O.. G. 3x o 2 " NO 3xb O /5X 130TH SIDES 0 4" O.G. O 12" O.G. 730 PLF 7 EMBED PANEL JT. Sys (8) 3x6 o I(, O.G. 3x 3/4• m o 2' -O" O.C. NO 3xb o X/SX (10) B BOTH SIDES o 3" O.G. o 12" O.G. 940 PLF 7" EMBED PANEL J T. SW l8) 3/4" m (10) 3xb I6' O. G. 3x O O.G. NO 3x6 O w5X BOTH SIDES O 2" O.G. O 12" O.G. 1240 PLF 7" EM EMB ED PANEL JT. (1) USE CONSTRUCTION GRADE DOU6LA5 FIR. (2) USE PRESSURE TREATED WOOD WHEN IN CONTACT WITH CONCRETE. (3) USE A307 STEEL. DO NOT RECESS NUT AND WASHER INTO SILL PLATE. MINIMUM 2 ANCHOR BOLTS PER PIECE. LOCATE ANCHOR BOLTS 10" FROM EACH END OF PIECE. (4) USE A36 STEEL. DO NOT RECESS INTO SILL PLATE. AT BEARING WALLS (BW) ONLY, BLOCKING MAY BE ELIMINATED IF WALL SHEATHING 15 APPLIED. WHERE TOP PLATE 15 CUT OR 0I5CONTIN)OU5, STRAP ACROSS BREAK WITH 5IMP50N M5T37 STRAP. i0 SHEATHING TO BE PLYWOOD OR OSB. (VERTICAL OR HORIZONTAL ORIENTATION) (8) NAILS SHALL BE 5TA&GERED AT PANEL JOINTS AND SILL PLATE EDGE5. (9) INTERMEDIATE WALL STUDS MAY BE 2x6 AT CONTRACTORS OPTION, BUT NOT AT PANEL JOINTS. (10) PANEL JOINTS SHALL BE OFFSET TO FALL ON DIFFERENT FRAMING MEMBERS. 1118102 2:15 PM F:\5TD\5GHED5\WALL056N 4-1 DATE - 'G ` /)' 0 QUOTE N° 41429 CUSTOMER NAME SALESMAN TELEPHONE CONTRACTOR'S NAME ANDERSON GOMpONNNT31 1675 PEDERSON STREET IDAHO FALLS, IDAHO 83403 208/528 -2309 JOB NAME ✓1, 4 1 0a5v✓►!q C /K6 Moo J LOTADDRESS G/ S, Zh (C,, I _ LOAD REQ'D. QUOTE PREPARED FROM: B PLAN p VERBAL p OTHER QUANTITY SPAN PITCH LEFT RIGH CHORD DESCRIPTION PRICE AMOUNT TOP BOTTOM 1 zXj PlU UUUU rUH 3U UAYS QUOTE Ng 41429 E.I.P. 523.1500 Job T Truss T Truss Type Q Qty P Ply R REX/ Y. W.STUDENTCLUBHOUSE /2- 11 /SB(ID)H Q41429 A Al A ATTIC 7 7 1 1 STOCK COMPONFNTA_IF I Iriahn G�u� 1n aInnz e enr_c Job Reference (optional ek Industries, Inc. Wed Feb 11 13:41:17 2004 Page 1 - 1 -0 p 2 -9 -3 , 4 -10 -9, 7 -1 -12 ,8 -9 -8, 14 -3 -8 1 19 -9 -8 ,21 -5 -4, 23 8 7 ,25-9-13 , 28-7-0 2,9 7, 1 -0 -0 2 -9 -3 2 -1 -7 2 -3 -3 1 -7 -12 5 -6 -0 5 -6 -0 1 -7 -12 2 -3 -3 2 -1 -7 2 -9 -3 1 -0 -0 6x8 // 3x4 = 6x8 9 1 Scale = 1:61.0 <1 LO 19 18 17 16 8x10 3x6 11 5x5 = 10x10 = 8x8 = 10x10 = 5x5 = 3x6 II 2 -9 -3 4 -10 -9 7 -1 -12 21 -5 -4 23 -8 -7 25 -9 -13 28 -7 -0 2 -9 -3 2 -1 -7 2 -3 -3 14 -3 -8 2 -3 -3 2 -1 -7 2 -9 -3 Plate Offsets (X,Y): [2:0 -1- 12,0 -1 -8], [5:0 -7 -6, Edge], [7:0 -2 -8, Edge], (9:0-2-8, Edge], [10:0- 1- 4,0 -0 -4], [11:0-7-6, Edge], [14:0 -1- 12,0 -1 -8], [16:0- 3- 0,0 -0 -4], [18:0- 3- 8,0 -5 -0], [20:0-3-8 LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /defl L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.67 Vert(LL) -0.27 18 -20 >999 240 M1120 187/144 TCDL 8.0 Lumber Increase 1.15 BC 0.49 Vert(TL) -0.37 18 -20 >920 180 BCLL 0.0 Rep Stress Incr NO WB 0.89 Horz(TL) 0.02 14 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Matrix) Weight: 290 lb LUMBER BRACING TOP CHORD 2 X 4 SPF No.2 `Except" TOP CHORD Sheathed or 3 -3 -5 oc purlins. T1 2 X 8 DF 1950F 1.7E, T2 2 X 8 DF 195OF 1.7E BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing, Except: BOT CHORD 1.5 X 9.5 LSL Truss Grade 8 -7 -7 oc bracing: 20- 21,17 -18. WEBS 2 X 4 SPF Stud /Std WEBS 1 Row at midpt 23 -24 WEDGE JOINTS 1 Brace at Jt(s): 23, 24 Left: 2 X 10 DF No.2, Right: 2 X 10 DF No.2 REACTIONS (Ib /size) 2= 2336/0 -5 -8, 14= 2336/0 -5 -8 Max Horz 2=- 283(load case 5) Max Grav2= 2817(load case 2), 14= 2817(load case 3) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 1 -2 =0/83, 2 -3 =- 2997/0, 3 -4 =- 2853/0, 4 -5 =- 3122/0, 5 -6 =- 2013/24, 6 -7 =- 900/104, 9 -10 =- 899/104, 10 -11 =- 2013/24, 11-12=-3122/0,12-13=-2853/0, 13 -14 =- 2997/0, 14 -15 =0/83, 7 -8 =- 520/158, 8 -9 =- 520/157 BOT CHORD 2 -22 =- 122/1794, 21 -22 =- 122/1794, 20 -21 =- 55/2004, 19-20=0/1922,18-19=0/1 922, 17- 18= 0/2004, 16- 17= 0/1794 14 -16= 0/1794 WEBS 6 -23 =- 1681/18, 23- 24=- 1461/0, 10 -24 =- 1681/18, 5- 20= 0/1426, 11- 18= 0/1426, 3- 22=- 273/15, 4 -20 =- 258/767, 4 -21 =- 1313/58, 3 -21 =- 4/425, 12- 18=- 258/767, 12 -17 =- 1313/59, 13 -16 =- 273/21, 13- 17=- 8/425, 7 -23 =- 50/433, 9- 24=- 50/433, 8- 23=- 490/126, 8 -24 =- 490/126 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 7) Ceiling dead load (5.0 psf) on member(s). 5 -6, 10 -11, 6 -23, 23 -24, 10 -24 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 18 -20 LOAD CASE(S) Standard REACTIONS (Ib /size) 2= 2336/0 -5 -8, 14= 2336/0 -5 -8 Max Horz 2=- 283(load case 5) Max Grav2= 2817(load case 2), 14= 2817(load case 3) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 1 -2 =0/83, 2 -3 =- 2997/0, 3 -4 =- 2853/0, 4 -5 =- 3122/0, 5 -6 =- 2013/24, 6 -7 =- 900/104, 9 -10 =- 899/104, 10 -11 =- 2013/24, 11-12=-3122/0,12-13=-2853/0, 13 -14 =- 2997/0, 14 -15 =0/83, 7 -8 =- 520/158, 8 -9 =- 520/157 BOT CHORD 2 -22 =- 122/1794, 21 -22 =- 122/1794, 20 -21 =- 55/2004, 19-20=0/1922,18-19=0/1 922, 17- 18= 0/2004, 16- 17= 0/1794 14 -16= 0/1794 WEBS 6 -23 =- 1681/18, 23- 24=- 1461/0, 10 -24 =- 1681/18, 5- 20= 0/1426, 11- 18= 0/1426, 3- 22=- 273/15, 4 -20 =- 258/767, 4 -21 =- 1313/58, 3 -21 =- 4/425, 12- 18=- 258/767, 12 -17 =- 1313/59, 13 -16 =- 273/21, 13- 17=- 8/425, 7 -23 =- 50/433, 9- 24=- 50/433, 8- 23=- 490/126, 8 -24 =- 490/126 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 7) Ceiling dead load (5.0 psf) on member(s). 5 -6, 10 -11, 6 -23, 23 -24, 10 -24 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 18 -20 LOAD CASE(S) Standard Job Truss Truss Type Qty Ply REX/ Y. W.STUDENTCLUBHOUSE /2- 11 /SB(ID)H 041429 A1G ATTIC 1 1 JOINTS �TnnK nnnnpnnlGNTS IF Id h F II D Left: 2 X 10 DF No.2, Right: 2 X 10 DF No.2 2 -3 -3 2 -1 -7 Job Reference (optional a o a s, I 83403, SAGE 5.200 s Sep 15 2003 MITek Industries, Inc. Wed Feb 11 13:41:19 2004 Page 1 - 1 0 - 2 -9 -3 1 4-10-9, 7 -1 -12 8 -9 -8, 14 -3 -8 19 -9 -8 21 -5 -4, 23 -8 -7 25 -9 -13, 28-7-0 2R-7 0 1 -0 -0 2 -9 -3 2 -1 -7 2 -3 -3 1 -7 -12 5 -6 -0 5 -6 -0 1 -7 -12 2 -3 -3 2 -1 -7 2 -9 -3 1 -0 -0 6x8 // Scale: 3/16 " =1' J - ST4 3x4 = ST1 6x8 y LUMBER 2 - -3 4 -10 -9 1 7 -1 -12 TOP CHORD 2 X 4 SPF No.2 `Except' TOP CHORD 21 -5 -4 BOT CHORD BOT CHORD 1.5 X 9.5 LSL Truss Grade 23 -8 -7 5 -9 -13 28 -7 -0 WEBS 2 -9 -3 2 -1 -7 2 -3 -3 JOINTS WEDGE 14 -3 -8 Left: 2 X 10 DF No.2, Right: 2 X 10 DF No.2 2 -3 -3 2 -1 -7 2 -9 -3 Plate Offsets (X Y): [2:0-1-12,0-1- f5:0 -7 -6 Edgel [7:0 -2 -8 Edge] [9:0 -2 -8 Edge] [11 -7 -6 Edge], [14:0-1-12 T18:0-3-8,0-5- [20. [42:0-3-0 LOADING (psf) TCLL 35.0 TCDL 8.0 BCLL 0.0 BCDL 8.0 SPACING 2 -0 -0 Plates Increase 1.15 Lumber Increase 1.15 Rep Stress Incr NO Code 1RC2000 /ANS195 CSI TC 0.67 BC 0.49 WB 0.89 (Matrix) DEFL Vert(LL) Vert(TL) Horz(TL) in floc) -0.27 18 -20 -0.37 18 -20 0.02 14 I /defl >999 >920 n/a L/d 240 180 n/a PLATES GRIP M1120 187/144 Weight: 312 lb LUMBER BRACING TOP CHORD 2 X 4 SPF No.2 `Except' TOP CHORD T1 2 X 8 DF 195OF 1.7E, T2 2 X 8 DF 1950F 1.7E BOT CHORD BOT CHORD 1.5 X 9.5 LSL Truss Grade WEBS 2 X 4 SPF Stud /Std WEBS OTHERS 2 X 4 SPF Stud /Std JOINTS WEDGE Left: 2 X 10 DF No.2, Right: 2 X 10 DF No.2 REACTIONS (lb /size) 2= 2336/0 -5 -8, 14= 2336/0 -5 -8 Max Horz 2=- 283(load case 5) Max Grav2= 2817(load case 2), 14= 2817(load case 3) Sheathed or 3 -3 -5 oc purlins. Rigid ceiling directly applied or 10 -0 -0 oc bracing, Except: 8 -7 -7 oc bracing: 20- 21,17 -18. 1 Row at midpt 23 -24 1 Brace at Jt(s): 23, 24 FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 1 -2 =0/83, 2 -3 =- 2997/0, 3 -4 =- 2853/0, 4 -5 =- 3122/0, 5 -6 =- 2013/24, 6 -7 =- 900/104, 9 -10 =- 899/104, 10- 11=- 2013/24, 11 -12 =- 3122/0, 12 -13 =- 2853/0, 13-14=-2997/0,14-15=0/83, 7-8=-520/158,8-9=-520/157 BOT CHORD 2- 22=- 122/1794, 21 -22 =- 122/1794, 20 -21 =- 55/2004, 19-20=0/1922,18-19=0/1922, 17- 18= 0/2004, 16- 17= 0/1794, 14- 16= 0/1794 WEBS 6- 23=- 1681/18, 23 -24 =- 1461/0, 10- 24=- 1681/18, 5- 20=0/1426,11-18=0/1426,3-22=-273/15,4-20=-258/767, 4- 21=- 1313/58, 3 -21 =- 4/425, 12- 18=- 258/767, 12- 17=- 1313/59, 13 -16 =- 273/21, 13- 17=- 8/425, 7 -23 =- 50/433, 9 -24 =- 50/433, 8 -23 =- 490/126, 8 -24 =- 490/126 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category 11; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Gable End Detail" 3) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 8) All plates are 1.5x4 M1120 unless otherwise indicated. 9) Gable studs spaced at 2 -0 -0 oc. 10) Ceiling dead load (5.0 psf) on member(s). 5 -6, 10 -11, 6 -23, 23 -24, 10 -24 11) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 18 -20 LOAD CASE(S) Standard ox iu / 1 21 -- - 20 19 18 17 16 6x10 3x6 II 3x6 II 5x5 = 10x10 = 8x8 = 10x10 = 5x5 = 3x6 II 3x6 II Job Truss Truss Type Qty Ply REX/ Y. W.STUDENTCLUBHOUSE /2- 11 /SB(ID)H Q41429 A2 ATTIC 2 Edge], [16:0- 3- 0,0 -04], [180- 3- 8,0 -5 -0], STOCK COMPONENTS -IF Iriahn Fallc In A2dnQ Ce!]C _ Job Reference (optional �. VV S OUP I o cuua IV1I I eK industries, Inc. vvea Feb 11 13:41:21 2004 Pagel - 1 -0 2 -9 -3 4-10 -9 7 -1 -12 8 -9 -8 14 -3 -8 19 -9 -8 ,21 -5 -4, 23 -8 -7 ,25 9 13, 28-7-0 2,9 7� 1 -0 -0 2 -9 -3 2 -1 -7 2 -3 -3 1 -7 -12 5 -6 -0 5 -6 -0 1 -7 -12 2 -3 -3 2 -1 -7 2 -9 -3 1 -0 -0 6x8 // 3x4 = 6x8 O _ 9 I� 3x6 II 5x5 = 10x10 = 19 8x12 M1120H= 18 17 16 10x12 10x10 = 5x5 = 3x6 II 2 -9 -3 4 -10 -9 1 7 -1 -12 21 -5 -4 23 -8 -7 25 -9 -13 28 -7 -0 Scale = 1:61.0 LUMBER 2 -9 -3 2 -1 -7 2 -3 -3 TOP CHORD 2 X 4 SPF No.2 *Except* 14 -3 -8 T1 2 X 8 DF 1950F 1.7E, T2 2 X 8 DF 195OF 1.7E 2 -3 -3 2 -1 -7 2 -9 -3 Plate Offsets (X,Y): [2:0- 2- 5,Edge], [5:0- 7- 6,Edge], [7:0- 2- 8,Edge], [9:0- 2- 8,Edge], [10:0- 1- 4,0 -0 -4], [11:0-7-6, Edge], [14:0-2-5, Edge], [16:0- 3- 0,0 -04], [180- 3- 8,0 -5 -0], WEDGE [20:0-3-8 Left: 2 X 12 DF No.2, Right: 2 X 12 DF No.2 LOADING (psf) SPACING 6 -0 -0 DEFL in (loc) I /dell L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 1.00 Vert(LL ) -0.40 18 -20 >835 240 M1120 187/144 TCDL 8.0 Lumber Increase 1.15 0.74 : :TC Vert(TL) -0.54 18 -20 >621 180 M1120H 160/128 BCLL 0.0 Rep Stress Incr NO 0.69 Horz(TL) 0.04 14 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 rix) Weight: 585 lb LUMBER BRACING TOP CHORD 2 X 4 SPF No.2 *Except* TOP CHORD T1 2 X 8 DF 1950F 1.7E, T2 2 X 8 DF 195OF 1.7E BOT CHORD 1.5 X 9.5 LSL Truss Grade BOT CHORD WEBS 2 X 4 SPF Stud /Std *Except* WEBS W97 2 X 4 SPF No.2, W98 2 X 4 SPF No.2 JOINTS WEDGE Left: 2 X 12 DF No.2, Right: 2 X 12 DF No.2 (Switched from sheeted: Spacing > 2 -0 -0). 2 Rows at 1/3 pts 2-5,11-14 Rigid ceiling directly applied or 10 -0 -0 oc bracing. 1 Row at midpt 23 -24 1 Brace at Jt(s): 7, 9, 23, 24 REACTIONS (lb /size) 2= 7007/0 -5 -8, 14= 7007/0 -5 -8 Max Horz 2=- 849(load case 5) Max Grav 2=8451 (load case 2), 14=8451 (load case 3) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 1 -2= 0/248, 2 -3 =- 8992/0, 3 -4 =- 8557/0, 4 -5 =- 9379/0, 5 -6 =- 6039/73, 6 -7 =- 2706/311, 9 -10 =- 2706/310, 10 -11 =- 6039/73, 11 -12 =- 9379/0, 12 -13 =- 8557/0, 13 -14 =- 8992/0, 14- 15= 0/248, 7 -8 =- 1572/472, 8- 9=- 1572/471 BOT CHORD 2 -22 =- 367/5382, 21 -22 =- 367/5382, 20- 21=- 165/6016, 19- 20= 0/5763, 18- 19= 015763, 17- 18= 0/6016, 16- 17= 0/5382, 14 -16= 0/5382 WEBS 6 -23 =- 5028/56, 23 -24 =- 4372/0, 10 -24 =- 5028/54, 5- 20= 0/4298, 11- 18= 0/4298, 3 -22 =- 815/44, 4 -20 =- 788/2287, 4 -21 =- 3956/172, 3- 21=- 11/1282, 12 -18 =- 788/2287, 12- 17=- 3956/175, 13 -16 =- 815/63, 13 -17 =- 23/1282, 7 -23 =- 151/1298, 9- 24=- 151/1298, 8 -23 =- 1468/379, 8 -24 =- 1468/379 NOTES 1) 2 -ply truss to be connected together with 10d Common(A48 "x3 ") Nails as follows: Top chords connected as follows: 2 X 4 - 2 rows at 0 -9 -0 oc, 2 X 8 - 2 rows at 0 -9 -0 oc. Bottom chords connected as follows: 1.5 X 9.5 - 2 rows at 0 -9 -0 oc. Webs connected as follows: 2 X 4 - 1 row at 0 -9 -0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 4) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 5) Unbalanced snow loads have been considered for this design. 6) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 7) Provide adequate drainage to prevent water ponding. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 9) All plates are M1120 plates unless otherwise indicated. (5.0 psf) on member(s). 5 -6, 10 -11, 6 -23, 23 -24, 10 -24 Job Truss Truss Type Qty Ply REX/ Y. W.STUDENTCLUBHOUSE /2- 11 /SB(ID)H Q41429 A2 ATTIC 2 F STOCK COMPONNTS_IF Irlahn Fauc In avnnz cec� Job Reference (optional - -• - -- - - wv a ocy 10 wUo 1vn 1 UK uwuscnes, Inc. vveo Feb 11 13:41:21 2004 Page 2 NOTES 11) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 18 -20 LOAD CASE(S) Standard Job Truss Truss Type Qty Ply REX/ Y. W.STUDENTCLUBHOUSE /2- 11 /SB(ID)H Q41429 A -CAP PIGGYBACK 10 1 STOCK COMPONENTS -IF. Idaho Falls. ID 9340:1 SA(;F SPACING 2 -0 -0 CSI Job Reference Optional - - - - - - -,- .-. ____ — ,�,....�.�, , -- . - — 1 1 io:w 1 - NU4 rage 1 •z -U -u 3 -3 -8 6 -7 -0 2 -0 -0 3 -3 -8 3 -3 -8 4x4 = 3 j IJ 0-6-11 0 -6 -11 2 -8 -13 l� d ) 0 6 -0 -5 6 -7 -0 2 -8 -13 n -P -11 8 -7 -0 2 -0 -0 Scale = 1:17.5 Plate Offsets (X,Y): LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /defl L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.20 Vert(LL) -0.00 6 >999 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.07 Vert(TL) -0.00 4 -6 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.05 Horz(TL) 0.00 4 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Simplified) Weight: 20 lb wmorzrc TOP CHORD 2 X 4 SPF No.2 BOT CHORD 2 X 4 SPF No.2 WEBS 2 X 4 SPF Stud /Std BRACING TOP CHORD Sheathed or 6 -0 -0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. REACTIONS (lb /size) 2= 305/0 -5 -8, 4= 305/0 -5 -8 Max Horz 2= 70(load case 6) Max Uplift2=- 30(load case 7), 4 = =- 30(load case 8) Max Grav2= 376(load case 2), 4= 376(load case 3) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 1- 2=0/16.2-3=-171/19,3-4=-171/19,4-5=0/16 BOT CHORD 2-6=-6/114,4-6=-6/114 WEBS 3 -6 =0/90 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 2 and 30 lb uplift at joint 4. 7) SEE MiTek STANDARD PIGGYBACK TRUSS CONNECTION DETAIL FOR CONNECTION TO BASE TRUSS LOAD CASE(S) Standard 2x4 = 2x4 = YOUNG WOMENS STUDENT HOUSING REXBURG, IDAHO DESIGN CALCULATIONS FOR YOUNG WOMENS STUDENT HOUSING BUILDINGS #2 & #4 Client: SAINSBURY CONSTRUCTION INC. IDAHO FALLS, IDAHO Job No. 04060. Designed by: M. Weekes TABLE OF CONTENTS PAGE DESCRIPTION 1.0 -1.11 Lateral Analysis / Shear Wall Design 2.0 -2.3 Computer Printouts END G & S Structural Engineers 1600 John Adams Parkway Suite 200 Idaho Falls, ID 83401 Telephone: (208) 523 -6918 E -mail: gs @dataway.net Fax: (208) 523 -6922 Project !�TU pF l T 1a _��, f 1 �� 5 1 1 2 ¢ Project No __0 40 4 , 2 O Date 2- Z D - o 4 - Designed By M. \�JEEle 4 Sav 2 witST 2�h%3 U IZG I DA H O L OARS = S�Iakl = 35 PSF R-ooF PGA a = l 5 PSF I+ L O O iz. L-. I \/ L = 4-0 P S F F L-00 )z. C)" D 3 S PS F — PD o F Q-A AA I IJ. FLOOR F- Z A M I %J T21J SS F D RY 5 1 1 ' /8 - 1-I 210 1✓ ILe" o S PA = 1 - U LA TE 9-A L_ N Q A L`( S OF 5 L.DC, ! * �Iz 1 � 4 �4- WIfJ D DF S14k' = P = �2 PS (F P(749 TO0T) G &.S Structural Engineers Sheet I •O Project Designed By SF- ISM Ic- Pes l',W C-- - /QF + 0.Z sos D Project No. Date Zs' (� �3c I tor? - z - z.2 2 V = I.Z 0. 533) r v= 1 0 U cQ V. = Q PQr: - 0.z 5ID5 D F = I.25 CAE- 0,1 ocot_o b (o -P) 0 O b + 0- I ( 1.25 Qt +0. I . 0 - 7 S p - t - . 5 A �Fl D -1 o. 0.10 CO Cap) = D.g2S r Cl O. UD Lq. (1.2 Chi=. i _ . D o.Co t0. Q.lowc,p) .525 D - UuIT s►+ERCL DESIGI.1 " (Fo2 ►�n►�,l=IC, P� 5� 0 QE - ! - 0, (.0h HJLDOW r't Df=S IC til ( SMAI-Le2 OF O?P. 5 ror.15 E F 4) USE SZS o D. 8 Q6 DR 2Y ELEKS01 G Mp, DE51 �l lA2C �f2 0� SaM>c. S�n►5�. G� u5� (.o7S p, - 6 75 4)A �— G &S Structural Engineers Sheet I . +0.2 (0.53 -i- . I O L CA D ( 5 AM t) Date Zs' (� �3c I tor? - z - z.2 2 V = I.Z 0. 533) r v= 1 0 U cQ V. = Q PQr: - 0.z 5ID5 D F = I.25 CAE- 0,1 ocot_o b (o -P) 0 O b + 0- I ( 1.25 Qt +0. I . 0 - 7 S p - t - . 5 A �Fl D -1 o. 0.10 CO Cap) = D.g2S r Cl O. UD Lq. (1.2 Chi=. i _ . D o.Co t0. Q.lowc,p) .525 D - UuIT s►+ERCL DESIGI.1 " (Fo2 ►�n►�,l=IC, P� 5� 0 QE - ! - 0, (.0h HJLDOW r't Df=S IC til ( SMAI-Le2 OF O?P. 5 ror.15 E F 4) USE SZS o D. 8 Q6 DR 2Y ELEKS01 G Mp, DE51 �l lA2C �f2 0� SaM>c. S�n►5�. G� u5� (.o7S p, - 6 75 4)A �— G &S Structural Engineers Sheet I . Project Project No. Date Designed By e 3 2= F L- Z, .2Q Ic = So A P L F -♦-- 85' wAL� A. 4;'1-4 fit. F N N M - d �l -%1 1.11 kn 9�N 1 4 � N 1 �8?3 ►.fl - 7 v- 1 8 2 31 - .I'.o 4 4' G 2-u- E'L S.sak = Io4.S ply � SS ' WA LL 888 Z 123.3 Pi F - 1 Z� WALL alp GIG �2.Z 21c .�1 2 k E=8. a << � . U1 V- 2. -LI 14- . 9 7. V- G &S Structural Engineers Sheet I • �- °o r �? 00 '0 4 C alp GIG �2.Z 21c .�1 2 k E=8. a << � . U1 V- 2. -LI 14- . 9 7. V- G &S Structural Engineers Sheet I • �- Project Designed By �i I S F Loot 14, -7 cok = 173.E PLF 8 S' VJA" Project No. Date E -Q �i 00 * M 00 r — 4' �.IU 0o + 3. cal Y- .9 1 8le- ?2' WALL 4' G &S Structural Engineers � 9 w3 t4. - 7c, V- ,,J 3.1o"I lG .1, W- '1918 k Sheet t • 3 Project _ Project No. Date Designed By V PA► - L- ' -S Z5 3ow� (4' 2`)28��-�- 15 •Z���2.1� � 4 W r` G = 53 �C� �8) + 4' =1►4� 4' T= i I ► 2�` 0 — .525 (35" ��4' )(Z'� _ 10 00 8 Fl•Iy NL, 1I 1 Z(�') - +-I.o -s �35�)C4���L� _ Io,008Fr•Lb+ �37.b3) (�.3)(2:Is 4 , 4' T = 18+4''0) — .5Z5 ( , 3's #)(4!)(Z') Ico.Sgto a:��y — (18�38)�2.i)(Los) V 4 4 fir) G° 184 + +I.o�S(35'')(4'�(2') = I(o,59Lp 1^t- 1b - ►-C37' o3)�4 3)�Z. _ A23to 4' 41 I►J'T: �-21oR 11' WALE - 1 FT -IL - (1.8�� u�a ILI On Z3.4 (a +(.075 (IS * )(h') (s .$ _ 17,13U f� -1— szv)(g.t4') 1 1-i' T� 443 (35 6 1')(6A U- 1 �' r�) IT 39 ,9 3 FT- Ib - ( 18.3t)(8. - 1 2� (+,¢ = Z 30LP ( (31.�3)(t8.td�(a, i4� z 2 1 °I # T= 737P��(9) -.525 (3S") (S.5) h' = _7 3- 8a(g'� + L Of (35 6 1 '1 z loln4fl2. pc t5 (t8.38�(8- 9Z)(4.410) 1 - 1 1 G &S Structural Engineers Sheet I '� Project - Project No. Date Designed By (a, Z4' Se,9A(LArio4 WA", U -�, 1440' ��') - , 5 25 (is� (2d'� X12') lJ,5 1 K Lb — ( 8`) Ci 2 .t�) (c�.3') _ 4 S4 IL 24 -' 2 4 , A nn G, 1 446 4 C8') +I.0Is (2A(IZ') = Ii,y'z -C 'r + - Z4' ZAI T: 0 S Z - ( I') — . s 2 1 -, ( 29 5" ) (24')(I ti - �I G= 2°11;2 ) + 1. o 24' 2!o,Sto5 Fr- LB - (15 (")(/Z.lo')�(0'3) 7-4 2 V" 6(o8 PT + /2.9') = 4431 - 7- 4 1 01 T: �9zo� -' .525('Lg ')(2�IZ' , +4,28D Fr -L;,.- IScO" sc tL z4 "} 4q 20" (g') �- I.o�S (2.98") �24')(IZ'� 4 ¢, 2 Bo FT + C32o'�)�ZS.B')�1 _ G= - 0283 z4� , 2- G &S Structural Engineers Sheet I , 4 F U -1 �1�1 D '� P 2�A S irPA (LA v/�L LS J 4284:' �8'� - .525 (t5 (3co)(t8') = 34,Z12 "'T (IS.a) X45') 9 13 gI 4284 `g) + I. �7s Cis") (3(o)(t 8') �t �b +(Im.t3��3 CIS 3S')_ 3 (o' = 3 4,27 2 3U , 1 2a8' d T= 4428 - ,52S (2g8 bcd) (18') 39,852 Fr.ib - �1Sao") �18.1) C-7 .45� r y 333 zl 4418" (q') + 1.0 5 (1. q8�) (3(0) (I 8') _ 39, 652. FT• W, +(3ZOIL)(38 1')(IQ 3 co 3 C2 � -r: - 7 3 8a� (9) ,S q '� - (2 8) (3(o�(I g') tolo,42D Fr•ib - (►5(0' (t 8.9� (I.�15') — +�• � _ lo�l M �_ - 7380 rr (9') +1.075(Zge)(3(n')(I8') l oW,42 , 0 fl-lb +(3zd`)(38.'7')(tg•35) 3 Co' _ - 5(d _ SSoi-A (a, Z4' Se,9A(LArio4 WA", U -�, 1440' ��') - , 5 25 (is� (2d'� X12') lJ,5 1 K Lb — ( 8`) Ci 2 .t�) (c�.3') _ 4 S4 IL 24 -' 2 4 , A nn G, 1 446 4 C8') +I.0Is (2A(IZ') = Ii,y'z -C 'r + - Z4' ZAI T: 0 S Z - ( I') — . s 2 1 -, ( 29 5" ) (24')(I ti - �I G= 2°11;2 ) + 1. o 24' 2!o,Sto5 Fr- LB - (15 (")(/Z.lo')�(0'3) 7-4 2 V" 6(o8 PT + /2.9') = 4431 - 7- 4 1 01 T: �9zo� -' .525('Lg ')(2�IZ' , +4,28D Fr -L;,.- IScO" sc tL z4 "} 4q 20" (g') �- I.o�S (2.98") �24')(IZ'� 4 ¢, 2 Bo FT + C32o'�)�ZS.B')�1 _ G= - 0283 z4� , 2- G &S Structural Engineers Sheet I , 4 Project _ _ Project No. Date Designed By 12 S"TA (L W E.L.1- W A L-L_ 'T- '72a�(,$')- .SZS(15�'�(t2')�l,'� = _SlOFS - (7.88 , = 4Cp'l� 12' 1 2' L0 (15"��I2)�C,) = 5 L 0 Fr -Lb 3')(12g')((,.45') - 14��0"` (9 t.284PT- II, ip)�(,.3�)(3.15�) Z' 12' o� N z 14 4- i 5 21 o�`) (l _'�r��) = 13,Z g 4- F7 -Ib (2ZU'') cl2.q')(c,.45') 12' rl J 4(o0� 9') - •525 hie) (12')((d) - 12' I.o7 �) % (to'J G, 24(00(9') -r S �Z io 12 l 2' 22 FT -16 - (I 1 0')(( ,, •3) � IS') _ I(o to3'� I Z' � 22140 FT -I b -I- (221d`)� 12•`1') ((x.45') _ 34l 2 G &S Structural Engineers Sheet ( Co Project Designed By Project No. 4' PA #1a-1. & �-x Tr 210g Date DL = 3o P4P ilo3 I�LI- t34 ILLF l 1 4-7 *L 10tO3' T DL= 35 PLF 2�8 ILLF , 11, 5 ILL F �s9 v � x � kp (� J 3�3 3S5 D1. = 35 PLF 1 ILL r- I 1 S k.LF 3 9 a. N % p� S /8 "¢ A , e, , 2 4" o. k%-e .os8 �t-F 4'' G &S Structural Engineers Sheet I • l Project Designed By DL = IS p LF s W -� it &I I G ht-= 35 PVF Ste! - 7 —> DL= 3 5 PL S W °I —o 81 to2 G 5 / e ,'O A. o. c. Project No t T E2102- 1 W A %,L Date �s l a w/ 1� -lod 2 -7- G MST LI l.o W/ Hegg-Sv5 3 W/ 2o= /4 "9X3 "5D5 sc o - k , I'l l 1 n � .oq$tcLF .I Z& tct-F 9 `90 2 (vJ. k1.f- I o'8 KLF m 3 VI Co T 3+ 11 .I o8 kLF a '115 .4 5 3 kLF -054 KLF G &S Structural Engineers Sheet (• S Project Designed By Project No END. � S FLPAP -TIO h Wa LL-S Date DI-- IS PLF .o4(, ELF . OW,, K l.P SW (O C-616 w 8f I$ -lod I - 2x� ( 288�G bL = VIS PLF ? • 1 ►LL .oy't kL- sw(O $ w1 1 S -tad � 2 - g105141G 114 -o - r bL -VI6 PLF .2oS IILLF .0451 14 LF Svt/ S-1 H D 5 W/ ?2I - I cod 4- zx is t7,S52 G 231 - 7 ' T V, A.1 • G 4' -o" 0 .G• ..214 ILLF a 02.(0 ILLF 41' t1�5� 3(p G &S Structural Engineers Sheet I q Project Designed By Project No. Date li 24' 5EPUL-r WA U. pL � ISp> -F ;o4[okVF . OYot� 14, F G S 2_'L (Z w/ Sul (o 12- 10-A, S • t- 2xtl! - 1 fl V' D $ Pu' I T . .0GIK.LF / I - 2Xt0 514 3' ,�/ 1 0 DL�'- 2gSP� -f �2.oS k L F _.051 KLr- 24 - IW o tz 2- Zx co s ►I, 42 #L r 23 0 T /g d� A.6. GJ 4' - 0" o.G. —a .21 4 kLF 24' G &S Structural Engineers Sheet 1 t D Project Project No. Date Designed By C Iti 5TAI P-W r--L - . wAt,.V PL 1 o 4(pL'LF S w/ 4 u T DL' 'L I OP1.F .I 23 kLF -OS I kLr G516 w/ I k q� I - 2xlo 131 2'` T DL = Zt o PLF . I-LF F . 0 ►- F H I 1 fo w/ l8- IwJ q� 2 . lot��B�G 3oS.S�T JO A - 6. 4 - os o.,:::. . 2t 4 ►L L. F .02( 0 kLF I �/ G &S Structural Engineers Sheet I . i I Student Housing Date and Time: 2/19/2004 2:03:36 PM MCE Ground Motion - Conterminous 48 States Zip Code - 83440 Central Latitude = 43.763462 Period Central Longitude = - 111.609017 MCE Sa (sec) ( %g) 0.2 060.6 MCE Value of Ss, Site Class B 1.0 Spectral 019.3 MCE Value of S1, Site Class B Parameters for Site Class D 0.2 079.4 Sa = FaSs, Fa = 1.31 1.0 039.2 Sa = FvS 1, Fv = 2.03 Spectrum for Site Class D Period MCE Sa (sec) ( %g) 0.000 031.8 T = 0.0, Sa = 0.4FaSs 0.099 079.4 T = To, Sa = FaSs 0.200 079.4 T = 0.2, Sa = FaSs 0.494 079.4 T = Ts, Sa = FaSs 0.500 078.5 0.600 065.4 0.700 056.1 0.800 049.1 0.900 043.6 1.000 039.2 T = 1.0, Sa = FvS 1 1.100 035.7 1.200 032.7 1.300 030.2 1.400 028.0 1.500 026.2 1.600 024.5 1.700 023.1 1.800 021.8 1.900 020.7 2.000 019.6 Spectrum for Site (7%1=.. r, Designer: Mardy Weekes Date: 2/19/2004 Project: Young Womens Student Housing SEISMIC DESIGN: G & S Structural Engineers 1600 John Adams Parkway Idaho Falls, Idaho 83401 Type of Occupancy: (Table 1604.5 and 1607.1) Commercial Table 1616.3.1 Building Category or Seismic Use Group: (cable 1604.5 and 1616.2) Building Category = I Seismic Importance Factor: (Table 1604.5) 1, = 1.00 Soil Site Class: (1615.1.1) Site Class = D Response Modification Coeff. R: (Table 1617.6) R = 6 Building Location: (Latitude & Longitude, or Zip Code) D ** D ** Approximate Fundamental Period, T,: h„ = Height (feet) above base to highest level of building. h n = 39 C = Building Period Coefficient (See 1617.4.2.1) C t = 0.02 Calculate Approximate Fundamental Period, T,: C T *h„ 3l4 T = 0.312 Maximum Considered Earthquake Response Accelerations: Short Periods, Ss: (CD rom) S = 0.610 g 1 Second Period, S1: (CD rom) S 1 = 0.190 g Earthquake Response Accelerations Adjusted for Site Class Effects: Site Coefficients: Fa: (Table 1615.1.2(1) or CD rom) Fa = 1.310 g F,: (Table 1615.1.2(2) or CD rom) F„ = 2.030 g SMs: = F,S, (Eq. 16 -16 or CD rom) SMs = 0.799 g SM1: = F„S1 (Eq. 16 -17 or CD rom) $ M1 = 0.386 g Design Spectral Response Acceleration Parameters: (1615.1.3) SDS - 2 /3S,„ = (Eq. 16-18) S = 0.533 g SDI - 2 /3S rn 1 = (Eq. 16 -19) S = 0.257 g Nature of Occupancy Seismic Use Group Table 1616.3.1 Table 1616.3.2 Largest SDC from Tables 1616.3.(1) &(2) SDC* to Use for Design SDS SDC* SDI SDC* Commercial I 0.533 D ** 0.257 D ** D ** D ** * SDC is the "Seismic Design Category" 51 = 0.19 ** Seismic Use Groups I and II structures located on sites with mapped maximum considered earthquake spectral response acceleration at.1-second periodm S1, equal to or greater thatn 0.758, shall be assigned to Seismic Design Category E, and Seismic Use Group III structures located on such sites shall be assigned to Seismic Design Category F. ArchWind 98: 4 s 4E 3E /2 2E 6, CASE B G I Wind MAX AND MIN PRESSURE VALUES FOR EACH AREA: LOW RISE STRUCTURE MAIN WIND RESISTING VALUES PRESSURE VALUES FOR CASE A WIND DIRECTION: (AREA 1) P = 9.39 psf, 4.82 psf (AREA 2) P = 4.95 psf, 0.38 psf (AREA 3) P = -3.17 psf, -7.74 psf (AREA 4) P = -2.41 psf, -6.98 psf (AREA 1 E) P = 11.04 psf, 6.47 psf (AREA 2E) P = 5.71 psf, 1.14 psf (AREA 3E) P = -4.44 psf, -9.01 psf (AREA 4E) P = -3.81 psf, -8.38 psf PRESSURE VALUES FOR CASE B WIND DIRECTION: (AREA 1) P = -3.43 psf, -7.99 psf (AREA 2) P = -6.47 psf, -11.04 psf (AREA 3) P = -2.41 psf, -6.98 psf (AREA 4) P = -3.43 psf, -7.99 psf (AREA 5) P = 7.36 psf, 2.79 psf (AREA 6) P = -1.40 psf, -5.96 psf (AREA IE) P = -3.81 psf, -8.38 psf (AREA 2E) P = -11.29 psf, -15.86 psf (AREA 3E) P = -4.44 psf, -9.01 psf (AREA 4E) P = -3.81 psf, -8.38 psf (AREA 5E) P = 10.03 psf, 5.46 psf (AREA 6E) P = -3.17 psf, -7.74 psf NOTES: When combining values to obtain the worst case load on the frame. the resultant pressure used must be greater than 10 psf. If not use 10 psf. The above pressure values include effects from internal pressure. MAX. COMBINED VALUES FOR DESIGN Overturning combinations do not include internal pre.( Roof pressures do include internal pressure. Total Combined Loads Across Sides 1 and 4 Max P(CASE A) = 11.80 psf Max P(CASE B) = 10.00 psf Total Combined Loads Across Sides I and 4E Max P(CASE A) = 14.85 psf Max P(CASE B) = 10.00 psf Total Combined Loads Across Sides 5 and 6 Max P(CASE B) = 10.00 psf Total Combined Loads Across Sides 5E and 6E Max P(CASE B) = 13.20 psf Roof Area 2 Max Values Downward P = 10.00 psf Uplift P = -11.04 psf Roof Area 3 Max Values There is no downward pressure Uplift P = -10.00 psf Roof Area 2E Max Values Downward P = 10.00 psf Uplift P = -15.86 psf Roof Area 3E Max Values There is no downward pressure Uplift P = -10.00 psf Pagel of 2 � Wind \ ArchWind 98: CONSTANTS: Building Width = 41.00 ft Building Length = 136.00 ft Roof Mean Height = 33.00 ft Roof Angle = 34.00 deg Dimension a = 4.10 ft EQUATION CONSTANTS: Pressure based on ASCE 7 -98 EQ.(6 -16) Low Rise Buildings, Main Structure P= q(GCpf +GCpi) and P= q(GCpf -Gcpi) Kz = 0.72 Vel. Pressure Coef. Kzt = 1.00 Topographic Factor Kd = 0.85 Wind Direction Factor V = 90.00 mph I = 1.00 Importance Factor q = 12.69 psf Velocity Pressure GCpi = 0.18( + -) Internal Pressure Coeff. Exposure = B Importance Cat. = 2 The following are Area external pressure coef.s used: GCpf Values: (AREA 1)Case A = 0.56 (AREA 2)Case A = 0.21 (AREA 3)Case A = -0.43 (AREA 4)Case A = -0.37 (AREA 1 E)Case A = 0.69 (AREA 2E)Case A = 0.27 (AREA 3E)Case A = -0.53 (AREA 4E)Case A = -0.48 (AREA 1)Case B = -0.45 (AREA 2)Case B = -0.69 (AREA 3)Case B = -0.37 (AREA 4)Case B = -0.45 (AREA 5)Case B = 0.40 (AREA 6)Case B = -0.29 (AREA 1 E)Case B = -0.48 (AREA 2E)Case B = -1.07 (AREA 3E)Case B = -0.53 (AREA 4E)Case B = -0.48 (AREA 5E)Case B = 0.61 (AREA 6E)Case B = -0.43 Page 2 of 2 DATE Z QUOTE CUSTOMER NAME SALESMAN �p�^ TELEPHONE CONTRACTOR'S NAME Q Nn1DERZ(o nM COMP)ONENn1T's N® 41430 1675 PEDERSON STREET IDAHO FALLS, IDAHO 83403 208/528 -2309 JOB NAME LOT ADDRESS F " 5• Z ^� l�z°X�K�•�, LOAD REQ'D. 3 5' - 0 QUOTE PREPARED FROM: ($ PLAN ❑ VERBAL ❑ OTHER QUANTITY SPAN PITCH LEFT RIGHT CHORD DESCRIPTION PRICE AMOUNT TOP BOTTOM r v C e .7 �l U , s BID GOOD FOR 30 DAYS QUOTE Na 41430 E.I.P. 523 -1500 STOCK OCK COMPONENTS-IF, Idaho Falls, iD 83403, SAGE 5.200 s Sep 1b 2003 Mi 1 ek Industries, Inc. Wed Feb 11 15:25:28 2004 Page 1 - 1 -0-p 4 -1 -12 8 -0 -0 13 -8 -1 19 -5 -14 25 -3 -10 31 -1 -7 37 -1 -0 1 -0 -0 4 -1 -12 3 -10 -4 5 -8 -1 5 -9 -13 5 -9 -13 5 -9 -13 5 -11 -9 Scale = 1:65.1 5x8 = 2x4 II 8 -0 -0 1 13 -8 -1 1 19 -5 -14 1 25 -3 -10 1 31 -1 -7 1 37 -10 8 -0 -0 5 -8 -1 5 -9 -13 Job Q41430 Truss Al Truss Type ROOF TRUSS Qty 2 Ply L 10 Job Reference (optional STOCK OCK COMPONENTS-IF, Idaho Falls, iD 83403, SAGE 5.200 s Sep 1b 2003 Mi 1 ek Industries, Inc. Wed Feb 11 15:25:28 2004 Page 1 - 1 -0-p 4 -1 -12 8 -0 -0 13 -8 -1 19 -5 -14 25 -3 -10 31 -1 -7 37 -1 -0 1 -0 -0 4 -1 -12 3 -10 -4 5 -8 -1 5 -9 -13 5 -9 -13 5 -9 -13 5 -11 -9 Scale = 1:65.1 5x8 = 2x4 II 8 -0 -0 1 13 -8 -1 1 19 -5 -14 1 25 -3 -10 1 31 -1 -7 1 37 -10 8 -0 -0 5 -8 -1 5 -9 -13 5 -9 -13 5 -9 -13 5 -11 -9 Plate Offsets LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /defl L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.60 Vert(LL) -0.26 14 -16 >999 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.83 Vert(TL) -0.37 14 -16 >999 180 BCLL 0.0 Rep Stress Incr NO WB 0.95 Horz(TL) 0.10 11 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Matrix) Weight: 435 lb LUMBER BRACING TOP CHORD 2 X 4 SPF No.2 TOP CHORD Sheathed or 4 -4 -1 oc purlins, except end verticals. BOT CHORD 2 X 6 DF No.2 BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. WEBS 2 X 4 SPF Stud /Std 'Except' WEBS 1 Row at midpt 9 -11 W3 2 X 4 SPF No.2, W5 2 X 4 SPF No.2, W7 2 X 4 SPF No.2 W9 2 X 4 SPF No.2, W1 1 2 X 4 SPF No.2, EV1 2 X 4 SPF No.2 REACTIONS (lb /size) 11= 4547 /Mechanical, 18= 4312/0 -5 -8 Max Horz 18= 188(load case 7) Max Upliftl 1 =-1 032(load case 5), 18=- 803(load case 6) Max Grav 11 =4923(load case 3), 18= 4312(load case 1) FORCES (Ib) - Maximum Compression /Maximum Tension TOP CHORD 1 -2 =0/90, 2 -3 =- 1359/232, 3 -4 =- 6182/1311, 4 -5 =- 5124/1101, 5 -6 =- 7344/1527, 6 -7 =- 7344/1527, 7 -8 =- 6839/1431, 8 -9 =- 6839/1431, 9- 10=- 61/11, 10 -11 =- 194/16, 2 -18 =- 1123/204 BOT CHORD 17 -18 =- 1050/4756, 16 -17 =- 1527/7344, 15- 16=- 1640/7865, 14 -15 =- 1640/7865, 13 -14 =- 1640/7865, 12 -13 =- 897/4282, 11 -12 =- 897/4282 WEBS 3 -17 =- 208/737, 4 -17 =- 692/3148, 5 -17 =- 3142/691, 5 -16= 452/1785, 7 -16 =- 736/160, 7 -14 =- 293/1146, 7 -13 =- 1450/313, 8 -13 =- 385/36, 9 -13 =- 754/3614, 9 -12 =- 330/1267, 9 -11 =- 5964/1252, 3 -18 =- 4906/1039 NOTES 1) 2 -ply truss to be connected together with 10d Common(. 1 48"x3") Nails as follows: Top chords connected as follows: 2 X 4 - 1 row at 0 -9 -0 oc. Bottom chords connected as follows: 2 X 6 - 2 rows at 0 -9 -0 oc. Webs connected as follows: 2 X 4 - 1 row at 0 -9 -0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category 11; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 4) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp.; L= 45 -0 -0 5) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 8) Refer to girder(s) for truss to truss connections. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1032 lb uplift at joint 11 and 803 lb uplift at joint 18. 10) Girder carries hip end with 8 -0 -0 end setback 11) Special hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 884.01b down and CongAW6H1d06d on bottom chord. The design /selection of such special connection device(s) is the responsibility of others. 4x4 = 3x6 = 3x8 = 1.5x4 11 4x10 = 2x4 11 5 6 7 8 o n 18 17 16 15 14 13 12 11 8x8 = 4x4 = 4x8 = 4x10 = 2x4 II 4x5 — Job Truss Truss Type Qty Ply 1 0 Q41430 Al ROOF TRUSS 2 Job Reference (optional � luai O Fans, iv ootivo, or% , Jc D.LVV s Sep l D NUS MI I eK Industries Inc. Wed Feb 11 15:25:28 2004 Page 2 LOAD CASE(S) Standard 1) Snow: Lumber Increase =1.15, Plate Increase =1.15 Uniform Loads (plf) Vert: 1- 2 = -86, 2- 4 = -86, 4- 10=- 43(F =43), 17- 18 = -16, 11- 17=- 200(F = -184) Concentrated Loads (Ib) Vert: 17=- 884(F) Job Truss Truss Type Qty Ply 1 0 Q41430 A10 ROOF TRUSS 12 1 SPACING 2 -0 -0 CSI DEFL in (loc) I /defl Ud PLATES GRIP TCLL 35.0 Job Reference o tional up up 1J wvV mi icn nwuauiGS, mu. vvuu feu I I - ID:zo:Zy zvv4 rage 1 6 -5 -0 12 -6 -8 18 -8 -0 I 6 -5 -0 6 -1 -8 6 -1 -8 24 -9 -8 30 -11 -0 37 -4 -0 3P -4, 6 -1 -8 6 -1 -8 6 -5 -0 1 -0 -0 5x6 = Scale = 1:68.6 9 -5 -12 18 -8 -0 1 27 -10 -4 37 -4 -0 1° 9 -5 -12 9 -2 -4 9 -2 -4 9 -5 -12 Plate Offsets (X Y): 1`11:0- 7- 13,Edoel [14:0-4-0,0-3-0] LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /defl Ud PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.97 Vert(LL) -0.25 13 -14 >999 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.78 Vert(TL) -0.49 13 -14 >916 180 BCLL 0.0 Rep Stress Incr YES WB 0.77 Horz(TL) 0.11 11 n/a n/a BCDL 8.0 Code IRC2000 /ANSI95 (Simplified) Weight: 188 lb LUMBER BRACING TOP CHORD 2 X 4 SPF 1650F 1.5E 'Except* TOP CHORD Sheathed. T3 2 X 4 SPF 2100F 1.8E BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. BOT CHORD 2 X 4 SPF 1650F 1.5E WEBS 1 Row at midpt 6 -14 WEBS 2 X 4 SPF Stud /Std 2 Rows at 1/3 pts 5-14,7-14 SLIDER Left 2 X 6 DF No.2 3- 11 -12, Right 2 X 8 DF 1950F 1.7E 3 -11 -12 REACTIONS (lb /size) 1= 1904 /Mechanical, 11= 1997/0 -5 -8 Max Horz 1=- 330(load case 5) Max Upliftl=- 108(load case 7), 11=- 147(load case 8) Max Grav 1=2231 (load case 2), 11= 2374(load case 3) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 1 -2 =- 2850/157, 2 -3 =- 2850/157, 3 -4 =- 2375/195, 4 -5 =- 2375/195, 5 -6 =- 1627/213, 6 -7 =- 1627/213, 7 -8 =- 2375/195, 8 -9 =- 2375/195, 9- 10=- 2850/157, 10 -11 =- 2850/157, 11- 12 =0/3 BOT CHORD 1-15=-188/2242,14-15=-84/1785,13-14=-15/1785,11-13=-53/2242 WEBS 3 -15 =- 492/163, 5 -15 =- 50/595, 5 -14 =- 1044/196, 6 -14 =- 135/1279, 7 -14 =- 1044/196, 7 -13 =- 50/595, 9 -13 =- 492/163 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp, 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 6) Refer to girder(s) for truss to truss connections. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 108 lb uplift at joint 1 and 147 lb uplift at joint 11. LOAD CASE(S) Standard 6 ^ " io 14 13 _ - 6x10 II 04 i 3x4 = 5x8 = 3x4 = 6x5 Q Job Truss Truss Type Qty Ply 1 0 Q41430 All ROOF TRUSS 12 1 18 -8 -0 27 -10 -4 37 -4 -0 Job Reference (optional J./UV s OUP I D LUUJ IVII I eK mousines, inc. vveo t-et) 11 15:25:29 2004 Pagel - 1-0�0 6 -5 -0 12 -6 -8 18 -8 -0 24 -9 -8 30 -11 -0 1 37-4 -0 1 -0 -0 6 -5 -0 6 -1 -8 6 -1 -8 6 -1 -8 6 -1 -8 6 -5 -0 5x5 = Scale = 1:68.6 l° 6x10 II 15 14 13 4x4 1 6x10 II 5x5 ii 3x4 = 5x8 = 3x4 = 4x4 9 -5 -12 18 -8 -0 27 -10 -4 37 -4 -0 9 -5 -12 9 -2-4 9 -2 -4 9 -5 -12 Plate Offsets (X Y): [2:0- 7- 13,Edge1 [14:0 -4 -0 0 3 -Ol LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /deft L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.97 Vert(LL) -0.25 14 -15 >999 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.78 Vert(TL) -0.49 14 -15 >916 180 BCLL 0.0 Rep Stress Incr YES WB 0.77 Horz(TL) 0.11 12 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Simplified) Weight:1881b LUMBER BRACING TOP CHORD 2 X 4 SPF 1650F 1.5E *Except* TOP CHORD Sheathed. T4 2 X 4 SPF 2100F 1.8E BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. BOT CHORD 2 X 4 SPF 1650F 1.5E WEBS 1 Row at midpt 7 -14 WEBS 2 X 4 SPF Stud /Std 2 Rows at 1/3 pts 6-14,8-14 SLIDER Left 2 X 8 DF 1950F 1.7E 3- 11 -12, Right 2 X 6 DF No.2 3 -11 -12 REACTIONS (lb /size) 2=1997/0-5-8,12=1904/Mechanical Max Horz 2= 330(load case 6) Max Uplift2=- 147(load case 7), 12=- 108(load case 8) Max Grav2= 2374(load case 2), 12=2231 (load case 3) FORCES (Ib) - Maximum Compression /Maximum Tension TOP CHORD 1- 2 =0/3, 2 -3 =- 2850/157, 3 -4 =- 2850/157, 4 -5 =- 2375/195, 5 -6 =- 2375/195, 6 -7 =- 1627/213, 7 -8 =- 1627/213, 8 -9 =- 2375/195, 9 -10 =- 2375/195, 10 -11 =- 2850/157, 11 -12 =- 2850/157 BOT CHORD 2 -15 =- 188/2242, 14 -15 =- 84/1785, 13 -14 =- 15/1785, 12 -13 =- 53/2242 WEBS 4 -15 =- 492/163, 6 -15 =- 50/595, 6 -14 =- 1044/196, 7 -14 =- 135/1279, 8 -14 =- 1044/196, 8 -13 =- 50/595, 10 -13 =- 492/163 - NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 6) Refer to girder(s) for truss to truss connections. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 147 lb uplift at joint 2 and 108 lb uplift at joint 12. LOAD CASE(S) Standard Job Truss Truss Type Qty Ply 1 0 Q41430 Al2 ROOF TRUSS 6 1 18 -8 -0 27 -10 -4 37 -4 -0 9 -5 -12 9 -2 -4 Job Reference (optional J I VGK l- UMtUNtN I J -It, mano taus, V 004W, JAbt 6 -5 -0 1 12 -6 -8 1 18 -8 -0 24 -9 -8 30 -11 -0 37 -4 -0 6 -5 -0 6 -1 -8 6 -1 -8 6 -1 -8 6 -1 -8 6 -5 -0 5x5 = b.;euu s Jep I b zuu3 MI I eK Industries, Inc. Wed Feb 11 15:25:30 2004 Page 1 6 Scale = 1:67.6 1d 6x10 It 14 13 12 6x8 II 4x4 i 3x4 = 5x8 = 3x4 = 9 -5 -12 18 -8 -0 27 -10 -4 37 -4 -0 9 -5 -12 9 -2 -4 9 -2 -4 9 -5 -12 Plate Offsets (X,Y): [11:0-5-13,0-0-21,[13:0-4-0,0-3-01 LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /defl L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 1.00 Vert(LL) -0.25 13 -14 >999 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.86 Vert(TL) -0.47 13 -14 >946 180 BCLL 0.0 Rep Stress Incr NO WB 0.78 Horz(TL) 0.10 11 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Simplified) Weight: 186 lb LUMBER BRACING TOP CHORD 2 X 4 SPF 1650F 1.5E "Except" TOP CHORD Sheathed or 1 -7 -8 oc purlins. T3 2`X 4 SPF 2100F 1.8E, T4 2 X 4 SPF 2100F 1.8E BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. BOT CHORD 2 X 4 SPF 1650F 1.5E 'Except' WEBS 1 Row at midpt 6 -13 B2 2 X 4 DF 240OF 2.0E 2 Rows at 1/3 pts 5-13,7-13 WEBS 2 X 4 SPF Stud /Std SLIDER Left 2 X 6 DF No.2 3- 10 -15, Right 2 X 6 DF No.2 3 -10 -15 REACTIONS (lb /size) 1= 1904/0 -5 -8, 11= 1904/0 -3 -0 Max Horz 1=- 326(load case 5) Max Uplift1=- 109(load case 7), 11=- 109(load case 8) Max Grav 1= 2231(load case 2), 11= 2231(load case 3) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 1 -2 =- 2896/159, 2 -3 =- 2896/159, 3-4 =- 2418/195, 4 -5 =- 2418/195, 5 -6 =- 1643/212, 6 -7 =- 1643/212, 7 -8 =- 2418/195, 8 -9 =- 2418/195, 9 -10 =- 2896/159, 10 -11 =- 2896/159 BOT CHORD 1 -14 =- 193/2300, 13 -14 =- 86/1810, 12 -13 =- 17/1810, 11- 12=- 56/2300 WEBS 3 -14 =- 525/164, 5 -14 =- 50/621, 5 -13 =- 1058/196, 6 -13 =- 134/1296, 7 -13 =- 1058/196, 7 -12 =- 50/621, 9 -12 =- 525/164 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 3) Unbalanced snow loads have been considered for this design, 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 109 lb uplift at joint 1 and 109 lb uplift at joint 11. LOAD CASE(S) Standard Job Truss Truss Type Qty Ply 1 0 Q41430 A2 ROOF TRUSS 2 1 DEFL in (loc) I /defl L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.95 Job Reference (optional STOCK OCK COMPONENTS-IF, Idaho taus, ID 83403, SAGE 5.200 s bep 15 2003 MiTek Industries, Inc. Wed Feb 11 15:25:31 2004 Page 1 - 1 -0 -p 5 -1 -12 10 -0 -0 16 -7 -8 1 23 -4 -12 30 -2 -0 37 -1 -0 1 -0 -0 5 -1 -12 4 -10 -4 6 -7 -8 6 -9 -4 6 -9 -4 6 -11 -0 Scale= 1:65.1 5x5 = 5x10 II _ 15 14 13 12 11 10 5x5 ! 3x8 = 3x4 = 3x6 = 1.5x4 11 3x6 = 4x5 = 10 -0 -0 16 -7 -8 23 -4 -12 1 30 -2 -0 37 -1 -0 10 -0 -0 6 -7 -8 6 -9 -4 6 -9 -4 6 -11 -0 Plate Offsets (X Y): r2:0 -7 -13 Edge] f7:0-2-12,0-3-01 LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /defl L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.95 Vert(LL) -0.25 2 -15 >999 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.96 Vert(TL) -0.46 2 -15 >961 180 BCLL 0.0 Rep Stress Incr YES WB 0.86 Horz(TL) 0.13 10 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Simplified) Weight: 187 lb LUMBER BRACING TOP CHORD 2 X 4 SPF 2100F 1.8E *Except* TOP CHORD Sheathed or 2 -7 -13 oc purlins, except end verticals. T1 2 X 4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. BOT CHORD 2 X 4 SPF No.2 WEBS 1 Row at midpt 9 -10, 6 -15, 7 -11 WEBS 2 X 4 SPF Stud /Std *Except* 2 Rows at 1/3 pts 8 -10 W3 2 X 4 SPF No.2, W5 2 X 4 SPF No.2, W7 2 X 4 SPF No.2 W9 2 X 4 SPF No.2 SLIDER Left 2 X 8 DF 1950F 1.7E 3 -2 -9 REACTIONS (lb /size) 10= 1884 /Mechanical, 2= 1977/0 -5 -8 Max Horz 2= 212(load case 7) Max Uplift10=- 226(load case 5), 2=- 97(load case 6) Max Grav 10= 2211(load case 3), 2= 1977(load case 1) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 1- 2 =0/3, 2 -3 =- 2545/182, 3 -4 =- 2545/182, 4 -5 =- 2258/190, 5 -6 =- 1874/191, 6 -7 =- 2590/236, 7 -8 =- 1668/165, 8- 9 =0/0, 9 -10 =- 377/83 BOT CHORD 2 -15 =- 245/1982, 14 -15 =- 236/2590, 13 -14 =- 234/2521, 12 -13 =- 234/2521, 11 -12 =- 235/2519, 10 -11 =- 165/1668 WEBS 4 -15 =- 356/154, 5 -15 =- 15/832, 6 -15 =- 1093/173, 6 -14 =- 106/162, 7 -14 =- 48/296, 7 -12= 0/244, 7 -11 =- 1259/116, 8- 11=- 20/1036, 8- 10=- 2440/241 NOTES 1) Wind: ASCE 7.98; 90mph; h =25ft TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp.; L= 45 -0 -0 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 7) Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 226 lb uplift at joint 10 and 97 lb uplift at joint 2. LOAD CASE(S) Standard 3x4 = 5x8 = 3x6 = 2x4 11 Job Truss Truss Type Qty Ply 1 0 Q41430 A3 ROOF TRUSS 2 1 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.70 Vert(TL) -0.26 14 -15 >999 180 Job Reference (optional a. a oup - cvuo rvn 1 cn muuSm6S, Inc. vvea t - eo 11 1 b:Z5:31 2OU4 Page 1 • 1 -0-p 6 -1 -12 12 -0 -0 1 -0 -0 6 -1 -12 5 -10 -4 18 -1 -8 24 -4 -12 30 -8 -0 37 -1 -0 6 -1 -8 6 -3 -4 6 -3 -4 6 -5 -0 Scale= 1:65.1 5x5 = 5x10 II 16 15 14 13 12 11 10 5x5 1.5x4 11 Us = 3x6 = 3x10 = 1.5x4 11 3x6 = 1.5x4 II 6 -1 -12 12 -0 -0 18 -1 -8 24 -4 -12 30 -8 -0 37 -1 -0 6 -1 -12 5 -10 -4 6 -1 -8 6 -3 -4 6 -3 -4 F -. -n Plate Offsets (X,Y): [2:0 -7 -13 Edge] [7:0-2-8,0-3-0] LOADING (psf) SPACING 2 -0 -0 CSI DEFL in floc) I /defl L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.94 Vert(LL) -0.16 14 >999 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.70 Vert(TL) -0.26 14 -15 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.85 Horz(TL) 0.10 10 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Simplified) Weight: 207 lb LUMBER BRACING TOP CHORD 2 X 4 SPF 1650E 1.5E BOT CHORD 2 X 4 SPF No.2 TOP CHORD Sheathed or 2 -8 -10 oc purlins, except end verticals. WEBS 2 X 4 SPF Stud /Std *Except* BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. W4 2 X 4 SPF No.2, W6 2 X 4 SPF No.2, W8 2 X 4 SPF No.2 WEBS 1 Row at midpt 9 -10, 6 -15, 6 -12, 7 -12 2 Rows at 1/3 pts 8 -10 W1 0 2 X 4 SPF No.2 SLIDER Left 2 X 8 DF 195OF 1.7E 3 -9 -10 REACTIONS (lb /size) 10= 1884 /Mechanical, 2= 1977/0 -5 -8 Max Horz 2=251 (load case 7) Max Upliftl0=- 205(load case 5), 2=-101 (load case 7) Max Grav 1 0=2154(load case 3), 2= 2084(load case 2) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 1- 2 =0/3, 2 -3 =- 2568/118, 3 -4 =- 2568/118, 4 -5 =- 2123/170, 5 -6 =- 1764/180, 6 -7 =- 1983/179, 7 -8 =- 1994/181, 8 -9 =0/0 9 -10 =- 349/77 BOT CHORD 2 -16 =- 221/2021, 15 -16 =- 221/2021, 14-15=-202/2110,13-14=-202/2110, 12 -13 =- 20212110, 11- 12=- 116/1286, 10 -11 =- 116/1286 WEBS 4 -16= 0/213, 4 -15 =- 577/119, 5 -15 =- 4/723, 6 -15 =- 783/150, 6 -14= 0/226, 6 -12 =- 418/59, 7 -12 =- 693/154, 8- 12=- 116/1198, 8- 11= 0/226, 8 -10 =- 2176/196 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp.; L= 45 -0 -0 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 7) Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 205 lb uplift at joint 10 and 101 lb uplift at joint 2. LOAD CASE(S) Standard 3x8 = 5x5 = 3x10 = 2x4 I I Job Truss Truss Type Qty Ply 10 Q41430 A4 ROOF TRUSS 2 1 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.75 Vert(TL) -0.29 12 -14 >999 180 Job Reference (optional V I VVf\ VVIVIr VIVLIV I V - II - , ; UFO IV VJYV V, Jf1VG D.4UV s Oep 10 zVVa IVII IeK mausines, inc. Weo f eo 11 'Ib:2b:32 2004 Pagel - 1 -0 -p 7 -1 -12 14 -0 -0 21 -6 -9 29 -2 -15 37 -1 -0 1 -0 -0 7 -1 -12 6 -10 -4 7 -6 -9 7 -8 -5 7 -10 -1 Scale = 1:65.1 5x5 = 5 3x8 = 4x8 = 4x4 = 6 7 8 2x4 II 0 21 -6 -9 1 29 -2 -15 1 37 -1 -0 7 -1 -12 6 -10 -4 7 -6 -9 7 -8 -5 7 -10 -1 Plate Offsets (X Y): [2:0 -7 -13 Edge] (7:0 -4 -0 Edge] LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /defl L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.92 Vert(LL) -0.15 12 -14 >999 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.75 Vert(TL) -0.29 12 -14 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.73 Horz(TL) 0.10 10 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Simplified) Weight: 207 lb LUMt3tK TOP CHORD 2 X 4 DF 240OF 2.0E 'Except` T1 2 X 4 SPF 2100F 1.8E BOT CHORD 2 X 4 SPF No.2 WEBS 2 X 4 SPF Stud /Std 'Except' W4 2 X 4 SPF 165OF 1.5E, W6 2 X 4 SPF 1650F 1.5E W8 2 X 4 SPF 1650F 1.5E SLIDER Left 2 X 8 DF 195OF 1.7E 4 -4 -14 BRACING - TOP CHORD Sheathed or 3 -0 -3 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. WEBS 1 Row at midpt 9 -10, 4 -14, 6 -14, 6 -11 2 Rows at 1/3 pts 8 -10 REACTIONS (lb /size) 10= 1884 /Mechanical, 2= 1977/0 -5 -8 Max Horz 2= 289(load case 7) Max Upliftl0=- 185(load case 6), 2=- 105(load case 7) Max Grav 1 0=2088(load case 3), 2= 2208(load case 2) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 1- 2 =0/3, 2 -3 =- 2549/89, 3 -4 =- 2549/89, 4 -5 =- 1976/147, 5 -6 =- 1644/168, 6 -7 =- 1243/114, 7 -8 =- 1243/114, 8- 9 =0/0, 9 -10 =- 428/94 BOT CHORD 2 -15 =- 250/2013, 14 -15 =- 250/2013, 13 -14 =- 170/1727, 12 -13 =- 170/1727, 11 -12 =- 170/1727, 10 -11 =- 114/1243 WEBS 4 -15= 0/249, 4 -14 =- 728/140, 5 -14= 0/504, 6 -14 =- 446/259, 6 -12= 0/277, 6 -11 =- 895/91, 8 -11= 0/830, 8 -10 =- 2024/186 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp.; L= 45 -0 -0 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 7) Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 185 lb uplift at joint 10 and 105 lb uplift at joint 2. LOAD CASE(S) Standard 5x12 II _- -- 15 14 13 12 11 10 1.5x4 II 3x8 = 3x6 = 1.5x4 11 4x4 = 3x6 = J I VVn VVIvIrVINCIV 10-Ir, wanO rails, IU 0J4VJ, JAUt b.zuu s sep 1 b zuu3 MI I eK Industries, Inc. Wed Feb 11 15:25:32 2004 Page 1 - 1 -0-p 5 -6 -5 10 -9 -3 16 -0 -0 22 -10 -9 29 -10 -15 37 -1 -0 1 -0 -0 5 -6 -5 5 -2 -13 5 -2 -13 6 -10 -9 7 -0 -5 7 -2 -1 Scale = 1:65.1 5x5 = 6x10 II 17 16 15 14 13 12 5x5 i 3x4 = 3x8 = 34 = U4 = 1.5x4 II 4x4 = 8 -1 -12 16 -0 -0 22 -10 -9 29 -10 -15 1 37 -1 -0 8 -1 -12 7 -10 -4 6 -10 -9 7 -0 -5 7 -2 -1 Hiate Offsets (X,Y): Job Q41430 'A5 Truss Truss Type ROOF TRUSS Qty 2 Ply 1 1 0 Job Reference (optional J I VVn VVIvIrVINCIV 10-Ir, wanO rails, IU 0J4VJ, JAUt b.zuu s sep 1 b zuu3 MI I eK Industries, Inc. Wed Feb 11 15:25:32 2004 Page 1 - 1 -0-p 5 -6 -5 10 -9 -3 16 -0 -0 22 -10 -9 29 -10 -15 37 -1 -0 1 -0 -0 5 -6 -5 5 -2 -13 5 -2 -13 6 -10 -9 7 -0 -5 7 -2 -1 Scale = 1:65.1 5x5 = 6x10 II 17 16 15 14 13 12 5x5 i 3x4 = 3x8 = 34 = U4 = 1.5x4 II 4x4 = 8 -1 -12 16 -0 -0 22 -10 -9 29 -10 -15 1 37 -1 -0 8 -1 -12 7 -10 -4 6 -10 -9 7 -0 -5 7 -2 -1 Hiate Offsets (X,Y): [2:0- 7- 13,Edgel LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /defl L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.98 Vert(LL) -0.15 16 -17 >999 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.81 Vert(TL) -0.29 16 -17 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.74 Horz(TL) 0.09 12 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Simplified) Weight: 218 lb LUMBER TOP CHORD 2 X 4 SPF No.2 *Except* T2 2 X 4 SPF 2100F 1.8E, T4 2 X 4 SPF 210OF 1.8E BOT CHORD 2 X 4 SPF No.2 WEBS 2 X 4 SPF Stud /Std *Except* W5 2 X 4 SPF 165OF 1.5E, W7 2 X 4 SPF 165OF 1.5E W9 2 X 4 SPF 1650F 1.5E SLIDER Left 2 X 8 DF 1950F 1.7E 3 -5 -6 BRACING TOP CHORD Sheathed, except end verticals. BOT CHORD Rigid ceiling directly applied or 9 -9 -6 oc bracing. WEBS 1 Row at midpt 11 -12, 6 -16, 8 -14, 10 -14 2 Rows at 1/3 pts 8 -16, 10 -12 REACTIONS (lb /size) 12= 1884 /Mechanical, 2= 1977/0 -5 -8 Max Horz 2= 328(load case 7) Max Upliftl2=- 185(load case 6), 2=- 107(load case 7) Max Grav 12= 2010(load case 3), 2=2321 (load case 2) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 1- 2 =0/3, 2 -3 =- 2836/93, 3 -4 =- 2836/93, 4 -5 =- 2428/128, 5 -6 =- 2428/128, 6 -7 =- 1818/145, 7 -8 =- 1514/155, 8 -9 =- 1461/146, 9 -10 =- 1461/146, 10- 11 =0/0, 11 -12 =- 391/86 BOT CHORD 2 -17 =- 332/2213, 16 -17 =- 241/1875, 15 -16 =- 146/1461, 14- 15=- 146/1461, 13 -14 =- 94/979, 12 -13 =- 94/979 WEBS 4 -17 =- 365/143, 6 -17 =- 48/460, 6 -16 =- 851/169, 7 -16= 0/488, 8 -16 =- 257/436, 8 -14 =- 696/150, 10- 14=- 97/954, 10- 13= 0/253, 10 -12 =- 1844/178 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp.; L= 45 -0 -0 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 7) Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 185 lb uplift at joint 12 and 107 lb uplift at joint 2. LOAD CASE(S) Standard 3x4 = 3x10 = 3x10 = 2x4 II 7 8 9 to 11 Job Truss Truss Type Qty Ply 1 0 Q41430 A6 ROOF TRUSS 2 1 CSI DEFL in (loc) I /defl L/d PLATES GRIP Job Reference (optional STOCK COMPONENTS -IF, Idaho Falls, ID 83403, SAGE 5.200 s Sep 15 2003 MiTek Industries, Inc. Wed Feb 11 15:25:33 2004 Page 1 6 -2 -5 12 -1 -3 18 -0 -0 1,9 -4 -p 25 -1 -13 30 -11 -11 37 -1 -0 6 -2 -5 5 -10 -13 5 -10 -13 1 -4 -0 5 -9 -13 5 -9 -13 6 -1 -5 5x5 = 6x6 = 9 -1 -12 18 -0 -0 1,9 -4 - 28 -0 -12 37 -1 -0 9 -1 -12 8 -10 -4 1 -4 -0 8 -8 -12 9 -0-4 Scale = 1:72.7 0 N Plate Offsets (X,Y): [7:0- 3- 5,Edge] LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /defl L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.96 Vert(LL) -0.22 16 -17 >999 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.95 Vert(TL) -0.42 16 -17 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.91 Horz(TL) 0.11 12 n/a n/a BCDL 8.0 Code IRC2000 /ANSI95 (Simplified) Weight: 209 lb LUMBER TOP CHORD 2 X 4 SPF 2100F 1.8E 'Except' T2 2 X 4 SPF No.2, T4 2 X 4 SPF 165OF 1.5E BOT CHORD 2 X 4 SPF No.2 WEBS 2 X 4 SPF Stud /Std SLIDER Left 2 X 6 DF No.2 3 -10 -3 REACTIONS (lb /size) 1= 1884 /Mechanical, 12= 1884 / Mechanical Max Horz 1= 313(load case 6) Max Upliftl=- 106(load case 7), 12=- 104(load case 8) Max Grav 1= 2256(load case 2), 12= 2234(load case 3) BRACING — TOP CHORD Sheathed, except end verticals. BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. WEBS 1 Row at midpt 5 -16, 7 -16, 8 -14 2 Rows at 1/3 pts 10 -12 FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 1 -2 =- 2911/153, 2 -3 =- 2911/153, 3 -4 =- 2452/191, 4 -5 =- 2452/191, 5 -6 =- 16561197, 6 -7 =- 1378/209, 7 -8 =- 1653/198, 8 -9 =- 2347/187, 9 -10 =- 2347/187, 10- 11= -3/68, 11 -12 =- 391/95 BOT CHORD 1 -17 =- 199/2286, 16 -17 =- 99/1862, 15- 16= 0/1382, 14- 15= 0/1382, 13 -14 =- 24/1804, 12 -13 =- 63/2144 WEBS 3 -17 =- 457/157, 5 -17 =- 49/557, 5 -16 =- 985/188, 6 -16 =- 85/736, 7 -16 =- 542/462, 7 -14 =- 104/852, 8 -14 =- 917/182, 8 -13 =- 46/475, 10-13=-365/150,10-12=-2782/82 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 3) Unbalanced snow loads have been considered for this design. 4) Provide adequate drainage to prevent water ponding. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 6) Refer to girder(s) for truss to truss connections. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 106 lb uplift at joint 1 and 104 lb uplift at joint 12. LOAD CASE(S) Standard 6x10 II 4x4 �i 17 15 15 14 13 12 4x4 % 3x4 = 3x6 = 3x4 = 4x5 = 3x8 = 44 = Job Truss Truss Type Qty Ply 10 Q41430 A7 ROOF TRUSS 10 1 1.15 TC 0.98 Vert(LL) -0.17 13 -14 >999 240 Job Reference (optional 5 1 UUK UUMNUNtIV I J -Ir, Ioano cans, lU Ss4US, SAtzt 6 -5 -0 12 -6 -8 18 -8 -0 24 -8 -8 30 -9 -0 37 -1 -0 6 -5 -0 6 -1 -8 6 -1 -8 6 -0 -8 6 -0 -8 6 -4 -0 5x5 = o.zuu s yep l o zuua Mi I eK Industries, Inc. Wed Feb 11 15:25:34 2004 Page 1 6 Scale= 1:68.0 N 4X4 G exto It 14 13 12 4x4 i 3x4 = 6x8 = 3x4 = 9 -5 -0 18 -8 -0 27 -8 -0 37 -1 -( 9 -5 -0 9 -3 -0 9 -0 -0 9 -5 -0 11 44 = LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /defl L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.98 Vert(LL) -0.17 13 -14 >999 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.81 Vert(TL) -0.31 13 -14 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.78 Horz(TL) 0.11 11 n/a n/a BCDL 8.0 Code IRC20001ANS195 (Matrix) Weight: 184 lb LUMBER TOP CHORD 2 X 4 SPF No.2 BOT CHORD 2 X 4 SPF No.2 WEBS 2 X 4 SPF Stud /Std 'Except' EV2 2 X 4 OF 240OF 2.0E SLIDER Left 2 X 6 DF No.2 3 -11 -12 BRACING TOP CHORD Sheathed, except end verticals. BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. WEBS 1 Row at midpt 6 -13 2 Rows at 1/3 pts 5 -13, 7 -13, 9 -11 REACTIONS (lb /size) 1= 1884 /Mechanical, 11 =1884 /Mechanical Max Horz 1= 328(load case 6) Max Upliftl=- 108(load case 7), 11=- 106(load case 8) Max Gravl= 2219(load case 2), 11= 2195(load case 3) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 1 -2 =- 3084/158, 2 -3 =- 2871/179, 3-4 =- 2644/200, 4 -5 =- 2233/217, 5 -6 =- 1786/225, 6 -7 =- 1765/226, 7 -8 =- 2153/210, 8 -9 =- 2554/194, 9 -10 =- 1013/119, 10 -11 =- 850/115 BOT CHORD 1 -14 =- 209/2297, 13-14=-105/1834,12-13=-27/1774, 11 -12 =- 70/2187 WEBS 3-14=-502/163,5-14=-541598, 5 -13 =- 1114/204,6-13=-136/1289,7-13=-1052/197, 7 -12 =- 48/548, 9 -12 =- 458/160, 9 -11 =- 1988/97 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category 11; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 108 lb uplift at joint 1 and 106 lb uplift at joint 11. LOAD CASE(S) Standard Job Truss Truss Type Qty Ply 10 Q41430 A8 ROOF TRUSS 6 1 Max Horz 1=- 326(load case 5) Max Upliftl=- 127(load case 7), 11=- 133(load case 8) Max Grav 1= 1196(load case 2), 14= 1644(load case 1), 11= 1739(load case 3) Job Reference (optional J I VVI\ VVlvlr VIVLIV I J'll , IVOI IV I - QIIJ, IV VVYVJ, Q-1V J.LVV 5 Jesp I LVUJ IVII IUK Inuu5lne5, Inc. vvea 1 - eo 11 1b:Zb:Jb ZUU4 rage 1 6 -5 -0 12 -6 -8 18 -8 -0 24 -8 -8 30 -9 -0 1 37 -1 -0 6 -5 -0 6 -1 -8 6 -1 -8 6 -0 -8 6 -0 -8 6 -4 -0 5x5 = Scale = 1:67.5 I; 6 -5 -0 1 12 -5 -4 1 18 -8 -0 1 28 -8 -1 37 -1 -0 LUMBER 6 -5 -0 6 -0 -4 TOP CHORD 2 X 4 SPF 1650F 1.5E 6 -2 -12 BOT CHORD 2 X 4 SPF 1650F 1.5E 10 -0 -1 WEBS 2 X 4 SPF Stud /Std 8 -4 -15 Plate Offsets (X,Y): [1:0- 6- 5,Edge] [11:0 -8 -5 Edge] [13:0-3-0,0-3-01 Max Horz 1=- 326(load case 5) Max Upliftl=- 127(load case 7), 11=- 133(load case 8) Max Grav 1= 1196(load case 2), 14= 1644(load case 1), 11= 1739(load case 3) LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /defl L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.95 Vert(LL) -0.31 12 -13 >945 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.80 Vert(TL) -0.57 12 -13 >516 180 BCLL 0.0 Rep Stress Incr NO WB 0.93 Horz(TL) 0.05 11 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Simplified) Weight: 192 lb LUMBER BRACING TOP CHORD 2 X 4 SPF 1650F 1.5E TOP CHORD BOT CHORD 2 X 4 SPF 1650F 1.5E BOT CHORD WEBS 2 X 4 SPF Stud /Std SLIDER Left 2 X 6 DF No.2 3- 10 -12, Right 2 X 8 DF 1950F 1.7E 3 -11 -7 WEBS REACTIONS (lb /size) 1= 803/0 -3 -0, 14= 1644/0 -5 -8, 11= 1335 /Mechanical Max Horz 1=- 326(load case 5) Max Upliftl=- 127(load case 7), 11=- 133(load case 8) Max Grav 1= 1196(load case 2), 14= 1644(load case 1), 11= 1739(load case 3) Sheathed or 2 -7 -9 oc pudins. Rigid ceiling directly applied or 10 -0 -0 oc bracing, Except: 6 -0 -0 oc bracing: 13 -14. 1 Row at midpt 5-14.6-13 2 Rows at 1/3 pts 7 -13 FORCES (Ib) - Maximum Compression /Maximum Tension TOP CHORD 1 -2 =- 1214/185, 2 -3 =- 1214/185, 3 -4 =- 447/243, 4 -5 =- 447/243, 5 -6 =- 669/255, 6 -7 =- 667/227, 7 -8 =- 1673/252, 8- 9=- 1673/252, 9 -10 =- 2058/189, 10 -11 =- 2058/189 BOT CHORD 1- 15=- 272/956, 14 -15 =- 272/956, 13- 14=- 203/372, 12-13=-32/1108,11-12=-73/1607 WEBS 3 -15= 0/226, 3 -14 =- 744/120, 5 -14 =- 1230/0, 5 -13= 0/907, 6 -13 =- 182/239, 7 -13 =- 1047/197, 7 -12 =- 64/701, 9 -12 =- 538/161 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 127 lb uplift at joint 1 and 133 lb uplift at joint 11. LOAD CASE(S) Standard 3x10 II 15 14 13 12 oxo r 4x12 II 4x4 i 1.5x4 II 4x4 = 5x8 = 3x4 = 5x5 J Job Truss Truss Type Qty Ply 10 Q41430 A9 ROOF TRUSS 6 1 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.80 Vert(TL) -0.58 12 -13 >515 180 Job Reference (optional .+.wv o UP 1 — - uwubLIMb, uic. vveu reu ll lD:Z0:30 ZUU4 Page 1 6 -5 -0 12 -6 -8 18 -8 -0 24 -9 -8 30 -11 -0 37 -4 -0 6 -5 -0 6 -1 -8 6 -1 -8 6 -1 -8 6 -1 -8 6 -5 -0 5x5 = Scale = 1:67.6 Id 12 -5 -4 1 18 -8 -0 1 28 -10 -1 6 -5 -0 6 -0 -4 6 -2 -12 10 -2 -1 8 -5 -15 Plate Offsets (X,Y): [1:0- 6- 5,Edoe] [11:0-5-13,0-0-2], [13:0-4-0,0-3-01 LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /defl L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.97 Vert(LL) -0.32 12 -13 >942 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.80 Vert(TL) -0.58 12 -13 >515 180 BCLL 0.0 Rep Stress Incr NO WB 0.93 Horz(TL) 0.05 11 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Simplified) Weight: 189 lb LUMt$tK TOP CHORD 2 X 4 SPF 1650F 1.5E BOT CHORD 2 X 4 SPF 165OF 1.5E WEBS 2 X 4 SPF Stud /Std SLIDER Left 2 X 6 DF No.2 3- 10 -12, Right 2 X 6 DF No.2 3 -10 -15 BRACING TOP CHORD Sheathed or 2 -7 -9 oc purlins. BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing, Except: 6 -0 -0 oc bracing: 13 -14. WEBS 1 Row at midpt 5-14,6-13 2 Rows at 1/3 pts 7 -13 REACTIONS (lb /size) 1= 810/0 -3 -0, 14= 1648/0 -5 -8, 11= 1351/0 -5 -8 Max Horz 1=- 326(load case 5) Max Upliftl =-1 25(load case 7), 11=- 131(load case 8) Max Grav 1= 1206(load case 2), 14= 1648(load case 1), 11= 1760(load case 3) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 1 -2 =- 1230/175, 2 -3 =- 1230/175, 3-4 =- 463/233, 4 -5 =- 463/233, 5 -6 =- 688/250, 6 -7 =- 688/225, 7 -8 =- 1742/250, 8 -9 =- 1742/250, 9- 10=- 2126/188, 10 -11 =- 2126/188 BOT CHORD 1 -15 =- 274/969, 14 -15 =- 274/969, 13- 14=- 205/386, 12-13=-32/1142,11-12=-76/1685 WEBS 3 -15= 0/226, 3 -14 =- 743/120, 5 -14 =- 1233/0, 5 -13= 0/919, 6 -13 =- 176/257, 7 -13 =- 1073/201, 7 -12 =- 67/744, 9 -12 =- 578/165 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 125 lb uplift at joint 1 and 131 lb uplift at joint 11. LOAD CASE(S) Standard 3x10 II 15 iq 4x4 r4x4 13 12 5x8 II 4x4 i 1.5x4 II 4x4 = 5x8 = 3x4 = Job Truss Truss Type Qty Ply 1 0 Q41430 81 ROOF TRUSS 2 in (loc) I /defl L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 Job Reference (optional S I OCK I:UMNUNtN l,5-IF, Idano valis, ID 634U3, SAGE 5.ZUU s Sep 15 2003 MiTek Industries, Inc. Wed Feb 11 15:25:37 2004 Page 1 4 -5 -10 8 -7 -12 12 -9 -14 17 -0 -0 1 22 -6 -13 28 -1 -11 1 34 -0 -0 3 01 4 -5 -10 4 -2 -2 4 -2 -2 4 -2 -2 5 -6 -13 5 -6 -13 5 -10 -5 1 -0 -0 44 = Scale = 1:65.9 IP 4 -5 -10 8 -7 -12 12 -9 -14 17 -0 -0 22 -6 -13 28 -1 -11 34 -0 -0 4 -5 -10 4 -2 -2 4 -2 -2 4 -2 -2 5 -6 -13 5 -6 -13 5 -10 -5 Plate Offsets (X Y): [4:0 - -4 0 -3 -0] [8:0 -1 -11 Edge] [11 -7 -1 0 -1 - [20:0 -4 -0 0 -4 -121 [21 -3 -8 0 -5 - [22:0 -3 -8 0 -5 -01 LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /defl L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.93 Vert(LL) -0.1522-23 >999 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.97 Vert(TL) -0.22 22 -23 >942 180 M1118H 141/138 BCLL 0.0 Rep Stress Incr NO WB 0.99 Horz(TL) 0.04 20 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Matrix) Weight; 579 lb LUMBER BRACING TOP CHORD 2 X 4 SPF No.2 'Except' TOP CHORD Sheathed or 3 -1 -0 oc purlins. T3 2 X 4 SPF 1650F 1.5E BOT CHORD Rigid ceiling directly applied or 6 -0 -0 oc bracing. BOT CHORD 2 X 6 DF 180OF 1.6E WEBS 1 Row at midpt 4 -21, 5 -20, 6 -20 WEBS 2 X 4 SPF Stud /Std 'Except' W5 2 X 4 SPF No.2, W6 2 X 4 SPF 1650F 1.5E, W1 3 2 X 4 SPF No.2 W14 2 X 4 SPF No.2 OTHERS 2 X 4 SPF Stud /Std SLIDER Left 2 X 6 DF No.2 2 -8 -7, Right 2 X 6 DF No.2 3 -6 -8 REACTIONS (lb /size) 1= 7100/0 -5 -8, 20= 12786/17 -3 -0, 17=- 40/17 -3 -0, 14=- 890/17 -3 -0, 11= 9/17 -3 -0, 19 =- 1313/17 -3 -0, 18=418/17-3-0,16=53/17-3-0, 15=62/17-3-0,13=386/17-3-0 Max Horz 1=- 301(load case 5) Max Upliftl=- 698(load case 7), 20=- 1367(load case 7), 17=- 383(load case 2), 14=-1 01 5(load case 2), 11=- 451(load case 2), 19=- 1337(load case 2), 18=- 24(load case 7), 13=- 28(load case 8) Max Grav 1 =7432(load case 2), 20= 13044(load case 2), 17= 203(load case 3), 14= 137(load case 8), 11= 333(load case 3), 19= 157(load case 7), 18= 425(load case 2), 16= 89(load case 4), 15= 85(load case 4), 13= 454(load case 3) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 1 -2 =- 8348/754, 2 -3 =- 8213/783, 3 -4 =- 5201/529, 4 -5 =- 1685/240, 5 -6 =- 223/2244, 6 -7 =- 195/2140, 7 -8 =- 142/1621, 8 -9 =- 168/1577, 9 -10 =- 117/855, 10 -11 =- 144/826, 11 -12 =0/16 BOT CHORD 1- 23=- 790/6615, 22 -23 =- 790/6615, 21 -22 =- 512/4263, 20- 21=- 191/1279, 19 -20 =- 1333/271, 18 -19 =- 1333/271, 17- 18=- 1333/271, 16 -17 =- 667/104, 15 -16 =- 667/104, 14 -15 =- 667/104, 13 -14 =- 667/104, 11 -13 =- 667/104 WEBS 3 -22 =- 3096/383, 4 -21 =- 5436/625, 5 -21 =- 850/8065, 5 -20 =- 7298/831, 6 -20 =- 2641/214, 7 -20 =- 966/193, 7 -17 =- 100/836, 9 -17 =- 1054/240, 9 -14 =- 96/832, 4 -22 =- 610/5907, 3 -23 =- 349/3554 NOTES 1) 2 -ply truss to be connected together with 10d Common(.148 "x3 ") Nails as follows: Top chords connected as follows: 2 X 4 - 1 row at 0 -9 -0 oc. Bottom chords connected as follows: 2 X 6 - 2 rows at 0 -7 -0 oc. Webs connected as follows: 2 X 4 - 1 row at 0 -9 -0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category 11; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 4) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standarc Gable End Detail' 5) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. & g&%l hIp-g designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 8x10 II 23 22 21 ° 20 19 18 17 16 15 14 13 4x4 �� 3x10 II 3x10 II 10x10 = 10x10 = 8x10 MII18H= 2x4 II 2x4 11 3x4 = 2x4 II 2x4 II 4x4 J 2x4 11 2x4 11 Job Truss Truss Type Qty Ply 1 0 Q41430 B1 ROOF TRUSS 2 Job Reference (optional STOCK OCK CO MPONEN i S -iF, iaano Faiis, iD 83403, SAGE 5.200 s Sep 15 2003 MI I eK Industries, Inc. Wed Feb 11 15:25:37 2004 Page 2 NOTES 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 8) All plates are M1120 plates unless otherwise indicated. 9) All plates are 1.5x4 M1120 unless otherwise indicated. 10) Gable studs spaced at 2 -0 -0 oc. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 698 lb uplift at joint 1, 1367 lb uplift at joint 20, 383 lb uplift at joint 17, 1015 lb uplift at joint 14, 451 lb uplift at joint 11, 1337 lb uplift at joint 19, 24 lb uplift at joint 18 and 28 lb uplift at joint 13. 12) Girder carries tie -in span(s): 37 -1 -0 from 0 -0 -0 to 16 -9 -0 13) Uplift for first LC exceeds limits LOAD CASE(S) Standard 1) Snow: Lumber Increase =1.15, Plate Increase =1.15 Uniform Loads (plf) Vert: 1- 6 = -86, 6- 12 = -86, 1- 20=- 899(F= -883), 11- 20 = -16 Job Truss Truss Type Qty Ply 10 Q41430 C1G ROOF TRUSS 2 1 1.15 TC 0.29 Vert(LL) n/a - n/a 999 Job Reference (optional v i vvn vvinr vivuv ,.� -,r, wai iV rana, v 00,V0, Qr D.ZVU 5 Jep I D LUU3 IVII I eK Inousines Inc. vvea reo 11 15:25:37 2004 Page 1 -1 -0 -0 8 -7 -4 17 -2 -8 18 -2 -8 i t _ 2 1 1 -0 -0 8 -7 -4 4x4 = 8 -7 -4 1 -0 -0 Scale = 1:34.5 LOADING (psf) SPACING 2 -0 -0 CSI DEFL in floc) I /defl L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.29 Vert(LL) n/a - n/a 999 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.12 Vert(TL) -0.02 13 >650 180 BCLL 0.0 Rep Stress Incr NO WB 0.16 Horz(TL) 0.00 14 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Matrix) Weight: 81 lb LUMBER TOP CHORD 2 X 4 SPF No.2 BOT CHORD 2 X 4 SPF No.2 WEBS 2 X 4 SPF Stud /Std OTHERS 2 X 4 SPF Stud /Std BRACING TOP CHORD Sheathed or 6 -0 -0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6 -0 -0 oc bracing. REACTIONS (lb /size) 23= 176/17 -2 -8, 14= 250/17 -2 -8, 18= 222/17 -2 -8, 19= 206/17 -2 -8, 20= 202/17 -2 -8, 21= 210/17 -2 -8, 22= 62/17 -2 -8, 17= 205/17 -2 -8, 16= 207/17 -2 -8, 15=191/17- Max Horz 23=-1 40(load case 5) Max Uplift23=- 240(load case 5), 14=- 34(load case 8), 19=- 40(load case 7), 20=- 48(load case 7), 21=- 44(load case 7), 22=- 232(load case 6), case 8), 16=- 42(load case 8), 15=- 69(load case 5) Max Grav23= 329(load case 2), 14= 377(load case 3), 18= 222(load case 1), 19= 311(load case 2), 20= 293(load case 2), 21= 307(load case 2), case 5), 17= 311(load case 3), 16= 302(load case 3), 15= 274(load case 3) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 2 -23 =- 291/150, 1 -2 =0/90, 2 -3 =- 183/155, 3 -4 =- 116/114, 4 -5 =- 77/111, 5 -6 =- 69/111, 6 -7 =- 77/131, 7 -8 =- 51/124, 8 -9 =- 43/104, 9 -10 =- 43/104, 10 -11 =- 50/97, 11 -12 =- 27/84, 12 -13 =0/90, 12 -14 =- 177/93 BOT CHORD 22- 23=- 42/81, 21- 22=- 42/81, 20- 21=- 42/81, 19 -20 =- 42/81, 18 -19 =- 42/81, 17- 18=- 42/81, 16 -17 =- 42/81, 15- 16= -42/81 , 14- 15= -42/81 WEBS 7 -18 =- 190/0, 6 -19 =- 279/59, 5 -20 =- 262/66, 4 -21 =- 273/66, 3 -22 =- 94/116, 8 -17 =- 280/59, 9 -16 =- 267/64, 10 - = - 253/76 , 11 -14 =- 188/15 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Gable End Detail' 3) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 7) All plates are 1.5x4 M1120 unless otherwise indicated. 8) Gable requires continuous bottom chord bearing. 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2 -0 -0 oc. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 240 lb uplift at joint 23, 34 lb uplift at joint 14, 40 lb uplift at joint 19, 48 lb uplift at joint 20, 44 lb uplift at joint 21, 232 lb uplift at joint 22, 40 lb uplift at joint 17, 42 lb uplift at joint 16 and 69 lb uplift at joint 15. 17= 40(load 22= 200(load LOAD CASE(S) Standard 2x4 II 3x6 - Job Truss Truss Type Qty Ply 10 Q41430 CR1 ROOF TRUSS 2 1 LOADING (psf) SPACING Job Reference (optional 51 OUK CUMPONEN I 6-IF, Idaho Falls, ID 83403, SAGE 5.200 s Sep 15 2003 MiTek Industries, Inc. Wed Feb 11 15:25:38 2004 Page 1 1 -5 -0 5 -7 -8 11 -3 -0 1 -5 -0 5 -7 -8 5 -7 -8 1.5x4 11 Scale = 1:29.5 5 REACTIONS (lb /size) 8= 662/0 -7 -12, 6= 1083 /Mechanical Max Horz 8=241 (load case 5) Max Uplift8=- 12(load case 5), 6=-241 (load case 5) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 2-8=-641/25,1-2=0/30,2-3=-676/0.3-4=-116/22.4-5=-12/0 BOT CHORD 7-8=-254/0,6-7=-143/632 WEBS 2- 7= 0/638, 3- 7= 0/192, 3 -6 =- 743/168, 4 -6 =- 590/213 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 3) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 8 and 241 lb uplift at joint 6. 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Snow: Lumber Increase =1.15, Plate Increase =1.15 Uniform Loads (plf) Vert: 1 -2 = -86 Trapezoidal Loads (plf) Vert: 2=- 3(F =41, B= 41)- to- 5=- 242(F = -78, B = -78), 8= 0(F =B, B= 8)- to- 6=- 45(F = -15, B = -15) 1.5x4 11 4x4 = g = 5 -7 -8 11 -3 -0 5 -7 -8 5 -7 -8 Plate Offsets (X,Y): (6:Edge 0 -3 -8) LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /dell L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.87 Vert(LL) -0.03 7 -8 >999 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.54 Vert(TL) -0.07 6 -7 >999 180 BCLL 0.0 Rep Stress Incr NO WB 0.62 Horz(TL) 0.01 6 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Simplified) Weight: 52 lb LUMBER BRACING TOP CHORD 2 X 4 SPF 2100F 1.8E TOP CHORD Sheathed or 6 -0 -0 oc purlins, except end verticals. BOT CHORD 2 X 4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. WEBS 2 X 4 SPF Stud /Std 'Except" EV1 2 X 4 SPF No.2 REACTIONS (lb /size) 8= 662/0 -7 -12, 6= 1083 /Mechanical Max Horz 8=241 (load case 5) Max Uplift8=- 12(load case 5), 6=-241 (load case 5) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 2-8=-641/25,1-2=0/30,2-3=-676/0.3-4=-116/22.4-5=-12/0 BOT CHORD 7-8=-254/0,6-7=-143/632 WEBS 2- 7= 0/638, 3- 7= 0/192, 3 -6 =- 743/168, 4 -6 =- 590/213 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 3) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 8 and 241 lb uplift at joint 6. 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Snow: Lumber Increase =1.15, Plate Increase =1.15 Uniform Loads (plf) Vert: 1 -2 = -86 Trapezoidal Loads (plf) Vert: 2=- 3(F =41, B= 41)- to- 5=- 242(F = -78, B = -78), 8= 0(F =B, B= 8)- to- 6=- 45(F = -15, B = -15) 1.5x4 11 4x4 = g = Job Truss Truss Type Qty Ply 10 Q41430 D1 ROOF TRUSS 2 SPACING 1 -0 -0 CSI DEFL in (loc) Job Reference (optional o i vvn vvivirvwcry i o -tr, wanu rails, Iu o34V3, JHUC b.zuu s sep 1 b 2003 MI I ek Industries, Inc. Wed Feb 11 15:25:40 2004 Page 1 1 4 -6 -0 8 -8 -8 11 12 -11 -0 17 -5 -0 4 -6 -0 4 -2 -8 4 -2 -8 4 -6 -0 4 -6 -0 1 8 -8 -8 12 -11 -0 17 -5 -0 4 -6 -0 4 -2 -8 4 -2 -8 4 -6 -0 1.5x4 II Scale = 1:60.2 Plate Offsets (X,Y): 18:0- 3- 8,0 -5 -01 [9:0-3-8,0-5-01, [10:0-3-8,0-5-0], [11•Edge 0 -2 -0] LOADING (psf) SPACING 1 -0 -0 CSI DEFL in (loc) I /defl L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.62 Vert(LL) -0.15 9 -10 >999 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.79 Vert(TL) -0.22 9 -10 >916 180 BCLL 0.0 Rep Stress Incr NO WB 0.96 Horz(TL) 0.02 7 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Simplified) Weight: 253 lb LUMBER TOP CHORD 2 X 4 SPF No.2 BOT CHORD 2 X 6 DF 240OF 2.0E WEBS 2 X 4 SPF Stud /Std `Except' EV1 2 X 6 DF No.2, W1 2 X 4 SPF No.2, W4 2 X 4 SPF No.2 W6 2 X 4 SPF No.2, W7 2 X 4 SPF 1650F 1.5E REACTIONS (lb /size) 11=8175/0-5-8,7=8175/0-5-8 Max Horz 11= 165(load case 5) Max Uplift 11=- 803(load case 5), 7=-927 (load case 5) BRACING TOP CHORD Sheathed or 3 -9 -14 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. WEBS 1 Row at midpt 6 -7, 4 -8, 5 -7 FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 1 -11 =- 6218/607, 1 -2 =- 8746/842, 2 -3 =- 8746/842, 3 -4 =- 6539/624, 4 -5 =- 3460/318, 5 -6= -25/1, 6 -7= -94/35 BOT CHORD 10-11=-165/7,9-10=-844/7277,8-9=-622/5441,7-8=-327/2878 WEBS 1 -10 =- 690/7388, 3 -10 =- 274/2610, 3 -9 =- 2415/293, 4 -9 =- 577/5425, 4 -8 =- 4665/536, 5 -8 =- 841/7821, 5 -7 =- 6733/766 NOTES 1) 2 -ply truss to be connected together with 10d Common(.148 "x3 ") Nails as follows: Top chords connected as follows: 2 X 6 - 2 rows at 0 -9 -0 oc, 2 X 4 - 2 rows at 0 -9 -0 oc. Bottom chords connected as follows: 2 X 6 - 2 rows at 0 -7 -0 oc. Webs connected as follows: 2 X 4 - 1 row at 0 -9 -0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 4) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 803 lb uplift at joint 11 and 927 lb uplift at joint 7. 7) Girder carries tie -in span(s): 37 -1 -0 from 0 -0 -0 to 17 -5 -0 LOAD CASE(S) Standard 1) Snow: Lumber Increase =1.15, Plate Increase =1.15 Uniform Loads (plf) Vert: 1- 6 = -43, 7- 11=- 916(F = -908) 11 10 9 6 7 10x10 10x10 = 10x10 = 10x10 = 5x5 = Job Truss Truss Type Qty Ply 10 Q41430 D1G ROOF TRUSS 2 1 1.15 TC 0.77 Vert(LL) n/a - n/a 999 Job Reference (optional v i vv1. vvinrviv�ry i Q -1r, luanu rams, !U ojYvo, Of1VC 5.200 s Sep I 5 2003 MI I etc Industries, Inc. Wed Feb 11 15:25:40 2004 Page 1 - 1 1 -0 -Q 17 -5 -0 1 -0 -0 17 -5 -0 ,1 Scale = 1:54.6 17 -5 -0 17 -5 -0 LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /deft L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.77 Vert(LL) n/a - n/a 999 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.32 Vert(TL) -0.01 1 >999 180 BCLL 0.0 Rep Stress Incr NO WB 0.18 Horz(TL) -0.00 12 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Matrix) Weight: 115 lb LUMBER TOP CHORD 2 X 4 SPF No.2 BOT CHORD 2 X 4 SPF No.2 WEBS 2 X 4 SPF Stud /Std OTHERS 2 X 4 SPF Stud /Std BRACING TOP CHORD Sheathed or 6 -0 -0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. WEBS 1 Row at midpt 11 -12, 10 -13, 9 -14, 8 -15 REACTIONS (lb /size) 21= 209/17 -5 -0, 12= 81/17 -5 -0, 13= 209/17 -5 -0, 14= 205/17 -5 -0, 15= 204/17 -5 -0, 16= 204/17 -5 -0, 17= 205/17 -5 -0, 18= 201/17 -5 -0, 19= 218117 -5 -0, 20= 117/17 -5 -0 Max Horz 21 =368(load case 5) Max Uplift2l=- 22(load case 3), 12=- 22(load case 5), 13=-41 (load case 5), 14= -47(load case 5), 15=- 45(load case 5), 16=- 46(load case 5), 17=- 43(load case 5), 18=- 55(load case 5), 19=- 9(load case 5), 20=- 300(load case 5) Max Grav21= 395(load case 5), 12=81 (load case 1), 13= 209(load case 1), 14= 205(load case 1), 15= 204(load case 1), 16= 204(load case 1), 17= 205(load case 1), 18=201 (load case 1), 19= 218(load case 1), 20= 117(load case 1) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 2 -21 =- 256/23, 1 -2 =0/59, 2 -3 =- 441/24, 3 -4 =- 344/52, 4 -5 =- 304/46, 5 -6 =- 256/47, 6 -7 =- 210/47, 7 -8 =- 164/47, 8-9=-117/47,9-10=-71/46, 10-11=-52/28,11-12=-67/27 BOT CHORD 20- 21 = -1/1, 19- 20 = -1/1, 18- 19 = -1/1, 17- 18 = -1/1, 16- 17 = -1/1, 15- 16 = -1/1, 14- 15 = -1/1, 13- 14 = -1/1, 12- 13 = -1/1 WEBS 10- 13=- 177/65, 9 -14 =- 173/65, 8 -15 =- 172/64, 7 -16 =- 172/65, 6 -17 =- 172/64, 5 -18 =- 170/67, 4 -19 =- 182/52, 3 -20 =- 105/163 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Gable End Detail' 3) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 4) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 6) All plates are 1.5x4 M1120 unless otherwise indicated. 7) Gable requires continuous bottom chord bearing. 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 9) Gable studs spaced at 2 -0 -0 oc. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 21, 22 lb uplift at joint 12, 41 lb uplift at joint 13, 47 lb uplift at joint 14, 45 lb uplift at joint 15, 46 lb uplift at joint 16, 43 lb uplift at joint 17, 55 lb uplift at joint 18, 9 lb uplift at joint 19 and 300 lb uplift at joint 20. LOAD CASE(S) Standard c. av ro 10 1/ 16 15 14 13 12 30 11 0 ENTS -IF, Idaho Falls, ID 83403, SAGE 5.200 s Sep 15 2003 MITek Industries, Inc. Wed Feb 11 15:25:41 2004 Page 1 -1 -0 -0 1 3 -10 -0 1 7 -8 -0 8 -8 -0 1 -0 -0 3 -10 -0 3 -10 -0 1 -0 -0 4x4 = Scale = 1:19.2 3 -10 -0 7 -8 -0 3 -10 -0 3 -10 -0 Plate Offsets (X Y): Job Truss Truss Type Qty Ply 1 0 Q41430 E1G ROOF TRUSS 2 1 STOCK COMP N in (loc) I /deft L/d Job Reference (optional 0 ENTS -IF, Idaho Falls, ID 83403, SAGE 5.200 s Sep 15 2003 MITek Industries, Inc. Wed Feb 11 15:25:41 2004 Page 1 -1 -0 -0 1 3 -10 -0 1 7 -8 -0 8 -8 -0 1 -0 -0 3 -10 -0 3 -10 -0 1 -0 -0 4x4 = Scale = 1:19.2 3 -10 -0 7 -8 -0 3 -10 -0 3 -10 -0 Plate Offsets (X Y): [4:0 -3 -3 0 -0 -4] [6:0 -2 -0 0 -0-4] [11:0 -2 -0 0 -1 -01 [12:0 -3 -3 0 -1 -0] LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /deft L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.59 Vert(LL) 0.01 7 -8 >999 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.29 Vert(TL) -0.02 1 >676 180 BCLL 0.0 Rep Stress Incr NO WB 0.06 Horz(TL) 0.00 6 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Matrix) Weight: 31 lb LUM13ER TOP CHORD 2 X 4 SPF No.2 BOT CHORD 2 X 4 SPF No.2 WEBS 2 X 4 SPF Stud /Std OTHERS 2 X 4 SPF Stud /Std BRACING TOP CHORD Sheathed or 6 -0 -0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. REACTIONS (lb /size) 8= 482/0 -5 -8, 6= 482/0 -5 -8 Max Horz 8= 60(load case 6) Max Uplift8=- 65(load case 7), 6=- 65(load case 8) Max Grav8= 615(load case 2), 6= 615(load case 3) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 1 -2 =0/90, 2 -3 =- 376/42, 3 -4 =- 376/42, 4 -5 =0/90, 2 -8 =- 567/88, 4 -6 =- 567/89 BOT CHORD 7 -8= 0/205, 6 -7 =0/205 WEBS 3 -7 =0/114 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Gable End Detail' 3) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 7) Gable studs spaced at 2 -0 -0 oc. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 65 lb uplift at joint 8 and 65 lb uplift at joint 6. LOAD CASE(S) Standard Jx4 11 3x4 11 Job Truss Truss Type Qty Ply 10 Q41430 F1 ROOF TRUSS 2 1 DEFL in (loc) I /deft L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 Job Reference (optional vv, 1 v _ i v i , wanv , ano, w vw ' a.cvv a QcN I-J cvw Ivu I en nwUSUleS, Ir1G, vvea reD 11 1b:Zb:41 ;M4 Page 1 - 1 -0 -p 6 -7 -10 12 -11 -12 17 -2 -8 21 -5 -4 27 -9 -6 34 -5 -0 3p -5 1 -0 -0 6 -7 -10 6 -4 -2 4 -2 -12 4 -2 -12 6 -4 -2 6 -7 -10 1 -0 -0 4x4 = Scale: 3/16 " =1' 1 0 1¢ 6 -7 -10 1 12 -11 -12 1 17 -2 -8 I 21 -5 -4 27 -9 -6 1 34 -5 -0 6 -7 -10 6 -4 -2 4 -2 -12 4 -2 -12 6 -4 -2 6 -7 -10 Plate Offsets (X,Y): [8:0- 3- 0,0 -0- 41,[12:0 -2 -0 0 -1 -01 [15:0-4-0,0-3 -01 LOADING (psf) SPACING 1 -0 -8 CSI DEFL in (loc) I /deft L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.63 Vert(LL) -0.03 12 -13 >999 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.22 Vert(TL) -0.0512-13 >999 180 BCLL 0.0 Rep Stress Incr YES WS 0.55 Horz(TL) 0.00 12 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Simplified) Weight: 191 lb LUMBER BRACING TOP CHORD 2 X 4 SPF No.2 TOP CHORD Sheathed or 6 -0 -0 oc purlins, except end verticals. BOT CHORD 2 X 4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 6 -0 -0 oc bracing. WEBS 2 X 4 SPF Stud /Std WEBS 1 Row at midpt 5-16,6-15, 7 -14 REACTIONS (lb /size) 18=383/0-5-8,16=579/0-5-8,14=579/0-5-8,12=383/0-5-8 Max Horz 18= 148(load case 6) Max Uplift18=- 29(load case 7), 16=- 62(load case 7), 14=- 52(load case 8), 12=- 39(load case 8) Max Grav18= 577(load case 2), 16=741 (load case 2), 14=741 (load case 3), 12= 577(load case 3) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 1 -2 =0/24, 2 -3 =- 368/14, 3 -4 =- 25/57, 4 -5 =- 25/57, 5 -6 =- 30171, 6 -7 =- 30/61, 7 -8 =0/33, 8 -9 =0/33, 9 -10 =- 368/9, 10 -11 =0/24, 2 -18 =- 550/46, 10 -12 =- 550/55 BOT CHORD 17 -18 =- 148/148, 16 -17 =- 80/307, 15- 16=- 39/109, 14 -15 =- 28/100, 13- 14= 0/307, 12- 13 = -0/0 WEBS 3 -17= 0/110, 3 -16 =- 401/72, 5 -16 =- 445/43, 5 -15= 0/120, 6 -15 =- 156/0, 7 -15 =- 6/120, 7 -14 =- 445/34, 9 -14 =- 401/71, 9- 13= 0/110, 2-17=0/309,10-13=0/309 NOTES 1) Wind: ASCE 7.98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 Ib uplift at joint 18, 62 lb uplift at joint 16, 52 lb uplift at joint 14 and 39 lb uplift at joint 12. LOAD CASE(S) Standard � v 10 15 14 13 12 1.5x4 II 4x4 = 3x4 = 5x8 = 3x4 = 4x4 — 1.5x4 11 STOCK C;OMFONEN I S-IF, Idaho Falls, iD 83403, SAGE 5.20U s Sep 1b "LUU3 MiTek Industries, Inc. Wed Feb 11 15:25:42 2004 Page 1 1 0 p 17 -2 -8 34 -5 -0 3,5 -5, 1 -0 -0 17 -2 -8 17 -2 -8 1 -0 -0 4x4 - Scale: 3116 " =1' 12 3 l� 34 -5 -0 34 -5 -0 Plate Offsets (X,Y): [7:0- 2- 8,0 -0 -4], [13:0- 3- 3,0 -1 -0], [14:0- 3- 3,0 -1 -0], [15:0- 3- 3,0 -1 -0], [17:0- 2- 8,0 -0 -4], [18:0- 3- 3,0 -1 -0], [19:0- 3- 3,0 -1 -0], [20:0- 3- 3,0 -1 -0], [21:0- 3- 3,0 -1 -0], [22:0- 3- 3,0 -04], [24:0- 2- 0,0 -0 -4], [25:0- 2- 0,0 -1 -0], [26:0- 2- 0,0 -1 -0], [27:0- 2- 0,0 -1 -0], [28:0- 2- 0,0 -1 -0], [29:0- 2- 0,0 -1 -0], [30:0- 2- 0,0 -1 -0], [31:0- 2- 0,0 -1 -0], [32:0-2-0 [33:0-2-8,0-3-0) LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /dell Ud PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.49 Vert(LL) n/a - n/a 999 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.20 Vert(TL) -0.02 23 >764 180 BCLL 0.0 Rep Stress Incr NO WB 0.27 Horz(TL) 0.01 24 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Matrix) Weight: 212 lb LUMBER TOP CHORD 2 X 4 SPF No.2 BOT CHORD 2 X 4 SPF No.2 WEBS 2 X 4 SPF Stud /Std OTHERS 2 X 4 SPF Stud /Std BRACING Job Q41430 Truss F1G Truss Type ROOFTRUSS Qty 2 Ply 1 10 Job Reference (optional STOCK C;OMFONEN I S-IF, Idaho Falls, iD 83403, SAGE 5.20U s Sep 1b "LUU3 MiTek Industries, Inc. Wed Feb 11 15:25:42 2004 Page 1 1 0 p 17 -2 -8 34 -5 -0 3,5 -5, 1 -0 -0 17 -2 -8 17 -2 -8 1 -0 -0 4x4 - Scale: 3116 " =1' 12 3 l� 34 -5 -0 34 -5 -0 Plate Offsets (X,Y): [7:0- 2- 8,0 -0 -4], [13:0- 3- 3,0 -1 -0], [14:0- 3- 3,0 -1 -0], [15:0- 3- 3,0 -1 -0], [17:0- 2- 8,0 -0 -4], [18:0- 3- 3,0 -1 -0], [19:0- 3- 3,0 -1 -0], [20:0- 3- 3,0 -1 -0], [21:0- 3- 3,0 -1 -0], [22:0- 3- 3,0 -04], [24:0- 2- 0,0 -0 -4], [25:0- 2- 0,0 -1 -0], [26:0- 2- 0,0 -1 -0], [27:0- 2- 0,0 -1 -0], [28:0- 2- 0,0 -1 -0], [29:0- 2- 0,0 -1 -0], [30:0- 2- 0,0 -1 -0], [31:0- 2- 0,0 -1 -0], [32:0-2-0 [33:0-2-8,0-3-0) LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /dell Ud PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.49 Vert(LL) n/a - n/a 999 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.20 Vert(TL) -0.02 23 >764 180 BCLL 0.0 Rep Stress Incr NO WB 0.27 Horz(TL) 0.01 24 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Matrix) Weight: 212 lb LUMBER TOP CHORD 2 X 4 SPF No.2 BOT CHORD 2 X 4 SPF No.2 WEBS 2 X 4 SPF Stud /Std OTHERS 2 X 4 SPF Stud /Std BRACING TOP CHORD Sheathed or 6 -0 -0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6 -0 -0 oc bracing. WEBS 1 Row at midpt 12 -33, 11 -34, 10 -35, 9 -36, 13 -32, 14 -31, 15 -30 REACTIONS (lb /size) 42= 209/34 -5 -0, 24= 209/34 -5 -0, 33= 200/34 -5 -0, 34= 205/34 -5 -0, 35= 204/34 -5 -0, 36= 204/34 -5 -0, 37= 204/34 -5 -0, 38= 205/34 -5 -0, 39= 201/34 -5 -0, 40= 218/34 -5 -0, 41= 97/34 -5 -0, 32= 205/34 -5 -0, 31= 204/34 -5 -0, 30= 204/34 -5 -0, 29= 204/34.5 -0, 28= 205/34 -5 -0, 27= 201/34 -5 -0, 26= 218/34 -5 -0, 25= 97/34 -5 -0 Max Horz42= 284(load case 6) Max Uplift42=- 214(load case 5), 24=- 123(load case 6), 34=- 27(load case 6), 35=- 52(load case 7), 36=- 44(load case 7) 37=- 46(load case 7), 38=- 44(load case 7), 39=- 49(load case 7), 40=- 32(load case 7), 41=- 222(load case 6) 32=- 23(load case 8), 31=- 53(load case 8), 30=- 44(load case 8), 29=- 46(load case 8), 28=- 45(load case 8), 27=- 48(load case 8), 26=- 35(load case 8), 25=- 166(load case 5) Max Grav42= 317(Ioad case 2), 24= 317(load case 3), 33= 216(load case 8), 34= 308(load case 2), 35= 297(load case 2) 36= 297(load case 2), 37= 297(load case 2), 38= 298(load case 2), 39= 292(load case 2), 40= 318(load case 2), 41= 165(load case 5), 32= 308(load case 3), 31= 297(load case 3), 30= 297(load case 3), 29= 297(load case 3), 28= 298(load case 3), 27= 292(load case 3), 26= 318(load case 3), 25= 136(load case 3) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 2-42=-285/156,1-2=0/90, 2 -3 =- 289/200, 3 -4 =- 213/165, 4 -5 =- 179/166, 5 -6 =- 140/164, 6 -7 =- 101/157, 7 -8 =- 92/162, 8- 9=- 76/160, 9 -10 =- 76/183, 10 -11 =- 76/216, 11 -12 =- 82/233, 12- 13=- 82/226, 13-14=-76/190,14-15=-76/146, 15 -16 =- 76/117, 16 -17 =- 20/90, 17 -18 =- 76/85, 18 -19 =- 75/92, 19 -20 =- 107/94, 20 -21 =- 143/94, 21- 22=- 205/115, 22 -23 =0/90, 22 -24 =- 285/93 BOT CHORD 41 -42 =- 62/163, 40 -41 =- 62/163, 39 -40 =- 62/163, 38- 39=- 62/163, 37 -38 =- 62/163, 36 -37 =- 62/163, 35 -36 =- 62/163, 34 -35 =- 62/163, 33- 34=- 62/163, 32- 33=- 62/163, 31 -32 =- 62/163, 30- 31=- 62/163, 29- 30=- 62/163, 28-29 =- 62/163, 27 -28 =- 62/163, 26 -27 =- 62/163, 25 -26 =- 62/163, 24 -25 =- 62/163 WEBS 12-33=-197/0,11-34=-276/46, 10- 35=- 265/71, 9-36 =- 265/63, 8 -37 =- 265/65, 6 -38 =- 266/64, 5 -39 =- 262/65, 4-40 =- 281/62, 3-41 =- 139/127, 13 -32 =- 276/42, 14 -31 =- 265/73, 15 -30 =- 265/63, 16 -29 =- 265/65, 18 -28 =- 266/64, 19 -27 =- 262/65, 20 -26 =- 281/64, 21 -25 =- 139/101 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Gable End Detail" 6�r�t�rlrJecf`b�eg$; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 41 4i 4u ju 3b 31 3b 35 34 33 32 31 30 29 28 27 26 25 24 3x4 II 5x5 = 3x4 11 Job Truss Truss Type Qty Ply 10 Q41430 F1G ROOF TRUSS 2 1 Job Reference (optional S I UGK GUMNVNtN I Z5-IF, Ioano tans, IU 664W, JAUt: o.zuu s sep 1b zuus MI I eK Inaustnes, Inc. wed Feb 11 15:25:42 2004 Page 2 NOTES 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 7) All plates are 1.5x4 M1120 unless otherwise indicated. 8) Gable requires continuous bottom chord bearing. 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2 -0 -0 oc. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 214 lb uplift at joint 42, 123 lb uplift at joint 24, 27 lb uplift at joint 34, 52 lb uplift at joint 35, 44 lb uplift at joint 36, 46 lb uplift at joint 37, 44 lb uplift at joint 38, 49 lb uplift at joint 39, 32 lb uplift at joint 40, 222 lb uplift at joint 41, 23 lb uplift at joint 32, 53 lb uplift at joint 31, 44 lb uplift at joint 30, 46 lb uplift at joint 29, 45 lb uplift at joint 28, 48 lb uplift at joint 27, 35 lb uplift at joint 26 and 166 lb uplift at joint 25. LOAD CASE(S) Standard Job Truss Truss Type Qty Ply 10 Q41430 F2 ROOFTRUSS 2 4 -2 -12 4 -2 -12 4 -2 -12 4 -2 -12 4 -6 -4 Plate Offsets (X Y): [1:0-5-9.0-0-81,[13:0-2-12 >999 240 Job Reference (optional STOCK OCK COMPONENTS-IF, Idaho Fans, W 83403, SAGE 5.2UU s Sep 15 2003 MiTek Industries, Inc. Wed Feb 11 15:25:43 2004 Page 1 4 -6 -4 8 -9 -0 12 -11 -12 1 17 -2 -8 21 -5 -4 25 -8 -0 29 -10 -12 34 -5 -0 4 -6 -4 4 -2 -12 4 -2 -12 4 -2 -12 4 -2 -12 4 -2 -12 4 -2 -12 4 -6 -4 04 = Scale = 1:63.1 I� 4 -6 -4 8 -9 -0 12 -11 -12 17 -2 -8 21 -5 -4 25 -8 -0 29 -10 -12 34 -5 -0 4 -6 -4 4 -2 -12 4 -2 -12 4 -2 -12 4 -2 -12 4 -2 -12 4 -2 -12 4 -6 -4 Plate Offsets (X Y): [1:0-5-9.0-0-81,[13:0-2-12 >999 240 f14:0 -5 -0 0 -0-4] [15 -3 -8 0 -5 - [16:0 -3 -4 Edge] [18:0-3-4,E a 19: 0- 3- 8,0 -5 -0 LOADING (psf) SPACING 1 -0 -8 CSI DEFL in floc) I /defl L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.42 Vert(LL) -0.10 14 -15 >999 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.69 Vert(TL) -0.14 14 -15 >999 180 M1120H 148/108 BCLL 0.0 Rep Stress Incr NO WB 0.85 Horz(TL) 0.02 13 We n/a BCDL 8.0 Code IRC2000/ANS195 (Simplified) Weight: 476 lb LUMBER BRACING TOP CHORD 2 X 4 SPF No.2 TOP CHORD Sheathed or 5 -9 -1 oc purlins. BOT CHORD 2 X 6 DF 240OF 2.0E BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing, Except: WEBS 2 X 4 SPF Stud /Std "Except` 6 -0 -0 oc bracing: 17- 18,16 -17. W1 2 X 4 SPF No.2, W3 2 X 4 SPF No.2, W11 2 X 4 SPF No.2 WEBS 1 Row at midpt 4 -18, 6 -18, 8 -16, 10 -16 W1 3 2 X 4 SPF No.2 SLIDER Left 2 X 6 DF No.2 2 -8 -13, Right 2 X 6 DF No.2 2 -8 -13 REACTIONS (lb /size) 1=4906/0-5-8,18=11622/0-5-14 (input: 0-5-8),16=11622/0-5-14 (input: 0-5-8),13=4906/0-5-8 Max Horz 1= 158(load case 6) Max Uplift1=- 510(load case 7), 18=- 1216(load case 7), 16=- 1210(load case 8), 13=- 516(load case 8) Max Grav 1= 5073(load case 2), 18= 11766(load case 2), 16= 11766(load case 3), 13= 5073(load case 3) FORCES 0b) - Maximum Compression /Maximum Tension TOP CHORD 1 -2 =- 4556/454, 2 -3 =- 4556/454, 3 -4 =- 1250/152, 4 -5 =- 238/2272, 5 -6 =- 238/2272, 6 -7 =- 84/873, 7 -8 =- 66/873, 8 -9 =- 215/2272, 9 -10 =- 215/2272, 10 -11 =- 1250/150, 11-12=-4556/460,12-13=4556/460 BOT CHORD 1 -20 =- 447/3565, 19-20=-447/3565,18-19=-1 72 / 1 040,15 -16 =- 83/1040, 14 -15 =- 331/3565, 13 -14 =- 331/3565, 17 -18 =- 1890/307, 16 -17 =- 1890/276 WEBS 3 -20 =- 400/4006, 3 -19 =- 3320/372, 4 -19 =- 629/6028, 4 -18 =- 5259/582, 6 -18 =- 3500/342, 6 -17 =- 28512800, 7- 17=- 1143/85, 8 -17 =- 296/2800, 8 -16 =- 3500/345, 10 -16 =- 5259/582, 1 0-15=-628/6028,11-15=-3320/372, 11 -14 =- 400/4006 NOTES 1) 2 -ply truss to be connected together with 10d Common(.148 "x3 ") Nails as follows: Top chords connected as follows: 2 X 4 - 1 row at 0 -9 -0 oc. Bottom chords connected as follows: 2 X 6 - 2 rows at 0 -7 -0 oc. Webs connected as follows: 2 X 4 - 1 row at 0 -9 -0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated, 3) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 4) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 5) This truss has been designed for a 10.O.psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 6) All plates are M1120 plates unless otherwise indicated. 7) WARNING: Required bearing size at joint(s) 18, 16 greater than input bearing size. 8) Bearing at joint(s) 18, 16 considers parallel to grain value using ANSI/TPI 1 -1995 angle to grain formula. Building designer should verify capacity of bearing surface. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 510 lb uplift at joint 1, 1216 lb uplift at ColRlflfl8g gds pplift at joint 16 and 516 lb uplift at joint 13. 4x8 II 20 18 18 17 16 15 14 ��- 4x8 II 3x10 II 10x10 = 10x10 M1120H= 10x10 = 10x10 M1120H= 10x10 = 3x10 II Job Truss Truss Type Qty Ply 10 Q41430 F2 ROOF TRUSS 2 Job Reference (optional o i OCK COMPONEN i S -ir, ioano Fans, IU 63403, SAGE 5.200 s Sep 1 b zuu3 MI I eK Industries, Inc. Wed Feb 11 15:25:43 2004 Page 2 NOTES 10) Girder carries tie -in span(s): 37 -1 -0 from 0 -0 -0 to 34 -5 -0 LOAD CASE(S) Standard 1) Snow: Lumber Increase =1.15, Plate Increase =1.15 Uniform Loads (plf) Vert: 1- 7 = -45, 7- 13 = -45, 1- 16=- 916(F= -907), 13- 16=- 916(F = -907) Job Truss Truss Type Qty Ply 10 Q41430 H F -A1 FINK 2 1 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 SC 0.08 Vert(TL) n/a - n/a 999 Job Reference (optional J I vur\ livrvirvrvCry I o-Ir, warty rdlls, IU oa o,-%uC 0.wu s aep - 10 Zuva Ml r eK Industnes, Inc. Wed Feb 11 15:25:44 2004 Page 1 10 -6 -8 12 -2 -$ 29 -0 -0 10 -6 -8 1 -8 -0 16 -9 -8 4x4 = scale: 3116"=1' Jxa i 5x5 = 29-0-0 3x4 = Plate Offsets (X,Y): [25:0- 2- 8,0 -3 -01 LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /defl L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.12 Vert(LL) n/a n/a 999 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 SC 0.08 Vert(TL) n/a - n/a 999 BCLL 0.0 Rep Stress Incr YES WB 0.31 Horz(TL) 0.00 18 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Matrix) Weight: 231 lb LUMBER TOP CHORD 2 X 4 SPF No.2 BOT CHORD 2 X 4 SPF No.2 WEBS 2 X 4 SPF Stud /Std OTHERS 2 X 4 SPF Stud /Std BRACING TOP CHORD Sheathed or 6 -0 -0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. WEBS 1 Row at midpt 17 -18, 6 -27, 5 -28, 8 -26, 9 -25, 10 -24, 11 -23, 12 -22, 13 -21, 14 -20, 15 -19, 16 -18 REACTIONS (lb /size) 1= 94/29 -0 -0, 18= 117/29 -0 -0, 27= 198/29 -0 -0, 28= 204/29 -0 -0, 29= 207/29 -0 -0, 30= 191/29 -0 -0, 31= 250/29 -0 -0 26= 209/29 -0 -0, 25= 202/29 -0 -0, 24= 205/29 -0 -0, 23= 204/29 -0 -0, 22= 204/29 -0 -0, 21= 204/29 -0 -0, 20= 202/29 -0 -0, 19= 220/29 -0 -0 Max Horz 1= 322(load case 7) Max Upliftl=- 72(load case 5), 18=- 23(load case 6), 27=-21 (load case 6), 28=- 100(load case 7), 29=- 107(load case 7), 30=- 96(load case 7), 31=- 126(load case 7), 26=- 42(load case 8), 25=- 34(load case 6), 24=- 29(load case 6), 23=- 30(load case 6), 22=- 30(load case 6), 21=- 29(load case 6), 20=-31 (load case 6), 19=- 27(load case 6) Max Grav 1 =339(load case 7), 18= 171(load case 3), 27= 198(load case 1), 28= 308(load case 2), 29=301 (load case 2), 30= 278(load case 2), 31= 364(load case 2), 26= 316(load case 3), 25= 294(load case 3), 24= 298(load case 3) 23= 297(load case 3), 22= 297(load case 3), 21= 297(load case 3), 20= 295(load case 3), 19=321 (load case 3) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 1 -2 =- 450/127, 2 -3 =- 331/114, 3 -4 =- 237/104, 4 -5 =- 148/101, 5 -6 =- 111/92, 6 -7 =- 80/87, 7- 8 = -2/1, 8- 9 = -2/1, 9- 10 = -3/1, 10- 11 = -3/1, 11- 12 = -3/1, 12- 13 = -3/1, 13- 14 = -3/1, 14- 15 = -3/1, 15- 16 = -3/1, 16- 17 = -1/0, 17- 18 = -25/5 BOT CHORD 1-31=-1/2,30-31=-1/2, 29- 30 = -1/2, 28- 29 = -1/2, 27-28=-1/2,26-27=-1/2,25-26=-1/2, 24- 25 = -1/3, 23- 24 = -1/3, 22- 23 = -1/3, 21- 22 = -1/3, 20- 21 = -1/3, 19- 20 = -1/3, 18- 19 = -1/3 WEBS 6-27=-166/40,5-28=-277/120, 4 -29 =- 266/125, 3 -30 =- 257/119, 2 -31 =- 298/134, 8 -26 =- 284/61, 9 -25 =- 262/53, 10-24=-266/49,11-23=-265/49, 12 -22 =- 265/49, 13-21=-265/49,14-20=-264/49,15-19=-287/51, 16 -18 =- 129/30 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Gable End Detail' 3) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 4) Unbalanced snow loads have been considered for this design. 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 7) All plates are 1.5x4 M1120 unless otherwise indicated. 8) Gable requires continuous bottom chord bearing. 9) Gable studs spaced at 2 -0 -0 oc. Continued on page 2 Job Truss Truss Type Qty Ply 1 0 Q41430 HF -At FINK 2 1 Job Reference (optional ST OCK COMPO EN i S-IF, Icano Fans, IU 83403, SALoE b.ZOu s Sep 1 b :euu3 MI I eK Industries, Inc. Wed Feb 11 15:25:44 2004 Page 2 NOTES 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint 1, 23 lb uplift at joint 18, 21 lb uplift at joint 27, 100 lb uplift at joint 28, 107 lb uplift at joint 29, 96 lb uplift at joint 30, 126 lb uplift at joint 31, 42 lb uplift at joint 26, 34 lb uplift at joint 25, 29 lb uplift at joint 24, 30 lb uplift at joint 23, 30 lb uplift at joint 22, 29 lb uplift at joint 21, 31 lb uplift at joint 20 and 27 lb uplift at joint 19. LOAD CASE(S) Standard Job Truss Truss Type Qty Ply 10 Q41430 A ROOF TRUSS 4 1 CSI DEFL in (loc) I /deft L/d PLATES GRIP Job Reference (optional STOCK COMPONENTS -IF, Idaho Falls, ID 83403, SAGE 5.200 s Sep 15 2003 MiTek Industries, Inc. Wed Feb 11 15:25:44 2004 Page 1 -1 -0 -0 1 1 -11 -11 1 -0 -0 1 -11 -11 Scale= 1:10.8 LUMBER TOP CHORD 2 X 4 SPF No.2 BOT CHORD 2 X 4 SPF No.2 WEBS 2 X 4 SPF Stud /Std BRACING TOP CHORD Sheathed or 1 -11 -11 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. REACTIONS (lb /size) 5= 233/0 -5 -8, 3 =47 /Mechanical, 4 =8 /Mechanical Max Horz 5= 72(load case 5) Max Uplift5=- 34(load case 5), 3=- 25(load case 5), 4=- 3(load case 5) Max Grav5= 233(load case 1), 3= 47(load case 1), 4= 30(load case 2) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 2-5=-212/54,1-2=0/59, 2- 3= -59/18 BOT CHORD 4 -5 =0 /0 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 3) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 5, 25 lb uplift at joint 3 and 3 lb uplift at joint 4. LOAD' CASE(S) Standard 1.5x411 1 -11 -11 1 -11 -11 LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /deft L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.19 Vert(LL) 0.00 5 >999 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.05 Vert(TL) -0.01 1 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.00 Horz(TL) -0.00 3 n/a n/a BCDL 8.0 Code IRC2000 /ANS195 (Matrix) Weight: 7lb LUMBER TOP CHORD 2 X 4 SPF No.2 BOT CHORD 2 X 4 SPF No.2 WEBS 2 X 4 SPF Stud /Std BRACING TOP CHORD Sheathed or 1 -11 -11 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. REACTIONS (lb /size) 5= 233/0 -5 -8, 3 =47 /Mechanical, 4 =8 /Mechanical Max Horz 5= 72(load case 5) Max Uplift5=- 34(load case 5), 3=- 25(load case 5), 4=- 3(load case 5) Max Grav5= 233(load case 1), 3= 47(load case 1), 4= 30(load case 2) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 2-5=-212/54,1-2=0/59, 2- 3= -59/18 BOT CHORD 4 -5 =0 /0 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 3) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 5, 25 lb uplift at joint 3 and 3 lb uplift at joint 4. LOAD' CASE(S) Standard 1.5x411 1 -11 -11 Job Truss Truss Type Qty Ply 10 Q41430 J2 ROOF TRUSS 4 1 CSI DEFL in (loc) I /deft Ud PLATES GRIP Job Reference (optional S I UUK (_;UMF'UNtN I J -IF, ioano t-aus, IU o,54U0, .)Alot O.ZUU s >ep l O ZUUd MI I eK mausines, Inc. vvea Yea 11 1b:Zb:4b 21JU4 Page 1 -1 -0 -0 3 -11 -11 1 -0 -0 3 -11 -11 Scale: 3/4 " =1 LUMBER TOP CHORD 2 X 4 SPF No.2 BOT CHORD 2 X 4 SPF No.2 WEBS 2 X 4 SPF Stud /Std BRACING TOP CHORD Sheathed or 3 -11 -11 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. REACTIONS (lb /size) 5= 309/0 -5 -8, 3= 131 /Mechanical, 4 =36 /Mechanical Max Horz 5=1 07(load case 5) Max Uplift5=- 27(load case 5), 3=- 54(load case 5) Max Grav5= 309(load case 1), 3=131 (load case 1), 4= 64(load case 2) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 2-5=-284/60,1-2=0/59,2-3=-99/56 SOT CHORD 4 -5 =0 /0 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 3) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 5 and 54 lb uplift at joint 3. LOAD CASE(S) Standard 2i4 11 3 -11 -11 3 -11 -11 LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /deft Ud PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.28 Vert(LL) 0.01 4 -5 >999 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.12 Vert(TL) -0.02 4 -5 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.00 Horz(TL) -0.01 3 n/a n/a BCDL 8.0 Code IRC2000 /ANSI95 (Matrix) Weight: 12 lb LUMBER TOP CHORD 2 X 4 SPF No.2 BOT CHORD 2 X 4 SPF No.2 WEBS 2 X 4 SPF Stud /Std BRACING TOP CHORD Sheathed or 3 -11 -11 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. REACTIONS (lb /size) 5= 309/0 -5 -8, 3= 131 /Mechanical, 4 =36 /Mechanical Max Horz 5=1 07(load case 5) Max Uplift5=- 27(load case 5), 3=- 54(load case 5) Max Grav5= 309(load case 1), 3=131 (load case 1), 4= 64(load case 2) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 2-5=-284/60,1-2=0/59,2-3=-99/56 SOT CHORD 4 -5 =0 /0 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 3) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 5 and 54 lb uplift at joint 3. LOAD CASE(S) Standard 2i4 11 3 -11 -11 Job Truss Truss Type Qty Ply 1 0 Q41430 J3 ROOF TRUSS 4 1 Plates Increase 1.15 TC 0.59 Vert(LL) -0.05 4 -5 Job Reference (optional o 1v�rx l VIrV11"IN io-1r, ivaiiu rang, iv ootiw, omwc O.LVV b OUP i LVV3 wll IeK IrWUWleS, Inc. vveo t 11 1b:2bAb 2004 Page 1 -1 -0 -0 1 5 -11 -11 1 -0 -0 5 -11 -11 3x4 II of Scale = 1:22.0 LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /defl L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.59 Vert(LL) -0.05 4 -5 >999 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.28 Vert(TL) 0.11 1 >140 180 BCLL 0.0 Rep Stress Incr YES WB 0.00 Horz(TL) 0.06 3 n/a n/a BCDL 8.0 Code IRC2000 /ANSI95 (Matrix) Weight: 17 lb LUMBER TOP CHORD 2 X 4 SPF No.2 BOT CHORD 2 X 4 SPF No.2 WEBS 2 X 4 SPF Stud /Std BRACING TOP CHORD Sheathed or 5 -11 -11 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. REACTIONS (lb /size) 5= 405/0 -5 -8, 3= 212 /Mechanical, 4 =63 /Mechanical Max Horz 5= 146(load case 5) Max Uplift5=- 23(load case 5), 3=- 83(load case 5) Max Grav5= 405(load case 1), 3= 212(load case 1), 4= 98(load case 2) FORCES (lb) - Maximum Compression /Maximum Tension TOP CHORD 2-5=-375/70,1-2=0159, 2 -3 =- 149/91 BOT CHORD 4 -5 =0/0 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 3) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 5 and 83 lb uplift at joint 3. LOAD CASE(S) Standard Job Truss Truss Type Qty Ply 10 Q41430 M1 ROOFTRUSS 30 1 8-0-0 Job Reference (optional STOCK OCK COMPONENTS-IF, Idaho Falls, IU 83403, SAGE 1 1 1 1 5.200 s Sep 15 2003 MiTek Industries, Inc. Wed Feb 11 15:25:46 2004 Page 1 8-0 -0 4x4 II Scale = 1:29.8 LUMBER TOP CHORD 2 X 4 SPF No.2 BOT CHORD 2 X 4 SPF No.2 WEBS 2 X 4 SPF Stud /Std BRACING TOP CHORD Sheathed or 8 -0 -0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. REACTIONS (lb /size) 6= 499/0 -5 -8, 4 =170 /Mechanical, 5= 223 /Mechanical Max Horz 6= 186(load case 5) Max Uplift6=- 14(load case 5), 4=- 64(load case 5), 5=- 42(load case 5) FORCES (Ib) - Maximum Compression /Maximum Tension TOP CHORD 2-6=-267/130,1-2=0/29, 2- 3= -0/88, 34=4612 BOT CHORD 5 -6 =- 96/195 WEBS 4- 5 =0/0, 3 -6 =- 259/0, 3 -5 =- 253/124 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 3) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 6, 64 lb uplift at joint 4 and 42 lb uplift at joint 5. 7) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in LOAD CASE(S) Standard 3x4 = 8-0-0 8-0-0 LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loc) I /defl L/d PLATES GRIP TCLL 35.0 Plates Increase 1.15 TC 0.29 Vert(LL) -0.21 5 -6 >437 240 M1120 197/144 TCDL 8.0 Lumber Increase 1.15 BC 0.56 Vert(TL) -0.38 5 -6 >243 180 BCLL 0.0 Rep Stress Incr YES WB 0.14 Horz(TL) 0.00 5 n/a n/a BCDL 8.0 Code IRC2000 /ANSI95 (Simplified) Weight: 40 lb LUMBER TOP CHORD 2 X 4 SPF No.2 BOT CHORD 2 X 4 SPF No.2 WEBS 2 X 4 SPF Stud /Std BRACING TOP CHORD Sheathed or 8 -0 -0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10 -0 -0 oc bracing. REACTIONS (lb /size) 6= 499/0 -5 -8, 4 =170 /Mechanical, 5= 223 /Mechanical Max Horz 6= 186(load case 5) Max Uplift6=- 14(load case 5), 4=- 64(load case 5), 5=- 42(load case 5) FORCES (Ib) - Maximum Compression /Maximum Tension TOP CHORD 2-6=-267/130,1-2=0/29, 2- 3= -0/88, 34=4612 BOT CHORD 5 -6 =- 96/195 WEBS 4- 5 =0/0, 3 -6 =- 259/0, 3 -5 =- 253/124 NOTES 1) Wind: ASCE 7 -98; 90mph; h =25ft; TCDL= 4.8psf; BCDL= 4.8psf; Category II; Exp C; enclosed; MWFRS interior zone; Lumber DOL =1.33 plate grip DOL =1.33. 2) TCLL: ASCE 7 -98; Pf =35.0 psf (roof snow); Exp C; Fully Exp. 3) This truss has been designed for 1.00 times flat roof load of 35.0 psf on overhangs non - concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 6, 64 lb uplift at joint 4 and 42 lb uplift at joint 5. 7) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in LOAD CASE(S) Standard