Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
CO & DOCS - 07-00634 - Just Sports - Addition
F] 0 -yo"¢gXeUkGr7 _ CITY of Certificate Occupancy ° REX City of Rexburg `W America's Family Community p De artment of Community Development =N.o 19 E. Main St. / Rexburg, ID. 83440 Phone (208) 359 -3020 / Fax (208) 359 -3024 Building Permit No: Applicable Edition of Code: Site Address: Use and Occupancy: Type of Construction: Design Occupant Load: Sprinkler System Required: Name and Address of Owner: Contractor: Special Conditions: Occupancy: 0700634 International Building Code 2003 i 1154 Stocks Ave Just Sports Addition Type V, non -rated Storage No Erikson Glen 1302 Fairview Ave Rexburg, ID 83440 Silvertree Builders Inc Storage - low hazard This Certificate, issued pursuant to the requirements of Section 109 of the international Building Code, certifies that, at the time time of issuance, this building or that portion of the building that vies inspected on the date listed ties found to be in compliance vtith the requirements of the code for the group and division of occupancy and the use for Vihich the proposed occupancy vies classified. Date C.O. Issued: May 12, 2008,(02 WPM) C.O Issued by: Building Official There shall be no further change in the existing occupancy classification of the building nor shall any structural changes, modifications or additions be made to the building or any portion thereof until the Building Official has reviewed and approved said future changes. Plumbing Inspec Electrical Inspector: F�? I 61 I .84 1i 1 i CITY OF AEXB URG BUILDING PERMIT APPLICATION Pleas 07o0634 It 19 E MAIN, REXBURG, ID. 83440 If the q Just Sports Addition le 208 - 359 -3020 X326 PARCEL NUMBER T Cat w0`l L�J (We will provide this for you) SUBDIVISION: UNIT# BLOCK# LOT# Is based on the Intormatton - must be CONTACT PHONE # 356 PROPERTY ADDRESS: J I S q Avg PHONE #: Home ( Work (2os) 3 S Cell '!213 -- / 7-39 OWNER MAILING ADDRESS: r " CITY: STATE: IQ ZIP: 33`(L EMAIL FAX t APPLICANT (If other than owne (Applicant if other than owner, a statement authorizing applicant to act as agent for owner must accompany this application.) APPLICANT INFORMATION: ADDRESS 1 80V:1 TVUL CITY: STATE; @ ZIP_ EMAIL i�it)� �A/ t!art. taw. FAX — PHONE #: Home ( ) Work (Wiy) 2-3�-)G( Cell CONTRACTOR MAILING ADDRESS: � // 1- L) Ali J/ , CITY� STAT _ ZIP dia/ PHONE: Home# Work # (, Cell# S EMAIL IDAHO REGISTRATION # & EXPIRATION DA' How many buildings are located on this property ?. Did you recently purchase this property_ / Yes (If yes give owner's name) Is this a lot split? NO YES (Please bring copy of new legal descripti p�pty 0 PROPOSED USE: r2c�it cfrr cx / r, (i.e., Single Family Residence, Multi Family, Apartments, Remodel, Garage, Commerci Vl 19 W APPLICANT'S SIGNATURE, CERTIFICATION AND AUTHORI ATI N: Under penalty of perjuryhereby ertif that I have read this application and state that the infornation herein is correct and I swear that any information 'c r ne -irriq gs be re the Planning and Zoning Commission or the City Council for the City of Rexburg shall be truthful and correct. I aL c y ' h St a laws relating to the subject matter of this application and hereby authorized representatives of the City to enter upon the os s. NOTE: The building official may revoke a permit on approval issued under the provisions of the 2003 International Code in cases of any false statement or misrepresentation of fact in the application or on the plans on which the permit or approval was based. Permit void if not started within 180 days. Permit void if work stops for 180 days. 4:� L Vii! / / �t _ / e� Signature of Owner /Applicant DATE Do you prefer to be contacted by fax, email or phone? Circle One WARNING — BUILDING PERMIT MUST BE POSTED ON CONSTRUCTION SITE! Plan fees are non - refundable and are paid in full at the time of application beginning tanyar�, L 2005. City of Rexburg's Acceptance of the plan review fee does not constitute plan approval * *Building Permit Fees are due at time of application ** **Building Permits are void if your check does not clear** 2 Build g Safety Department City of Rexburg 19 E. Main Rexburg, ID 83440 janellh@rexburg.org Phone: 208.359.3020 www.rexburg.org Fax: 208.359.3024 OF REXB URC �4 �O 's � o CITY OF REXBU ____ 0&1 America's Family Community Affidavit of Legal Interest State of Idaho County of Madison Name Address kc:k u�a �__t /1 City U State Being first duly sworn upon oath, depose and say: (If Applicant is also Owner of Record, skip to B) A. That I am the record owner of the property described on the attached, and I grant my permission to: _AAa , % / -rZ (r i a,gS Name Address to submit the accompanying application pertaining to that property. B. I agree to indemnify, defend and hold Rexburg City and its employees harmless from any claim or liability resulting from any dispute as to the statements contained herin or as to the ownership of the property which is the subject of the application. Dated this day of , 20 ,r r , a Signature ° A Subscribed and sworn to before me the``dav and yea first above written. J�.•�oc A p y �s Notaiy Public of Idaho 14C ` IL ��G p ` Residing at: 0U0 .• Z %����p4TE OF � My commission expires: j z/ z! / /� Please complete the Akre Application! If the question does not apply fill in NA for non applicable NAME �u t c PROPERTY ADDRES /1 - e�lt� ,4-ie _ Permit# SUBDIVISION Dwelling Units:_ 4 Parcel Acres: . -21'1 ! SETBACKS FRONT SIDE 01 t. SIDE BACK Remodeling Your Building /Home (need Estimate $ SURFACE SQUARE FOOTAGE: (Shall include the exterior wall measurements of the building) First Floor Area /a scr Unfinished Basement area Al /Q ft Second floor /lo area / Finished basement area 4,, f� Third floor /loft area /(��,� Garage area /�t� T Shed or Barn / Carport /Deck (30" above grade)Area Water Meter Quantity: Water Meter Size: Required!!! PLUMBING Plumbing Contractor's Name: Business Name: Address Contact Phone: ( City Business Phone: Fax FIXTURE COUNT (including roughed fixtures1 Clothes Washing Machine Dishwasher Floor Drain Garbage Disposal Hot Tub /Spa Sinks (Lavatories, kitchens, bar, mop) Plumbing Estimate $ (Commercial Only) Required! Signature of Licensed Contractor The City of Re State Zip Sprinklers Tub /Showers Toilet /Urinal Water Heater Water Softener License number schedule is the same as the State Date 4 Building Safety Department � *gz CITY of City of Rexburg y REXBURG 19 E Main ionellh @rexburg.org Phone: 208.359.3020 x326 Americas Family Community Rexburg, ID 83440 www.rexburg.org Fax: 208.359.3024 NAME i ©rte PROPERTY ADDRESS 11 5'1 5 7 vc KS, 4%jE- Permit# Q� SUBDIVISION - 12-ej-�o,,rr< Required!!! MECHANICAL Mechanical Contractor's Name: - :YA 5c, "i Business Name: de 7 j j(, l /C Address 64(o & 9.J L - City ) rh State !1,4. Zip 3z/y Cell Phone: (Zcf�) :390 Business Phone: ( ) Fax: ( Z 25' Email d'1510. 1i Aelclri-Jc i1115tj,WAA Mechanical Estimate $ ( Family Only) FIXTURES & APPLIANCES COUNT (Single Family Dwelling Only) Furnace Exhaust or Vent Ducts Furnace /Air Conditioner Combo Heat Pump Air Conditioner Evaporative Cooler 2- Unit Heater Space Heater Decorative gas -fired appliance Incinerator System Boiler Pool Heater Z Fuel Gas Pipe Outlets including stubbed in or future outlets Dryer Vents Range Hood Vents Cook Stove Vents Bath Fan Vents other similar vents & ducts: JAN - 8 2008 CITY OF REXBURG Heat (Circle all that apply) Gas 'Oil Coal Fireplace Electric Hydronic Mechanical Sizing Calculations must be submitted with Plans & ADUlication Point of Delivery must be shown on Dlans. Signature o Licensed Contractor License number The City of Rexburg's permit fee schedule is the same as / — y G, Date by the State of Idaho Please complete the entit Application! If the question does not apply fill in NA for non applicable NAME PROPERTY ADDRESS t! 5 ,S/ ,ks. iA± Permit# SUBDIVISION Requiredffl MECHANICAL Mechanical Contractor's Name: Business Name: Address City State Zip Contact Phone: ( ) Business Phone: ( ) Email Fax Mechanical Estimate $ (Commercial /Multi Family Only) FIXTURES & APPLIANCES COUNT (Single Family Dwelling Only) Furnace Exhaust or Vent Ducts Furnace /Air Conditioner Combo Heat Pump Air Conditioner Evaporative Cooler Unit Heater Space Heater Decorative gas -fired appliance Incinerator System Boiler Pool Heater Fuel Gas Pipe Outlets including stubbed in or future outlets Inlet Pressure (Meter Supply) PSI Dryer Vents Range Hood Vents Cook Stove Vents Bath Fan Vents other similar vents & ducts: Heat (Circle all that apply) Gas Oil Coal Fireplace Electric Hydronic Mechanical Sizing Calculations must be submitted with Plans & Application Point of Delivery must be shown on plans. Required! Signature of Licensed Contractor License number Date The City of Kexburg'rhermit fee schedule is the same as required by the State of Idaho 5 Please complete the entif Application! If the question does not apply fill in NA for non applicable NAME y l C-t- Cdr C� c PROPERTY ADDRESS AtrPermit# SUBDIVISION Requlredffl ELECTRICAL Electrical Contractor's Name I C—I S � Business Name L ��.S�vG:ac:� J� rj'� Address ff!2 City_ State .�Z,0 Zip 3`�L 7 Cell Phone ( ) Business Phone (2e,161 .3.5& 5 Fax (?C6) 35"1- Email Electrical Estimate ( cost of wiring & labor) $ (Commercial /Multi Family Only) TYPES OF INSTALLATION-RESIDENTIAL (New Residential includes everything contained within the residential structure and attached garage at the same time) Up to 200 amp Service* 201 to 400 amp Service* Over 400 amp Service* Existing Residential (# of Branch Circuits) Temporary Construction Service, 200 amp or less, one location (for a period not to exceed 1 year) Spa, Hot Tub, Swimming Pool Electric Central Systems Heating and / or Cooling (when not part of a new residential construction permit and no additional wiring) Modular, Manufactured or Mobile Home Other Installations: Wiring not specifically covered by any of the above Cost of Wiring & Labor: $ Pumps (Domestic Water, Irrigation, Sewage) . Requested Inspections (of existing wiring) Temporary Amusement /Industry *Includes a maximum of 3 inspections. Additional inspections charged at requested inspection rate of $40 per hour. Signature of Licensed Contractor The License number fee schedule is the same as Date the State of Idaho Building Safety Department ` , th k,��,�, L IT t O 3= City of Rexburg � REXBURG 19 E Main janellh@rexburg.org Rexburg, ID 83440 www.rexburg.org Phone: 208.359.3020 x326 Fax: 208.359.3024 A,;, .r, Fnn.ih cn „t „1,,,,1:; OWNER'S NAME .� +v � � 6 11 ko)oru t t/j PROPERTY ADDRESS I S ct 4y,- Permit #07 00 634 SUBDIVISION _AX', 1A PHASE LO BLOCK Just Sports Addition Requiredffl ELECTRICAL Electrical Contractor's Name Bron Leishman Business Name Leishman Electric Address 442 South 4th East Cit Rexburg State ID Zip 83440 CellPhone(208) 390 -1433 Business Phone (208)- 356-3770 Fax (208) 359 -0918 bcleishman @msn.com Electrical Estimate ( cost of wiring & labor) $ 5- ' \, (COMMERCIAL /MULTI- FAMILY ONLY) TYPES OFINSTALLATIONI (New Residential includes everything contained within the residential structure and attached garage at the same tune) Up to 200 amp Service* 201 to 400 amp Service* Over 400 amp Service* Temporary Construction Service, 200 amp or less, one location (for a period not to exceed 1 year) Existing Residential (# of Branch Circuits) Spa, Hot Tub, Swimming Pool Electric Central Systems Heating and /or Cooling (when not part of a new resid construction pe and no additional wiring,, fry Modular, Manufactured or Mobile Home Other Installations: Wiring not specifically covered by any above Cost of Wiring & Labor. w Pumps (Domestic Water, Irrigation, Sewage) r Requested Inspections (of existing wiring) Temporary Amusement /Industry C *Includes a maximum of 3 inspec additional inspections charged at requested inspection rate of $40 per hour. Signature of Licensed Contractor License number The schedule is the same ar , — q - _ or r_ Date the State 7 Bull g Safety Department City of Rexburg 19 E. Main Rexburg, ID 83440 janellh@rexburg.org Phone: 208.359.3020 www.rexburg.org Fax: 208.359.3024 oY REXB URC F 4 �O U C CITY O F REX Ow Americas Family Community APPLICATION: "CONSTRUCTION PERMIT" CONSTRUCTION PERMIT #: PERMIT APPROVED: YES/ NO $50.00 FEE PAID: YES /NO - APPLICANT INFORMATION: APPROVED BY: Business Name: -S Office Address: -J_Lr =-D ii`t n City State Zip Office Phone Number: Contractor Performing Performing the Work: Contact Person: =T46 ,;� Cell Phone # 1 0 -533 Street Address Where Work Will Be Done: // Ave Business Name Where Work Will Be Done: -+ Dates For Work To Be Done: : To Nn�� Contact Person:(, Phone Number: (Z20 3,56, -- 3 0S 2 Cell # ( 1os ) PLEASE CHECK THE TYPE OF PERMIT(S) YOU ARE APPLYING FOR: ❑ AUTOMATIC FIRE- EXTINGUISHING SYSTEMS ❑ COMPRESSED GASES ❑ FIRE ALARM AND DETECTION SYSTEMS AND RELATED EQUIPMENT ❑ FIRE PUMPS AND RELATED EQUIPMENT ❑ FLAMMABLE AND COMMBUSTIBLE LIQUIDS ❑ HAZARDOUS MATERIALS ❑ INDUSTRIAL OVENS ❑ LP -GAS ❑ PRIVATE FIRE HYDRANTS ❑ SPRAYING OR DIPPING ❑ STANDPIPE SYSTEMS ❑ TEMPORARY MEMBRANE STRUCTURES, TENTS, AND CANOPIES Applicant's Signature Date 7 SUBCONTRACTOR LIST Excavation & Earthwork: Masonry: Floor Coverings: Plum Electrical: Special Construction (Manufacturer or Supplier) Roof T Floor /Ceiling Joists: Siding /Exterior Tri Other: 8 EXEMPTIO FROM STATE REASTRATION As of January 1, 2006, the City of Rexburg can no longer sell permits without having a copy of your State registration number or your exemption from the State registration. Please send a copy of your state registration or fill out this form showing your exemption and send it with your license renewal or your next permit application. (This list is a summarization of Idaho Code Title 54 Chapter 5205, for full definitions of these exemptions please see the State's website at www.ibol.idaho.gov /cont.htm ❑ Currently State licensed pursuant to Title 54 Idaho Code, Chapters: 3 Architects, 10 Electrical Contractors /Journeyman, 12 Engineers /Surveyors, 19 Public Works Contractors (exempt from fee only registration required), 26 Plumbing /Plumbers, 45 Public Works Construction Management Licensing Act (exempt from fee only registration required), or 50 Installation of heating, ventilation and air conditioning systems ❑ Employee or volunteer of a licensed contractor or part of an educational curriculum or nonprofit charitable activity with no wages or salary ❑ Employee of a US Government agency (State, City, County, or other municipality) ❑ Public Utility doing construction, maintenance, or development to its own business ❑ Involved with gas, oil or mineral operations ❑ Supplier doing no installation or fabricating ❑ Contracting a project or projects with a total cost less than $2000 ❑ Operation of a farm or ranch or construction of agriculture buildings exempt from Idaho Building Code ❑ Any type of water district operations ❑ Work in rural districts for fire prevention purposes ❑ Owner who performs work on own property or contracts with a registered contractor to do work as long as the property is not for resale within 12 months ❑ Owner or lessee of commercial property performing maintenance, repair, alteration or construction on that property ❑ Real estate licensee /property manager acting within Idaho Code ❑ Engaging in the logging industry ❑ Renter working on the property where they live with the property owners approval ❑ Construction of a building used for industrial chemical processing per Idaho Code ❑ Construction of a modular building (defined by Idaho Code) to be moved out of state I hereby certify that the above information is true and correct to the best of my knowledge. Signature Date Print Name E ASSOCIATES Architecture & Interior Design Phone (208) 359 -2309 Fax (208) 359 -2271 1152 Bond Avenue Suite A Rexburg, ID 83440 www.jrwa.com TO: City of Rexburg 19 E. Main St. Phone: (208) 359 -3020 Attn: Plan Review Committee PROJECT: Just Sports Addition To whom it may concern, 07 00633 & 07 00634 Just Sports Addition VO Revisions 1/17/2008 Date: Jan. 17, 2008 As per the review action comments we received from the city of Rexburg dated Jan 14, 2008, the following comments pertain to the actions required for building permit approval. BUILDING DEPARTMENT REVIEW: Electrical Energy Lighting Compliance Review: See lighting plan E1 FIRE DEPARTMEN REVIEW: Existing Hydrants: See revised Site Plan (SD 1.1) PLANNING STAFF REVIEW: Landscape, paving, and sidewalks: See revised site plan (SDI. 1) Access to parking: Drive isle is now 22' wide, see revised site plan Landscape Plan: All new landscaping will be grass /groundcover in order to accommodate snow storage. Lighting: No exterior lighting. Lot Line Adjustment: See revised site plan (SD1.1) Qualifications Certified By. N.C.A.R.B. - National Council of Architectural Registration Boards PUBLIC WORKS REVIEW: Sidewalk along front of addition: See revised site plan SD1.1 Landscape: See revised site plan (SDI. 1) Storm Drainage: We have added a swale in the landscaped area to retain water runoff from the new parking lot. See revised site plan (SD 1.1) " ICJun 29 2009 3:19PM Justs orts 0 P 12083591513 X % 4-29-2009 01:37P FROM:ERIKSON LAW OFFICE 208 - 523 -5840 TO:3591513 P.1 A la. 114 TODD R ERIKSON, P.A. Attorney & Counselor at Law Todd R. Erikson 3456 East 17 Street, Sulte290 Telephone: (208)322 -330S IDAHO FALLS, WAHO 63406 Faze (I"s23•584e May 24, 2009 Stephen P. Zollinger City of Rexburg PO Box 280 Rexburg, ID 83440 Fax 359 -3022 Re. Just Sports, 1154 Stocks Ave., RexbWrg, Idaho Dear Steve: 1 resent Sports. They have requested that 1 write to you regarding three planning and zoning issues which they would like to resolve with the City of Rexburg: 1. Garbage containment. Just Sports is willing and in the process of completing this requirement by the City. 2. Additional parking spaces. Just Sports already has 15 to 20 spaces. It has seven to eight employees. Most of the building is a warehouse, There is no need for more parking spaces as the City has required. Such a requirement is simply unnecessary. 3. Landscaping on south side. Just Sports was unable to provide the landscaping on the south side of the property because of no access to water as it is all asphalt. Instead, Just Sports provided additional landscaping on the north of the property to compensate for the inability to landscape the south side. Just Sports has attempted to comply with the requirements of the City. However, some of the requirements are either impossible or simply unnecessary. Hopefully, the above will help the City in its determination to accept the property as it is. If you have any questions or would like to discuss the matter further, please contact me. Thank you for your consideration. Sincere P.1 Todd R. Erikson TRE:vre c:client R y SA Si'1C+E.s l,' P.O. Box 396 Chowchilla, California 93610 Office (559) 665 -9200 Fax (559) 665 -0879 Toll -Free (800) 574 -9484 METALBUILDINGFOUNDATIONS.com Foundation Design Calculation Package This Design Calculations Package has been prepared using the latest applicable codes and standards and the latest developments in engineering practices. A design engineer prepared the calculations and a building specialist checked the detailing and drafting. Computer programs, verified by Salsa Steel Corp. have been used where applicable to determine structural requirements. The output of these programs have been incorporated in this package together with explanation text where necessary. Please use this calculations package in conjuction with the drawings provided. This design calculation package may be submitted along with the plans for the plan review /permit process. For any questions regarding this package please do not hesitate to contact our office. Salsa keeps records of reference on design calculations for each building /foundation designed as a part of the Salsa Total Quality System. Project Name: Just Sports Project Address: 1 154 N Stocks Ave. Rexburg, ID 83440 End Use Of Building: Shop Building Dimensions: 60 ' Width 60 ' Length 20 ' Height Building Type: Gable Responsible Party: Silvertree Builders, Inc. 1052 W 14th N Rexburg, ID 83440 Builder Information: C 1 2007 ' CIF .- I' Project Name: Just Project Control Number SHEET s 03 IIIIIIIII Ilu IIII II 111111111111111111 *- 0 93* 14 DesignSpecifications Governing Code: Seismic Design Category: Wind Pressure: Closed /Open: Exposure: Soil Profile: Snow Load: (Pg = ) Frost Depth: Soil Pressure: Concrete: Reinforcement: Concrete Masonry Units: Misc. Steel: Welds: Slab Thickness: Slab Reinforcement Type: Slab Reinforcement Size: Reinforcement Spacing: Perimeter Footer Type: Concrete Mix Portland Cement: Water: Fine Aggregate: Coarse Aggregate: Maximum Slump: 4 " Rebar #4 18 " on center each way Load Bearing 12 "x12" 5 Sack Mix 0.43 Water /Cement Ratio Well Graded 3/4 " 4 " 1. All bearing footings shall extend a minimum of 12" into native soil 2. Allowable soil bearing capacity shall be computed with 20% increase for each additional foot of depth, unless noted otherwise 3. 1/3 increase for short term loadings 4. All footings shall be centered below columns, unless noted otherwise. Project Name: J ust IBC 2003 D 90 mph Closed C Sd 50 32" 1,000 psf- Vertical 100 psf - Lateral 4,000 psi A -615 Grade 40 #4 bars and smaller Grade 60 #5 bars and larger A -185 Welded Wire Reinforcement F'm = 1,500 psi (Prism Test Record) F'y = 36 ksi E -70 Electrodes 21 kli Project Control Number SHEET IIII IN Jill 11111111 ICI *I S S * S S- 0 3 0 9 3* 14 BuildingLayout P = 8.90 " Force Each Side Of Pin 8.90 k F = 2(0.866) - 5.14 Size Hairpin As 20(4/3) = 0.1927 in. 30 9' - 9 " Use (1) #4 Rebar x 20' Long Hairpin Project Name: Just Sports Project Control Number SHEET IIIIIIIIIIIIIINIIIIIIIIIIIIINIIIIIIIIIIIIIN�II *SS- 03093* 14 BuildingLayout P = 4.50 K Force Each Side Of Pin 4.50 k F = 2(0.866) - 2.60 Size Hairpin As 20 - 0.0974 in. 30 ° 4' -9" Use (1) #4 Rebar x 10' Long Hairpin Project Name: Just Project Control Number SHEET IIIINIII III I III III lIII III lllll III llll *SS- 03093* 14 SlabCalculator 4000 1.44(4/3)(2 ") L = 0.13(1.44)(1.33)(2 ") L= Nr80(0.131)(1.44)(1.33)(2 ") 0.5000 0.1963 0.131 in 2/1.f. 6.32 Lf. 3.79 I.f. + 6.32 I.f. = 10.11 linear feet of slab will lift off before it breaks Project Name: Just Sports Project Control Number SHEET ullll III glll IIII I III II 3 * 111 5 * S S- 0 3 0 9 3* 14 Size" Footing A� � . Column Type Rigid Frame Quantity 4 eFootingOPTIMIZERTm Frame Reactions P„= 34.60 K P„= 6.80 K Max Loads From Calcs Ph= 8.90 K Bracing Reactions P,= 0.00 K P„= 7.90 K Check Footing Size 6.00 'long x Design Criteria Use Footing Yes Use Slab Yes Allowable Increase For Width No Allowable Increase For Depth Yes Use Friction Yes Is Footing Square Yes Does Not Govern Bracing Reactions Govern, Check Against Uplift 6.00 'wide x 1.00 ft. deep Allowable Soil Bearing= q = [ 1000 [ 1.2) ^ 1 -1 ]] = 1,000 p.s.f. Soil Friction= p= 1000 / (6 * 3) = 56 p.s.f. Wt of Footing = 150 (6) (6) (1) = 5,400 # Wt of Slab = (248) (50) = 12,400 # Soil Friction = [(2) * (6) + (2) * (6)] * (1 -1) * 56 = - # 17,800 > 7,900 OK Check Bearing Capacity Actual Soil Bearing= __ 34.60 g gact 961 < 1,000 OK (6) x (6) Check Reinforcement Pmin i_ong 0.0018 Pmin Horiz= 0.0018 Req. A Total A Longitudinal A 0.0018 * (72) * (12)= 1.555 < 1.963 OK Horizontal A,= 0.0018 * (72) * (12)= 1.555 < 1.963 OK Use 6' -0" long x 6' -0" wide 1' -0" ft. deep Concrete Footing, With (10) #4 bars longitudinal, along with (10) #4 horizontal bars. ...No Warnings! Project Control Number SHEET II 111 5 9 lu IIII l 11 II � 4 Project Name: Just Sports * s s- 0 3 0 9 3 1 eFootingOPTI M IZERT'" Bracing Reactions P P„= Check Footing Size Design Criteria Use Footing Yes Use Slab Yes Allowable Increase For Width No Allowable Increase For Depth Yes Use Friction Yes Is Footing Square_ No 0.00 K Does Not Govern 6.00 K Does Not Govern 7.00 'long x 2.50 'wide x 1.50 ft. deep Allowable Soil Bearing= q = [ 1000 [ 1.2) ^ 1.5 -1 ]] = 1,095 p.s.f. Soil Friction= µ = 1095 / (7 * 3) = 52 p.s.f. Wt of Footing = 150 (7) (2.5) (1.5) = 3,938 # Wt of Slab = (184) (50) = 9,200 # Soil Friction = [(2) * (7) + (2) * (2.5)] * (1.5 -1 )' 52 = 496 # 13,633 > 6,600 OK Check Bearing Capacity 17.40 40 Actual Soil Bearing= gact= - 994 < 1,095 OK (7) x Check Reinforcement Pmin long 0.0018 Pmin Horiz= 0.0018 Req. A. Total A Longitudinal A,= 0.0018 * (84) * (18)= 2.722 < 3.140 OK Horizontal A$ 0.0018 * (30) * (18)= 0.972 < 1.178 OK Use 7' -0" long x 2' -6" wide 1' -6" ft. deep Concrete Footing, With (8) #4 bars longitudinal top and bottom along with (3) #4 horizontal bars top and bottom. ...No Warnings! Project Control Number SHEET 1INIIII1I1IIII IIIII1 Ill1l III Jill Project Name: Just Sports * s s- 0 3 0 9 3* � Xl eFootingOPTIMIZER C Column Type Endwall Column Quantity 2 Frame Reactions P,= 12.90 K P„= 5.10 K Max Loads From Calcs P 4.20 K Bracing Reactions P P„= Check Footing Size Allowable Soil Bearing= Soil Friction= Design Criteria Use Footing Yes Use Slab Yes Allowable Increase For Width No Allowable Increase For Depth Yes Use Friction Yes Is Footing Square Yes 0.00 K Does Not Govern 0.00 K Does Not Govern 3.75 ' long x 3.75 'wide x 1.00 ft. deep q = [ 1000 [ 1.2) ^ 1 -1 ]] = 1,000 p.s.f. µ = 1000 / (3.75 * 3) = 89 p.s.f. Wt of Footing = 150 (3.75) (3.75) (1) = 2,109 # Wt of Slab = (177) (50) = 8,850 # Soil Friction = [(2) * (3.75) + (2) * (3.75)] * (1 -1) * 89 = - # 10,959 > 5,100 OK Check Bearing Capacity Actual Soil Bearing= q 12.90 (3.75) x (3.75) Check Reinforcement Pmin Long 0.0018 Pmin Horiz 0. 00 18 Longitudinal A 0.0018 * (45) * (12)= Horizontal AS 0.0018 * (45) * (12)= = 917 < 1,000 OK Req. A Total A. 0.972 < 1.178 OK 0.972 < 1.178 OK Use X -9" long x X -9" wide V -0" ft. deep Concrete Footing, With (6) #4 bars longitudinal, along with (6) #4 horizontal bars. ...No Warnings! Project Control Number SHEET 1 111 11 11 1 111111111 1 1111111111111 1 11111 1 11 S S �/ Project Name: Just Sports * s s- 0 3 0 9 3* * �q Column Type Corner Column Quantity 4 Frame Reactions eFootingOPTIMIZER D Design Criteria Use Footing Yes Use Slab Yes Allowable Increase For Width No Allowable Increase For Depth Yes Use Friction Yes Is Footing Square No P„= 7.50 K P 2.30 K Max Loads From Calcs P 2.10 K Bracing Reactions P V = P„= Check Footing Size 0.00 K Does Not Govern 0.00 K Does Not Govern 2.75 'long x 2.75 'wide x Allowable Soil Bearing= Soil Friction= q= [ 1000 [ 1.2) ^ 1 -1 ]] _ Ft = 1000 / (2.75 * 3) _ 1.00 ft. deep 1,000 p.s.f. 121 p.s.f. Wt of Footing = 150 (2.75) (2.75) (1) = 1,134 # Wt of Slab = (97) (50) = 4,850 # Soil Friction = [(2) * (2.75) + (2) * (2.75)] * (1 -1) * 121 = - # 5,984 > 2,300 OK Check Bearing Capacity Actual Soil Bearing= q ac = 7.50 (2.75) x (2.75) Check Reinforcement Pmin Long 0.0018 Pmin Horiz 0.0018 Longitudinal Ag 0.0018 * (33) * (12)= Horizontal A 5 = 0.0018 * (33) * (12)= = 992 < 1,000 OK Req. A Total A 0.713 < 0.785 OK 0.713 < 0.785 OK Use 2' -9" long x 2' -9" wide 1' -0" ft. deep Concrete Footing, With (4) #4 bars longitudinal, along with (4) #4 horizontal bars. ...No Warnings! Project Control Number SHEET 111111111111111111111111111111111111111 Project Name: Just Sports * s s- 0 3 0 9 3* 14 Column Type Corner Column Quantity 2 Frame Reactions eFootingOPTIMIZERTM E P,= 7.50 K P 2.30 K Max Loads From Calcs Ph_ 2.10 K Bracing Reactions P V = P„= Check Footing Size 0.00 K Does Not Govern 0.00 K Does Not Govern 2.75 'long x 2.75 'wide x Allowable Soil Bearing= Soil Friction= q = [ 1000 [ 1.2) ^ 1 -1 ]] _ µ = 1000 / (2.75 * 3) _ Design Criteria Use Footing Yes Use Slab Yes Allowable Increase For Width No Allowable Increase For Depth Yes Use Friction Yes Is Footing Square No 1.00 ft. deep 1,000 p.s.f. 121 p.s.f. Wt of Footing = 150 (2.75) (2.75) (1) = 1,134 # Wt of Slab = (97) (50) = 4,850 # Soil Friction = [(2) * (2.75) + (2) * (2.75)] * (1 -1) * 121 = - # 5,984 > 2,300 OK Check Bearing Capacity Actual Soil Bearing= q a c= 7.50 (2.75) x (2.75) Check Reinforcement Pmin long 0.0018 Pmin Horiz 0.0018 Longitudinal A 5 = 0.0018 * (33) * (12)= Horizontal A 5 = 0. 00 18 * (33) * (12)= = 992 < 1,000 OK Req. A Total A 0.713 < 0.785 OK 0.713 < 0.785 OK Use 2' -9" long x 2' -9" wide 1' -0" ft. deep Concrete Footing, With (4) #4 bars longitudinal, along with (4) #4 horizontal bars. ...No Warnings! Project Control Number SHEET 111111111111111 III IN II I III II II Project Name: Just Sports * s S- 0 3 0 9 3* 14 AnchorBoltSizer Anchor Bolt Design - Strength Design Method For Anchors Closer Than 2x Their Embeddment Depth Loads Vertical Horizontal Loads are in Kips DL = 2.9 0.8 LL = 28.4 8.1 WL = -9.7 -4.5 Seismic = -1 -1.6 BOLT OIA. - 0 EDGE DIST. - R - E + .750 TOTAL SLOPMO AREA - A. 2R+ FLAT BOT. AREA - At GONE SLANT LENGTH - 1.4T4(E) '- i — R FOO® HOOT 52OARr PATTERNS CONE ARE A-TT(1.414 EXR +.750) �• SLANT AREA STAIN 1/4 CONES- 4(1.414)(E)(5) `�; CONE As- 4.442(Ef+6.883(13XE)+5.856(EXS) • . .750 Seta -O Anchor Bolt Group Capacities Anchor Bolt Diameter = D = 0.75 in. Anchor Bolt Area = Ab = 0.44 sq. in. Anchor Bolt Gauge = G = 4 in. Anchor Bolt Spacing = S = 4 in. Edge Distance Sidewall = C = 12 = 12 in. Edge Distance Endwall = C = 20.5 = 20.5 in. Length of Embedment = E = 28 in. Washer Diameter or Hook Length = Wd = 3 in. Number of Bolts = N = 4 Special Inspection Required = = No Embedded in Tension Zone = = No Concrete Weight Factor = A = 1 Normal Weight Strength Reduction Factor = 4) = 0.65 = No Anchors Hooked Around RebE Live Load Factor = f = 0.5 = No Public Assm /Garage /LL >100F Concrete Strength = f = 2,500 psi Bolt Tensile Strength (Ult) = f„ 1 A307 = 60,000 psi Edge Distance = R = E +.75D = 28.56 in. Shear Cone Area = As or Ap = 2457 sq. in. Flat Bottom Area = At = 26 sq. in. Cone Slant Length = 1.414(E) = 40 in. Cone Area = = 3622 sq. in. Slant Area Btwn 1/4 Cones = Four Bolt Pattern = 633 sq. in. Edge of Slab s E C, If C,> E then Use E ., I ep w C> , C ' — Edge of Slab If C,> Ethen Use E And Project Name: Just Sp orts Project Control Number SHEET 1 111 11 111111111111111111 1 11111111 11 1 1 1 1 11 1 11 1 111 11 * S S- 0 3 0 9 3* e 14 • Factored Loads Loads are in Kips .9 Ab f„ t N .9DL 1.2DL 1.4DL 1.7LL 1.7WL 1.3WL t P 2.61 3.48 4.06 48.28 -16.49 -12.61 Pss = V 0.72 0.96 1.12 13.77 -7.65 -5.85 Factored Lo ad C ombinatio n s- R equ i red Strength (19 T e n sion Shear Use Load Factor Multiplier = 2 Vss = .75 Ab f„ t N = 79,481 # 1909.2.1 U = (2) *(1.4D +1.7L) Pu = 104.68 Vu = 29.78 1909.2.2 U = (2) *(.75(1.4D +1.7L +1.7W) Pu = 53.78 Vu = 10.86 1909.2.3 U = (2) *(.9D +1.3W) Pu = -20.00 Vu = -10.26 1612.4 (12 -17) U = (2) *(1.2D + f1 L + 1.0Em) Vu = 26.40 1612.4 (12 -18) U = (2) *(.9D + 1.OEm) Vu = -3.74 No Special Inspection Required Bolts Not Embedded in Tension Zone Of Member Bolt Design Strength (1923.3.2 ) Minimum Design Strength (Tension) Pss = .9 Ab f„ t N = 95,378 # mPc = 0A 4 Ap �f� 0.016 5 opc = 319,410 # > 20,000 = OK Pu = 5,000 # Factored Tensile Load per bolt Pss = 79,853 # per bolt Pc = 491,400 Minimum Design Strength (Shear) Vss = .75 Ab f„ t N = 79,481 # 4)Vc = cl) 800 Ab A 4f mVc = 11,481 Vu = 7,445 # Factored Shear Load per anchor Vss = 19,870 # per bolt VC = 17,663 Interaction 1/D VuNc 0.65 <_ 1 OK 1/0 Pu /Pc 0.016 5 1 OK 11m [(Pu /Pc) +(VuNc)'] 0.365 5 1 OK (Pu /Pc) +(VuNc) 0.178 5 1 OK Use (4) 3/4" Diameter Anchorbolts With A Minimum Of 28" Embeddment. No Special Inspection Required Project Control Number SHEET 1 1 1 111 1 11111111 IN III1111III II 12 Project Name: Just Sports * S S- 0 3 0 9 3* 14 r AnchorBoltSizer Anchor Bolt Design - Strength Design Method For Anchors Closer Than 2x Their Embeddment Depth Loads Vertical Horizontal Loads are in Kips DL = 0.8 0 LL = 14.6 0 WL = -7.4 -4.5 Seismic = 0 0.9 BOLT DIA. - D EDGE DIST. - R - E + .750 TOTAL SLOPING AREA - N FLAT 110'7 AREA - At CONE SLANT LENGTH - 1.4140 R01 T SQUARE PATIFRN� CONE AREA - (1.41♦ �(R +.7SD) SNIT AREA E17MN 1/4 CONES- 4(1.414)(EXS) A- 4- 2(Ef+e.ess(13XE)+5J5WEXS) At-(S +1.50) i CONE ANGLE. SMtM Anchor Bolt Group Capacities Anchor Bolt Diameter = D = 0.75 in. Anchor Bolt Area = Ab = 0.44 sq. in. Anchor Bolt Gauge = G = 4 in. Anchor Bolt Spacing = S = 4 in. Edge Distance Sidewall = C = 12 = 12 in. Edge Distance Endwall = C = 15 = 20.5 in. Length of Embedment = E = 15 in. Washer Diameter or Hook Length = Wd = 3 in. Number of Bolts = N = 4 Special Inspection Required = = No Embedded in Tension Zone = = No Concrete Weight Factor = A = 1 Normal Weight Strength Reduction Factor = 0 = 0.65 = No Anchors Hooked Around Rebs Live Load Factor = f = 0.5 = No Public Assm /Garage /LL >100p Concrete Strength = f = 2,500 psi Bolt Tensile Strength (Ult) = f„ 1 A307 = 60,000 psi Edge Distance = R = E +.75D = 15.56 in. Shear Cone Area = As or Ap = 1153.75 sq. in. Flat Bottom Area = At = 26 sq. in. Cone Slant Length = 1.414(E) = 21 in. Cone Area = = 1074 sq. in. Slant Area Btwn 1/4 Cones = Four Bolt Pattern = 339 sq. in. Edge of Slab 5T..__.1 - 0 ; 1 IF, —• C1 4 0 3 L if C,> E then Use E � £, ' Edge of Slab If C, > E then Use E Md _ ft � Project Name: Jus Sports Project Control Number SHEET 11 11 11 1111 1 11 11 11 1 11 1 111111 1 11 11 1 1 1 1 11 1 11 1 111 13 *SS- 03093* 14 r Factored Loads Loads are in Kips .9DL 1.2DL 1.4DL 1.7LL 1.7WL 1.3WL P 0.72 0.96 1.12 24.82 -12.58 -9.62 V 0.00 0.00 0.00 0.00 -7.65 -5.85 Factored Load Combinations - Required Strength (1923.2) Tension Shear Use Load Factor Multiplier = 2 1909.2.1 U = (2) *(1.4D +1.7L) Pu = 51.88 Vu = 0.00 1909.2.2 U = (2) *(.75(1.4D +1.7L +1.7W) Pu = 20.04 Vu = -11.48 1909.2.3 U = (2) *(.9D +1.3W) Pu = -17.80 Vu = -11.70 1612.4 (12 -17) U = (2) *(1.2D + f1 L + 1.0Em) Vu = 21.56 1612.4 (12 -18) U = (2) *(.9D + 1.OEm) Vu = 6.48 No Special Inspection Required Bolts Not Embedded in Tension Zone Of Member Bolt Design Strength (1923.3.2 ) Minimum Design Strength (Tension) Pss = .9 Ab f„ N = 95,378 # 4)Pc = 0A 4 Ap �f Opc = 149,988 # > 17,800 = OK Pu = 4,450 # Factored Tensile Load per bolt Pss = 37,497 # per bolt Pc = 230,750 Minimum Design Strength (Shear) Vss = .75 Ab f„ N = 79,481 # OVc = 4) 800 Ab A �f (I)VC = 11,481 Vu = 5,390 # Factored Shear Load per anchor Vss = 19,870 # per bolt Vc = 17,663 Interaction 1/0 Vu/Vc 0.47 5 1 OK 1/4) Pu /Pc 0.030 5 1 OK 1/0 [(Pu /PC) +(Vu/VC) /3 1 0.215 5 1 OK (Pu /PC) +(Vu/VC) 0.093 5 1 OK Use (4) 3/4" Diameter Anchorbolts With A Minimum Of 15" Embeddment. No Special Inspection Required Project Control Number SHEET 1 11 1 111 11 11 11 111 1 0 ill IN 1 1 1 11 1 1 1 1 1 111 14 Project Name: Just Sports * S S- 0 3 0 9 3 14 0 0 DESIGN CALCULATIONS FOR ABC JOB# 51-7391-01 g510N' QQ° �G� rFAF 2 6 0 32001 oF �o FR P. NP mwlwTv MLI AMERICAN BUILDINGS COMPANY 1620 Carpenter Road, Modesto, CA 95351 Phone (209) 578 -4200 Fax (209) 578 -1244 SilverTree Builders, Inc. 1052 W. 14th N. Rexburg, ID 83440 November 26, 2007 51- 7391 -01 Just Sports Rexburg , ID 83440 Gentlemen, RF 60'x 60'x 20' 5:12 This is to certify that metal building components furnished by American Buildings Company, an AISC -MB certified manufacturer, are scheduled for design in our Modesto, CA office and for fabrication in our Carson City, NV plant. The members are designed to comply with the following loads specified in the Order documents: Design Loads• 1) - Bldg. Dead Load (D) 2) 5.0 PSF Collateral Load (C) 3) 20.0 PSF Roof Live Load (L) 4) 20R PSF Frame Live Load (L) 5) 90.0 MPH WIND SPEED (W) Exp.= C, Iw =1.0 6) 35.0 PSF Uniform Roof Snow Load (SEU) Pg= 50, Is= 1.0, Ce= 0.9, Ct= 1.0 7) Seismic Data as Follows: (E) Use Group = I, 1 = 1.0 Site Class = D, Ss= 46.7 %, S1= 16.2 %, Design Load Combinations: 1) D +C +L(S) 2) D + gyp/ 3) 1.06( D + C) + 0.70E 4) D +C +3/4L(S) +3/4W 5) 1.07(D +C) +3 /4L(S) +3/4E 6) 0.6D + W 7) 0.54(D +C) +0.7E Note: This project is designed as An Enclosed Building. Accessories (doors, windows, etc.) by others must be designed as "components and cladding" in accordance to specific wind provisions of the referenced Building Code. Please note that unless otherwise specified on your Purchase Order, American Buildings Company Serviceability Standards (2002 MBMA/AISC criteria) will be used for design and fabrication of your order. These design loads and combinations are applied in accordance with The International Building Code, (IBC2003). The design is in general accordance with the A.I.S.C. (Ninth Edition w/ Supplement No.1) and NASPEC (2001). This certification is limited to the structural design of the framing and covering parts manufactured by American Buildings Company and as specified in the contract. Accessory items such as doors, windows, louvers, translucent panels, and ventilators are not included. Also excluded are other parts of the project not provided by American Buildings Company such as foundations, masonry walls, mechanical equipment and the erection and inspection of the building. The building should be erected on a properly designed foundation in accordance with The American Buildings COmDanV Erection Manual and American's drawings for the referenced job. The undersigned is not the engineer of record for the ovecaif'brcu"' ot, 1 CONTENTS SECTION 1, General Introduction and General Design Approach Figure 1 - Clear Span Rigid Frame Building 1.2 Selected References 1.3 SECTION 2, Rigid Frame Explanations and Methods of Analysis Lateral Deflection of Frames 2.1 -2.3 2.4 Rigid Frame Analysis SECTION 3, Endwalls and Rod Bracing 0 Explanations and Methods of Analysis Figure 4 - Column and Beam Endwall Bracing Figure 5 - Column and Beam Endwall Rod Bracing 3.2 Nomenclature 3.3 Endwail Frame Analysis 3.4 SECTION 4, Purlin and Girt Section Properties Purlin and Girt Analysis 4.1 SECTION 5,. Panels Panel Profiles and Engineering Properties (LongSpan III) Panel Profiles and Engineering Properties 5.1 (Architectural III) Panel Profiles and Engineering Properties (Architectural "V" Rib) Panel Profiles and Engineering Properties 5.2 5.2b (Standing Seam II) Panel Profiles and Engineering Properties (Standing Seam 360) Panel Profiles and Engineering Properties 5.3 5.3a (Shadow) Panel Profiles and Engineering Properties (16" Loc -Seam) Panel Profiles and Engineering Properties 5.4 5 (12" Loc -Seam) Panel Profiles and Engineering Properties (Multi -Rib) Panel Profiles and Engineering 5.6 5.7 Properties (Seam Loc) 5 SECTION 6, Miscellaneous Standard Specifications 6.1 Page LOAD -1 Mon Nov 26 09:59:48 2007 Job #: 51739101 Ver. 29.1 AMERICAN BUILDINGS COMPANY GENERAL DESIGN LOADING INFORMATION Building Code: 2003 International Building Code Roof Dead Load: 1.500 psf Collateral Load: 5.000 psf Roof members not supporting ceiling but supporting sprinklers, lighting, or other materials Classification of Building: I. Buildings and other structures that represent a low hazard to human life in the event of failure ■ II. All buildings and other structures except those listed in Categories I, III, and IV III. Buildings and other structures that represent a substantial hazard to human life in the event of failure IV. Buildings and other structures designated as essential facilities Exposure (Terrain) Category: B. Urban and suburban areas, wooded areas or other terrain with numerous closely spaced obstructions having the size of single - family dwellings or larger ■ C. Open terrain with scattered obstructions, including surface undulations or other irregularities having heights generally less than 30 feet extending more than 1500 feet from site D. Flat, unobstructed areas exposed to wind flowing over open water (excluding shorelines in hurricane -prone regions) for a distance of at least 1 mile Uniform Roof Live Load Not To Be Less Than: Value As Defined By Selected Code Uniform Roof Snow Load Not To Be Less Than: 35.000 psf Roof Exposure Condition: Partially Exposed: All roofs except as indicated below ■ Fully Exposed: Roofs exposed on all sides with no shelter afforded by terrain, higher structures or trees Sheltered: Roofs located tight in among conifers that qualify as obstructions Thermal Condition: ■ All structures except as indicated below Structures kept just above freezing Unheated structures Continuously heated greenhouses with a roof having a thermal resistance (R- value) less than 2.0 Ground Snow Load: 50.000 psf Basic Wind Speed (3- second gust): 90.000 mph Open Condition: ■ Enclosed Partially enclosed Open 0.2 Sec Short Period Spectral Response Acceleration S(s): 46.700 %g 1.0 Sec Spectral Response Acceleration S(1): 16.200 %g Site Classification: A. Hard Rock B. Rock C. Very dense soil and soft rock ■ D. Stiff soil profile • E. Soft soil profile F. See code for description Deflection Limits for Roofs: Live Load: L /150 Snow Load: L /180 Wind Load: L /180 (at 1:10 -year recurrence) Roof Load: None Deflection Limits for Walls: Wind Load: L /120 (at 1:10 -year recurrence) Maximum Limiting Check Ratio: 1.03 Plate /Bar Yield Strength: 55.00 ksi C 0 2 Notes for ABC Job # 51- 7391 -01 Just Sports 1. The frame at left endwall (FL. 1) and frame at right endwall (FLA) are not designed to accommodate any future additions. 2. New structure by ABC is designed as an Enclosed Building. 3. It is the responsibility of others, i.e. the engineer of record, to ensure that all structural systems and components not by ABC interact compatibly with ABC structural systems and components. See calculation package for deflection requirements of ABC frames and materials. 4. ABC has provided new structure(s) according to the ABC purchase order and company standards. ABC is not responsible for verifying that ABC's design and detailing is compatible with materials by others. 5. A 5.Opsf collateral loads were used in ABC design as requested. No other special provisions have been made for concentrated point loads on frame. 6. Snow build -up conditions will exist where new ABC structure is taller than adjacent structure(s). ABC is not responsible for verifying that adjacent structure(s) can accommodate snow build -up as a result of new construction. 7. New structure by ABC is not designed to accommodate any snow build -up condition from taller existing structures. 8. Wall system by other at Left Endwall must weigh no more than 10 psf. 9. The existing building and the new structure by ABC are structurally independent. Separation between the new and existing building is the responsibility of others. The maximum deflections (As) in longitudinal direction of new ABC structure are P. N° LO N W- w Lf 7 m m 0 O - - _ � tA , O N N X M m m m m m 0 0 0 w w n 0o -- CD (- N N n n ° O Q O 3:ry m m / L�DNt15) X2 mm jo im QL co m �l Y m s a 0 0 x v z 000 011! A OK 01 A000110[ E-W I w r e 1 Aw, �e1 c a-a.1 �,+ w:7- i UM I cm 11 ROOF FRAMING PLAN RFD IF -A IA ajj 5' 11 TE HOOF ssINN OE71ox NAES cnnttNO N3P7 p1 NVMID6 NIOMI N 1EC71011 IfEJ/9\ ��' MS N1110i Sr S nF]WN USO Nln -ROU urt NNJWID �6 N1d111 N WS A L IM90 /M NI PfllO /M1 (lewYl� MO IIiEI ON �. N 1. X NI ALL NRNS pl FNAE t /!g 1.27 6 LorAno K ARE Npg7m O N UE HOOF FN/i" PLNL 1* U H.W— 1. N1 -15 4 Nre port Ne tl. - Aw, �e1 c a-a.1 �,+ w:7- i UM I cm 11 4 E r L 3 vi LL a z q 3 a 7 I CL UB V cx, d I I I I I 1 1y Q4 � 3 g� �w 4s as sr w a� .s L 3 vi LL a z q 3 a 7 L. 3 PA I CL UB V cx, d I I I I I L. 3 PA . o �>e i\J T v e-_ X I -) TIN -`t Y t ENDWAL FR�!�!NG AT FRAME US 1 LE V v P 1:-:� WMI •r[.�t w+ maa. r C • 8 -WN ENDWALL FRMAING AT FRAME LINE 4 R C V\, � - F-- I -�, W/ c F E, — I e Vc F T . J I I I I L F. W IZ, , z A M e- V311 1 m 3 io a ar ammm I 2n m m ar w I Ira j m m ar aawrw 1 I +'a 1 �LL��a� •.:.ul�w�t�2�t11�L!•L�Tl•I ' arse a►M mu 3" A mm 3n e0 mm wo our A M; of Ow 10R e O n'o m a OF caww COLUMN do BEAM CROSS SECTION C503 —A rwrc UK 4 t 102 r t- fi or co u" e �{ MM1°, Mis 71 e gill Standard Canopy 'Design American Buildings Company Modesto, CA 95351 ! Engineer: BN Job Number: 51-7391-01 Date: 11/21/2007 DESCRIPTION.• L Ca opy rack 3' SW OH ano Be 0. ft 117, Code Name ASCE7-95 IV V 2 L M MBMA96 Occup. Category CBl Roof Dead Load = 4.50 psf Ri id F e C lump Collateral Dead Load = 5.00 psf Ground Snow (P,) = 50.00 psf s.00 g, n Roof Snow Load(P = 35.00 psf L Roof Live Load = 20.00 psf Wind Loading(Suction) = 16.80 psf i Wind Coef for Canopy = 2.80 Wind Coef. for Frame= 1.87 DRIFT CALCULATION + Upper Roof Width (W = 60.00 ft Code # 9 Upper Roof Slope = 5.00 /12 Code Name ASCE7-95 I Roof Step(q) = 0.00 ft H, used (ft) 0.00 Canopy Projection = 3.00 ft P used (psf) 50.00 Canopy Roof Slope = 5.00 /12 P used (psf) 42.00 777T- Bay Width = 20.00 ft. Wb used (ft) 60.00 Canopy Elevation = 20.00 ft. D PCF 20.50 Frame Column Depth = 30.00 in. h, Ft. 2.05 Girt Offset = 8.00 in. hd Ft. Drift MAX. P :FT Wd Ft. 0.00 Canopy Beam Gravity Capacity = 0.00 33.30 1 16.39 Uplift Capacity- 44.50 k-ft Drift MIN. ESfj_ 0.00 Canopy Design Calculations Trib Area = 60 sq ft 4 Moment Arm 1 = 1 2.17 Ift Moment Arm L _ Gravity Moment on Canopy Beam And Connection 10.34 -ft Twice Snow Controls Wind Moment on Canopy Beam And Connection i -5.53 k-ft F Applied Loads By Load Case I Shear V Moment (M, Moment (K) Dead Load = 0.27 kips 0.59 kip-ft 0 ft -kipp* N-0 Collateral Load = 0.30 kips 0.65 kip-ft 1. *ip-ft- 1-11 Live Load = 1.20 kips 2.60 kip-ft kip-ft 4-44- IxS now + Drift Load = 2.52 kips -18.97 kip-ft 15.82 kip-11 2 x Snow = 4.20 kips 9.10 kip-ft IA-3-5 kip ft Wind Load = -2.82 kips -6.12 kip-ft Applied Loads By Load Combination D+C+L= Shear (V) 1.77 kips Wment Ml) 3.84 kip -ft ----- M - oment 6.05 (M kip-ft D+C+S= 4.77 kips 10.34ikip-ft 16.30 kip-ft D+W= -2.55 kips -5.53 kip-ft -5.52 kip-ft D+W+ 1/2S= - 0.45'1 kips -0.98 kip-ft 1.66 kip-ft 3.36 kips 1 7.28 kip-ft 13.08 kip-ft 1 BY: WRA Modified: WW CHK: WRA 10 Date: 711/02 Ver 3.0 .�.V `GNU � "g American Buildings Company Modesto, CA 95350 S S,7z 8 Q 2 -Bolt Unstiffened 0 4 -Bolt Unstiffened 0 4 -Bolt Stiffener Between Bolts Service Load Moment Mw 10.34 kip -ft < Ma = 18.24 Fpy = 55 psi . End Plate tp 1 /2" IV I Bolt Dia. 3/4" A325 'W b = 4.000 in tf = 0.250 in g = 3.000 in h = 8.000 in pf = 1.563 in thin Plate Behavior W/ Prying Action Control ! 'onnection Capacity OK ! r = 1.25 h = 6.19 in d, = 6.06 in Y = 28.65 in End -Plate Yielding: Bolt Rupture: (No Prying Action) Flush End -Plate Connection Design (AISC Steel Design Guide Series Vol. 16) Job Number: 51- 7391 -01 Engineer: BN s = 1.73 in Ed, = 6.06 in �Vpi = Wpyt2Y = P =( 7cdb /4)F = Wnp = �( _ Thin Plate Behavior (w /prying action) Qmax,i = 3.65 kips Tb = 14.00 kips �M = 27.36 k -ft Version 2.0 Author: VW1! 29.55 k -ft 39.76 kips 30.13 k -ft ns 1 9 0/i s d O 4 -Bolt Stiffener Inside Bolts kip -ft bP tf -) _ �p p S,o - 1t S - - - - p psi -- - -- b l t s p S - dl h, h d2 tp tw g , Q 0 4:53 PM11/28/2007 0 Standard Canopy Design American Buildings Company Modesto, CA 95351 Engineer: BN Job Number: 51- 7391 -01 Date: 11/21/2007 j - DESCRIPTION: t / C op y rack T SW OH o o ft _ an y B m C ode Name= ASCE7 -95 V _ C -6 i MBMA96 Occup. Category = Category ry Roof Dead Load = 4.50 psf gid F me olu Collateral Dead Load = 5.00 psf Ground Snow (P) = 50.00 psf _ 3.0o ft Roof Sno Load(P = 35.00 psf t Roof Live Load = 20.00 psf Lz Wind Loading(Suction) = 16.80 psf _ % i _ - z 1 .00 i _ _ Wind Coef.for Canopy = 2.80 Wind C oef. for Frame = 1.87 DRIFT CALCULATION Upper Roof Width (W = 60.00 ft Code # 9 Upper Roof Slope = 5.00 /12 Code Name ASCE7 -95 Roof Step(4) = 0.00 ft H used (ft) 0.00 Canopy Projection = 3.00 ft P used (psf) 50.00 Canopy Roof Slope = 5.00 /12 P used (psf) 42.00 Bay Width = 13.00 ft. W used (ft) 60.00 Canopy Elevation = 20.00 ft. D PCF 20.50 Frame Column Depth = 30.00 in. h F 2.05 Girt Offset = 8.00 in. h Ft. Drift MAX. PSF jWd Ft. 0.00 Canopy Beam = // V L Gravity Capacity 33.30 0.00 - 16.39 Uplift Capacity= 44.50 k -ft Drift MIN. PSF 0.00 Canopy Desien Calculations Trib Area = 39 Moment Arm la = 2.17 sq ft ft Moment Ann _ Gravity Moment on Canopy Beam And Connection 6.72 k -ft Twice Snow Controls Wind Moment on Canopy Beam And Connection -3_59 k -ft Applied Loads By Load Case Shear V Moment (M,) Moment (M,) Dead Load = 0.18 kips 0.38 kip -ft 0.60 kip-ft Collateral Load = 0.20 kips 0.42 kip -ft 0.67 kip -ft Live Load =1 0.78 kips 1.69 kip -ft 2.67 kip -ft lxSnow + Drift Load = 1.64 kips -12.33 kip -ft -10.28 kip-ft 2 x Snow = 2.73 kips 5.92 kip -ft 9.33 kip -ft Wind Load = -1.83 kips 3.97 kip -ft F T Applied Loads By Load Combination ear oment oment D + C + L = 1.15 kips 2.49 kip -ft 3.93 kip -ft D + C + S = 3.10 kips 6.72 1 kip -ft 10.59 kip -ft D + W = -1.66 kips -3.59 kip -ft -3.59 kip -ft D + W + 1/2S = -0.29 kips -0.64 kip -ft 1.08 kip -ft LLJ D + C + S + 1/2W = 2.18 kips 4.73 kip -ft 8.50 kip -ft BY: W RA Modified: WW CHK: WRA Date: 7/1/02 Ver 3.0 tZ. V\1 C, + S E-c ?PCT-- I1$- Ian rpm - a EE � C - EF- otk T>E S cc-niv. EAVE STRUT EAVE STRUT — PLATE LOW SIDEWALL ESP -2 OVERHANG BEAM LOHB— SIDEWALL OVERHANG 9 %/Z OR RAFTER COLUMN EAVE STRUT SIDEWALL OVERHANG EAVE STRUT BRACKET PLATE (SHOP WELDED O ESP -2 T RAFTER) LOW SIDEWALL � OVERHANG BEAM LOHB— / __ 0� 112 r.cz 9 RAFTER L PRIMARY BOLT (S) SPECIAL LENGTH 3/4" A325 —SECONDARY BOLT(S) (TYP. U.N.) COLUMN 1/2X1 1/4 A325 OVERHANG I GIRT DEPTH LOW SIDEWALL OVERHANG RY -PASS STRAIGHT Cni l JMN LOW SIDEWALL OVERHANG BY -PASS TAPERED COLUMN r SF0 13/16" 0 3" GA. J D_ 00 J X d LO m N O 2 c \ Ln 3/16" X 3/16" /16" WLOBS8 1/2" (W8x 13 x 7 ") 7 1/2" PLATE 50 KSI MIN WGT. = 13.25# BEAM 36 KSI MIN SCALE: DATE DWN. BY: ALL PURLINS - 8" GIRTS EUFAULA � ��l � AIABAMA CKD. BY: LOW SIDEWALL OVERHANG APP'D. BY: BRACKET DPAWING NUMBER ° LOBS8 R0 ISSUE DATE: 4 -1 - 0 00 1 111 c C U a c z i s 12 SHOP NOTE: ORIENTATE PLATES, NOT SYMETRICAL PLATE 50 KSI MIN. BEAM 36 KSI MIN. SCALE: DWN. BY: CKD. BY: APP'D. BY: ISSUE DA TE: !eleose No. RI0 DATE 4 -1 -99 WGT. = 31.4 8" PURLINS — ALL GIRTS LOW SIDEWALL OVERHANG BRACKET . X12 EUFAULA� ALABAMA DRAWING . I REV' NUMBER . LOBT4 0 16 /' - 1 1 11 J a J r a CID cn Xx � r. C} x ^ N N (!J W J C) = 12 rn PLATE 50 KSI MIN. BEAM 36 KSI MIN. SCALE: DATE DWN. BY: CKD. BY: APP'D. BY: ISSUE DATE: 4-1-99 Release No. 7DO299 2" co J a CD ^ C O J CID x a �r ^ x WGT. = 39.75# LOW SIDEWALL EUFAUTA AIABAYA 3' -0" OVERHANG BEAM ,4412 SLOPE DRAW / NUMBER LOHB34 0' Nye `e 1� co SHOP NOTE: ORIENTATE PLATES, NOT SYMETRICAL 0 17 -� �1 I rl J E Cl�� JOB NO. SHEET OF SHEETS DATE 0 H G I YVZ.IY co � � 0,; I . V IQ" rramed Openings Calculation American Buildings Company Job Number 51-73; -01 Engineer BN Module 1 _� FSW BAY ❑ RSW BA ❑ LEW BAY ❑ REW BAY DIMENSIONS 0 No Stress Increase Span length (column to column) 19.54 ft Door width 12:00 ft Door Height 14.00 ft . Distance from left column to 1 jamb 5.54 ft Distance from header to jamb support Ln ft Ht. of the girt/eave after jamb support 20.00 ft Deflection (standard is U90 for 50 yr. wind) L / 90 MSA SECONDARY FRAME OUTPUT 0D Wind pressure (50 yr. wind) 16.80 psf 1.0 .' Suction coefficient 4.19 Pressure coefficient 0.99, -19.99 psf Suction Pressure 16.63 psf 28.02 in 1.03 Design spacing, jamb supp. Allowable Str Ratio Wall Girt Depth OO 8" 09s 012" PANEL CONDITION Nested (2) Girts ? Yes Stress Increase = 1.00 Jamb Support(s) R = 0.65 Use Hot - Rolled Channels? O Yes OO No See comment window for R values Distance Between Lateral Supports (in) N/A :! in Header R = 0:65 * Jambs R = 0. 65 Channel Depth Selection O C8 O C9 O C10 See comment windows for R values Use Hot Rolled Jambs? ❑ No Use Different Depth Jamb Support? ❑ No Use Different Depth Jambs? ❑ No Maximum Girt Spacing = 5 ft Recommended Member For Jamb Supports) Nested 8214 Stre Rat 0.92 O ax L / 276 m Recommended Minimum Member Size For Jambs 804 Stress Ratio= 0.78 A,,, = L / 251 Recommended Minimum Member Size For Header 8014 Stress Ratio= 0.05 Minimum 14 gage for jamb bandh Bader All members s ar x.:::::.... . e designed as simple span. The reduced sectional properties were used for cold formed members. 20.00 15.33 19.54 Amax L / 6890 Framed Opening Calculation V 1.5 11 /2602007 10:27 AM • u I .. r ramed Openings Calculation American Buildings Company Job Number 51- 7391 -01 Engineer BN Module 1 ❑Q FSW BAY ❑ RSW BAY ❑ LEW BAY ❑ REW BAY DIMENSIONS ❑✓ No Stress Increase Span length (column to column) 19.54 ft Door width 16.00 ft Door Height 16.00 ft Distance from left column to 1" jamb 2.00 ft Distance from header to jamb support 1.33 ft Ht. of the girt/eave after jamb support 20.00 ft Deflection (standard is U90 for 50 yr. wind) L 90 Wall Girt Depth 08" O 9.5" O 12" Nested (2) Girts ? ❑ No Stress Increase = 1.00 1k Use Hot - Rolled Channels? O Yes OO No MSA SECONDARY FRAME OUTPUT 0) Wind pressure (50 yr. wind) 16.80 psf i.0 Suction coefficient -1.1.9 Pressure coefficient 0.99 ... ............................... -19.99 psf Suction Pressure 16.63 psf 16.02 in 1.03 Design spacing, jamb supp. Allowable Stress Ratio PANEL CONDITIO Jamb Su pport(s) R = 0 See comment window for R values Distance Between Lateral Supports (in) N/A in Header R = 0.65 *Jambs R=. 0.65 Channel Depth Selection O C8 O C9 O C10 See comment windows for R values Use Hot Rolled Jambs? ❑ No Use Different Depth Jamb Support? ❑ No Use Different Depth Jambs? ❑ No Maximum Girt Spacing Recommended Member For Jamb Support(s) 8Z14 Stress Ratio= 0.96 AmaX = L / 229 Recommended Minimum Member Size For Jambs 8013 Stress Ratio= 0.99 Amax = L/ 190 Recommended Minimum Member Size For Header 8014 Stress Ratio= 0.10 Amax = L / 2907 Minimum 14 gage for jamb and header All members are designed as simple span. The reduced sectional properties were used for cold formed members. 0 Z' Next Girt I Eave yJ V Jamb Support ?_� ( o0 Door Header ?=U U �o J E E J Ec = o U Q M o O U 2.00 18.0 20.00 17.33 19.54 Framed Opening Calculation V1.5 11/26/2007 10:28 AM a JOB NO 51 -7391 ENG BN/WRA DATE 11/28/07 American Buildings Company Carson City, Nevada Roof Anti -Roll System Anti -Roll Clip Check Roof Dead Load 2.5 psf Roof Width Gravity Force 1.20 kip /ft Roof Collateral Load 5 psf Roof Roll Over Force 0.50 kip /ft Roof Live Load 35 psf Weak Axis Purlin Load 0.25 kip /ft Roof Snow Load 32 psf Weak Axis Moment Actual 12.50 kip -ft Number of Slopes 2 Roof Slope 5 :12 Bay Width 20 ft Width from Eave to Ridge 30 ft Controlling Gravity Load 40 psf # of Req'd Anti -roll Purlins 2 Roof Purlin 8 z 15 Weak Axis Moment Allowable 2.11 kip -ft Sy = 0.46 cu.in. Arti -roll CI'ips inadequate. See Sag Angle Design; I* SECTION 1. ,I* GENERAL C;"� D 0 : , =.L - 3 ! - nn ingham. L - =1 P ?.so. IL Carson City, NV - LaCrosse. VA Service Centers: Phenix City. AL tine 31uY A,4 Modesto, CA LaGrange. GA - Cohrmbus, !v!S - Focky Pvfount, NC - Jamestown, OH The information contained within the pamphlet is a technical description of an American metal building. it represents the application of the most modern methods of mathematics and engineering to the design of a building. Its purpose is to provide interested reviewers with the necessary design calculations, and other documentation required to readily verify structural integrity. Figure 1 is a drawing of an American building, illustrating the typical load carrying members; i.e., rigid frames, endwalls, purlins, girts, bracing and panels. A clear span rigid frame building was selected for this purpose; however, any of American's other standard designs, as described in the standard specifications for American Buildings Company pre - engineered Metal buildings, could also have been used to illustrate the basic building components. All designs are in strict accordance with the latest editions of AISC and AISI specifications, whichever is applicable. The stress distributions in all load carrying members are obtained by the most applicable methods of the universally accepted elastic theory, as applied to indeterminate structures. A digital computer is used for many of the complex and laborious design calculations. American buildings are designed to meet the most severe conditions of load combinations set by the specified building code, but not less than the following: a) Building dead plus roof live load (or snow) uniformly distributed over the horizontal projection of the roof area. b) Building dead load plus wind load applied as pressure and suction normal to the building surfaces. c) Building dead load plus wind load plus 1/2 roof snow load. d) Building dead load plus roof snow load plus 1/2 wind load. Other combinations and applications of loads are incorporated into the design of a building when required. Occasionally these special design conditions can not be handled through one of our standard design formats. If this occurs, special hand calculations will be included. Subsequent sections of this report present the detailed design calculations and their necessary explanations. These are Section 2, Rigid Frame; Section 3, Column and Beam Endwail; Section 4, Purlins and Girts; Section 5, Roof and Wall Panels and Section 6, Miscellaneous and Special Conditions. SUBJECT TO CHANGE WTMOUTNOT/CE . - _ = -,. w �. "` �FEC77VE SEPTEMBER 9`'1887 Section 1 Page 1 • '- l :CLEAR 3uildings Company 1) Manual of Steel Construction A.I.S.C. 1989, Ninth Edition with Supplement No. 1 2) _ "Single Span Riaid Frames in SteeP' by John D. Griffiths, A.I.S.C., 1984. 3) North American Specification for the Design of Cold Formed Steel Structural Members NASPEC, 2001 Edition. 4) Structural Steel Design by L.S. Beedle, et al, Fritz Engineering Laboratory, Civil Engineering Department, Lehigh University, 1962. 5) Metal Building Systems Manual 2002 Edition. SUBJECT FO;CHANGEWITHQUTNOT/CE - ����_ . ��F �Tl!/E;SEPTEMBERB ADO =) is I, J Section 1 Page 3 2� SBCTION 2 RIGID FAME 40 0 0 Cl - 6 1 1 i 2ZLt- Locations: =mea RL - 3ir� °',L ED Paso. IL Carson Ci NV - LaCrosse, VA Sarvica Centers: Ph=_rix City. AL - Pine Bluff. AR - Modesto, CA LaGrange, GA - Columbus, MS - Rocky Mount, NC - Jamestown, OH 9519 Will Rigid frame analysis and design is a very exacting task. American Buildings Company has developed a computer program that permits detailed analysis and design to be performed for steel frames. The following is a brief description of this program. Essentially the program combines the STIFFNESS METHOD of structural design theory with MATRIX mathematics operations. All of this is possible by the utilization of digital computer capabilities. The inherent speed of the computations permits the use of elaborate mathematical techniques which would be impossible by hand computations. These techniques along with the completely rigorous structural theory approach give technically precise and accurate results. The program consists of seven portions which are as follows: 1) Geometry input 2) Loading input and Stiffness Computation 3) Equivalent Forces Computations 4) Solution for Displacements 5) Reactions and Member Force Computation 6) Stress Analysis 7) Design Decisions Geometry: The general structural configuration that the program can analyze or design is depicted in Figure 2, it shows a gable frame with vertical sidewalls, and a roof sloping downward on both sides of the ridge. The rafters may be supported at intermediate points by interior columns. Each sidewall column or rafter may be composed of a number of segments; these segments may be prismatic or tapered, with "I" shaped cross - sections. The interior columns must be prismatic, but may be "I" sections or pipes. The bases of sidewalls and interior columns may be at different levels. The left and right sidewali heights and roof slopes may be unequal. SUBJECT TO CHANGE lNITHOUT NOTICE; ; c - ;�FECTlV6 °5Fl?7FMBEh�r ?997 Section 2 Page 1 4) • 0 Support and Loadings: n7ar ran B 'Idings Company nt Eufairia. AL - Bir'ningha;n. -.L - E1 Paso, iL Carson City. NV - LaCrosse. VA Service Centers: Phenix City, AL - Pine 31u=' R - Alf odasto. CA LaGrange. GA - Columbus, MiS - Rocky Mount. NC - Jamestown, OH FIGURE Z Typical Configuration of Frame The column bases may be specified pinned or fixed; the tops of interior columns may be specified pinned or fixed to the rafters. Uniformly distributed dead and live loads and wind loads are considered to be transmitted to the frame at and by the girts and purlins which are at specified spacings. In addition, concentrated forces and moments may be specified at any location on the frame, thus permitting the inclusion of overhangs, cranes, and bracket loads, etc.. Input: The input to the program consists of information on building geometry, web depths at critical locations, column locations, girts and purlins, loading descriptions, material properties and stress criteria. If analysis only is required, the member cross - section details are input. If it is to be designed, inventories'of flanges sizes and web thicknesses, and pipe sizes are used. SUBJECT TO GHANGEWITHOUTNOTICE r „ = gECSEPTEMBER7.' ?997 Section 2 Page 2 i s 0 American Building's Company mt;t Locst.ons: __rau'a. L 3irmingham. -1 Paso, tL Carson City. NV - Lacrosse, VA Service Center: Phenix City. AL - Pins stuff, AR - Modesto, CA LaGrange. GA - Columbus, MS - Rocky Mount, NC - Jamestown, ON Analysis: In the analysis option no decision making is done concerning member selection. From the.information supplied, which includes all member sizes, the program develops the precise centerline geometry of the frame. The analysis is carried out on the line configuration, composed of straight line segments ( "Members ") defined by the joints and otherjunction points called "Nodes ". All the loads are transformed into equivalent forces and moments and applied at Node Points, The direct stiffness method of matrix structural elastic analysis is adopted. The member stiffnesses are computed, and superposed to yield the force - displacement relations for the entire frame. Stiffness coefficients and equivalent end actions for tapered members are obtained by numerical analysis. The Nodal displacements for the specified support and loading conditions are solved by a matrix block recursion routine. The support reactions and member end forces and moments are then calculated. Finally, the most critical and shear stresses along each member are computed, and checked against allowable criteria according to AISC Specifications. The most critical stresses are those with the greatest ratio when compared to allowable stresses. The program analyzes the frame for each specified loading combination. Design: In the design option, a frame is determined by an iterative process of analysis and design. Initiated by the Analysis of a frame approximated from the specified flange, web and pipe inventories, the design proceeds in cycles of analysis, criteria checks, selection of fresh sections, and reanalysis until a satisfactory frame is obtained. When the design is,complete, the program will analyze and check the frame for each specified loading combination. Output: The output may be requested at various levels of detail. The basic output consists of a listing of input data, centerline geometry, reactions, member end reactions, Nodal displacements, member sizes, criteria checks, bolted connections, anchor bolts and base plates. More exhaustive information may be extracted if desired. SUBJECTTO CHANGE VVITHOUT NOTICE T' - y - FEGTIVE SEPTEMBER?; 9997 Section 2 Page 3 • • 2:1- �tiDy` tel: a�rff� 11 tJ'LJ 1G1rJgrs Company ?t• Loc= !iDra: =",.= tI1R.. =.L - Birmingham. AL - i_I Paso. iL Carson City, NV - Lacrosse. VA Service C.',nters: Phenix City. AL - Pine 31uf. AR - Modesto. CA LaGrange. GA - Columbus, MS - Rocky Mount, NC - Jamestown, OH In accordance with section C5.6, Metal Building Manufacturers Association (MBMAP'86), many metal building systems are designed with moment- resistant frames aligned in the transverse direction to resist lateral loading. Experience has shown that the lateral deflection of the frames under wind loading is far less than predicted by the usual analytical procedures. Consideration of just three factors undoubtedly accounts for most of this apparent anomaly: 1) drift calculations are traditionally based bn full design loads, • 2) the usual analytical procedures are based on "bare" frames (skin action of the roof diaphragms is neglected) and the moment- rotation stiffnesses of the "pinned" bases are taken as zero, and 3) load sharing has not been taken into account, SUBJECT TO CHANGEWJTHOUTWHCE -. _ ,. .�fEGTIV EPTEMBER� 1997 Section 2 Page 4 Bare frame deflections are given on the computer printout for each node point. By considering the complete metal building system, the lateral deflection could be reduced to as much as 1/10 of that for the bare frame. The lateral deflection limitation is based upon the judgment of the design engineer unless specified otherwise. 0 0 • a ' • may ;�_... AM,I "RIC-'AN Bl.;II.,DINGS C.:l)MP MSA 29.1 Page 1 of 43 Job:517391O1 C: \ABCP \FRAMES \517391O1.O1A 11/21/07 11:14:53 • STEEL FRAME ANALYSIS AND DESIGN BY THE DIRECT STIFFNESS METHOD DESIGN BY 1989 AISC Manual of Steel Construction ASD Ninth Edition AND MBMA AS APPLICABLE BUILDING DESCRIPTION - - RF @FL.2 -3 51739101 FRAME WIDTH BAY SPACING ROOF SLOPES INT. COLUMNS MEMBERS NODES 60.000 ft. 20.000 ft. 2 0 6 7 LEFT WALL SLOPE W /VERT. GIRT DEPTH GIRT SPACING(S) --------- - - - - -- 0.000/ 12.0 8.00 in. 1 @ 88.00 in. 1 @ 72.00 in. 1 @ 80.00 in. NODE LOCATION WEB DEPTH CONNECTION BASE 1 0.000 ft. 10.000 in. PINNED SAVE 2 20.000 ft. 28.000 in. RIGID ROOF SLOPE 1 SLOPE W /HORIZ. PURLIN DEPTH TYP. PURLIN SPACE --------- - - - - -- 5.000/ 12.0 8.00 in. 33.23 in. NODE LOCATION WEB DEPTH CONNECTION LEFT END 2 -0.000 ft. 28.000 in. RIGID SPLICE 3 11.538 ft. 18.000 in. RIGID RIGHT END 4 30.000 ft. 18.000 in. RIGID ROOF SLOPE 2 SLOPE W /HORIZ. PURLIN DEPTH TYP. PURLIN SPACE --------- - - - - -- - 5.000/ 12.0 8.00 in. 33.23 in. NODE LOCATION WEB DEPTH CONNECTION LEFT END 4 30.000 ft. 18.000 in. RIGID SPLICE 5 48.462 ft. 18.000 in. RIGID RIGHT END 6 60.000 ft. 28.000 in. RIGID RIGHT WALL SLOPE W /VERT. GIRT DEPTH GIRT SPACING(S) --------- - - - - -- - 0.000/ 12.0 8.00 in. 1 @ 88.00 in. 1 @ 72.00 in. 1 @ 80.00 in. NODE LOCATION WEB DEPTH CONNECTION EAVE 6 20.000 ft. 28.000 in. RIGID BASE 7 0.000 ft. 10.000 in. PINNED r� �J LJ MSA 29.1 Job:517391O1 C: \ABCP \FRAMES \517391O1.01A MEMBER SIZES i FRAME SELF - WEIGHT AS APPLIED DEAD LOAD MEMBER MEMBER WEIGHT CONNECTION WEIGHT (lbs) (lbs) 1 402.4 95.3 2 279.6 3 373.7 41.4 4 373.7 5 279.6 95.3 6 402.4 Total: 21ll.4 232.1 • • 0 Page 2 of 43 11/21/07 11:14:53 WEB -TO- FLANGE OUTER FLANGE WEB INNER FLAN GE MEMBER WIDTH THICKNESS 0.1250 THICKNESS WIDTH THICKNESS 55.0 (inches) 0.1250 55.0 (inches) (inches) 1 5.00 X 0.2500 0.1345 5.O0 X 0.5000 2 5.00 X 0.3125 0.1875 5.00 X 0.3125 3 5.00 X 0.3125 0.1345 5.00 X 0.3125 4 5.00 X 0.3125 0.1345 5.00 X 0.3125 5 5.00 X 0.3125 0.1875 5.00 X 0.3125 6 5.00 X 0.2500 0.1345 5.00 X 0.5000 FRAME SELF - WEIGHT AS APPLIED DEAD LOAD MEMBER MEMBER WEIGHT CONNECTION WEIGHT (lbs) (lbs) 1 402.4 95.3 2 279.6 3 373.7 41.4 4 373.7 5 279.6 95.3 6 402.4 Total: 21ll.4 232.1 • • 0 Page 2 of 43 11/21/07 11:14:53 WEB -TO- FLANGE YIELD STRESS WELD FLANGE WEB (inches) (ksi) (ksi) 0.1250 55.0 55.0 0.1875 55.0 55.0 0.1250 55.0 55.0 0.1250 55.0 55.0 0.1875 55.0 55.0 0.1250 55.0 55.0 _� 0 1 MSA 29.1 Page 3 of 43 Job:51739101 C KABC O FRAME0517391O1.01A 11/21/07 11:14:53 NODE COORDINATES NODE K Y (in.) (in.) 1 13.50 0.00 2 22.50 225.00 3 141.92 280.17 4 360.00 371.04 5 578.08 280.17 6 697.50 225.00 7 706.50 0.00 0 • • . ;1 MSA 29.1 Page 4 of 43 Job:51739101 C: \ABCP \FRAMES \51739101.01A 11/21/07 11:14:53 LOAD CASE 1 : D +C No Stress Check; No Deflection Limits UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 0.00 0.00 7.50 0.00 0.00 0.00 0.00 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip -ft) 1 1 18.10 0.00 -0.57 2.11 2 4 ----------------------------------------------------------------------------------- 18.10 0.00 -0.57 -2.11 • is LOAD CASE 2 : D No Stress Check; No Deflection Limits UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 0.00 0.00 2.50 0.00 0.00 0.00 0.00 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip -ft) 1 1 18.10 0.00 - 0.27 1.00 2 4 ----------------------------------------------------------------------------------- 18.10 0.00 -0.27 -1.00 LOAD CASE 3 L No Stress Check; L /60 H Deflection Limit; L /180 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * C1 C2 C3 C4 (psf) (psf) (psf) 12.00 0.00 0.00 0.00 0.00 0.00 0.00 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip -ft) 1 1 18.10 0.00 -1.20 4.44 2 4 -------------------------------------------------------------------------- 18.10 0.00 -1.20 -4.44 - - - - -- - -- LOAD CASE 4 : SEU- No Stress Check; L /60 H Deflection Limit; L/181 V Deflection Limit UNIFORM LOADS * * WIND COEFFICIENTS LIVE WIND DEAD * C1 C2 C3 C4 (psf) (psf) (psf) 35.00 0.00 0.00 0.00 0.00 0.00 0.00 /c�, MSA 29.1 Page 5 of 43 Job:51739101 C: \ABCP \FR_AMES \51739101.01A 11/21/07 11:14:53 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip -ft) 1 1 18.10 0.00 -2.10 7.70 2 4 18.10 0.00 -2.10 -7.70 LOAD CASE 5 : S No Stress Check; L /60 H Deflection Limit; L/181 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 31.50 0.00 0.00 0.00 0.00 0.00 0.00 CONCENTRATED LOADS • * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip -ft) 1 1 18.10 0.00 - 4.20 15.54 2 4 ----------------------------------------------------------------------------- 18.10 0.00 -4.20 -15.54 - - - - -- LOAD CASE 6 : SUL1<- No Stress Check; L /60 H Deflection Limit; L /181 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY . LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END (ft.) (ft.) * (psf) (psf) * (psf) (psf) 1 2 0.00 30.00 0.00 0.00 -52.50 -52.50 2 3 0.00 30.00 0.00 0.00 -9.45 -9.45 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT (ft.) * (kips) (kips) (kip -ft) 1 1 18.10 0.00 -3.15 11.55 2 4 18.10 0.00 -1.89 -6.93 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 7 : SUR1 -> No Stress Check; L /60 H Deflection Limit; L /181 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * C1 C2 C3 C4 (psf) (psf) (psf) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 * * HORIZONTAL 4 VERTICAL MSA 29.1 Page 6 of 43 Job:51739101 C: \ABCP \FRAMES \51739101.01A 11/21/07 11:14:53 DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END (ft.) (ft.) * (psf) (psf) * (psf) (psf) 1 2 0.00 30.00 0.00 0.00 -9.45 -9.45 2 3 0.00 30.00 0.00 0.00 -52.50 -52.50 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT (ft.) * (kips) (kips) (kip -ft) 1 1 18.10 0.00 -1.89 6.93 2 4 18.10 0.00 -3.15 -11.55 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 8 : WMIN -> No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS LIVE * WIND DEAD (psf) (psf) (psf) 0.00 0.00 0.00 WIND COEFFICIENTS r� U P Cl C2 C3 C4 0.00 0.00 0.00 0.00 * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END * (ft.) (ft.) * (psf) (psf) * (psf) (psf) 1 1 0.00 20.00 10.00 10.00 0.00 0.00 2 2 0.00 30.00 10.00 10.00 0.00 0.00 CONCENTRATED LOADS * * LOA D COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip -ft) 1 1 18.10 0.00 1.89 -7.00 2 4 18.10 0.00 0.51 1.90 ----------------------------------------------------------------------------------- LOAD CASE 9 : WMIN<- , No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END * (ft.) (ft.) * (psf) (psf) * (psf) (psf) 1 4 0.00 20.00 -10.00 -10.00 0.00 0.00 2 3 0.00 30.00 -10.00 -10.00 0.00 0.00 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip -ft) 1 1 18.10 0.00 0.51 -1.90 2 4 18.10 0.00 1.89 7.00 ----------------------------------------------------------------------------- - - - - -- / L4- MSA 29.1 Page 7 of 43 Job:517391O1 C: \ABCP \FRAMES \517391O1.01A 11/21/07 11:14:53 LOAD CASE 10 : WL" No Stress Check; L/42 H Deflection Limit; L /126 V Deflection Limit LOAD CASE 13 : W2 -> No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) * 0.00 16.83 0.00 -0.27 -0.51 -0.19 -0.27 CONCENTRATED LOADS * 4 LOAD COMPONENTS UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 0.00 16.83 0.00 -0.63 -0.87 -0.87 -0.63 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT (ft.) * (kips) (kips) (kip-ft) 1 1 18.10 0.00 0.88 -3.22 2 4 ----------------------------------------------------------------------------------- 18.10 0.00 0.88 3.22 LOAD CASE 11 : W1 -> • No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit . UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 0.00 16.83 0.00 0.72 -0.27 -0.29 -0.23 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip -ft) 1 1 18."10 0.00 1.89 -7.00 2 4 ----------------------------------------------------------------------------------- 18.10 0.00 0.51 1.90 LOAD CASE 12 : W1<- No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit • UNIFORM LOADS * WIND COEFFICIENTS LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 0.00 16.83 0.00 -0.23 -0.29 -0.27 0.72 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT (ft.) * (kips) (kips) (kip -ft) 1 1 18.10 0.00 0.51 -1.90 2 4 ----------------------------------------------------------------------------- 18.10 0.00 1.89 7.00 - - - - -- LOAD CASE 13 : W2 -> No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) * 0.00 16.83 0.00 -0.27 -0.51 -0.19 -0.27 CONCENTRATED LOADS * 4 LOAD COMPONENTS MSA 29.1 Page 8 of 43 Job:51739101 C: \ABCP \FRAMES \51739101.01A 11/21/07 11:14:53 LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip -ft) 1 1 18.10 0.00 1.89 -7.00 2 4 ----------------------------------------------------------------------------------- 18.10 0.00 0.51 1.90 LOAD CASE 14 : W2<- No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * C1 C2 C3 C4 (psf) (psf) (psf) 0.00 16.83 0.00 -0.27 -0.19 -0.51 -0.27 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip -ft) 1 1 18.10 0.00 0.51 -1.90 2 4 ----------------------------------------------------------------------------------- 18.10 0.00 1.89 7.00 LOAD CASE 15 : W3 -> No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 0.00 16.83 0.00 0.36 -0.63 -0.65 -0.59 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip -ft) 1 1 2 4 ----------------------------------------------------------------------------------- 18.10 18.10 0.00 0.00 1.89 0.65 -7.00 2.40 LOAD CASE 16 : W3<- No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * C1 C2 C3 C4 (psf) (psf) (psf) 0.00 16.83 0.00 -0.59 -0.65 -0.63 0.36 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip - ft) 1 1 18.10 0.00 0.65 -2.40 2 4 ----------------------------------------------------------------------------- 18.10 0.00 1.89 7.00 - - - - -- LOAD CASE 17 : W4 -> No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS 36 MSA 29.1 Page 9 of 43 Job:51739101 C: \ABCP \FRAMES \51739101.01A 11/21/07 11:14:53 LIVE WIND DEAD * * C1 C2 C3 C4 (psf) (psf) (psf) 0.00 16.83 0.00 -0.63 -0.87 -0.55 -0.63 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip -ft) 1 1 18.10 0.00 1.89 -7.00 2 4 ----------------------------------------------------------------------------------- 18.10 0.00 0.56 2.04 LOAD CASE 18 : W4 <- No Stress Check; L/42 H Deflection Limit; L/1 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND (psf) (psf) (psf) DEAD * C1 C2 C3 C4 0.00 16.83 0.00 -0.63 -0.55 -0.87 -0.63 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT (ft.) * (kips) (kips) (kip -ft) 1 1 18.10 0.00 0.56 -2.04 2 4 ----------------------------------------------------------------------------------- 18.10 0.00 1.89 7.00 LOAD CASE 19 : E -> No Stress Check; L /60 H Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * C1 C2 C3 C4 (psf) (psf) (psf) A- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip -ft) 1 1 20.00 1.48 0.00 0.00 2 4 20.00 1.48 0.00 0.00 3 1 17.65 0.12 0.00 0.00 4 4 ----------------------------------------------------------------------------------- 17.65 0.12 0.00 0.00 LOAD CASE 20 : E <- No Stress Check; L /60 H Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * C1 C2 C3 C4 (psf) (psf) (psf) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip -ft) 3� MSA 29.1 Page 10 of 43 Job:51739101 C KAMP ORAMES01739101.01A 11/21/07 11:14:53 1 1 20.00 -1.48 0.00 0.00 2 4 30.00 -1.48 0.00 0.00 3 1 17.65 -0.12 0.00 0.00 4 4 17.65 - 0.12 0.00 0.00 LOAD CASE 21 : WE -> No Stress Check; No Deflection Limits UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * C1 C2 C3 C4 (psf) (psf) (psf) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT • * (ft.) * (kips) (kips) (kip -ft) 1 1 20.00 4.29 0.00 0.00 2 4 20.00 4.29 0.00 0.00 3 1 17.65 0.35 0.00 0.00 4 4 ----------------------------------------------------------------------------------- 17.65 0.35 0.00 0.00 LOAD CASE 22 : QE<- No Stress Check; No Deflection Limits UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) * 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * * HORIZONTAL VERTICAL MOMENT (ft.) (kips) (kips) (kip -ft) 1 1 20.00 -4.29 0.00 0.00 2 4 20.00 - 4.29 0.00 0.00 3 1 17.65 -0.35 0.00 0.00 4 4 ----------------------------------------------------------------------------- 17.65 - 0.35 0.00 0.00 - - - - -- LOAD CASE 23 D +C + L Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.466 ---------------------------------------------------------------------- - - - - -- - - - - - -- LOAD CASE 24 D +C + SEU- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.988 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 25 D +C + S Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.919 3q MSA 29.1 Page 11 of 43 Job:51739101 C KAM PORAMES01739101.01A 11/21/07 11:14:53 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 26 D +C + SUL1<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.961 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 27 D +C + SUR1 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.961 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 28 D + WMIN -> Check By ASD; No Deflection Limits . Highest check ratio achieved in this load case = 0.436 --------------------------------------------------------------------------- - - - - -- LOAD CASE 29 D + WMIN< - Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.436 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 30 D + WL^ Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.316 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 31 D + W1 -> Check By ASD; No Deflection Limits • Highest check ratio achieved in this load case = 0.330 ----------------------------------------------------------------------------------- LOAD CASE 32 D + Wl<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.330 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 33 : D + W2 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.227 -------------------------------------------------------------------- - - - - -- --- - - - - -- LOAD CASE 34 : D + W2<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.227 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 35 : D + W3 -> Check By ASD; No Deflection Limits MSA 29.1 Pace 12 of 43 Job:51739101 C: \ABCP \FRAMES \51739101.01A 11/21/07 11:14:53 Highest check ratio achieved in this load case = 0.399 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 36 D + W3<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.399 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 37 : D + W4 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.325 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 38 : D + W4<- Check By ASD; No Deflection Limits 0 Highest check ratio achieved in this load case = 0.325 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 39 : 1.06D +C + 0.70E -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.315 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 40 : 1.06D +C + 0.70E<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.315 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 41 : D +C + 0.75L + 0.75WMIN -> Check By ASP; No Deflection Limits Highest check ratio achieved in this load case = 0.552 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 42 : D +C + 0.75L + 0.75WMIN <- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.552 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 43 : D +C + 0.75L + 0.75WL^ Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.259 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 44 : D +C + 0.75L + 0.75W1 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.449 ----------------------------------------------------------------------------- - - - - -- `I, .o MSA 29.1 Page 13 of 43 Job:51739101 C:\AMP ORAMES \51739101.011, 11/21/07 11:14:53 LOAD CASE 45 D +C + 0.75L + 0.75W1 <- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.449 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 46 D +C + 0.75L + 0.75W2 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.404 --------------------------------------------------------------------------- - - - - -- LOAD CASE 47 : D +C + 0.75L + 0.75W2 <- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.404 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 48 : D +C + 0.75L + 0.75W3 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.420 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 49 D +C + 0.75L + 0.75W3 <- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.420 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 50 D +C + 0.75L + 0.75W4 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.374 ---------------------------------------------------------------------------------- LOAD CASE 51 : D +C + 0.75L + 0.75W4<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.374 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 52 : D +C + 0.75S + 0.75WMIN -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.890 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 53 : D +C + 0.75S + 0.75WMIN<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.890 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 54 : D +C + 0.75S + 0.75WL' Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.548 MSA 29.1 Page 14 of 43 Job:51739101 C: \ABCP \FRAMES \51739101.01A 11/21/07 11:14:53 LOAD CASE 55 D +C + 0.75S + 0.75W1 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.782 LOAD CASE 56 D +C + 0.75S + 0.75W1 <- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.782 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 57 D +C + 0.75S + 0.75W2 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.705 ------- ------ ------ --------- ---- ---- ----- ----- --- ----- ---------------------- - - - - -- LOAD CASE 58 : D +C + 0.75S + 0.75W2<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.705 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 59 : D +C + 0.75S + 0.75W3 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.711 ----------------------------------------------------------------------------------- LOAD CASE 60 D +C + 0.75S + 0.75W3 <- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.711 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 61 : D +C + 0.75S + 0.75W4 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.647 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 62 : D +C + 0.75S + 0.75W4<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.647 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 63 D +C + 0.75SUL1<- + 0.75WMIN <- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.869 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 64 : D +C + 0.75SUL1<- + 0.75W1 <- Check By ASD; No Deflection Limits L�-2 MSA 29.1 Page 15 of 43 Job:51739101 C: \ABCP \FRAMES \51739101.01A 11/21/07 11:14:53 Highest check ratio achieved in this load case = 0.760 ----------------------------------------------------- - - - - -- LOAD CASE 65 : D +C + 0.75SUL1<- + 0.75W2 <- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.797 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 66 : D +C + 0.75SUL1 <- + 0.75W3<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.632 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 67 : D +C + 0.75SUL1<- + 0.75W4<- Check By ASD; No Deflection Limits 0 Highest check ratio achieved in this load case = 0.794 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 63 : D +C + 0.75SUR1-> + 0.75WMIN -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.069 --------------------------------------------------------- LOAD CASE 69 : D +C + 0.75SUR1 -> + 0.75W1 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.760 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 70 D +C + 0.75SUR1 -> + 0.75W2 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.797 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 71 : D +C + 0.75SUR1 -> + 0.75W3 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.63^ ----------------------------------------------------------------------------- - - - - -- LOAD CASE 72 : D +C + 0.75SUR1 -> + 0.75W4 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.794 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 73 : 1.07D +C + 0.75L + 0.75E -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.523 ----------------------------------------------------------------------------- - - - - -- MSA 29.1 Page 16 of 43 Job:517391O1 C: \ABCP \FRAMES \51739101.01A 11/21/07 11:14:53 LOAD CASE 74 : 1.07D +C + 0.75L + 0.75E<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.528 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 75 : 1.07D +C + 0.755 + 0.75E -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.865 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 76 : 1.07D +C + 0.755 + 0.75E<- Check By ASP; No Deflection Limits Highest check ratio achieved in this load case = 0.865 ----------------------------------------------------------------------------------- LOAD CASE 77 : 0.60D + WMIN -> • Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.433 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 78 : 0.60D + WMIN <- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.433 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 79 : 0.60D + WL" Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.331 ----------------------------------------------------------------------------- - - - - -� LOAD CASE 80 : 0.60D + Wl -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.339 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 81 : 0.60D + Wl<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.339 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 82 : 0.60D + W2 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.254 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 83 : 0.60D + W2<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.254 1-141 MSA 29.1 Page 17 of 43 Job:51739101 C: \ABCP \FRAMES \51739101.01A 11/21/07 11:14:53 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 34 : 0.60D + W3 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.403 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 35 : 0.60D + W3<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.403 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 36 : 0.60D + W4 -> Check By ASD; No Deflection Limits • Highest check ratio achieved in this load case = 0.340 0 ------- ------ ------ --------- ---- ---- ----- ----- --- ----- ----------------------- - - - - - LOAD CASE 37 : 0.60D + W4<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.340 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 33 : 0.54D +C + 0.70E -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.233 --------------------------------------------------------------------------- - - - - -- LOAD CASE 39 0.54D +C + 0.70E<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.233 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 90 : 0.76D +C + 0.5952E -> Check By ASD Special Seismic; No Deflection Limits ----------------------------------------------------------------------------- - - - - -- LOAD CASE 91 : 0.76D +C + 0.5951E<- Check By ASD Special Seismic; No Deflection Limits ----------------------------------------------------------------------------- - - - - -- LOAD CASE 92 : 0.43D +C + 0.59QE -> Check By ASD Special Seismic; No Deflection Limits ----------------------------------------------------------------------------- - - - - -- LOAD CASE 93 : 0.43D +C + 0.590E<- Check By ASD Special Seismic; No Deflection Limits MSA 29.1 Page 18 of 43 Job:51739101 C: \ABCP \FRAMES \51739101.01A 11/21/07 11:14:53 0 -1 MAXIMUM CHECK RATIOS PER 1984 AISC OUTER FLANGE * WEB * INNER FLANGE * OUTER FLG WEB SHEAR INNER FLG MEM WIDTH THICK * THICK * WIDTH THICK * RATIO LOAD PATIO LOAD RATIO LOAD (in) (in) (in) (in) (in) 1 5.00 0.2500 0.1345 5.00 0.5000 0.908 24 0.677 24 0.980 24 2 5.00 0.3125 0.1875 5.00 0.3125 0.868 26 0.961 26 0.988 24 3 5.00 0.3125 0.1345 5.00 0.3125 0.927 26 0.902 26 0.853 26 4 5.00 0.3125 0.1345 5.00 0.3125 0.927 26 0.902 26 0.853 26 5 5.00 0.3125 0.1875 5.00 0.3125 0.868 26 0.961 26 0.988 24 6 5.00 0.2500 0.1345 5.00 0.5000 0.908 24 0.677 24 0.980 24 0 -1 MSA 29.1 Page 19 of 43 Job:51739101 C: \ABCP \FRAMES \51739101.01A 11/21/07 11:14:53 0 40 BOLTED SPLICE SUMMARY PLATE * BOLTS * * WIDTH/ * * CONNECTION RESISTANCE * MOMENT THICK. * ROWS CAGE DIA. * TENSION COMPRESSION MOMENT * ARM YT YC NODE (in.) * LINES (in.)* (kips) (kips) (kip -ft) * (in.) (in.) (in.) 2 5.00X TOP 3 2 0.750 64.2 91.7 178.9 27.55 6.08 0.90 0.500 BOT. 2 2 0.750 49.6 51.1 120.1 28.60 5.04 0.89 4 5.00X TOP 2 2 0.750 52.9 55.8 85.6 18.89 0.91 0.37 0.500 BOT. 2 2 0.750 44.1 54.2 78.3 19.14 0.73 0.31 6 5.0OX TOP 3 2 0.750 64.2 91.7 178.9 27.55 6.08 0.90 0.500 BOT. 2 2 0.750 49.6 51.1 120.1 28.60 5.04 0.89 • s 0 40 MSA 29.1 Page 20 of 43 Job:517391O1 C: \ABCP \FRAMES \517391O1.01A 11/21/07 11:14:53 FRAME SUPPORTS * * SUP. * NODE 1 1 7 BASE PLATE THICKNESS WIDTH (in.) (in.) 0.500 5.000 0.500 5.000 * LENGTH * NO (in.) 11.500 4 11.500 4 ANCHOR BOLTS DIAMETER AREA (in.) (in2) 0.750 1.767 0.750 1.767 CONNECTION DESIGN FORCES AT SUPPORTS BOLT RESISTANCE LOAD HORIZONTAL VERTICAL MOMENT SHEAR TENSION NODE CASE (kips) (kips) (kip -ft) (kips) (kips) 1 1 2.01 6.24 0.00 2 0.84 2.94 0.00 3 2.74 8.40 -0.00 4 8.13 23.10 0.00 5 7.07 23.10 -0.00 6 7.13 28.38 -0.00 7 7.13 13.83 -0.00 8 -3.70 -3.75 -0.00 9 2.07 1.35 0.00 10 -1.32 -9.66 -0.00 11 -4.25 -5.87 -0.00 12 1.05 -2.19 -0.00 13 0.28 -5.72 0.00 14 -1.07 -3.75 -0.00 15 16 -4.55 0.76 - 9.49 -5.97 0.00 0.00 17 -0.02 -9.36 -0.00 18 -1.37 -7.43 0.00 19 -1.60 -1.03 0.00 20 1.60 1.03 -0.00 21 -4.65 -3.00 0.00 22 4.65 3.00 -0.00 23 4.74 14.64 - 0.00 17.67 35.34 24 10.14 29.34 -0.00 17.67 27.70 25 9.08 29.34 0.00 17.67 29.61 26 9.13 34.62 0.00 17.67 29.51 27 9.13 20.07 0.00 17.67 29.51 28 -2.86 - 0.81 0.00 17.67 35.34 2^9 2.91 4.29 0.00 17.67 35.34 30 -0.47 -6.72 - 0.00 17.67 35.34 31 -3.41 - 2.92 0.00 17.67 35.34 32 1.90 0.75 - 0.00 17.67 35.34 33 1.12 -_ ^.78 - 0.00 17.67 35.34 34 -0.22 -0.80 - 0.00 17.67 35.34 35 -3.70 -6.55 0.00 17.67 35.34 36 1.60 -3.03 - 0.00 17.67 35.34 37 0.82 - 6.41 0.00 17.67 35.34 38 -0.52 - 4.49 0.00 17.67 35.34 t+ q MSA 29.1 Job:51739101 Ll L� 7 Page 21 of 43 C: \ABCP \FRAMES \51739101.01A 11/21/07 11:14:53 39 0.99 5.84 - 0.00 17.67 35.34 40 3.23 7.29 - 0.00 17.67 35.34 41 1.28 9.73 0.00 17.67 35.34 42 5.61 13.56 0.00 17.67 35.34 43 3.07 5.30 0.00 17.67 35.34 44 0.87 8.14 - 0.00 17.67 35.34 45 4.85 10.90 - 0.00 17.67 35.34 46 4.27 8.25 0.00 17.67 35.34 47 3.26 9.73 0.00 17.67 35.34 48 0.65 5.42 - 0.00 17.67 35.34 49 4.63 8.06 - 0.00 17.67 35.34 50 4.04 5.53 0.00 17.67 35.34 51 3.03 6.97 0.00 17.67 35.34 52 4.54 20.76 -0.00 17.67 35.34 53 8.86 24.58 - 0.00 17.67 30.00 54 6.32 16.32 0.00 17.67 34.57 55 4.12 19.17 0.00 17.67 35.34 56 8.10 21.93 - 0.00 17.67 31.36 57 7.52 19.28 0.00 17.67 32.41 58 6.51 20.76 0.00 17.67 34.23 59 3.90 16.45 0.00 17.67 35.34 60 7.88 19.09 - 0.00 17.67 31.76 61 7.30 16.55 0.00 17.67 32.8 1 62 6.29 18.00 0.00 17.67 34.63 63 8.90 28.54 - 0.00 17.67 29.93 64 8.14 25.89 0.00 17.67 31.29 65 6.55 24.72 - 0.00 17.67 34.16 66 7.92 23.05 0.00 17.67 31.69 67 6.33 21.96 -0.00 17.67 34.56 68 4.57 13.80 0.00 17.67 35.34 69 4.16 12.21 0.00 17.67 35.34 70 7.56 12.32 0.00 17.67 32.34 71 3.94 9.49 0.00 17.67 35.34 72 7.34 9.60 -0.00 17.67 32.74 73 2.97 12.10 0.00 17.67 35.34 74 5.37 13.65 0.00 17.67 35.34 75 6.23 23.13 - 0.00 17.67 34.74 76 8.63 24.68 0.00 17.67 30.42 77 -3.08 - 1.52 0.00 17.67 35.34 78 2.68 3.59 - 0.00 17.67 35.34 79 -0.70 - 7.43 0.00 17.67 35.34 80 -3.64 -3.63 0.00 17.67 35.34 81 1.67 0.04 -0.00 17.67 35.34 82 0.90 -3.49 - 0.00 17.67 35.34 83 -0.45 -1.51 - 0.00 17.67 35.34 84 -3.93 -7.26 0.00 17.67 35.34 85 1.38 - 3.74 0.00 17.67 35.34 86 0.60 -7.12 - 0.00 17.67 35.34 87 -0.75 -5.19 0.00 17.67 35.34 88 0.09 3.17 -0.00 17.67 35.34 89 2.32 4.62 - 0.00 17.67 35.34 90 -1.14 3.25 - 0.00 17.67 35.34 91 4.32 6.78 0.00 17.67 35.34 92 -1.63 1.83 - 0.00 17.67 35.34 93 3.83 5.36 0.00 17.67 35.34 1 -2.01 6.24 -0.00 2 -0.84 2.94 0.00 0 1 4-� MSA 29.1 35.34 17.67 27.70 Job:51739101 C: \ABCP \FRAMES \51739101.01A 17.67 3 -2.74 8.40 -0.00 4 - 8.13 23.10 -0.00 5 -7.07 23.10 -0.00 6 - 7.13 13.83 0.00 7 - 7.13 28.38 -0.00 8 -2.07 1.35 0.00 9 3.70 - 3.75 0.00 10 1.32 -9.66 -0.00 11 -1.05 -2.19 0.00 12 4.25 -5.87 -0.00 13 1.07 - 3.75 0.00 14 -0.28 - 5.72 0.00 15 -0.76 -5.97 -0.00 16 4.55 -9.49 0.00 17 1.37 -7.43 0.00 18 0.02 -9.36 -0.00 19 -1.60 1.03 -0.00 20 1.60 - 1.03 0.00 21 - 4.64 3.00 -0.00 22 4.64 -3.00 0.00 23 - 4.74 14.64 -0.00 24 -10.14 29.34 0.00 25 -9.08 29.34 0.00 26 -9.13 20.07 -0.00 27 -9.13 34.62 0.00 28 -2.91 4.29 0.00 29 2.86 -0.81 -0.00 30 0.47 -6.72 0.00 31 -1.90 0.75 0.00 32 3.41 -2.92 -0.00 33 0.22 -0.80 -0.00 34 -1.12 -2.78 0.00 35 -1.60 - 3.03 0.00 36 3.70 -6.55 0.00 37 0.52 -4.49 -0.00 • 38 -0.82 -6.41 -0.00 39 -3.23 7.28 0.00 40 -0.99 5.84 -0.00 41 - 5.61 13.56 -0.00 42 -1.28 9.73 -0.00 43 -3.07 5.30 0.00 44 - 4.85 10.90 0.00 45 -0.87 8.14 0.00 46 - 3.26 9.73 0.00 47 - 4.27 8.25 -0.00 48 -4.63 8.06 0.00 49 -0.65 5.42 0.00 50 -3.03 6.97 -0.00 51 -4.04 5.53 0.00 52 - 8.86 24.58 0.00 53 - 4.54 20.76 0.00 54 -6.32 16.32 0.00 55 - 8.10 21.93 0.00 56 -4.12 19.17 0.00 57 -6.51 20.76 0.00 58 - 7.52 19.28 -0.00 59 -7.88 19.09 -0.00 60 -3.90 16.45 0.00 Page 22 of 43 11/21/07 11:14:53 17.67 35.34 17.67 27.70 17.67 29.61 17.67 - ^9.5"1 17.67 29.51 17.67 35.34 17.67 35.34 17.67 35.34 17.67 35.34 17.67 35.34 17.67 35.34 17.67 35.34 17.67 35.34 17.67 35.34 17.67 35.34 17.67 35.34 17.67 35.34 17.67 35.34 17.67 35.34 17.67 35.34 17.67 35.34 17.67 35.34 17.67 35.34 17.67 35.34 17.67 35.34 17.67 35.34 17.67 35.34 17.67 35.34 17.67 35.34 17.67 30.00 17.67 35.34 17.67 34.57 17.67 31.36 17.67 35.34 17.67 34.23 17.67 32.41 17.67 31.76 17.67 35.34 0 9 5-0 0 0 MSA 29.1 Job:51739101 Page 23 of 43 C: \ABCP \FRAMES \51739101.01A 11/21/07 11:14:53 61 -6.29 18.00 -0.00 17.67 34.63 62 - 7.30 16.55 - 0.00 17.67 32.81 63 - 4.57 13.80 - 0.00 17.67 35.34 64 - 4.16 12.21 0.00 17.67 35.34 65 - 7.56 12.32 0.00 17.67 32.34 66 -3.94 9.49 - 0.00 17.67 35.34 67 - 7.34 9.60 - 0.00 17.67 32.74 68 -8.90 28.54 0.00 17.67 29.93 69 -8.14 25.89 0.00 17.67 31.29 70 - 6.55 24.72 0.00 17.67 34.16 71 - 7.92 23.05 0.00 17.67 31.69 72 -6.33 21.96 - 0.00 17.67 34.56 73 - 5.37 13.65 0.00 17.67 35.34 74 - 2.97 12.10 - 0.00 17.67 35.34 75 -9.63 24.68 - 0.00 17.67 30.42 76 - 6.23 23.13 0.00 17.67 34.74 77 -2.68 3.59 - 0.00 17.67 35.34 78 3.08 -1.52 - 0.00 17.67 35.34 79 0.70 -7.43 - 0.00 17.67 35.34 80 -1.67 0.04 - 0.00 17.67 35.34 81 3.64 -3.63 0.00 17.67 35.34 82 0.45 -1.51 0.00 17.67 35.34 83 -0.90 -3.49 - 0.00 17.67 35.34 84 -1.38 -3.74 0.00 17.67 35.34 85 3.93 -7.26 0.00 17.67 35.34 86 0.75 -5.19 - 0.00 17.67 35.34 87 -0.60 -7.12 - 0.00 17.67 35.34 88 -2.32 4.62 -0.00 17.67 35.34 89 -0.09 3.17 0.00 17.67 35.34 90 -4.32 6.78 0.00 17.67 35.34 91 1.14 3.25 - 0.00 17.67 35.34 92 -3.83 5.36 - 0.00 17.67 35.34 93 1.63 1.83 0.00 17.67 35.34 MSA 29.1 Job:51739101 C: \ABCP \FRAMES \517391O1.01A SUPPORT REACTIONS 0 1 0 CASE 1 : U +C SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 2.01 6.24 0.00 2 7 -2.01 6.24 -0.00 CASE 3 : L SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip - ft) 1 1 2.74 8.40 -0.00 2 7 -2.74 8.40 -0.00 CASE 5 S SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 7.07 23.10 -0.00 2 7 -7.07 23.10 -0.00 CASE 7 SUR1 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 7.13 13.83 -0.00 2 7 -7.13 28.38 -0.00 CASE 9 : WMIN<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 2.07 1.35 0.00 2 7 3.70 -3.75 0.00 CASE 11 : W1 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -4.25 -5.87 -0.00 2 7 -1.05 -2.19 0.00 CASE 13 : W2 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 0.28 -5.72 0.00 2 7 1.07 -3.75 0.00 CASE 15 : W3 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 -4.55 - 9.49 0.00 2 7 -0.76 -5.97 -0.00 CASE 17 : W4 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 -0.02 -9.36 -0.00 2 7 1.37 - 7.43 0.00 CASE 19 : E -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT Page 24 of 43 11/21/07 11:14:53 CASE 2 : D SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip - ft) 1 1 0.84 2.94 0.00 2 7 -0.84 2.94 0.00 CASE 4 SEU- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip - ft) 1 1 8.13 23.10 0.00 2 7 -8.13 23.10 -0.00 CASE 6 SUL1<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip - ft) 1 1 7.13 28.38 -0.00 2 7 -7.13 13.83 0.00 CASE 8 WMIN -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -3.70 -3.75 -0.00 2 7 -2.07 1.35 0.00 CASE 10 : W L' SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -1.32 -9.66 -0.00 7 1.32 -9.66 -0.00 CASE 12 : Wl<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft 1 1 1.05 -2.19 -0.00 2 7 4.25 -5.87 -0.00 CASE 14 W2<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 -1.07 -3.75 -0.00 2 7 -0.28 -5.72 0.00 CASE 16 : W3<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 0.76 - 5.97 0.00 2 7 4.55 -9.49 0.00 CASE 18 : W4<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 -1.37 - 7.43 0.00 2 7 0.02 -9.36 -0.00 CASE 20 : E<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT 5-01, 0 0 MSA 29.1 Page 25 of 43 Job:51739101 C: \ABCP \FRAMES \51739101.01A 11/21/07 11:14:53 (kips) (kips) (kip - ft) (kips) (kips) (kip-ft) 1 1 -1.60 -1.03 0.00 1 1 1.60 1.03 -0.00 2 7 - 1.60 1.03 -0.00 ? 7 1.60 - 1.03 0.00 CASE 21 : <?E -> CASE 22 : L2E<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) (kips) (kips) (kip -ft) 1 1 -4.65 -3.00 0.00 1 1 4.65 3.00 -0.00 2 7 -4.64 3.00 -0.00 2 7 4.64 -3.00 0.00 CASE 23 : D +C + L CASE 24 : D +C + SEU- SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip -ft) 1 1 4.74 14.64 -0.00 1 1 10.14 29.34 -0.00 7 - 4.74 14.64 -0.00 2 7 -10.14 29.34 0.00 CASE 25 : D +C + S CASE 26 : D +C + SUL1<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip - ft) (kips) (kips) (kip -ft)� 1 1 9.08 29.34 0.00 1 1 9.13 34.62 0.00 2 7 -9.08 29.34 0.00 2 7 -9.13 20.07 -0.00 CASE 27 : D +C + SUR1 -> CASE 2 8 : D + WMIN -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip -ft) 1 1 9.13 20.07 0.00 1 1 -2.86 -0.81 0.00 2 7 -9.13 34.62 0.00 2 7 -2.91 4.29 0.00 CASE 29 : D + WMIN<- CASE 30 : D + WL^ SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 2.91 4.29 0.00 1 1 -0.47 -6.72 -0.00 2 7 2.86 -0.81 -0.00 2 7 0.47 - 6.72 0.00 CASE 31 : D + Wl -> CASE 32 : D + W1< - SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) (kips) (kips) (kip - ft) 1 1 -3.41 -2.92 0.00 1 1 1.90 0.75 -0.00 2 7 -1.90 0.75 0.00 2 7 3.41 -2.92 -O.Oi) CASE 33 : D + W2 -> CASE 34 : D + W ^<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip -ft) 1 1 1.12 -2.78 -0.00 1 1 -0.22 -0.80 -0.00 2 7 0.22 -0.80 -0.00 2 7 -1.12 -2.78 0.00 CASE 35 : D + W3 -> CASE 36 : D + W3 <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -f t) (kips) (kips) (kip -ft) 1 1 -3.70 - 6.55 0.00 1 1 1.60 -3.03 -0.00 7 -1.60 - 3.03 0.00 2 7 3.70 - 6.55 0.00 CASE 37 : D + W4 -> CASE 38 : D + W4<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 0.82 - 6.41 0.00 1 1 -0.52 - 4.49 0.00 2 7 0.52 -4.49 -0.00 2 7 -0.82 -6.41 -0.00 153 MSA 29.1 Page 26 of 43 Job:51739101 C: \ABCP \FRAMES \51739101.01A 11/21/07 11:14:53 0 • CASE 39 : 1.06D +C + 0.70E -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 0.99 5.84 -0.00 2 7 -3.23 7.28 0.00 CASE 41 : D +C + 0.75L + 0.75WMIN -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 1.28 9.73 0.00 2 7 -5.61 13.56 -0.00 CASE 43 : D +C + 0.75L + 0.75WL^ SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 3.07 5.30 0.00 2 7 -3.07 5.30 0.00 CASE 45 : D +C + 0.75L + 0.75W1<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 4.85 10.90 -0.00 2 7 -0.87 8.14 0.00 CASE 47 : D +C + 0.751, + 0.75W2 <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 3.26 9.73 0.00 2 7 -4.27 8.25 -0.00 CASE 49 : D +C + 0.75L + 0.75W3 <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 4.63 8.06 -0.00 2 7 -0.65 5.42 0.00 CASE 51 : D +C + 0.75L + 0.75W4<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 3.03 6.97 0.00 2 7 -4.04 5.53 0.00 CASE 53 : D +C + 0.75S + 0.75WMIN <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 8.86 24.58 -0.00 2 7 - 4.54 20.76 0.00 CASE 55 : D +C + 0.75S + 0.75W1 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 4.12 19.17 0.00 7 - 8.10 ^1.93 0.00 CASE 57 : D +C + 0.75S + 0.75W2 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 7.52 19.28 0.00 CASE 40 : 1.06D +C + 0.70E<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (]lips) (kip -ft) 1 1 3.23 7.28 -0.00 2 7 -0.99 5.84 -0.00 CASE 42 : D +C + 0.75L + 0.75WMIN <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 5.61 13.56 0.00 2 7 -1.28 9.73 -0.00 CASE 44 : D +C + 0.751, + 0.75W1 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -f t) 1 1 0.87 8.14 -0.00 2 7 - 4.85 10.90 0.00 CASE 46 : D +C + 0.75L + 0.75W2 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 4.27 8.25 0.00 2 7 -3.26 9.73 0.00 CASE 48 : D +C + 0.75L + 0.75W3 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 0.65 5.42 -0.00 7 -4.63 8.06 0.00 CASE 50 : D +C + 0.75L + 0.75W4 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 4.04 5.53 0.00 2 7 -3.03 6.97 -0.00is CASE 52 : D +C + 0.75S + 0.75WMIN -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -f t) 1 1 4.54 20.76 -0.00 ? 7 -8.86 ^4.58 0.00 CASE 54 : D +C + 0.75S + 0.75WL^ SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -f t) 1 1 6.32 16.32 0.00 2 7 - 6.32 16.32 0.00 CASE 56 : D +C + 0.75S + 0.75W1 <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 8.10 21.93 -0.00 2 7 - 4.12 19.17 0.00 CASE 58 : D +C + 0.75S + 0.75W2<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 6.51 20.76 0.00 5-4- MSA 29.1 Page 27 of 43 Job:51739101 C: \ABCP \FRAMES \51739101.01A 11/21/07 11:14:53 2 7 -6.51 20.76 0.00 2 7 - 7.52 19.28 -0.00 0 0 CASE 59 : D +C + 0.75S + 0.75W3 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 3.90 16.45 0.00 2 7 -7.88 19.09 -0.00 CASE 61 : D +C + 0.75S + 0.75W4 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 7.30 16.55 0.00 2 7 - 6.29 18.00 -0.00 CASE 63 : D +C + 0.75SUL1<- + 0.75WMIN <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 8.90 28.54 -0.00 2 7 -4.57 13.80 -0.00 CASE 65 : D +C + 0.75SUL1 <- + 0.75W2<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 6.55 24.72 -0.00 2 7 - 7.56 12.32 0.00 CASE 67 : D +C + 0.75SUL1<- + 0.75W4<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 6.33 21.96 -0.00 2 7 -7.34 9.60 -0.00 CASE 69 : D +C + 0.75SUR1 -> + 0.75W1 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 4.16 12.21 0.00 2 7 - 8.14 25.89 0.00 CASE 71 : D +C + 0.75SUR1 -> + 0.75W3 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 3.94 9.49 0.00 2 7 -7.92 23.05 0.00 CASE 73 : 1.07D +C + 0.75L + 0.75E -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 2.97 12.10 0.00 2 7 - 5.37 13.65 0.00 CASE 75 : 1.07D +C + 0.75S + 0.75E -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 6.23 23.13 -0.00 2 7 -8.63 24.68 -0.00 CASE 77 : 0.60D + WMIN -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT CASE 60 : D +C + 0.75S + 0.75W3 <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 7.88 19.09 -0.00 2 7 -3.90 16.45 0.00 CASE 62 : D +C + 0.75S + 0.75W4<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 6.29 18.00 0.00 2 7 - 7.30 16.55 -0.00 CASE 64 : D +C + 0.75SUL1<- + 0.75W1 <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 8.14 25.89 0.00 2 7 -4.16 12.21 0.00• CASE 66 : D +C + 0.75SUL1<- + 0.75W3 <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 7.92 23.05 0.00 2 7 -3.94 9.49 -0.00 CASE 68 : D +C + 0.75SUR1 -> + 0.75WMIN -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 4.57 13.80 0.00 2 7 -8.90 28.54 0.00 CASE 70 : D +C + 0.75SUR1 -> + 0.75W2 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 7.56 12.32 0.00 • 2 7 -6.55 24.72 0.00 CASE 72 : D +C + 0.75SUR1 -> + 0.75W4 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 7.34 9.60 -0.00 2 7 - 6.33 21.96 -0.00 CASE 74 : 1.07D +C + 0.751, + 0.75E<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 5.37 13.65 0.00 2 7 -2 -97 12.10 -0.00 CASE 76 : 1.07D +C + 0.75S + 0.75E<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 8.63 24.68 0.00 2 7 -6.23 23.13 0.00 CASE 78 : 0.60D + WMIN <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT �5-1 F-1 L J • MSA 29.1 Paae 28 of 43 Job:51739101 C: \ABCP \FRAMES \51739101.01A 11/21/07 11:14:53 (kips) (kips) (kip -ft) (kips) (kips) (kip -ft) 1 1 -3.08 -1.52 0.00 1 1 2.68 3.59 -0.00 2 7 -2.68 3.59 -0.00 2 7 3.08 -1.52 -0.00 CASE 79 : 0.60D + WL^ CASE 80 : 0.60D + W1 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) (]lips) (kips) (kip -ft) 1 1 -0.70 - 7.43 0.00 1 1 -3.64 - 3.63 0.00 2 7 0.70 -7.43 -0.00 2 7 - 1.67 0.04 -0.00 CASE 81 . 0.60D + Wl<- CASE 82 . 0.60D + W2 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) (kips) (kips) (kip -ft) 1 1 1.67 0.04 -0.00 1 1 0.90 -3.49 -0.00 2 7 3.64 -3.63 0.00 2 7 0.45 -1.51 0.00 CASE 83 : 0.60D + W2<- CASE 84 : 0.60D + W3 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) (kips) (kips) (kip-ft 0 1 1 -0.45 -1.51 - 0.00 1 1 -3.93 -7.26 0.00 2 7 -0.90 -3.49 -0.00 2 7 -1.38 -3.74 0.00 CASE 85 : 0.60D + W3 <- CASE 86 : 0.60D + W4 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip -ft) 1 1 1.38 - 3.74 0.00 1 1 0.60 -7.12 -0.00 2 7 3.93 - 7.26 0.00 2 7 0.75 -5.19 -0.00 CASE 87 : 0.60D + W4<- CASE 88 : 0.54D +C + 0.70E -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip -ft) 1 1 -0.75 - 5.19 0.00 1 1 0.09 3.17 -0.00 2 7 -0.60 -7.12 -0.00 2 7 -2.32 4.62 -0.00 CASE 89 : 0.54D +C + 0.70E<- CASE 90 : 0.76D +C + 0.5952E -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT • (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 2.32 4.62 - 0.00 1 1 - 1.14 3.25 -0.00 2 7 -0.09 3.17 0.00 2 7 -4.32 6.78 0.00 CASE 91 : 0.76D +C + 0.59f2E <- CASE 92 : 0.48D +C + 0.5952E -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) (kips) (kips) (kip-ft) 1 1 4.32 6.78 0.00 1 1 - 1.63 1.83 -0.00 2 7 1.14 3.25 -0.00 2 7 -3.83 5.36 -0.00 CASE 93 . 0.48D +C + 0.5952E < - SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 3.83 5.36 0.00 2 7 1.63 1.83 0.00 S( MSA 29.1 Page 29 of 43 Job:51739101 C: \ABCP \FRAMES \51739101.01A 11/21/07 11:14:53 NODAL DISPLACEMENTS C J CASE 1 : D +C Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 -0.211 3 -0.127 4 0.000 5 0.127 6 0.2"11 7 0.000 CASE 3 : L VERTICAL ANGULAR Horizontal (rad.) Vertical 0.002 HORIZONTAL NODE (in.) 1 0.000 2 -0.293 3 -0.178 4 0.000 5 0.179 6 0.293 7 0.000 CASE 5 : S Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 -0.766 3 -0.469 4 0.000 5 0.469 6 0.766 7 0.000 Deflection Limit: Deflection Limit: VERTICAL ANGULAR (in.) (rad.) 0.000 0.002 0.001 -0.001 -0.185 -0.002 -0.500 0.000 -0.185 0.002 0.001 0.001 0.000 -0.002 Deflection Limit: Deflection Limit: VERTICAL ANGULAR (in.) (rad.) 0.000 0.003 0.001 -0.001 -0.254 -0.003 -0.696 0.000 -0.254 0.003 0.001 0.001 0.000 -0.003 Deflection Limit Deflection Limit VERTICAL ANGULAR (in.) (rad.) 0.000 0.008 0.002 -0.002 -0.659 -0.008 - 1.818 0.000 - 0.659 0.008 0.002 0.002 0.000 -0.008 CASE 7 : SUR1 -> Horizontal Deflection Limit: Horizontal Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0.000 0.000 0.015 2 -2.057 0.065 0.003 3 -2.016 -0.039 -0.005 4 -1.298 -1.801 -0.007 5 -1.095 - 1.283 0.011 6 -0.538 -0.057 0.008 7 0.000 0.000 -0.003 CASE 9 : WMIN < - Horizontal Deflection Limit: L/42 Vertical Deflection Limit: L/126 HORIZONTAL VERTICAL ANGULAR CASE 10 : WL' Horizontal Deflection Limit: L/42 Vertical Deflection Limit: L/126 HORIZONTAL VERTICAL ANGULAR 53- CASE 2 : D None Horizontal Deflection Limit: None None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0.000 0.000 0.001 2 - 0.088 0.000 -0.000 3 -0.053 -0.077 -0.001 4 0.000 -0.208 0.000 5 0.053 -0.077 0.001 6 0.088 0.000 0.000 7 0.000 0.000 - 0.001 CASE 4 : SEU- L/60 Horizontal Deflection Limit: L /60 L /180 Vertical Deflection Limit: L /181 HORIZONTAL VERTICAL ANGULAR • NODE (in.) (in.) (rad.) 1 0.000 0.000 0.010 2 - 0.861 0.006 -0.003 3 -0.520 -0.753 -0.009 4 0.000 - 2.041 0.000 5 0.520 - 0.753 0.009 6 0.861 0.006 0.003 7 0.000 0.000 -0.010 CASE 6 : SUL1< - L /60 Horizontal Deflection Limit: L /60 L/181 Vertical Deflection Limit: L /181 HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0.000 0.000 0.003 2 0.538 -0.057 -0.008 3 1.095 -1.283 - 0.011 4 1.298 - 1.801 0.007 5 2.016 -0.039 0.005 6 2.057 0.065 -0.003 7 0.000 0.000 -0.015 CASE 8 : WMIN -> L /60 Horizontal Deflection Limit: L/42 L /181 Vertical Deflection Limit: L/126 HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0.000 0.000 -0.010 2 1.613 -0.060 -0.004 3 1.759 -0.376 -0.001 4 1.530 0.174 0.003 5 1.644 0.458 -0.002 6 1.457 0.056 -0.005 7 0.000 0.000 -0.008 CASE 9 : WMIN < - Horizontal Deflection Limit: L/42 Vertical Deflection Limit: L/126 HORIZONTAL VERTICAL ANGULAR CASE 10 : WL' Horizontal Deflection Limit: L/42 Vertical Deflection Limit: L/126 HORIZONTAL VERTICAL ANGULAR 53- MSA =9.1 Limit: L/126 VERTICAL ANGULAR (in.) (rad.) 0.000 Page 30 of 43 Job:51739101 -0.003 -0.180 C: \ABCP \FRAMES \51739101.01A 0.327 11/21/07 11:14:53 NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 0.008 1 0.000 0.000 -0.002 2 - 1.457 0.056 0.005 2 0.165 0.005 0.001 3 -1.644 0.458 0.002 3 0.080 0.203 0.002 4 -1.530 0.174 -0.003 4 -0.000 0.423 -0.000 5 -1.759 -0.376 0.001 5 -0.080 0.203 -0.002 6 -1.613 -0.060 0.004 6 - 0.165 0.005 -0.001 7 0.000 0.000 0.010 7 0.000 0.000 0.002 0 0 CASE 11 : W1 -> Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 1.323 3 1.387 4 1.178 5 1.222 6 1.045 7 0.000 CASE 13 : W2 -> Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 -0.499 3 -0.605 4 -0.558 5 -0.665 6 -0.619 7 0.000 CASE 15 : W3 -> Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 1.369 3 1.402 4 1.174 5 1.197 6 0.992 7 0.000 CASE 17 : W4 -> Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 -0.451 3 -0.586 4 -0.559 5 -0.686 Deflection Limit: L/42 Deflection Limit: L/126 VERTICAL ANGULAR (in.) (rad.) 0.000 -0.009 -0.046 -0.003 -0.180 0.001 0.327 0.003 0.428 -0.002 0.044 -0.004 0.000 -0.006 Deflection Limit: L/42 Deflection Limit: L/126 VERTICAL ANGULAR (in.) (rad.) 0.000 0.003 0.027 0.002 0.259 0.001 0.156 -0.002 -0.114 -0.000 -0.020 0.002 0.000 0.004 Deflection Limit: L/42 Deflection Limit: L/126 VERTICAL ANGULAR (in.) (rad.) 0.000 -0.009 -0.043 -0.002 -0.107 0.001 0.461 0.002 0.498 -0.003 0.047 -0.004 0.000 -0.005 Deflection Limit: L/42 Deflection Limit: L/126 VERTICAL ANGULAR (in.) (rad.) 0.000 0.002 0.030 0.002 0.331 0.002 0.290 -0.002 -0.042 -0.001 CASE 12 : W1< - Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 -1.045 3 -1.22? 4 -1.178 5 -1.387 6 -1.323 7 0.000 CASE 14 : W2<- Deflection Horizontal VERTICAL Vertical (in.) HORIZONTAL NODE (in.) 1 0.000 2 0.619 3 0.665 4 0.558 5 0.605 6 0.499 7 0.000 CASE 16 : W3<- Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 -0.992 3 -1.197 4 -1.175 5 -1.402 6 -1.369 7 0.000 CASE 18 : W4<- Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 0.670 3 0.686 4 0.559 5 0.586 Deflection Limit: L/42 Deflection Limit: L/126 VERTICAL ANGULAR (in.) (rad.) 0.000 0.006 0.044 0.004 0.428 0.002 0.327 -0.003 -0.180 -0.001 - 0.046 0.003 0.000 0.009 Deflection Limit: L/42 Deflection Limit: L/126 VERTICAL ANGULAR (in.) (rad.) 0.000 -0.004 -0.020 -0.002 -0.114 0.000 0.156 0.002 0.259 -0.001 0.027 -0.002 0.000 -0.003 Deflection Limit: L/42 Deflection Limit: L/126 VERTICAL ANGULAR (in.) (rad.) 0.000 0.005 0.047 0.004 0.498 0.003 0.461 -0.002 -0.107 -0.001 - 0.043 0.002 0.000 0.009 Deflection Limit: L/42 Deflection Limit: L/126 VERTICAL ANGULAR (in.) (rad.) 0.000 -0.004 -0.017 -0.001 -0.042 0.001 0.290 0.002 0.331 -0.002 0 5v- MSA 29.1 Job:517391O1 C KABCO FRAME A517391O1.OlA 6 -0.670 -0.017 0.001 7 0.000 0.000 0.004 CASE 19 : E -> Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 0.959 3 1.061 4 0.954 5 1.061 6 0.959 7 0.000 Deflection Limit Deflection Limit VERTICAL ANGULAR (in.) (rad.) 0.000 -0.006 -0.037 -0.003 -0.258 -0.001 - 0.000 0.002 0.258 -0.001 0.037 -0.003 0.000 -0.006 6 0.451 7 0.000 CASE 20 : E <- L/60 Horizontal None Vertical HORIZONTAL NODE (in.) 1 0.000 2 -0.959 3 -1.061 4 -0.954 5 -1.061 6 -0.959 7 0.000 CASE 22 : UE<- None CASE 21 . QE -> None Vertical (in.) Horizontal Deflection Limit: (in.) 1 Vertical Deflection Limit: -2.786 3 HORIZONTAL VERTICAL ANGULAR -2.773 NODE (in.) (in.) (rad.) 6 1 0.000 0.000 -0.016 Deflection Limit: 2 2.786 -0.107 -0.008 VERTICAL ANGULAR 3 3.083 -0.749 -0.002 VERTICAL ANGULAR 4 2.773 -0.000 0.006 (in.) (rad.) 5 3.083 0.749 -0.002 (in.) (rad.) 6 2.786 0.107 -0.008 0.000 0.011 7 0.000 0.000 -0.016 0.000 0.005 CASE 23 : D +C + L -0.976 0.003 -0.003 Horizontal Deflection Limit: 0.327 -0.056 -0.009 Vertical Deflection Limit: -0.596 -0.844 -0.010 HORIZONTAL VERTICAL ANGULAR 0.968 NODE (in.) (in.) (rad.) 0.000 1 2 0.000 - 0.504 0.000 0.006 0.002 -0.002 1.298 3 -0.306 -0.439 -0.005 0.596 4 0.000 - 1.195 0.000 2.143 5 0.306 - 0.439 0.005 0.976 6 0.504 0.002 0.O02 2.267 7 0.000 0.000 -0.006 6 0.451 7 0.000 CASE 20 : E <- L/60 Horizontal None Vertical HORIZONTAL NODE (in.) 1 0.000 2 -0.959 3 -1.061 4 -0.954 5 -1.061 6 -0.959 7 0.000 CASE 22 : UE<- None Horizontal None Vertical (in.) HORIZONTAL NODE (in.) 1 0.000 2 -2.786 3 -3.083 4 -2.773 5 -3.083 6 -2.786 7 0.000 CASE 24 : D +C + SEU- None Horizontal Deflection Limit: None None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0.000 0.000 0.012 2 -1.072 0.006 -0.004 3 -0.648 -0.938 -0.011 4 0.000 -2.540 0.000 5 0.648 -0.938 0.011 6 1.072 0.006 0.004 7 0.000 0.000 -0.012 Page 31 of 43 11/21/07 11:14:53 0.030 -0.002 0.000 -0.002 Deflection Limit: L /60 Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 0.006 0.037 0.003 0.258 0.001 0.000 -0.002 - 0.258 0.001 -0.037 0.003 0.000 0.006 Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 0.016 0.107 0.008 0.749 0.002 0.000 -0.006 -0.749 0.002 -0.107 0.008 0.000 0.016 CASE 25 : D +C + S CASE 26 : D +C + SUL1<- Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 0.011 1 0.000 0.000 0.005 2 -0.976 0.003 -0.003 2 0.327 -0.056 -0.009 3 -0.596 -0.844 -0.010 3 0.968 -1.468 -0.013 4 0.000 -2.318 0.000 4 1.298 - 2.300 0.007 5 0.596 -0.844 0.010 5 2.143 - 0.224 0.007 6 0.976 0.003 0.003 6 2.267 0.066 -0.002 7 0.000 0.000 -0.011 7 0.000 0.000 -0.017 CASE 27 : D +C + SUR1 -> CASE 28 : D + WMIN -> Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None L.J MSA 29.1 Page 32 of 43 Job:51739101 C: \ABCP \FRAMES \51739101.01A 11/21/07 11:14:53 • • A HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL A NGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 0.017 1 0.000 0.000 -0.009 2 - 2. - ^67 0.066 0.002 1.525 -0.060 -0.005 3 -2.143 -0.224 -0.007 3 1.706 -0.453 -0.001 4 -1.298 -2.300 - 0.007 4 1.530 - 0.034 0.003 5 -0.968 -1.468 0.013 5 1.697 0.380 -0.001 6 -0.327 -0.056 0.009 6 1.544 0.057 -0.004 7 0.000 0.000 -0.005 7 0.000 0.000 -0.009 CASE 29 : D + WMIN<- CASE 30 : D + WL'' Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 0.009 1 0.000 0.000 -0.001 2 -1.544 0.057 0.004 2 0.078 0.005 0.000 3 -1.697 0.380 0.001 3 0.027 0.125 0.001 4 -1.530 -0.034 - 0.003 4 - 0.000 0.215 -0.000 5 -1.706 -0.453 0.001 5 -0.027 0.125 -0.001 6 -1.525 -0.060 0.005 6 -0.078 0.005 -0.000 7 0.000 0.000 0.009 7 0.000 0.000 0.001 CASE 31 : D + Wl -> CASE 32 : D + Wl<- Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 -0.008 1 0.000 0.000 0.007 2 1.236 -0.046 -0.003 2 - 1.133 0.045 0.003 3 1.334 -0.257 -0.000 3 - 1.274 0.350 0.001 4 1.178 0.119 0.003 4 -1.178 0.119 -0.003 5 1.274 0.350 -0.001 5 -1.334 - 0.257 0.000 6 1.133 0.045 -0.003 6 - 1.236 -0.046 0.003 fe 7 0.000 0.000 -0.007 7 0.000 0.000 0.008 CASE 33 : D + W2 -> CASE 34 : D + W2<- Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 0.004 1 0.000 0.000 -0.003 2 -0.587 0.027 0.002 2 0.531 -0.020 -0.002 3 -0.658 0.181 0.001 3 0.612 -0.191 -0.001 4 -0.558 -0.052 -0.002 4 0.558 -0.052 0.002 5 -0.612 -0.191 0.001 5 0.658 0.181 -0.001 6 -0.531 - 0.020 0.002 6 0.587 0.027 -0.002 7 0.000 0.000 0.003 7 0.000 0.000 -0.004 CASE 35 : D + W3 -> CASE 36 : D + W3<- Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 -0.008 1 0.000 0.000 0.006 2 1.282 -0.043 - 0.003 2 -1.079 0.047 0.004 3 1.350 -0.184 0.000 3 - 1.250 0.420 0.002 4 1.174 0.253 0.002 4 - 1.175 0.253 -0.002 • • A MSA 29.1 Page 33 of 43 Job:51739101 C: \ABCP \FRAMES \51739101.01A 11/21/07 11:14:53 5 1.250 0.420 -0.002 5 -1.350 -0.184 -0.000 6 1.079 0.047 -0.004 6 -1.282 -0.043 0.003 7 0.000 0.000 -0.006 7 0.000 0.000 0.008 CASE 37 : D + W4 -> CASE 38 : D + W4<- Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 0.003 1 0.000 0.000 -0.003 2 - 0.538 0.030 0.002 2 0.582 -0.017 -0.002 3 - 0.638 0.254 0.001 3 0.633 -0.120 -0.000 4 - 0.559 0.082 -0.002 4 0.559 0.082 0.002 5 -0.633 - 0.120 0.000 5 0.638 0.254 -0.001 6 -0.582 - 0.017 0.002 6 0.538 0.030 -0.002 7 0.000 0.000 0.003 7 0.000 0.000 -0.003 • CASE 39 : 1.06D +C + 0.70E -> Horizontal Deflection Limit Vertical Deflection Limit HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0.000 0.000 -0.001 2 0.449 -0.025 -0.003 3 0.609 -0.375 -0.003 4 0.668 -0.527 0.001 5 0.877 -0.014 0.002 6 0.893 0.027 -0.001 7 0.000 0.000 -0.006 CASE 41 : D +C Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 0.779 3 1.058 4 1.147 5 1.494 6 1.523 7 0.000 CASE 43 : D +C + Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 -0.307 3 - 0._ ^O1 4 0.000 5 0.201 6 0.307 7 0.000 CASE 40 : 1.06D +C + 0.70E<- N one Horizontal Deflection Limit: None None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0.000 0.000 0.006 2 -0.893 0.027 0.001 3 -0.877 -0.014 -0.002 4 -0.668 -0.527 -0.001 5 -0.609 -0.375 0.003 6 -0.449 -0.025 0.003 7 0.000 0.000 0.001 0.75L + 0.75WMIN -> Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 -0.003 -0.043 -0.005 -0.657 -0.005 - 0.891 0.003 - 0.032 0.003 0.044 -0.002 0.000 -0.011 0.751, + 0.75WL^ Deflection Limit: Deflection Limit: VERTICAL ANGULAR (in.) (rad.) 0.000 0.004 0.006 -0.001 -0.224 -0.003 -0.704 0.000 -0.224 0.003 0.006 0.001 0.000 -0.004 CASE 42 : D +C + 0.75L + 0.75lgMIN<- Horizontal Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0.000 0.000 0.011 2 -1.523 0.044 0.002 3 -1.494 -0.032 -0.003 4 -1.147 -0.891 -0.003 5 -1.058 -0.657 0.005 6 -0.779 - 0.043 0.005 7 0.000 0.000 0.003 CASE 44 : D +C + 0.75L + 0.75W1 -> None Horizontal Deflection Limit: None None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0.000 0.000 -0.002 2 0.562 -0.032 -0.004 3 0.779 -0.510 -0.004 4 0.884 - 0.776 0.002 5 1.177 - 0.055 0.003 6 1.214 0.035 -0.001 7 0.000 0.000 -0.009 CASE 45 : D +C + 0.75L + 0.75W1 <- CASE 46 : D +C + 0.75L + 0.75W 2-> Horizontal Deflection Limit: None Horizontal Deflection Limit: None 0 Is 61 MSA 29.1 Job: 51739101 • • Vertical HORIZONTAL NODE (in.) 1 0.000 2 -1.214 3 -1.177 4 -0.884 5 -0.779 6 -0.562 7 0.000 CASE 47 : D +C + Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 0.034 3 0.237 4 0.418 5 0.714 6 0.805 7 0.000 Page 34 of 43 C: \ABCP \FRAMES \51739101.01A 11/21/07 11:14:53 Deflection Limit VERTICAL ANGULAR (in.) (rad.) 0.000 0.009 0.035 0.001 -0.055 -0.003 -0.776 -0.002 -0.510 0.004 -0.032 0.004 0.000 0.002 0.751, + 0.75W2<- Deflection Limit: Deflection Limit: VERTICAL ANGULAR (in.) (rad.) 0.000 0.002 -0.013 -0.003 -0.461 -0.004 -0.904 0.001 -0.182 0.003 0.022 -0.000 0.000 -0.007 CASE 49 : D +C + 0.75L + 0.75W3 <- Horizontal Deflection Limit: Vertical Deflection Limit: HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0.000 0.000 0.009 2 - 1.174 0.037 0.002 3 -1.159 -0.002 -0.002 4 -0.881 -0.676 -0.002 5 -0.791 -0.456 0.003 6 -0.596 - 0.030 0.003 7 0.000 0.000 0.002 CASE 51 : D +C Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 0.072 3 0.253 4 0.419 5 0.700 6 0.768 7 0.000 0.75L + 0.75W4<- Deflection Limit: Deflection Limit: VERTICAL ANGULAR (in.) (rad.) 0.000 0.002 -0.011 -0.003 -0.407 -0.004 -0.804 0.001 -0.127 0.003 0.024 -0.000 0.000 -0.006 CASE 53 : D +C Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 -1.877 3 -1.71^ None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR. NODE (in.) (in.) (rad.) 1 0.000 0.000 0.007 2 -0.805 0.022 0.000 3 -0.714 -0.182 -0.003 4 -0.413 -0.904 - " 5 -0.237 -0.461 0.004 6 -0.034 - 0.013 0.003 7 0.000 0.000 -0.002 CASE 48 : D +C + 0.751, + 0.75W3 -> None Horizontal Deflection Limit: None None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0.000 0.000 -0.002 2 0.596 -0.030 -0.003 3 0.791 -0.456 -0.003 4 0.831 -0.676 0.002 5 1.159 -0.002 0.002 6 1.174 0.037 -0.002 7 0.000 0.000 -0.009 CASE 50 : D +C + 0.751, + 0.75W4 -> None Horizontal Deflection Limit: None None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0.000 0.000 0.006 2 -0.768 0.024 0.000 3 -0.700 -0.127 -0.003 4 -0.419 -0.804 -0.001 5 -0.253 -0.407 0.004 6 -0.072 - 0.011 0.003 7 0.000 0.000 -0.002 CASE 52 : D +C + 0.75S + 0.75WMIN -> None Horizontal Deflection Limit: None None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0.000 0.000 0.001 0.425 -0.043 -0.006 3 0.841 -0.961 -0.009 4 1.147 -1.733 0.003 5 1.712 -0.336 0.007 6 1.877 0.045 -0.001 7 0.000 0.000 -0.015 0.755 + 0.75WMIN <- Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 0.015 0.045 0.001 -0.336 -0.007 CASE 54 : D +C + 0.75S + 0.75WL^ Horizontal Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0.000 0.000 0.007 2 -0.661 0.006 - 0.002 3 -0.419 -0.528 -0.006 6,� MSA 29.1 Page 36 of 43 Job:51739101 C: \AL >CP \FRP1ZES \51739101.01A 11/2)1/07 11 :14:53 Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL 'VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 0.010 1 0.000 0.000 0.008 2 -0.900 0.001 - 0.003 2 -0.591 -0.008 -0.004 3 -0.539 -0.804 -0.009 3 -0.222 -0.826 -0.009 4 -0.174 -1.720 0.002 4 0.090 -1.605 0.003 5 0.320 -0.496 0.006 5 0.599 -0.349 0.005 6 0.544 0.005 0.002 6 0.761 0.015 0.001 7 0.000 0.000 -0.006 7 0.000 0.000 -0.007 CASE 65 : D +C + 0.75SUL1<- + 0.75W2 <- CASE 66 : D +C + 0.75SUL1<- + 0.75W3 <- Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL A14GULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 0.002 1 0.000 0.000 0.008 2 0.657 -0.057 -0.008 2 -0.551 -0.007 -0.004 . 3 1.192 -1.233 -0.010 3 -0.204 -0.774 -0.008 4 1.392 -1.733 0.006 4 0.092 -1.505 0.003 5 2.093 -0.020 0.005 5 0.588 -0.294 0.005 6 2.128 0.070 -0.003 6 0.726 0.017 0.000 7 0.000 0.000 -0.015 7 0.000 0.000 -0.006 CASE 67 : D +C + 0.75SUL1<- + 0.75W4<- CASE 68 : D +C + 0.75SUR1 -> + 0.75WMIN -> Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 0.001 1 0.000 0.000 0.006 2 0.695 -0.055 -0.008 -0.544 0.005 -0.002 3 1.208 -1.179 -0.010 3 -0.320 -0.496 -0.006 4 1.392 -1.632 0.006 4 0.174 -1.720 -0.002 5 2.078 0.034 0.004 5 0.539 -0.804 0.009 6 2.091 0.072 -0.003 6 0.900 0.001 0.003 • 7 0.000 0.000 -0.015 7 0.000 0.000 -0.010 CASE 69 : D +C + 0.75SUR1 -> + 0.75W1 -> CASE 70 : D +C + 0.75SUR1 -> + 0.75W2 -> Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 0.007 1 0.000 0.000 0.015 2 - 0.761 0.015 - 0.001 ? - 2.128 0.070 0.003 3 -0.599 -0.349 -0.005 3 -2.093 -0.020 -0.005 4 -0.090 -1.605 -0.003 4 -1.392 -1.733 -0.006 5 0.222 -0.826 0.009 5 -1.192 -1.233 0.010 6 0.591 -0.008 0.004 6 -0.657 - 0.057 0.008 7 0.000 0.000 -0.008 7 0.000 0.000 -0.002 CASE 71 : D +C + 0.75SUR1 -> + 0.75W3 -> CASE 72 : D +C + 0.75SUR1 -> + 0.75W4 -> Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 0.006 1 0.000 0.000 0.015 2 - 0.726 0.017 - 0.000 ? - 2.091 0.072 0.003 • LJ MSA 29.1 Job:51739101 C: \ABCP \FRAMES \51739101.01A Page 38 of 43 11/21/07 11:14:53 CASE Si : 0.60D + W1 <- CASE 87 : 0.60I? + W2 -> Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0. 000 0. 000 0.006 1 0. 000 0.000 0. 003 2 - 1.108 0.044 0.004 2 -0.563 0.027 0.003 3 - 1.260 0.372 0.002 3 -0.643 0.702 0.001 4 -1.175 0.177 - 0.003 4 -0.558 0.006 -0.002 5 -1.349 -0.236 0.000 5 -0.627 -0.170 0.001 6 - 1.260 - 0.046 0.003 6 -0.556 -0.070 0.002 7 0.000 0.000 0.00 7 0.000 0.000 0.003 CASE 83 . 0.60D + W2 <- CASE 84 . 0.60D + W3 -> Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 - 0.003 1 0.000 0.000 -0.009 ? 0.556 -0.020 - 0.00^ 7 1.306 -0.043 -0.003 3 0.627 -0.170 -0.001 3 1.365 -0.163 0.001 4 0.558 0.006 0.002 4 1.174 0.310 0.002 5 0.643 0.702 -0.001 5 1.235 0.442 -0.002 6 0.563 0.027 -0.002 6 1.055 0.047 -0.004 7 0.000 0.000 -0.003 7 0.000 0.000 -0.006 CASE 85 : 0.60D + W3<- CASE 86 : 0.60D + W4 -> Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 0.006 1 0.000 0.000 0.003 7 -1.055 0.047 0.004 7 -0.514 0.030 0.00^ 3 -1.235 0.442 0.002 3 -0.623 0.275 0.00 4 - 1.175 0.310 -0.002 4 -0.559 0. 14 0 -0.002 5 -1.365 -0.163 -0.001 5 -0.648 -0.098 -0.000 6 -1.306 -0.043 0.003 6 -0.607 - 0.018 0.002 7 0.000 0.000 0.009 7 0.000 0.000 0.003 CASE 87 : 0.60D + W4 <- CASE 88 : 0.54D +C + 0.70E -> Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 - 0.003 1 0.000 0.000 -0.002 2 0.607 -0.018 - 0.00^ ? 0.546 -0.036 -0.002 3 0.648 -0.098 0.000 3 0.667 -0.791 -0.007 4 0.559 0.140 0.00^ 4 0.668 - 0.798 0.001 5 0.623 0.275 -0.002 5 0.818 0.070 0.001 6 0.514 0.030 -0.002 6 0.797 0.076 -0.002 7 0.000 0.000 -0.003 7 0.000 0.000 -0.005 CASE 89 : 0.54D +C + 0.70E < - CASE 90 : 0.76D +C + 0.59L�E -> Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 0.005 1 0.000 0.000 -0.009 MSA 29.1 Page 41 of 43 Job:517391O1 C ARKPORAMES\51739101.O1A 11/21/07 11:14:53 FLANGE BRACE LOCATIONS SEQ# P /G# REQD? LEFT COLUMN BASE 1 1 Yes Yes 3 3 No (Knee) LEFT EAV"E 4 7 Yes 5 6 Yes 6 5 Yes 7 4 No S 3 Yes 9 2 No 10 1 Yes (Ridge) ROOF SLOPE CHANGE 11 1 Yes (Ridge) 12 2 No 13 3 Yes 14 4 No 15 5 Yes 16 6 Yes 17 7 Yes RIGHT SAVE 1s 3 No (Knee) 19 2 Yes 20 1 Yes RIGHT COLUMN BASE • • • r' .Ml -BOCan,1 _13uf1dings Company r:i L CC- ttD! -uiaz;fa, A.1 - Bin AL - _I Paso. iL Carson C,•ry. NV - LaCrosse. VA Service Centers: Phenix City, AL - Pine Bluff, AR - Modesto, CA LaGrange. GA - Columbus, IvlS - Rocky Mount, NC - Jamestown, OH Calculations supporting the structural integrity of the endwall framing and tension rod bracing are presented in this section. Endwall components included in the analysis are the roof beam, corner columns, interior columns and, if necessary, tension bracing. In addition, the analysis contains the designs for the roof and sidewall tension bracing. Figure 4 of this section, illustrates these members schematically, along with the loadings imposed on them. The endwall roof beam is designed for the specified load combinations using the moments for a continuous beam. The interior and corner columns are designed as pinned -end compression members under the dead plus live loading. For the horizontal wind load, the interior columns are designed as simple beams. The wind forces exerted on the sidewalls are resisted where possible by the wall diaphragm or by tension bracing. The roof bracing are tension members which transfer the wind forces on the ends of the buildings to the eave where the sidewall bracing carries the sum of the forces to the foundation. Figure 5 shows the forces acting on the bracing. Page 4 of this Section defines the nomenclature used in the computer printout that follows. The printout lists the results of the stress analysis on the above building members. Included in the results are the actual and allowable stresses controlling the design of the member. The allowable stresses are based on the yield stresses being 36 KSI for Rods, 50 KSI for hot- rolled mill sections, and 55 KSI for Cold formed and factory built -up sections. SUBJECT TO CHANGEWITHOUT NO77CF =` `_ �—=- w --.= _ ._ F2EV/S�_JUNE - ?•1 -1998 Section 3 Page 1 Beam and Column Endwall Design Ver. 29.1 Page 1 American Buildings Company Eufaula, AL Wed Nov 28 16:45:25 2007 Job Name: 51739101 Job Part: 1 LEW BUILDING TYPE IS SINGLE GABLE ENDWALL TYPE IS POST AND BEAM BUILDING WIDTH = 60.000 ft BUILDING LENGTH = 60.000 ft LEFT HEIGHT = 20.000 ft RIGHT HEIGHT = 20.000 ft LEFT SLOPE = 5.000 :12 RIGHT SLOPE = 5.000 :12 BAY SPACING = 20.000 ft ROOF OVERHANG = 3.000 ft BUILDING CODE: 2003 International Building Code DESIGN SPECIFICATION: 1989 AISC Manual of Steel Construction ASD Ninth Edition COLDFORMED DESIGN SPECIFICATION: 2001 AISI NASPEC North American Cold - Formed Steel Specification CLASSIFICATION OF BUILDING: • II. All buildings and other structures except those listed in Categories I, III, and IV ROOF EXPOSURE CONDITION: Fully Exposed: Roofs exposed on all sides with no shelter afforded by terrain, higher structures or trees OPEN CONDITION: Enclosed EXPOSURE (TERRAIN) CATEGORY: C. Open terrain with scattered obstructions, including surface undulations or other irregularities having heights generally less than 30 feet extending more than 1500 feet from site DESIGN ROOF LIVE LOAD = 19.000 psf COLLATERAL LOAD = 5.000 psf GROUND SNOW LOAD = 50.000 psf SNOW EXPOSURE FACTOR = 0.900 SNOW IMPORTANCE FACTOR = 1.000 SLOPED ROOF SNOW LOAD 31.500 psf DESIGN WIND VELOCITY 90.000 mph WIND IMPORTANCE FACTOR = 1.000 SEISMIC DATA: Maximum response acceleration at short periods Ss = 46.7 Maximum response acceleration at 1 sec periods S1 = 16.2 Seismic site soil classification D Design spectral response acceleration at short periods Sds = 0.444 Design spectral response acceleration at 1 sec periods Shc = 0.232 Seismic Design Category D Reliability factor p = 1.5 Force to concentric braced frames = pCsW p =1.5 Cs= Sds /(R /I) R =3.5 = 0.19W x 1.1 to include accidental torsion = 0.209W Force to braced frame connections = nCsW 0 =2 Cs= Sds /(R /I) R =3.5 = 0.254W x 1.1 to include accidental torsion = 0.279W Force to ordinary moment frames = pCsW p =1.5 Cs= Sds /(R /I) R =3.5 = 0.19W x 1.1 to include accidental torsion = 0.209W BLDG t4-imDrloan Buildings Company P!?nt Locsirons: = ui_..lia. AL 31rnnngham, AL - El Paso. ;L Carson City, NV - LaCrosse, VA Service Centers: Phenix City. AL - Pine Blue, AR - Modesto, CA LaGrange. GA - Columbus, MS - Rocky MOUnt, NC - Jamestovrn, OH 'J I RWF (3) RWF (2) I RWF (2) RWF (3) E LAN I I I I , I I I I ENDWALL ELEVATION C R IGID F RAME C RIGID FR AME C RIGID FR AME — R IGID F RA ME - FIGURE 5 COLUMN AND BEAM ENDWALL ROD BRACING z O Q QI • 9 SUBJECT TO CHANGE WITHOUTlUOTICE - '' '_ - rz EFFECTIVE SEP7EMBER -1 9997 T f - ANG ANG - T 14 r T 'J I RWF (3) RWF (2) I RWF (2) RWF (3) E LAN I I I I , I I I I ENDWALL ELEVATION C R IGID F RAME C RIGID FR AME C RIGID FR AME — R IGID F RA ME - FIGURE 5 COLUMN AND BEAM ENDWALL ROD BRACING z O Q QI • 9 SUBJECT TO CHANGE WITHOUTlUOTICE - '' '_ - rz EFFECTIVE SEP7EMBER -1 9997 Beam and Column Endwall Design Ver. 29.1 Page 5 American Buildings Company Eufaula, AL Wed Nov 28 16:45:26 2007 Job Name: 51739101 Job Part: 1 LEW * ** MINIMUM PURLIN STRUT SIZE BASED ON ENDWALL COLUMN LOADS COL LINE FPLAN SECTION DN CASE HORIZ ALLOWABLE kips kips - -- - - -- - - - -- - - - - - -- -- - - -- - - - -- --- - - - - -- 2 3 RF02 8Z13 1 11 4.51 6.59 3 3 RF01 8Z13 1 11 4.51 6.59 * ** MAXIMUM ENDWALL REACTIONS AND DESIGN LOAD COMBINATIONS CASE M VERT M HORZ LOAD FACTOR / LOAD GROUP => kips kips - - - - - -- ----- - - - - -- ---- - - - - -- - - -- 1 - - - - - -- 7.8 -0.4 1.000 D +C 1.000 L • 2 3 4.2 6.5 -0.2 -0.2 1.000 1.000 D +C 1.000 D +C 1.000 LPAFNI- LPAFN2- 4 7.8 -0.2 1.000 D +C 1.000 LPDFNl- 5 7.8 -0.2 1.000 D +C 1.000 LPDFN2- 6 12.7 -0.2 1.000 D +C 1.000 SEU- 7 11.7 -0.7 1.000 D +C 1.000 S 8 17.4 -0.2 1.000 D +C 1.000 SUL1 <- 9 17.4 -0.2 1.000 D +C 1.000 SUR1 -> 10 -6.6 -4.1 1.000 D 1.000 W+ 11 -6.6 4.5 1.000 D 1.000 W- 12 3.0 -0.6 1.062 D +C 0.700 E+ 13 3.2 -3.0 1.000 D +C 0.750 L 0.750 W+ 14 1.3 3.4 1.000 D +C 0.750 L 0.750 W- 15 5.7 -3.0 1.000 D +C 0.750 S 0.750 W+ 16 3.9 3.4 1.000 D +C 0.750 S 0.750 W- 17 6.8 -0.7 1.067 D +C 0.750 L 0.750 E+ 18 9.7 -0.7 1.067 D +C 0.750 S 0.750 E+ 19 -6.9 -4.1 0.600 D 1.000 W+ • 20 -6.9 4.5 0.600 D 1.000 W- 21 1.5 -0.6 0.538 D +C 0.700 E+ 22 2.8 -0.2 1.000 D +C 23 5.0 -0.1 1.000 L 24 1.3 0.0 1.000 LPAFNI- 25 3.7 0.0 1.000 LPAFN2- 26 4.9 0.0 1.000 LPDFNI- 27 4.9 0.0 1.000 LPDFN2- 28 9.8 0.0 1.000 SEU- 29 8.9 -0.5 1.000 S 30 14.6 0.0 1.000 SUL1 <- 31 14.6 0.0 1.000 SUR1 -> 32 -7.4 -4.1 1.000 W+ 33 -7.4 4.5 1.000 W- 34 0.0 -0.9 1.000 E+ 35 0.8 -0.0 1.000 D ,,, �•�.,,� �.,inimum Seismic And Wind Fo..es Calculation ( IBC2003 ) American Buildings Company Job Number: 51- 7391 -01 Engineer: BN . ..... n.mur -- 46.70% S,( %) = 16.20% Transverse Direction(Interior): R = 3.50 S2, = 3.00 Building Width = 60.00 ft. Roof Weight D + C = 10.00 psf Building Length = 63.00 ft. Roo120 % Snow for Seismic = 6.30 psf FSW Eave Height = 20.00 ft. Weight of Sidewall = 2.00 psf Ridge From FSW = 30.00 ft. Weight of Endwall = 5.00 psf Roof Pitch = 5 /12 Longitudinal Partition WT. = 0.00 psf Canopy Width @ FSW = 3.00 ft. Quantity of Longitudinal Part. = 0 Canopy Width @ RSW = 3.00 ft. Transverse Partition WT. = 0.00 psf Max. Interior Bay Trib. = 20.00 ft. Quantity of Transverse Part. = 0 Building End Bay Trib. = 10.24 ft Longitudinal Special Weight = 0.00 kips Torsional Bracing: Q Yes * No Transverse Special Weight = 0.00 kips Least Number of Braced Bay Per Sidewall = 1 Number of Interior Column = 0 Top Connection: OO pinned O Fixed Seismic Use Group = I S %) = 46.70% S,( %) = 16.20% Transverse Direction(Interior): R = 3.50 S2, = 3.00 Transverse Direction(End): R = 3.50 S2, = 2.00 Longitudinal Direction: R = 3.50 S2, = 2.00 Seismic Factor I = 1 F = 1.43 F = 2.15 SMs = 0.67 Seismic Design Category = D Sos = 0.44 Site Class = D rmax = 0.32 (R = 3.5 for entire structure) rmax = 0.50 SMi = 0.35 Sol = 0.23 vvnw mwnnauon q = 0.00256K = 16.80 psf Longitudinal GC GC = 0.69/1.04 Transverse GC GC = 0.96/1.44 Wind Factor I = 1.00 Interior Bay Tributary Width = 20 ft 1. Wind Load Total Load = P B* H/2 = 5.2 Kips 2. Seismic Load p =2 -20 /(r *A ^0.5) = 1.02 W = 22.32 Kips Cs = 0.13 V = Q = 2.83 Kips Eh = p * QE 2.9 Kips E„ = 0.2S *D = 1.2 Kips Em = S * QE = 8.5 Kios End Bay Tributary Width = 10.24 ft 1. Wind Load Total Load = P B* H/2 = 4. Klns 2. Seismic Load p =2 -20 /(r *A ^0.5) = 1.02 W = 11.43 Kips Cs = 0.13 V = Q = 1.45 Kips E =p * QE = 1.5 Kips E„ = 0.2S *D = 0. Ki s Em =Qo * QE = 2.9 Kios 1. Wind Load Total Load = P„, *B* H/2 = 11.0 Kips 2. Seismic Load (Accidental Torsion Included) p = 2- 20 /(r ^0.5) = 1.38 W = 75.7 Kips Cs = 013 V = Q = 9.6 Kips E =p * QE = 14.6 KIDS Em = = 21.1 Kips E„ = 0.2S *D = 3.7 Kips 0 11 Version 3.0 Quality And Service Author: WW Every Time ... All The Time 4:56 PM11/2812007 Beam and Column Endwall Design Ver. 29.1 Page 2 American Buildings Company Eufaula, AL Wed Nov 28 16:43:34 2007 Job Name: 51739101 Job Part: 1 FEW Force to ordinary moment frame connections = f2CsW n =3 Cs= Sds /(R /I) R =3.5 = 0.381W x 1.1 to include accidental torsion = 0.419W * ** DESIGN LOAD COMBINATIONS CASE LOAD FACT GROUP => 1 1.000 D +C 1.000 L GROUP 2 1.000 D +C 1.000 LPAFNI- START psf/ 3 1.000 D +C 1.000 LPAFN2- -- - - - - -- - - -- 4 1.000 D +C 1.000 LPDFNI- kips - - - -- kips - - -- 5 1.000 D +C 1.000 LPDFN2- UNIF R 6 1.000 D +C 1.000 SEU- -8.00 0.00 7 1.000 D +C 1.000 S R 0 8 1.000 D +C 1.000 SUL1<- 0.00 60.00 9 1.000 D +C 1.000 SUR1 -> 0 0 10 1.000 D 1.000 W+ 60.00 0.00 11 1.000 D 1.000 W- 0 0 12 1.000 D +C 0.750 L 0.750 W+ • 13 1.000 D +C 0.750 L 0.750 W- 14 1.000 D +C 0.750 S 0.750 W+ 15 1.000 D +C 0.750 S 0.750 W- 16 0.600 D 1.000 W+ SUL1<- UNIF 17 0.600 D 1.000 W- 0.00 -9.45 * ** LOADS HORIZ VERT GROUP TYPE M FM TO CL D START psf/ psf/ MOMT END HORIZ VERT -- - - - - -- - - -- - -- -- -- - ft - - - -- kips - - - -- kips - - -- kip -ft - - -- ft - - - -- psf - - - -- psf - - -- D+C UNIF R 0 0 0 0.00 0.00 -8.00 0.00 60.00 0.00 -8.00 D UNIF R 0 0 0 0.00 0.00 -3.00 0.00 60.00 0.00 -3.00 L UNIF R 0 0 0 0.00 0.00 -19.00 0.00 60.00 0.00 -19.00 SEU- UNIF R 0 0 0 0.00 0.00 -35.00 0.00 60.00 0.00 -35.00 S UNIF R 0 0 0 0.00 0.00 -31.50 0.00 60.00 0.00 -31.50 SUL1 <- UNIF R 0 0 0 0.00 0.00 -52.50 0.00 30.00 0.00 -52.50 SUL1<- UNIF R 0 0 0 30.00 0.00 -9.45 0.00 60.00 0.00 -9.45 SUR1 -> UNIF R 0 0 0 0.00 0.00 -9.45 0.00 30.00 0.00 -9.45 SUR1 -> UNIF R 0 0 0 30.00 0.00 -52.50 0.00 60.00 0.00 -52.50 LPAFNI- UNIF R 0 0 0 0.00 0.00 -0.00 0.00 19.00 0.00 -0.00 LPAFNI- UNIF R 0 0 0 19.00 0.00 -19.00 0.00 41.00 0.00 -19.00 LPAFNI- UNIF R 0 0 0 41.00 0.00 -0.00 0.00 60.00 0.00 -0.00 LPAFN2- UNIF R 0 0 0 0.00 0.00 -19.00 0.00 19.00 0.00 -19.00 LPAFN2- •UNIF R 0 0 0 19.00 0.00 -0.00 0.00 41.00 0.00 -0.00 LPAFN2- UNIF R 0 0 0 41.00 0.00 -19.00 0.00 60.00 0.00 -19.00 LPDFNI- UNIF R 0 0 0 0.00 0.00 -19.00 0.00 41.00 0.00 -19.00 LPDFNI- UNIF R 0 0 0 41.00 0.00 -0.00 0.00 60.00 0.00 -0.00 LPDFN2- UNIF R 0 0 0 0.00 0.00 -0.00 0.00 19.00 0.00 -0.00 LPDFN2- UNIF R 0 0 0 19.00 0.00 -19.00 0.00 60.00 0.00 -19.00 W+ UNIF R 0 0 0 0.00 0.00 23.23 0.00 60.00 0.00 23.23 W- UNIF R 0 0 0 0.00 0.00 23.23 0.00 60.00 0.00 23.23 W+ UNIF C 1 1 0 0.00 16.06 0.00 0.00 0.00 16.06 0.00 W- UNIF C 1 1 0 0.00 -18.99 0.00 0.00 0.00 -18.99 0.00 Beam and Column Endwall Design Ver. 29.1 Page 3 American Buildings Company Eufaula, AL Wed Nov 28 16:45:25 2007 Job Name: 51739101 Job Part: 1 LEW * ** LOADS (continued) HORIZ VERT GROUP TYPE M FM TO CL D START psf/ psf/ ft kips kips -- - - - - -- - - -- - -- -- -- - - - - -- - - - -- - - -- LPDFN2- UNIF R 0 0 0 19.00 0.00 -17.86 W+ UNIF R 0 0 0 0.00 0.00 23.23 W- UNIF R 0 0 0 0.00 0.00 23.23 W+ UNIF C 1 1 0 0.00 16.06 0.00 W- UNIF C 1 1 0 0.00 -18.99 0.00 W+ UNIF C 2 3 0 0.00 14.81 0.00 W- UNIF C 2 3 0 0.00 -16.50 0.00 W+ UNIF C 4 4 0 0.00 16.06 0.00 W- UNIF C 4 4 0 0.00 -18.99 0.00 D CONC C 1 1 0 18.10 0.00 -0.18 L CONC C 1 1 0 18.10 0.00 -0.78 S CONC C 1 1 0 18.10 0.00 -2.70 W+ CONC C 1 1 0 18.10 0.00 -1.23 W CONC C 1 1 0 18.10 0.00 1.23 D +C CONC C 1 1 0 18.10 0.00 -0.38 D CONC C 4 4 0 18.10 0.00 -0.18 L CONC C 4 4 0 18.10 0.00 -0.78 S CONC C 4 4 0 18.10 0.00 -2.70 W+ CONC C 4 4 0 18.10 0.00 -1.23 W- CONC C 4 4 0 18.10 0.00 1.23 D +C CONC C 4 4 0 18.10 0.00 -0.38 E+ UNIF C 2 3 0 0.00 10.00 0.00 E+ UNIF C 3 3 0 0.00 10.00 0.00 FY COLD FORMED = 55.0 ksi FY HOT ROLLED = 50.0 ksi FY BUILT UP = 55.0 ksi * ** ENDWALL RAFTERS MEM DESCRIPTION LOCATION SPLICE PLATES SP BL ft in in in - -- ----- - - - - -- -- - - - - -- ------------ - - - - -- - - - -- 1 W12X14 0.000 5 0.250 14.00 2 2 W12X14 30.000 5 0.375 18.50 4 * ** ENDWALL COLUMNS MEM DESCRIPTION LOCATION BASE PLATES A BLT ft in in in - -- ----- - - - - -- -- - - - - -- ------------ - - - - -- ------ 1 W8X18 0.000 6 0.375 8.50 2 2 W8X18 19.000 6 0.375 8.50 2 3 W8X18 41.000 6 0.375 8.50 2 MOMT END HORIZ VERT kip -ft ft psf psf - - -- - - - -- - - - -- - - -- 0.00 60.00 0.00 -17.86 0.00 60.00 0.00 23.23 0.00 60.00 0.00 23.23 0.00 0.00 16.06 0.00 0.00 0.00 -18.99 0.00 0.00 0.00 14.81 0.00 0.00 0.00 -16.50 0.00 0.00 0.00 16.06 0.00 0.00 0.00 -18.99 0.00 0.67 2.89 10.00 4.56 -4.56 4.08 0.67 2.89 10.00 4.56 -4.56 4.08 0.00 16.00 10.00 0.00 0.00 16.00 10.00 0.00 T ROW BEND RT SHR RT in - - - -- - - - - - -- - - - - -- 0.50 1.001 0.203 0.75 1.001 0.203 ROW BEND RT SHR RT CT in - - - -- - - - - - -- - - - - -- -- 0.75 0.783 0.056 0.75 0.885 0.121 N 0.75 0.885 0.121 N • i Beam and Column Endwall Design Ver. 29.1 Page 4 American Buildings Company Eufaula, AL Wed Nov 28 16:43:35 2007 Job Name: 51739101 Job Part: 1 REW E CORNER COLUMN - @ RSW 11.333 RAFTER - REF PT FSW UPSLOPE 6.000 16.000 21.000 26.000 RAFTER - REF PT RIDGE DOWNSLOPE 6.500 11.500 16.500 26.500 29.500 SECTION 4 PURLIN AND GIRT C: g A 1\9 E P I C A N B U I L D I N G S C F r o n t R o o f D e s i (typical) Designer: BN Version Nui Job Number: 51739101, Module: 1 Date /Time: ------------------------------------------------- Type Width Length Ridge Dist R.Col.Elev RF 60.000 ft 60.000 ft 31.).000 ft 0.000 ft -------------------------------------------------- S.Wall Eave Ht. Lean -To Width E.Wall Type Col Front: 20.000 ft 0.000 ft Left 1 Pear: 20.000 ft 0.000 ft Right 1 O M P A N Y q n nber: Ver. ^ -9.1 11/ ^1/07 09:36 AM -------------------------- Slope(F) Slope(R) NO.BAYS 5.000:12 5.000:12 3 ---- ---------------------- - Spc. Girt Type Overhang S I 3.000 ft S I 0.000 ft Building Code: 2003 International Building Code --------------------------------------------------------------------------- Building Use Category: II. All buildings and other structures except those listed in Categories I, III, and IV (Snow Importance Fact or = 1.000) (Wind Importance Factor = 1.000) Roof Dead Load = 1.500 psf Collateral Load = 5.000 psf P.00f Live Load = 19.100 psf Ground Snow Load = 50.000 psf Snow Exposure Category: Fully Exposed (Snow Exposure Factor = 0.900) Thermal Condition: All structures except as indicated below (Thermal Factor _ "1.000) Roof Snow Load = 31.500 psf But Not Less Than 35.000 psf When Applied As A Uniform Load In Combination With Dead And Collateral Loads Wind Velocity = 90.000 mph Open Condition: Enclosed Wind Exposure Category: C. Open terrain with scattered obstructions, including surface undulations or other irregularities having heights generally less than 30 feet extending more than 1500 feet from site Design Wind Pressure (Cladding and Secondary) = 16.833 psf --------------------------------------------------------------------- - - - - -- Purlin locations on slope from peak to eave. Line Dist. Design Interesting AR L.edge R.edge Weight No. ---------------------------------------------------------------------- (ft) Spacing Line Clip zone phg - -one pkg (lb s) 1 1.500 4.000 Yes ^ _89.991 ? 6.500 5.000 Yes(DnHill) Yes Yes 239.991 3 11.500 5.000 Yes Yes(DnHill) 289.991 4 16.500 5.000 Exp.Joint 289.991 5 21.500 5.000 Yes Yes(DnHill) Yes Yes 289.991 6 _ 2 6.500 4.000 Yes Yes(DnHill) Yes Yes 289.991 7 29.500 3.000 Yes Yes 239.991 • E Page 1 of 22 Zone reinforcement package is in use. Check By ASD; No Deflection Limit Net uniform load of - 64.444 - 64.444 lb /ft Continuous spans of 2.500 2.500 ft Force = 50.347 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.431 Load Combination: D + W(at overhang rake edge) - Check By ASD; No Deflection Limit Net uniform load of - 39.195 - 39.195 - 39.195 - 39.195 - 39.195 lb /ft Continuous spans of 5.000 5.000 5.000 5.000 5.000 ft Force = 103.144 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.883 Load Combination: D + W(at eave corner) - Zone reinforcement package is in use. Check By ASD; No Deflection Limit Net uniform load of - 45.g28 - 45.928 Continuous spans of 2.500 2.500 Force = 28.705 ft -lb; Resistance = 116.766 45.928 lb /ft 2.500 ft ft -lb; Check Ratio = 0.246 • Load Combination: D + W(at peak corner) - Zone reinforcement package is in use. Check By ASD; No Deflection Limit Net uniform load of - 45.9 28 - 45.928 lb /ft Continuous spans of 2.500 2.500 ft Force = 35.881 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.307 Load Combination: D + W(at rake edge) - Check By ASD; No Deflection Limit Net uniform load of - 30.778 - 30.778 - 30.776 - 30.778 - 30.778 lb /ft Continuous spans of 5.000 5.000 5.000 5.000 5.000 ft Force = 80.995 ft -lb; Resistance = 116.766 ft -lb; Check Patio = 0.694 Load Combination: D + W(at eave edge) - Check By ASP; No Deflection Limit Net uniform load of - 30.778 - 30.778 - 30.778 lb /ft Continuous spans of 3.000 3.000 5.000 ft Force = 69.681 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.598 Load Combination: D + W(at peak edge) - Check By ASP; No Deflection Limit Net uniform load of - 30.778 lb /ft on a simple span of 5.000 ft Force = - 96.182 ft -lb; Resistance = - 140.719 ft -lb; Check Ratio = 0.684 Load Combination: D + W(typical)- Check By ASD; No Deflection Limit Net uniform load of - 17.312 - 17.312 - 17.312 - 17.312 lb /ft Continuous spans of 5.000 5.000 5.000 5.000 ft Force = 45.557 ft -lb; Resistance = 116.766 ft -lb; Load Combination: P + W(typical)+ Check By ASP; No Deflection Limit Net uniform load of 12.314 12.314 12.314 lb /ft - 17.312 5.000 Check Ratio = 0.390 12.314 12.314 Page 3 of 22 6 Continuous spans of 5.O00 5.000 5.000 5.000 5.000 ft Force = 51.908 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.701 Load Combination: 0.60D + W(at cave edge) - Check By ASD; No Deflection Limit Net uniform load of - 31.125 - 31.125 - 31.125 lb /ft Continuous spans of 3.000 3.000 5.000 ft Force = 70.669 ft -lb; Resistance = 116.766 ft -lb; Check Patio = 0.605 Load Combination: 0.60D + W (at peak edge)- Check By ASD; No Deflection Limit Net uniform load of - 31.125 lb /ft On a simple span of 5.000 ft Force = - 97.266 ft -lb; Resistance = - 140.719 ft -lb; Check Patio = 0.691 Load Combination: 0.60D + W(typical)- Check By ASP; No Deflection Limit Net uniform load of - 17.659 - 17.659 - 17.659 - 17.659 - 17.659 lb /ft Continuous spans of 5.000 5.000 5.000 5.000 5.000 ft • Force = 46.471 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.398 Load Combination: 0.60D + W(typical)+ Check By ASD; No Deflection Limit Net uniform load of 11.967 11.967 11.967 11.967 11.967 lb /ft Continuous spans of 5.000 5.000 5.000 5.000 5.000 ft Force = - 31.492 ft -lb; Resistance = - 140.719 ft -lb; Check Ratio = 0.224 Load Combination: L+ No Stress Design; L/150 Deflection Limit Net uniform load of 16.189 16.189 16.169 lb /ft Continuous spans of 5.000 5.000 5.000 ft Force = 0.055 inches; Resistance = 0.400 inches; Check Patio = 0.137 Load Combination: S+ No Stress Design; L /180 Deflection Limit Net uniform load of 26.840 26.840 26.840 lb /ft Continuous spans of 5.000 5.000 5.000 ft Force = 0.091 inches; Resistance = 0.333 inches; Check Ratio = 0.273 Load Combination: S(unbalanced)- No Stress Design; L /180 Deflection Limit Net uniform load of 44.734 44.734 44.734 lb /ft Continuous spans of 5.000 5.000 5.000 ft Force = 0.152 inches; Resistance = 0.333 inches; Check Ratio = 0.455 Load Combination: S(extraordinary)- No Stress Design; L /180 Deflection Limit Net uniform load of 29.822 29.822 29.822 lb /ft Continuous spans of 5.000 5.O00 5.000 ft Force = 0.101 inches; Resistance = 0.333 inches; Check Ratio = 0.303 Load Combination: 0.70W(at overhang eave corner) - Zone reinforcement package is in use. No Stress Design; L /180 Deflection Limit Net uniform load of - 45.718 - 45.718 - 45.718 lb /ft Page 5. of 22 Load Combination: 0.70W(typical)+ No Stress Design; L /00 Deflection Limit Net uniform load of 3.02 S . X1_2 S . Q2 S.012 5.012 lb /ft Continuous spans of 5.000 5.000 5.000 5.000 5.000 ft Force = 0.026 inches; Resistance = 0.333 inches; Check Ratio = 0,078 Roof purlin line 5 (Designed Line) analysis details. Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure --------------------------------------------------------------------------- 5.000 ft B 0.455 ft 0.458 ft 6.000 ft -0.980 0.480 -1.380 0.450 Roof interesting purlin line 5 (Designed Line) analysis details. Design Data - Load Combinations No. --------------------------------------------------------------------------- Load Case Description 1 D +C + L+ Check By ASD; No Deflection Limit 2 D +C + LAFN- Check By ASD; No Deflection Limit 3 D +C + LANF- Check By ASD; No Deflection Limit 4 D +C + LDFNIL- Check By ASD; No Deflection Limit 5 D +C + LDFNXI- Check By ASD; No Deflection Limit 6 D +C + LDFNX2- Check By ASD; No Deflection Limit 7 D +C + LDFNX3- Check By ASP; No Deflection Limit 8 D +C + S+ Check By ASD; No Deflection Limit 9 D +C + SU- Check By ASD; No Deflection Limit Jill 10 D +C + SEFHL- Check By ASD; No Deflection Limit 11 D +C + SEFHR- Check By .ASD; No Deflection Limit 12 D +C + SEHFL- Check By ASD; No Deflection Limit 13 D +C + SEHFR- Check By ASP; No Deflection Limit 14 D +C + SDFHIL- Check By ASD; No Deflection Limit 15 D +C + SDFHXI- Check By ASP; No Deflection Limit 16 D +C + SDFHX2- Check By y ASD; No Deflection Limit 17 D +C + SDFHX3- Check: By ASD; No Deflection Limit is D +C + SEU- Check: By ASD; No Deflection Limit 19 D- + W- Check By ASD; No Deflection Limit _0 D +C + W- Check By ASD; No Deflection Limit Page 7 of 22 --------------------------------------------------------------------------- 1L 3.458 8213 0.000 0.000 0 1 R. End 9 0.232 bending +shear # 9 L/ 68 deflection 1 19.542 SZ13 0.000 - 2 .417 0 1 B.End 9 0.879 bending +she ar 6.9 - - 2 3 0.000 2 UNIF D +C ALL 28.225 35 L/ 257 deflection 2 20.000 SZ14 2.417 - .417 0 1 B.End 9 0.945 bending +shear UNIF LAFN- 1L 80.947 0.000 80.947 3.458 43 L/1166 deflection 3 19.542 SS13 2.417 0.000 0 1 B.End 9 0.968 bending +shear 0.000 80.947 19.542 7 UNIF LAFN- 3R 35 L/ 230 deflection 3P, o.458 SZ13 0.000 0.000 0 1 L.End 24 0.044 bolt capacity 9 UNIF LDFNIL- 11, 80.947 0.000 80.947 3.458 9 L/ 54 deflection Total design weight per run = 289.991 lbs. Maximum stress ratio = 0.968. Roof interesting purlin line 5 (Designed Line) analysis details. Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group # lb /ft(kips) feet lb /ft fret --------------------------------------------------------------------------- 1 UNIF D- ALL 1.923 0.000 6.9 - - 2 3 0.000 2 UNIF D +C ALL 28.225 0.000 28.225 11.000 3 UNIF L+ ALL 80.947 0.000 8 0. 947 0.000 4 UNIF LAFN- 1L 80.947 0.000 80.947 3.458 5 UNIF LAFN- 1 80.947 0.000 80.947 19.542 6 UNIF LAFN- 3 80.947 0.000 80.947 19.542 7 UNIF LAFN- 3R 80.947 0.000 80.947 0.458 S UNIF LANF- 2 80.947 0.000 80.947 20.000 9 UNIF LDFNIL- 11, 80.947 0.000 80.947 3.458 10 UNIF LDFNIL- 1 80.947 0.000 80.947 19.542 11 UNIF LDFNXI- 1L 80.947 0.000 80.947 3.455 12 UNIF LDFNXI- 1 80.947 0.000 80.947 19.54^ 13 UNIF LDFNXl- 2 50.947 0.000 80.947 20.000 14 UNIF LDFNX2- 2 80.947 0.000 80.947 20.000 15 UNIF LDFNX2- 3 80.947 0.000 80.947 19.542 16 UNIF LDFNX2- 3R SO.947 0.000 80.947 0.458 17 UNIF LDFNX3- 3 50.947 0.000 80.947 19.542 1S UNIF LDFNX3- 3R 80.947 0.000 50.947 0.455 19 UNIF S+ ALL 134.201 0.000 134.201 0.000 20 UNIF SU- ALL 223.669 11.000 223.669 0.000 21 UNIF SEFHL- 1L 134.201 0.000 134. 201 3.458 22 UNIF SEFHL- 1 134.201 0.000 134.^ -01 19.542 23 UNIF SEFHL- 2 67.101 0.000 67.101 20.000 24 UNIF SEFHL- 3 67.101 0.000 67.101 19.542 25 UNIF SEFHL- 3R 67.101 0.000 67.101 0.45E 26 UNIF SEFHR- 11, 67.101 0.000 67.101 3.455 27 UNIF SEFHR- 1 67.101 0.000 67.101 19.542" 28 UNIF SEFHR- 2 67.101 0.000 67.101 20.000 29 tTNIF SEFHR- 3 134.201 0.000 134.201 19.542 30 UNIF SEFHR- 3R 134.201 0.000 134.201 0.458 31 UNIF SEHFL- 1L 67.101 0.000 67.101 3.455 32 UNIF SEHFL- 1 67.101 0.000 67.101 19.542 33 UNIF SEHFL- 2 134.201 0.000 134.201 20.000 34 UNIF SEHFL- 3 134. 201 0.000 134.201 19.542 35 UNIF SEHFL 3R 134.201 0.000 134.201 0.458 36 UNIF SEHFR- 1L 134.201 0.000 134.201 3.458 37 UNIF SEHFR- 1 134.201 0.000 134.201 19.542 38 UNIF SEHFR- 2 134.201 0.000 134.201 20.000 39 UNIF SEHFR- 3 67.101 0.000 67.101 19.542 Page 9 of 22 Page 11 of 22 -l� 12 D +C + SEHFL- Check By ASD; No Deflection Limit 13 D +C + SEHFR- Check By ASD; No Deflection Limit 14 D +C + SDFHIL- Check By ASD; No Deflection Limit 15 D +C + SDFHX1- Check By ASD; No Deflection Limit 16 D +C + SDFHX2- Check By ASD; No Deflection Limit 17 D +C + SDFHX3- Check By ASD; No Deflection Limit 13 D +C + SEU- Check By ASD; No Deflection Limit 19 D- + W- Check By ASD; No Deflection Limit 20 D +C + W- Check By ASD; No Deflection Limit 21 D +C + W+ Check By ASD; No Deflection Limit 2^ D +C + 3/4L+ + 3/4W+ • Check By ASD; No Deflection Limit 23 D +C + 3/4S+ + 3/4W+ Check By ASD; No Deflection Limit 24 0.60D- + W- Check By ASD; No Deflection Limit 25 0.6u(D +C) + W- Check By ASD; No Deflection Limit 26 0.60(D +C) + W+ Check By ASD; No Deflection Limit 27 L+ No Stress Check; L/150 Deflection Limit 2S 1 /2LAFN• No Stress Check; L /150 Deflection Limit 29 1 /2LANF- No Stress Check; L/150 Deflection Limit 30 1 /2LDFNIL- No Stress Check; L /150 Deflection Limit • 31 1/2LDFNXI- No Stress Check; L/150 Deflection Limit 32 1 /2LDFNX2- No Stress Check; L/150 Deflection Limit 33 1 /2LDFNX3- No Stress Check; L/150 Deflection Limit 34 S+ No Stress Check; L /130 Deflection Limit 35 SU- No Stress Check; L /180 Deflection Limit 36 SEFHL- No Stress Check; L/180 Deflection Limit 37 SEFHR- No Stress Check; L /180 Deflection Limit 38 SEHFL- No Stress Check; L /180 Deflection Limit 39 SEHFR- No Stress Check; L /130 Deflection Limit 40 SDFHIL- No Stress Check; L/180 Deflection Limit 41 SDFHXI- No Stress Check; L /180 Deflection Limit Page 11 of 22 -l� 42 SDFHX2- 43 SDFHX3- 44 SEU- 45 0.70W- 46 0.70W+ No Stress Check; L /1S0 Deflection Limit No Stress Check; L /180 Deflection Limit No Stress Check; L/1S0 Deflection Limit No Stress Check; L /1S0 Deflection Limit No Stress Check; L/1S0 Deflection Limit Roof interesting purlin line 6 (At eave edge) analysis details. Design Data - Summary Span Length Mark Left Right Brace Nest End Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio Check --------------------------------------------------------------------------- (ft) --------------------------------------------------------------------- 1 (ft) (ft) # # 0.000 5.538 - - - - -- • 0.000 2 1L 3.455 SZ13 0.000 0.000 0 1 R.End 9 0.156 bending +shear 64.757 0.000 64.757 0.000 4 UNIF LAFN- 1L 9 L/ 85 deflection 1 19.542 SZ13 0.000 2.417 0 1 B.End 9 0.706 bending +shear • LAFN- 3 64.757 0.000 64.757 19.542 7 UNIF 35 L/ 321 deflection 2 20.000 8214 2.417 2.417 0 1 B.End 9 0.758 bending +shear 9 UNIF LDFNIL- 1L 64.757 0.000 64.757 3.458 43 L/1458 deflection 3 19.542 SZ13 2.417 0.000 0 1 B.End 9 0.778 bending +shear 64.757 3.458 12 UNIF LDFNXI- 1 64.757 0.000 35 L/ 288 deflection 3R 0.458 SZ13 0.000 0.000 0 1 L.End 24 0.056 bolt capacity 64.757 0.000 64.757 20.000 15 UNIF LDFNX2- 3 9 L/ 67 deflection Total design weight per run = 289.991 lbs. Maximum stress ratio = 0.778. Roof interesting purlin line 6 (At eave edge) analysis details. Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group # lb /ft(kips) feet INK feet --------------------------------------------------------------------- 1 UNIF D- ALL 5.538 0.000 5.538 - - - - -- • 0.000 2 UNIF D +C ALL 22.580 0.000 22.580 0.000 3 UNIF L+ ALL 64.757 0.000 64.757 0.000 4 UNIF LAFN- 1L 64.757 0.000 64.757 3.458 5 UNIF LAFN- 1 64 .757 0.000 64.757 19.542 6 UNIF LAFN- 3 64.757 0.000 64.757 19.542 7 UNIF LAFN- 3R 64.757 0.000 64.757 0.458 S UNIF LANF- 2 64.757 0.000 64.757 20.000 9 UNIF LDFNIL- 1L 64.757 0.000 64.757 3.458 10 UNIF LDFNIL- 1 64.757 0.000 64.757 19.542 11 UNIF LDFNXI- 1L 64.757 0.000 64.757 3.458 12 UNIF LDFNXI- 1 64.757 0.000 64.757 19.542 13 UNIF LDFNXI- 2 64.757 0.000 64.757 20.000 14 UNIF LDFNX2- 2 64.757 0.000 64.757 20.000 15 UNIF LDFNX2- 3 64.757 0.000 64.757 19.542 16 UNIF LDFNX2- 3R 64.757 0.000 64.757 0.458 17 UNIF LDFNX3- 3 64.757 0.000 64.757 19.542 1S UNIF LDFNX3- 3R 64.757 0.000 64.757 0.458 19 UNIF S+ ALL 107.361 0.000 107.361 0.000 20 UNIF SU- ALL 178.935 0.000 178.935 0.000 21 UNIF SEFHL- 1L 107.361 0.000 107.361 3.458 Page 12 of 22 11 Roof interesting purlin line 3 (Designed Line) analysis details. Design 22 UNIF SEFHL- 1 107.361 0.000 107.361 19.542 Inset 23 UNIF SEFHL- 2 53.680 0.000 53.680 20.000 6.000 ft 24 UNIF SEFHL -- 3 53.680 0.000 53.650 19.542 25 UNIF SEFHL 3R 53.680 0.000 53.680 0.458 26 UNIF SEFHR- 1L 53.680 0.000 53.680 3.458 27 UNIF SEFHR- 1 53.680 0.000 53.680 19.542 28 UNIF SEFHR- 2 53.680 0.000 53.680 20.000 29 UNIF SEFHR- 3 107.361 0.000 107.361 19.542 30 UNIF SEFHR- 3R 107.361 0.000 107.361 0.458 31 UNIF SEHFL- 1L 53.680 0.000 53.680 3.458 32 UNIF SEHFL- 1 53.650 0.000 53.680 19.542 33 UNIF SEHFL- 2 107.361 0.000 107.361 ^0.000 34 UNIF SEHFL- 3 107.361 0.000 107.361 19.542 35 UNIF SEHFL- 3R 107.361 0.000 107.361 0.458 36 UNIF SEHFR- 1L 107.361 0.000 107.361 3.458 37 UNIF SEHFR- 1 107 .361 0.000 107.361 19.542 38 UNIF SEHFR- 2 107.361 0.000 107.361 20.000 39 UNIF SEHFR- 3 53.680 0.000 53.680 19.542 40 UNIF SEHFR- 3R 53.680 0.000 53.680 0.458 41 UNIF SDFHIL- 1L 53.680 0.000 53.680 3.458 42 UNIF SDFHIL- 1 53.680 0.000 53.680 19.542 • 43 UNIF SDFHIL- ALL 53.680 0.000 53.680 0.000 44 UNIF SDFHXI- 1L 53.680 0.000 53.680 3.458 45 UNIF SDFHX1- 1 53.680 0.000 53.680 19.542 46 UNIF SDFHX1- 53.680 0.000 53.680 20.000 47 UNIF SDFHXI- ALL 53.680 0.000 53.680 0.000 48 UNIF SDFHX2- 2 53.680 0.000 53.680 20.000 49 UNIF SDFHX2- 3 53.680 0.000 53.680 19.542 50 UNIF SDFHX2- 3R 53.680 0.000 53.680 0.458 51 UNIF SDFHX2- ALL 53.680 0.000 53.680 0.000 52 UNIF SDFHX3- 3 53.680 0.000 53.680 19.542 53 UNIF SDFHX3- 3R 53.680 0.000 53.680 0.458 54 UNIF SDFHX3- ALL 53.680 0.000 53.680 0.000 55 UNIF SEU- ALL 119.290 0.000 119.290 0.000 56 UNIF W- 11, - 149.842 0.000 - 149.842 3.458 57 UNIF W- 1 - 149.84^ 0.000 - 149.842 2.542 58 UNIF W- 1 - 95.467 2.542 - 95.467 19.542 59 UNIF W- 2 - 95.467 0.000 - 95.467 20.000 60 UNIF W- 3 - 95.467 0.000 - 95.467 14.000 61 UNIF W- 3 - 149.842 14.000 - 149.842 19.54^ 62 UNIF W- 3R - 149.84 0.000 - 149.842 0.458 63 UNIF W+ ALL 33.339 0.000 33.339 0.000 Roof interesting purlin line 3 (Designed Line) analysis details. Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure --------------------------------------------------------------------------- 5.000 ft B 0.458 ft 0.45S ft 6.000 ft -0.950 0.480 -1.3S0 0.480 Roof interesting purlin line 3 (Designed Line) analysis details. Design Data - Load Combinations No. Load Case Description --------------------------------------------------------------------------- 1 D +C + L+ 2 D +C + LAFN- Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit Page 13 of 22 vv J 4 5 6 7 O V 9 15 16 17 1S 19 20 _1 3 ?4 25 6 _ ^S -, Q 30 31 32 D +C + LANF- 0 Is Page 14 of 22 C l Check By ASE); No Deflection Limit D +C + LDFNIL- Check: By ASD; No Deflection Limit D +C + LDFNXI- Check By ASD; No Deflection Limit D +C + LDFNX2- Check By ASD; No Deflection Limit D +C + LDFNX3- Check By ASD; No Deflection Limit D +C + S+ Check By ASD; No Deflection Limit D +C + SU- Check By ASP; No Deflection Limit D +C + SEFHL- Check By ASD; No Deflection Limit D +C + SEFHR- Check By ASD; No Deflection Limit D +C + SEHFL- Check By ASD; No Deflection Limit D +C + SEHFR- Check By ASD; No Deflection Limit D +C + SDFHIL- Check By ASD; No Deflection Limit D +C + SDFHXI- Check By ASD; No Deflection Limit D +C + SDFHX2 - Check By ASD; No Deflection Limit D +C + SDFHX3- Check By ASD; No Deflection Limit D +C + S EU- Check By ASD; No Deflection Limit D- + W- Check By ASD; No Deflection Limit D- + WLIP- Check By ASD; No Deflection Limit D- + WRIP- Check By ASD; No Deflection Limit D- + WLIN- Check By ASD; No Deflection Limit D- + WRIN- Check By ASD; No Deflection Limit P +C + W - Check By ASD; No Deflection Limit D +C + W+ Check By ASD; No Deflection Limit 1.06(D +C) + 0.70EFL+ Check By ASD; No Deflection Limit 1.06(D +C) + 0.70EFR+ Check By ASD; No Deflection Limit D +C + 3/4L+ + 3/4W+ Check By ASD; No Deflection Limit D +C + 3/4S+ + 3/4W+ Check By ASD; No Deflection Limit 1.07(D +C) + 3/4L+ + 3 /4EFL+ Check By ASD; No Deflection Limit 1.07(D +C) + 3/4L+ + 3 /4EFR+ Check By ASD; No Deflection Limit 1.07(D +C) + 3/4S+ + 3 /4EFL+ Check By ASD; No Deflection Limit 0 Is Page 14 of 22 C l Page 15 of 22 �0 33 1.07(D +C) + 3/4S+ + 3 /4EFR+ Check By ASD; No Deflection Limit 34 0.60D- + W- Check By ASD; No Deflection Limit 35 0.60D- + WLIP- Check By ASD; No Deflection Limit 36 0.60D- + WRIF- Check By ASD; No Deflection Limit 37 0.60D- + WLIN- Check By ASD; No Deflection Limit 38 0.60D- + WRIN- Check By ASD; No Deflection Limit 39 0.60(D +C) + W- Check By ASD; No Deflection Limit 40 0.60(D +C) + W+ Check By ASD; No Deflection Limit 41 0.54(D +C) + 0.70EFL+ Check By ASD; No Deflection Limit 42 0.54(D +C) + 0.70EFR+ Check By ASD; No Deflection Limit 43 L+ lip No Stress Check; L/150 Deflection Limit 44 1 /2LAFN- No Stress Check; L/150 Deflection Limit 45 1 /2LANF- No Stress Check; L/150 Deflection Limit 46 1 /2LDFNIL- No Stress Check; L /150 Deflection Limit 47 1 /2LDFNXI- No Stress Check; L/150 Deflection Limit 46 1 /2LDFNX2- No Stress Check; WHO Deflection Limit 49 1 /2LDFNX3- No Stress Check; WHO Deflection Limit 50 S+ No Stress Check; L/1S0 Deflection Limit 51 SU- No Stress Check; VISO Deflection Limit 52 SEFHL- No Stress Check; L /160 Deflection Limit 53 SEFHR- No Stress Check; L /1S0 Deflection Limit 54 SEHFL- No Stress Check; L /180 Deflection Limit 55 SEHFR- No Stress Check; L /160 Deflection Limit 56 SDFHIL- No Stress Check; L/180 Deflection Limit 57 SDFHXI- No Stress Check; L/180 Deflection Limit 58 SDFHX2- No Stress Check; L/1S0 Deflection Limit 59 SDFHX 3- No Stress Check; L/180 Deflection Limit 60 SEU- No Stress Check; L/180 Deflection Limit 61 0.70W- No Stress Check; L/1S0 Deflection Limit 6_2 0.70W+ No Stress Check; L/1S0 Deflection Limit Page 15 of 22 �0 63 o.70WLIP- 64 0.70WRIP- 65 0.70WLIN- 66 0.70WRIN- No Stress Check; L /180 Deflection Limit No Stress Check; L /1S0 Deflection Limit No Stress Check; L /180 Deflection Limit No Stress Check; L/180 Deflection Limit Roof interesting purlin line 3 (Designed Line) analysis details. Design Data - Summary Span Length Mark Left Right Brace Nest End Load Check Control ID 7 No. Lap Lap Pts Mem Clip Case Ratio Check --------------------------------------------------------------------------- (ft) 13 (ft) (ft) # # UNIF 16 UNIF 17 1L 3.458 SZ13 0.000 0.000 0 1 R.End 36 0.455 bearing at bolt 23 UNIF 80.947 19.542 LAFN- 3R 80.947 9 L/ 68 deflection 1 19.542 SZ13 0.000 2.417 0 1 B.End 9 0.879 bending +s hear 0.000 80.947 3.458 LDFNIL- 1 80.947 0.000 51 L/ 257 deflection 2 20.000 SZ14 ^.417 2.417 0 1 B.End 9 0.945 bending +shear 80.947 19.542 LDFNXI- _ 80.947 0.000 80.947 59 L/1166 deflection 3 19.542 SZ13 ^.417 0.000 0 1 B.End 9 0.968 bending +shear 19.542 LDFNX2- 3R 80.947 0.000 50.947 0.458 51 L/ 230 deflection 3R 0.458 SZ13 0.000 0.000 0 1 L.End 35 0.455 bearing at bolt S+ ALL 134.201 0.000 134.201 0.000 SU- 9 L/ 54 deflection Total design weight per run = 289.991 lbs. Maximum stress ratio = 0.968. Roof interesting purlin line 3 (Designed Line) analysis details. Design Data - Applied loads No. Load Load Type Group ----------------- 1 UNIF 2 UNIF 3 UNIF 4 UNIF 5 UNIF 6 UNIF 7 UNIF 8 UNIF 9 UNIF 10 UNIF 11 UNIF 12 UNIF 13 UNIF 14 UNIF 15 UNIF 16 UNIF 17 UNIF 1S UNIF 19 UNIF 20 UNIF 21 UNIF _ ^2 UNIF 23 UNIF Span Intensity From In tensity To -------------------------------------------------------- lb /ft(kips) feet lb /ft feet D- ALL 6.923 0.000 6.923 0.000 D +C ALL 28 =5 0.000 25.225 0.000 L+ ALL S0.947 0.000 80.947 0.000 LAFN- IL 50.947 0.000 80.947 3.458 LAFN- 1 80.947 0.000 80.947 19.542 LAFN- 3 80.947 0.000 80.947 19.542 LAFN- 3R 80.947 0.000 80.947 0.458 LANF- n 80.947 0.000 80.947 20.000 LDFNIL- 1L 80.947 0.000 80.947 3.458 LDFNIL- 1 80.947 0.000 80.947 19.54 2 LDFNXI- 1L S0.947 0.000 80.947 3.458 LDFNXI- 1 80.947 0.000 80.947 19.542 LDFNXI- _ 80.947 0.000 80.947 20.000 LDFNX2- 2 80.947 0.000 80.947 20.000 LDFNX2- 3 80.947 0.000 80.947 19.542 LDFNX2- 3R 80.947 0.000 50.947 0.458 LDFNX3- 3 80.947 0.000 80.947 19.542 LDFNX3- 3R 50.947 0.000 80.947 0.458 S+ ALL 134.201 0.000 134.201 0.000 SU- ALL 223.669 0.000 223.669 0.000 SEFHL- 1L 134.201 0.000 134.201 3.458 SEFHL- 1 134.201 0.000 134.201 19.542 SEFHL- 2 67.101 0.000 67.101 20.000 0 Page 16 of 22 103 Page 17 of 22 IM, 24 UNIF SEFHL- 3 67.101 0.000 67.101 19.542 25 UNIF SEFHL- 3R 67.101 0.000 67.101 0.458 26 UNIF SEFHR- 1L 67.101 0.000 67.101 3.458 27 UNIF SEFHR- 1 67.101 0.000 67.101 19.542 28 UNIF SEFHR- 2 67.101 0.000 67.101 20.000 29 UNIF SEFHR- 3 134.201 0.000 134.201 19.542 30 UNIF SEFHR- 3R 134.201 0.000 134.201 0.458 31 UNIF SEHFL- 1L 67.101 0.000 67.101 3.458 32 UNIF SEHFL- 1 67.101 0.000 67.101 19.542 33 UNIF SEHFL- 2 134.201 0.000 134.201 20.000 34 UNIF SEHFL- 3 134.201 0.000 134.201 19.542 35 UNIF SEHFL- 3R 134.201 0.000 134.201 0.458 36 UNIF SEHFR- 1L 134.201 0.000 134.201 3.458 37 UNIF SEHFR- 1 134.201 0.000 134.201 19.542 38 UNIF SEHFR- 2 134.201 0.000 134.201 20.000 39 UNIF SEHFR- 3 67.101 0.000 67.101 19.542 40 UNIF SEHFR- 3R 67.101 0.000 67.101 0.458 41 UNIF SDFHIL- 1L 67.101 0.000 67.101 3.458 42 UNIF SDFHIL- 1 67.101 0.000 67.101 19.542 43 UNIF SDFHIL- ALL 67.101 0.O00 67.101 0.000 44 UNIF SDFHXI- 1L 67.101 0.000 67.101 3.458 45 UNIF SDFHX1- 1 67.101 0.000 67.101 19.542 46 UNIF SDFHXI- 2 67.101 0.000 67.101 20.000 47 UNIF SDFHXI- ALL 67.101 0.000 67.101 0.000 48 UNIF SDFHX2- 2 67.101 0.000 67.101 20.000 49 UNIF SDFHX2- 3 67.101 0.000 67.101 19.542 50 UNIF SDFHX2- 3R 67.101 0.000 67.101 0.458 51 UNIF SDFHX2- ALL 67.101 0.000 67.101 0.000 52 UNIF SDFHX3- 3 67.101 0.000 67.101 19.542 53 UNIF SDFHX3- 3R 67.101 0.000 67.101 0.458 54 UNIF SDFHX3- ALL 67.101 0.000 67.101 0.000 55 UNIF SEU- ALL 149.112 0.000 149.112 0.000 56 UNIF W- 1L - 116.147 0.000 - 116.147 3.458 57 UNIF W- 1 - 116.147 0.000 - 116.147 2.542 58 UNIF W- 1 - 82.481 2.542 - 82.481 19.542 59 UNIF W- 2 - 82.481 0.000 - 82.481 20.000 60 UNIF W- 3 - 82.481 0.000 - 82.481 14.000 61 UNIF W- 3 - 116.147 14.000 - 116.147 19.542 62 UNIF W- 3R - 116.147 0.000 - 116.147 0.458 63 UNIF W+ ALL 40.399 0.000 40.399 0.000 64 UNIF WLIP- 1L - 116.147 0.000 - 116.147 3.458 65 UNIF WLIP- 1 - 116.147 0.000 - 116.147 2.542 66 UNIF WLIP - 1 - 82.481 2.542 - 82.481 19.542 67 UNIF WLIP- 2 -82.481 0.000 - 82.481 20.000 68 UNIF WLIP- 3 - 82.481 0.000 -82.481 19.542 69 UNIF WLIP- 3R - 82.481 0.000 - 52.481 0.458 70 UNIF WRIP- 1L - 82.481 0.000 - 82.481 3.458 71 UNIF WRIP- 1 - 822.481 0.000 - 82.481 19.542 72 UNIF WRIP- 2 - 82.481 0.000 - 82.481 20.000 73 UNIF WRIP- 3 - 82.481 0.000 - 82.481 14.000 74 UNIF WRIP- 3 - 116.147 14.000 - 116.147 19.542 75 UNIF WRIF- 3R - 116.147 0.000 - 116.147 0.458 76 UNIF WLIN- 1L - 85.848 0.000 - 85.848 3.458 77 UNIF WLIN- 1 - 85.848 0.000 - 85.848 2.542 78 UNIF WLIN- 1 - 52.182 2.542 - 52.182 19.542 79 UNIF WLIN- 2 - 52.182 0.000 - 52.182 20.000 80 UNIF WLIN- 3 - 52.182 0.000 - 52.182 19.542 81 UNIF WLIN- 3R - 52.182 0.000 -52.182 0.458 82 UNIF WRIN- 1L - 52.182 0.000 - 52.182 3.458 83 UNIF WRIN- 1 - 52.182 0.000 - 52.182 19.542 Page 17 of 22 IM, 84 UNIF WRIN- 2 - 52.183 0.000 - 52.18? 20.000 85 UNIF WRIN- 3 - 52.'182 0.000 - 52.183 14.000 86 UNIF WRIN- 3 - 85.848 14.000 - 85.848 19.542 87 UNIF WRIN - 3R - 85.848 0.000 - 85.848 0.458 88 AXLD WLIP- 1 1.406 0.000 0.000 0.000 89 AXLD WLIP- 2 1.406 0.000 0.000 0.000 90 AXLD WLIP- 3 -2.495 0.000 0.000 0.000 91 AXLD WRIP- 1 -2.495 0.000 0.000 0.000 92 AXLD WRIP- 2 1.406 0.000 0.000 0.000 93 AXLD WRIP- 3 1.406 0.000 0.000 0.000 94 AXLD WLIN- 1 3.'140 0.000 0.000 0.000 95 AXLD WLIN- 2 3.140 0.000 0.000 0.000 96 AXLD WLIN- 3 - 0.761 0.000 0.000 0.000 97 AXLD WRIN- 1 - 0.761 0.000 0.000 0.000 98 AXLD WRIN- 3.140 0.000 0.000 0.000 99 AXLD WRIN- 3 3.140 0.000 0.000 0.000 100 AXLD EFL+ 1 0.839 0.000 0.000 0.000 101 AXLD EFL+ ? 2.763 0.000 0.000 0.000 102 AXLD EFL+ 3 -0.458 0.000 0.000 0.000 103 AXLD EFR+ 1 -0.839 0.000 0.000 0.000 104 AXLD EFR+ 2 2.383 0.000 0.000 0.000 105 AXLD EFR+ 3 0.458 0.000 0.000 0.000 Roof interesting purlin line 1 (Designed Line) analysis details. Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure --------------------------------------------------------------------------- 4.000 ft B 0.458 ft 0.458 ft 6.000 ft -1.418 0.495 -2.225 0.495 Roof interesting purlin line I (Designed Line) analysis details. Design Data - Load Combinations No. Load Case Description --------------------------------------------------------------------------- 1 D +C + L+ Check By ASD; No Deflection Limit 2 D +C + LAFN- Check By ASD; No Deflection Limit 0 3 D +C + LANF- Check By ASD; No Deflection Limit 4 D +C + LDFNIL- Check By ASD; No Deflection Limit 5 D +C + LDFNXI- Check By ASD; No Deflection Limit 6 D +C + LDFNX2- Check By ASD; No Deflection Limit 7 D +C + LDFNX3- Check By ASD; No Deflection Limit S D +C + S+ 9 D +C + SU- 10 D +C + SEFHL- 11 D +C + SEFHR- 12 D +C + SEHFL- Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit Check By ASP; No Deflection Limit Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit Page 18 of 22 ( IC)� Page 19 of 22 10-b A D +C + SEHFR- Check By ASD; No Deflection Limit 14 D +C + SDFHIL- Check By ASD; No Deflection Limit 15 D +C + SDFHXI- Check By ASD; No Deflection Limit 16 D +C + SDFHX2- Check By ASD; No Deflection Limit 17 D +C + SDFHX3- Check By ASD; No Deflection Limit IS D +C + SEU- Check By ASD; No Deflection Limit 19 P- + W- Check By ASD; No Deflection Limit 20 P- + WLIP- Check By ASD; No Deflection Limit 21 D- + WRIP- Check By ASD; No Deflection Limit 22 D- + WLIN- Check By ASD; No Deflection Limit 23 D- + WRIN- . Check By ASD; No Deflection Limit 24 D +C + W- Check By ASD; No Deflection Limit 25 D +C + W+ Check By ASD; No Deflection Limit 26 1.06(D +C) + 0.70EFL+ Check By ASD; No Deflection Limit 27 1.06(D +C) + 0.70EFR+ Check By ASD; No Deflection Limit 28 D +C + 3/4L+ + 3/4W+ Check By ASD; No Deflection Limit 29 D +C + 314S+ + 3/4W+ Check By ASP; No Deflection Limit 30 1.07(D +C) + 3/4L+ + 3 /4EFL+ Check By ASP; No Deflection Limit 31 1.07(D +C) + 3/4L+ + 3 /4EFR+ Check By ASD; No Deflection Limit • 32 1.07(D +C) + 3/4S+ + 3 /4EFL+ Check By ASP; No Deflection Limit 33 1.07(D +C) + 3/4S+ + 3 /4EFR+ Check By ASD; No Deflection Limit 34 0.60D- + W- Check By ASD; No Deflection Limit 35 0.60D- + WLIP- Chec.k By ASD; No Deflection Limit 36 0.60D- + WRIP- Check By ASP; No Deflection Limit 37 0.60D- + WLIN- Check By ASD; No Deflection Limit 38 0.60D- + WRIN- Check By ASD; No Deflection Limit 39 0.60(D +C) + W- Check By ASD; No Deflection Limit 40 0.60(D +C) + W+ Check By ASD; No Deflection Limit 41 0.54(D +C) + 0.70EFL+ Check By ASP; No Deflection Limit 42 0.54(D +C) + 0.70EFR+ Check By ASD; No Deflection Limit Page 19 of 22 10-b 43 L+ Mark Left Right Brace Nest End Load Check No Stress Check; L /150 Deflection Limit 44 1 /2LAFN- Clip Case Ratio Check --------------------------------------------------------------------------- (ft) (ft) No Stress Check; L/150 Deflection Limit 45 1 /2LANF- 31453 SZ13 0.000 0.000 0 1 R.End 9 No Stress Check; L050 Deflection Limit 46 1 /2LDFNIL- 9 L/ 85 deflection 1 19.542 SZ13 No Stress Check; L/150 Deflection Limit 47 1 /2LDFNXI- No Stress Check; L /150 Deflection Limit 48 1 /2LDFNX 2- d� No Stress Check; L/150 Deflection Limit 49 1 /2LDFNX3- No Stress Check; L /150 Deflection Limit 50 S+ No Stress Check; L /180 Deflection Limit 51 SU- No Stress Check; L/1S0 Deflection Limit 52 SEFHL- No Stress Check; L /180 Deflection Limit 53 SEFHR- No Stress Check; L /180 Deflection Limit 54 SEHFL- No Stress Check; L/1S0 Deflection Limit 55 SEHFR- No Stress Check; L /180 Deflection Limit 56 SDFHIL- No Stress Check; L/180 Deflection Limit 57 SDFHXI- No Stress Check; L /180 Deflection Limit 58 SDFHX2- No Stress Check; L/180 Deflection Limit 59 SDFHX3- No Stress Check; L/1S0 Deflection Limit 60 SEU- No Stress Check; L /180 Deflection Limit 61 0.70W- No Stress Check; L /180 Deflection Limit 62 0.70W+ No Stress Check; L /180 Deflection Limit 63 0.70WLIP- No Stress Check; L/180 Deflection Limit 64 0.70WRIP- No Stress Check; L /180 Deflection Limit 65 0.70WLIN- No Stress Check; L /160 Deflection Limit 66 0.70WRIN- No Stress Check; L/180 Deflection Limit Roof interesting purlin line 1 (Designed Line) analysis details. Design Data - Summary Span Length Mark Left Right Brace Nest End Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio Check --------------------------------------------------------------------------- (ft) (ft) (ft) # # 1L 31453 SZ13 0.000 0.000 0 1 R.End 9 0.186 bending +shear 9 L/ 85 deflection 1 19.542 SZ13 0.000 2.417 0 1 B.End 9 0.706 bending +shear Page 20 of 22 d� 2 20.000 8214 2.417 2.417 3 19.542 SZ13 2.417 0.000 3R 0.458 SZ13 0.000 0.000 51 L/ 321 deflection 0 1 B.End 9 0.758 bedding +shear 59 LAWS deflection 0 1 B.End 9 0.778 bending +shear 51 L/ 288 deflection 0 1 L.End 36 0.056 bolt capacity 9 L/ 67 deflection Total design weight per run = 289.991 lbs. Maximum stress ratio = 0.778. Roof interesting purlin line 1 (Designed Line) analysis details. Design Data - Applied loads • C No. Load Load Span Intensity From Intensity To Type Group # --------------------------------------------------------------------------- lb /ft(kips) feet lb /ft feet 1 UNIF D- ALL 5.535 0.000 5.538 0.000 2 UNIF D +C ALL 22.580 0.000 22.550 0.000 3 UNIF L+ ALL 64.757 0.000 64.757 0.000 4 UNIF LAFN- 1L 64.757 0.000 64.757 3.455 5 UNIF LAFN- 1 64.757 0.000 64.757 19.542 6 UNIF LAFN- 3 64.757 0.000 64.757 19.542 7 UNIF LAFN- 3R 64.757 0.000 64.757 0.458 8 UNIF LANF- 2 64.757 0.000 64.757 20.000 9 UNIF LDFNIL- 1L 64.757 0.000 64.757 3.458 10 UNIF LDFNIL- 1 64.757 0.000 64.757 19.542 11 UNIF LDFNXI- 1L 64.757 0.000 64.757 3.455 12 UNIF LDFNX1- 1 64.757 0.000 64.757 19.542 13 UNIF LDFNX1- 2 64.757 0.000 64.757 20.000 14 UNIF LDFNX2- 2 64.757 0.000 64.757 20.000 15 UNIF LDFNX2- 3 64.757 0.000 64.757 19.542 16 UNIF LDFNX2- 3R 64.757 0.000 64.757 0.458 17 UNIF LDFNX3- 3 64.757 0.000 64.757 19.542 18 UNIF LDFNX3- 3R 64.757 0.000 64.757 0.458 19 UNIF S+ ALL 107.361 0.000 107.361 0.000 20 UNIF SU- ALL 178.935 0.000 178.935 0.000 21 UNIF SEFHL- 1L 107.361 0.000 107.361 3.458 22 UNIF SEFHL- 1 107.361 0.000 107.361 19.542 23 UNIF SEFHL- 2 53.680 0.000 53.680 20.000 24 UNIF SEFHL- 3 53.680 0.000 53.680 19.542 25 UNIF SEFHL- 3R 53.680 0.000 53.680 0.458 26 UNIF SEFHR- 1L 53.680 0.000 53.680 3.458 27 UNIF SEFHR - 1 53.680 0.000 53.680 19.542 28 UNIF SEFHR 2 53.680 0.000 53.680 20.000 29 UNIF SEFHR 3 107.361 0.000 107.361 19.542 30 UNIF SEFHR 3R 107.361 0.000 107.361 0.458 31 UNIF SEHFL- 1L 53.680 0.000 53.680 3.458 32 UNIF SEHFL- 1 53.680 0.000 53.680 19.542 33 UNIF SEHFL- 2 107.361 0.000 107.361 20.000 34 UNIF SEHFL- 3 107.361 0.000 107.361 19.542 35 UNIF SEHFL- 3R 107.361 0.000 107.361 0.458 36 UNIF SEHFR- 11, 107.361 0.000 107.361 3.458 37 UNIF SEHFR.- 1 107.361 0.000 107.361 19.542 38 UNIF SEHFR- 2 107.361 0.000 107.361 20.000 39 UNIF SEHFR- 3 53.680 0.000 53.680 19.542 40 UNIF SEHFR- 3R 53.680 0.000 53.680 0.458 41 UNIF SDFHIL- 1L 53.680 0.000 53.680 3.458 42 UNIF SDFHIL- 1 53.680 0.000 53.680 19.542 43 UNIF SDFHIL- ALL 53.680 0.000 53.680 0.000 Page 21 of 22 167 44 UNIF SDFHXI- IL 53.680 0.000 53.685 3.458 45 UNIF SDFHXI- 1 53.680 0.000 53.680 19.542 46 UNIF SDFHXI- 2 53.680 0.000 53.680 20.000 47 UNIF SDFHXI- ALL 53.680 0.000 53.680 0.000 48 UNIF SDFHX2- 2 53.680 0.00.6 53.680 20.000 49 UNIF SDFHX2- 3 53.680 0.000 53.680 19.542 50 UNIF SDFHX2- 3R 53.680 0.000 53.680 0.458 51 UNIF SDFHX2- ALL 53.680 0.000 53.680 0.000 52 UNIF SDFHX3- 3 53.680 0.000 53.680 19.542 53 UNIF SDFHX3- 3R 53.680 0.000 53.680 0.458 54 UNIF SDFHX3- ALL 53.680 0.000 53.680 0.000 55 UNIF SEU- ALL 119.290 0.000 119.290 0.000 56 UNIF W- 1L - 149.842 0.000 - 149.842 3.458 57 UNIF W- 1 - 149.842 0.000 - 149.842 2.542 58 UNIF W- 1 - 95.467 2.542 - 95.467 19.542 59 UNIF W- 2 - 95.467 0.000 - 95.467 20.000 60 UNIF W- 3 - 95.467 0.000 - 95.467 14.000 61 UNIF W- 3 - 149.842 14.000 - 149.842 19.542 62 UNIF W- 3R - 149.842 0.000 - 149.842 0.458 63 UNIF W+ ALL 33.339 0.000 33.339 0.000 64 UNIF WLIP- 1L - 149.842 0.000 - 149.842 3.458 65 UNIF WLIP- 1 - 149.842 0.000 - 149.842 2.542 66 UNIF WLIP- 1 - 95.467 2.542 - 95.467 19.542 67 UNIF WLIP- 2 - 95.467 0.000 - 95.467 20.000 68 UNIF WLIP- 3 - 95.467 0.000 - 95.467 19.542 69 UNIF WLIP- 3R - 95.467 0.000 - 95.467 0.458 70 UNIF WRIP- 11, - 95.467 0.000 - 95.467 3.458 71 UNIF WRIP - 1 - 95.467 0.000 - 95.467 19.542 72 UNIF WRIP- 2 - 95.467 0.000 - 95.467 20.000 73 UNIF WRIP- 3 - 95.467 0.000 - 95.467 14.000 74 UNIF WRIP- 3 - 149.842 14.000 - 149.842 19.542 75 UNIF WRIP- 3R - 149.842 0.000 - 149.842 0.458 76 UNIF WLIN- 11, - 125.602 0.000 - 125.602 3.458 77 UNIF WLIN- 1 - 125.602 0.000 - 125.602 2.542 78 UNIF WLIN - 1 - 71.227 2.542 - 71.227 19.542 79 UNIF WLIN- 2 - 71.227 0.000 - 71.227 20.000 80 UNIF WLIN- 3 - 71.227 0.000 - 71.227 19.542 Si UNIF WLIN- 3R - 71.227 0.000 - 71.227 0.458 82 UNIF WRIN- 1L - 71.227 0.000 - 71.227 3.458 83 UNIF WRIN- 1 - 71.227 0.000 - 71.227 19.542 84 UNIF WRIN- 2 - 71.237 0.000 - 71.227 20.000 85 UNIF WRIN- 3 - 71. 227 0.000 - 71.227 14.000 86 UNIF WRIN- 3 - 125.602 14.000 - 125.602 19.542 87 UNIF WRIN- 3R - 125.602 0.000 - 125.602 0.458 88 AXLD EFL+ 1 0.16S 0.000 0.000 0.000 89 AXLD EFL+ 2 0.504 0.000 0.000 0.000 90 AXLE) EFL+ 3 - 0.168 0.000 0.000 0.000 91 AXLD EFR+ 1 -0.168 0.000 0.000 0.000 92 AXLE) EFR+ 2 0.504 0.000 0.000 0.000 93 AXLI) EFR+ 3 0.168 0.000 0.000 0.000 Page 22 of 22 2 A M E R I C A N B U I L D I N G S C 0 M P A N Y Front Side Wall Girt Design (typical) Designer: BN Version Number: Ver. 29.1 Job Number": 51739101, Module: 1 Date /Time: 11/21/07 09:41 AM Type Width Length Ridge Dist R.Col.Elev Slope(F) Slope(R) NO.BAYS RF 60.000 ft 60.000 ft 30.000 ft 0.000 ft 5.000:12 5.000:12 3 -------------------------------------------------------- ------------------- S.Wall Eave Ht. Lean -To Width E.Wall Type Col_Spc. Girt Type Overhang Front: 20.000 ft 0.000 ft Left 1 S I 3.000 ft Rear: 20.000 ft 0.000 ft Right 1 S I 0.000 ft Building Code: 2003 International Building Code --------------------------------------------------------------------------- Building Use Category: II. All buildings and other structures except those listed in Categories I, III, and IV (Wind Importance Factor = 1.000) Wind Velocity = 90.000 mph Open Condition: Enclosed Wind EHposure Category: C. Open terrain with scattered obstructions, including surface undulations or other irregularities having heights • generally less than 30 feet extending more than 1500 feet from site Design Wind Pressure (Cladding and Secondary) = 16.S33 psf --------------------------------------------------------------------------- Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure --------------------------------------------------------------------------- 6.333 ft B 0.458 ft 0.455 ft 6.000 ft -1.085 0.955 -1.191 0.985 Standalone wall girt line analysis details. Design Data - Load Combinations No. Load Case Description --------------------------------------------------------------------------- 1 W- 2 W+ Check: By ASD; No Deflection Limit Check By ASD; No Deflection Limit No Stress Check; L/120 Deflection Limit 4 0.70W+ No Stress Check; L/120 Deflection Limit Standalone wall girt line analysis details. Design Data - Summary Span Length Mark. Left Right Brace Nest End Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio Check --------------------------------------------------------------------------- (ft) (ft) (ft) # # 1L 0.458 SZ16 0.000 0.000 0 1 No 2 0.352 web crippling 0 L/ 999 deflection lA 5.542 SZ16 0.000 0.000 0 1 No 2 0.352 web crippling 3 L/8557 deflection 1B 2.000 SZ16 0.000 0.917 0 1 No 1 0.546 bending +shear 3 L/7232 deflection 2 20.000 SZ16 0.917 0.917 0 1 No 2 0.857 web crippling 3 L /1006 deflection 3A 2.000 SZ13 0.917 0.000 0 1 No 1 0.938 web crippling Page 1 of 2 0 Page 2 of 2 �t1 3 L/9155 deflection 3B 1.542 SZ16 0.000 0.000 0 1 No 1 0.044 ]Nearing at bolt 3 L/494976 deflection 3R 0.458 8216 0.000 0.000 0 1 No 1 0.044 bearing at bolt 0 L/ 999 deflection Total design weight per run = 107.061 lbs. Ma:Iimum stress ratio = 0.938. Standalone wall girt line analysis details. Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Croup # --------------------------------------------------------------------------- lb /ft(kips) feet lb /ft feet 1 UNIF W- 1L - 1- 0.000 - 126.927 0.458 2 UNIF W- 1A - 126.927 0.000 - 126.927 5.542 3 UNIF W- 1B - 115.701 0.000 - 115.701 2.000 4 UNIF W- 2 - 115.701 0.000 - 115.701 ^0.000 5 UNIF W- 3A - 115.701 0.000 - 115.701 3.000 6 UNIF W- 3B - 126.927 0.000 - 126.927 1.542 7 UNIF W- 3R - 126.927 0.000 - 126.927 0.458 . 8 UNIF W+ ALL 105.04& 0.000 105.040 0.000 0 Page 2 of 2 �t1 A M E R I C A N B U I L D I N G S C O M P A N Y Rear Side Wall Girt Design (typical) Designer: BN Version Number: Ver. 29.1 Job Number: 51739101, Module: 1 Date /Time: 11/21/07 09:44 AM --------------------------------------------------------------------------- Type Width Length Ridge Dist R.Co1.Elev Slope(F) Slope(R) No.BAYS RF 60.000 ft 60.000 ft 30.000 ft 0.000 ft 5.000:12 5.000:12 3 -------------------------------------------------- - - - - -- ------------------- S.Wall Eave Ht. Lean -To Width E.Wall Type Col_Spc. Girt Type Overhang Front: 20.000 ft 0.000 ft Left 1 S I 3.000 ft Rear: 20.000 ft 0.000 ft Right 1 S I 0.000 ft Building Code: 2003 International Building Code --------------------------------------------------------------------------- Building Use Category: II. All buildings and other structures except those listed in Categories I, III, and IV (Wind Importance Factor = 1.000) Wind Velocity = 90.000 mph Open Condition: Enclosed Wind Exposure Category: C. Open terrain with scattered obstructions, including surface undulations or other irregularities having heights generally less than 30 feet extending more than 1500 feet from site Design Wind Pressure (Cladding and Secondary) = 16.833 psf --------------------------------------------------------------------------- Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure --------------------------------------------------------------------------- 6.333 ft B 0.458 ft 0.458 ft 6.000 ft -1.085 0.985 -1.191 0.985 Standalone wall girt line analysis details. Design Data - Load Combinations No. Load Case Description --------------------------------------------------------------------------- 1 W- 2 W+ Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit • 3 0.70W- No Stress Check; L /120 Deflection Limit 4 0.70W+ No Stress Check; L/120 Deflection Limit Standalone wall girt line analysis details. Design Data - Summary Span Length Mark Left Right Brace Nest End Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio Check (ft) (ft) (ft) # # --------------------------------------------------------------------------- 3L 0.458 8Z16 0.000 0.000 0 1 No 2 0.352 web crippling 0 L/ 999 deflection 3B 5.542 8Z16 0.000 0.000 0 1 No 2 0.352 web crippling 3 L/8557 deflection 3A 2.000 SZ16 0.000 0.917 0 1 No 1 0.732 bearing at bolt 3 L/8667 deflection 2 20.000 8Z16 0.917 0.917 0 1 No 1 0.968 bending +shear 3 L/1450 deflection 1 19.542 8216 0.917 0.000 0 1 No 1 0.978 bending Page 1 of 2 1 V2- 3 L/ 451 deflection 1R 0.458 8216 0.000 0.000 0 1 No 2 0.861 web crippling 1 L/ 83 deflection Total design weight per run = 149.166 lbs. Maximum stress ratio = 0.978. Standalone wall girt line analysis details. Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group # lb /ft(kips) feet lb /ft feet --------------------------------------------------------------------------- 1 UNIF W- 3L - 126.927 0.000 - 126.927 0.458 2 UNIF W- 3B - 126.927 0.000 - 126.927 5.542 3 UNIF W- 3A - 115.701 0.000 - 115.701 2.000 4 UNIF W- 2 - 115.701 0.000 - 115.701 20.000 5 UNIF W- 1 - 115.701 0.000 - 115.701 14.000 6 UNIF W- 1 - 126.927 14.000 - 126.927 19.542 7 UNIF W- 1R - 126.927 0.000 - 126.927 0.458 8 UNIF W+ ALL 105.040 0.000 105.040 0.000 0 0 Page 2 of 2 I13 A M E R I C A N B U I L D I N G S C O M P A N Y Left End Wall Girt Design (typical) Designer: BN Version Number: Ver. 29.1 Job Number: 51739101, Module: 1 Date /Time: 11 /21/07 03:57 PM --------------------------------------------------------------------------- Type Width Length Ridge Dist R.Col.Elev Slope(F) Slope(R) No.BAYS RF 60.000 ft 60.000 ft 30.000 ft 0.000 ft 5.000:12 5.000:12 3 --------------------------------------------------------- ------------------ S.Wall Eave Ht. Lean -To Width E.Wall Type Col_Spc. Girt Type Overhang Front: 20.000 ft 0.000 ft Left 1 S I 3.000 ft Rear: 20.000 ft 0.000 ft Right 1 S I 0.000 ft Building Code: 2003 International Building Code --------------------------------------------------------------------------- Building Use Category: II. All buildings and other structures except those listed in Categories I, III, and IV (Wind Importance Factor = 1.000) Wind Velocity = 90.000 mph Open Condition: Enclosed Wind Exposure Category: C. Open terrain with scattered obstructions, including surface undulations or other irregularities having heights generally less than 30 feet extending more than 1500 feet from site Design Wind Pressure (Cladding and Secondary) = 16.833 psf --------------------------------------------------------------------------- Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure --------------------------------------------------------------------------- 4.500 ft I 0.000 ft 0.000 ft 6.000 ft - 1.112 1.012 - 1.243 1.012 Standalone wall girt line analysis details. Design Data - Load Combinations No. Load Case Description --------------------------------------------------------------------------- i W- 2 W+ Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit • 3 0.70W- No Stress Check; L /120 Deflection Limit 4 0.70W+ No Stress Check; L /120 Deflection Limit Standalone wall girt line analysis details. Design Data - Summary Span Length Mark Left Right Brace Nest End Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio Check --------------------------------------------------------------------------- (ft) (ft) (ft) # # 1 19.000 SZ14 0.000 0.O00 0 1 No 1 0.972 bending 3 L/ 390 deflection 2 22.000 SZ12 0.000 0.000 0 1 No 1 0.946 bending 3 L/ 327 deflection 3 19.000 8Z14 0.000 0.000 0 1 No 1 0.972 bending 3 L/ 390 deflection Total design weight per run = 242.451 lbs. Maximum stress ratio = 0.972. Page 1 of 2 Standalone wall girt line analysis details. Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group ## --------------------------------------------------------------------------- lb /ft(kips) feet lb /ft feet 1 UNIF W- 1 - 94.155 0.000 - 94.155 6.000 2 UNIF W- 1 - 84.194 6.000 - 34.194 19.000 3 UNIF W- 2 - 84.194 0.000 - 84.194 22.000 4 UNIF W- 3 - 84.194 0.000 - 84.194 13.000 5 UNIF W- 3 - 94.155 13.000 - 94.155 19.000 6 UNIF W+ ALL 76.619 0.000 76.619 0.000 0 Page 2 of 2 A M E R I C A N B U I L D I N G S C 0 M P A N Y Right End Wall Girt Design (typical) Designer: BN Version Number: Ver. 29.1 Job Number: 51739101, Module: 1 Date /Time: 11/20/07 04:10 PM --------------------------------------------------------------------------- Type Width Length Ridge Dist R.Col.Elev Slope(F) Slope(R) No.BAYS RF 60.000 ft 60.000 ft 30.000 ft 0.000 ft 5.000:12 5.000:12 3 -------------------------------------------------------- ------------------- S.Wall Eave Ht. Lean -To Width E.Wall Type Col_Spc. Girt Type Overhang Front: 20.000 ft 0.000 ft Left 1 S I 3.000 ft Pear: 20.000 ft 0.000 ft Right 1 S I 0.000 ft Building Code: 2003 International Building Code --------------------------------------------------------------------------- Building Use Category: II. All buildings and other structures except those listed in Categories I, III, and IV (Wind Importance Factor = 1.000) Wind Velocity = 90.000 mph Open Condition: Enclosed Wind Exposure Category: C. Open terrain with scattered obstructions, including surface undulations or other irregularities having heights generally less than 30 feet extending more than 1500 feet from site Design Wind Pressure (Cladding and Secondary) _ 16.833 psf --------------------------------------------------------------------------- Design Z Left Right Edge -Int. Zone Coef- -Ent. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure --------------------------------------------------------------------------- 6.000 ft I 0.000 ft 0.000 ft 6.000 ft -1.089 0.989 - 1.199 0.989 Standalone wall girt line analysis details. Design Data - Load Combinations No. Load Case Description --------------------------------------------------------------------------- 1 W- 2 W+ Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit 3 0.70W- No Stress Check; L/120 Deflection Limit 4 0.7OW+ No Stress Check; L/120 Deflection Limit Standalone wall girt line analysis details. Design Data - Summary Span Length Mark Left Right Brace Nest End Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio Check -------------------------------------------------------------------------- (ft) (ft) (ft) # # 1 19.000 8Z12 0.000 0.000 0 1 No 1 0.941 bending 3 L/ 380 deflection 2 22.000 SZ12 0.000 0.000 2 1 No 1 1.008 bending 3 L/ 250 deflection 3 19.000 SZ12 0.000 0.000 0 1 No 1 0.941 bending 3 L/ 380 deflection Total design weight per run = 281.291 lbs. Maximum stress ratio = 1.003. Page 1 of 2 1 I� Standalone wall girt line analysis details. Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group # lb /ft(kips) feet lb /ft feet --------------------------------------------------------------------------- 1 UNIF W- 1 - 121.084 0.000 - 121.084 6.000 2 UNIF W- 1 - 110.031 6.000 - 110.031 19.000 3 UNIF W- 2 - 110.031 0.000 - 110.031 22.000 4 UNIF W- 3 - 110.031 0.000 - 110.031 13.000 5 UNIF W- 3 - 121.084 13.000 - 121.084 19.000 6 UNIF W+ ALL 99.931 0.000 99.931 0.000 0 r - � � Page 2 of f 2 1 `� A M E R I C A N B U I L D I N G S C O M P A N Y F r o n t R o o f D e s i g n (typical) Designer: BN Version Number: Ver. 29.1 Job Number: 51739101, Module: 2 Date /Time: 11/21/07 02:28 PM --------------------------------------------------------------------------- Type Width Length Ridge Dist P..Col.Elev Slope(F) Slope(R) NO.BAYS RF 60.000 ft 60.000 ft 30.000 ft 0.000 ft 5.000:12 5.000:12 3 ----------------------------------------------------- ---------------------- S.Wall Eave Ht. Lean -To Width E.Wall Type Col_Spc. Girt Type Overhang Front: 20.000 ft 0.000 ft Left 1 S I 3.000 ft Rear: 20.000 ft 0.000 ft Right 1 S I 0.000 ft Building Code: 2003 International Building Code --------------------------------------------------------------------------- Building Use Category: II. All buildings and other structures except those listed in Categories I, III, and IV (Snow Importance Factor = 1.000) (Wind Importance Factor = 1.000) Roof Dead Load = 1.500 psf Collateral Load = 5.000 psf Roof Live Load = 19.000 psf Ground Snow Load = 50.000 psf Snow Exposure Category: Fully Exposed (Snow Exposure Factor = 0.900) Thermal Condition: All structures except as indicated below (Thermal Factor = 1.000) Roof Snow Load = 31.500 psf But Not Less Than 35.000 psf When Applied As A Uniform Load In Combination With Dead And Collateral Loads Wind Velocity = 90.000 mph Open Condition: Partially enclosed Wind Exposure Category: C. Open terrain with scattered obstructions, including surface undulations or other irregularities having heights generally less than 30 feet extending more than 1500 feet from site Design Wind Pressure (Cladding and Secondary) = 16.833 psf --------------------------------------------------------------------- - - - - -- Purlin locations on slope from peak to eave. Line Dist. Design Interesting AR L.edge R.edge Weight No. (ft) Spacing Line Clip zone pkg zone pkg (lbs) ----- 1 ----- 1-.-S-0-0 --------------- Y ----- Y ------------------- --- 191. - 1.188 2 2.375 0.875 191.866 S . NN 0 1A Page 1 of 6 P A N E L Panel type: L3P26 Sx(top) = 0.039 in3; Sx(bottom) = 0.047 in3; Fy = 80 ksi ---------------------------------------------------------------- - - - - -- Support purlin location (eave to ridge): 0.000 0.875 1.750 3.021 Applied loads and adjusted loads: 0.940 psf= 0.868 to 0.868 lb /ft P 19.000 psf = 16.189 to 16.189 lb /ft L+ 31.500 psf= 26.840 to 26.840 lb /ft S+ 35.000 psf= 29.822 to 29.822 lb /ft S(extraordinary)- - 32.169 psf= - 32.169 to - 32.169 lb /ft W(at eave corner)- - 51.619 psf= - 51.619 to - 51.619 lb /ft W(at peak corner)- - 32.169 psf= - 32.169 to - 32.169 lb /ft W(at eave edge)- - 32.169 psf= - 32.169 to - 32.169 lb /ft W(at peak edge) - Load Combination: U + L+ Check By ASD; No Deflection Limit Net uniform load of 17.057 17.057 17.057 lb /ft Continuous spans of 0.875 0.875 1.271 ft Force = 2.307 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.020 Load Combination: D + S+ Check By ASP; No Deflection Limit Net uniform load of 27.708 27.708 27.708 lb /ft Continuous spans of 0.875 0.875 1.271 ft Force = 3.748 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.032 Load Combination: D + S(extraordinary)- Check By ASD; No Deflection Limit Net uniform load of 30.690 30.690 30.690 lb /ft Continuous spans of 0.875 0.875 1.271 ft Force = 4.151 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.036 Load Combination: D + W(at eave corner) - Check By ASD; No Deflection Limit Net uniform load of - 31.301 - 31.301 - 31.301 lb /ft Continuous spans of 0.875 0.875 1.271 ft Force = 4.587 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.039 Load Combination: D + W(at peak corner) - Check By ASD; No Deflection Limit Net uniform load of - 50.752 - 50.752 - 50.752 lb /ft Continuous spans of 0.875 0.875 1.271 ft Force = 7.437 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.064 Load Combination: D + W(at eave edge) - Check By ASD; No Deflection Limit Net uniform load of - 31.301 - 31.301 - 31.301 lb /ft Continuous spans of 0.875 0.875 1.271 ft Force = 4.587 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.039 Load Combination: D + W(at peak edge) - Check By ASD; No Deflection Limit Net uniform load of - 31.301 - 31.301 - 31.301 lb /ft 0 • Page 2 of 6 Load Combination: 0.70W(at eave edge) - No Stress Design; L/180 Deflection Limit Net uniform load of - 22.518 - 22.518 - 22.518 lb /ft Page 3 of 6 I� Continuous spans of 0.875 0.875 1.271 ft Force = 4.587 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.039 Load Combination: 0.60D + W(at eave corner) - Check By ASD; No Deflection Limit Net uniform load of - 31.648 - 31.648 - 31.648 lb /ft Continuous spans of 0.875 0.875 1.271 ft Force = 4.638 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.040 Load Combination: 0.60D + W(at peak corner) - Check By ASD; No Deflection Limit Net uniform load of - 51.099 - 51.099 - 51.099 lb /ft Continuous spans of 0.875 0.875 1.271 ft Force = 7.488 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.064 Load Combination: 0.60D + W(at eave edge) - Check By ASD; No Deflection Limit Net uniform load of - 31.648 - 31.648 - 31.648 lb /ft Continuous spans of 0.875 0.875 1.271 ft Force = 4.638 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.040 . Load Combination: 0.60D + W(at peak edge) - Check By ASD; No Deflection Limit Net uniform load of - 31.648 - 31.648 - 31.648 lb /ft Continuous spans of 0.875 0.875 1.271 ft Force = 4.638 ft -lb; Resistance = 116 .766 ft -lb; Check Ratio = 0.040 Load Combination: L+ No Stress Design; L /15O Deflection Limit Net uniform load of 16.189 16.189 16.189 lb /ft Continuous spans of 0.875 0.875 1.271 ft Force = 0.000 inches; Resistance = 0.102 inches; Check Ratio = 0.002 Load Combination: S+ No Stress Design; L /180 Deflection Limit Net uniform load of 26.840 26.840 ^6.840 lb /ft Continuous spans of 0.875 0.875 1.271 ft Force = 0.000 inches; Resistance = 0.085 inches; Check Ratio = 0.005 Load Combination: S(extraordinary)- No Stress Design; L /180 Deflection Limit Net uniform load of 29.822 29.822 ^9.822 lb /ft Continuous spans of 0.875 0.875 1.271 ft Force = 0.000 inches; Resistance = 0.085 inches; Check Ratio = 0.005 Load Combination: 0.70W(at eave corner) - No Stress Design; L/180 Deflection Limit Net uniform load of - 22.518 - 22.518 - 22.518 lb /ft Continuous spans of 0.875 0.875 1.271 ft Force = -0.000 inches; Resistance = 0.085 inches; Check Ratio = 0.005 Load Combination: 0.70W(at peak corner) - No Stress Design; L /180 Deflection Limit Net uniform load of - 36.133 - 36.133 - 36.133 lb /ft Continuous spans of 0.875 0.875 1.271 ft Force = -0.001 inches; Resistance = 0.085 inches; Check Ratio = 0.008 Load Combination: 0.70W(at eave edge) - No Stress Design; L/180 Deflection Limit Net uniform load of - 22.518 - 22.518 - 22.518 lb /ft Page 3 of 6 I� Continuous spans of 0.875 0.875 1.271 ft Force = -0.000 inches; Resistance = 0.085 inches; Check Ratio = 0.005 Load Combination: 0.70W(at peak edge) - No Stress Design; L/180 Deflection Limit Net uniform load of - 22.518 - 22.518 - 22.51E lb /ft Continuous spans of 0.875 0.875 1.271 ft Force = -0.000 inches; Resistance = 0.085 inches; Check Ratio = 0.005 Roof interesting purlin line 1 (Typical) analysis details. Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure --------------------------------------------------------------------------- 1.188 ft S 0.000 ft 0.000 ft 3.000 ft - 2.000 0.912 -3.112 0.912 Roof interesting purlin line 1 (Typical) analysis details. Design Data - Load Combinations No. Load Case Description --------------------------------------------------------------------------- 1 D +C + L+ Check By ASD; No Deflection Limit 2 D +C + LAFN- Check By ASD; No Deflection Limit 3 D +C + LANF- Check By ASD; No Deflection Limit 4 D +C + LDFNXI- Check By ASD; No Deflection Limit 5 D +C + LDFNX2- Check By ASD; No Deflection Limit 6 D +C + SDFHXI- Check By ASD; No Deflection Limit 7 D +C + SDFHX2- Check By ASD; No Deflection Limit 8 D +C + S+ Check By ASD; No Deflection Limit 9 D +C + SEFHL- Check By ASD; No Deflection Limit 10 D +C + SEFHR- Check By ASD; No Deflection Limit 11 D +C + SEHFL- Check By ASD; No Deflection Limit 12 D +C + SEHFR- Check By ASD; No Deflection Limit 13 D +C + SEU- Check By ASD; No Deflection Limit 14 D- + W- Check By ASD; No Deflection Limit 15 D +C + W- Check By ASD; No Deflection Limit 16 D +C + W+ Check By ASD; No Deflection Limit 17 D +C + 3/4L+ + 3/4W+ Check By ASD; No Deflection Limit 18 D +C + 3/4S+ + 3/4W+ Check By ASD; No Deflection Limit 19 0.60D- + W- Check By ASD; No Deflection Limit 20 0.60(D +C) + W- • Page 4 of 6 V Check By ASD; No Deflection Limit Page 5 of ` 6 1 �� 21 0 . 6 0 (D +C ) + W+ Check By ASD; No Deflection Limit 22 L+ No Stress Check; L/150 Deflection Limit 23 1 /2LAFN- No Stress Check; L /150 Deflection Limit 24 1 /2LANF- No Stress Check; L/150 Deflection Limit 25 1 /2LDFNXI- No Stress Check; L /150 Deflection Limit 26 1 /2LDFNX2- No Stress Check; L/150 Deflection Limit 27 SDFHXI- No Stress Check; L /180 Deflection Limit 28 SDFHX2- No Stress Check; L/180 Deflection Limit 29 0.70W- No Stress Check; L /180 Deflection Limit 30 0.70W+ No Stress Check; L/180 Deflection Limit • 31 S+ No Stress Check; L /180 Deflection Limit 32 SEFHL- No Stress Check; L /180 Deflection Limit 33 SEFHR- No Stress Check; L /180 Deflection Limit 34 SEHFL- No Stress Check; L/180 Deflection Limit 35 SEHFR- No Stress Check; L /180 Deflection Limit 36 SEU- No Stress Check; L/180 Deflection Limit Roof interesting purlin line 1 (Typical) analysis details. Design Data - Summary Span Length Mark Left Right Brace Nest End Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio Check --------------------------------------------------------------------------- (ft) (ft) (ft) # # 1 20.000 SZ15 0.000 0.000 0 1 No 13 0.817 web crippling 36 L/ 250 deflection 2 20.000 8215 0.000 0.000 0 1 No 13 0.817 web crippling 36 L/ 250 defle ction 3 20.000 8Z15 0.000 0.000 0 1 No 13 0.817 web crippling 36 L/ 250 deflection Total design weight per run = 191.866 lbs. Maximum stress ratio = 0.817. Roof interesting purlin line 1 (Typical) analysis details. Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group # --------------------------------------------------------------------------- lb /ft(kips) feet lb /ft feet 1 UNIF D- ALL 1.644 0.000 1.644 0.000 2 UNIF D +C ALL 6.703 0.000 6.703 0.000 Page 5 of ` 6 1 �� 3 UNIF L+ ALL 19.225 0.000 19.225 0.000 4 UNIF LAFN- 1 19.225 0.000 19.225 20.000 5 UNIF LAFN- 3 19.225 0.000 19.225 20.000 6 UNIF LANF- 2 19.225 0.000 19.225 20.000 7 UNIF LDFNXI- 1 19.225 0.000 19.225 20.000 8 UNIF LDFNXI- 2 19.225 0.000 19.225 20.000 9 UNIF LDFNX2- 2 19.225 0.000 19.225 20.000 10 UNIF LDFNX2- 3 19.225 0.000 19.225 20.000 11 UNIF SDFHX1- 1 15.936 0.000 15.936 20.000 12 UNIF SDFHXI- 2 15.936 0.000 15.936 20.000 13 UNIF SDFHXI- ALL 15.936 0.000 15.936 0.000 14 UNIF SDFHX2- 2 15.936 0.000 15.936 20.000 15 UNIF SDFHX2- 3 15.936 0.000 15.936 20.000 16 UNIF SDFHX2- ALL 15.936 0.000 15.936 0.000 17 UNIF W- 1 - 55.291 0.000 - 55.291 12.000 18 UNIF W- 1 - 35.530 12.000 - 35.530 20.000 19 UNIF W- 2 - 35.530 0.000 - 35.530 20.000 20 UNIF W- 3 - 35.530 0.000 - 35.530 8.000 2'1 UNIF W- 3 - 55.29 1 8.000 - 55.291 20.000 22 UNIF W+ ALL 16.212 0.000 16.212 0.000 23 UNIF S+ ALL 7 0. 828 0.000 70.828 0.000 24 UNIF SEFHL- 1 70.828 0.000 70.828 20.000 25 UNIF SEFHL- 2 15.936 0.000 15.936 20.000 • 26 UNIF SEFHL- 3 15.936 0.000 15.936 20.000 27 UNIF SEFHR- 1 15.936 0.000 15.936 20.000 28 UNIF SEFHR- 2 15.936 0.000 15.936 20.000 29 UNIF SEFHR- 3 70.828 0.000 70.828 20.000 30 UNIF SEHFL- 1 15.936 0.000 15.936 20.000 31 UNIF SEHFL- 2 70.828 0.000 70.828 20.000 32 UNIF SEHFL- 3 70.828 0.000 70.828 20.000 33 UNIF SEHFR- 1 70.828 0.000 70.828 20.000 34 UNIF SEHFR- 2 70.828 0.000 70.828 20.000 35 UNIF SEHFR- 3 15.936 0.000 15.936 20.000 36 UNIF SEU- ALL 70.828 0.000 70.828 0.000 I* Page 6 of 6 A M E R I C A N B U I L D I N G S C O M P A N Y Roof Purlin Design (line #2) Designer: BN Version Number: Ver. 29.1 Job Number: 51739101, Module: 2 Date /Time: 11/21/07 02:40 PM --------------------------------------------------------------------------- Type Width Length Ridge Dist R.Col.Elev Slope(F) Slope(R) No.BAYS RF 60.000 ft 60.000 ft 30.000 ft 0.000 ft 5.000:12 5.000:12 3 ------------------------------------------------------------ --------------- S.Wall Eave Ht. Lean -To Width E.Wall Type Col_Spc. Girt Type Overhang Front: 20.000 ft 0.000 ft Left 1 S I 3.000 ft Rear: 20.000 ft 0.000 ft Right 1 S I 0.000 ft Building Code: 2003 International Building Code --------------------------------------------------------------------------- Building Use Category: II. All buildings and other structures except those listed in Categories I, III, and IV (Snow Importance Factor = 1. 000) (Wind Importance Factor = 1.000) Roof Dead Load = 1.500 psf Collateral Load = 5.000 psf Roof Live Load = 19.000 psf • Ground Snow Load = 50.000 psf Snow Exposure Category: Fully Exposed (Snow Exposure Factor = 0.900) Thermal Condition: All structures except as indicated below (Thermal Factor = 1.000) Roof Snow Load = 31.500 psf But Not Less Than 35.000 psf When Applied As A Uniform Load In Combination With Dead And Collateral Loads Wind Velocity = 90.000 mph Open Condition: Partially enclosed Wind Exposure Category: C. Open terrain with scattered obstructions, including surface undulations or other irregularities having heights generally less than 30 feet extending more than 1500 feet from site Design Wind Pressure (Cladding and Secondary) = 16.833 psf --------------------------------------------------------------------------- Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure --------------------------------------------------------------------------- 1.000 ft B 0.000 ft 0.000 ftl2.000 ft -2.030 0.920 -3.179 0.920 Standalone roof purlin line analysis details. Design Data - Load Combinations No. Load Case Description --------------------------------------------------------------------------- 1 D +C + L+ 2 D +C + LAFN- 3 D +C + LANF- 4 D +C + LDFNXI- 5 D +C + LDFNX2- 6 D +C + SDFHXI- 7 D +C + SDFHX2- 8 D +C + S+ 9 D +C + SEFHL- Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit Page 1 of 3 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Standalone roof purlin line analysis details. Design Data - Summary • Is Page 2 of 3 Check By ASD; No Deflection Limit D +C + SEFHR- Check By ASD; No Deflection Limit D +C + SEHFL- Check By ASD; No Deflection Limit D +C + SEHFR- Check By ASD; No Deflection Limit D +C + SEU- Check By ASD; No Deflection Limit D- + W- Check By ASD; No Deflection Limit D +C + W- Check By ASD; No Deflection Limit D +C + W+ Check By ASD; No Deflection Limit D +C + 3/4L+ + 3/4W+ Check By ASD; No Deflection Limit D +C + 3/4S+ + 3/4W+ Check By ASD; No Deflection Limit 0.60D- + W- Check By ASD; No Deflection Limit 0.60(D +C) + W- Check By ASD; No Deflection Limit 0.60(D +C) + W+ Check By ASD; No Deflection Limit L+ No Stress Check; L/150 Deflection Limit 1 /2LAFN- No Stress Check; L /150 Deflection Limit 1 /2LANF- No Stress Check; L/150 Deflection Limit 1 /2LDFNX1- No Stress Check; L/150 Deflection Limit 1 /2LDFNX2- No Stress Check; L/150 Deflection Limit SDFHXl- No Stress Check; L /180 Deflection Limit SDFHX2- No Stress Check; L /180 Deflection Limit 0.70W- No Stress Check; L/180 Deflection Limit 0.70W+ No Stress Check; L /180 Deflection Limit S+ No Stress Check; L/180 Deflection Limit SEFHL- No Stress Check; L /180 Deflection Limit SEFHR- No Stress Check; L/180 Deflection Limit SEHFL- No Stress Check; L /180 Deflection Limit SEHFR- No Stress Check; L /180 Deflection Limit SEU- No Stress Check; L /180 Deflection Limit Standalone roof purlin line analysis details. Design Data - Summary • Is Page 2 of 3 Span Length Mark Left Right Brace Nest End Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio Check lb /ft (ft) 1 (ft) (ft) # # 0.000 1.385 0.000 2 --------------------------------------------------------------------------- 1 20.000 80 0.000 0.000 0 1 No 13 0.859 web crippling 16.189 0.000 16.189 0.000 4 UNIF LAFN- 1 36 L/ 261 deflection 2 20.000 8016 0.000 0.000 0 1 No 13 0.859 web crippling LANF- 2 16.189 0.000 16.189 20.000 7 UNIF 36 L/ 261 deflection 3 20.000 8C16 0.000 0.000 0 1 No 13 0.859 web crippling 9 UNIF LDFNX2- _. ` �. 16.189 01000 16.189 20.000 36 L/ 261 deflection Total design weight per run = 171.859 lbs. Maximum stress ratio = 0.859. Standalone roof purlin line analysis details. Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group ## --------------------------------------------------------------------------- lb /ft(kips) feet lb /ft feet 1 UNIF D- ALL 1.385 0.000 1.385 0.000 2 UNIF D +C ALL 5.645 0.000 5.645 0.000 3 UNIF L+ ALL 16.189 0.000 16.189 0.000 4 UNIF LAFN- 1 16.189 0.000 16.189 20.000 5 UNIF LAFN- 3 16.189 0.000 16.189 20.000 6 UNIF LANF- 2 16.189 0.000 16.189 20.000 7 UNIF LDFNXI- 1 16.189 0.000 16.189 20.000 8 UNIF LDFNXI- 2 16.189 0.000 16.189 20.000 9 UNIF LDFNX2- 2 16.189 01000 16.189 20.000 10 UNIF LDFNX2- 3 16.189 0.000 16.189 20.000 11 UNIF SDFHX1- 1 13.420 0.000 13.420 20.000 12 UNIF SDFHX1- 2 13.420 0.000 13.420 20.000 13 UNIF SDFHXI- ALL 13.420 0.000 13.420 0.000 14 UNIF SDFHX2- 2 13.420 0.000 13.420 20.000 15 UNIF SDFHX2- 3 13.420 0.000 13.420 20.000 16 UNIF SDFHX2- ALL 13.420 0.000 13.420 0.000 17 UNIF W- 1 - 47.566 0.000 - 47.566 12.000 18 UNIF W- 1 - 30.367 12.000 - 30.367 20.000 • 19 UNIF W- 2 - 30.367 0.000 - 30.367 20.000 20 UNIF W- 3 - 30.367 0.000 - 30.367 8.000 21 UNIF W- 3 - 47.566 8.000 - 47.566 20.000 22 UNIF W+ ALL 13.764 0.000 13.764 0.000 23 UNIF S+ ALL 59.645 0.000 59.645 0.000 24 UNIF SEFHL- 1 59.645 0.000 59.645 20.000 25 UNIF SEFHL- 2 13.420 0.000 13.420 20.000 26 UNIF SEFHL- 3 13.420 0.000 13.420 20.000 27 UNIF SEFHR- 1 13.420 0.000 13.420 20.000 28 UNIF SEFHR- 2 13.420 0.000 13.420 20.000 29 UNIF SEFHR- 3 59.645 0.000 59.645 20.000 30 UNIF SEHFL- 1 13.420 0.000 13.420 20.000 31 UNIF SEHFL- 2 59.645 0.000 59.645 20.000 32 UNIF SEHFL- 3 59.645 0.000 59.645 20.000 33 UNIF SEHFR- 1 59.645 0.000 59.645 20.000 34 UNIF SEHFR- 2 59.645 0.000 59.645 20.000 35 UNIF SEHFR- 3 13.420 0.000 13.420 20.000 36 UNIF SEU- ALL 59.645 0.000 59.645 0.000 Page 3 of 3 4-G SECTION 5 PANELS 0 • G T American Buildings Company PANEL PROFILE 12" ~ +. a . q . t t va• � t 50't r 318" _318 7132" 2w� I MST PARTIAL CROSS SECTION Designated Gage of Steel Steel Base Total Yield Metal Thick. KSI I Thick. (In.) (In.) Panel Weight (ibs. / f .) Top In Compression Bottom In Compression Fb KSI Ix (In ° /ft.) Sx {In.' /fL) Ma K -IN. Ix (In.' /fl.) SIX (In, /ft.) Me K -IN. 29 Ga, 1 80 6A137 0.0153. 0,75 0,030 0.025 0.90 0.027 0.036 1.30 38 26 Ga. BD 0,0177 0.0193 0.94 0.043 D. 1,40 0.036 0.047 1.69 38 24 Ga. B50.0225 0.0241 1.17 0.060 0.054 1.94 0.048 0.060 2.16 38 22 Ga, 1 50 lo.o3ool 0.0316 1.54 1 0.083 0.085 2.55 0.070 0.082 2.48 1 30 • Gage of Panel No, of Spans Load Type Maximum Total Uniform Load in PSF San Lengths, Ft, 3,00 1 3.50 1 4,00 1 4.50 1 5.00 1 6.00 7.00 7.33 1 POS NEG 571 C 1 47 B +s 1 36 B +s 1 29 B +6 1 23 9+8 15 D 9 D 8 D -85 8 +8 1 -64 8 +8 1 -44 1 0 -311 0 1 -22 D -13 D -8 D -7 D 29 Ga. 2 POS NEG 54 -491 C P 1 46 1 -42 C p 1 40 1 -35 0 B +S 361 C 1 32 8 +8 1 23 B +s 17 B +S 16 a +S -26 s +$ 1 -23 B +s .16 B +s .12 e+s -11 8 +9 3 POS NEG ell -561 C P 1 53 1 -48 0 P 1 46 1 -42 C P 41 C 1 37 C 1 27 D 17 D 15 D -35 9 +5 1 - 28 B +s -20 B +s -15 B +8 -13 D 4 POS 591 C I Bit 0 1 44 C 391 c 1 35 O 26 B +s 18 D 1 16 D NEG - 541 p 1 -461 P 1 -40 P -33 B +e 1 -27 B +s 1 - 19 S +s .14 B +s 1 -13 B +B I 1 POS NEG 100 -119 B +s 8+8 1 74 1 , 881 B +s 1 D 1 57 -591 B +s D 1 46 B +s 1 36 D 1 211 D 13 D 11 D 1 - 411 0 1 .30 o 1 .17 D -11 D -10 D 28 Ga. 2 POS NEG 87 - 641 c P 1 751 1 - 551 c 1 P 1 661 .481 c P 1 54 B +s 1 44 B +a 1 31 B +s 23 B +S 21 8 +8 1 -42 P 1 .37 8 +8 1 -26 13+8 -19 s +s .17 8 +6 3 POS NEG 991 -721 C P 1 851 1 -621 C 1 P 1 741 .641 C P 1 661 C 1 54 B +S 38 8+8 25 D 21 D 1 -481 P 1 -43 P .32 B +a -21 D -18 D 4 POS NEG 961 .701 C 1 P 1 821 -601 C 1 P 1 721 .521 C P 1 62 8 +8 1 51 B +g 1 36 8+8 28 D 23 D 1 .46 P -421 P 1 .30 8+8 1 -22 B +s 1 -19 D 1 POS NEG 141 .156 6 +8 1 B +s 1 104 -115 8 +8 B +s 1 80 .791 S+s 0 1 63 a +S 1 50 D 29 D 18 D 1 16 D 1 -551 0 1 .40 o 1 -231 0 1 -15 0 1 -13 D 24 Go. 2 POS NEG 1361 - -ell C 1 P 1 114 -691 B +e 1 p I BB -ell 8 +9 1 P 1 70 B +s 1 57 8 +8 1 40 B +s 1 29 B +S 1 27 B +s .541 P 1 -491 P 1 .36 B +S 1 -26 6 +8 1 -24 s +8 3 POS NEG 1551 ' 42 O 1 P 1 1331 -791 c 1 p 1 109 -691 B +s I p B7 s+s 1 71 6 +8 1 49 B +s 1 34 0 1 30 D .611 P 1 -551 P 1 -441 D 1 .28 D 1 -24 0 4 POS NEG 1 149 .891 C 1 P 1 1281 - 761 C 1 P 1 102 -661 6 +s I P 1 81 8 +8 66 8 +3 46 S +s 34 B +s 31 8+8 - 591 P 1 -631 P 1 -42 B +s -29 D "26 D 1 POS 1 NEG 1 186 -179 8 +8 1 8 +8 1 137 -132 8*8 1 a +s 105 -102 s +s 1 B +s 1 831. 9 +B 68 B +S 1 401 D 1 251 D 1 221 D -80 S +B 1 -591 D 1 -341 D 1 -211 D 1 -19 D 22 Ga, 2 POS 1 NEG 178 -114 B +3 1 P 131 -98 s +s I P 1 101 .861 a +B I P 1 So a +s 1 65 B +6 1 45 S +s 1 33 9+3 1 30 B +8 .791 P 1 .67 B +3 1 .47 a +6 -35 B +S .31 s +s 3 POS NEG 220 -130, C p 163 -111 s +s P 126 -981 8 +6 P 1 100 B +s 81 B +S 56 s +S 42 B +6 38 S +s -87 P .78 p -58 B +s -40 D -35 D 4 POS NEG 206 -1251 8 +6 p 1 153 -107 B ±s p 117 -941 B +S p 1 93 B +S 1 761 a +s 53 B +s 39 B +s 1 35 8+8 .831 P 1 .751 P 1 - 40 B +S 1 37 a +S A 1, The panels were checked for bending (B), shear (S), combined bending and shear (B +S), deflection (D), well crippling (C), and panel pullover (P). The controlling check is noted in the table. Deflection was limited to speM150 2. Section Properties have been calculated In accordance with the 2001 North American Specification for the resign of Cold- Formed Steel Structural Members, 3. Minimum yield strength of 29, 26 and 24 gage steel is 60,000 psi. Minimum yield strength of 22 gage steel Is 50,000 psi. 4. Steel panels are either slumtnum -zinc alloy or G -90 coated. The base metal thickness weS used in determining section properties, 5. Positive load (POS) Is applied Inward toward the panel supports and is applied to the outer surface of the full panel cross- section. Negative load (NEG) Is In the opposite direction. SUBJECTTO'CHANGEW/THOtTFNt�TICF ' �. ;�'` ` F ISED Section 5 _._ ,/ - - \, - - , •- PANEL PROFILE ,gmvf ican Buildings Company 12" 4 " _y 4" 4" _ 30° f t 7/32" 50 °f 3/B "_ 3/6" _ _ 1 17/32" ~ 3/4" PARTIAL CROSS SECTION Designated Steel Base Total Panel - Top in a - Bottom In Gage Yleld Metal Thick, Weight Compression I Compression . Fb Of KSI Thick. (In.) Ill fl KSI Ix Sx Ma Ix Sx Me Steel (in.) (In,' /ft.) (In.' /ft.) K -IN, (In, " /ft,) (In.' /ft.) K -IN. 29 Ga. 26 Ga. BD 0.0137 80 0.0177 0.0153 0.0193 0,75 0.027 0.036 1.30 1 0.030 0.025 0.90 36 24 Ga. 80 0.0225 0,0241 0.94 1.17 0.036 0.048 0.047 1.69 O.D43 0,039 1.40 36 22 Ga. 50 0,0300 0.0316 1.54 0.060 2.18 0,060 0,054 1,94 36 0.070 O,D62.. _ 2,46 D.o63 0.065 2,55 30 Gage No. Load Maximum Total Uniform Load in PSF of Panel of Spans Type 3.00 Span Long tha. Ft. POS 571 1 3.50 1 C 49 C 4,00 4.50 1 1 5.00 1 6.00 1 7.00 1 7.33 1 NEG 63 9 +8 47 a +9 43 36 C 36 8+6 29 c a +s 28 .23 D 8 +8 16 -16 D 8 +s 10 -11 D D 9 -10 D D 2 NOS NEG 54. 49 c 46 a +s 35 e+s 26 a +s 23 B +s 16 B +s 12 a +s 11 B +s 29 Ga. POS 61 p 42 C P 37 p 33 P 30 p 23 a +s - 17 B +s - 16 a+s 3 NEG 56 63 P 48 C 43 8 +s 35 a +s 1 28 9+8 20 8 +8 1 15 B +s 14 8 +8 S 59 C St p - 421 P 1 •37 P - 34T P 1 -26 B +s 1 -21 8 +s 19 D 4 Z P o 41 e+s 33 9 *s 27 s +e 19 a +s 141 B +s I 13 B +s �J • SUBJECTiO:CHANGEWITHDU7"N llISID ::2 Section 5 Page 2 1. The panels ware checked for bending (B), shear (S), combined bending and shear (B +S), deflection (D), web crippling (C), and panel pullover (P). The controlling check Is noted in the table. Deflection was limited to span/120 2. Section Properties have been calculated in accordance with the 2001 North American Spaoificadon for the Design of Cold - Formed Steel Structural Members. 3. Minimum yield strength of 29,26 and 24 gage steel is 60,000 psi. Minimum yield strength of 22 gage steel is 50,000 psi. 4. Steel panels are either aluminum -zinc alloy or G-9D coated, The base metal thickness was used in determining section properties. S. Positive load (POS) is applied inward toward the panel supports and is applied to the outer surface of the full panel cross- section, Negative load (NEG) Is in the opposite direction, ,4 iTierican, Buildings Company 12" l 1 5116" 64' t 5/8" f. PANEL PROFILE PARTIAL CROSS SECTION Designated Gage of Steel Yield KSI Base Metal Thick, Total Thick, (In.) Panel Weight (lbs. /ft. Ix Top In ComPresslon Sx Me Maximum Total Uniform Load in PSF Bottom In Compression Fb KSI ix Sx Ma Steel of (In,) (In. /ft.) (In, /ft,) K -IN. (in.' /ft.) (In' /ft.) K 29 Ga, I 80 10-01371 0.0153 1 0,75 0.024 1 0.026 1 1.01 1 0.024 1 0.032 1 1.15 1 36 26 Ga. 80 0.0177 0,0193 0.94 0,033 0.040 1.44 0,033 0,043 1.55 35 24 Ga. 80 0,0225 0,0241 1.17 1 0.043 0,053 1,91 0,043 0.056 2.02 36 22 Ga, 50 0.0300 0.0316 1,54 D.057 0.074 1 2.22 1 0.050 0,076 2.28 30 • Gage No. Load Maximum Total Uniform Load in PSF Of of Type Span Len ths, Ft, Panel Spans 3100 1 1 3,50 4.00 1 4.50 1 5.00 1 6.OD 7.00 7,33 1 POS 61 C 521 C 1 41 B+s 1 32 B +s 1 261 D 151 D 1 91 D I B D -591 1 -46 a +5 1 -351 D 1 .261 D 1 -151 D 1 -91 D 1 -81 D NEG 79 8 +s 2 PCs 54 c 471 c 1 411 c 1 36 B +s 1 29 B +s 1 21 B +s 1 15 B +s 1 14 B +s p 1 -371 P 1 -32 B +s 1 -26 a +s 1 •16 B +a 1 -13 8 +e 1 - 12 9+8 29 Ga. NEG 49 P -42 3 POS 62 c 531 C 1 461 C 1 411 C 1 36 B +s 1 26 B +s 1 181 D 1 151 D 42 P -37 P - 32 B +s - 23 B+S -17 B +8 -15 B +S NEG -56 PP 4 POS 60 c 51 0 45 C 40 c 34 a +s 24 B +s 16 S +s 16 D NEG •54 P -46 P 1 40 P 1 -361 P 1 •30 B +s 1 - 21 B +s - 16 B +s 1 - 14 B +s 4 B +s 77 a+s 59 B4S 47 s +e 35 D 20 D 13 D 11 D 1 a +s -82 B +s -63 B +s -47 D - 35 D - 20 D - 13 D -11 D S c 75 C 63 B+8 50 B +s 40 B +s 28 B +S 21 B +s 19 B +B 26 Ga. 4 P - 55 P - 48 p - 42 P - 38 a +s - 26 B +s - 19 B +g - 18 B +s 0 c 86 c 75 C 62 B +S 50 S +s 35 B +s 24 0 21 D 2 P -62 P 54 P -48 P -43 P •33 B +s -24 D -21 D 4 C 62 c 72 0. 58 B +s 47 a +s 33 B +s 24 B +s 22 a +s P - 60 P - 52 P -46 P -42 P -31 13+8 •23 B +s -21 s +e 1 13+s 79 8 +8 62 a +s 45 o 26 C 17 D 14 D NEG 146 S +8 10 102 B B +S -83 8 +6 -62 D -45 D -26 D -17 D -14 D 2 POS 137 o 107 a +s 82 B +S 1 65 B +8 1 53 s +e 1 37 B +s 1 27 B +s 1 25 B +g 24 Ga. NEG, -81 P -59 P -611 P 1 -541 P 1 49 P 1 -35 B +8 1 -26 B +s 1 -24 B +s 3 POs 156 c 132 s +s 102 B +s I all a +s' 1 66 B +e 1 46 B +s 1 311 D 1 271 D NEG -92 P -79 P -69 P -61 P 1 -551 P 1 -44 B +s 1 -311 D 1 -271 D 4 POs 150 C 124 a +s 96 B +s 76 B +s 1 62 B +s 1 43 B +s 32 B+s 1 29 D NEG -89 P -76 P -66 P -59 P 1 -531 P 1 41 B +S 1 -30 B +6 1 -27 B +s 1 POS 161 B +s 119 B +S 92 B +$ 72 B +g 1 59 8 +8 1 341 D 1 221 D 1 191 D NEG 166 B +s -122 B +s -94 s +s -74 B +s 1 -60 B +s 1 -36 D -231 D ' 1 -201 D 2 POS NEG 164 B +s 121 8+8 93 B +s 74 a +s 1 60 s +s 1 42 a +S 1 31 B +S 1 28 B +s 22 Ga. POS 114 P -96 P 66 P -72 B +s 1 - 59 s +s 1 - 41 a +s 1 -30 a +s - 27 B +s 3 NEG 202 6 +s 150 s +s 116 s +s 92 s +s 75 s +s 52 B +s 1 38 a +S 35 B +8 POS -130 190 P s +S -111 141 P -9B p -87 P -73 a +S -51 B +s 37 B +s -34 a +s 4 NEG •125 P 107 B +s 109 66 a +s 70 B +s 49 B +s 36 B +s 33 B +s P -94 P -83 P 68 B+s -48 B +B 35 a +s -32 B +S 1, The panels were checked for bending (B), shear (S), combined bending and shear (B +S), deflection (D), web crippling (C), and panel pullover (P). The controlling check Is noted In the table. Deflection was limited to span/120 2. Section Properties have been calculated In accordance with the 2001 North American Specification for the Design of Cold- Formed Steel Structural Members. 3. Minimum yield strength of 29, 26 and 24 gage steel is 80,000 psi. Minimum yield strength of 22 gage steel is 50,000 psi, 4. Steel panels are either aluminum -zinc alloy or G -90 coated, The base metal thickness was used In determining section properties. 5. Positive load (POS) Is applied Inward toward the panel supports and Is applied to the outer surface of the full panel cross - section. Negative load (NEG) is In the opposite direction, SUBJECT10CHANGFWITHOUT.N077GE :: t w A n'� H 3 ;RLVISFD.SEPTEJVIBEF�9;'2(J05' Section 5 Page 2b f-< Li ffi Company �1 24 " _ 1" f J 2 29132" l 3" l \• 2" 1 \ 4 9/19• 5 1116" ^� 5 1M9" � a 9/15" 314" — 2 318 19 1/4" — 23/8' PANEL PROFILE CROSS SECTION Designated Gage of Steel Yield KSI Base Metal Thick. r Total Thick, (in.) • r e y Panel Weight (Ibs. / fL r eft . Ix . lop In Compression Sx Ma " Bottom In Compression Fb KSI Ix Sx Me Steal (In,) (In. (In' /ft.) K (in. ft.) (In. ft,) K - IN. 24Ga. 1 22 Ga. 1 50 10,022 50 10.03oo 0.0241 1 0,0316 1 1.20 1 1.58 0,276 0.371 1 0.111 1 , 0,152 3.33 4.56 0,129 0.180 0,079 0.108 1 2.37 3.24 30 30 J SUBJECTTO CHANGE MMOUTNOT ICE > =_' . r -; U1SID SE1?TEMBER 8 200 Section 5 Page 3 1. The panels were checked for bending (B), shear (S), combined bending and shear (B +S) and deflection (D). The controlling check is noted in the table. Deflection was limited to span/150 2, Section Properties have been calculated in accordance with the 2001 North American Speclr/cation for the Design of Cold - Formed Steel Structural Members. 3. Minimum yield strength of 24 and 22 gage steel is 50,000 psi. 4. Steel panels are either aluminum-zinc alloy or G-90 coated, The base metal thickness was used in determining section properties. 5. Positive load (POS) is applied inward toward the panel supports and is applied to the outer surface of the full panel cross- section, - .1-inlr ican Buildings Company 24" 2 29132" 3" 2" T _. T r \ 49116 __ 5 ills' __ 51/16" _ 4 9 /16 " _ ^ 3/4" \ — 2 318^ 191 /4" 2 3/8 _ PANEL PROFILE CROSS SECTION Gage No, Load Maximum Tbtal Uniform.Lo.ad in PSF Of of TYpe I anon i e. fh. c+ Panel I Spans 1 1.50 2,D0 1 2.50 1 3.00 1 3.50 1 4,00 4,50 5.00 1 POS 744 B +8 1 471 B +g am B +S 1 232 Designated Gage Steel Yield Base Metal Total Thick. Panel Weight 109 Top In Compression 89 B +s Bottom In Compression S +s 1 340 Fb Of KSI Thick. (In,) (lbs. / fL Ix Sx Me KSI Ix Sx Ma Steel 24 Ga. 22 Ga. 50 10,02251 50 (in.) 0,0300 0.0241 0,0316 1.20 1.56 (In, /ft.) 1 0.278 0.372 (In.' /ft.) 0.116 0.158 K -IN. 3.48 4.74 (In. /ft.) 0,126 0.177 (In, /ft.) O.DBO 0,111 K -IN, 2.40 3.33 30 30 Gage No, Load Maximum Tbtal Uniform.Lo.ad in PSF Of of TYpe I anon i e. fh. c+ Panel I Spans 1 1.50 2,D0 1 2.50 1 3.00 1 3.50 1 4,00 4,50 5.00 1 POS 744 B +8 1 471 B +g - 322 B +S 1 232 B +s 1 175 B +s 1 136 B +9 109 B +s 89 B +s 24 Ga. 2 POS 1 548 S +s 1 340 a +e 1 229 B +s 1 164 B +s 1 123 B +s 1 96 8+9 76 B +s 62 s +s 3 POS a +s 401 S +s 275 S +S 199 B +s 150 B +S 117 8+8 94 B +s 77 s +s 4 POS B +S 362 a +S 260 B +s 188 B +9, 141 B +s 110 11+11 88 B +s 72 B +s' 1 POS 1800 B +8 673 B +9 453 8+8 325 S +s 243 B +s 189 8 +8 151 S +S 123 S +s 22 Ga 2 POS B +s 488 a +g 326 8 +6 232 B +9 173 15 +8 134 B +s 107 B +s 87 B +s 3 POS 394 B +9 263 B +g 212 B +s 165 S +s 132 B +s 107 B +s 4 POs +s 552 B +B 372 B +g 266 B +s 200 B +s I 155 B +g 1 123 B +S I 101 a +S 1. The panels were checked for banding (B), shear (S), combined bending and shear (B +S) and deflection (D), The controlling check is noted In the table. Deflection was limited to span/150 . 2. Section Properties have been calculated In accordance with the 2001 North American Specification for the Design of Cold- Formed Steel Structural Members, 3. Minimum yield strength of 24 and 22 gage steel is 50,000 psi, 4. Steel panels are either aluminum -zinc alloy or C-90 coated. The base metal thickness was used in determining section properties. W ive load (POS) Is applied inward toward the panel supports and Is applied to the outer surface of the full panel cross - section. SUBJEC7T0CHANGEWITHOUTNOTICE =` _ . _ �r_� _.� RE1llc.EQ g�7 lg>�4& Section 5 Page 3a �►G- aJ aing 15" KIET COVERAGE a . 7/8" 4114 718" i 1 l 5" 1 1/2" 60" S. 215116" ` f ( 2718" I 1 1 3/4" N f 1l2" t 7116' Z/32" +1116" -0" PANEL PROFILE CROSS SECTION 718 " +0" -1132" Gage Of Panel No. of Spans Load Type 1 3,00 1 4,00 • Maximum Total Uniform Load in PSF Span Lengths, Ft, 5.00 1 6100 1 7,00 8.00 9.00 10.00 se = net tal ick, ,) 225 Total Thick, (In,) 0.0241 C.f" Panel Top In weight Com resston (Ibs. /ft. Ix Sx Me (In. fl,) (In I fL) K -IN, 1,57 0.262 0.1 G2 4.06 Bottom In Compresslon Fb KSI 30 Ix (In / ft.) 0.374 1 Sx (In /ft.) 0.162 Ma K -IN. 4.86 Gage Of Panel No. of Spans Load Type 1 3,00 1 4,00 • Maximum Total Uniform Load in PSF Span Lengths, Ft, 5.00 1 6100 1 7,00 8.00 9.00 10.00 1 I POS 791 C 1 591 c 47 c 1 391 C 1 341 C 1 301 C 1 261 0 1 241 0 NEG -279 8 +8 1 -173 s +s 1 -1161 s +s 1 -B3 B +s 1 -62 a +s 1 -48 B +s 1 -39 s +a 1 -31 s +s 2 POS 881 C 1 66 c' 1 531 c 1 441 c 1 381 C 1 331 C 1 29 C 1 261 0 24 Ga. NEG - 252 a +s 1 - 161 &a 1 - 1111 a +s I - Ani s +s I - 61 I B +s I - 47 s +s I -36 a +s -31 s +s 3 POS 100 C 75 C BO C 50 C 43 C 37 C 33 c 30 C NEG 285 8+6 -167 a +3 I -131 B +s -96 B +3 1 -73 B +s 1 -5 B+s 1 -46 B+s -38 B +8 4 POS 9 C 72 0 58 C 48 C 41 C 36 C 32 c 29 C NEG NEG -275 B +s - 179 B +s 1 - 124 B +s 1 -91 B +s 1 -69 S +s 1 -54 8 +8 , 1 -44 B +s -36 B +s 1. The panels were checked for bending (B), shear (S), combined bending and shear (B +S), deflection (D) and web crippling (C). The controlling check is noted In the table, Deflection was limited to spaN120 2. Section Properties have been calculated In accordance with the 2001 North American Speolficatfon for the Design of Cold- Formed Steel Structural Members. 3. Minimum yield strength of 24 gage steel Is 50,000 psi, 4. Steel panels are either aluminum -zinc alloy or G•90 coated, The base metal thickness was used in determining section properties, S. Positive load (POS) is applied Inward toward the panel supports and Is applied to the outer surface of the full panel cross- section, Negative load (NEG) is in the opposite direction. • SUBJECTT0 j GEWITHOUTNOTIGE Section 5 Page 4 (� 1 I 163/64" 1 AJJTJ1 i1an Buildings Company LOC -SEAM LOC -SEAM 360 1 2" f 16" PANEL PROFILE CROSS SECTION : SUBJECTTOCHANGEWITHOUTNOTICE Section 5 Page 1. The panels were checked for bending (B), shear (S), combined bending and shear (B +S) and deflection (D). The controlling check is noted in the table, Deflection was limited to span /150 2. Section Properties have been calculated in accordance with the 2001 North Amadcan Specificafion for the Design of Cold - Formed Steel Structural Members. 3. Minimum yield strength of 24 and 22 gage steel is 50,000 psi. 4. Steel panels are either aluminum -zinc alloy or 0-90 coated. The base metal thickness was used In determining section properties. 5. Positive load (POS) is applied inward toward the panel supports and is applied to the outer surface of the full panel cross - section, �OVr n I I 1 63/64" r PANEL PROFILE Sti'ldings Company LOC -SEAM 12" CROSS SECTION 2" r CJ • SUBJEC =� ^ �� .r= ' Section 5 P LOC -SEAM 360 1. 1 ne panels were cnecked for bending (B), shear (S), combined bending and shear (S-+8) and deflection (D). The controlling check Is noted in the table. Deflection was limited to span/15D 2. Section Properties have been calculated In accordance with the 2001 North American Specification forthe Design of Cold - Formed Steel Structural Members, 3. Minimum yield strength of 24 and 22 gage steel is 50,000 psi. 4. Steel panels are either aluminum -zinc alloy or G -90 coated, The base metal thickness was used in determining section properties, 5. Positive load TOS) is applied inward toward the panel supports and is applied to the outer surface of the full panel cross - section. i i Lfildings Company 6" 314" 1 314" 3112' ^ 314"17,IT 51.1 )15/16" PANEL PROFILE J 0 PARTIAL CROSS SECTION Designated Steel Base Total r Panel < Top In Gauge Yield Metal Thick, Weight Compression Bottom Compression In Fb Of KSI Thick, (in,) (ibs. /f0) Ix Sx Me KSI Ix Sx Me Steel (In.) (In. ° /R. (In. /ft.) K -11% (In. " /ft,) (In,'/ft.) K -I N. 29 Ga, 80 0111 0137 0.0153 0.74 0.025 0,033 1.19 0.017 0.028 1.04 36 26 Ga. BO 0.0177 0.0193 0.94 0,034 0.049 1.78 0.023 0.042 1.51 36 24 Ga. 22 Ga, BO 0.0225 0.0241 1.17 11.045 11.067 2.41 0,032 01059 2.12 1 36 50 0.0300 0.0318 1 1.54 1 0.060 O.D96 2,88 0,050 0.097 2.91 30 Gauge No, Load Maximum Total Uniform Load in PSF of Panel of Type Spans Span Len the Ft. . 1.50 2,00 2.50 3.00 3.50 4.00 4.SD 5.00 1 POS 230 C 172 C 124 B +S 1 86 B+S 60F D 40 D 28 D 21 D NEG •247 P -169 B+S -109 B +9 65 D 41 D 27 D 19 D 14 D 2 POS 179 C 135 C 108 C 76 B +S 56 B +9 43 B +S 34 B +S 28 B +S 29 Ga. NEG -99 P -74 P 59 P 49 P 42 P 37 P 33 P 30 P 3 POS 204 C 153 C 122 C 94 B +S 89 B +S 53 B +S 42 B +S 34 B +S NEG -112 P -84 P 67 P 56 P 46 P 42 P 36 D 26 D 4 POS 1981 C I 147 C 116 C 88 B +S 65 B +S 50 B *S 4D. S +S 32 B +9 NEG 1 -108 P 11 -81 P 11 -65 P .54 P -461 P 1 -401 P 1 .361 P 1 -26 D 1 POs 403 C 284 B +3 164 B +S 129 B *S 63 D 56 D 39 D 29 D NEG 319 P 239 P 157 D -911 D 1 .571 D 1 -38 D 1 -271 D 1 -20 D 2 POS 292 C 219 C 157 B+S 1 110 B+S I all B +S 1 62 B+S 1 49 B +S 1 40 B +S 26 Ga, MEG •127 P -96 P •76. P 1 -641 P I - 51 P 1 -48 P 1 .421 P 1 -381 P 3 POS 332 C 249 C 195 8 +S 137 B +S 1 101 B +S 1 78 S +S 1 62 B +9 1 50 B +S NEG •145 P -10 P -Sr P -721 P 1 -621 P 1 .541 P 1 48 P 1 -371 D 4 POs 320 C 240 C 182 B +S 126 B +S 1 94 B +S 1 73 B +3 1 58 B +S 1 47 B +S NEG 139 P -105 P -84 P -701 P 1 •60 P 1 .521 P 1 46 P 1 -391 D 1 POS 663 C 390 B+S 252 B +S 175 D 110 D 74 D 52 D 38 D NEO 405 P -304 P 213 D -1231 D 1 .771 D 1 .521 D 1 .361 D 1 .271 D 2 POS 460 C 342 B +S 221 B *S 155 B +S 1 114 S +S 1 88 B +S 69 B +S 1 66 B +3 24 Ga. NEG -162 P 122 P 97 P -87 P 69 P -61 P 1 .541 P 1 49 P 3 NOS 522 NOG =184 C 392 C 274 B +S 192 B +S 142 B +S 109 B +S 87 B +9 1 70 B +S P 138 P 111 P 92 P 79. P 69 P -61 P -50 D 4 NOS 503 C 377 C 257 B +9 180 B +S 133 B +S 102 B +S 81 'B +S 68 • B +S NEG •177 P 133 P 106 P 89 P 76 P 66 P •59 P •53 P 1 NOS 604 B +S 464 B +S 300 B +S 210 B +S 147 D 98 D 69 D 5D D NEG -572 P 429 P 303 B +S 194 D 122 D 62 D 1 .581 D 1 .421 D 2 POE 655 C 460 B +3 300 B +S 210 B +S 156 B +S 120 B +S 95 B +s 77 B +5 22 Ga, NEG 229 P 172 P -137 P -114 P 98 P 86 P 76 P -69 P 3 POS 744 C 558 C 369 B+S 260 B +S 193 B +S 149 B +S 118 B +S 95 D NEG 260 P 195 P -156 P -130 P 111 P -98 P 87 P -78 P 4 POs 716 C 529 B +g 34g B+S 244 B +S 181 B +S 139 B +3 110 B +S 90 B +S NEG -250 P 188 P 150 P. 125 P 107 P •94 P -83 P I 75 P 1. The panels were checked for bending (B), shear (S), combined bending and shear (B +S), deflection (D), web cripplIng (C), and panel pullover (P). The controlling check Is noted In the table, Deflection was limited to span/150 2. Section Properties have been calculated in accordance with the 2001 North American SpeciCcallon for the Design of Cold - Formed Steel Structural Members. 3. Minimum yield strength of 29, 26 and 24 gauge steel is 80,000 psi, Minimum yield strength of 22 gsuge steel is 50,000 psi. 4. Steel panels are either aluminum -zinc alloy or G -90 coated, The base metat thickness was used in determining section properties. S. Positive load (POS) is applied inward toward the panel supports and Is applied to the outer surface•of the full panel cross - section. Negative load (MEG) Is in the opposite direction, SUBJECTTOCNAN6EWITH = _^ ' " =�3 - REYISFDJ�ebruaru;9f%2007 Section 5 Page 7 W PANEL PROFILE C o m p a fiy 0 3440 INSIDE 1.7500" 1.3866" 12 ". 16" or IS' NET COVERAGE CROSS SECTION 01120" INSIDE 0.9652' 1.6150 ", Designated Steel Base Total Gage Yield Metal Thick, Of KSI Thick. (In,) Steel (In.) Panel , Weight (Ibs. /ft. Top In Bottom In Compression Compression Fb Ix Sx (in. /ft.) (In` /fL) Me K -IN, Ix (In. /ft.) Sx (in.) Me KSI K -IN, 24 GL 50 0,0225 0.0241 1.47 0,117 0.078 2.34 0.055 0.057 1,71 30 22 Ga 3U 0.0316 1.93 0.154 0.109 1 3.27 1 0.086 1 0,079 1 2.37 30 Gage No, Load Maximum Total Uniform Load in PSF Of of Type Span Len ths, Ft Panel Spans 1.,50 2,00 2.50 3,00 3.50 4,00 4.50 5.00 1 POS 660 6 +8 3791 Ste . 245 B +s 1 171' B +s 126 B +s 97 B +s 77 S +s 62 a +s 24 Ga 2 POS 488 S +8 278 B +8 180 a +a 125 13+8 92 B +s 71 B +s 56 8+8 45 B +a 3 POS 597 9 +9 344 8 +8 223 B +8 156 8 +8 115 S +s Be 13+6 70 a +e 57 B +9 4 POS 551 8 +8 323 S +s 209 S+s 146 8+9 1D8 B +S 83 B+9 65 8 +8 53 9+3 1 POS 935 s +s 534 9 +s 344 8 +9 240 B +S 177 B +e 136 8 +9 107 s +s 87 8 +9 22 Ga. 2 POS 682 B +s 38B S +3 250 S +8 174 a +s .128 8+8 98 8 +8 78 S +8 63 B +s 3 POS 1 841 B+a 482 a +s 311 B +s 217 e+s 160 B +s 123 B+8 97 B +8 79 8 +9 4 POS 1 788 ` 8+8 451 8+6 291 8+8 203 " s+s 149 s.e 115 9+6 el 8 +8 74 8 +8 Designated Steel Base Total Gage Yield Metal Thick. Of KSI Thick, (In.) 1 Steel (In.) Panel Weight abs, I ft.) Top In Compression Bottom In Compression Fb KSI Ix (In. ft.) Sx (in,' I ft.) Me K -IN Ix (In. / R.) Sx (In. / ft) Met K -IN. 24 Ga, 50 0.02251 0,0241 1.35 0.094 1,059 1,77 0.044 0.043 1.29 30 22 Ga. 50 0.0300 0.0316 1.77 0.123 1 D.D84 2.52 0,055 0,058 1.77 30 Gage No, Load Maximum Total Uniform Load in PSF Of of Type Span Len ths, Ft. Panel Spans 1.50 1 2.00 1 2.50 1 3.00 3.50 1 4.00 4.50 5.00 1 POS 4991 1 2871 185 6 +8 1 129 8 +8 95 8+6 73 a +s 1 58 B +S 71 B +S 24 Ga 2 POS 367 B +3 1 210 8 +3 135 B +s 95 S+s 70 B +s 53 B +s 42 B +6 1 34 B +8 3 POS 450 S+s 1 260 B +9 186 S +S 118 9 +s 67 s +s 67 s +s 53 B +s 1 43 a +$ 4 POS 423 B +s 243 8 +9 157 S+s 110 6.8 e1 a+e 62 B +s 49 8 +8 1 40 B +s 1 POS 719 8+8 411 8 +8. 266 8 +3 1 185 8 +9 136 e+s I D41 a +s 83 B +s 67 8+8 22 Ga. 2 POS'. 1 509 8+8 290 B +e 187 S+a 130 S +s 96 B+B 73 B +s 58 a +s 47 B +3 3 POS 1 629 B +8 3601 B+a 1 232 8+8 162 13+8 119 e+s 92 6+s 72 B+s 1 59 a +8 4 1 PCs 1 590 0 +6 337 B +s 1 217 9+8 152 8 +3 112 0 +3 86 9 +8 Be B +s 4 55 B +B ! Designated Steel Base Total Gage Yield Metal Thick. Of KSI Thick. (In,) Steel (In.) Panel Weight (Ibs. ! fL� Top In Compression Bottom In Compression Fb KSI Ix (In. /ft.) Sx (In . /ft) Ma K -IN, Ix' (In. /ft) 6x (in. /ft.) me K -IN, 24 Go. 1 50 10.02251 0.0241 1.31 0.085 0.053 1.59 0,039 0.038 1.14 30 22 Ga. 50 O,D3DD 0.0316 1.72 0.112 0.075 2.25 0.057 0,053 1.58 30 Gage No, Load Maxirnurn Total Uniform Load in PSF Of of Type Span Lengths, FL Panel Spans 1 1.50 1 2.00 1 2.5D 3.00 1 3.50 1 4.00 1 4.50 5.00 1 POS 1 446 B +a 1 257 B +s 1 166 9+s 1 116 9 +s 1 86 S +a 1 66 8 +8 52 8 +8 42 a +a 24 Ga. 2 POS 1 324 8 +8 1 1861 B +s 1 120 8 +8 1 84 S +s 1 82 B +s 1 47 8 +3 1 37 9 +8 30 8 +a 3 POS 398 B +a 230 9+8 149 B+a 1D4 8 +6 77 B +6 59 9 +8 47 B+S 38 8+8 4 POS 374 a +s 215 a +s 139 a +s 97 8 72 B +s 55 s +s 44 S +s 35 B +s 1 POs 642 S +9 367 B +g 237 8+8 165 B +s 122 0 +3 93 8+6 74 a +s 60 8 +8 22 Ga 2 POS 457 a +s 260 B +s 166 8 +3 117 8 +9 86 B +s 66 B +s 52 B +s 42 B +s 3 POs 564 a +s 323 S +s 209 a +s 146 s +s 107 S +s 82 8 +e 65 0 +9 53 B +3 4 1 POS 529 8+8 1 303 6+9 1 195 B+s 1 136 B +s 1 100 S +5 1 77 8 +9 1 61 B +s 1 49 ' e +B 1. The panels were checked for bending (B), shear (S), ebmbined bending and shear (B +S) and deflection (D). The controlling check Is noted in the table. Deflection was limited to span/150 2, Section Properties have been calculated In accordance with the 2001 North American Specificallon for the Design of Cold- Formed Steel Structural Members, 3. Minimum yield strength of 24 and 22 gage steel Is 50,000 psi, 4. Steel panels are either aluminum4ne alloy or G -90 coated. The base metal thickness was used In determining section properties, S. Positive load (POS) is applied Inward toward the panel supports and is applied to the outer surface of the full panel cross- section. • L_I Section 5 Page 8 CRON 6 Mi sdE LLA N18OUS 4 L-M ^ 1. IlIM 111/ r }}Z1 �r.�� lA yl {\ lJl rtl� — t `.,te (Y�� Y I IY M.r.��l... �f r+g� ..t _ _ I Y I •l�la R • _ — .fN.r I • y..a t 4 � t I 1 t 0 1 ' ` � 1 75 .;t - ,-w. ... C• q., w�.... rx. ay_....•. rn: c ..u.- ...ne.r�rsr....a.... _+....gw.an -�. .nv. .... .... u- �... m... r— c -..... r.+v ,v s 1. GENERAL 4. STRUCTURAL FRAMING 1 .1, SCOPE .............:::.:...::....::..:..:........... ..............................3 1 .1,1, Intent ........................................ ..............................3 1.1.2. Performance ........:..................... ..............................3 1 ,1.3. Product Change ....................::.... ..............................3 1.2. BUILDING DESCRIPTION .:......:.:..:.::.... ..............................3 1 .2.1. Gable ......................:..:... ............................... ......3 122 Single Slope ........:.............::....... ..............................3 1.2.3, Lean- To ........... ......................... ..............................3 1.3, BUILDING NOMENCLATURE .:::::....:::.:: ..............................3 1.3.1, Roof Slope ....................:....:.:.::.. ..............................3 1,3.2. Width .......:.....:.::........:........:...... ..............................3 1.3.3, Eave Height ..::..........:::...:::::....:.: ..............................3 1.3,4, Length ............:. ..... :.:....:...... ............................... 3 1.3.5. Bay Spacing (Standard) . .:.........::: ..............................3 10 1, 3.6. Bay Spacing (Shadow Panel) ....:..::. ..............................3 A, DRAWINGS AND CERTIFICATION ,,;,,,,,; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3 14, 1, Drawings ..:................................. ......:.......................3 1.42 Certifications ...:.....:..................... ..............................3 1,4.3, AISC Certificati6n,,,,,,,,;,,,,,,,,,,,,,,,; ,,,,,,,;,,,;,,,,,;,,,,,,,,,,,,3 2. STRUCTURAL STEEL DESIGN 2,1: GENERAL ...:.. .. ..........:......:...::...::... ..............................3 2.1,1, Structural Mill Sections,,,,,,,,,,,,,,,,; 3 2,12 Cold Formed Sections ,,,,,,,,,,,,,;,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3 22 DESIGN LOADS :... ...................... ...,,,,,,..,,...,,...,.,,,....4 2.2.1, Loading Criteria .. .:.............:....... ..............................4 222. Most Severe Conditions ...............:. ..............................4 2.2,3, Load Projections ,,,,,,,,,,,,,,,,,,,,,,,,;, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,4 2.2.4. Special Loads ,,,,,,,,,,,,,,,,;,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,4 2.3, DESIGN POLICY ...:.........:..:...:.......:.... ..............................4 2.3. 1. Standard Design Practices ...........: .:............................. 4 • 2.3.2. Rigid Frame Design ................. . ........ ...:... ............ '....... 5 3. BASIC MATERIAL SPECIFICATIONS 31, PRIMARY FRAMING STEEL,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, — 5 3,1.1. Mill - Rolled Sections .........:.......::... .............................:5 3,1.2, Built -Up Sections .................:....... ..............................5 3,1.3, Endwall nC Sections,,,,,,,,,,,,,,,;,,, 5 3,2SECONDARYFRAMING STEEL,,,,,,,,,,,,, 5 3.21.RolledFormed Sections ,,, , ,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5 3,2,2.RolledFormed Sections ( Galvanized) ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5 3.3,ROOFAND WALL PANEL MATERIAL ..... ............................... 5 3.3.1, 26 Gage Material — Aluminum - ZincAlloy-Coated ............. 5 3.3.2, 24 Gage Material — Aluminum-Zinc Alloy-Coated ........... 5 3,3,3, 24 Gage Material — Aluminum-Zinc Alloy-Coated ,,,,,,,,,,,,, 5 3.3.4.22 Gage Material — .Aluminum - Zinc Alloy-Coated ,,,,,,,,,,,,, 5 315, 26 Gage Material —Zinc- Coated (Galvanized),,,,,,,,,,,,,,, 5 3.3.6, 24 Gage Material — Zinc-Coated (Galvanized) ................. 5 3,3.7, 22 Gage Material— Zinc- Coated (Galvanized),,,,,,,,,,,,,,,,, 5 4.1, GENERAL .........:..........................::.... ............................... 5 4.1.1, Field Bolt Assembly ...................... 5 4.1.2. Shop Connections ..................:..... 5 4,11 Identification Mark ...........:.......... .................: „:........... 5 4,1,4, Visuallnspection .............:............. ..............................5 42 PRIMARY FRAMING ... ........................................ ................ 5 4.2,1: Rigid Frame .....:........:...::.........::. ............................... 5 412. Endwall Frames ........................... 6 4.2.3. Plates, Stifieners, etc ..........::.::::...:: ..............................6 414, Bolt Holes ........:....:...:..:.......:....... ..............................6 4.3. SECONDARY FRAMING ................. ....................... .............. 6 4.3, 1. Puriins and Girts ......................... 6 4.3,2. Eave Struts ::......:::......::::......:.:.. ............................... 6 4 .3.3. Base Ahgle ..:.......:.....:.:...::..:....: ............................... 6 4 ,4. BRACING ..:::.:::.:::...........:...:...::::......... .........:....................6 4.4. 1, Diagorial Bracing .:.....:......:...:....... :...............: „............6 4.41 Flange Bracing ...... ........ :................ .::.......................... 6 4:4.3, Special Bracing . ................... .. :: „::::..............,......... 6 5, ROOF AND WALL COVERING 51 , GENERAL ........::.......::..:..:...::........:.. . „:............................ 6 5,1.1: Wall Panel .....:...........................:.. ..............................6 5.1.2. Roof Panel .:. ............................... 6 5.1.3, Liner and Soffit Panel ...:.:.:........:..: ..............................6 5.1.4. Facade Fascia Panel ......:.......... ..........................: „:,. 6 5,1.5. Long Span ill Panel ..................... ............................::„ 6 5,1,6. Architectural It/ Panel ................... ............................... 6 5,1.7, Architectural "V "Rib Panel,,,,,,,,,,,,,, ,,,,,,,,,,,,,;,,,,,,,,,,,,,,,,6 5,1,8, Multi -Rib Liner Panel ................................................... 6 5,1,9. Long Span Liner Panel ...............:.. ............................... 6 5.1.10, Shadow Panel ...:..............:.......... ..............................7 5.1.11. Soffit Liner Panel :........................ ............................... 7 5,1.12. Standing Seam Panel ................. ............................... 7 5.1.13. Loc Seam Panel .......:....:............ ............................... 7 5,1:14. Mansard Fascia Panel ................. ............................... 7 5,1:15, Seam Loc Panel;,,,,,,,,,;,,,;,;,,,,;,,, 7 5.2, PANEL DESCRIPTION .......................... 7 5.2. 1. Long Span Ill Panel ......:................. ..............................7 5.2.2, Architectural 111 Panel,,,;;,,,,;,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7 5.2.3, Architectural "V "Rib Panel ,,,;,,,,,,,;,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7 5.2.4, Multi -Rib Panel ,;,,,,,,,;,,,,,,,,,,,,,,,;,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7 5.2,5, Shadow Panel ,,;,,,,,,,,,,,,,,,,,,;,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,7 5.2,6, Soffrt Liner Panel. .........:...........:.. ............................... 7 5.2.7, Standing Seam Panel ......:........:... ............................... 7 5.2,8: Loc Seam Panel ............:...:.:...... ............................... 7 5,2.9, Mansard Fascia Panel ..:.............. ............................... 7 5.2. 10. Seam Loc Panel ...................... :.............................. 7 5.211. Panel Length .......:..........:..:...... ............................... 8 5.2.12. Endwall Edge Cuts ...........:.:...... .....:......................... 8 5:213, Oilcanning .................... .................................... ....... 8 SS(ABC) -Rev, 09105,.- kniedenn Buildings Compnny FIVID0005 6. MISCELLANEOUS MATERIAL SPECIFICATIONS 8. ACCESSORIES 6.1: FASTENERS ..:...:......:.:...:.......:.....:..:.. ..............................8 6.1.1. Structural Bolts .:............:...........:. .........:..................... 8 6.1.2. Fasteners for Roof Panels ............................................8 6.1.3. Fasteners for Roof Panel Side Laps ............................... 8 6.1.4, Fasteners for Roof Panels and Flashing,...... 8 6.1.5, Fasteners for Roof Panel Clips .....:.. ..............................8 6.1.6. Fasteners for Wall Panels..........,. 8 6.11 Fasteners for Wall Panel Side Laps .: ......:.................:.....9 6.1, 8. Fasteners for Shadow Panels.....,., 9 6.1.9. Blind Fasteners ( Rivets) ...... . .. . .... .............................. • .. 9 6.2: PANEL CLIPS .................................... 9 6.2.1. Standing Seam 11 Panel Clips...,..:,. 9 6.2,2. Loc Seam Panel Clips .....:.......::..... ..............................9 6.2,3, Mansard Fascia Panel Clips ........... ..............................• 9 6.2.4, Standing Seam 360 Panel Clips ..................... ............. ... 9 6.2,5, Seam Loc Panel Clips ..........:........ 9 63. CLOSURES AND SEALANTS ........:.:.... 9 6:3,1, Closure Strips .............................. 9 6.3,2. Metal Closures ......:...........: 9 6.3.3, Sealer. Long Span and Multi -Rib Panels., ....................... 9 6.3.4, Sealer Standing Seam, Loc Seam & Seam Loc,,,,,,,,,,,,,,, 9 6.3.5. Sealer Standing Seam and Loc Seam Panels,,,,,,,,,,,,,,,, 9 6.3.6, Caulk ......... ...............:.........:..... 9 6.4. GUTTER, FLASHINGS AND DOWNSPOUTS ,,,,,,,,,,,,,,,,,,,,,,,,,,10 V. 1. Gutters, and Flashings .................. ............................... 10 6,4.2. Downspouts ............................:..: ............................... 10 7, PAINTING 7:1: STRUCTURAL PAINTING ...........:...:....... ....:......:....:.....:......10 7,1.1. Shop Applied Primers ..:..:...........:.. .............................10 7.1,2, Pre - painted Cold Formed Materials ............................... 10 7.1,3. Abrasions Atter Handling ,;,,,,,,,,;,,,,, ,,,,,,,,,,;,,,,,,,,,,,,,,,,,,10 7,2, LONG LIFE COATED PANELS ,, , ,,, ,;,,,,;,,,, ,,,,,,,,,,,;,,,,,;,,,,,,,,,,,10 711. Base Metal ............................................ :................... 10 7.2.2. Prime Coat ...............:.......:......:. ............................... 10 713. Exterior Coat ... .......................................................... 10 7.2.4. Interior Finish .....:.......:.........:........ ::..:........:...............10 7,3, PREMIUM 70 COATED PANELS ,, , ,, ,,,,,,,,; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,10 7,3.1. Base Metal ...:....:....................... ............................... 10 7,3.2. Prime Coat ...............:..........::.:.: ............................... 10 7.3.3. Exterior Coat ............................................................. 10 7,3.4. interior Finish ...:...:.........:........:..... .............................11 7,4.PREMIUM 70M COATED PANELS .....:.. ............................... 11 7.4. 1. Base Metal ............................:.. .................:............. 11 7.4:2. Prime Coat .........:.......:..:.. .:.:..........::...:..:......:. 11 7.4,3. Exterior Coat 11 7,4,4, interior Finish :....:.:.......:.:........:..: 91 8:1. WINDOWS ......::.....:::........................... ............................... 11 .8.1.1. Standard Windows.,. .., I. I .... 11.1 ............... I ... I I ........ I ........ I I 8.1.2. Narrow Light Windows .................................................. 11 8,13. Thermal Barrier Windows ............... ............................... 11 8.2. PERSONNEL DOORS .............................. .::..........................12 8.2.1. Doors ............................................ .............................12 8.2.2. Door Frames .......... .................::... ............................... 12 8.2.3. Locksets ..............:...::...............:.... .............................12 8.2.4, Panic Devices .............................. 12 8.2.5. Threshold ..............:...................... .............................12 8.3. PRE - ASSEMBLED PERSONNEL DOORS .. ...............:.............12 8 .3.1, Doors ....................................:.::: ............................... 12 8.3.2. Door Frames ...................:.............. .....:...:.:............:....12 8.3.3: Locksets ....:...:............................... .............................12 8.3,4. Panic Devices ......................... 12 8.3:5. Threshold ................:::..........::...:... .............................12 8.4. OVERHEAD DOOR FRAMING ::................ ...:............::.:......:..12 8.4. 1. Support Framing ........:.............:...... .............................12 8.5. GRAVITY VENTILATORS .:...::...:.....:..... ............................... 12 8,5.1, Ridge Ventilator .............................. .............................12 8.5.2, 20° Round Ventilator ..........:........... ............................... 13 8.6. LOUVERS ...:...::..........:...:.....:.:::.......:... ....:............:.......:...13 8,6.1, Standards ................:::.......:........... .............................13 8,7. SKYLIGHTS .............:.:.......:....::.........: ........................I...... 13 8.7. 1. Roof Pane ls ................... . .......... .......... ,....................... 13 8,72, Wall Panels ....::......:.:.........:.:......... .............................13 8.8. INSULATION ........:........:::...........::......... ........................:....13 8.8.1. Standards ................................::.... .............................13 8.82 Facings ......................:................... ......:......................13 8.8.3. Thermal Blocks .....................:......... .............................13 8.8.4. Rigid -Foam Insulation .:..................... .............................13 8,9. ROOF CURBS .... .....................:......... 13 8.9. 1. Standards ................................ ............................... 13 8.10, PIPE FLASHING .........:.:.:......:.:.::......... .............................14 8.10.1. Standards ...............:.................... ...........................:.14 9. ERECTION AND INSTALLATION ................ .............................14 . 10, BUILDING ANCHORAGE AND FOUNDATION .:..:.....:............:.14 11. WARRANTIES ..:.:.....:...:...:::.....::.:....... :.............................. 14 i E SS(.AOC -Ray, 00 10i „lmericnn Ouildtrigs Company MOMS I GENERAL 1.1 SCOPE 1.3.2 Building "Width" is measured from outside to outside of sidewall gifts except Shadow Panel which is outside to outside of panels. 1.1.1 The attached specifications cover the standard materials and components used in the design and fabrication of American Buildings Company's metal building systems. 1:1.2 These specifications are an outline of performance to insure that the architect, engineer, builder and /or owner understand the basis for design, manufacture and application of all American Buildings Company's metal building systems, 1.1.3 Due to a continuing program of research and development, specifications in this manual are subject to change without notice. 1.2 BUILDING DESCRIPTION 1.2.1 Gable (LRF, RF, LRF -M, RF -M, GC, GC -M) is a continuous frame building, The primary frames have tapered columns and rafters with continuous sidewall girls bypassing the column or uniform depth columns and tapered rafters with Simple span sidewall girts inset into the column line. Also it may have one or more interior columns. The bottom flange of the tapered rafter is horizontal for buildings with uniform depth columns and no interior columns. 1.2.2 Single Slope (LSS, LSS -M, SSF) is a continuous frame building, The primary frames have tapered columns and rafters with continuous sidewall girts bypassing the column or uniform depth columns and uniform depth or tapered rafters with Simple span sidewall girts inset into the column 1% line, Also it may have one or more interior columns. 3 Lean -To (LT) is a single slope extension to a primary structure which provides structural support. These units usually have the same standard roof slope and girt design as the building to which they are attached. 1.3 BUILDING NOMENCLATURE 1.3.1 Standard Roof Slope a) 1" of rise for each 12" of horizontal run (Gable, Lean - To). b) 4" of rise for each 12" of horizontal run (Gable, Lean - To). c) 1/2" of rise for each 12" of horizontal run (Gable, Lean -To). d) 1/4" of rise for each 12" of horizontal run (Single Slope, Gable, Lean -To) SS(AI3C)- Rc�.09 /Oa „ln+ertpvt Buildings Compnny FK00005 1,33 Building "Eave Height” is measured from the bottom of the base plate on the column to the intersection of the roof and sidewall sheets. 1.3.4 Building "Length" is measured from outside to outside of endwall girts except Shadow Panel which is outside to outside of panels. 1.3.5 Standard "Bay Spacing" shall be 20', 25' or 30' between frame centerlines (except at end bays), unless otherwise specified, for buildings with Architectural III (A3P) or Long Span III (L3P) walls panels. 1.3.6 Standard "Bay Spacing" shall be 20', 24' or 28' between frame centerlines (except at end bays) for buildings with Shadow Panel (HFP) walls. 1 <4 DRAWINGS AND CERTIFICATION 1,41 Drawings: American Buildings Company shall furnish complete erection drawings for the proper identification and assembly of all building components. These drawings will show anchor bolt settings, transverse cross sections, sidewall, endwall and roof framing, flashing, and sheeting and accessory installation details, 1A.2 Certifications: Standard drawings and design analysis shall bear the seal of a registered professional engineer upon request. 1.4.3 AISC Certification, Category MB: All American Buildings Company's buildings systems shall be engineered and fabricated to meet the AISC certification standard for Category MB, 2 STRUCTURAL STEEL DESIGN 2.1 GENERAL 2,1.1 All structural mill sections or welded built -up plate sections shall be designed in accordance with the AISC "Specification for Structural Steel Buildings," Allowable Stress Design and Plastic Design, June 1, 1989 with supplement No,1 2.1.2 All Cold- Formed steel structural members shall be designed in accordance with the 2001 edition of the "North American Specification for the Design of Cold- Formed Steel Structural Members." 3 2.2 DESIGN LOADS 2.2.1 The design loads for the building shall be, in addition to their own dead load, the live, wind, snow and seismic loads required of the following as specified: a) Standard Building Code, by the Southern Building Code Congress international, Inc. b) The BOCA National Building Code, by the Building Officials and Code Administrators, Inc, c) Uniform . Building Code, by the International Conference of Building Officials. d) International Building Code, by the International Code Council. e) National Building Code of Canada, by the National Research Council of Canada, f) Metal Building Systems Manual, by the Metal Building Manufacturers Association, 2.2.2 The building components shall be designed to meet the most severe conditions of load combinations set by the specified building code, but in no case be less than that produced by the following load combinations: A. Building dead load plus roof live load (or snow) B. Building dead load plus wind load 2.2.3 Roof live and snow loads shall be applied on the horizontal roof projection. Wind loads shall be assumed to act horizontally and shall be applied as pressure and suction perpendicular to the building surfaces, 2.2.4 Where local jurisdiction dictates, designs based on other than above listed loads, combinations of loads, or method of load application may be obtained upon request. 2.3 DESIGN POLICY 2.3.1 American Buildings Company's standard design practices incorporate Serviceability Limits from the Metal Building' Systems Manual, 2002 edition, (reprinted from AISC Steel Design Guide' Series #3, "Serviceability Design Considerations for Low -Rise Buildings'), Owner requirements that exceed these considerations must be included in the building order documents. The applicable building code may also provide deflection limitations. Vertical Deflections: *Roof Snow = Factored 50 Yr. Ground Snow Purlins Roof Live or Snow Load supporting metal roof only L/150 supporting ceiling tiles L/240 supporting plaster /drywall ceiling U360 Rafters Roof Live or *Snow Load supporting metal roof only U150 supporting ceiling tiles L/240 supporting plaster /drywall ceiling L/360 Floor joist/ Beams Floor Live Load supporting concrete slabs L/360 supporting plywood deck, etc. U240 Crane Runway Crane Vertical Static Load • Top Running Cranes: CMAA Classes A, B, C L /600 CMAA Class D U800 CMAA Classes E, F U1000 Underhung and Monorail Cranes: CMAA Classes A, B, C U450 Jib Crane Crane Vertical Load U225 Lintel Beams Total Load U600 < 0.3" Horizontal Deflections: **10Yr. = 50yr. X 75% Wall Panels * *10 Yr, Design Wind Pressure U120 Girts **10 Yr. Design Wind Pressure . supporting metal wall U120 supporting masonry wall U240 < 11/2' Frame * *10 Yr. Design Wind Pressure supporting metal wall H /6C supporting masonry wall H /100 Crane Lateral Load or * *10 Yr. Wind Pressure: pendant operated crane 1-1/100 @ Runway cab operated crane H /240 2"@ Runway Crane Runways Crane Lateral Load 0400 Spandrel Beams * *10 Yr. Design Wind Pressure U240 The following serviceability limits of American Buildings Company are also used for project design, Vertical Deflections: Roof Panels Roof or Live Snow Load U150 SS(ADQ -Rev. 09 /03,Amcri"nn Buildings Compnny FN 00005 al - ..__.. <..rn ^.aer.; a.. .... < .. ......r._e. _...•.. tr.p- ......, '"S, k.s w.'u't iF"^ " "£ Expansion and Contraction: 3.3.2 Panel material as specified shall be 24 gage AZ50 or AZ55 alumihum -zinc alloy - coated steel, conforming to the Longitudinal Expansion Joint every 1000 feet requirements of ASTM A 792, Grade 80. Minimum yield Transverse Expansion Joint every 200 feet strength shall be 80,000 psi: 2.3.2 It is the policy of American Buildings Company to design rigid frames for the increased loading associated with two - span continuous p urlins and gifts, This applies to all loads with a load path through a purlin or girt. An increase of 25% is normally associated with two equal bays. This is not applicable to the frame loading when purlins or gifts are designed as "single- span" 3 BASIC MATERIAL SPECIFICATIONS 0 1 PRIMARY FRAMING STEEL 3.1.1 Steel for mill - rolled structural sections shall conform to the requirements of ASTM specification A 36 or ASTM A 572 Grade 50 or 55 as applicable, 3:1,2 Steel for all built -up sections shall meet as applicable the physical and chemical properties of A. ASTM A 1011, Grade 55, B. ASTM A 572, Grade 55. C, ASTM A 529, Grade 55. 3.1.3 Steel for all endwall "C" sections shall meet the physical and chemical properties of ASTM A 1011, Grade 55, 3.3.3 Panel material as specified shall be 24 gage AZ50 or AZ55 aluminum -zinc alloy - coated steel, conforming to the requirements of ASTM A 792, Grade 50, Class 2. Minimum yield strength shall be 50,000 psi. 3.3.4 Panel material as specified shall be 22 gage AZ50 or AZ55 aluminum -zinc alloy - coated steel, conforming to the requirements of ASTM A 792, Grade 50, Class 2. Minimum yield strength shall be 50,000 psi, 3:15 Panel material as specified shall be 26 gage zinc- coated (galvanized) steel, coating designation G90, conforming to the requirements of ASTM A 653, Grade 80. Minimum yield strength shall be 80,000 psi. 3.3.6 Panel material as specified shall be 24 gage zinc - coated (galvanized) steel, coating designation G90, conforming to the requirements of ASTM A 653, Grade 80, Minimum yield strength shall be 80,000 psi, 3.3.7 Panel material as specified shall be 22 gage zinc - coated (galvanized) steel, coating designation G90, conforming to the requirements of ASTM A 653, Grade 50, Class 3, Minimum yield strength shall be 50,000 psi. 4 STRUCTURAL FRAMING 4.1 GENERAL SECONDARY FRAMING STEEL 3.2.1 Steel used to form purins, gifts, eave struts acid "C" sections shall meet the physical and chemical properties of ASTM A 1011, Grade 55. 3.2.2 Steel used to form zinc - coated (galvanized) purlins and girts shall meet the physical and chemical properties of ASTM A 653, Grade 50, 55 ksi minimum yield and G90 Coating designation as described in ASTM A 924. 33 ROOF AND WALL PANEL MATERIAL Exterior panels shall conform to one of the following; 3.3.1 Panel material as specified shall be 26 gage AZ50 or AZ55 aluminum -zinc alloy - coated steel, conforming. to the requirements of ASTM A 792, Grade 80, Minimum yield strength shall be 80,000 psi, 4.1.1 Framing members shall be shop fabricated for field bolted assembly. The surfaces of the bolted connections shall be smooth and free from burrs or distortions. 4.1.2 All shop connections shall be in accordance with the American Welding Society (AWS) Code for Building Constructlon or the Canadian Welding Bureau (CWB), as applicable, Certification of welder qualification will be furnished when required and specified at order entry. 4.1.3 All framing members where necessary shall carry an easily visible identifying mark, 4.1.4 Visual inspection methods will be used for verification of weld quality as outlined by the AWS Structural Steel Welding Code, Visual Inspection Acceptance Criteria, Table 6.1, 4.2 PRIMARY FRAMING 4.2.1 Rigid Frame: All rigid frames shall be welded, built -up "I" sections or mill -rolled structural sections. The columns and the rafters may be either uniform depth or tapered, ss(ABC }Rev. 09/05, Aruo,•icnn Bu(Idinps COmpnny t'0•i00005 SS(,kBC )-Rev, o9(oi..lmetican Suiidin;s Compmly Mlonaoi 7= AMN 4.2.2 Endwall Frames. All endwall roof beams and endwall 5 ROOF AND WALL COVERING columns shall be cold- formed "C" sections, mill - rolled structural sections, or built -up "I" sections as required by 5,1 GENERAL design, 423 Plates, Stiffeners, etc,; All base plates, splice plates, cap 5.1.1 Wall panels shall be either American Buildings Company's Long Span III Panel (L3P), Architectural III Panel (A3P), plates, and stiffeners shall be factory welded into place on Architectural "V" Rib (AVP) or Shadow Panel (HFP). the structural members: 4.2.4 Bolt Holes, etc.; All base plates and flanges shall be shop 5,1.2 Roof panels shall be either American Buildings Company's Long Span III Panel (L3P), Standing Seam II Panel (S2P), fabricated to include bolt connections holes. Webs shall be shop fabricated to include cable brace or rod brace holes Standing Seam 360 Panel (S3P), Loc Seam Panel (LOC) and flange brace holes. or Seam Loc Panel (SLC). 4.3 SECONDARY FRAMING 513 Liner and soffit panels shall be either American Buildings Company's Multi -Rib Panel (MRP), Long Span III Panel 4.3.1 Purlins and Girls: Purlins and girts shall be cold - formed "Z" or "C" (L3P), Architectural III Panel (A3P) or Soffit -Liner Panel (SLP), • sections with stiffened flanges. They shall be pre- punched at the factory to provide for field bolting to the primary framing. They shall be simple or continuous span 5,1.4 Facade fascia panels shall be either American Buildings as required by design. Company's Long Span III Panel (L3P), Architectural III Panel (A31P), Shadow Panel (HFP), Mansard Fascia Panel 4.3.2 Eave Struts; Eave Struts shall be unequal flange, cold- (MFP) or Seam Loc Panel (SLC). formed "C" sections. 5.1.5 American Buildings Company's Long Span III (L3P) roof 4.3,3 Base Angle; A base member will be supplied by which the and wall panels as specified shall be 29, 26, 24 gage base of the wall covering may be attached to the perimeter 80,000 psi or 22 gage 50,000 psi, Pre - painted panels shall of the slab, This member shall be secured to the concrete have American Buildings Company's Premium 70 Plus slab with concrete anchors as shown on the drawings. (Kynar 5000) Finish. An embossed finish is available as 4.4 BRACING an option. 4,4.1 Diagonal Bracing; Diagonal bracing in the roof and sidewall 5.1.6 American Buildings Company's Architectural III (A3P) wall shall be used to remove longitudinal loads (wind, crane, panels as specified shall be 29, 26, 24 gage 80,000 psi or etc,) from the structure, This bracing will be furnished to 22 gage 50,000 psi, Panels shall have American Buildings length and equipped with bevel washers, cut washers and Company's Premium 70 Plus (Kynar 5000) Finish. An embossed finish is available as an option, nuts at each end, It may consist of rods threaded at each end or galvanized cable with suitable threaded , end anchors. 5,1,7 American Buildings Company's Architectural "V" (AVP) wall panels as specified shall be 29, 26, 24 gage 80,000 psi or 4,4.2 Flange Braces; The compression flange of all primary 22 gage 50,000 psi, Panels shall have American Buildings framing shall be braced laterally with angles connecting to Company's Premium 70 Plus (Kynar 500 0) Finish, An the webs of purlins or gifts so that the flange compressive embossed finish is available as an option. stress is within allowable limits for any combination of loadings. 5,1.8 American Buildings Company's Multi-Rib (MRP) liner panels as specified shall be 29, 26 or 24 gage (nominal) 4.4.3 Special Bracing; When diagonal bracing is not permitted In pre - painted steel. Panels shall have American Buildings the sidewaH, a rigid frame type portal, fixed base columns, Company s Reflective White Long Life Finish, or wall diaphragm must be used. Wind bracing in the roof and /or walls need not be furnished where it can be shown 5,1:9 American Buildings Company's Long Span III (L3P) liner that the diaphragm strength of the roof and /or wall covering panels as specified shall be 29 gage 80,000 psi. Panels is adequate to resist the applied wind forces, shall have American Buildings Company's Reflective White Long Life Finish, 5,1,10 American Buildings Company's Shadow Panels (HFP) shall be embossed 24 gage 50,000 psi. Panels shall have American Buildings Company's Premium 70 Pius (Kynar 5000) Finish. SS(,kBC )-Rev, o9(oi..lmetican Suiidin;s Compmly Mlonaoi .-.•.....i.:... a+.....+:... s ......... a...... , :. ^r^iiKx.n S(............+..x w.•.... «......y,• : .. v ..v ....:::,..- - -: .. r..:.:. i::.. a..:.:.'. ::ws:vnc_.Y""'7"m+.. .w+vx.Ya.. c•..�+ r lfi v + ..9x ^..c•: :,,.:.:. ^.SLS:.:..... ...... .. ,,.r..,.r ..x•. „ ..... ...- ..«.y- .....aw�.• n - er ..... 5.1.11 American Buildings Company's Soffit Liner Panels (SLP) shall be 24 gage 50,000 psi. Panels shall have American Buildings Company's Premium 70 Plus (Kynar 5000) Finish: 5.1.12 American Buildings Company's Standing Seam II (S2P) and Standing Seam 360 (S3P) Roof Panels as specified shall be 24 or 22 gage 50,000 psi. Pre - painted panels shall have American Buildings Company's Premium 70 Plus (Kynar 500(D) Finish, 51.13 American Buildings Company's Loc Seam Panels (LOC) as specified shall be 24 or 22 gage 50,000 psi, Pre - painted panels shall have American Buildings Company's Premium 70 Plus (Kynar 5000) Finish, 1:14 American Buildings Company's Mansard Fascia Panels (MFP) as specified shall be 24 gage 50,000 psi, Pre - painted panels shall have American Buildings Company's Premium 70 Plus (Kynar 5000) Finish, 5.1.15 American Buildings Company's Seam Loc Panels (SLC) as specified shall be 24 or 22 gage 50,000 psi. Pre- painted panels shall have American Buildings Company's Premium 70 Plus (Kynar 5000) Finish, 5.2 PANEL DESCRIPTION 5.2.1 American Buildings Company's Long Span III Panel (UP) shall have major ribs 1 1/4" high, spaced 12" on center for an even shadowed appearance. The panels are reinforced between the ribs for added strength, Each panel shall provide 36" net coverage in width. A minimum 1/212 roof slope is required. All roof panel side laps shall be at least • one major rib and shall have a purlin bearing leg on the bottom section of the lap. 5.2.2 American Buildings Company's Architectural III Panel (A3P) shall have a configuration consisting of ribs 1 1/4" deep spaced 12" on center producing a decorative smooth shadow -line with semi - concealed fasteners, Architectural III panels shall provide a 36" net coverage in width, 5.2,3 American Buildings Company's Architectural "V" Panel (AVP) shall have a configuration consisting of ribs 15/16" deep spaced 12" on center producing a sculptured appearance with semi - concealed fasteners. Architectural "V" rib panels shall provide a 36" net coverage in width. 524 American Buildings Company's Multi -Rib Panel (MRP) shall have a configuration consisting of ribs 3/4" deep. spaced 6" on center. Each panel shall provide 36" net coverage in width, 525 American Buildings Company's Shadow Panel (HFP) shall have a configuration 16" wide and 3" deep with a center rib 6" wide and 1 1/2" deep producing contrasting shadow patterns with concealed fasteners. Each panel shall provide 16" net coverage in width, 5.2.6 American Buildings Company's Soffit Liner Panel (SLP) shall have a configuration consisting of 1" interlocking ribs, The interlocking ribs are designed to conceal the panel fasteners. The Soffit Liner Panel shall provide a net coverage of 12" in width, 5.2.7 American Buildings Company's Standing Seam II (S2P) and Standing Seam 360 (S3P) Roof Panel shall have a configuration consisting of 2" high (3'! including seam) by 4 3l4" wide rib, spaced on 24" centers, Panels shall be joined at the side laps with an interlocking seam standing 1" above the major rib, Each panel shall provide 24" net coverage in width. The female panel seam shall have factory applied sealant. 5.2.8 American Buildings Company's Loc Seam Panel (LOC) shall have a configuration 16" or 12" wide with 2" high vertical male and female ribs offering a flat profile with optional pencil ribs. The female seam shall have factory applied sealant. The panel seam shall be interlocked by a specially designed electric seaming machine. 5.2.9 American Buildings Company's Mansard Fascia Panel (MFP) shall have a flat surface with a male and female interlocking 1" seam. Panels shall have a 10 -3/16" or 18- 5/8" net coverage in width. A solid 3/8" minimum plywood decking or equivalent with a minimum 3;12 roof slope is required. 5.2.10 American Buildings Company's Seam Loc Panel (SLC) shall have a flat surface with a male and female interlocking 1 3/4" seam, The female panel seam shall have factory applied sealant Panels shall have a 12 ", 16" or 18" net coverage in width, A minimum 3:12 roof slope is required. 5.2,11 Panel Length; All wall panels shall be continuous from sill to roof line and all roof panels shall be continuous from eave to ridge except where length becomes prohibitive for handling purposes, Roof panel end laps shall be a minimum 6" for Standing Seam and Loc Seam panels and a minimum 4" for Long Span ill panels, Wall panel end laps shall be a minimum 3 ". 5.2.12 Endwall Edge Cuts; All endwall panels for buildings with less than 1 Y2 to 12 roof slopes shall be square cut. All endwall panels (excluding Shadow panels) for buildings with a roof slope over 11/2:12 shall be bevel cut. 5.2.13 A certain amount of waviness called "oiicanning" may exist in the flat portion of the panel, Minor waviness of the panel is not sufficient cause for rejection, Oilcanning does not affect the structural integrity of the panel. SS(ABC) -Rev. 090, Amcrictm 0aildings C"mpnny rM0000$ 6' 6 MISCELLANEOUS MATERIAL SPECIFICATIONS 6,1 FASTENERS 61.1 Structural Bolts: All bolts used in primary splices and secondary framing connections shall be ASTM A325 as required by design: 6.1.2 Fasteners for Roof Panels: All roof panels shall be attached to secondary framing members by the following: A. Premium roof fasteners shall be No: 12 X 11/4" or No: 14 X 1" self - drilling carbon steel screws with a molded zinc alloy or capped stainless steel cupped hex washer head. Roof fasteners shall be assembled with an EPDM washer, Premium roof fasteners shall be . used on all pre - painted or warranted roofs, B. Standard roof fasteners shall be No. 12 X 1 1/4" or No, 14 X 1" self - drilling carbon steel screws with an integral hex washer head. Roof fasteners shall be assembled with an EPDM washer, Standard roof fasteners shall have a corrosive resistant coating over zinc plating, Standard fasteners shall be used on unwarranted aluminum -zinc alloy - coated roofs only, 6.13 Fasteners for roof panel side laps and flashing connections: Long Span III Roof Panel side laps and flashing connections shall be stitched by the following: A. Premium roof fasteners shall be No. 14 X 7/8" self - drilling carbon steel screws with a molded zinc alloy or capped stainless steel cupped hex washer head. Roof fasteners shall be assembled with an EPDM washer, Premium roof fasteners shall be used on all pre - painted or warranted roofs. B. Standard roof fasteners shall be No. 14 X 7/8" self- drilling carbon steel screws with an integral hex washer head, Roof fasteners shall be assembled with an EPDM washer. Standard roof fasteners shall have a corrosive resistant coating over zinc plating, Standard fasteners shall be used on unwarranted aluminum -zinc alloy - coated roofs only, 6,1,4 Fasteners for roof panel to flashing connections: Loc Seam and Standing Seam roof systems shall be the following: A. Premium roof fasteners shall be No, 14 X 1" self. drilling carbon steel screws with a molded zinc alloy or capped stainless steel cupped hex washer head. Roof fasteners shall be assembled with an EPDM washer, Premium roof fasteners shall be used on all pre - painted or warranted roofs. B. Standard roof fasteners shall be No, 14 X 1" self. drilling carbon steel screws with an integral hex washer head. Roof fasteners shall be assembled with an EPDM washer. Standard roof fasteners shall havea corrosive resistant coating over zinc plating, Standard fasteners shall be used on unwarranted aluminum -zinc alloy- coated roofs only. 6.1.5 Fasteners for the Roof Panel Clips: All Standing Seam and Loc Seam Panel Clips shall be attached to the purlins by the following: A. Self - drilling screws for attaching expansion clips shall be carbon steel No. 12 X 11/4" hex -head, cadmium or zinc plated, The fasteners are applicable for use with fiberglass blanket insulation with thicknesses up to and including 6 inches. B. Self drilling screws for attaching expansion clips on bar joists shall be carbon steel No, 12 X 1 1/4" Tek 4 or No, 12 X 1 1/2" Tek 5 hex -head, cadmium or zinc plated, The fasteners are applicable for use with fiberglass blanket insulation with thicknesses up to and including 6 inches, 6.1.6 Fasteners for Wall Panels and Liner Panels: All Long Span Ili, Architectural III, Architectural "V" or Multi -Rib Panels shall be attached to the secondary framing members by means of self - drilling carbon steel screws, No, 12 X 11/4" hex washer head, cadmium or zinc plated, The fasteners shall be color coordinated with a premium coating system which protects against corrosion and weathering, The fasteners are applicable for use with fiberglass blanket insulation up to 4" (6" for Architectural III and Architectural "V" Panels) in thickness, 6,1.7 Fasteners for Wall Panel side laps and Liner Panel side laps: All Long Span III, Architectural III, Architectural "V" or Multi -Rib Panel side laps shall be stitched by means of self - drilling carbon steel screws, No, 14 X 7/8" cadmium or zinc plated, The fasteners shall be color coordinated with a premium coating system which protects against corrosion and weathering, 6,1,8 Fasteners for Shadow Panels: These fasteners shall be carbon steel, yellow chromate over zinc plate finish, No, 12 X 1" self - drilling hex -head screws with a special 1/2" X 1" rectangular locking nut, 6.1,9 Blind Fasteners; All blind fasteners shall be 1/8" diameter, high strength 6052 painted aluminum rivets as manufactured by USIA POP or equal, 6,2 PANEL CLIPS 621 Panel clips (SSPC series) for the Standing Seam II Roof Panel shall be of a two part assembly. The tab portions are 2 1/2" wide, die formed SAE 1050 high carbon spring SS(AM-Rev. 0910i „1mezicna Buildings Company HYMNS 8 6.3 CLOSURES AND SEALANTS 6:11 Closure Strips: The corrugations of the roof and wall panels shall be filled with pre - formed closed cell non - shrinking, laminated polyethylene closures along the eave, ridge and rake when required for weathertightness, 6,3,2 Metal Closures: The corrugations and pan area of the Standing Seam II and Standing Seam 360 Roof Panel shall be filled with formed metal closures. The closures shall be formed from 20 gage steel to the shape of the configuration. The closure exterior finish shall be AZ55 aluminum -zinc alloy- coated, 6.3.3 Sealant: Long Span Panel roof side laps, end laps, roof flashing laps, ridges and eave shall be sealed with 1/2" X 1/8" tape mastic, Sika Sika -Tape TC -95 or equal. The material shall be non - staining, non - corrosive, non - toxic, and non - volatile, Composition shall be 100% solid ethylene propylene copolymer tape, Service temperature 6.4,2 Downspouts: All downspouts shall be 29 gage zinc - coated (galvanized) or aluminum -zinc alloy- coated steel with color coordinated, pre - painted finish, rectangular in shape, 7 PAINTING ASTM testing is performed on specifically and carefully prepared test coupons, These tests are designed to accurately compare varying products in a controlled environment and may or may not be indicative of actual field results: 7.1 STRUCTURAL PAINTING Primer systems are not intended as finish coat paint systems and do not offer the uniformity of appearance, durability 'or corrosion resistance of a top coat applied over a primer. Primers are designed to promote the wetting action and adhesion of a top coat.and offer only short -term corrosion protection from ordinary atmospheric exposure, • SS(,IBC)- Rey. 09/0;,Americrm Buildings C"mpnny 6iY10000; ... s5 14 _ .::-_, �.::.. w.- s..<:,. s...,...+.: r.,.• ��.. m. ...c.- :,..,n4- :`,,F..a;..r• =T �TC:L;r;- .^:.F.wi:: �n :::::_in..e -..... ....- .._.... steel and heat treated to Rockwell 45C to 50C, with fluorocarbon coating for shall be from -60 °F to +212 °F. corrosion resistance, or 301 stainless steel, The base portion of the clip shall be 21/4" 6.3.4 Sealant: American Buildings Company's Standing Seam, or 31/4" (for thermal blocks) in height. The base shall be Loc Seam and Seam Loc Roof Panels side laps shall have die formed from 12 gage, zinc- coated (galvanized) steel: Total expansion capability of the factory applied mastic, Sikal-astomer -511 or equal. Its clip assembly shall be 2 1/2 " composition shall be 85% solids by weight, Service temperature range shall be from -60 °F to +220 °F, 6,2.2 Panel clips (LSEC series) for the Loc Seam Panel shall be of a two part assembly. The tab 6.3.5 Sealant; All American Buildings Company's Standing portion shall be a nominal 2 3/8" or 3 1/8" (for thermal blocks) in height and 3" in Seam and Loc Seam Roof end laps, roof flashing laps, ridges and eave shall be sealed with tape mastic, Sika width, die formed from 24 gage aluminum coated steel, The base shall be die formed from 18 Sika -Tape TC -95 or equal, The material shall be non - gage, zinc - coated (galvanized) steel, Total expansion capability of the clip staining, non - corrosive, non - toxic, and non - volatile, Composition shall be 100 solid ethylene propylene assembly shall be 1 114 ". copolymer tape. Service temperature shall be from -607 6.2.3 Panel clips (MFPC series) for the Mansard Fascia panel to +212 °F shall be a nominal 1" height and 1 1/2" in width. The clip shall be die formed from 26 zinc 6.3.6 Caulk; Eaves, endlaps, ridge and eave closures are sealed gage - coated (galvanized) steel, or aluminum -zinc alloy - coated steel: with non - skinning butyl caulk, SikaLastomer -511 or equal, Its composition is 85% solids by weight. Service 6.2,4 Panel clips (S3PC series) for the Standing Seam 360 panel temperature range is -60 °F to +220 °F, All gutter and downspout joints, roof accessories, doors, windows, and is a two part assembly. The tab portion is die formed .031 thick aluminum -zinc alloy - coated louvers shall be sealed with polyurethane caulk, Sika, steel, The base shall be die formed from 12 gage, zinc - coated (galvanized) material 21/4" or 3 1/4" (for thermal blocks) high and 6" long, SikaFlex 219LM or approved equal, It shall meet or exceed the requirements of Federal Specification TT -S- 00230C, The expansion capability is 2 1/2 ", For higher uplift values Type II, Class A. requirements, optional panel clips (S3PC-_R) consists of panel clip (S3PC -_) with 6,4 GUTTER, FLASHING AND DOWNSPOUT an additional panel to clip fastening base which is 16 gage, zinc - coated (galvanized) 6,4,1 Gutters and Fiashings: All standard exterior gutters are 26 material, gage G90 zinc - coated (Galvanized) orAZ50 aluminum -zinc 6.2.5 Panel clips (SLPC series) for the Seam Loc panel are a alloy- coated steel with a pre - painted finish, Standard rake flashing is 26 gage G90 zinc - coated (galvanized) or AZ50 nominal 1 3/4" in height and 3 3/4" in width (UL90) and 1 3/4' in height and 2" in aluminum -zinc alloy- coated steel with a pre - painted finish, width (Standard) die formed 18 All other gutter and flashings shall be a minimum 26 gage gage zinc- coated (galvanized) steel, steel, 6.3 CLOSURES AND SEALANTS 6:11 Closure Strips: The corrugations of the roof and wall panels shall be filled with pre - formed closed cell non - shrinking, laminated polyethylene closures along the eave, ridge and rake when required for weathertightness, 6,3,2 Metal Closures: The corrugations and pan area of the Standing Seam II and Standing Seam 360 Roof Panel shall be filled with formed metal closures. The closures shall be formed from 20 gage steel to the shape of the configuration. The closure exterior finish shall be AZ55 aluminum -zinc alloy- coated, 6.3.3 Sealant: Long Span Panel roof side laps, end laps, roof flashing laps, ridges and eave shall be sealed with 1/2" X 1/8" tape mastic, Sika Sika -Tape TC -95 or equal. The material shall be non - staining, non - corrosive, non - toxic, and non - volatile, Composition shall be 100% solid ethylene propylene copolymer tape, Service temperature 6.4,2 Downspouts: All downspouts shall be 29 gage zinc - coated (galvanized) or aluminum -zinc alloy- coated steel with color coordinated, pre - painted finish, rectangular in shape, 7 PAINTING ASTM testing is performed on specifically and carefully prepared test coupons, These tests are designed to accurately compare varying products in a controlled environment and may or may not be indicative of actual field results: 7.1 STRUCTURAL PAINTING Primer systems are not intended as finish coat paint systems and do not offer the uniformity of appearance, durability 'or corrosion resistance of a top coat applied over a primer. Primers are designed to promote the wetting action and adhesion of a top coat.and offer only short -term corrosion protection from ordinary atmospheric exposure, • SS(,IBC)- Rey. 09/0;,Americrm Buildings C"mpnny 6iY10000; w asr �• , x .�, ._... .,__... 7.1.1 Shop Applied Primers — All uncoated structural steel members shall be cleaned of all foreign matter and loose mill scale as per requirements of the Structural Steel Painting Council cleaning specification SSPC -SP2 and SSPC -SP1 as required, Structural steel members will then receive a one mil coat of American Buildings Company's red oxide primer. Primer meets or exceeds the performance requirements of the specification SSPC -15, for Type 1 Red Oxide Paint, Primer is not intended as a finish coat and is compatible only for top coating with aliphatic solvent based alkyd enamels, 7,1.2 Pre - painted Cold Formed Materials —At American's option, cold formed secondary structural framing may use pre - painted coil stock which eliminates the need for shop applied primer, Primer will be applied in a thickness of 0,45 — 0,55 mils, Primer is not intended as a finish coat, Due to lubricants used to aid the roll forming process, the application of a tie coat must be used prior to application of a topcoat, 7,1.3 ' Abrasions caused by handling after painting as well as the flaking of tight mill scale are to be expected, American Buildings shall furnish primer to allow for touch -up of these areas by the contractor, 7.2 LONG LIFE COATED PANELS 7.2,1 Base Metal shall be 29, 26 or 24 gage G90 zinc - coated (galvanized) orAZ50 aluminum -zinc alloy- coated steel, 7.2,2 Prime Coat: The base shall be pretreated and then primed with an epoxy or urethane We primer for superior adhesion and superior resistance to corrosion. The dry film thickness shall be 0.2 mils, 7'2,3 Exterior Coat: After priming, the exterior side shall a Long Life coating, baked In excess of500 F to to controlled dry film thickness of 0,7 to 0:8 mils. Excellent weatherability and resistance to coating deterioration shall be evident when subject to the following tests: Test Test Method Performance Specular Gloss ASTM D 523 25-35 degrees on a Specular Gloss ASTM D 523 std. Amer 60 deg, Dry Film ASTM D 3363 Meter F -2H Hardness ASTM D 3363 F minimum Q.U.V. Weatherometer ASTM G 53 Passes 300 hours, no Direct Impact - ASTM D 2794 objectionable color Reverse Impact ASTM D 2794 change, chalking or Humidity ASTM D 2247 blistering Passes 1000 hours Resistance ASTM D 1308 Excellent/No Removal Salt Spray ASTM B 117 Passes 750 hours SS{ IOC)- Rev. 0910S, .lmericnn Duildin;s Company FM00005 . Resistance Reverse Impact ASTM D 2794 Passes No Removal Microbial Attack ASTM G 22 Passes 7.2.4 Interior Finish: The interior finish shall have a parchment or gray polyester topcoat over an epoxy or urethane primer. The dry film thickness shall be 0.3 mils. 7.3 PREMIUM 70 PLUS COATED PANELS 7.3.1 Base Metal shall be 29, 26, 24 or 22 gage G90 zinc - coated (galvanized) or AZ50 aluminum -zinc alloy- coated steel. 7.3.2 Prime Coat: The base metal shall be pretreated and then primed with an approved epoxy, urethane, or water base primer. The dry film thickness of the primers shall be 0.25 mils minimum. 7.3,3 Exterior Coat: After priming, the exterior side shall be given a finish coat of a 70% minimum Kynar 5000 (PVDF) formulation. The dry film thickness of the topcoat shall be 0.70 mlls minimum, The total dry film thickness shall be 0.95 mils minimum. Excellent weatherability and resistance to coating deterioration shall be evident when subject to the following tests: Test Test Method Performance Specular Gloss ASTM D 523 Low Gloss, 5 -10 at 60 Degrees Dry Film Hardness ASTM D 3363 F minimum Film Adhesion ASTM D 3359 Excellent/No Removal Direct Impact - ASTM D 2794 Excellent/No Removal Reverse Impact ASTM D 2794 Excellent/No Removal Abrasion Resistance ASTM D 968 Exceeds 60 liters Chemical Resistance ASTM D 1308 Excellent/No Removal Salt Spray Resistance ASTM B 117 Passes 1000 hours Humidity Resistance ASTM D 2247 Passes 1000 hours Color Retention ASTM D 2244 No objectionable change. Max, 4 Delta E units (Hunter) Color Change Chalk Resistance ASTM D 659 No objectionable change. Minimum rating of 9 Roof panels with the Premium 70 Plus finish must have a minimum 1/2:12 roof slope to qualify for Material Warranty. 7,3.4 Interior Finish: The interior finish shall have a parchment or gray polyester topcoat or backer over an epoxy, urethane, or.water base primer, The dry film thickness shall be 0,50 mils, W r t3 ' s ' .. .. _ • 1 •' L. _.n:, •�s+ 2' ..; �•. . , a n � µ�.,.. s ��.I ry ., �r_. R^ xx.';. ru�_: u' s_ �.:°.- uC-.:_ a::.: rr.... t «r� n.. ^ ; ?r! '.w� , .•.. w- '= :Y' Yv!;....•- +.. ..; ..: x > 4 :. : L `h fF +'F S. t�+ .... u'•.: �-. u'_•.=_:: a _-. �._. e 'G �...._. rx T-•• ty. ,- ... -.,. n..._. .. .. � '.3 ^'fuf`s' 7.4 PREMIUM 70M COATED PANELS 7.4.1 Base metal shall be 29, 26, 24, or 22 gage G90 zinc - coated (galvanized) or AZ50 aluminum -zinc alloy- coated steel, 7.4.2 Prime Coat: The base metal shall be pretreated and then primed with an approved epoxy, urethane, or water base primer, The dry film thickness of the primers shall be 0,4 mils minimum. 7,43 Exterior Coat: After priming, the exterior side shall be given a finish coat of a 70% minimum Kynar 5000 (PVDF) formulation. The dry film thickness of the topcoat shall be 1.0 mils minimum. The total dry film thickness shall be 1:4 mils minimum: Excellent weatherability and resistance to coating deterioration shall be evident when subject to the following tests: Test Test Method ,iti' 13 ASTM D 523 r t3 ' s ' .. .. _ • 1 •' L. _.n:, •�s+ 2' ..; �•. . , a n � µ�.,.. s ��.I ry ., �r_. R^ xx.';. ru�_: u' s_ �.:°.- uC-.:_ a::.: rr.... t «r� n.. ^ ; ?r! '.w� , .•.. w- '= :Y' Yv!;....•- +.. ..; ..: x > 4 :. : L `h fF +'F S. t�+ .... u'•.: �-. u'_•.=_:: a _-. �._. e 'G �...._. rx T-•• ty. ,- ... -.,. n..._. .. .. � '.3 ^'fuf`s' 7.4 PREMIUM 70M COATED PANELS 7.4.1 Base metal shall be 29, 26, 24, or 22 gage G90 zinc - coated (galvanized) or AZ50 aluminum -zinc alloy- coated steel, 7.4.2 Prime Coat: The base metal shall be pretreated and then primed with an approved epoxy, urethane, or water base primer, The dry film thickness of the primers shall be 0,4 mils minimum. 7,43 Exterior Coat: After priming, the exterior side shall be given a finish coat of a 70% minimum Kynar 5000 (PVDF) formulation. The dry film thickness of the topcoat shall be 1.0 mils minimum. The total dry film thickness shall be 1:4 mils minimum: Excellent weatherability and resistance to coating deterioration shall be evident when subject to the following tests: Test Test Method Performance Specular Gloss ASTM D 523 Medium Gloss, 30-40 at 60 degrees Dry Film Hardness ASTM D 3363 F minimum Film Adhesion ASTM D 3359 Excellent/No Removal Direct Impact ASTM D 2794 Excellent/No Removal Reverse Impact ASTM D 2794 Excellent/No Removal Abrasion Resistance ASTM D 968 Exceeds 100 liters Chemical Resistance ASTM D 1308 Excellent/No Removal Salt Spray Resistance ASTM B 117 Passes 1000 hours Humidity Resistance ASTM D 2247 Passes 2000 hours Color Retention ASTM D 2244 No objectionable change. Max, 4 Delta E units (Hunter) Color Change Chalk Resistance ASTM D 659 No objectionable change. Minimum rating of 9 They shall comply with the performance requirements of AAMA / NWWDA 101/I.S. 2 -97 for a Performance Class of HS -R25. 8:1:2 Narrow light Windows shall be wall units 2' -0" X 7' having dark bronze aluminum frames 1 3/4" X 4" and 1" solar bronze annealed insulated glass. The glazing stop shall snap on using stainless steel spring clips. There shall be no exposed screws on the Glazing Bead. The glass shall be set against the fin using Butyl Tape and sealed on interior and exterior with silicone to insure a watertight seal and to enable truck shipment without damage or glass slippage. 8.1.3 The Thermal Barrier Windows shall be horizontal slide units with a bronze finish. They are available in 3' -0" X 3'- 0 ', 4' -0" X 3' -0 ", 4' -0" X 4' -0" and 6-0" X 3' -0" size that are self flashing to American Buildings Company's Architectural III, Architectural "V" Rib and Long Span III wall panels. A 2' -0" X 6' -0" fixed glass unit is available, They shall be furnished with a 5/8" insulated glass and a polyurethane thermal barrier, 8.2 PERSONNEL DOORS 8,2.1 Standard personnel doors shall be 3' -0" X 7' -0" and 1 3/4 11 manufactured from 18 gage zinc - coated (galvanized) steel. Doors shall have a textured finish and shall be painted white. Doors shall meet Federal Specification RR- 0 -575b and Commercial Standards CS- 242 -62 and PS4 -66: Doors shall be one of the following: • A. Dominion Building Products, "Premium" Knock down, (polyurethane core) finish painted or equal, B. Dominion Building Products, "Standard ", Knock down, (polystyrene core) prime painted or equal. Roof Panels with the Premium 70M finish must have a minimum 1/2 :12 roof slope to qualify for Material Warranty, 7.4,4 Interior Finish: The interior finish shall have a parchment or gray polyester topcoat or backer over an epoxy, urethane or water base primer. The dry film thickness of the backer shall be 0,50 mils minimum: 8 ACCESSORIES 8.1 ' WINDOWS 8,1:1 Standard windows shall be horizontal slide units with a bronze finish, 3' -0" X 3' -0" and 4' -0" X 3' -0" in Architectural III, Architectural "V" Rib and Long Span III Panel Walls and 4' -0" X 3' -0" in Shadow Panel Walls. They shall be furnished complete with 7/16" hermetically sealed double glass, hardware and half screen. Windows shall be self. flashing to American Buildings Company's wall panels. SS(ABC7•Ret'. 09/05, Ama•ionn Buildings COmpnny HYMNS I. Doors shall have square edges for non -hand installation: 2. Doors shall be flush and have vertical seams reinforced with continuous 16 gage channels, 3. Doors shall be provided with top and bottom inverted 16 gage galvanized steel channels spot - welded within the door. 4, Doors "A" and "B" shall be reinforced, stiffened, and sound deadened with impregnated kraft honeycomb core completely filling the inside faces of the door and laminated to the Inside faces of the panels. 5. Doors shall be reinforced for applicable hardware, 822 Door frames shall be 16 gage zinc - coated (galvanized) steel, painted white and shall be one of the following: A. Dominion Building Products, "Premium" Knock down, finish painted having a jamb depth of 5 3/4" with a 14 gage sub jamb. B. Dominion Building Products, "Standard" Knock down, vF Prime painted having a jamb depth of 5 3/4" with a 14- 8,4 OVERHEAD DOOR FRAMING gage sub jamb, 1. Door jambs shall be constructed for non -hand installation. 2. Door frames "A" and "B" shall have factory applied kerf weather - stripping, 3. Door frames shall be shipped as a package, one pair of jambs (hinge and strike for single openings or 2 hinge jambs for double openings), heads, sill plate, sub jambs, girt clips, weather- strip, threshold, hinges and fasteners. 8.2.3 Standard Locksets shall be on of the following: A. Yale CRE 8722 Mortise Lockset, US26D finish, or equal: B. PDQ SK116PHL26D /S Lever Handle Lockset or equal, 8.2,4 Exit devices'shall be one of the following: A. Yale 7100 Stylfne series rim device with a stainless steel finish, 8.2.5 Door threshold shall be aluminum, supplied with flat head screws and expansion shields for attachment to masonry floor, 8.3 PREMIUM PRE - ASSEMBLED PERSONNEL DOORS 8.3.1 Pre - assembled personnel doors when specified shall be 3'- 0" X 7' - 0 " X 13/4" manufactured from 18 gage zinc- coated (galvanized) steel with White or Bronze baked on painted finish, Doors are Insulated Polyurethane Core (R14.97). 8,3,2 Door frames shall be 16 gage zinc - coated (galvanized) steel with White or Bronze baked on finish paint, 8.3.3 Standard Lockset shall be one of the following: A. Entry lock with lever handles will be on both sides. Key -in -knob on exterior side and thumb turn push button on interior side. Shall be PDQ SK116PHL26D /S, Meets ANSI 156.2 series 4000 Grade 2 requirements, B. Mortise lock with lever handles on both sides, Shall be Yale CRE8722 Grade 1, Meets ANSI A156,13 series 1000 requirements, 8,3,4 Exit device shall be Yale 7100 Series or equal. 8,3,5 'Thresholds are constructed of aluminum alloy 4063 -T5 with mill finish, ADA compliant, All fasteners and anchors included for complete installation, 8.4.1 Overhead door support framing shall be designed to resist applicable horizontal wind loads and shall consist of channel jambs with a channel header at the top of the opening, 26 gage steel, color coordinated flashing shall be provided to conceal panel edges at the opening unless otherwise specified. 8,5 GRAVITY VENTILATORS 8.5.1 Gravity ridge ventilators shall be manufactured from galvanized steel and painted white. The ventilator body shall be 24 gage and the skirt shall be adjustable to match the roof slope, Chain operated damper will be furnished, Ventilators shall be equipped with standard bird screens and riveted end caps. Ventilators shall be 10' long and have a 9" or 12" throat, 8,5.2 20" round ventilators shall be 24 gage and shall have an adjustable base for ridge mounting or a pitched base for on -slope mounting, 83 LOUVERS 8,6,1 Louvers shall be manufactured from 20 gage zinc - coated (galvanized) steel, painted white, and shall be self-framing and self - flashing. They shall be equipped with adjustable dampers unless otherwise specified, Nominal size shall be T -0" X 4' -0" for Long Span III (L3P), Architectural III (A3P) and Architectural "V" (AVP) walls and 4' -0" X 4' -0" for Shadow Panel (HFP) walls, 8.7 SKYLIGHTS 8.7.1 Roof skylight panels shall be translucent fiberglass reinforced panels made in the same configuration as the metal panels. They shall be manufactured with a 2 ounce woven fiberglass cloth reinforcement in addition to random strand mat or cut glass fibers for structural strength. They shall meet or exceed applicable requirements of ASTM D3841 -80 Type 1, and ICBO Research 'Report No, 1412, Material weight shall not be less than 8 ounces per square foot, Impact Test: Skylights shall resist penetration when subject to a 100 pound cylindrical weight with a 5 3/4" diameter (26 square inches) dropped from a height of 70 ". Flammability rate of material shall be no greater than 2 in /min when tested under ASTM D635, Coefficient of heat transmission (U- factors) shall be no greater than 0,8 BTU /Hr /Sq, ft. degree R Available insulated skylights shall have a fight transmitting foam sandwiched between a standard weight exterior panel and a 4 ounce nominal weight interior panel. Skylight panels shall be equivalent to STRONGLIGHT panels as manufactured by Lasco Industries, or equal. SS(,kDQ -Rev, 09105,American 1311iltlill, Company FiY10000,; 12 ENGINEERING PROPERTIES (STRONGLIGH T Skylight) Property Test Method Nominal Value Shear Strength ASTM D 732 11,000 psi Bearing Strength ASTM D 953 A 13,400 psi Tensile Strength ASTM D 638 19,000 psi flow of heat. Aluminum foil facers laminated to each side of the product provide an effective moisture barrier. Rigid insulation products are available in thicknesses from 1/2" to 4 ". Rigid insulation shall be Thermax by Celotex or approved equal. 8.9 ROOF CURBS 8.7.2 Wall sidelight panels shall be translucent fiberglass panels made in the same configuration as the wall panels, They shall meet or exceed applicable requirements of ASTM D3841 -80 Type 1, and ICBO Research Report No. 1412. Material weight shall not be less than 6 ounces per square foot. 8.8 INSULATION 8.8.1 8:8.2 Fiberglass Insulation Facings shall be laminated on one side with one of the facings as shown in chart below, Facings other than those shown in the chart below are available upon request, FACINGS COLOR WHITE WMP- wMP• VINYL VR 10 FSK WMP -F Flame Spread* 25 10* 10* 5* 10* Perm Rating 1.0 .09 .02 .02 Service Tem. Min. 0 0 40 0 -40 -40 .02 -40 *All laminated or composite flame spreads are 25. The white vinyl flame spread rating is only available based on composite testing. 8.8.3 Rigid Foam Thermal Blocks shall be cut from high density extruded polystyrene board stock, having a UL 25 flame spread rating. Thermal Blocks shall have a minimum thickness of 3/4 inch and shall be a minimum of 3 inches in width, Thermal Block material shall be Dow Styrofoam (Blue Board) or equal, 8.8.4 Foil -faced rigid insulation (Thermax(D) has a glass fiber reinforced polyisocyanurate foam core. The foam core has a uniform, closed -cell structure which is resistant to the SS(ADO -Rev, 09 /0S, American Ou(Iclings Co"ipnny M-I00005 8.9.1 Roof curbs shall be manufactured from minimum 18 gage AZ55 aluminum -zinc alloy- coated steel, Curbs shall have an integral cricket type water diverter. The minimum curb height shall be 8 ", 8.10 PIPE FLASHING 8,10.1 Pipe flashing shall be of a one piece construction and fabricated from an EPDM membrane and shall have an aluminum base that can be field conformed to any panel configuration. Pipe flashings shall be flexible for mounting on any roof slope. Service temperature ranges shall be from -30 *F to +250 °F. Three standard flashing sizes shall accommodate pipe sizes from 1/4" diameter up to 13" diameter. 9 ERECTION AND INSTALLATION The erection of the metal building and the installation of accessories shall be performed in accordance with the American Buildings Company's erection manuals and the building erection drawings. The erection shall be performed by a qualified erector using proper tools and equipment. In addition, erection practices shall conform to Section 4, Common Industry Practices found in the Metal Building Systems Manual, 2002 edition. There shall be no field modifications to primary structural members except as authorized and specified by American Buildings Company, SAFETY DURING ERECTION CANNOT BE OVER- EMPHASIZEDI 10 'BUILDING ANCHORAGE AND FOUNDATION The building anchor bolts shall resist the maximum column reactions resulting from the specified combinations of loadings. The quantities and diameters shall be specified by American Buildings Company, Anchor bolt embedment designs and the anchor bolts are to be supplied by others, NOT American Buildings Company.' Anchor bolt embedment and foundations shall be adequately designed by a qualified foundation engineer to support the building reactions and other loads which may be imposed by the building use. The design shall be based on the specific.soil conditions of the building site. The foundation engineer shall be retained by other than American Buildings Company. American Buildings Company assumes no 13 Fiberglass Blanket Insulation shall be available in 2 ", 3 ", 4" and 6" thicknesses. (Other roof insulation systems are available with thickness up to 12 inches), Maximum application thicknesses are as follows; responsibility of the integrity of the foundation. 11 WARRANTIES American Buildings Company offers a variety of warranties for panel , coatings, roof systems weathertightness, Purchased products, and manufactured material. For S pecific warranty details and costs contact American Buildings Company at 334 - 687 -2032, a 4k i(ABC - ON'- OWN;, Amerim, Buildup Company x{00005 14