Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
APPLICATIONS, CO, MULT DOCS - 07-00406 - Gymnastics Center - New Building
RexRVR • • cr CITY OF REX Buil e" SNEO America's Family Community 9 Permit t `'� • ISSUED TO: PERMIT #: 07,00406 NAME: Silvertree Builders Inc FOR THE CONSTRUCTION OF: Gymnastics Center JOB ADDRESS: 881 Jet Stream Dr GENERAL CONTRACTOR: Silvertree Builders Inc This permit is issued subject to the regulations contained in Building Code and Zoning Regulations of the Cityof Rexbug. It is specifically understood that this Permit does not allow any Variance to the regulations of the City of Rexburg or Zoning Codes unless specifically approved by the City Council and explained on the Building Permit Application as approved bythe Building Inspector. Date Approved Issued B 11 Building Inspector THIS PERMIT MUST BE PROMINANTLY DISPLAYED AT THE BUILDING SITE THE BUILDING MAY NOT BE OCCUPIED OR USED WITHOUT FIRST OBTAINING ACERTIFICATE OF OCCUPANCY 1) A complete set of approved drawings along with the permit must be kept No work shall be done on any part of on the premises during construction, the building beyond the point indicated NOTICE! 3. Foundation 2) The permit will become null and void in the event of any deviation from the in each successive inspection without 4. Framing accepted drawings. approval. No structural framework of 3) No foundation, structural, electrical, nor plumbing work shall be concealed any underground work shall be covered without approval. INSPECTION CARD BUILDING Date roved F Layout . Footing 3. Foundation 4. Framing 5. Insulation 6. Mechanical 7. Drywall 8. Sidewalk 9. Final ELECTRICAL Date roved 1. Rough -In 2. Final OTHER Date roved 1. Fire Department Fina PLUMBING Date prolld 1. Sewer Service Conn 2. Water Service Conn( 24 Hour Notice and Permit Number required to make inspection appointments For Inspections Call 359 -3020 option 2 A CERTIFICATE OF OCCUPANCY CAN NOT BE ISSUED PRIOR TO FINAL ELECTRICAL & PLUMBING INSPECTION o4¢EXBtR� ciTr or Certificate of Occupancy > REX City of Rexburg ` AmericakFamil Communi Department of Community Development '•,, M 19 E. Main St. / Rexburg, ID. 83440 Building Permit No: Applicable Edition of Code: Site Address: Use and Occupancy: Type of Construction: Design Occupant Load: 0700406 International Building Code 2003 881 Jet Stream Dr Madison Gymnastics Center Type V, non -rated 148 Sprinkler System Required: No Name and Address of Owner: Packard Brenda 4227E410N Rigby, ID 83442 Contractor: Silvertree Builders Inc Special Conditions: Occupancy: Assembly- worship, recreation, or amusement This Certificate, issued pursuant to the requirements of Section 109 of the International Building Code, certifies that, at the time time of issuance, this building or that portion of the building that Kes inspected on the date listed vies found to be in compliance vuth the requirements of the code for the group and division of occupancy and the use for VIhich the proposed occupancy wes classified. Date C.O. Issued: February 11, N 03:49PM C.O Issued by: Building Official There shall be no further change in the eAsting occupancy classification of the building nor shall any structural changes, modifications or additions be made to the building or any portion thereof until the Building Official has reviewed and approved said future changes. Plumbing Inspector: Fire Inspector: �- Electrical Inspector: P &Z Admin istrator —�� TEMPO �4¢BURGr CITY OF Certificate of Occupancy A. 7 > REX3URG City of Rexburg "" Americai Family Community Department of Community Development tMLY 19 E. Main St. / Rexburg, ID. 83440 Phone 208 359 -3020 / Fax 208 359 -3024 Building Permit No: 0700406 Applicable Edition of Code: Site Address: Use and Occupancy: Type of Construction: Design Occupant Load: Sprinkler System Required: International Building Code 2003 881 Jet Stream Dr Madison Gymnastics Center Type V, non -rated 148 No Name and Address of Owner: Packard Brenda 422TE 4 -10 N Rigby, b 83442 Contractor: Silvertree Builders Inc Special Conditions: MH H M S -to Lz r•oM p)ekd h9L J n& t- landsca,�i�rq 4- RWYA*- Flows 3 — �l n 3 �� d i thaxi j rjvd h N � Occupancy: Asseml:A�i- worship, recreation, amusent �J� �^` This Certificate, issued pursuant to the requirements of Section 909 of the Intemational Building Code, certifies that, at the time time of issuance, this building or that portion of the building that vies inspected on the date listed pies found to be in compliance ►With the requirements of the code for the group and division of occupancy and the use for which the proposed occupancy vies classified. Date C.O. Issued: February 11, 08 03:49PM C.O Issued by: ON WW 0 Building Official There shall be no further change in the eAsting occupancy classification of the building nor shall any structural changes, modifications or.additions be made to the building or any portion thereof until the Building Official has reviewed and approved said future changes. Plumbing Inspector: Fire Inspector: Electrical Inspector: P &Z Administrator CITY OF REXB URG BUILDING PERMIT APPLICATION Please 0700406 19 E MAIN, REXBURG, ID. 83440 Gymnastics Center 208 - 359 - 3020 X326 PARCEL NUMBER: ��j{�� ���� (We will provide this for you) SUBDIVISION: o ' Post Pml r UNIT# BLOCK# ( LOT # is based on the Intormation - must be CONTACT PHONE # PROPERTY ADDRESS: L 1,)M 'L,K- Z At hoY f 6 LA& -, bb 4t_-4 _ C ' S PHONE #: Home ( ) 7 V5"` 7 336 Work ( ) �57 - 31) Cell ( ) 75 7 5 7 OWNER MAILING ADDRESS: CITY: STATE: ZIP: EMAIL FAX APPLICANT (If other than owner) S Ve✓ ° TkAge_ S LA6 1 ..Z't&t (Applicant if other than owner, a statement authorizing applicant to act as agent for owner Al ut accompany this application.) APPLICANT INFORMATION: ADDRESS © !� r ! /v CITY: 1- T STATE; ZIP � OEMAIL Sf ✓ e� �t FAX (� " PHONE #: Home ( ) & _ f 5 Work IM - _ ell CONTRACTOR MAILING ADDRESS: ATE ZIP PHONE: Cell# Work# Fax# EMAIL S+ C -`' IDAHO REGISTRATION # & EXP. DATE How many buildings are located on this property? Did you recently purchase this property? No es If yes give owner's name) 13� Is this a lot split?1� YES (Please bring copy of new legal description of property) PROPOSED USE: Z_ ' (i.e., Single Family Residence, M& Family, Apartments, Remodel, Garage, Commercial, Addition, Etc.) APPLICANT'S SIGNATURE, CERTIFICATION AND AUTHORIZATION: Under penalt of perjur I hereb certif that I have read this application and state that the information herein is correct and I swear that any information which may hereafter be given by me in hearings before the Planning and Zoning Commission or the City Council for the City of Rexburg shall be truthful and correct. I agree to comply with all City regulations and State laws relating to the subject matter of this application and hereby authorized representatives of the City to enter upon the above - mentioned property for inspections purposes. NOTE: The building official may revoke a permit on approval issued under the provisions of the 2003 International Code in cases of any false statement or misrepresentation of fact in the application or on the plans on which the p m . t or approval was based. Permit void if not started within 180 days. Permit void if work stops for 180 days. Do you prefer to be contacted by fax, email or phone? Circle One A (G k U U it WARNING — BUILDING PERMIT MUST BE POSTED ON C01 S Plan fees are non - refundable and are paid in full at the time of applicati noing anuar 1, 2005. g City of Rexburg's Acceptance of the plan review fee oes not co pIaq gro I „ ^nZ **Buildin Permit Fees are due at time of application** **Building Permits a o f o�}c es Lear CITY CITY OF REXBURG J 2 Adlk Building Safety Department City of Rexburg 19 E. Main janellh@rexburg.org Phone: 208.359.3020 ext 326 Rexburg, ID 83440 www.rexburg.org Fax: 208.359.3024 oE gEXBUR C CITY OF ° MXBU '•, Americas Family Community Affidavit of Legal Interest State of Idaho County of Madison I, Name City State Being first duly sworn upon oath, depose and say: (If Applicant is also Owner of Record, skip to B) A. That I am the record owner of the property described on the attached, and I grant my permission to: Name Address to submit the accompanying application pertaining to that property. B. I agree to indemnify, defend and hold Rexburg City and its employees harmless from any claim or liability resulting from any dispute as to the statements contained herin or as to the ownership of the property which is the subject of the application. Dated this day of .20 Signature Subscribed and sworn to before me the day and year first above written. Notary Public of Idaho Residing at: My commission expires: Address 3 Plea se complete the eltire Application! If the quest n does not apply fill i NAME ® � PROPERTY ADDRESS L 6 SUBDIVISION f Dwelling Units: SETBACKS FRONT r 0700406 Gymnastics Center 881 Jet Stream Dr Parcel Acres: --� SI E SIDR BACK Remodeling Your Building /Home (need Estimate $ SURFACE SQUARE FOOTAGE.- (Shall include the exterior wall measurements of the building) First Floor Area y ti"oZ`-�'a Unfinished Basement are-, Second floor /loft area 1 54 S Finished basement area. Third floor /loft area Garage area Shed or Barn A, Carport /Deck (30" above Water Meter Quantity: �c Water Meter Size: Required!!! PLUMBING Plumbing Contractor's Name: Business Name: X �� ►dZt �t '— Address City 1 le T0 State Zip Contact Phone: ( ) q5 K- 2- 7 Business Phone: ( ) 701' _ l Z 7 Email Fax 4 K,�r6 - Ai�� FIXTURE COUNT (including roughed frxtures,� Clothes Washing Machine A)_k� Dishwasher Floor Drain 1 Garbage Disposal Hot Tub /Spa Sinks (Lavatories, kitchens, bar, mop) Plumbing Estimate $ /Oct (Commercial Only) Re wire ignatwe of Ucens ontractor The City of Rexbu Sprinklers Tub /Showers Toilet /Urinal Water Heater Water Softener License number schedule is the same as 6! Date the State ofldaho 4 Please complete the ent #Application! If the question doesot apply fill in NA for non applicable NAME 0700406 PROPERTY ADDRESS (-& gr� Z SUBDIVISION A-; A &1& �1 Gymnastics Center 881 Jet Stream Dr RequiredW MECHANICAL Mechanical Contractor's Name: L Business Name: k� Paw r a :A—t4 Address City C State J-d Zip 13 Contact Phone: ( ) 'V!5 1S' a '/ / Z 7 Business Phone: ( ) 70 7 `y 0 7 _ Email - Fax A.) Mechanical Estimate $ 15 (Commercial /Multi Family Only) FIXTURES & APPLIANCES COUNT (Single Family Dwelling Only) Furnace Exhaust or Vent Ducts _, Furnace /Air Conditioner Combo Heat Pump Air Conditioner Evaporative Cooler Unit Heater Space Heater Decorative gas -fired appliance Incinerator System Boiler Pool Heater ' Dryer Vents Range Hood Vents Cook Stove Vents Bath Fan Vents other similar vents & ducts: Fuel Gas Pipe Outlets including stubbed in or future outlets Inlet Pressure (Meter Supply) PSI Heat (Circle all that apply) Gas�0i1 Coal Fireplace Electric Hydronic P o i nt o De must be 1 on / r l�eq ire��ignature of Lice��ontractor License number Date The City of Rexburg's permit fee schedule is the same as required by the State of Idabo 5 Buil g Safety Department City of Rexburg 19 E Main Rexburg, ID 83440 jonellh@rexburg.org Phone: 208.359.3020 x326 www.rexburg.org Fax: 208.359.3024 OWNER'S NAME 8 r etic-�Q PROPERTY ADDRESS 'a SUBDIVISION kj f pd-f 6 K i PHASE LOT BLOC OF �¢x s URC U � is � s CITY O F REXB America's Family Community Permit #07 00406 Gymnastics Center 881 Jet Stream Dr Requiredffl ELECTRICAL Electrical Contractor's Name ; .rq o r Business Name 1 Ya Address q City 14 Vf St / ate Zip Cell Phone ( ) '� i / 7 0 Business Phone Fax ( ) 11-x` Email Electrical Estimate ( cost of wiring & labor) $ I '�,C� (COMMERCIAL /MULTI - FAMILY ONLY) TYPES OF INSTALLATION (New Residential includes everything contained within the residential structure and attached garage at the same time) Number of meters being installed Up to 200 amp Service* 201 to 400 amp Service* ' Over 400 amp Service* - Existing Residential (# of Branch Circuits) Temporary Construction Service, 200 amp or less, one location (for a period not to exceed 1 year) Spa, Hot Tub, Swimming Pool Electric Central Systems Heating and /or Cooling (when not part of a new residential construction permit and no additional wiring) Modular, Manufactured or Mobile Home Other Installations: Wiring not specifically covered by any of the above Cost of Wiring & Labor: $ Pumps (Domestic Water, Irrigation, Sewage) Requested Inspections (of existing wiring) Temporary Amusement /Industry *Includes a maximum of 3�inspections. Additional inspections charged at requested inspection rate of $40 per hour. Contractor The City of fte 269y License number grit fee schedule is the same as re, 5 Date the State of Idaho rel low Building Safety Department City of Rexburg 19 E. Main janellh@rexburg.org Phone: 208.359.3020 Rexburg, ID 83440 www.rexburg.org Fax: 208.359.3024 ( 10 CITY O F REX BUR G 0w_ Americas Family Community APPLICATION: "CONSTRUCTION PERMIT" CONSTRUCTION PERMIT #: PERMIT APPROVED: YES/ NO $50.00 FEE PAID: YES /NO - APPLICANT INFORMATION: Business Name: S %\ V ex, -W-4-Q Office Address: 1 LL-) Office Phone Number: (__Zl_� Contractor Performing the W Contact Person: Of gEX6U,pC 'y u o State Zip s 1 t1 � 0, -5 5 Cell Phone # ( ) - 5 '10 '- ' 3 � — l.yl,t>I1V1V Vr W "AK IV I3L 1jV1VL: d Street Address Where Work Will Be Done: Business Name Where Work Will Be Done: Dates For Work To Be Done Contact Person: ^) �-d� i �^ Phone Number: ( 1 _�3 . - [) L/ --0 To 10 -o Cell # ( ) - — s PLEASE CHECK THE TYPE OF PERMITS) YOU ARE APPLYING FOR: ❑ AUTOMATIC FIRE- EXTINGUISHING SYSTEMS ❑ COMPRESSED GASES ❑ FIRE ALARM AND DETECTION SYSTEMS AND RELATED EQUIPMENT ❑ FIRE PUMPS AND RELATED EQUIPMENT ❑ FLAMMABLE AND COMMBUSTIBLE LIQUIDS ❑ HAZARDOUS MATERIALS ❑ INDUSTRIAL OVENS ❑ LP -GAS ❑ PRIVATE FIRE HYDRANTS ❑ SPRAYING OR DIPPING ❑ STANDPIPE SYSTEMS ❑ TEMPO MEMBRANE STRUCTURES, TENTS, AND CANOPIES 7i pphcant's Signature Date APPROVED BY: u� KJ CA vq 7 0 SUBCONTRACTOR LIST Excavation & Earthwork: !�S V—.- Concrete: Masonry: o,"-,e-A v"` o yy 1 Roofing: i , l/�'`� /'� -. Insulation: . 5; t v - Drywall: Painting: Floor Coverings: Special Construction (Manufacturer or Supplier) Roof Trusses: kVv-a/7,A C-0� Floor /Ceiling Joists: b A,-,C- s�oC �C , Siding /Exterior Trim: <5 > t - 8 EXEMPTIONS FROM STATE REATRATION As of January 1, 2006, the City of Rexburg can no longer sell permits without having a copy of your State registration number or your exemption from the State registration. Please send a copy of your state registration or fill out this form showing your exemption and send it with your license renewal or your next permit application. (This list is a summarization of Idaho Code Title 54 Chapter 5205, for full definitions of these exemptions please see the State's website at www.ibol.idaho.gov /cont.htm ❑ Currently State licensed pursuant to Title 54 Idaho Code, Chapters: 3 Architects, 10 Electrical Contractors /Journeyman, 12 Engineers /Surveyors, 19 Public Works Contractors (exempt from fee only registration required), 26 Plumbing /Plumbers, 45 Public Works Construction Management Licensing Act (exempt from fee only registration required), or 50 Installation of heating, ventilation and air conditioning systems ❑ Employee or volunteer of a licensed contractor or part of an educational curriculum or nonprofit charitable activity with no wages or salary ❑ Employee of a US Government agency (State, City, County, or other municipality) ❑ Public Utility doing construction, maintenance, or development to its own business ❑ Involved with gas, oil or mineral operations ❑ Supplier doing no installation or fabricating ❑ Contracting a project or projects with a total cost less than $2000 ❑ Operation of a farm or ranch or construction of agriculture buildings exempt from Idaho Building Code ❑ Any type of water district operations ❑ Work in rural districts for fire prevention purposes ❑ Owner who performs work on own property or contracts with a registered contractor to do work as long as the property is not for resale within 12 months ❑ Owner or lessee of commercial property performing maintenance, repair, alteration or construction on that property ❑ Real estate licensee /property manager acting within Idaho Code ❑ Engaging in the logging industry ❑ Renter working on the property where they live with the property owners approval ❑ Construction of a building used for industrial chemical processing per Idaho Code ❑ Construction of a modular building (defined by Idaho Code) to be moved out of state I hereby certify that the above information is true and correct to the best of my knowledge. Signature Date Print Name 0 CITY o F >o RE � ity of Rexb urg ge 19 E. Main St. Rexburg, Idaho 83440 Ow -- Phone (208) 359 -3020 Amerlras Family Community STATE OF IDAHO Fax (208) 359 -3022 e-Mail October 8, 2007 REQUEST FOR A CONDITIONAL BUILDING PERMIT FOR PARTIAL BUILDING CONSTRUCTION TO: Building Official for the City of Rexburg Pursuant to the provisions of the International Building Code 2000, the undersigned requests that a building permit be issued for: Footings and Foundations only at: 881 Jet Stream Dr Rexburg, Acknowledgment is made that the plans for the complex are not complete and that final approval of the building will not be given until the final plans have been approved. We recognize that proceeding with partial construction at this time is entirely at the risk of the Architect/Owner with there being no assurance that the final Certificate of Occupancy for the entire building or structure will be granted. We further absolve the City of Rexburg and officers and employees thereof, of all resposibility for the issuance of a partial permit and further agree that any work performed under this permit will be removed or otherwise corrected to be in accord with the requirements of the final approved plans when a permit for the entire building of structure is finally granted. Dated: Monday October 8 2007 By Approved: Monday October 8 2007 CITY OF REXBURG M IlH a san � en erm it Coordinator /Tech • r DESIGN CALCULATIONS FOR ABC JOB# 51 - 6B79 -O 1 m._._-_- ; � AMERICAN BUILDINGS COMPANY 1620 Carpenter Road, Modesto, CA 95351 Phone (209) 578 -4200 Fax (209) 578 -1244 July 30, 2007 Silver Tree Builders, Inc. 51- 6879 -01 1052 W. 14th North Packard Gymnastics Rexburg , ID 83440 Rexburg , ID 83440 Gentlemen, LRF100' x 100'x 24'10 This is to certify that metal building components furnished by American Buildings Company, an AISC -MB certified manufacturer, are scheduled for design in our Modesto, CA office and for fabrication in our Carson City, NV plant. The members are designed to comply with the following loads specified in the Order documents: Design Loads: 1) - Bldg. Dead Load (D) 2) 3.0 PSF Collateral Load (C) 3) 20.0 PSF Roof Live Load (L) 4) 20R PSF Frame Live Load (L) 5) 90.0 MPH WIND SPEED (W) Exp.= C, Iw= 1.0 6) 31.5 PSF Roof Snow Load (S) Pg= 50, Is= 1.0, Ce= 0.9, Ct= 1.0 7) Seismic Data as Follows: (E) Use Group = I, 1 = 1.0 Site Class = D, Ss= 46.7 %, S1= 16.2 %, Design Load Combinations: 1) D +C +L(S) 2)D +W 3) 1.06( D + C) + 0.70E 4) D +C +3/4L(S) +3/4W 5) 1.07( D + C) + 3/41- (S) + 3/4E 6) 0.6D + W 7)0.54(D +C) +0.7E Note: This project is designed as an Enclosed Building. Accessories (doors, windows, etc.) by others must be designed as "components and cladding" in accordance to specific wind provisions of the referenced Building Code. Please note that unless otherwise specified on your Purchase Order, American Buildings Company Serviceability Standards (2002 MBMA/AISC criteria) will be used for design and fabrication of your order. These design loads and combinations are applied in accordance with The International Building Code, (IBC2003). The design is in general accordance with the A.I.S.C. (Ninth Edition w/ Supplement No.1) and NASPEC (2001). This certification is limited to the structural design of the framing and covering parts manufactured by American Buildings Company and as specified in the contract. Accessory items such as doors, windows, louvers, translucent panels, and ventilators are not included. Also excluded are other parts of the project not provided by American Buildings Company such as foundations, masonry walls, mechanical equipment and the erection and inspection of the building. The building should be erected on a properly designed foundation in accordance with The American Buildings Companv Erection Manual and American's drawings for the referenced job. The undersigned is not the engineer of record for the overall Droiect. 0 9 Pamphlet T AMERICAN BUILDINGS COMPANY 0 CONTENTS SECTION 1, General • Introduction and General Design Approach Figure 1 - Clear Span Rigid Frame Building 1.1 Selected References 1.2 1.3 SECTION 2, Rigid Frame Explanations and Methods of Analysis Lateral Deflection of Frames 2.1 -2.3 Rigid Frame Analysis 2.4 SECTION 3, Endwalls and .Rod Bracing Explanations and Methods of Analysis Figure 4 - Column and Beam Endwall Bracing 31 Figure 5 - Column and Beam Endwall Rod Bracing Nomenclature 3.3 Endwall Frame Analysis 3.4 SECTION 4, Purlin and Girt Section Properties Purlin and Girt Analysis 4.1 SECTION 5, Panels Panel Profiles and Engineering Properties (LongSpan III) Panel Profiles and Engineering Properties (Architectural III) 5.1 Panel Profiles and Engineering Properties (Architectural "V" Rib) Panel Profiles and Engineering 5.2 5,2b Properties (Standing Seam II) Panel Profiles and Engineering Properties (Standing'Seam 360) Panel Profiles and Engineering 5.3 5.3a Properties (Shadow) Panel Profiles and Engineering Properties (16" Loc -Seam) Panel Profiles and Engineering 5.4 5.5 Properties (12" Loc - Seam) Panel Profiles and Engineering Properties (Multi -Rib) Panel Profiles and Ehgineering 5.6 5.7 Properties (Seam Loc 5,8 SECTION 6, Miscellaneous; Standard Specifications 6.1 0 • Page LOAD -1 Fri Jul 20 09:38:55 2007 Job #: 51687901 Ver. 29.0 AMERICAN BUILDINGS COMPANY GENERAL DESIGN LOADING INFORMATION Building Code: 2003 International Building Code Roof Dead Load: 1.500 psf Collateral Load: 3.000 psf Roof members not supporting ceiling but supporting sprinklers, lighting, or other materials Classification of Building: I. Buildings and other structures that represent a low hazard to human life in the event of failure ■ II. All buildings and other structures except those listed in Categories I, III, and IV III. Buildings and other structures that represent a substantial hazard to human life in the event of failure IV. Buildings and other structures designated as essential facilities Exposure (Terrain) Category: B. Urban and suburban areas, wooded areas or other terrain with numerous closely spaced obstructions having the size of single- family dwellings or larger ■ C. Open terrain with scattered obstructions, including surface undulations or other irregularities having heights generally less than 30 feet extending more than 1500 feet from site D. Flat, unobstructed areas exposed to wind flowing over open water (excluding shorelines in hurricane -prone regions) for a distance of at least 1 mile Uniform Roof Live Load Not To Be Less Than: Value As Defined By Selected Code Uniform Roof Snow Load Not To Be Less Than: Value As Computed In Compliance With Selected Code Roof Exposure Condition: Partially Exposed: All roofs except as indicated below ■ Fully Exposed: Roofs exposed on all sides with no shelter afforded by terrain, higher structures or trees Sheltered: Roofs located tight in among conifers that qualify as obstructions Thermal Condition: ■ All structures except as indicated below Structures kept just above freezing Unheated structures Continuously heated greenhouses with a roof having a thermal resistance (R value) less than 2.0 Ground Snow Load: 50.000 psf Basic Wind Speed (3- second gust): 90.000 mph Open Condition: ■ Enclosed Partially enclosed Open 0.2 Sec Short Period Spectral Response Acceleration S(s): 46.700 -gig 1.0 Sec Spectral Response Acceleration S(1): 16.200 � -g Site Classification: A. Hard Rock B. Rock C. Very dense soil and soft rock 0 ■ D. Stiff soil profile E. Soft soil profile F. See code for description Deflection Limits for Roofs: Live Load: L /150 Snow Load: L /180 Wind Load: L /180 (at 1:10 -year recurrence) Roof Load: None Deflection Limits for Walls: Wind Load: L /120 (at 1:10 -year recurrences • Maximum Limiting Check_ Ratio: 1.03 Plate /Ear Yield Strength: 55.00 ksi 2 0 • Notes for ABC Job # 51- 6879 -01 Packard Gymnastics 1. The frame at left endwall (FL. 1) and frame at right endwall (FL.5) are not designed to accommodate any future additions. 2. New structure by ABC is designed as an Enclosed Building. 3. It is the responsibility of others, i.e. the engineer of record, to ensure that all structural systems and components not by ABC interact compatibly with ABC structural systems and components. See calculation package for deflection requirements of ABC frames and materials. 4. ABC has provided new structure(s) according to the ABC purchase order and company standards. ABC is not responsible for verifying that ABC's design and detailing is compatible with materials by others. 5. A 3.0 psf collateral load was used in ABC design as requested. No other special provisions have been made for concentrated point loads on frame. 6. Snow build -up conditions may exist where new ABC structure is taller than adjacent structure(s). ABC is not responsible for verifying that adjacent structure(s) can accommodate snow build -up as a result of new construction by ABC. 7. New structure by ABC is not designed to accommodate any snow build -up condition from taller existing structures. WALL: L3P26 LRF 100' X 100' X 24 0 ROOF:L3P26 IBC 2003 -- -- -- -- I - IF I a w/ i >t� Q2 — l C y� t� r 1 : 1 2 SP, s9c, BBII LEW: 1'7 1/2" REW: 5 1/2 4 � O 5 O J O yJ x 391� 1 � O L Cry V 0 100'0 OOf TO OUT OF STEEL 1' I 23'4 j I 25'0 I 25'0 24'6 Oramed Openings Calc &tion r " gr 4 f American Buildings Company Job Number 51- 6 879 -01 Engineer BN Mo dule 1 ❑ FSW BAY Q RSW B AY ❑ LEW BAY ❑ REW BAY DIMENSIONS 0 No Stress Increase Span length (columntocolumn) 25 ft Door width 14.00 ft Door Height 12.010 ft Distance from left column to 1"jamb 3.00 11 Distance from header to jamb support 1.33 ft Ht. of the girt/eave after jamb support 18.33 ft Deflection (standard is L 190 for 50 yr wind) L/ 90 Wall Girt Depth OO 8" O 9.5" 012" i j C>] Nested (2) Girts '? Q Yes Stress Increase = 1.00 Use Hot - Rolled Channels? O Yes OO No -1,06 Distance Between Lateral Supports (in) N/A in Channel Depth Selection O C8 O C9 O C10 14.77 psf 30.00 in 1.03 Use Hot Rolled Jambs? ❑ Use Different Depth Jambs? ❑ No No Recommended Member For Jamb Supports) Nested 8212 MSA SECONDARY FRAME OUTPUT i j C>] Wind pressure (50 yr. wind) 16.60 psf 1.0 Suction coefficient -1,06 Pressure coefficient 0.89 -17.60 psf Suction Pressure Design spacing, jamb supp. Allowable Stress Ratio 14.77 psf 30.00 in 1.03 PANEL CONDITION Jamb Support(s) R = 0.65 See comment window for R values Header R= 0.6 *Jambs R= 0.65 See connnent windows for R values u,c Luicicnt Uepin Jamb Support? L_-1 iNu Maximum Girt Spacing = 5.5 ft Stress Ratio= 0.97 A,,,_=L/ 195 Next Girt / Eave 18.33 Jamb Support 13.33 Door Header t�ly- 1200 ! 4 XN J � C C E E J E M E _r OO U o 0 � � U 3.00 1700 25 00 Framed Opening Calculation V 1.5 7/19/2007 1:54 PM ` LAJ O vT . L 100'0 o01 TO OIR 01 i0161n UNE 1 ; 1 V14; x xs'O ] x3'0 za•6 ; Q1, X vszu ze.a6E 11 NE N. vszl] - n.aNB vszu zv.oaw 111 BE U WNEO 11 REW D IGl IEAw SN u SEE S.W. vsz12 - xteao 11 KA BCB -30.8 b • / X QABI -I QABI -I QABI � OtA01 -I -IJ e� X BC6 -11.9 y 3 \ t o b 8 p R • p SAVE 3 � vazu - xe.om 11 NEWe1FD van] - n.enM vszlz xv.owa 11 6EWNE0 11 NEOU:IID eszlx - v.eoe 11 IRLI ED 1'7 ; 23'. ; x6'0 26'o 24'6 ; S; 1 2 ] IOO OUT TO OW Of PUP" LINE ! 6 ROOF FRAMING PLAN RF01F —A N0. 8EY1 B DN OA MIDE Q(D ENGR B6N'�110 ^SUBNRK SCALE: NONE 014TE PACKARD GYMNASTIC [ FM � E a16iiAUC.911 MW er: o7/25/07 Tgp [ 1 zoN vEm16 Drar sy REXBURG, ID AMERICAN BUILDINGS COMPANY [ I omcn �vro Erv: SILVER TREE BUILDERS DRAWING. 51687901 E501 -04 C/O BY: Ol x6 0) I1:1):�� Var. 28.o NUMBER 0 X BCB -30.8 \ /vL / X QABI -I QABI -I QABI � OtA01 -I -IJ X BC6 -11.9 \ L- F-W 1_ PA -0z01 RR -0201 i sa I S 15 sa sa 54 �, sa sa 8 y 53 33 4 1 °� N P,`i j'.. ,' 4 .�.1 ;`• c v �� 5, s, s, S, ,4 0 -0101A 0 -0102A E1-O , Y.Si WIRED� I 3 DWI NDNI TYPIGGU.N. KI YAZ13 -zJ.e 1 /ePz (()) a REGU fMNY1 U]l. U.N. 25'0 z3'0 25'0 zS'0 G E C A 100'0 om To 0Uf of G UNE 51 dt1 ].] 1 /aNl $a - CBA-..2./b 9 -RG.O G RSA -1 T1PTi•L AT RNO: - ENDWALL FRAMING AT FRAME LINE 1 "'" ``—' ^P " t0 S -QQ- 11 4- CA NO. SONS - OA ENGR OA NWE D EN GRAe1NG SGBNGTAI SCALE NONE M1E n " PACKARD GYMNASTIC 1 rGR coralRUrno11 ORAwN er. j . /07 T80 REXBURG,ID ioR POMR ONLV AMERICAN BUILDINGS COMPPNY rGR o 7/2 APPO LIT: SILVER TREE BUILDERS DRAWING. REV.NO. vo er: oT m m 11:17 vim. ze.G NUMBER' 57687901 ES01 -06 G R. ra v\` ER -s1 o2 ER -510 ER -mot ER -slog i • 8 3 1[[ r EC -s1D1 52((1))3 - 1).0 1 /YC M'IfILU. 19'0 B-m0u 9AZ J ACC TWNYL U.H. 30'0 v -oso3A p.52 ( � 1 L 1� 1 - � 20.11 ] MI MMCJL U.N. 22 a -osoJA p.SZ ] ACC 1WICa U.N. 30'o a EC -5103 p.y13 -1).0 1 /ZCZ J REOU N 19'0 D D 100'0 OUT TO OUT OF D]tf ME E N BNrb -30.0 S RSA -i raP AT P GPM 1/B ENDWALL FRAMING AT FRAME LINE 5 OA Al QE ra 1 PRJL At Lb Bats — See- t 5 DA DN w m SCALE: NONE MTE PACKARD GYMNASTIC TBD REXBURG, ID SILVER TREE BUILDERS V AMERICAN COMPA NY [ [ iDR wIRiR11Df1011 may [ Rx�+^' M" By: B UILDINGS 0) /25/0) CNEElOJD DESON Avvo Br: oRAwINC. REV.NO. NUMBER' 51687901 ESOI —08 0 co ar: zs 07/0/07 "'.17W V- 39.0 ER -mot ER -slog i I 3 11 8'0 3 100'0 O W TO OVT OF MW U I SIDEWALL FRAMING PLAN AT LINE A 1 V 25'0 25 26 P- I\- tL-4- 5 O IWO OW TO 011 O O ff 111E F r I SIDEWALL FRAMING PLAN AT LINE I R 1/ '.1 �i E BR6 -33.7 8214- 27.aE0 BZ78- 29.808 aZ14-2e.61(0 9116 -34.7 SZ13- 27.608 1F- .6E0 8218- 2A.60N (' ME 5- - Z1 a - — BZIJ 7. 621 27 t y- 1'0 8213- 27.OBW az15- 29.Swo eZla JO.a .yy X . Ulf- 28.001( 8.13 } } E "-. t eZ1J- 27.60e i* $ 13 8- U ° 9R6 -34.5 �i E 9R6 -31.3 BZI3- 27.OBW BZ15- 29.8Nq BZIS- 30.000 9R6 -33.7 W - 27.60E 13 7AB8 e21S- 29.ae0 8218- 30.000 621 27 8213- 27.OBW az15- 29.Swo eZla JO.a /,GZI-27.� 8�1� 8.13 9Re -x.7 �i E i SECTION 1 GENERAL C� 10 L� � i .X V 0 American Buildings Company Plant Locations: Eufaula, AL - Birmingham, AL - El Paso, IL Carson City, NV - LaCrosse, VA Service Centers: Phenix City, AL - Pine Bluff, AR - Modesto, CA LaGrange, GA - Columbus, MS - Rocky Mount, NC- Jamestown, OH Figure 1 is a drawing of an American building, illustrating the typical load carrying members; i.e., rigid frames, endwalls, purlins, girts, bracing and panels. A clear span rigid frame building was selected for this purpose; however, any of American's other standard designs, as described in the standard specifications for American Buildings Company pre- engineered Metal buildings, could also have been used to illustrate the basic building components. All designs are in strict accordance with the latest editions of AISC and AISI specifications, whichever is applicable, The stress distributions in all load carrying members are obtained by the most applicable methods of the universally accepted elastic theory, as applied to indeterminate structures. A digital computer is used for many of the complex and laborious design calculations. American buildings are designed to meet the most severe conditions of load combinations set by the specified building code, but not less than the following: a) Building dead plus roof live load (or snow) uniformly distributed over the horizontal projection of the roof area, b) Building dead load plus wind load applied as pressure and suction normal to the building surfaces. c) Building dead load plus wind load plus 1/2 roof snow load. d) Building dead load plus roof snow load plus 1/2 wind load. Other combinations and applications of loads are incorporated into the design of a building when required. Occasionally these special design conditions can not be handled through one of our standard design formats. If this occurs, special hand calculations will be included. Subsequent sections of this report present the detailed design calculations and their necessary explanations. These are Section 2, Rigid Frame; Section 3, Column and Beam Endwall; Section 4, Purlins and Girts; Section 5, Roof and Wall Panels and Section 6, Miscellaneous and Special Conditions. SUBJECT TO CHANGE WITHOUT NOTICE EF FECTIVE SEPTEMBER 1. 1997 Section 1 Page 1 The information contained within the pamphlet is a technical description of an American metal building. It represents the application of the most modern methods of mathematics and. engineering to the design of a building. Its purpose is to provide interested reviewers with the necessary design calculations, and other documentation required to readily verify structural integrity, 0 .I • American Buildings Company Plant Locations: Eufaula, AL - Birmingham, AL - El Paso, IL Carson City, NV - LaCrosse, VA Service Centers. Phenix City, AL - Pine Bluff, AR - Modesto, CA LaGrange, GA - Columbus, MS - Rocky Mount, NC - Jamestown, OH 60 O o�, A �� FIGURE 1 SUBJECT TO CHANGE WITHOUT NOTICE EFFECTIVE SEPTEMBER 9, 9997 Section I Page 1� • 0 1) Manual of Steel Construction A.I.S.C. 1989, Ninth Edition with Supplement No. 1. 2) "Single Span Rigid Frames in Steel" by John D. Griffiths, A.I.S.C., 1984. 3) North American Specification for the Design of Cold Formed Steel Structural Members NASPEC, 2001 Edition, 4) Structural Steel Design by L.S. Beedle, et al, Fritz Engineering Laboratory, Civil Engineering Department, Lehigh University, 1962. 5) Metal Building Systems Manual 2002 Edition. SUBJECT TO CHANGE WlTHDUT NOTICE EFFECTIVE SEPTEMBER 8, 2004 Section I _.- NJ d 0 0 SECTION 2 .RIGID FRAME • r- T 0 American Buildings Company Plant Locations; Eufaula, AL - Birmingham, AL - El Paso, IL Carson City, NV - LaCrosse, VA Service Centers: Phenix City, AL - Pine Bluff, AR - Modesto, CA LaGrange, GA - Columbus, MS - Rocky Mount, NC- Jamestown, OH Rigid frame analysis and design is a very exacting task. American Buildings Company has developed a computer program that permits detailed analysis and design to be performed for steel frames. The following is a brief description of this program. Essentially the program combines the STIFFNESS METHOD of structural design theory With MATRIX mathematics operations. All of this is possible by the utilization of digital computer capabilities. The inherent speed of the computations permits the use of elaborate mathematical techniques which would be impossible by hand computations. These techniques along with the completely rigorous structural theory approach give technically precise and accurate results. The program consists of seven portions which are as follows: 1) Geometry input 2) Loading input and Stiffness Computation 3) Equivalent Forces Computations 4) Solution for Displacements 5) Reactions and Member Force Computation 6) Stress Analysis 7) Design Decisions Geometry; The general structural configuration that the program can analyze or design is depicted in Figure 2. It shows a gable frame with vertical sidewalls, and a roof sloping'downward on both sides of the ridge. The rafters may be supported at intermediate points by interior columns. Each sidewall column or rafter may be composed of a number of segments; these segments may be prismatic or tapered, with "I" shaped cross - sections. The interior columns must be prismatic, but may be "I" sections or pipes. The bases of sidewalls and interior columns may be at different levels. The left and right sidewall heights and roof slopes may be unequal. SUBJECT TO CHANGE IIVITNOUT NOT/CE EFFECTIVE SEPTEMBER 9. 9997 Section 2 Page 0 r FIG -- URE 2 Typical Configuration of Frame Support and Loadings: The column bases may be specified pinned or fixed; the tops of interior columns may be specified pinned or fixed to the rafters. Uniformly distributed dead and live loads and wind loads are considered to be transmitted to the frame at and by the girts and purlins which are at specified spacings. In addition, concentrated forces and moments may be specified at any location on the frame, thus permitting the inclusion of overhangs, cranes, and bracket loads, etc.. Input: The input to the program consists of information on building geometry, web depths at critical locations, column locations, girts and purlins, loading descriptions, material Properties and stress criteria. If analysis only is required, the member cross - section details are input. If it is to be designed, inventories of flanges sizes and web thicknesses, and pipe sizes are used. SUBJECT TO CHANGE W /TROUT NOTICE EFFECTIVE SEPTEMBER 7. 7997 Section 2 Page lb American Buildings Company Plant Locations: Eufaula, AL - Birmingham, AL - El Paso, IL V , Carson City, NV- LaCrosse, VA Service Centers: Phenix City, AL - Pine Bluff, AR - Modesto, CA LaGrange, GA - Columbus, MS - Rocky Mount, NC - Jamestown. OH American Buildings Company Plant Locations: Eufaula, AL - Birmingham, AL - El Paso, IL Carson City, NV - LaCrosse, VA Service Centers: Phenix City, AL - Pine Bluff, AR - Modesto, CA LaGrange, GA - Columbus, MS - Rocky Mount, NC - Jamestown, OH Analysis: In the analysis option no decision making is done concerning member selection. From the information supplied, which includes all member sizes, the program develops the Precise centerline geometry of the frame. The analysis is carried out on the line configuration, composed of straight line segments ( "Members") defined by the joints and other junction points called "Nodes ". All the loads are transformed into equivalent forces and moments and applied at Node Points. The direct stiffness method of matrix structural elastic analysis is adopted. The member stiffnesses are computed, and superposed to yield the force - displacement relations for the entire frame. Stiffness coefficients and equivalent end actions for tapered members are obtained by numerical analysis. The Nodal displacements for the specified support and loading conditions are solved by a matrix block recursion routine. The support reactions and member end forces and moments are then calculated. Finally, the most critical and shear stresses along each member are computed, and checked against allowable criteria according to AISC Specifications. The most critical stresses are those with the greatest ratio when compared to allowable stresses. The program analyzes the frame for each specified loading combination. Design: In the design option, a frame is determined by an iterative process of analysis and design. Initiated by the Analysis of a frame approximated from the specified flange, web and pipe inventories, the design proceeds in cycles of analysis, criteria checks, selection of fresh sections, and reanalysis until a satisfactory frame is obtained. When the design is complete, the program will analyze and check the frame for each specified loading combination. Output: The output may be requested at various levels of detail. The basic output consists of a listing of input data, centerline geometry, reactions, member end reactions, Nodal displacements, member sizes, criteria checks, bolted connections, anchor bolts and base plates. More exhaustive information may be extracted if desired. SUBJECT TO CHANGE WITHOUT NOTICE Section 2 Page 3 EFFECTIVE SEPTEMBER 7. 9997 0 rim. �a E American Buildings Company Plant Locations: Eufaula, AL - Birmingham, AL - El Paso, IL Carson City, NV - LaCrosse, VA Service Centers: Phenix City, AL - Pine Bluff, AR - Modesto, CA LaGrange, GA - Columbus, MS - Rocky Mount, NC - Jamestown, OH In accordance with section C5.6, Metal Building Manufacturers Association (MBUIN "86), many metal building systems are designed with moment- resistant frames aligned in the transverse direction to resist lateral loading. Experience has shown that the lateral deflection of the-frames under wind loading is far less than predicted by the usual analytical procedures. Consideration of just three factors undoubtedly accounts for most of this apparent anomaly: 1) drift calculations are traditionally based on full design loads, 2) the usual analytical procedures are based on "bare" frames (skin action of the roof diaphragms is neglected) and the moment - rotation stifPnesses of the "pinned" bases are taken as zero, and 3) load sharing has not been taken into account. Bare frame deflections are given on the computer printout for each node point. By considering the complete metal building system, the lateral deflection could be reduced to as much as 1/10 of that for the bare frame. The lateral deflection limitation is based upon the judgment of the design engineer unless specified otherwise. SUBJECT TO CHANGE WITHOUT NOTICE EFFECTIVE SEPTEMBER 1. ?997 Section 2 Page 4 • • r AMERICAN B1.- JILDIC GS COMPANY MSA 29.0 Page 1 of 42 Job:51687901 C: \ABCP \FRAMES \51687901.01A 07/25/07 08:14:50 STEEL FRAME ANALYSIS AND DESIGN BY THE DIRECT STIFFNESS METHOD DESIGN BY 1989 AISC Manual of Steel Construction ASD Ninth Edition AND MBMA AS APPLICABLE BUILDING DESCRIPTION - - RF @FL.2 -4 51687901 FRAME WIDTH BAY SPACING ROOF SLOPES INT. COLUMNS MEMBERS NODES 100.000 ft. 25.000 ft. ✓ 2 0 8 9 LEFT WALL SLOPE W /VERT. GIRT DEPTH --------- - - - - -- 0.000/ 12.0 8.00 in. NODE BASE 1 SAVE 2 ROOF SLOPE 1 --------- - - - - -- NODE LEFT END 2 SPLICE 3 SPLICE 4 RIGHT END 5 ROOF SLOPE 2 --------- - - - - -- RIGHT WALL --------- - - - - -- LOCATION 0.000 ft. 24.833 ft. SLOPE W /HORIZ. 1.000/ 12.0 LOCATION -0.000 ft. 20.104 ft. 30.069 ft. 50.000 ft. SLOPE W /HORIZ. - 1.000/ 12.0 LOCATION 50.000 ft. 69.931 ft. 79.896 ft. 100.000 ft. SLOPE W /VERT. - 0.000/ 12.0 WEB DEPTH 15.000 in. 52.000 in. PURLIN DEPTH 9.50 in. WEB DEPTH 52.000 in. 26.000 in. 26.000 in. 26.000 in. PURLIN DEPTH 9.50 in. WEB DEPTH 26.000 in. 26.000 in. 26.000 in. 52.000 in. GIRT DEPTH 8.00 in NODE LOCATION WEB DEPTH EAVE 8 24.833 ft. 52.000 in BASE 9 0.000 ft. 15.000 in GIRT SPACING(S) 1 @ 88.00 in. 1 @ 60.00 in. 1 @ 72.00 in. 1 @ 78.00 in. CONNECTION PINNED RIGID TYP. PURLIN SPACE 48.87 in. CONNECTION RIGID RIGID RIGID RIGID TYP. PURLIN SPACE 48.87 in. CONNECTION RIGID RIGID RIGID RIGID GIRT SPACING(S) 1 @ 88.00 in. 1 @ 60.00 in. 1 @ 72.00 in. 1 @ 78.00 in. CONNECTION RIGID PINNED tl I NODE LEFT END 5 SPLICE 6 SPLICE 7 RIGHT END 8 RIGHT WALL --------- - - - - -- LOCATION 0.000 ft. 24.833 ft. SLOPE W /HORIZ. 1.000/ 12.0 LOCATION -0.000 ft. 20.104 ft. 30.069 ft. 50.000 ft. SLOPE W /HORIZ. - 1.000/ 12.0 LOCATION 50.000 ft. 69.931 ft. 79.896 ft. 100.000 ft. SLOPE W /VERT. - 0.000/ 12.0 WEB DEPTH 15.000 in. 52.000 in. PURLIN DEPTH 9.50 in. WEB DEPTH 52.000 in. 26.000 in. 26.000 in. 26.000 in. PURLIN DEPTH 9.50 in. WEB DEPTH 26.000 in. 26.000 in. 26.000 in. 52.000 in. GIRT DEPTH 8.00 in NODE LOCATION WEB DEPTH EAVE 8 24.833 ft. 52.000 in BASE 9 0.000 ft. 15.000 in GIRT SPACING(S) 1 @ 88.00 in. 1 @ 60.00 in. 1 @ 72.00 in. 1 @ 78.00 in. CONNECTION PINNED RIGID TYP. PURLIN SPACE 48.87 in. CONNECTION RIGID RIGID RIGID RIGID TYP. PURLIN SPACE 48.87 in. CONNECTION RIGID RIGID RIGID RIGID GIRT SPACING(S) 1 @ 88.00 in. 1 @ 60.00 in. 1 @ 72.00 in. 1 @ 78.00 in. CONNECTION RIGID PINNED tl I FRAME SELF - WEIGHT AS APPLIED DEAD LOAD MEMBER MEMBER WEIGHT CONNECTION WEIGHT (lbs) (lbs) 1 1181.0 320.3 2 1129.2 3 443.6 4 813.4 118.3 5 813.4 6 443.6 7 1129.2 320.3 8 1181.0 Total: 7134.3 758.9 MSA 29.0 Page 2 of 42 Job:516879O1 C KABC A FRAME 051687901.011, 07/25/07 08:14:50 MEMBER SIZES OUTER FLANGE WEB INNER FLANGE WEB -TO- FLANGE - MELD STRESS MEMBER WIDTH THICKNESS THICKNESS WIDTH THICKNESS WELD FLANGE WEB (inches) (inches) (inches) (inches) (ksi) (ksi) 1 8.00 X 0.3750 0.2500 8.00 X_ 0.5000 0.1875 55.0 55.0 2 8.00 X 0.3125 0.3125 8.00 X 0.5000 0.1875 55.0 55.0 3 8.00 X 0.3750 0.2188 8.00 X 0.5000 0.1875 55.0 55.0 4 8.00 X 0.5000 0.1875 8.00 X 0.3750 0.1875 55.0 55.0 5 8.00 X 0.5000 0.1875 8.00 X 0.3750 0.1875 55.0 55.0 6 8.00 X 0.3750 0.2188 8.00 X 0.5000 0.1875 55.0 55.0 7 8.00 X 0.3125 0.3125 8.00 X 0.5000 0.1875 55.0 55.0 8 8.00 X 0.3750 0.2500 8.00 0.5000 0.1875 55.0 55.0 FRAME SELF - WEIGHT AS APPLIED DEAD LOAD MEMBER MEMBER WEIGHT CONNECTION WEIGHT (lbs) (lbs) 1 1181.0 320.3 2 1129.2 3 443.6 4 813.4 118.3 5 813.4 6 443.6 7 1129.2 320.3 8 1181.0 Total: 7134.3 758.9 MSA 29.0 Page 3 of 42 Job:51687901 C: \ABCP \FP.AMES \51687901.01A 07/25/07 08:14:50 110DE COORDINATES NODE r Y (in.) (in.) 1 16.00 0.00 2 34.50 264.75 3 242.33 295.11 4 361.91 305.08 5 600.00 324.92 6 838.09 305.08 7 957.67 295.11 8 1165.50 264.75 9 1184.00 0.0) a� MSA 29.0 Page 4 of 42 Job:51687901 C: \ABCP \FRAME1')\516879O1.01A 07/25/07 08:14:50 LOAD CASE 1 : D +C No Stress Check; No Deflection Limits UNIFORM LOADS LIVE WIND DEAD (psf) (psf) (psf) 0.00 0.00 5.50 LOAD CASE 2 : D No Stress Check; No Deflection Limits UNIFORM LOADS LIVE WIND DEAD (psf) (psf) (psf) 0.00 0.00 2.50 LOAD CASE 3 : L No Stress Check; UNIFORM LOADS LIVE WIND (psf) (psf) 12.00 0.00 * WIND COEFFICIENTS * * Cl C2 C3 C4 * 0.00 0.00 0.00 0.00 * WIND COEFFICIENTS * * Cl C2 C3 C4 * 0.00 0.00 0.00 0.00 ,/60 H Deflection Limit; L /130 V Deflection Limit WIND COEFFICIENTS * DEAD a Cl C2 C3 C4 (psf) 0.00 0.00 0.00 0.00 0.00 LOAD CASE 4 : S No Stress Check; L /60 H Deflection Limit; L /181 V Deflection Limit UNIFORM LOADS WIND COEFFICIENTS * LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 31.50 0.00 0.00 0.00 0.00 0.00 0.00 LOAD CASE 5 : SULl<- No Stress Check; L /60 H Deflection Limit; L/131 V Deflection Limit UNIFORM LOADS WIND COEFFICIENTS * LIVE WIND DEAD -1 C2 C3 C4 (psf) (psf) (psf) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY a� MSA 29.0 Page 5 of 42 Job:51687901 C: \ABCP \FRAMES \51687901.01A 07/25/07 08:14:50 LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END (ft.) (ft.) * (psf) (psf) * (psf) (psf) 1 2 0.00 50.00 0.00 0.00 -52.50 -52.50 2 ------------------------------------------------------------------------------------ 3 0.00 50.00 0.00 0.00 -9.45 -9.45 LOAD CASE 6 : SUR1 -> No Stress Check; L /60 H Deflection Limit; L /181 V Deflection Limit UNIFORM LOADS * * WIND COEFFICIENTS LIVE WIND DEAD Cl C2 C3 C4 (psf) (psf) (psf) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END * (ft.) (ft.) * (psf) (psf) (psf) (psf) 1 2 0.00 50.00 0.00 0.00 -9.45 -9.45 2 ----------------------------------------------------------------------------------- 3 0.00 50.00 0.00 0.00 -52.50 -52.50 LOAD CASE 7 : WMIN -> No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) * 0.00 0.00 0.00 0.00 0.00 0.00 0.00 * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END * (ft.) (ft.) * (psf) (psf) (psf) (psf) 1 1 0.00 24.83 10.00 10.00 0.00 0.00 2 ----------------------------------------------------------------------------------- 2 0.00 50.00 10.00 10.00 0.00 0.00 LOAD CASE 8 : WMIN<- No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS * k WIND COEFFICIENTS LIVE WIND DEAD C2 C3 C4 (psf) (psf) (psf) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END * (ft.) (ft.) (psf) (psf) * (psf) (psf) 1 4 0.00 24.83 -10.00 -10.00 0.00 0.00 2 3 0.)c:r 50.00 -10.00 -10.00 0.00 0.00 a� MSA 29.0 Page 6 of 42 Job:51687901 C: \ABCP \FRAMES \51687901.01A 07/25/07 08:14:50 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 9 : WL' No Stress Check; L UNIFORM LOADS LIVE WIND (psf) (psf) 0.00 16.64 /42 H Deflection Limit; L/126 V Deflection Limit * WIND COEFFICIENTS * DEAD * C1 C2 C3 C4 (psf) 0.00 -0.63 -0.87 -0.87 -0.63 LOAD CASE 10 : Wl - =° No Stress Check; L/42 H Deflection Limit; L /126 V Deflection Limit UNIFORM LOADS * * WIND COEFFICIENTS LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 0.00 16.64 0.00 0.58 -0.51 -0.19 -0.11 LOAD CASE 11 : Wl <.- No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 0.00 16.64 0.00 -0.11 -0.19 -0.51 0.58 LOAD CASE 12 : W2 -> No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 0.00 16.64 0.00 -0.27 -0.51 -0.19 -0.27 LOAD CASE 13 : W2 <- No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS k LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 0.00 16.64 0.00 -0.27 -0.19 -0.51 -0.27 LOAD CASE 14 : W3 -> MSA 29.0 Page 7 of 42 Joh:516879O1 C: \ABCP \FRAMES \516879O1.O1A 07/25/07 08:14:50 No Stress Check; UNIFORM LOADS LIVE WIND (psf) (psf) 0.00 16.64 /42 H Deflection Lirnit; L!'12h Defl ctic:n Limit * WIND COEFFICIENTS DEAD C1 C C4 (psf) 0.00 0.22 -0.27 -0.55 -0.4/ LOAD CASE 15 : W3 <- No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS WI]C% COEFFICIENTS LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 0.00 16.64 0.00 -0.47 -0.55 -0.87 0.22 LOAD CASE 16 : W4 -> No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 0.00 16.64 0.00 -0.63 -0.87 -0.55 -0.63 LOAD CASE 17 : W4 <- No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 0.00 16.64 0.00 - 0.63 - 0.55 - 0.87 - 0.63 LOAD CASE 18 : E -> No Stress Check; L /60 H Deflection Limit UNIFORM LOADS LIVE WIND DEAD (psf) (psf) (psf) 0.00 0.00 0.00 * WIND COEFFICIENTS * * Cl C2 C3 C4 * 0.00 0.00 0.00 0.00 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT * (ft.) (kips) (kips) (kip -ft) 1 1 24.83 2.90 0.00 0.00 2 4 24.83 ----------------------------------------------------------------------------- 2.90 0.00 0.00 - - - - -- �5 LOAD CASE 20 : DE -> No Stress Check; No Deflection Limits UNIFORM LOADS MSA 29.0 COEFFICIENTS LIVE Page 8 of 42 Job:51687901 C: \ABCP \FRAMES \51687901.01A 07/25/07 08:14:50 LOAD CASE 19 : E <- LIVE WIND DEAD No Stress Check; L /60 H Deflection Limit * Cl C2 UNIFORM LOADS (psf) (psf) + WIND COEFFICIENTS * LIVE WIND DEAD 0.00 0.00 * Cl C2 C3 C4 (psf) (psf) (psf) COMPONENTS 0.00 0.00 0.00 0.00 0.00 * 0.00 0.00 0.00 0.00 CONCENTRATED LOADS * COMPONENTS * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT VERTICAL MOMENT * (ft.) * (kips) (kips) (kip -ft) 1 1 * (kips) 24.83 -2.90 0.00 0.00 2 4 ----------------------------------------------------------------------------- 24.83 24.83 -2.90 0.00 0.00 - - - - -- LOAD CASE 20 : DE -> No Stress Check; No Deflection Limits UNIFORM LOADS * WIND COEFFICIENTS LIVE WIND DEAD * C3 C4 LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 COMPONENTS 0.00 0.00 0.00 0.00 CONCENTRATED LOADS * * HORIZONTAL * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT 1 * (ft.) * (kips) (kips) (kip -ft) 1 1 24.83 24.83 7.30 0.00 0.00 2 ----------------------------------------------------------------------------- 4 24.83 7.30 0.00 0.00 - - - - -- LOAD CASE 21 : <_2E<- No Stress Check; No Deflection Limits UNIFORM LOADS WIND * COEFFICIENTS LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION * HORIZONTAL VERTICAL MOMENT * (ft.) (kips) (kips) (kip -ft) 1 1 24.83 -7.30 0.00 0.00 2 4 24.83 -7.30 0.00 0.00 LOAD CASE 22 D +C + L Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.477 LOAD CASE 23 D +C + S Check By ASD; No Deflection Limits • • MSA 29.0 Page 9 of 42 Job:516879O1 C KABC OFRAMES016879O1.0h, 07/25/07 08:14:50 Highest check ratio achieved in this load case = 0.976 LOAD CASE 24 : D +C + SULl <- Check_ By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.985 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 25 D +C + SUR1 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this lc;d case = 0.915 LOAD CASE 26 D + WMIN -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.163 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 27 D + WMIN<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.163 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 28 D + WL' Check_ By ASD; No Deflection Limits Highest check_ ratio achieved in this load case = 0.282 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 29 D + W1 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.115 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 30 : D + Wl<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.115 LOAD CASE 31 : D + W2 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.106 LOAD CASE 32 D + W2 <- Check By ASD; No Deflection Limits Highest check ratio achieved in this loaa case = 0.106 LOAD CASE 33 : D + W3 -> ,�� I MSA 29.0 Page 10 of 42 Job:51687901 C KABC K FRAMES01687901.01P_ 07/25/07 08:14:50 Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.262 LOAD CASE 34 : D + W3 <- Check By ASD; No Deflection Limits Highest check ratio achieved in this 1oaj case = 0.262 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 35 : D + W4 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.242 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 36 : D + W4<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.242 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 37 : 1.06D +C + 0.70E -:> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.244 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 33 : 1.06D +C + 0.70E<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.244 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 39 : D +C + 0.75L + 0.75WMIN -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.443 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 40 : D +C + 0.75L + 0.75WMIN <- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.443 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 41 : D +C + 0.75L + 0.75WL' Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.159 LOAD CASE 42 : D +C + 0.75L + 0.75Wi -:> Check_ By .ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.325 MSA 29.0 Page 11 of 42 Job:51687901 0 MC K FRAME V51687901.01A 07/25/07 08:14:50 LOAD CASE 43 : D +C + 0.75L + 0.75W1 <- Check_ By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.325 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 44 : D +C + 0.751, + 0.75W2 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.305 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 45 : D +C + 0.75L + 0.75W_<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.305 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 46 D +C + 0.75L + 0.75W3 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this loan' case = C.223 ------------------------------------------------------------------------------ - - - - -- LOAD CASE 47 D +C + 0.751, + 0.75W3 <- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.223 LOAD CASE 48 D +C + 0.75L + 0.75W4 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.209 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 49 D +C + 0.75L + 0.75W4 <- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.209 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 50 : D +C + 0.15S + 0.75WHIN -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.816 LOAD CASE 51 D +C + 0.75S + 0.75WMTN - Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.816 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 52 D +C + 0.75S + 0.75WL° Check By ASD; No Deflection Limits C�� • MSA 29.0 Page 12 of 42 Job:51687901 C: \ABCP \FRAMES \51687901.01A 07/25/07 08:14:50 Highest check ratio achieved in this load ease = 0.510 ------------------------------------------------------------------- - - - - -- LOAD CASE 53 : D +C + 0.75S + 0.75W1 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.695 --------------------------------------------------------------------------- - - - - -- LOAD CASE 54 . D +C + 0.75S + 0.75W1'- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.695 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 55 . D +C + 0.75S + 0.75W2 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.673 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 56 : D +C + 0.75S + 0.75W2<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.673 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 57 : D +C + 0.75S + 0.75W3 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.588 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 58 : D +C + 0.75S + 0.75W3 <- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.588 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 59 : D +C + 0.75S + 0.75W4 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.566 LOAD CASE 60 : D +C + 0.75S + 0.75W4 <- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.566 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 61 : D +C + 0.75SUL1<- + Check By By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.812 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 62 : D +C + 0.75SUL1 <:- + 0.75Wi, -- MSA 29.0 Page 13 of 42 Job:51687901 C: \ABCP \FP.AMES \51687901.01A 07/25/07 08:14:50 Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.705 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 63 : D +C + 0.75SUL1 <- + Check By ASD; No Deflection Limits Highest check ratio achieved in this lead case = 0.751 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 64 : D +C + 0.75SUL1 <:- + 0.75W3<- Check By ASD; No Deflection Limits Highest check ratio achieved in this loa.i case = 0.657 ------------------------------------------------------------------------------ - - - - -- LOAD CASE 65 : D +C + 0.75SUL1 <- + 0.75W4 <- Check_ By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.703 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 66 . D +C + 0.75SUR1 -> + 0.75WMjN -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.212 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 67 : D +C + 0.75SUR1 -> + 0.7,,'Wl -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.705 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 68 D +C + 0.75SUR.1 -> + 0.75W2 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.751 ----------------------------------------------------------------------------------- LOAD CASE 69 D +C + 0.75SUR1 -> + 0.75W3 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.657 ----------------------------------------------------------------------------------- LOAD CASE 70 D +C + 0.75SUR1 -> + 0.75W4 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.703 LOAD CASE 71 : 1.07D +C + 0.75L + 0.75E -� Check By ASD; No Deflection Limits Highest check ratio achieved in this load c —tee = 0.471 ----------------------------------------------------------------------------- - - - - -- 3J L J • MSA 29.0 Page 14 of 42 Job:51687901 C:\AMPORAMES \51687901.0111 07/25/07 08:14:50 LOAD CASE 72 : 1.07D +C + 0.75L + 0.75E < - Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.471 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 73 : 1.07D +C + 0.75S + 0.75E Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.844 LOAD CASE 74 : 1.07D +C + 0.75S + 0.75E<- Check By ASD; No Deflection Limits Highest .check ratio achieved in this ioad case = 0.844 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 75 0.60D + WMIN -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.138 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 76 : 0.60D + WMIN<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.138 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 77 0.60D + WL^ Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.300 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 78 : 0.60D + Wl -> Check_ By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.138 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 79 0.60D + Wl <- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.138 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 80 0.60D + W2 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.119 LOAD CASE 81 0.60D + W2 <- Check By ASD; No Deflection Limits 0 • MSA 29.0 Page 15 of 42 Job:51687901 C:AABCP \FRAMES \51687901.01A 07/25/07 08:14:50 Highest check ratio achieved in this load case = 0.119 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 82 0.60D + W3 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this ioas vaws _ 0.:90 ------------------------------------------------------------------------------ - - - - -- LOAD CASE 83 0.60D + W3 <- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.290 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 84 : 0.60D + W4 -> Check By ASD; No Deflection Limits Highest check_ ratio achieved in this load case = 0.260 LOAD CASE 85 0.60D + W4<- Check By ASD; No Deflection Limits Highest check_ ratio achieved in this load case = 0.260 ------------------------------------------------------------------------------ - - - - -- LOAD CASE 86 : 0.54D +C + 0.70E -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.174 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 87 : 0.54D +C + 0.70E < - Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.174 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 88 : 0.76D +C + 0.590E -> Check By ASD Special Seismic; No Deflection Limits ----------------------------------------------------------------------------- - - - - -- LOAD CASE 89 : 0.76D +C + 0.59AE <- Check By ASD Special Seismic; No Deflection Limits ----------------------------------------------------------------------------- - - - - -- LOAD CASE 90 : 0.48D +C + 0.59QE -> Check By ASD Special Seismic; No Deflection Limits ------------------------------------------------------------------------------ - - - - -- LOAD CASE 91 : 0.48D +C + 0.59QE <- Check By ASD Special Seismic; No Deflection Limits ;�!A MSA 29.0 Page 16 of 42 Job:51687901 C: \ABCP \FP.AMES \51687901.01A 07/25/07 08:14:50 MAXIMUM CHEC?< RATIOS r'ER. 1989 RISC 3, OUTER FLANGE * WEB * INNER FLAPIGE OUTER. FLG WEB SHEAR INNER FLG HEM WIDTH THICh * THICK * WIDTH THICK F.ATIO LOAD RATIO LOAD RATIO LOAD (in) (in) (in) (in) (in; 1 8.00 0.3750 0.2500 5.00 0.5000 0.823 25 0.721 24 0.976 23 2 8.00 0.3125 0.3125 5.00 0.5060 0.898 24 0.765 24 0.886 24 3 8.00 0.3750 0.2188 8.00 0.5Ci00 0.959 24 0.855 24 0.927 25 4 8.00 0.5000 0.1875 8.00 0.3750 0.985 24 0.881 24 0.951 29 5 8.00 0.5000 0.1875 2.00 0.3750 0.985 24 0.881 24 0.951 24 6 8.00 0.3750 0.2188 8.00 0.5000 0.959 24 0.855 24 0.927 25 7 8.00 0.3125 0.3125 8.00 0.5000 0.898 24 0.765 24 0.886 24 8 8.00 0.3750 0.2500 8.00 0.5000 0.82325 0.721 24 0.976 23 3, MSA 29.0 Page 17 of 42 Job:51687901 0 OBC AFRAMES01687901.01_A 07/25/07 08:14:50 3` BOLTED SPLICE SUMMARY PLATE * BOLTS WIDTH/ * 4 CONNECTION RESISTANCE * MOMENT _ THICK.. * ROWS GAGE DIP_. * TENSION COMPRESSION MOMENT * ARM YT YC NODE (in.) * LINES (in.)' (trips) (kips) (kip -ft) * (in.) (in.) (in.) 2 8.00X TOP 5 2 0.750 125.1 184.8 773.7 59.92 9.42 2.43 0.500 BOT. 2 2 0.750 60.4 63.3 341.1 66.20 5.32 0.25 5 8.00X TOP 2 2 0.750 71.2 71.2 156.7 26.39 0.39 0.19 0.500 BOT. 3 2 0.750 89.4 124.4 226.7 25.44 1.28 0.25 8 8.00X TOP 5 2 0.750 125.1 184.8 773.7 59.92 9.42 2.43 0.500 BOT. 2 2 0.750 60.4 63.3 341.1 66.20 5.32 0.25 3` r MSA 29.0 Job:51687901 C: \ABCP \FRAMES \51687901.01A Page 18 of 42 07/25/07 08:14:50 FRAME SUPPORTS SUP. NODE 1 1 2 9 BASE PLT-TE CONNECTION DESIGN] FOR!ES AN7CHOP BOLTS THICKNESS WIDTH LENGTH ` 1 DIAMETER AREA TENSION NODE CASE (kips) iin.) (in2) 0.625 10.000 16.500 4 1.250 4.909 0.625 10.000 16.500 4 1.250 4.909 CONNECTION DESIGN] FOR!ES AT SUPPORTS BOLT RESISTANCE LOAD HORIZONTAL VERTICAL MOMENT SHEAR TENSION NODE CASE (kips) (kips) (kip -ft) (kips) (kips) 1 1 6. r, 1 .!..1 -' -0. 0 2 4.00 7.07 -0.(DO 3 10.77 15.00 -0.00 4 28.26 39.38 0.00 5 27.79 52.46 0.00 6 27.79 24.98 -0.00 7 -4.31 -1.05 -0.00 8 2.02 1.05 0.00 9 -10.58 -18.10 -0.00 10 -8.87 -9.72 -0.00 11 -3.35 -4.84 -0.00 12 -3.92 -8.83 -0.00 13 -4.47 -�J.73 -0.00 14 -12.87 -i .21 -0.00 15 -7.35 - 12.23 -0.00 16 -7.92 - 16.32 0.00 17 -8.48 -13.22 0.00 18 -2.90 -1.31 -0.00 19 2.90 1.31 0.00 20 -7.30 -3.31 0.00 21 7.30 3.31 -0.00 22 17.45 25.82 0.00 49.09 96.21 23 34.95 50.20 0.00 49.09 64.72 24 34.48 63.28 0.00 49.09 65.56 25 34.48 35.80 0.00 49.09 65.56 26 - 0.32 6.02 0.00 49.09 98.17 27 6.02 8.12 x.00 49.09 98.17 28 -6.59 -11.02 -0.00 49.09 98.17 29 -4.88 -2.65 0.00 49.09 98.17 30 0.64 2.2 0.00 49.09 98.17 31 0.08 -1.76 0.00 49.09 98.17 32 -0.48 1.34 -0.00 49.09 98.17 33 -8.88 �'.13 0.00 49.09 98.17 34 - 3.36 -..26 -0.00 49.09 98.17 35 -3.93 -___= 0.00 49.09 98.17 36 -4.48 0.00 49.09 98.17 37 4.96 1_i. �:i,i)0 49.09 98.17 38 9.0 2 -i1.00 49.09 98.17 0 • MSA 29.0 Page 19 of 42 Job:51687901 C: \ABCP \FRAMES \51687901.01A 07/25/07 08:14:50 39 11.53 21.28 0.00 49.09 98.17 40 16.28 22.86 -0.00 49.09 98.17 41 6.82 8.50 0.00 49.09 98.17 42 8.11 14.78 0.00 49.09 98.17 43 12.25 18.44 -0.00 49.09 98.17 44 11.82 15.45 0.00 49.09 98.17 45 11.41 17.77 -0.00 49.09 98.17 46 5.11 9.17 -0.00 49.09 98.17 47 9.25 12.82 0.00 49.09 98.17 48 8.82 9.83 -0.00 49.09 98.17 49 8.41 12.16 0.00 49.09 98.17 50 24.66 39.57 0.00 49.09 83.25 51 29.41 41.15 -0.00 49.09 74.70 52 19.95 26.7 -0.00 49.09 91.72 53 21.23 33.07 -0.00 49.09 89.40 54 25.38 36.73 -0.00 49.09 81.95 55 24.95 33.74 -0.00 49.09 82.72 56 24.53 36.06 0.00 49.09 83.47 57 18.23 27.45 0.00 49.09 94.81 58 22.37 31.11 -0.00 49.09 87.35 59 21.95 28.12 0.00 49.09 88.12 60 21.53 30.45 -0.00 49.09 88.87 61 29.05 50.96 0.00 49.09 75.34 62 25.02 46.54 0.00 49.09 82.59 63 24.18 45.87 0.00 49.09 84.11 64 22.02 40.92 -0.00 49.09 88.00 65 21.18 40.25 0.00 49.09 89.51 66 24.30 28.77 -0.00 49.09 83.89 67 20.88 22.27 -0.00 49.09 90.05 68 24.59 2.2.93 -0.00 49.09 83.36 69 17.88 1( >.65 -0.00 49.09 95.45 70 21.59 17.32 -0.00 49.09 88.76 71 12.92 21.55 0.00 49.09 98.17 72 17.27 23.:_? -0.00 49.09 96.54 73 26.05 39.84 0.00 49.09 80.74 74 30.40 41.81 0.00 49.09 72.91 75 -1.21 4.77 -0.00 49.09 98.17 76 5.12 6.87 0.00 49.09 98.17 77 -7.49 - 12.27 -0.00 49.09 98.17 78 -5.77 -3.90 -0.00 49.09 98.17 79 - 0.25 0.98 -0.00 49.09 98.17 80 -0.82 - 3.01 0.00 49.09 98.17 81 -1.37 0.09 -0.00 49.09 98.17 82 -9.78 -11.38 0.00 49.09 98.17 83 -4.26 - 6.51 0.00 49.09 98.17 84 -4.82 -10.50 0.00 49.09 98.17 85 -5.38 -7.40 0.00 49.09 98.17 86 2.38 6.73 -0.00 49.09 98.17 87 6.44 8.57 -0.00 49.09 98.17 88 1.20 7.21 -0.00 49.09 98.17 89 9.79 11 .17. -0.00 49.09 98.17 90 -0.19 x.27 0.00 49.09 98.17 91 8.40 ;.17 0.00 49.09 98.17 9 1 -6.69 10.82 -0.00 2 -4.00 7,0? 0.00 -10. ?7 0.:10 4 -28.26 3 9.38 0.00 MSA 29'0 Page 20 of 42 Job:5I68790I C:\ABCP\FRAMES\5I68790I.0IA 07/25/07 08:I4:50 5 -27.79 24.98 0.00 6 -27.79 52 46 -0O0 7 -2.02 1.05 -000 8 4.3I -1.05 0.00 9 10.58 00 IO 3. 3)5 -4. 94 -0.00 II 8.87 0.0U 12 4.47 -5.73 0.0O I] O. 00 l4 7�35 -l2.33 000 15 12.97 -I 2I -O.00 IG 8.48 -0.00 17 7.92 16. 321 0.00 I8 -2.90 1.3I 0.00 19 2.90 -I.31 -0.00 20 -7.30 �.31 -0.00 21 7.50 -3.3l 0 .00 22 -17.45 25 00 A9.09 96.21 23 -54.95 5020 -9�0O 49.09 64.72 24 -34.48 0 49.O9 65,56 25 -34.48 0.0G 49.09 65.56 26 -6.02 8.I2 -0.00 49.09 98.17 27 0.32 6.02 0.00 49.09 98.17 28 5.59 -II.02 0.00 49.09 98.17 29 -0.64 2-23 0.00 49.09 98.17 30 4.88 -2.65 0.00 49.09 98.17 31 0.48 I.�A -0.00 49.09 98.17 32 -0.08 -1.76 -0.00 49.09 98.17 53 3.36 -0.00 49.09 98.l7 34 8.88 -I 15 -O.00 49.09 98.I7 35 4.49 -6.15 0.00 49.09 98.17 56 3. 93 -9.25 -0.00 49.09 98.17 37 -9.02 12.I7 0.00 49.D9 98.l7 38 -4.96 10.33 -0.00 49.09 98.I7 39 -I6.28 22.86 0.00 49.09 98.17 40 -II.53 21.28 0.00 49.09 98.17 41 -6.82 8.50 0.00 49.09 98.17 42 -I2.25 I8.44 0.00 49.09 98.17 43 -8.I1 I4.78 -0.00 49.09 98.I7 44 -I1.4I 17.77 -0.00 49.09 98.17 45 -11.82 15.45 -0.00 49.09 98.17 46 -9.25 I2.82 0.00 49.09 98.l7 47 -5.1I 9.I -0.00 49.09 98.17 48 -8.41 12.I6 -0.00 49.09 98.17 49 -8.82 9.83 O.00 49.09 98.I7 50 -29.41 41.15 -0.00 49.09 74.70 51 -24.66 0.00 49.09 85.25 52 -19.95 26.79 -0.00 49.09 91.72 53 -25.38 3u. 0.00 49.09 81.95 54 -21.23 33.07 -0.00 49.09 89.40 55 -24.53 36.06 -0.00 49.09 83.47 55 -24.95 3�.74 -0 .00 49.09 82.72 57 -22.37 31.11 -0.00 49.09 87.35 58 -18.23 27.45 -0.00 49.09 94.81 59 -2I.53 30.45 0.00 49.09 88.87 60 -2I.95 �8.12 -0.00 49.09 88.12 61 -24.]0 23�77 -O�0O 49�09 83.89 62 -20.88 0O 49.09 90.05 i 0 MSA 29.0 Page 21 of 42 Job:51687901 C: \ABCP \FP.AMES \51687901.01A 07/25/07 08:14:50 63 -24.59 -_.93 -0.00 49.09 83.36 64 -17.88 16.65 -0.00 49.09 95.45 65 -21.59 1 -.2 0.00 49.09 88.76 66 -29.05 50.96 -0.00 49.09 75.34 67 -25.02 46.5� 0.00 49.09 82.59 68 - 24.18 45.87 -0.00 49.09 84.11 69 - ^_2.02 40.' =' G. 49.09 88.00 70 - 21.18 40.25 0.00 49.09 89.51 71 -17.27 23. 52 0. ii0 49.09 96.54 72 -12.92 21.55 -0.00 49.09 98.17 73 -30.40 41.81 0.00 49.09 72.91 74 -26.05 39.84 -0.00 49.09 80.74 75 -5.12 6.37 -0.00 49.09 98.17 76 1.21 4.77 -0.00 49.09 98.17 77 7.49 - 12.27 0.00 49.09 98.17 78 0.25 0.98 0.00 49.09 98.17 79 5.77 -3.90 0.00 49.09 98.17 80 1.37 0.09 -0.00 49.09 98.17 81 0.82 - 3.01 0.00 49.09 98.17 82 4.26 -6.51 -0.00 49.09 98.17 83 9.78 -11.38 -0.00 49.09 98.17 84 5.38 - -.40 0.00 49.09 98.17 85 4.82 - 1�i.30 -0.00 49.09 98.17 86 - 6.44 %.57 -0.00 49.09 98.17 87 -2.38 6.73 -0.00 49.09 98.17 88 -9.79 11.11 0.00 49.09 98.17 89 -1.20 7.21 0.00 49.09 98.17 90 -8.40 9.17 0.00 49.09 98.17 91 0.19 5.27 0.00 49.09 98.17 • MSA 29.0 Job:51687901 C:\ABC OFRAMES`•,51687901.01A Page 22 of 42 07/25/07 08:14:50 SUPPORT REACTIONS CASE 1 : D +C SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) ( kip -ft ) 1 1 6.69 10.82 -0.00 2 9 -6.69 10.82 -0.00 CASE 3 L SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 10.77 15.00 -0.00 2 9 -10.77 15.00 0.00 CASE 5 SUL1 <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (,kip -ft) 1 1 27.79 52.46 0.00 2 9 -27.79 24.98 0.00 CASE 7 WMIN -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -4.31 -1.05 -0.00 2 9 -2.02 1.05 -0.00 CASE 9 WL^ SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -10.58 -18.10 -0.00 2 9 10.58 -18.10 0.00 CASE 11 : Wl<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -3.35 -4.84 -0.00 2 9 8.87 - 9.72 0.00 CASE 13 : W2<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -4.47 -5.73 -0.00 2 9 3.92 -8.83 0.00 CASE 15 : W3<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -7.35 -12.33 -0.00 2 9 12.87 -17.21 -0.00 CASE 17 : W4<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -8.48 -13.22 0.00 2 9 7.92 -16.32 0.00 CASE : D SUPPORT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kips) (kip -ft) 1 1 4.00 7.07 -0.00 2 9 -4.00 7.07 0.00 CASE 4 S SUPPORT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kips) (kip -ft) 1 1 28.26 39.38 0.00 2 9 -28.26 39.38 0.00 CASE 6 SUR1 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) ( kips ) (kip-ft) 1 1 27.79 24.98 -0.00 2 9 -27.79 52.46 -0.00 CASE 8 : WMIN<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 2.02 1.05 0.00 2 9 4.31 -1.05 0.00 CASE 10 : Wl -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -8.87 -9.72 -0.00 2 9 3.35 -4.84 -0.00 CASE 12 : W2 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -3.92 -8.83 -0.00 2 9 4.47 -5.73 0.00 CASE 14 : W3 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -12.87 -17.21 -0.00 2 9 7.35 -12.33 0.00 CASE 16 : W4 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -7.92 -16.32 0.00 2 9 8.48 -13.22 -0.00 CASE 18 : E -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 -2.90 -1.31 -0.00 2 9 -2.90 1.31 0.00 CASE 19 : E <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT CASE 20 : of -> SUPPOR'! NODE HORIZONTAL VERTICAL MOMENT 4 0 1 411 MSA 29.0 Page 23 of 42 Job:51687901 C: \ABCP \FRAMES \t,1687901.01A 07/25/07 08:14:50 (kips) (kips; (kip -ftj (kips) (kips) (kip -ft) 1 1 2.90 1.31 C.00 1 1 -7.30 -3.31 0.00 2 9 2.90 -1.31 9 -7.30 3.31 -0.00 CASE 21 : QE<- CASE __ D +C + L SUPPORT NODE HORIZ011TAL VERTICAL PIO'HEINT SUPPORT NUDE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip - ft) (kips) (kips) (kip -ft) 1 1 7.30 3.31 -CI.00 1 1 17.45 25.82 0.00 2 9 7.30 -3.31 0.00 - 9 - 17.45 25.82 -0.00 CASE 23 : D +C + S CASE 24 : D +C + SUL1<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) (kips) (kips) (kip -ft) 1 1 34.95 50.20 0.00 1 1 34.48 63.28 0.00 2 9 - 34.95 50.20 -0.00 = 9 - 34.48 35.80 -0.00 CASE 25 . D +C + SURl -> T�SE <' D + W1y1TN -> SUPPORT NODE HORIZONTAL VERTICAL M011E11T ;90DE HORIZONTAL "VERTICAL MOMENT (kips) (kips) (kip -ft) (kips) (kips) (kip -ft) 1 1 34.48 35.80 0.00 1 1 - 0.32 6.02 0.00 2 9 -34.48 63.28 O.GO = 9 -6.02 8.12 -0.00 CASE 27 . D + WMIN <- CASE 28 . D + WL^ SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) (kips) (kips) (kip -ft) 1 1 6.02 8.12 0.00 1 1 -6.59 -11.02 -0.00 2 9 0.32 6.02 0.00 2 9 6.59 -11.02 0.00 CASE 29 : D + Wl -> CASE 30 : D + Wl <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT DIODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) (kips) (kips) (kip -ft) 1 1 -4.88 -2.65 0.00 1 1 0.64 2.23 0.00 2 9 - 0.64 2.23 0.00 2 9 4.88 -2.65 0.00 CASE 31 . D + W2 -> CASE 32 . D + W2<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip -ft) 1 1 0.08 -1.76 0.00 1 1 -0.48 1.34 -0.00 2 9 0.48 1.34 -0.00 2 9 -0.08 -1.76 -0.00 CASE 33 : D + W3 -> CTSE 34 : D + W3<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) (kips) (kips) (kip -ft) 1 1 -8.88 -10.13 0.00 1 1 -3.36 -5.26 -0.00 2 9 3.36 -5.26 -0.00 2 9 8.88 -10.13 -0.00 CASE 35 : D + W4 -> CASE 36 : D + W4 <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) (kips) (kips) (kip -ft) 1 1 -3.93 -9.25 0.00 1 1 -4.48 -6.15 0.00 2 9 4.48 - 6.15 0.00 2 9 3.93 -9.25 -0.00 CASE 37 . 1.06D +C + 0.70E -> CASE 38 . 1.06D +C + 0.70E < - SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT I HORIZONTAL VERTICAL MOMENT (kips) (kips", (kip -f* !kips.) (kips) (kip -ft) 1 1 4.96 10.33 0.00 _ 1 9.02 12.17 -0.00 2 9 -9.02 12.17 (j 9 -4.96 10.33 -0.00 411 MSA 29.0 Page 24 of 42 Job:51687901 C KABC O FRAME A51687901.01A 07/25/07 08:14:50 CASE 39 : D +C + 0.75L + 0.75WMIN -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 11.53 21.28 0.00 2 9 -16.28 22.86 0.00 CASE 40 : D +C + 0.75L + 0.75WMIN <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 16.28 22.86 -0.00 2 9 -11.53 21.28 0.00 CASE 41 : D +C + 0.75L + 0.75WL" SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 6.82 8.50 0.00 2 9 -6.82 8.50 0.00 CASE 43 : D +C + 0.75L + 0.75W1 <:- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 12.25 18.44 -0.00 2 9 -8.11 14.78 -0.00 CASE 45 . D +C + 0.75L + 0.75W2,- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 11.41 17.77 -0.00 2 9 -11.82 15.45 -0.00 CASE 47 : D +C + 0.75L + 0.75W3<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 9.25 12.82 0.00 2 9 -5.11 9.17 -0.00 CASE 49 : D +C + 0.75L + 0.75W4<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 8.41 12.16 0.00 2 9 -8.82 9.83 0.00 CASE 51 . D +C + 0.755 + 0.75WMIN <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 29.41 41.15 -0.00 2 9 -24.66 39.57 0.00 CASE 53 : D +C + 0.75S + 0.75W1 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 21.23 33.07 -0.00 2 9 -25.38 36.73 0.00 CASE 55 : D +C + 0.15S + 0.15W2 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft' 1 1 24.95 33.74 -0.00 2 9 -24.53 36.06 -0.0 CASE 57 : D +C + 0.75S + 0.75W3 -:1- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 18.23 27.45 0.00 CASE 42 : D + SUPPORT NODE 1 1 9 + 0.75L + 0.75W1 -> HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 8.11 14.78 0.00 -12.25 18.44 0.00 CASE 44 : D +C + 0.75L + 0.75W2 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 11.82 15.45 0.00 9 -11.41 17.77 -0.00 CASE 46 : D +C + 0.751, + 0.75W3 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 5.11 9.17 -0.00 2 9 -9.25 12.82 0.00 CASE 48 : D +C + 0.75L + 0.75W4 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 8.82 9.83 -0.00 2 9 -8.41 12.16 -0.00 CASE 50 : D +C + 0.75S + 0.75WMIN -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) ( kips ) (kip-ft) 1 24.66 39.57 0.00 2 9 -29.41 41.15 -0.00 CASE 52 . D +C + 0.75S + 0.75WL^ SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 19.95 26.79 -0.00 2 9 -19.95 26.79 -0.00 CASE 54 : D +C + 0.75S + 0.75W1<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 25.38 36.73 -0.00 2 9 -21.23 33.07 -0.00 CASE 56 : D +C + 0.75S + 0.75W2<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 24.53 36.06 0.00 9 -24.95 33.74 -0.00 CASE 58 : D +C + 0.75S + 0.75W3 <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 22.37 31.11 -0.00 • s MSA 29.0 Page 25 of 42 Job:51687901 C: \ABCP \FRAMES \51687901.01A 07/25/07 08:14:50 2 9 -22.37 31.11 -0.00 2 9 -18.23 27.45 -0.00 CASE 59 : D +C + 0.75S + 0.75W4 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft') 1 1 21.95 2'8.1_ 0.00 2 9 -21.53 30.45 0.00 CASE i �i) . D+ SUPPORT' 1dODE 1 I 9 + 0.75S + 0.75W4 <- HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft' 21.53 30.45 -0.00 -21.95 28.12 -0.00 CASE 61 : D +C + 0.75SUL1<- + 0.75WMIN <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 29.05 50.96 0.00 2 9 - 24.30 28.77 -0.00 CASE 63 : D +C + 0. 75SUL1 <- + 0. 75Gd2� - SUPPORT DIODE HORIZONTAL VERTICAL 1701'7E11T (kips) (kips.) 1 1 24.18 45.87 k)C.) 2 9 -24.59 22.93 -0.00 CASE 65 : D +C + 0.75SUL1<- + 0.75W4 <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 21.18 40.25 0.00 2 9 -21.59 17.32 0.00 CASE 67 : D +C + 0.75SUR1 -> + 0.75W1 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft? 1 1 20.88 22.27 -0.00 2 9 -25.02 46.54 0.00 CASE 69 : D +C + 0.75SUR1 -> + 0.75W3 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 17.88 16.65 -0.00 2 9 -22.02 40.92' 0.00 CASE 71 : 1.07D +C + 0.75L + 0.75E -:> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (I,_ip -ft) 1 1 12.92 21.55 0.00 2 9 -17.27 23.52 0.00 CASE 73 : 1.07D +C + 0.75S + 0.75E -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-f'i 1 1 26.05 39.84 0.00 2 9 -30.40 41.81 0.00 CASE 75 : 0.60D + WMIN -> SUPPORT NODE HORIZONTAL VERTICAL 1 (kips) (kips` (kip -ft) 1 1 -1.21 4.77 2 9 -5.12 6.x'7 CASE 77 : 0.60D + WL^ SUPPORT NODE HORIZONTAL VERTICAL MOMENT CSE 62 : D +C + C).7 + 0.75W1<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 25.02 46.54 0.00 9 -20.88 22._7 0.00 ( 64 . D+ SUPPORT iiODE 1 1 9 + 0.75SUL1 <- + 0.75W3 <- HORIZONTAL VERTICAL 130MENT (kips) (kips) (kip - ft) 22.02 40.92 -0.00 -17.88 16.65 -0.00 CASE 66 : D +C + 0.75SUR1 -> + 0.75WMIN -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 24.30 28.77 -0.00 2 9 -29.05 50.96 -0.00 CASE 6= : D +C + 0.75SUR1 -> + 0.75W2 -> SUPPORT LODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 24.59 22.93 -0.00 2 9 -24.18 45.87 -0.00 CASE 70 . D +C + 0.75SUR1 -> + 0.75W4 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 21.59 17.32 -0.00 9 - 21.18 40.25 0.00 CASE 72 : 1.07D +C + 0.751, + 0.75E < - SUPPOR:, 1i0DE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 17.27 23.52 -0.00 9 -12.92 21.55 -0.00 CASE 74 : 1.07D +C + 0.75S + 0.75E<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 30.40 41.81 0.00 9 -26.05 39.84 -0.00 _ASE 76 : 0.60D + WMIN < - S[JPPCRT NODE HORIZONTAL VERTICAL MOMENT ,kips) (kips) (kip -ft) l 1 5.12 6.87 0.00 9 1.21 4.77 -0.00 CASE 78 : 0.60D + Wl -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT 4-3 �-Z-� MSA 29.0 Page 26 of 42 Job:51687901 C: \ABCP \FRAMES \51687901.01A 07/25/07 08:14:50 (kips) (kips) (kip -ft) (kips) (kips) (kip -ft) 1 1 -7.49 -12.27 -0.00 1 1 -5.77 -3.90 -0.00 2 9 7.49 - 12.27 0.00 2 9 0.25 0.98 0.00 CASE 79 : 0.60D + Wl <- _._ Ei; : 0.60D + W2 -> SUPPORT NODE HORIZONTAL VERTICAL IIOME "!T NODE HORIZONTAL VERTICAL MOMENT (kips) ( }tips) (kip -ft) (kips) (}_ips) (kip -ft) 1 1 -0.25 0.98 -0.00 1 1 -0.82 -3.01 0.00 2 9 5.77 -3.90 0.00 _ 9 1.37 0.09 -0.00 CASE 81 : 0.66D + W2 <- CASE 82 : 0.60D + W3 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) (kips) (kips) (kip -ft) 1 1 -1.37 0.09 -0.00 1 1 -9.78 -11.38 0.00 2 9 0.82 - 3.01 0.00 9 4.26 -6.51 -0.00 CASE 83 : 0.60D + W3<- CASE 84 . 0.60D + W4 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) (kips) (kips) (kip-ft) 1 1 -4.26 -6.51 0.00 1 1 -4.82 -10.50 0.00 2 9 9.78 -11.38 -0.00 2 9 5.38 -7.40 0.00 CASE 85 : 0.60D + W4<- CASE 8r : 0.54D +C + 0.70E -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) (kips) (kips) (kip -ft) 1 1 -5.38 -7.40 0.00 1 1 2.38 6.73 -0.00 2 9 4.82 -10.50 -0.00 2 9 - 6.44 8.57 -0.00 CASE 87 : 0.54D +C + 0.70E < - CASE 88 : 0.76D +C + 0.5952E -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) (kips) (kips) (kip -ft) 1 1 6.44 8.57 -0.00 1 1 1.20 7.21 -0.00 2 9 -2.38 6.73 -0.00 2 9 -9.79 11.11 0.00 CASE 89 : 0.76D +C + 0.590E < - CASE 90 : 0.48D +C + 0.5952E -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) (kips) (kips) (kip -ft) 1 1 9.79 11.11 -0.00 1 1 -0.19 5.27 0.00 2 9 -1.20 7.21 0.00 2 9 -8.40 9.17 0.00 CASE 91 : 0.48D +C + 0.5952E < - SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft; 1 1 8.40 9.17 0.0u 2 9 0.19 5.27 0.00 �-Z-� �� �� MSA 2g.O Job:5I68790I C:\JlBCP\FP.2�MES\5I68790I.0IA NODAL DI3PLACE Page 27 of 42 07/25/07 08:I4:50 CASE I D+C �sSE o Horizontal Deflection Limit: mnoe Horizontal Deflection Limit Vertical Deflection Limit: 'None 7ez cal Deflection Limit B08z3O11TAL "IERTzCeL ABGOLAP uOFI7 O17AL VERTICAL ANGULAR NODE (io.) (io) (zad�> �0D� (iu} (io.> (zad.) I 0.000 0.000 0,001 l 0.000 0.00I Z -0.079 -0.00I -0.00I 3 -0.045 -0.001 -0.000 3 -0.040 -0.288 -0.002 ] -0.023 -0.I70 -0.001 A -0.020 -0.557 -0.002 4 -0.012 -0.329 -0.00I 5 -0.000 -0.853 0.000 5 -0.000 -0.503 0.000 6 0.0 -0.557 0.002 16 0.01? -0.529 0.00I 7 0.040 -0.288 0.002 7 0.023 -0.170 0.001 8 0.079 -0.001 0.00I 8 0.046 -0.00I 0.000 9 0.000 0.O00 -0.00l 9 000 0.000 -0.00I CASE 3 : L C-,'tSE 4 Horizontal Deflection Limit: L/60 yociznntal Deflection Limit Vertical Deflection Limit: L/I80 % Deflection Limit HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (zad.) 1 0.000 0.000 0.002 l 0.000 0.000 0.005 2 -0.I30 -0.000 -0.00I 2 -0.34I -0.00I -0.003 3 -0.065 -0.470 -0.005 ] -0. 174 -I.233 -0.009 4 -0.033 -0.9I3 -0.004 4 -0.087 -2.396 -0.010 5 -0.000 -1.401 0.000 5 -0.000 -3.578 0.000 6 0.033 -0.9I3 0.004 6 0.087 -2.396 0.0I0 7 0.065 -0,470 0.003 7 0.I74 -I.233 0.009 8 0.130 -0.000 0.00I 8 0.341 -0.00I 0.003 9 0.000 0.000 -0.002 9 0.000 0.000 -0.006 CASE 5 : SDLI<- CASE 6 : SORl-> Horizontal Deflection Limit: L/60 Horizontal Deflection Limit Vertical Deflection Limit: L/18I Vertical Deflection Limit HORIZONTAL VERTzCAT ANGULAR HORIZONTAL VERTICAL ANGULAR muoE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) l 0.000 0.000 -0.001 l 0.000 0.000 0.012 2 1.348 -0.127 -0.009 2 -2.0I9 0.125 0.003 3 I.677 -2.465 -0.0I2 -1, -2.0I9 0.041 -0.005 4 1.771 -3.714 -0.002. 4 -I.943 -0.999 -0.011 5 I.744 -3.616 0.008 5 -I.744 -3.616 -0.008 h 1.942 -0.999 0.01I O -I.771 -3.7I4 0.008 7 2.0I9 0.04I 0.005 7 -1.577 -2.465 0.0I2 8 2.019 0.125 -0.003 8 -I.348 -0.I27 0.009 9 0.000 0.000 -0.0I2 9 0.000 0.000 0.00I CASE 7 : WMIm-> CASE 8 : wHzm<- Horizontal Deflection Limit: L/42 Horizontal Deflection Limit Vertical Deflection Limit: L/126 Vertical Deflection Limit BDRl%00TAL VERTICAL ANGULAR HOaz3DmrAL VERTICAL ANGULAR NODE (in.) (in.) (zad.) 0DDC (io.) (in.) (zad.) / 0.000 0.000 -0.002 l D.000 0.000 0.002 2 0.458 -0.031 -0.00I 2 -O.440 0.030 0.00I 3 0.482 -0.199 -0.000 � -0.�72 0.242 0.001 4 0.480 -0.176 0.001 4 -0.474 0.252 -0.000 5 0.459 0.058 0.001 5 -0.459 0.058 -0.00I 6 0.474 0.253 0.000 6 -0.480 -0.176 -0.001 None None L/6O L/I8l L/50 L/I8I L/42 L/I26 45- MSA 29.0 Job:51687901 7 0.472 8 0.440 9 0.000 CASE 9 : WL^ VERTICAL Horizontal (in.) Vertical 0.000 HORIZONTAL NODE (in.) 1 0.000 2 0.138 3 0.069 4 0.033 5 0.000 6 -0.033 7 -0.069 8 -0.138 9 0.000 CASE 11 : Wl <- Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 -0.064 3 -0.097 4 -0.113 5 -0.132 6 -0.148 7 -0.167 8 -0.201 9 0.000 CASE 13 : W2 <- Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 0.319 3 0.315 4 0.302 5 0.273 6 0.276 7 0.260 8 0.209 9 0.000 CASE 15 : W3<- Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 -0.009 3 -0.070 4 -0.100 Deflection Limit Deflection Limit VERTICAL ANGULAR. (in.) (rad.) 0.000 Page 28 of 42 0.002 C: \ABCP \FRA1 \51687901.01A 07/25/07 08:14:50 0.242 -0.001 7 -0.482 -0.199 0.000 0.030 -0.001 8 -0.458 -0.031 0.001 0.000 -0.002 9 0.000 0.000 0.002 Deflection Limit Deflection Limit VERTICAL ANGULAR. (in.) (rad.) 0.000 -0.002 0.002 0.001 0.521 0.004 1.021 0.004 1.566 -0.000 1.021 -0.004 0.521 -0.004 0.002 -0.001 0.000 0.002 Deflection Limit Deflection Limit VERTICAL ANGULAR (in.) (rad.) 0.000 -0.000 0.008 0.001 0.252 0.002 0.460 0.002 0.721 0.000 0.483 -0.002 0.238 -0.002 -0.008 -0.000 0.000 0.002 Deflection Limit Deflection Limit VERTICAL ANGULAR (in.) (rad.) 0.000 -0.002 -0.019 -0.000 0.024 0.001 0.212 0.002 0.627 0.001 0.605 -0.001 0.392 -0.002 0.020 -0.001 0.000 -0.000 Deflection Limit Deflection Limit VERTICAL ANGULAR (in.) (rad.) 0.000 -0.001 0.008 0.001 0.460 0.003 0.870 0.003 CASE 10 : W1 -> L /4 Horizontal L/126 Vertical HORIZONTAL NODE (in.) 1 0.000 2 0.201 3 0.167 4 0.148 5 0.132 6 0.113 0.097 8 0.064 0.000 CASE 12 . W2 L/42 Horizontal L/126 Vertical HORIZONTAL NODE (in.) 1 0.000 2 -0.209 3 -0.260 4 -0.276 5 .273 6 -0.302 7 -0.315 8 -0.319 9 0.000 CASE 14 : W3 -> L/42 Horizontal L/126 Vertical HORIZONTAL NODE (in.) 1 0.000 0.256 6.194 y 0.161 5 0.132 6 0.100 7 0.070 8 0.009 9 0.000 CASE 16 : W4 -> L/42 Horizontal 12 L� 6 Vertical HORIZONTAL NODE (in.) 1 0.000 - -0. 154 --0.233 -0.263 Deflection Limit Deflection Limit "VERTICAL ANGULAR (in.) (rad.) 0.000 -0.002 -0.008 0.000 0.238 0.002 0.483 0.002 0.721 -0.000 0.460 -0.002 0.252 -0.002 0.008 -0.001 0.000 0.000 Deflection Limit Deflection Limit VERTICAL ANGULAR (in.) (rad.) 0.000 0.000 0.020 0.001 0.392 0.002 0.605 0.001 0.627 -0.001 0.212 -0.002 0.024 -0.001 -0.019 0.000 0.000 0.002 Deflection Limit Deflection Limit VERTICAL ANGULAR (in.) (rad.) 0.000 -0.003 -0.007 0.001 0.447 0.003 0.893 0.004 1.351 -0.000 0.870 -0.003 0.460 -0.003 0.008 -0.001 0.000 0.001 Deflection Limit Deflection Limit VERTICAL ANGULAR (in.) (rad.) 0.000 -0.001 0.021 0.002 0.601 0.004 1.015 0.003 L/42 L /126 L/42 L/126 L/42 L/126 L/42 L/126 4"6 MSA 29.0 Page 29 of 42 Job:51687901 C KABC A FRAME 051687901.01A 07/25/07 08:14:50 5 -0.132 1.351 0.000 5 -0.273 1.257 -0.001 6 -0.161 0.893 -0.004 6 -0.315 0.622 -0.004 7 -0.194 0.447 -0.003 7 - 0.343 0.233 -0.003 8 -0.256 -0.007 -0.001 8 -0.373 -0.018 -0.000 9 0.000 0.000 0.003 9 0.000 0.000 0.003 CASE 17 . Wn- CAFE 10 . E -. Horizontal Deflection Limit: L%42 Horizontal Deflection Limit: L /60 Vertical Deflection Limit: L/126 Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 - 0.003 1 0.000 0.000 -0.003 2 0.373 - 0.018 0.000 2 0.551 -0.038 -0.002 3 0.343 0.233 0.003 3 0.587 -0.281 -0.000 4 0.315 0.622 0.004 4 0.586 -0.273 0.001 5 0.273 1.157 0.001 D 0.564 0.000 0.001 6 0.263 1.015 - 0.003 6 0.536 0.273 0.001 7 0.233 0.601 -0.004 7 0.587 0.281 -0.000 8 0.154 0.021 -0.002 0.551 0.038 -0.002 9 0.000 0.000 0.001 9 0.000 0.000 -0.33 CASE 19 : E<- CASE 20 : nE -> Horizontal Deflection Limit: L /60 Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 0.003 1 0.000 0.000 -0.006 2 -0.551 0.038 0.002 2 1.388 -0.095 -0.004 3 -0.587 0.281 0.000 3 1.478 -0.708 -0.001 4 -0.586 0.273 -0.001 4 1.476 -0.686 0.001 5 -0.564 -0.000 -0.001 5 1.419 0.000 0.004 6 -0.586 -0.273 -0.001 6 1.476 0.686 0.001 7 -0.587 -0.281 0.000 - 1.478 0.708 -0.001 8 -0.551 - 0.038 0.002 8 1.388 0.095 -0.004 9 0.000 0.000 0.003 9 0.000 0.000 -0.006 CASE 21 : nE <- CASE 22 : D +C + L Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 0.006 1 0.000 0.000 0.003 2 -1.388 0.095 0.004 2 - 0.209 - 0.1001 -0.002 3 -1.478 0.708 0.001 3 -0.106 -0.757 -0.006 4 - 1.476 0.686 -0.001 4 -0.053 -1.470 -0.006 5 -1.419 -0.000 - 0.004 5 -0.000 -2.254 0.000 6 -1.476 -0.686 - 0.001 6 0.053 -1.470 0.006 7 -1.478 -0.708 0.001 7 0.106 -0.757 0.006 8 -1.388 -0.095 0.004 8 0.209 -0.001 0.002 9 0.000 0.000 0.006 9 0.000 0.000 -0.003 CASE 23 . D +C + S CASE 2 ^. . D +C + SUL 1<- Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR ;PORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) N (in.) (in.) (rad.) 1 0.000 0.000 0.007 1 0.000 0.000 0.000 2 -0.420 -0.002 -0.004 2 1.269 -0.128 -0.010 • MSA 29.0 Page 30 of 42 Job:51687901 C : \ABCP \FRAMES \51687901.01A 07/25/07 08:14:50 3 -0.214 -1.521 -0.011 3 1.637 -2.753 -0.014 4 -0.107 -2.953 -0.012 4 1.751 -4.271 -0.010 5 -0.000 -4.531 0.000 5 1.744 -4.470 0.008 6 0.107 -2.953 0.012 6 1.962 -1.556 0.013 7 0.214 -1.521 0.011 7 2.059 -0.247 0.007 8 0.420 -0.002 0.004 2.098 0.124 -0.002 9 0.000 0.000 - C;.Or; 0.000 -0.013 CASE 25 D +C + SURl -> CASE 26 D - Wl - > Horizontal Deflection Limit: hone Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR. rORIZO11TAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 0.013 1 0.000 0.000 -0.002 2 -2.098 0.124 0.002 2 0.412 -0.032 -0.002 3 -2.059 -0.247 -0.007 ? O.aSg -0.369 -0.001 4 -1.962 -1.556 - 0.013 4 0.468 -0.504 -0.001 5 -1.744 -4.470 - 0.003 0.459 -0.445 0.001 6 -1.751 -4.271 0.010 6 0.485 - 0.077 0.002 7 - 1.637 - 2.753 0.0,14 0.496 0.072 0.001 8 -1.269 -0.128 0.010 8 0.487 0.029 -0.001 9 0.000 0.000 -0.000 9 0.000 0.000 -0.003 CASE 27 : D + WMIN <- CASE 28 : D + WL^ Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 0.003 i x.000 0.000 -0.001 2 -0.487 0.029 0.001 0.097. 0.001 0.001 3 -0.496 0.072 -0.001 0.046 0.351 0.003 4 -0.485 -0.077 -0.002 0.022 0.692 0.003 5 -0.459 -0.445 -0.001 5 0.000 1.064 -0.000 6 -0.468 -0.504 0.001 6 -0.022 0.692 -0.003 7 -0.459 -0.369 0.001 7 -0.046 0.351 -0.003 8 -0.412 -0.032 0.002 8 - 0.091. 0.001 -0.001 9 0.000 0.000 0.002 9 0.000 0.000 0.001 CASE 29 : D + Wl -> CASE 30 : D + W1<- Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: dune Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NO DE (in.) (in.) (rad.) 1 0.000 0.000 -0.001 1 0.000 0.000 0.000 2 0.155 - 0.009 0.000 2 -0.110 0.007 0.000 3 0.144 0.068 0.001 3 -0.121 0.081 0.000 4 0.137 0.154 0.001 4 -0.125 0.131 0.000 5 0.132 0.218 -0.000 5 0 132 0.218 0.000 6 0.125 0.131 -0.000 e -0.137 0.154 -0.001 7 0.121 0.081 -0.000 - - 0.144 0.068 -0.001 8 0.110 0.007 -0.000 -0.155 -0.009 -0.000 9 0.000 0.000 -0.00n 0.000 0.000 0.001 CASE 31 : D + W2 -> Horizontal Deflection Limit: Vertical Deflection Limit: 'Ho HORIZONTAL VERTICAL ANGDULAR. NODE (in.) (in.) (fad.) . D + rdd2<- 1 iznrrtal Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) �� �� �� �� MSA 29.0 Page 31 of 42 Job:5I68790I C:\ABCP\FRAMES\5I58790I.0IA 07/25/07 08:I4:50 l 0.000 0.00O 0.00l l 0.000 0.000 -0.00I 2 -0.255 0.019 0.001 2 0.272 -0.0I9 -0.00I 3 -0.284 0.222 0.0 01 3 0.292 -0.I46 -0.000 4 -0.287 0.276 0 .D00 4 O.290 -0Il6 0. 001 5 -0.273 0.124 -0.0Dl 273 0.124 0.001 6 -0.290 -0.I116 -0.00I 6 0. L 6 -0.000 7 -0.292 -0.146 0.00i � 0�8� 0.222 -0.00I 8 -0.272 -0.019 00OI � 0.255 0.0I9 -0.001 9 0.000 0.000 0.00O 0.000 -0.001 CASE 33 : D + w3-> Cn�E 34 : o + w3<- Horizontal Deflection Limit: Pone unriz(Dotal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (zad.) NODE (io.) (in.) (zad.) I 0.000 0.000 -0.002 l Mi0O O.000 -0.000 2 0.209 -0.008 0. 001 2 -O.056 0.008 0.001 3 0.171 0.276 0.002 } -00�4 0.290 0.002 4 0.I49 0.564 6. H2 4 -0.lI2 054I 0. 002 5 0.I32 0.848 -0.000 5 -0.152 0.848 0.000 6 0.1I2 0.541 -0.002 6 -0.149 0.564 -0.002 7 0.094 0.290 -0.002 7 -0.171 0.276 -0.002 O 0.056 0.008 -0.00I 8 -0.209 -0.008 -0.00I 9 0.000 0.000 0.000 9 0.000 0.000 0.002 CASE 35 : D + W4-> CASE 36 : D + W4<- Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR 80nIZomTaL VERTICAL ANGULAR m0oE (in.) (in.) (zad.) n0oE (in.) (in.) (rad.} 1 0.000 0.000 0.000 l 0.000 0.000 -0.002 2 -0.20I 0.020 0.001 2 0.327 -0.019 -O.00O 3 -0.257 0.431 0.002 3 0.319 0.065 0.001 4 -0.274 0.686 0.002 4 0.305 0.294 0.002 5 -0.273 0.754 -0.001 5 0.273 0.754 0.001 6 -0.303 0.294 -0.002 5 0.274 0.686 -0.002 7 -0.319 0.063 -0.001 7 0.257 0.431 -0.002 8 -0.327 -0.019 0.000 8 0.201 0.020 -0.00I 9 0.000 0.000 0.002 9 0.000 0.000 -0,000 CASE 37 : I.06o+C + 0.70E-> CASE 38 : 1.06D+C + 0.70E<- Horizontal Deflection Limit: None Horizontal Deflection Limit: w000 Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR ��RZC0NTeL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1,'0DE (in.) (in.) (zad.) 1 0.000 0.000 -0.000 I 0.000 0.000 0.003 2 0.503 -0.027 -0.002 2 -0.469 0.025 0.000 3 0.369 -0.498 -0.003 -0.453 -0.I04 -0.002 4 0.390 -0.774 -0.002 a -0.43I -0.392 -0.003 5 0.595 -0.893 0.001 5 -0.595 -0.893 -0.001 0 0.431 -0.392 0.003 j -0.390 -0.774 0.002 7 0.453 -0.104 0.002 7 -0.369 -0.498 0.003 8 0.469 0.025 -0.000 8 -0.3 -0.027 0.002 9 0. 000 0.000 -O.0O3 9 O. 00O 0.1000 O�00O CASE 59 : D+C + 0.75L + 0.75WwI0-> CASE 40 : D+C + 0.75L + 0.75WMZm<- Horizontal Deflection Limit: gone Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None • . MSA 29.0 Job:51687901 CASE 41 : D +C Horizontal Vertical HORIZONTAL NODE (in. ) 1 0.000 2 -0.073 3 - 0.038 4 -0.020 5 -0.000 6 0.020 7 0.038 8 0.073 9 0.000 CASE 43 : D +C Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 -0.224 3 - 0.163 4 -0.130 5 - 0.099 6 - 0.066 7 - 0.036 8 0.026 9 0.000 CASE 45 : D +C Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 0.063 3 0.147 4 0.182 5 0.204 6 0.251 7 0.285 8 0.333 9 0.000 CASE 47 : D +C + Page 32 of 42 C: \ABCP \FRAMES \51687901.01A 07/25/07 08:14:50 VERTICAL HORIZONTAL NODE (in.) 1 0.000 -0.02J 0.167 3 0.272 4 0.315 - 1.360 0.344 6 0.400 7 0.444 8 0.507 9 0.000 CASE 41 : D +C Horizontal Vertical HORIZONTAL NODE (in. ) 1 0.000 2 -0.073 3 - 0.038 4 -0.020 5 -0.000 6 0.020 7 0.038 8 0.073 9 0.000 CASE 43 : D +C Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 -0.224 3 - 0.163 4 -0.130 5 - 0.099 6 - 0.066 7 - 0.036 8 0.026 9 0.000 CASE 45 : D +C Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 0.063 3 0.147 4 0.182 5 0.204 6 0.251 7 0.285 8 0.333 9 0.000 CASE 47 : D +C + Page 32 of 42 C: \ABCP \FRAMES \51687901.01A 07/25/07 08:14:50 VERTICAL ANGULAR (in.) (rad.) 0.000 0.001 -0.02J -0. 0. -0.729 -0.005 -1.373 - 0.004 - 1.360 0.001 -1.053 0.005 - 0.458 0.004 0.021 0.001 0.000 -0.004 H(+RI ZONTAL NODE (in.) 1 0.000 J.444 6 -0.315 -0. -,2 8 -0.167 9 0.000 VERTICAL ANGULAR (in.) (rad.) 0.000 0.004 0.021 -0.001 -0.458 -0.004 -1.053 -0.005 -1.860 -0 M-1- -1.373 0.004 -0.789 0.005 -0.025 0.002 0.000 -0.001 0.75L + 0.75WL^ Deflection Limit Deflection Limit VERTICAL ANGULAR (in.) (rad.) 0.000 0.001 0.000 -0.001 -0.249 -0.002 -0.476 -0.002 -0.729 0.000 - 0.476 0.002 -0.249 0.002 0.000 0.001 0.000 -0.001 0.75L + 0.75W1- Deflection Limit: Deflection Limit: VERTICAL ANGULAR (in.) (rad.) 0.000 0.003 0.004 -0.001 -0.451 -0.003 -0.897 -0.004 -1.363 0.000 -0.879 0.003 -0.462 0.003 - 0.007 0.001 0.000 -0.001 0.75L + 0.73VJ2<- Deflection Limit: Deflection Limit: VERTICAL ANGULAR (in.) (rad.) 0.000 0.001 -0.015 -0.002 -0.622 -0.004 -1.082 -0.003 -1.434 0.001 -0.788 0.004 -0.346 0.003 0.014 0.001 0.000 -0.003 0.75L + 0.75W3 <- 0.75L + 0.75W1 - Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 0.001 -0.007 -0.001 -0.462 -0.003 -0.879 -0.003 -1.363 -0.000 -0.897 0.004 -0.451 0.003 0.004 0.001 0.000 -0.003 0.75L + 0.75W2 -> Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 0.003 0.014 -0.001 -0.346 -0.003 -0.788 -0.004 -1.434 -0.001 -1.082 0.003 -0.622 0.004 -0.015 0.002 0.000 -0.001 0.75L + 0.75W3 -> Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 0.001 -0.007 -0.001 -0.305 -0.002 -0.572 -0.002 -0.891 -0.000 -0.589 0.002 -0.295 0.002 0.005 0.001 0.000 -0.002 CASE 48 : D +C + 0.751, + 0.75W4 -> 5-0 CASE 42 : D *C None Horizontal None Vertical HORIZONTAL HODE (, in . ) 1 x.000 _ - 0. 026 0.1)36 4 0.066 5 0.099 6 0.130 7 0.163 8 0.224 9 0.000 CASE 44 : D +C None Horizontal None ',IerticaI HORIZONTAL NODE (in.) 1 0.000 - -0.333 3 -0.%85 4 -0.251 5 -0.204 6 -0.182 7 -0.147 -0.063 9 0.000 CASE 46 : D +C 4 None Horizontal None Vertical HORIZONTAL NODE (in.) 1 0.000 2 0.015 3 0.056 4 0.076 0.099 6 0.120 7 0.142 0. 1�t3 9 0. 1)00 0.75L + 0.75W1 - Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 0.001 -0.007 -0.001 -0.462 -0.003 -0.879 -0.003 -1.363 -0.000 -0.897 0.004 -0.451 0.003 0.004 0.001 0.000 -0.003 0.75L + 0.75W2 -> Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 0.003 0.014 -0.001 -0.346 -0.003 -0.788 -0.004 -1.434 -0.001 -1.082 0.003 -0.622 0.004 -0.015 0.002 0.000 -0.001 0.75L + 0.75W3 -> Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 0.001 -0.007 -0.001 -0.305 -0.002 -0.572 -0.002 -0.891 -0.000 -0.589 0.002 -0.295 0.002 0.005 0.001 0.000 -0.002 CASE 48 : D +C + 0.751, + 0.75W4 -> 5-0 • s MSA 29.0 Job:51687901 Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 -0.183 3 -0.142 4 -0.120 5 -0.099 6 -0.076 7 -0.056 8 -0.015 9 0.000 CASE 49 : D +C Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 0.103 3 0.167 4 0.192 5 0.204 6 0.242 7 0.265 8 0.292 9 0.000 CASE 51 : D +C Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 -0.665 3 -0.525 4 -0.440 5 -0.344 6 -0.275 7 -0.191 8 -0.008 9 0.000 CASE 53 : D +C Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 -0.184 3 -0.045 4 0.026 5 0.099 6 0.170 7 0.244 8 0.383 9 0.000 Page 33 of 42 C: \ABCP \FRAMES \51637901.01A 07/25/07 08:14:50 Deflection Limit Deflection Limit VERTICAL ANGULAR (in.) (rad.) 0.000 0.002 0.005 -0.001 -0.295 -0.002 -0.589 -0.002 -0.891 0.000 -0.572 0.002 -0.305 0.002 -0.007 0.001 0.000 -0.001 0.75L + 0.75W4 <- Deflection Limit: Deflection Limit: VERTICAL ANGULAR (in.) (rad.) 0.000 0.001 -0.015 -0.002 -0.465 -0.003 -0.775 -0.002 -0.961 0.001 -0.481 0.003 -0.189 0.002 0.014 0.000 0.000 -0.002 None 0.75W1 -> Horizontal None VERTICAL Vertical (in.) (rad.) HORIZONTAL 0.004 NC (in. ) - 1.034 1 0.000 -0.008 _ -0.292 -2.010 0.008 - U."65 0.008 4 -0.2.46 0.000 5 -0.204 6 -0.192 7 -0.167 8 -0.103 9 0.000 CASE 50 : D +C None Horizontal None Vertical HORIZONTAL _'ODE (in. ) 1 0.000 0.008 ? 0.191 4 0.275 5 0.344 6 0.440 7 0.525 8 0.665 9 0.000 0.75S + 0.75WMIN<- Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 0.007 0.021 -0.002 -1.031 -0.008 -2.165 -0.010 -3.568 -0.001 -2.486 0.009 -1.362 0.009 -0.025 0.004 0.000 -0.004 0.75S + 0.75W1 -> Deflection Limit: Deflection Limit: VERTICAL ANGULAR (in.) (rad.) 0.000 0.004 - 0.008 -0.003 - 1.034 -0.007 -1.992 -0.008 -3.071 -0.000 -2.010 0.008 - 1.024 0.008 0.004 0.002 0.000 -0.005 CASE 52 : D +C Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 -0.232 -0.119 4 -0.060 5 -0.000 6 0.060 7 0.119 8 0.232 9 0.000 CASE 54 : D +C None Horizontal None Vertical HORIZONTAL NODE (in.) 1 0.000 2 -0.383 3 -0.244 4 -0.170 5 -0.099 6 - -0. 026 0.045 0.184 9 0.000 Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 0.002 0.014 -0.000 -0.189 -0.002 -0.481 -0.003 -0.961 -0.001 -0.775 0.002 -0.465 0.003 -0.015 0.002 0.000 -0.001 0.75S + 0.75WMIN -> Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 0.004 -0.025 -0.004 -1.362 -0.009 -2.486 -0.009 -3.568 0.001 -2.165 0.010 -1.031 0.008 0.021 0.002 0.000 -0.007 0.755 + 0.75WL^ Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 0.004 -0.000 -0.002 -0.822 -0.006 -1.589 -0.006 -2.437 0.000 -1.589 0.006 -0.822 0.006 -0.000 0.002 0.000 -0.004 0.755 + 0.75W1<- Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 0.005 0.004 -0.002 -1.024 -0.008 -2.010 -0.008 -3.071 0.000 -1.992 0.008 -1.034 0.007 -0.008 0.003 0.000 -0.004 5-2- MSA 29.0 Page 34 of 42 Job:51687901 C KABCPMAMES41687901.01A 07/25/07 08:14:50 CASE 55 D +C + 0.75S + 0.75W2 -: CASE 56 : D +C + 0.75S + 0.75W2<- Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: Hone Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE And (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 0.006 1 0.000 0.000 0.004 2 - 0.492 0.013 - 0.002 2 -0.096 -0.016 -0.003 3 -0.366 -0.918 -0.007 3 0.066 -1.194 -0.008 4 -0.292 -1.901 -0.008 4 0.142 -2.195 - 0.008 5 -0.204 -3.142 -0.001 5 0.204 - 3.142 0.001 6 -0.142 - 2.195 0.008 n 0.292 -1.901 0.008 7 -0.066 -1.194 0.008 7 0.366 -0.918 0.007 8 0.096 -0.016 0.003 0 0.492 0.013 0.002 9 0.000 0.000 -0.004 9 0.000 0.000 -0.006 CASE 57 : D +C + 0.75S + 0.75W3 -> CASE 58 : D +C + 0.75S + 0.75W3 <- Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR. HORIZO'_NTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 0.003 1 0.000 0.000 0.005 2 -0.143 -0.007 - 0.002 2 -0.342 0.005 -0.002 3 - 0.025 -0.878 -0.006 3 -0.223 -0.868 -0.006 4 0.036 -1.685 -0.007 4 -0.160 -1.702 -0.007 5 0.099 -2.599 - 0.000 5 -0.099 -2.599 0.000 6 0.160 -1.702 0.007 6 -0.036 -1.685 0.007 7 0.223 -0.868 0.006 7 0.025 -0.878 0.006 8 0.342 0.005 0.002 8 0.143 -0.007 0.002 9 0.000 0.000 -0.005 9 0.000 0.000 -0.003 CASE 59 : D +C + 0.75S + 0.75W4 -> CASE 60 : D +C + 0.75S + 0.75W4 <- Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 110DE (in.) (in.) (rad.) 1 0.000 0.000 0.005 1 0.000 0.000 0.003 2 -0.451 0.014 - 0.002 2 -0.055 -0.015 -0.003 3 - 0.345 -0.762 -0.006 3 0.086 -1.038 -0.007 4 -0.282 -1.593 -0.007 4 0.151 -1.888 -0.007 5 -0.204 -2.669 -0.001 5 0.204 -2.669 0.001 6 -0.151 - 1.888 0.007 6 0.282 -1.593 0.007 7 -0.086 -1.038 0.007 7 0.345 -0.762 0.006 8 0.055 -0.015 0.003 8 0.451 0.014 0.002 9 0.000 0.000 -0.003 9 0.000 0.000 -0.005 CASE 61 : D +C + 0.75SUL1<- + 0.75WMIH <- CASE 62 : D +C + 0.75SUL1<- + 0.75W1<- Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: Norse Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NuDE (in.) (in.) (rad.) 1 0.000 0.000 0.002 i 0.000 0.000 0.000 2 0.602 -0.074 -0.007 2 0.884 -0.090 -0.007 3 0.863 -1.955 -0.011 3 1.145 -1.948 -0.010 4 0.953 -3.153 -0.008 4 1.224 -2.997 -0.007 5 0.964 -3.522 0.005 5 1.209 -3.025 0.006 6 1.116 - 1.438 0.010 6 1.365 -0.944 0.009 7 1.193 -0.406 0.006 7 1.429 -0.019 0.005 5-2- • • MSA 29.0 Job:51687901 2 1.250 9 0.000 CASE 63 : D +C Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 1.171 3 1.454 4 1.535 5 1.512 6 1.683 7 1.749 8 1.750 9 0.000 CASE 65 : D +C Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 1.212 3 1.474 4 1.545 5 1.512 6 1.673 7 1.729 8 1.709 9 0.000 CASE 67 : D +C Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 -1.442 3 -1.429 4 -1.365 5 -1.209 6 -1.224 7 -1.145 8 -0.884 9 0.000 CASE 69 : D +C Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 -1.402 3 -1.408 4 -1.355 5 -1.209 Page 35 of 42 C: \ABCP \FRAMES \51687901.01A 07/25/07 08:14:50 0.069 -0.001 0.000 -0.009 9 C.. 000 0.087 -0.002 0.000 -0.009 0.75SUL1 <- + 0.75W2 <- Deflection Limit: Nome Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 -0.001 -0.110 -0.008 -2.119 -0.010 -3.183 -0.007 -3.095 0.007 -0.853 0.009 0.037 0.005 0.108 -0.003 0.000 -0.011 0.75SUL1<- + 0.75W4 <- Deflection Limit: =done Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 -0.001 -0.109 -0.008 -1.962 -0.009 -2.876 -0.005 -2.623 0.007 - 0.545 0.008 0.194 0.003 0.108 -0.003 0.000 -0.010 0.75SUR1 -> + 0.75W1 -> Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 0.009 0.087 0.0021 -0.079 -0.005 -0.944 -0.009 -3.025 -0.006 -2.997 0.007 -1.948 0.010 -0.090 0.007 0.000 -0.000 0.75SUR1 -> + 0.75W3 Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 0.008 0.087 0.002 0.078 -0.004 -0.636 -0.008 -2.552 -0.006 CASE 64 : D +C Horizontal Vertical HOR.L01]TA?. NUDE ( iii . ) 1 0.000 2 0.925 3 1.165 4 1.233 J 1._09 6 1 5 5 7 1.408 8 1.402 9 J.000 CASE 66 : D +C Horizontal Vertical HOR,I ZONTAL NODE (in.) 1 0.000 2 -1.250 3 -1.193 4 -1.116 -0.964 6 -0.953 7 -0.863 8 -0.602 9 0.000 CASE 68 : D +C Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 -1.750 3 -1.749 4 -1. 683 5 -1.512 6 -1.535 7 -1.454 8 -1.171 9 0.000 CASE 70 : D +C Deflection Horizontal Deflection Vertical VERTICAL HORIZONTAL NODE (in.) 1 0.000 2 -1. -0.406 -0.006 4 -1.673 5 -1.512 0.75SUL1<- + 0.75W3<- Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 -0.000 -0.090 -0.007 -1.792 -0.009 -2.690 -0.005 -2.552 0.006 -0.636 0.008 0.078 0.004 0.087 -0.002 0.000 -0.008 0.75SUR1 -> + 0.75WMIN -> Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 0.009 0.069 0.001 -0.406 -0.006 -1.438 -0.010 -3.522 -0.005 - 3.153 0.008 -1.955 0.011 -0.074 0.007 0.000 -0.002 0.75SUR1 -> + 0.75W2 -> Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 0.011 0.108 0.003 0.037 -0.005 -0.853 -0.009 -3.095 -0.007 -3.183 0.007 -2.119 0.010 -0.110 0.008 0.000 0.001 0.75SUR1 -> + 0.75W4 -> Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 0.010 0.108 0.003 0.194 -0.003 -0.545 -0.008 -2.623 -0.007 CASE 77 : 0.60 Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 0.102 3 0.051 D + WL° Deflection Limit Deflection Limit VERTICAL ANGULAR (in.) (rad.) 0.000 -0.002 0.001 0.001 0.390 0.003 CASE 78 : 0.60D None Horizontal None Vertical HORIZONTAL NODE (in.) 1 0.000 - 0.166 3 G. i49 + Wl -> Deflection Limit: tone Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 -0.002 -0.009 0.000 0.107 0.001 i i MSA 29.0 Page 36 of 42 Job:51687901 C : \ABCP \FRAMES \51687901.0!A 07/25/07 08:14:50 6 -1.233 -2.690 0.005 -" 'i4 -2.875 0.005 7 -1.165 -1.792 0.009 7 - 1.474 -1.962 0.009 8 -0.925 -0.090 0.007 -.212 -0.109 0.008 9 0.000 0.000 0.000 9 0.000 0.000 0.001 CASE 71 : 1.07D +C + 0.751, + 0.75E -> 1.07D +r + 0.7.5L + 0.75E < - Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: ! Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR. NODE (in.) (in.) (rad.) PkJDE in.) (in.) (rad.) 1 0.000 0.000 0.001 1 0.000 0.000 0.005 2 0.233 -0.029 -0.003 - 0.5_x4 0.027 -0.000 3 0.349 -0.865 -0.005 -0.53_ -0.444 -0.004 4 0.394 -1.474 -0.005 4 - Cl.486 -1_065 -0.005 5 0.423 -1.947 0.001 5 -0.423 -1.947 -0.001 6 0.486 -1.065 0.005 6 -0.394 -1.474 0.005 7 0.532 - 0.444 0.004 7 -0.349 -0.865 0.005 8 0.594 0.027 01.000 -0.2_,3 -0.029 0.OG3 9 0.000 0.000 -0.065 9 0.000 0.000 -0.001 CASE 73 : 1.07D +C + 0.755 + 0.75.E -> CASE i : 1.07D +C + 0.755 + 0.75E;- Horizontal Deflection Limit: None horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) RivDE (in.) (in.) (rad.) 1 0.000 0.000 0.004 1 0.000 0.000 0.008 2 0.075 -0.030 -0.004 2 - 0.753 0.027 -0.002 3 0.268 -1.438 -0.009 3 -0.613 -1.016 -0.009 4 0.354 -2.587 -0.009 4 -0.526 -2.178 -0.010 5 0.423 -3.655 0.001 5 -0.423 -3.655 -0.001 6 0.526 -2.173 0.010 6 - 0.354 -2.587 0.009 7 0.613 -1.016 0.009 7 -0.268 -1.438 0.009 8 0.753 0.027 0.002 8 -0.075 -0.030 0.004 9 0.000 0.000 -0.000 9 F 1 .000 0.000 -0.004 CASE 75 : 0.60D + WMIN -> CASE 76 : 0.60D + WMIN<- Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 -0.002 1 0.000 0.000 0.003 2 0.422 -0.032 - 0.001 2 - 0.476 0.029 0.001 3 0.464 -0.330 -0.001 3 -0.490 0.111 -0.000 4 0.471 -0.428 - 0.000 4 -0.483 -0.001 -0.001 5 0.459 -0.328 0.001 5 -0.459 -0.328 -0.001 6 0.483 - 0.001 0.001 6 -0.471 -0.428 0.000 7 0.490 0.111 0.ri0u 7 -0.464 -0.330 0.001 8 0.476 0.029 -0.001 8 -0.422 -0.032 0.001 9 0.000 0.000 -0.003 9 0.000 0.000 0.002 CASE 77 : 0.60 Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 0.102 3 0.051 D + WL° Deflection Limit Deflection Limit VERTICAL ANGULAR (in.) (rad.) 0.000 -0.002 0.001 0.001 0.390 0.003 CASE 78 : 0.60D None Horizontal None Vertical HORIZONTAL NODE (in.) 1 0.000 - 0.166 3 G. i49 + Wl -> Deflection Limit: tone Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 -0.002 -0.009 0.000 0.107 0.001 MSA 29.0 Page 37 of 42 Job:51687901 C:AABCP \FRAMES \51687901.01A 07/25/07 08:14:50 4 0.024 0.768 0.003 4 0.139 0.230 0.001 5 0.000 1.180 -0.000 5 0.132 0.335 -0.000 6 -0.024 0.768 - 0.003 6 0.122 0.207 -0.001 7 -0.051 0.390 -0.003 - 0.115 0.120 -0.001 8 -0.102 0.001 - 0.001 8 0.099 0.007 -0.000 9 0.000 0.000 0.002 9 0.000 0.000 -0.000 CASE 79 : 0.60D + Wl <- CASE 80 : 0.60D + W2 -> Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: Pone Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) KODE (in.) (in.) (rad.) 1 0.000 0.000 0.000 1 0.000 0.000 0.001 2 -0.099 0.007 0.000 2 - 0.244 0.019 0.001 3 -0.115 0.120 0.001 3 -0.278 0.261 0.001 4 -0.122 0.207 0.001 4 -0.235 0.352 0.000 5 -0.132 0.335 0.000 5 -0.273 0.241 -0.001 6 -0.139 0.230 -0.001 6 -0.293 -0.040 -0.001 7 -0.149 0.107 - 0.001 7 -0.297 -0.107 -0.000 8 -0.166 -0.009 -0.000 8 -0.233 -0.019 0.001 9 0.000 0.000 0.002 0 0.000 0.000 0.001 CASE 81 : 0.60D + W2 <- CASE 82 : 0.60D + W3 -> Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Verticai Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 -0.001 1 0.000 0.000 -0.002 2 0.283 -0.019 -0.001 2 0.220 -0.008 0.001 3 0.297 -0.107 0.000 3 0.176 0.315 0.003 4 0.293 -0.040 0.001 4 0.152 0.640 0.003 5 0.273 0.241 0.001 5 0.132 0.964 -0.000 6 0.285 0.352 -0.000 6 0.109 0.617 -0.002 7 0.278 0.261 -0.001 7 0.088 0.329 -0.002 8 0.244 0.019 -0.001 8 0.045 0.008 -0.001 9 0.000 0.000 -0.001 9 0.000 0.000 0.001 CASE 83 : 0.60D + W3<- CASE 84 : 0.60D + W4 -> Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 -0.001 1 0.000 0.000 -0.000 2 - 0.045 0.008 0.001 2 -0.190 0.020 0.002 3 - 0.088 0.329 0.002 3 -0.251 0.470 0.003 4 -0.109 0.617 0.002 4 -0.272 0.762 0.002 5 - 0.132 0.964 0.000 5 -0.273 0.871 -0.001 6 - 0.152 0.640 -0.003 6 - 0.306 0.370 -0.003 7 -0.176 0.315 - 0.003 7 - 0.325 0.102 -0.002 8 - 0.220 -0.008 - 0.001 8 - 0.331 -0.019 0.000 9 0.000 0.000 0.002 9 0.000 0.000 0.002 CASE 85 : 0.60D + W4<- CASE 86 : 0.54D +C + 0.70E -> Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR. HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 - 0.002 1 0.000 0.000 -0.001 ��76 MSA 29.0 Page 38 of 42 Job:51687901 C:AABCP \FRAMES \516S7901.O1A 07/25/07 08:14:50 2 0.337 -0.019 -0.000 - 0.335 -0.027 -0.002 3 0.325 0.102 0.002 3 0.385 -0.385 -0.002 4 0.306 0.370 0.003 4 0.398 -0.555 -0.001 5 0.273 0.871 0.001 5 0.95 -0.557 0.001 6 0.272 0.762 -0.002 6 0.423 - 0.173 0.002 7 0.251 0.470 -0.003 7 0.437 0.008 0.001 8 0.190 0.020 -0.002 = 0.438 0.025 -0.001 9 0.000 0.000 0.000 9 0.000 0.000 -0.003 CASE 87 : 0.54D +C + 0.70E < - CASE 88 : 0.76D +C + 0.5952E - > Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR. HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) I4ODE (in.) (in.) (rad.) 1 0.000 0.000 0.003 1 0.000 0.000 -0.003 2 - 0.438 0.025 0.001 2 0.752 -0.057 -0.003 3 -0.437 0.008 -0.001 3 0.837 -0.652 -0.002 4 -0.423 -0.173 -0.002 4 0.852 -0.859 -0.001 5 -0.395 -0.557 -0.001 5 0.835 -0.698 0.002 6 -0.398 - 0.555 0.001 6 0.885 -0.052 0.003 7 -0.385 -0.385 0.002 7 0.902 0.180 0.001 8 -0.335 -0.027 0.002 8 0.881 0.055 -0.002 9 0.000 0.000 0.001 9 0.000 0.000 -0.005 CASE 89 : 0.76D +C + 0.590E<- CASE 90 : 0.48D +C + 0.5952E -> Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 0.005 1 0.000 0.000 -0.003 2 -0.881 0.055 0.002 2 0.769 -0.057 -0.003 3 -0.902 0.180 -0.001 3 0.845 -0.591 -0.002 4 -0.885 -0.052 -0.003 4 0.856 -0.741 -0.000 5 -0.835 -0.698 -0.002 5 0.835 -0.517 0.002 6 -0.852 - 0.859 0.001 6 0.880 0.066 0.002 7 -0.837 -0.652 0.002 7 0.894 0.241 0.001 8 -0.752 -0.057 0.003 8 0.864 0.055 -0.002 9 0.000 0.000 0.003 9 0.000 0.000 -0.005 CASE 91 : 0.48D +C + 0.59nE<- Horizontal Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0.000 0.000 0.005 2 -0.864 0.055 0.002 3 -0.894 0.241 -0.O01 4 - 0.880 0.066 -0.002 5 -0.835 -0.517 -0.002 6 -0.856 - 0.741 0.000 7 -0.845 -0.591 0.002 8 -0.769 -0.057 0.003 9 0.000 0.000 0.003 ��76 MSA 29.0 Job:516879O1 C: \ABCP \FRAMES \51687901.01A FLANGE BRACE LOCATIONS SEQ# P /G# READ? LEFT COLUMN BASE Page 40 of 42 07/25/07 08:14:50 1 1 No 2 2 Yes 3 3 Yes 4 4 No (KnGe) LEFT EAVE 5 1 1 1`J o 6 10 Yes 7 9 No 8 8 Yes 9 7 No 10 6 Yes 11 5 1\10 12 4 Yes 13 3 No 14 2 Yes 15 1 Yes (R e) ROOF SLOPE CHANGE 16 1 Yes (Ridge) 17 2 Yes 18 3 No 19 4 Yes 20 5 No 21 6 Yes 22 7 No 23 8 Yes 24 9 No 25 10 Yes 26 11 1\1 o RIGHT EAVE 27 4 No (Knee) 28 3 Yes 29 2 Yes 30 1 No RIGHT COLUMN BASE Page 40 of 42 07/25/07 08:14:50 0 0 AMERICAN 131-,JT1LDfNGS COMPANY MSA 29.0 Page 1 of 40 Job:51687901 C KABCPORAMES01687901.01B 07/26/07 09:09:26 STEEL FRAME ANALYSIS AND DESIGN BY 1989 AISC Man AND MBMA AS APPLICABLE BUILDING DESCRIPTION - - FRAME WIDTH BAY SPACING 100.000 ft. 13.370 ft. DESIGN BY THE DIRECT aal of Steel Construe RF @FL.l ROOF SLOPES INT. 2 LEFT WALL SLOPE W /VERT --------- - - - - -- 0.000/ 12.0 NODE BASE 1 SAVE 2 ROOF SLOPE 1 --------- - - - - -- NODE LEFT END 2 SPLICE 3 SPLICE 4 RIGHT END 5 ROOF SLOPE 2 --------- - - - - -- NODE LEFT END 5 SPLICE 6 SPLICE 7 RIGHT END 8 RIGHT WALL LOCATION 0.000 ft. 24.833 ft. SLOPE W/HORIZ 1.000/ 12.0 LOCATION -0.000 ft. 20.104 ft. 30.069 ft. 50.000 ft. SLOPE W/HORIZ - 1.000/ 12.0 LOCATION 50.000 ft. 69.931 ft. 79.896 ft. 100.000 ft. SLOPE W /VERT. - 0.000;' 12.0 STIFFNESS METHOD Lion ASD Ninth Edition 51687901 COLUMNS MEMBERS NODES 0 8 9 GIRT DEPTH 8.00 in WEB DEPTH 15.000 in. 42.000 in. PURLIN DEPTH 9.50 in. WEB DEPTH 42.000 in. 20.000 in. 20.000 in. 20.000 in. PURLIN DEPTH 9.50 in. WEB DEPTH 20.000 in. 20.000 in. 20.000 in. 42.000 in. GIRT DEPTH 8.00 in. NODE LOCATION WEB DEPTH SAVE 8 24.833 ft. 42.000 in BASE 9 0.000 ft. 15.000 in GIRT SPACING(S) 1 @ 88.00 in. 1 @ 60.00 in. 1 @ 72.00 in. 1 @ 78.00 in. CONNECTION PINNED RIGID TYP. PURLIN SPACE 48.87 in. CONNECTION RIGID RIGID RIGID RIGID TY'P. PURLIN SPACE 48.87 in. CONNECTION RIGID RIGID RIGID RIGID GIRT SPACING(S) 1 @ 88.00 in. 1 @ 60.00 in. 1 @ 12.00 in. 1 @ 78.00 in. CONNECTION RIGID PINNED 0 • MSA 29.0 Job:51687901 C: \ABCP \FRAMES \51687901.01B MEMBER SIZES FRAME SELF- WEIGHT AS APPLIED DEAD LOAD MEMBER MEMBER WEIGHT CONNECTION WEIGHT OUTER FLANGE WEB INNER FLANGE MEMBER WIDTH THICKNESS 3 THICKI+IESS WIDTH THICKNESS 565.5 (inches) 5 (inches) ;inches) 6 1 8.00 .= 0.2500 0 2L�ID 8 1 1 2 8.00 X 0.3125 0.2500 ;ir) :. (i.: 50 3 8.00 X 0.3125 0.1644 8.00 r 0.3750 4 8.00 X 0.3750 0.1644 8.00 z= 0.2500 5 8.00 X 0.3750 0.1644 8.00 X 0.2500 6 8.00 X 0.3125 0.1644 8.00 X 0.3750 7 8.00 X 0.3125 0.2500 8.00 X 0.3750 8 8.00 x 0.2500 0.2188 8.00 X 0.3750 FRAME SELF- WEIGHT AS APPLIED DEAD LOAD MEMBER MEMBER WEIGHT CONNECTION WEIGHT Page 2 of 40 07/26/07 09:09:26 WEB -TO- FLANGE (lbs) (lbs) 1 869.3 194.0 2 817.5 J.1;�'75 3 304.3 0.1875 4 565.5 68.2 5 565.5 0.1250 6 304.3 0.1250 7 817.5 194.0 8 869.3 0.1875 Total: 5113.3 456.3 Page 2 of 40 07/26/07 09:09:26 WEB -TO- FLANGE YIELD STRESS WELD FLANGE WEB (inches) (ksi) (ksi) J.1;�'75 55.0 55.0 0.1875 55.0 55.0 0.1250 55.0 55.0 0.1250 55.0 55.0 0.1250 55.0 55.0 0.1250 55.0 55.0 0.1875 55.0 55.0 0.1875 55.0 55.0 1�1 • MSA 29.0 Page - -l) of 40 Job:51687901 C:\ABCP\FPPMES\51687901.01B 07/26/07 09:09:26 NODE 9.50 3 242.08 2 981 1 C' 4 361.66 5 600.00 3- 6 838.34 30 7 957. 921 2 98' . 10 8 1170.50 '?6 9.35 9 1184.00 0.00 MSA 29.0 Page 4 of 40 Job:516879O1 C: \ABCP \FRAMES \51687901.018 07/26/07 09:09:26 LOAD CASE 1 : D +C No Stress Check; No Deflection Limits UNIFORM LOADS COEFFICIENTS LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 0.00 ----------------------------------------------------------------------------------- 0.00 5.50 0.00 0.00 0.00 0.00 LOAD CASE 2 : D No Stress Check_; No Deflection Limits UNIFORM LOADS * WIND COEFFICIENTS LIVE WIND DEAD C2 C3 C4 (psf) (psf) (psf) 0.00 ----------------------------------------------------------------------------------- 0.00 2.50 0.00 0.00 0.00 0.00 LOAD CASE 3 : L No Stress Check; L /60 H Deflection Limit; L /180 V Deflection Limit UNIFORM LOADS * * WIND COEFFICIENTS LIVE WIND DEAD Cl C2 C3 C4 (psf) (psf) (psf) 12.00 -------------------------------------------------------------------------- 0.00 0.00 0.00 0.00 0.00 0.00 LOAD CASE 4 : S No Stress Check; L /60 H Deflection Limit; L /181 V Deflection Limit UNIFORM LOADS * * WIND COEFFICIENTS LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) * 31.50 0.00 -------------------------------------------------------------------- 0.00 0.00 0.00 0.00 0.00 LOAD CASE 5 : SUL1<- No Stress Check; L /60 H Deflection Limit; L /181 V Deflection Limit UNIFORM LOADS * * WIND COEFFICIENTS LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD CASE 10 : WZI-> MSA 29.0 Page 5 of 40 Job:51687901 C:\ABCP\FRAMES\151687901.01B 07/26/07 09:09:26 LOAD NO. LINE NO. LOCATION LOCATION AT START AT END ' AT START AT END (ft.) (ft.) (psf) + (psf) (psf) 0.00 -52.50 -52.50 ----------------------------------------------------------------------------------- 0.00 5 0 . 0 0 I 0.00 -9.45 -9.45 LOAD CASE 161 : SUP'l-> No Stress Check; L/60 H Deflection Limit; L/181 - Deflection Limit UNIFORM LOADS COEFFICIENTS LIVE WIND DEAD C1 C2 C3 C4 (psf) (psf) (psf) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 I HORIZONTAL A, VERTICAL DISTRIBUTED LOADS START E 1 D L D I 1' T E 111-S) il Y I LOAD INTENSITY LOAD NO. LINE 1 LOCATION LOC; AT START AT END AT START AT END ( ft. , 'psf) (ps (psf) (psf) 1 2 0.00 50.00 0.00 0.00 -9.4 -9.45 2 ----------------------------------------------------------------------------------- 3 0.00 50.00 0. 00 0.00 -52.50 -52.50 LOAD CASE 7 : WL^ No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORH LOADS WIND COEFFICIENTS LIVE WIND DEAD C 1 CZ C3 C4 (psf) (psf) (psf) 0.00 ----------------------------------------------------------------------------------- 16.64 0.00 -0.66 -1.25 -1.25 -0.66 LOAD CASE 8 : Wl-> No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS WIND COEFFICIENTS LI W I N D DEAD Ci C, L C3 C4 (psf) (psf) (psf) 0.00 ----------------------------------------------------------------------------------- 16.64 0.00 0.79 -0.89 -0.35 -0.25 LOAD CASE 9 : W1<- No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS WIND COEFFICIENTS LIVE WIND DEAD Cl C'- r,3 C4 (psf) (psf) (psf) 0.00 16.64 0.00 -0.:55 -0.89 0.79 LOAD CASE 10 : WZI-> MSA 29.0 Page 6 of 40 Job:51687901 C: \ABCP \FRAMES \51687901.01B 07/26/07 09:09:26 No Stress Check_; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS * W% COEFFICIENTS LIVE WIND DEAD Cl C2 C3 r (psf) (psf) (psf) 0.00 16.64 0.00 -0. -'7. 9 -0.35 LOAD CASE 11 : W2 <- No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * Cl C'2 C3 C4 (psf) (psf) (psf) 0.00 16.64 0.00 -0.30 -0.35 -0.89 -0.30 LOAD CASE 12 : W3 -> No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 0.00 16.64 0.00 0.43 -1.25 -0.71 -0.61 LOAD CASE 13 : W3<- No Stress Check; L/42 H Deflection Limit; L %126 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * 1 C2 C3 C4 (psf) (psf) (psf) 0.00 16.64 0.00 -0.61 -0.71 -1.25 0.43 LOAD CASE 14 : W4 No Stress Check; L/42 H Deflection Limit; L/126 V Deflection Limit UNIFORM LOADS * WIND COEFFICIENTS * LIVE WIND DEAD * Cl C2 C3 C4 (psf) (psf) (psf) 0.00 16.64 0.00 -0.66 -1.25 -0.71 -0.66 LOAD CASE 15 : W4<- No Stress Check; L/42 H Deflection Limit; V Deflection Limit UNIFORM LOADS WIND COEFFICIENTS LOAD CASE 18 : <_2E -> No Stress Check; No Deflection Limits UNIFORM LOADS N COEFFICIENTS LIVE MSA 29.0 * C'1 C2 C3 C4 Page 7 of 40 Job:51687901 C:AABCP \FRAMES \51687901.01B 07/26/07 09:09:26 LIVE WIND DEAD 0.00 * C1 C2 C3 C4 (psf) (psf) (psf) LOAD C''011PONENTS 0.00 16.64 0.00 HORIZONTAL -0.66 -0.71 -1.25 -0.66 LOAD CASE 16 . E -, (f t .) (1_ips ? (1;ips) (kip-ft) 11c Stress Check, L /6 Y. Deft =. =i , ;i L mi- 0.00 UNIFOR.11 LOADS 4 24 . 8 8 WIl'7D COEFFICIENTS 0.00 LIVE WIND DEAD C1 C2 C3 C9 (psf) (psf) (psf) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CONCENTRATED LOADS LOAD COMPONENTS LOAD 1 LINE NO. * L CAIIOI'I hORTZ(_ VERTICAL MOMENT 1 1 29.83 1.5 O.00; 0.00 2 4 ----------------------------------------------------------------------------------- 2 4.8 O.UO LOAD CASE 17 : E<- No Stress Check; L /60 H Deflection Limit UNIFORM LOADS * 1 ^JIND COEFFICIENTS LIVE WIND DEAD C1 C2 C3 C4 (psf) (psf) (psf) x/. 00 0. 00 0. 00 0. �� � 0.05 0. 00 0.00 COraCENTRATED LOADS * LOAD COI /1PONE11TS LOAD NO. LINE NO. * LOCATIONI HvRIZG[1TAL _VERTICAL t (kips) (kips) (kip -ft) 1 1 24.83 0.00 0.00 2 4 ----------------------------------------------------------------------------- 24.83 0.00 0.00 - - - - -- LOAD CASE 18 : <_2E -> No Stress Check; No Deflection Limits UNIFORM LOADS N COEFFICIENTS LIVE WIND DEAD * C'1 C2 C3 C4 (psf) (psf) (psf) 0.00 0.00 0.00 0.00 U.00 0.00 CONCENTRATED LOADS * LOAD C''011PONENTS LOAD N0. LINE NO. * LOCATION HORIZONTAL VERTICAL MOMENT (f t .) (1_ips ? (1;ips) (kip-ft) 0.00 0.00 4 24 . 8 8 3.9r' 0.00 0.00 LOAD CASE 19 : QE <- No Stress Check; No Deflection Limits • MSA 29.0 Job:516879O1 UNIFORM LOADS LIVE WIND DEAD (psf) (psf) (psf) 0.00 0.00 0.00 • Page 8 of 40 C: \ABCP \.FRAMES \516879O1.01B 07/26/07 09:09:26 WIND COEFFICIENTS Cl C2 C3 C4 0.00 0.00 0.00 0.00 CONCENTRATED LOADS I LOAD COMPONENTS LOAD 110. LINE 110. * LOCATION - H VERTICAL MOMENT (ft.) y (kips) (kips) (kip -ft) 1 1 24.83 -3.90 0.00 0.00 l 4 24.83 -------------------------------------------------------------------------- -3.90 0.00 0.00 - - - - -- LOAD CASE 20 D +C + L Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.492 ---------------------------------------------------------------------------- LOAD CASE 21 D +C + S Check By ASD; No Deflection Limits Highest check ratio achieved in this lo.a <1 case = 0.987 ---------------------------------------------------------------------- LOAD CASE 22 D +C + SUL1<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.981 ----------------------------------------------------------------- LOAD CASE 23 D +C + SURl -> Check By ASD; No Deflection Limits Highest check_ ratio achieved in this load case = 0.981 --------------------------------------------------------------- LOAD CASE 24 D + WL^ Check By ASD; No Deflection Limits Highest check ratio achieved in this l.�,ad case = 0.519 -------------------------------------------------------------- LOAD CASE 25 D + W1 -> Check. By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.295 ---------------------------------------------------------- LOAD CASE 26 D + Wl<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.295 ---------------------------------------------------------------- LOAD CASE 27 : D + W2 -> Check By ASD; No Deflection Limits • 0 MSA 29.0 Page 9 of 40 Job:51687901 C: \ABCP \FRAMES \51687901.0IB 07/26/07 09:09:26 Highest check ratio achieved in this load case = 0.243 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 23 D + W2 <- Check By ASE; No Deflection Limits Highest check ratio �c�le�.ed in .._ -u+ ----------------------------------------------------------------------------- - - - - -- LOAD CASE 29 D + W3 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.427 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 30 . D + W3 <- Check By ASD; No Deflection Limits Highest check ratio achieved in this LOAD CASE 31 D + W4 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.390 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 32 : D + Vq4 <;- Check: By ASD; No Deflection Limits Highest check ratio achieved in load ----------------------------------------------------------------------------- - - - - -- LOAD CASE 33 : 1.06D +C + 0.70E -> Check_ By ASD; No Deflection Limits Highest check_ ratio achieved in this load case = 0.261 ------------------------------------------------------------------------------ - - - - -- LOAD CASE 34 . 1.06D +C + 0.70E<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.261 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 35 : D +C + 0.75L + 0.75VVTTL^ Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.059 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 36 : D +C + 0.75L + 0.7511 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.276 LOAD CASE 37 : D +C + 0.75L + 0.75W1 i r� MSA 29.0 Page 10 of 40 Job:516879O1 0 0EC K FRAME 051687901.O1B 07/26/07 09:09:26 Check By ASD; No Deflection Limits Highest check ratio achieved in this load rase = 0.276 ----------------------------------------------------------------------------------- LOAD CASE 38 D +C + 0.75L + 0.75W2 Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.244 ----------------------------------------------------------------------------------- LOAD CASE 39 D +C + 0.75L + 0.75W2 <- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.244 --------------------------------------------------------------------------------- LOAD CASE 40 D +C + 0.75L + 0.75W3 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.173 ---------------------------------------------------------------------------- LOAD CASE 41 D +C + 0.75L + 0.75W3<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.173 --------------------------------------------------------------------- LOAD CASE 42 D +C + 0.75L + 0.75W4 -> Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.155 ---------------------------------------------------------------- LOAD CASE 43 D +C + 0.75L + 0.75W4 <- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.155 ---------------------------------------------------------------- LOAD CASE 44 D +C + 0.75S + 0.75WL^ Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.408 ------------------------------------------------------------ LOAD CASE 45 D +C + 0.755 + 0.75W1- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.640 LOAD CASE 46 D +C + 0.755 + 0.75W1 <- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.640 -------------------------------------------------------------- - - - - -- U MSA 29.0 Page 11 of 40 Job:51687901 C:AABCP\ FRAMES \51687901.01B 07 /26/07 09:09:26 LOAD CASE 47 D +C + 0.75S + 0.75riJ2 Check By ASD; No Deflection Limits Highest check ratio achieved ir, - h is l_,ad -- as - = '_�.(�0 LOAD CASE 48 D +C + 0.75S + 75'x•72 <' - Check By ASD; 1ao Deflection Limits Highest check ratio achieved in this Todd -a -e = C.6GS LOAD CASE 49 D +C + 0.75S + 0.75W -> Check By ASD; No Deflection Limits Highest checI: ratio achieved in tl - ,is load , ase = C) . 33 LOAD CASE 50 D +C + 0.75S + 0.75W31- Check By ASD; No Deflection Limits Highest check ratio achieved in this load ease = 0.533 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 51 : D +C + 0.75S + 0.75W4 -% Check_ By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.501 LOAD CASE 52 : D +C + 0.75S + 0.75W4— Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.501 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 53 : D +C + 0.75SUL1 < - + 0.75W1 <- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = ----------------------------------------------------------------------------- - - - - -- LOAD CASE 54 : D +C + 0.75SUL1 <- + 0.7561G<- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.737 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 55 : D +C + 0.75SUL1 <- + 0.76bi, " <- Check By ASD; No Deflection Limits Highest check ratio achieved in this 1c =ad case 0.014 LOAD CASE 56 : D +C + 0.75SUL1 <- + ' Check By ASD; No Deflection Limits 0 0 MSA 29 .0 ' Page 12 of 40 Job:5I68790I C:\ABCP\FBAMES\5168790I.01B 07/26/07 09:09:26 Highest check ratio achieved in tbis load case ----------------------------------------------------------------------------------- LOAD CASE 57 D+C + 0.75SDBl-� + 0�75wl-� Check By A5D; No Deflection Timits Highest check ----------------------------------------------------------------------------------- ratio achieved in tbis �c�� ���e ~ 0��56 LOAD CASE 58 D+C + 0.75SORl-,> + Check By LSD No Deflection Limits Highest check ----------------------------------------------------------------------------------- ratio achieved io this loai oa:- = 0.737 LOAD CASE 59 D+C + + Check By A3D; No Deflection Limits Highest check ___________________________________________________________________________________ ratio aobieVed in this LOAD CASE 60 D+C + 0.71 + 0.75w4— Check By ASo; No Deflection Limits Highest check ----------------------------------------------------------------------------------- ratio achieved in this load case LOAD CASE 61 I.07o+C + 0-75L + 0.75E-/ Check By ASD; No Deflection Limits Highest check ___________________________________________________________________________________ ratio achieved in tbia load case ~ 0.487 LOAD CASE 62 I.07D+C + 0.75L + 0.75C- Check By ASo; No Deflection Limits Highest check ----------------------------------------------------------------------------------- ratio achieved in this load case ~ 0.487 LOAD CASE 63 1.07D+C + 0.75S + 0.75E-> Check By ASo; No Deflection Limits Highest check ----------------------------------------------------------------------------------- ratio achieved in this load case ~ 0.856 LOAD CASE 64 I.07o+C + 0.75S + 0.75E- Check By A3D; No Deflection Limits Highest check ----------------------------------------------------------------------------------- ratio achieved in this |uaj case ~ 0�856 LOAD CASE 65 0.60D + WL^ Check By ASD; No Deflection Limits Highest check ratio acbie77ed in this Load case LOAD CASE 66 : 0.60D + Wl MSA 29.0 Page 13 of 40 Job:51607901 C:AABCP \FRAMES \51637901.01B 07 /26/07 09:09:26 Check_ Ey ASTj; 'ND Defle~ti Limn _S Highest check ratio _n -his LOAD CASE 67 0.60D + CileC }' B,J ASD; No DefleCtl0n Limit Highest heck_ rat1G achieved in this l .' case = 0. 33A ----------------------------------------------------------- -------- ----------- - - - - -- LOAD CASE 68 . n.60D + TrJ2 -> Check B,, ASD; No Deflection Lip, its Highest check ratio achii died in this load case ------------------------------------------------------- ------ -------- -------- - - -- -- LOAD CASE 69 : 0.60D + Check By ASD; No Deflection Limits Highest check ratio achieved in this LDa 7 =se 266 LOAD CASE 70 : 0.60D + W3 -> Check_ By ASD; No Deflection Limits Highest check ratio achieved in this load ca:_,e = 0.52 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 71 : 0.60D + W3 <- Check By ASD; No Deflection Limits Highest check; ratio achieved in this load case = 0.521 ----------------------------------------------------------------------------- - - - - -- LOAD CASE 72 0.60D + W9 -? Check_ By ASD; No Deflection Limits Highest check: ratio achieved in thiji3 load ease ----------------------------------------------------------------------------------- LOAD CASE 73 0.60D + W4 <- Check By ASD; No Deflection Limits Highest check ratio achieved in this load case ----------------------------------------------------------------------------------- LOAD CASE -7 4 0.54D +C + U.70E Check By ASD; No Deflection Limits Highest checl, ratio achieved in t1.1s LOAD CASE 75 : 0.54D +C + 0.70E < - Check By ASD; No Deflection Limits Highest check ratio achie-. in thIS load case = 0.19i) MSA 29.0 Page 14 of 40 Job:51687901 C: \ABCP \FRAMES\51687901.018 07/26/07 09:09:26 LOAD CASE 76 0.76D +C + 0.59QE Check By ASD Special Seismic; No Deflection Limits ------------------------------------------------------------------------- - - - - -- LOAD CASE 77 : 0.761)+C + 0.5go_E <- Check By ASD Special Seismic; No Deflection Limits ------------------------------------------------------------------------- - - - - -- LOAD CASE 78 : 0.48D +C + 0.59QE- Check By ASD Special Seismic; No Deflection Limits -------------------------------------------------------------------- - - - - -- LOAD CASE 79 : 0.48D +C + 0.59QE<- Check By ASD Special Seismic; No Deflection Limits 0 MSA 29.0 Page 15 of 40 Job:51687901 C:\ABCP\FF:AI\IES\\51687901.01B 07/26/07 09:09:26 [',fj 1 ",4 7 ",j CH E F - ( L T-1 JS PER 1 1 '8 ( AISC OUTER F LANGE 4 - WEE WIDER I D E R �� 4 PL 71 1 E OUTER FLG, WEE SHE-'P, T 1,�JIER FLG MEM WIDTH THICK I THICK I DT H 1H I:- R.T - 1 TO LOAD RATIO LOAD RAT LOA i 8.0 0 2 0 2 1 13 GO G 311 7 J G 4, 3 0 1 1' 2' 0.987 2 1 2 8.00 0.31 0 2? 5 1 G �S 0._ 75 U 0 . 3 15 0 . 719 - 1 " G. 862 1 -1 ` - 3 2.00 0 1 -1 s- 0. 1644 8.00 0. 3 0.90 2 2 0.838 22 0.968 23 4 0.00 0 . 7 1 0 0.1644 0.00 ( . Z-- 0 0.965 G .5 44 23 0.969 2 2 GO 0.3750 0. 1 64 4 0 0 0 . 0.544 23 0.969 6 8.00 0.3125 0. 1644 8.00 0. 5 0 02 22 0.838 2 2 0.968 23 8.00 0. ; 1 5 0. 6.00 0.N15 22 0.719 22 0.868 23 8 8.00 0.2500 0.2 8.00 0. 375C 0.2 3 0. 518 L 2 0.927 21 MSA 29.0 Page 16 of 40 Job:51687901 C: \ABCP \FRAMES`151687901.0lB 07/26/07 09:09:26 BOLTED SPLICE SUMIMAR.Y PLATE * BOLTS WIDTH/ CONNECTION RESISTANCE * MOMENT THICK. * ROWS GAGE DIA. * TENSION COMPRESSIOid MOMENT ARM _ YT YC NODE (in.) * LINES ir,.) (kips) (kips) (kip -ft) (in.) (in.) (in.) 2 8.00X TOP 4 2 0.750 99.4 1 4- 48.37 7.90 1.61 0.500 BOT. 2 2 0.150 59.1,_i 59.0 151.1 52.25 5.27 0.36 5 8. 00X TOP 0.750 � . _ 71.2 l l'9. 4 20. 11 0. 39 0 . 20 0.500 DOT. 2 0.750 69. �_,.� 131.° 20.08 0.43 0.19 8 8.00: /, TOP 9 0.750 99.4 126.0 454.2 48.37 7.90 1.61 0 .500 BOT. 2 2 0 .750 59.0 59.0 257.1 52.25 5 .27 0.36 0 • MSA 29.0 Page 17 of 40 Job:51687901 C:AABCP \FRAMES \51687901.018 07/26/07 09:09:26 7 7 , ,LME _ -lP,�r. SUP. k NODE BASE T THICKNESS G4IDTH 0.625. 511 0.625 (in.l =.p7 -HOR. BOLTS JIikME'T'ER AREA (in.) (in2) 1.1100 1.142 1.100 3.142 1 NODE 1 1 y LOAD CASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2 7q 30 31 32 33 34 35 36 37 38 J 4 CONNECTION DESK' - FORCES AT SUPPORTS BOLT RESISTANCE HORIZ(INTAL VERTICAL I'l 9E1v1T SHEAR TENSION ( ps l -ips) ; kip -ft) ( kips) (kips) 3.84 6 46 0.01 0 2.40 4.46 5 7 6 -0.00 U6 0 14.86 l .v'3 -0.00 -8.61 -13.90 0 00 -3.30 -4.78. -0.00 -4.07 -8.30 -0.00 -4 , 57 -1- 1. 50 - 0 . 00 -9.82 -13.02 -0.00 -5. 43 -8. 7a 0. C)0 -6.'20 - 12._,C) -_.00 -6.70 -U.71 1.55 0.71 0.00 -3.90 -1.80 0.00 3.90 1.80 -0.00 9.60 14.48 -0.00 31.42 62.83 18.95 27.5_ 0.00 31.42 4/.51 18.70 34.52 -0.00 31.42 48.02 18.70 19.81 0.00 31.42 48.02 -6.21 - 4 15 0.00 31.42 62.85 c 6 -O..jo 31.42 62.83 31.42 62.83 -1 .84 -0.00 31.42 62.83 31.42 62.83 31.42 62.83 -3.03 31.42 62.83 - _.•�I:i -7.��5 0.00 31.42 62.83 - 4.: "ii .1 3 1.42 62 R 3 2. 6.19 -0. 00 31.42 62.83 5.09 ?.19 0.00 31.42 62.83 1.70 ?.05 0.00 31.42 62.83 2.39 5.72 2.00 31.42 62.83 - 0 . 0 0 3 1. 4 2 6 2 0 3 5 • h' - 0. 00 31.42 62.83 F - I L MSA 29.0 Page 18 of 40 Job:51687901 C:\ABCP\FRAMES\51687901.018 07/26/07 09:09:26 39 4,73 d.3C -0.00 31.42 62.83 40 0.79 1 7] 0.00 31.42 62.83 41 4.09 3.89 -0.00 31.42 62.83 42 3.50 3.25 0.00 31.42 62.83 43 3.13 5.35 0.00 31.42 62.83 44 8.72 11.83 -0.00 31.42 62.83 45 9.41 15.50 0.00 31.42 62.83 46 12.70 18.67 0.00 31.42 58.82 47 12.12 16.03 -0.00 31.42 59.87 48 11.74 18.14 -0.00 31.42 60.54 49 7.81 12 . 4 9 0.00 31. 42 62.83 50 11.11 15.67 0.00 31.42 61.69 51 10.52 13.03 -0.00 31.42 62.74 52 10.15 15.13 RAO 31.42 62.83 53 12.51 23.92 -0.00 31.42 59.16 54 11.55 23.39 -0.00 31.42 60.89 55 10.91 20.92 -0.00 31.42 62.04 56 9.96 20.38 0.00 31.42 62.83 57 9.21 9.71 0.00 31.42 62.83 58 11.93 10.25 0.00 31.42 60.21 59 7.62 (.71 -0.00 31.42 62.83 60 10.33 7.2" -0.00 31.42 62.83 61 7.17 12,1`9 0.00 31.42 62.83 62 9.50 13.20 Mo 31.42 62.83 63 14.19 21.97 0.00 31.42 56.14 64 16.52 23.04 -0.00 31.42 51.95 65 -6.69 -10.12 -0.00 31.42 62.83 66 -5.77 -5.23 -0.00 31.42 62.83 67 -1.38 -0.99 0.00 31.42 62.83 68 -2.16 -4.51 0.00 31.42 62.83 69 -2.66 -1.71 0.00 31.42 62.83 70 -7.90 -9.23 0.00 31.42 62.83 71 -3.51 -4.99 -0.00 31.42 62.83 72 -4.28 -8.51 -0.00 31.42 62.83 73 -4.79 -5.71 -0.00 31.42 62.83 74 1.53 4.26 -0.00 31.42 62.83 75 3.70 5.26 0.00 31.42 62.83 76 0.91 4.51 -0.00 31.42 62.83 77 5.49 6.63 -0.00 31.42 62.83 78 0.16 3.48 0.00 31.42 62.83 79 4.75 5.59 0.00 31.42 62.83 9 1 -3.84 6.46 -0.00 2 -2.40 4.46 -0.00 3 -5.76 8.02 0.00 4 -15.11 21.06 0.00 5 -14.86 13.35 0.00 6 -14.86 2d.06 -0.00 7 8.61 -13.90 -0.00 8 3.30 -4.18 0.0111 9 7.69 -9.02 0.00 10 4.57 -5.50 -0.00 11 4.07 -9.30 0.00 12 5.43 -8.78 -0.00 13 9.82 -13.02 0.00 14 6.70 -9.56 0.00 15 6.20 -12.30 -0.00 16 -1.55 0.71 -0.00 MSA 29.0 Page 19 of 40 Job:51687901 C :\A BCP\ J' - 1 87901.01B 07/26/07 09:09:26 _ 31.42 2 a 21 1 9 S 2 31.42 2 2' 31.92 48.02 23 -18. 7, 1 - 1 34 . ' C)0 31. 4 4'6. 0' 2 2 4 6.21 -9.45 0 31.42 62.83 25 0.90 - 0 . 3 2 0.00 31.42 62.83 26 5.29 -4 . 56 0 31.42 62.83 `7 li 31.42 62.83 _4 31.42 62.83 4 . 3 C 31.42 62.83 2 62 . 12 31 4.31 - .U4 31 . 4' h2 .8 1 32 7 31 . 42 62.83 33 -5. 0 9 q Ol 31. 42 62 83 34 -2. 9 2 l 0 31.42 62.83 35 - 1.70 2.05 0.00 31.42 62.83 36 -5.68 - 0.00 31.42 62.83 37 -2.39 5 31.42 62.83 38 -4.73 8 . 31 00 31.42 62.83 39 -5.10 . I C J 6. -0.00 31.42 62.83 40 -4.09 0.00 31.42 62.83 41 -0 2.71 0.00 31.42 6 2 8, 3 42 -3.13 1- J, 0, F) 0 31.42 62 .83 43 -3.50 -0.00 31.42 62.83 44 1 81 /2 31.4E 62.83 45 - 18 .67 -01.00 31.42 58.82 46 -9.41 15.50 00 31.42 62.83 47 -11.74 18.14 0.00 31.42 60.54 48 -12.12 16. 0 3 0.G0 31. 59.87 49 -11.11 15.67 -0.00 31.42 61.69 50 -7.81 1 0.00 31.42 62.83 51 -10.15 15.13 3 - 0 . 0 0 31.42 62.83 I - -10. 5 2 :13.03 0.00 31.42 62. i4 53 -9.21 9.77_ -0.00 31.42 62.83 54 -11.93 10 . 2 -0.00 31.42 6 55 -7.62 .71 . 00 31.42 62.83 56 -10.33 7 - 0 0.00 31.41' 62.83 57 -12.51 3. 91 -0. 3 1 . 4 2 59.16 58 -11.55 23.39 31.42 60.89 59 -10.91 2)0.9? _0 31.42 62.04 60 - 9.96 20. 38 -0.00 31.42 62. 83 61 -9.50 13. 0.00 31.42 62.83 62 -7.17 12 . 19 0 .00 31.42 62.83 63 -16.52 3 . 4 0 .00 31.42 51.95 64 -14.19 21.97 -0.11)0 31.42 56.14 65 6.69 2 0.00 31 .42 62.83 66 1 j 1 4 62.83 67 77 0 31.42 62.83 68 2.66 _ 71 31.4 6, _ 83 69 2.16 51 0.00 31 . 42 62.83 70 3.51 -4 - 0.00 31.42 62.83 71 7.90 -9.23 00 31.42 62.83 72 4.79 - 0.00 31.42 62.83 73 4.23 00 31.42 62.83 74 -3. 00 31.42 62.83 MSA 29.0 Page 20 of 40 Job:51687901 C:AABCP \FRAMES \516 7901.01B 07/26/07 09:09:26 -0.00 31.42 62.83 76 -5.49 6.63 0.00 31.42 62.83 77 -O.91 9.51 -0.00 31.42 62.83 78 - 4.75 5.59 - 0.00 31.42 62.83 79 -0.1rD 3 .48 0.00 31.42 62 .83 MSR 29. 0 Job: 51687901 C: AA BCP\FF, A MES' 5.168 1 -)C) 1 . 01-B Page 21 of 40 07/26/07 09:09:26 FTO CASE 1 : D+C: SUPPORT NODE HORIZONTAL 17ERTICAL (kips) (kips) (,kip -ft) 1 1 3.84 6. 0.00 2 9 -3. '84 6. -0. nf CASE 3 : L SUPPORT 11C)DE HORIZONTAL `iERTT ( kips} k i's I d "Cl - T: 5.7 2 9 CASE 5 SULl<- SUPPORT 1,lODT- HORIZONTAL VERTICAL MlOLIELIIT (kips) (kips) 14 .86 23. 0. 00 2 9 -14.86 13.35 0.00 CA SE FE 1) SUPPORT NODE 'HORIZONTAL VERTICAL MOMENT ( kips) (kips (kip- 1 1 2.40 4.4 0.00 2 9 - 2. 4 0 4.46 -0 SE 4 S HORIZONTAL VERTICAL MOMENT 1,- ps) k k -ft 15. ='1.06 -0.00 IJ -15.1 21.06 n . I n SUPPORT NODE HORIZONTAL (kips) 11 1 14 .36 9 -14. CASE 7 : i L /' SUPPORT NODE HORIZONTAL VERTICAL lC )MENT p, s 6,1 2.61 CASE 9 : Wl<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip - 3.30 - 4.78 - 0.00 2 9 7.69 - 9.02 0.00 CASE 11 : W2 <- SUPPORT 1 HORIZONTAL - VERTICAL ki ( k i p S ) (k -ft) - 4 . 5 - 5 . 0 cl� 2 9 4 . U - 8.30 0 CASE 13 : W3<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 -5.43 -8.78 0.00 2 9 9.82 -13.02 0.00 CASE 15 : W4 <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) I DS ID - 1 6. 7 6 -11 CASE 17 : E<- SUPPORT NODE HORIZONTAL VERTICAL M0 (kips) (kips) (kip-ft.) I I 1.55 0.71 0 2 9 1.55 - 0.71 0.00 CASE 19 : QE<- SUPPORT NODE HORIZONTAL VERTICAL MOHF'NT VERTICAL MOMENT (kips) (kip-ft) 13.35 -0.00 - '8. c e- J6 -0.00 SUPPI,l)PT NODE HORIZONTAL VERTICAL MOMENT (k (kips) (kip-ft) - -9.02 - cl . cl 0 3 3 C) -4. 7 0. CASE 10 : STIFPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip 1 - 4 .07 - 8.30 - 0.00 9 4.57 - 5.50 - 0.00 CASE lz : W3 - :> 1 = i( VERTICAL MOMENT kips) (kips) (kip -ft) ? -13.02 C)C) 9 5.4 -8.7'2 -0.00 C A S E 1 4 1114 SUPPORT NODE HORIZONTAL VERTICAL MOMEl (kips) (kips) (kip-ft) -6.20 -12.30 -0.00 2 9 6.70 -9.50 0.00 CASE 16 : E-> : NODE HORIZONTAL (kips) -1. 55 1- 5 1 3 VERTICAL MOMENT , kips) (kip-ft) -o, 71 -0. (jr) 0. -0.00 E - > - SUP PORT 1'702 >E I J, URIZON'TAT, VERTIC PIOIMENT (kips) (kips) (kip-ft) 1 -3.90 -1.80 0.00 -3.90 1.80 -0.00 "T)"PORT RODE HORIZONTAL VERTICAL M01\1ENT 11 r i MSA 29.0 Job:51687901 (kips) 1 1 3. 90 2 9 3.90 C: \A (kips) 1.80 -1.80 Page 22 of 40 3CP \FRAMES \51687901.01B 07/26/07 09:09:26 (kip -fti (kips) (kips) (kip -ft) -0.00 1 1 9.60 14.48 -0.00 0.00 2 9 -9.60 14.48 -0.00 CASE 21 . D +C + ti SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kit; -t- 1 1 18.95 27.52 0.00 2 9 -18.95 27.52 -0.00 CASE 23 . D +C + SUR1 -> SUPPOR MODE HORIZONTAL VERTICAL MOMENT (kips) (k.ips! (k.ip -ft 1 1 18.70 19.81 0.0� 2 9 -13.70 34.52 -0.00 CASE 25 : D + Wl -> SUPPORT NODE HORIZONTAL VERTICAL I , 10ME'NT (kips) (kips) (kip -ft) 1 1 -5.29 -4.56 -0.00 2 9 0.90 -0.32 0.GG CASE 27 : D + W2 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -f L) 1 1 -1.68 - 3.84 -0.00 2 9 2.18 -1.04 0.00 CASE 29 : D + W3 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 -7.42 -8.56 -0.00 2 9 3.03 -4.33 0.00 CASE 31 : D + W4 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -3.80 - 7.85 0.00 2 9 4.31 -5.04 -0.00 CASE 33 : 1.06D +C + 0.70E -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 2.92 6.19 -0.00 2 9 - 5.09 7.19 -0.0u CASE 35 : D +C + 0.751, + 0.75WL^ SUPPORT NODE HORIZONTAL VERTICAL I10ME11T (kips) (kips) (kip -ft) 1 1 1.70 2.05 0.00 2 9 - 1.70 2.05 0.00 CASE 37 : D +C + 0.751, + 0.754v1'- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 5.68 8.89 -0.00 2 9 - 2.39 5.72 CASE ?4 D + WL' SUPPORT HO DE HORIZONTAL (kips) 1 -6.21 9 6.21 VERTICAL MOMENT (kips) (kip -ft) -9.45 0.00 -9.45 -0.00 CASE 26 D + Wl'- SUPPORT NUDE HORIZC >1]TAL VERTICAL MOMENT (kips) (kips) (kip - ft) 1 1 -0.90 -0.32 0.00 2 9 5.29 -4.56 -0.00 CASE 28 . D + W2 <- SUPPOR.i' DIODE HORIZONTAL VERTICAL MOMENT (kips) ( kips ) (kip-ft) 1 1 -2.18 -1.04 -0.00 2 9 1.68 -3.84 -0.00 CASE 30 : D + W3 <- SUPP'DR.T NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -3.03 -4.33 -0.00 2 9 7.42 -8.56 -0.00 CASE 32 : D + W4<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -4.31 -5.04 -0.00 2 9 3.80 -7.85 -0.00 CASE 34 : 1.06D +C + 0.70E < - SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 5.09 7.19 0.00 9 -2.92 6.19 0.00 CASE 36 : D +C + 0.751, + 0.75W1 -> ,SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 2.39 5.72 0.00 9 -5.68 8.89 -0.00 CASE 38 . D +C + 0. 75L + 0. 756J2 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 5.10 6.25 0.00 2 9 -4.73 8.36 0.00 SUP7,�PT 1. O'DE HORIZONTAL VERTICAL [MOMENT (kips) (kips) (kip -ft) 1 1 18.70 34.52 -0.00 2 9 -13.70 19.81 -0.00 CASE ?4 D + WL' SUPPORT HO DE HORIZONTAL (kips) 1 -6.21 9 6.21 VERTICAL MOMENT (kips) (kip -ft) -9.45 0.00 -9.45 -0.00 CASE 26 D + Wl'- SUPPORT NUDE HORIZC >1]TAL VERTICAL MOMENT (kips) (kips) (kip - ft) 1 1 -0.90 -0.32 0.00 2 9 5.29 -4.56 -0.00 CASE 28 . D + W2 <- SUPPOR.i' DIODE HORIZONTAL VERTICAL MOMENT (kips) ( kips ) (kip-ft) 1 1 -2.18 -1.04 -0.00 2 9 1.68 -3.84 -0.00 CASE 30 : D + W3 <- SUPP'DR.T NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -3.03 -4.33 -0.00 2 9 7.42 -8.56 -0.00 CASE 32 : D + W4<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -4.31 -5.04 -0.00 2 9 3.80 -7.85 -0.00 CASE 34 : 1.06D +C + 0.70E < - SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 5.09 7.19 0.00 9 -2.92 6.19 0.00 CASE 36 : D +C + 0.751, + 0.75W1 -> ,SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 2.39 5.72 0.00 9 -5.68 8.89 -0.00 CASE 38 . D +C + 0. 75L + 0. 756J2 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 5.10 6.25 0.00 2 9 -4.73 8.36 0.00 MSA 29.0 Page 23 of 40 Job:51687901 C .- \ABC P FRST- S \ E: j I C, 8 -7 c, n ) I - _ 0 IB 07/26/07 09:09:26 CASE 39 : D+C - 0. - SUIFFOPT 1 HORIZONTAL ( kips ) 1 41 7- 9 3 w _T JE RT i -A kips, I,' CASE 41 : D+C + 0.75E SUPPORT NODE HORIZONTAL IvERTIC-IL'I'L Pj�, (ki - 0.79 j . J;l CASE 4 3 : D+C 0.75L SUPPORT NODE HORIZONTAL VERTICAL 1\101✓�EIIT (kips) (kip-ft) 13 CASE 45 : D+C + 0.755 + SUPPORT NODE HORIZONTA _'JER.T_T("_,LL M0' kips kips 1 9. 41 1 5 0 19 c) CASE 47 : D+C + 0.755 + 0.75W2? SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) kips ki r _ I - L t 1 1 1 16.03 -0. t" 0 2 9 -11.74 18.14 0.00 CASE 49 : D+C + 0.755 + 0.75W3 SUPPORT NODE HORIZONTAL VERTICAL MOMENT k ips) { kips k i 17, - L 7 . ?1 1'. 0 2 -1 1.11 5 . 6 7 -0 CASE 51 : D+C + 0.755 + SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) ( 1 1 10.52 13.03 03 -0. ( 2 9 -10. 15 15.13 - 'J .00 CASE 53 : D+C + 0.75SUL1<- 4 - 0.75W1•'- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips (kip -ft) 1 1 12.51 23.92 0C. CASE 55 : D+C + 0.75SULl + SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips, (Kip-ft) 10. 91 20 .9' 2 9 -7.62 6.71 -0.00 CASE 57 : D+C + 0.75SUR1-> + 0.7:,wj, SUPPORT NODE HORIZONTAL VERT MO!"'JENT (kips) (ki 1 1 9.21 9. 71 u . 0 0 D- C - 7 0 -> S UFPOF.T NODE HORI ZONTAL VERTICAL MOMENT ( kips) (kips) (kip -ft) 0.00 0.79 - . 71 D -4. 5 4 - SUP () 0(jl__ OPIZONTAL VERTICAL MC_)1✓JEl jo:_Jps (kips' (kip-ft ) 3.25 G 0, 13 5.35 0.0 �! , I E =! =! +C + 0.75S + 0.75WL' SU PPORT 1110DEE HORIZONTA VERTICAL MOMENT kips) (kips) (kip - ) a . - 7 � -0.00 11.83 -8.72 11.83 -0.00 CA: E D+ C + 0. 75S + 0 . 7 5W 1 _)T j �T 1101DE T_C:R7ZOl\lTAL VERTICAL Mc)MEj.jT ( kips) (kips) (kip-ft) 0.00 18.67 1 9 - 15. -0.00 C AS E 4 8 : D + C + 0.7 + 0.75 <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 11.74 18.14 -0.00 2 9 -12.12 16.03 0.00 CASE 50 : D+ SUPPORT NODE j + 0.755 + 0.75W3<- HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 11.11 15.67 0.00 _7.81 1 0.00 C,T�SE 5 : E'+C + 0.75S + 0.75W4<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 10.15 15.13 0.00 _10.52 13.03 0.00 CTISE 54 : D+C + 0.75SUL1<- + 0.75W2 <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT ( kips) (kips) (kip -ft 1 1 11.55 23.39 -0.00 9 -11.93 10.25 -0.00 CASE 56 : D+C + 0.75SUL1<- + 0.75W4<- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) ( kips) (kip -ft 1 1 9.96 20.38 0.00 1 9 -10.33 7.25 0.00 CASE 58 : D+ + 0. + 0.75W2 -> > SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 11,93 10.25 0.00 MSA 29.0 Page 24 of 40 Job: 51687901 C: \ ABC P` \51687901.01B 07/26/07 09:09:26 =3.39 -0 .0 CASE 59 . D +C + fi.75SURl SUPPORT NODE HORIZONTAL VERT1C _ 1'90ME1dT p (i:i c- 't -10.51 _ CASE 61 : 1.07D +C + 0 SUPPORT NODE HORIZOjjT (kips) 1 1 17 2 9 -9.50 + kL 'iERTIC._� C�1�JC1Ehl': (kips kip CASE 63 . 1.07D +C + 0.75S + 0.75E SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft: 1 1 14.19 21.97 0.0 9 -16.5% 23.04 ).00 CASE 65 : 0.60D + WL SUPPORT NODE HORIZONTAL VERTICAL 1�701'7EP7T (kips) (kips) (kip -ft) 1 1 - 6.69 -10.12 -0.00 2 9 6.69 0.00 CASE 67 : 0.60D + Wl <- SUPPORT NODE HORIZONTAL VERTICAL M01 (kips) (kips) (kip -ft) 1 1 -1.38 - 0.99 0,00 2 9 5.77 -5. 0.00 CASE 69 : 0.60D + W2 SUPPORT MODE HOR.IZOIITAL VERTICAL H01 ?Ell'3' (kips) (kips') kip 1 1 -2. 66 -1.71 0. 2 9 2.16 -4.51 0, C CASE 71 . 0.60D + W3 <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 -3.51 -4.99 -0.00 2 9 7.90 -9.23 0.00 CASE 73 : 0.60D + W4 <- SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -4.79 -5.71 -0.00 G 4.22 - 'd CASE 75 : 0.54D +C + 0.70E < - SUPPORT NODE HORIZONTAL VERTICAL MC)l4ENT (kips) (kips) (hip -ft) 1 1 3.70 5.26 0.00 2 9 CASE 77 : 0.76D +C + 0,59QE - -,- SUPPORT NODE HORIZONTAL VERTICAL CIOMEc'T SUP HORIZONTAL VERTICAL MOmE11T (kips) (kips) (kip -ft) _ = 10.33 7. %5 -0.00 �> -9.56 20.38 -0.00 CASE 6% . 1 7D +C + 0.75L + 0.75E<- S�JPPOR.T 1.iGDE 'H(DRIZONTAL VERTICAL MOMENT r, s) (kips) (1_ip- f t ) 1 i 9.50 13.26 0.00 -7.17 1 %.19 0.00 _..S _.)�0 +�� + 0.75S + 0.75E < - S�;FP +�R.T NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 16.52 23.04 -0.00 9 - 14.19 21.97 -0.00 + V, 1 -> SUPPORT NUDE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -J.77 -5.23 -0.00 9 1.38 -0.99 -0.00 CASE 68 . 0.60D + W2 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -2.16 -4.51 0.00 9 2.66 -1.71 -0.00 CANE 70 : 0.60D + W3-> SUPPO -.'n NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -7.90 - 9.23 0.00 9 3.51 -4.99 -0.00 CASE 72 . O. COD + W4 -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip -ft) 1 1 -4.28 -8.51 -0.00 2 9 4.79 -5.71 -0.00 CASE 74 . 0.54D +C + 0.70E -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (k:ips) (kips) (kip -ft) 1 1 1.53 4.26 -0.00 - i9 5.26 -0.00 CASE 76 . G.76D +C + 0.5952E -> SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 0.91 4.51 -0.00 9 -5.49 6.63 0.00 CAS-: 4 ? D +C. + Q. 59QE -> ,,PPORT MODE HORIZONTAL VERTICAL MOMENT MSA 29. 0 Job:51687901 C:\ABCP\FRAMES\51687901.01B kips) (kips) ( k i r - (kips, 5.49 6 -0.0 1 1 0.16 2 9 -0.91 4.31 -4.73 CASE 7 19 : 0.48D+C - O.' SUPPORT NODE HORIZONTAL VERTICAL I✓'X (kips) ps) 5.59 2 9 -0. 16 3. 48 O. G 0 Page 25 of 40 07/26/07 09:09:26 (kips) "kip-ft) 3.48 0.00 -0.00 MSA 29.0 Job:51687901 CASE 1 . D +C Horizontal Vert ICa! HORIZONTAL 1�0 DE ( ii; . `) 1 0.000 -0.104 3 -0.056 4 -0.029 5 -0.000 6 O. Li29 7 0 56 8 0.104 9 0.000 CASE 3 . L Horizontal Vert i cal HOR.I 7 ONTAL NODE (in.) 1 0.000 2 -0.159 3 -0.086 4 -0.044 5 -0.000 6 0.044 7 0.086 8 0.159 9 0.000 C:AABCP \FRAMES \51b57901.01B 1dC1D?�L DIIPLACEi ='. T)eI I -- - t i c n Liii11L : Nio E Deflection Limit: Pr,r- ERTICAT ACdGT'L.. in.! rad.1 0.000 0.00'= (in.) .:''j -0.371 -0.003 - 0.710 - 0.00� -0.635 0.000 - 1).444 O.00)2 - 0.230 0.0 -o.rno 0.001 0.000 -0.002 Deflection Limit: /60 Deflection. Limit: Lilrl':) VERTICAL AAJGL'LAR (in.) (rad.) 0.000 0.002 0.001 - 0.0 (;)1 -0.564 -0.004 -1.100 -0.004 - 1.702 0.000 -1.100 0.004 - 0.564 0.004 0.001 0.001 0 . 000 -n . 01 "'2 C1" ='.SE - D 'vertical � 0'J I h 1 r C� 0. 1"464 9 0.000 - -.= E' 4 Hori:onta1 rtica1 H' RIZC %1 -TZ':L NUDE (in.) 1 0.000 -0.417 -0. 2'26 9 -0.116 5 -0.000 6 0.116 7 0.226 0. 417 - O.ono Pace 26 of 40 07/26/07 09:09:26 Deflection Limit Deflection Limit V7R -TICAL ANGULAR 1 N o rl e in .'I rad.1 0 'J 0.001 (in.) (rad.) 0.000 0.006 -0.449 -O.On> -0.635 0.000 - 1).444 O.00)2 - 0.230 0 .0 U2 -0.000 0.001 0.000 -0.001 Deflection Limit Deflection Lim - - -t 'VERTICAL AiIGULAR. (in.) (rad.) 0.000 0.006 0.003 -0.004 -1.482 -0.011 -!.887 -0.012 -4.468 0.000 -2.887 0.012 - 1.482 0.011 0.003 0.004 0.000 -0.006 CASE 5 . SUL1 Horizontal Deflection Limit Vertical Deflection Liniit HORIZO 4TAL VERTICAL A1.4GL''LAR NODE (in.) (in.) (rad.) 1 0.000 0.000 -0.002 2 1.645 -0.106 -0.011 3 2.023 -2.977 -0.015 4 2.144 -4.51^ -0.010 5 2.119 -4.394 0.01C! 6 2.373 -1.166 0.013 7 2.468 0.064 0.006 8 2.465 0.112 -0.004 9 0.000 0.000 -0.014 CASE : WL' Horizontal Vertical HORIZONTAL NODF (in. ) 1 0.000 2 0.254 3 C 1-7 4 0.06 i 0. 00I'' 6 -0.069 L/60 Ho__..:r;taI reflecti on Limit L /' =1 er ical Deflection Limit H: R.IZGNTAL ' JERTICAL ANGULAR N D,E in.) (in. ? (rad. ) 1 0.000 o.ono 0.014 - 65 0.112 0.004 3 -2.468 0.064 -0.006 4 -2.373 -1.166 -0.013 -2.119 -4.394 -0.010 6 -2.144 - 4.512 0.010 - L..0 "2.I -2.977 0.015 - 1.645 -0.106 0.011 + 0.C+00 0.000 0.002 Deflection Limit: Deflection Li1, 1 . Li 12+ VERTICAL AiiGULAF. (in.) (rad.j 0.000 -0. oC4 (_)I)1 ID.I)I)2 0.921 0.00 i 1.804 01 .01" 17 1.804 -0.007 H_riz: ntaI ' ✓erti��a1 HORI Z014TAL P•4 I'D Dr n . , 0.319 247 4 Deflection Limit Deflection Limit VERTICAL ANGULAR (1n.1 (rad.� 0.000 -0.003 -0.008 0.001 0.539 0.004 1.050 0.004 1.515 -0.001 0.91 3 - 0.104 L;' 60 L/181 Li60 L /4" L /1%6 • MSA 29.0 Page 27 of 40 Job: 51687901 C: \ABC P FRAME S 5 16 8 7 9 01 0 - 1 B 07/26/07 09:09: 7 01 13 7 G 9 2 1 C) C - . , .00 3 " �1 - 7 7 G 0 01 C', _ CASE q : W 1 ' - Hori 7c n I a Vertical -L HORIZONTAL NODE (in. 1 0.000 2 -0.033 -0.09 4 -0. 128 7 -0. 1 -0.2 -0. 24 -0. 9 0.000 Deflection Limit Deflecticr, Limit VERTICAL ANGULAR (in-) (rad. 0.000 -0. ;') 0 1 0.006 F,) . 001 0. G . 170 _3 1.0 - 0. 5 39 -0.0 0 0 Ili i 0 G . 0 C, 3 , r'T, H o r i zo n ta l " e f 1 e c t i c n Limit L I Ve il ca I De Limit HORIZOIITAL - VERTICAL ANGULAR. NciDE in, (rad. C" Fj 0 D 0.000 01 0 () 0 0 028 G 0 I'D 3 5 1. 30 0 003 J I G 002 6 9 u 0 0 0 2 0. 0.000 FI L/4 L / 12 CASE 11 : Horizontal Deflection Limit Vertical Deflection Limit HORIZONTAL VERTICAL ANGTJLAF, NODE (in.) (in.) (rad.) 1 0.000 0.000 -0. 0 01 Al 2 0 .670 -C) . 0 -0.001 3 0.659 0.083 0.002 4 0.628 0.491 0. 004 B 7 0 0.836 -0 8 0.416 0.028 -0.003 9 0.000 0.000 -0.000 CASE 13 : W3<- Horizontal Deflection Limit Vertical Deflection Limit HORIZONTAL VERTICAL ANGF]LAP. NODE (i (in.) (rad.) 1 0.000 0.000 -0.�- , 102, 0.0 3 - 0 . 0 57 0.72 4 -0.109 1. 0. 0 0 6 5 -0.173 2. '31 0.001 6 -0. 225 1.545 - "s 7 -0.284 0.790 -0.006 3 -0. 387 -0.008 -0.002 9 0.000 0 , 000 0.00 CASE 15 : W4<- Horizontal Deflection Limit % , % a r t i a I De f I e:,t -'L cn Lim H 0 R T TAL VERTICAL AHGUL-- NODE n 1 0.000 0.000 2 0.738 - 0.029 - 0 . (1 0 3 0.695 0 . - 3 4 0. 004 4 0.646 0.986 0.006 E 12 : t'73 L /4 2 Hc, zc P, t a i Deflection Limit L/ V r t i ca 1 Deflection Limit i'C)F I ZONTAT, VERTICAL ANGULAR (in. (rad. 0.000 -0 . 004 0.337 -0.003 0.002 3 D.23 0.790 0.13015 5 - 45 0.006 23 -0 . ClIni C . 0 0 C- 4 0 8 0.72,6 -0 . 005 -0. -0. 0.006 9 O D () 0.000 0.002 CASE 1 P14-> L/4 Horizontal Deflection Limit L 1 2 1 CD Vertical Deflection Limit HORI VERTICAL Al PIC: n (in.) (fad.) 1 0.000 - 0.000 0. 001 4� 0. 0 2 8 0. 004 i. 4��5 1.087 0.006 '4( 1.302 0.005 2.156 -0.002 - 0.986 -0.006 - 0.695 0. 33A -0.004 -0.738 -0.029 0.000 9 0.000 0 , 0 0 0 0.005 CASE 16 E- L /4 H;r > ntai Deflection Limit i c,j ' Deflection L imit HOR i'-T'A 7, I17RTIC�,L A1 1- 'rad. 0 0. O)o 0 -0.003 - 0. C, 31 3 -0.002 - j -0. -0.0011 4 0.716 - 0.337 0.001 L L/126 L/4 L /126 L / 60 None MBA 29.0 Page 28 of 40 Job:5I68790I C:\ABC P\ FRAMES \5IC8 OI.OIB 07/26/07 0 9:0 9 26 5 O.559 2.156 0.002 5 -0. 000 0.002 6 0.540 I.802 -O.065 6 0. 16 0�357 0. 001 7 0.485 I.087 -0.006 7 0.7I6 0.34I -0.00I 8 O.348 0.O28 -0.004 8 O�675 0'.0 33 -0.002 9 0.0D0 0.O00 0.0OI � 0000 0.0O0 -0.003 CASE 17 : E<- Horizontal Deflection Limit: L/6 Hocizootal Deflection Limit: Noue Vertical De±leCtino Limit: mooe n���ical oeflectioo Limit: mooe HORIZONTAL VERTICAL ANGULAR B0!�ZZ00TeL VERTICAL ANGULAR NODE (in.) (iu.) (rad.) NODE (ic.> (in.) (zad.) l 0.000 0.000 O.003 I 0.000 0.000 -0.008 2 -0.675 n.033 0 .002 2 I.697 -0.083 -0.005 3 -0.716 0.34I 0.00I ] -0.859 -0.002 4 -0.7I6 0.337 -0.00l 4 I.80 2 -0.847 0.002 5 88 0.0OO -O.002 5 l.731 -0.000 0.005 5 -O.7IC, -0.337 -0. 001 5 I.803 0.847 0.002 7 -0.7I6 -0.341 0.;0l 0.859 -0.002 O -0.575 -0.033 0.002 6 1.697 0.083 -0.005 9 0.000 0.000 0.003 0, ( 0.00O -0.008 CASE 19 : uE<- 20 D+C + L Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: mnn* Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (zad.) NODE (in.) (in.) (zad.) l 0.000 0.000 0.008 l 0.000 0.000 0.004 2 -I.697 0.083 0.005 2 -0.262 0.00I -0.002 3 -I.802 0.859 0.002 5 -0.I42 -0.936 -0.007 4 -1.802 0.847 -0.002 4 -0.073 -1.919 -0.007 5 -1 .731 0.00O -0.O05 -D.000 -2.813 0.000 6 -1.802 -0.847 -0.002 0 0.073 -l.8I9 0.007 7 -1.802 -0.859 0.002 7 0.l42 -0.936 0 .007 8 -1.697 -0.083 0.005 3 0.262 0.001 0.002 9 0.000 0.000 0.008 9 0.000 0.000 -0.004 CASE 21 : D+C + 3 CASE 22 : D+C + SOLl<- Horizontal Deflection Limit: None Hcrizootal Deflection Limit: mnoe Vertical Deflection Limit: moue Vertical Deflection Limit: None HORIZONTAL VERTICAL AmGUILAR eOnZz0vTAL VERTICAL ANGULAR NODE (in.) (in.) (zaJ.) NODE (in.) (in.) (rad.) 1 0.000 0.000 0.008 I O.000 0.000 -0.000 2 -0.52I 0.003 -0,004 2 1.54I -0.I07 -0.0I2 3 -0.282 -I.853 -0.013 ] I.F968 -3.349 -0.0I8 4 -0.145 -3.607 -0.015 4 2.II5 -5.23I -0.013 5 -0.000 -5.579 0.000 5 2.1I9 -5.504 0.010 § 0.145 -3.507 0.015 8 2.401 -l.886 0.016 7 0.282 -1.853 0.013 7 2.523 -0.308 0.009 8 0.521 0.005 0.004 8 2.569 0.112 -0.003 9 0.000 0.000 -0.008 9 0.000 0.000 -0.015 CASE 23 : D+C + SnP,I-� CASE 24 : D + wL^ Horizontal Deflection Limit-: None Horizontal Deflection Limit: None Vertical Deflection Limit: ! Vertical Deflection Limit: mnoe HORIZONTAL VERTICAL ANGULAR 8ORIZD VERTICAL ANGULAR NODE (io.) (in.) (cad.) NODE (in.) (in.) (zad.) l 0.00O 0.0O0 0.0I5 I 0.0�0 0.000 -0.003 2 -2.569 0.II2 0.003 2 0.190 -0.00I 0.002 CASE 25 : D + Wl -> Horizontal Deflection Limit Vertical Deflection Limit HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0.000 0.000 -0.003 2 0.255 -0.008 0.001 3 1).213 0.309 0 l_2 4 0.189 0.606 0.002 5 0.173 0.330 -0.001 6 0.145 0.469 -0.002 7 0.128 0.245 -0.002 8 0.097 0.005 -0.001 9 0.000 0.000 -0.000 CASE 27 : D + W2 -> Horizontal Deflection Limit: Vertical Deflection Limit: HORIZONTAL "VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0.000 0.000 0.001 2 -0.400 0.028 1.002 3 -0.556 0.606 0.003 4 -0.576 0.862 0.001 5 -0.559 0.705 -0.002 6 -0.610 0.047 -0.002 7 -0.624 -0.147 -0.001 8 -0.606 -0.029 0.001 9 0.000 0.000 0.003 CASE 29 : D + W3 -> Horizontal Deflection Limit: Vertical Deflection Limit: HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0.000 0.000 -0.003 2 0.323 - 0.008 0.001 3 0.250 0.560 0.004 4 0.208 1.101 0.004 5 0.173 1.596 -0.001 6 0.127 0.964 -0.004 7 0.091 0.496 -0.003 8 0.028 0.005 -0.001 9 0.000 0.000 0.001 CASE 31 : D + W4 -> Horizontal Deflection Limit Vertical Deflection Limit HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) VASE 26 . D + None Horizontal None MSA 29.0 HORI ZONTAL Page 29 of 40 Job:51681901 C .AABCP \FRAMES \51687901.01B 07/26/07 09:09:26 3 -2.523 -0.308 - 0.0�J9 - i�.i» 0.691 0.005 4 -2.401 -1.886 -0.016 4 0.052 1.360 0.006 5 -2.119 -5.504 - O.Ci10 5 0.000 2.105 -0.000 6 -2.115 -5.231 0.013 6 -0.052 1.360 -0.006 7 -1.968 -3.349 0.018 - - 0.1t"!3 0.691 -0.005 8 -1.541 -0.107 0.0'- 8 - 0.'_90 -0.001 0.606 -0.002 9 0.000 0.000 0.000 9 0.000 0.000 0.003 CASE 25 : D + Wl -> Horizontal Deflection Limit Vertical Deflection Limit HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0.000 0.000 -0.003 2 0.255 -0.008 0.001 3 1).213 0.309 0 l_2 4 0.189 0.606 0.002 5 0.173 0.330 -0.001 6 0.145 0.469 -0.002 7 0.128 0.245 -0.002 8 0.097 0.005 -0.001 9 0.000 0.000 -0.000 CASE 27 : D + W2 -> Horizontal Deflection Limit: Vertical Deflection Limit: HORIZONTAL "VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0.000 0.000 0.001 2 -0.400 0.028 1.002 3 -0.556 0.606 0.003 4 -0.576 0.862 0.001 5 -0.559 0.705 -0.002 6 -0.610 0.047 -0.002 7 -0.624 -0.147 -0.001 8 -0.606 -0.029 0.001 9 0.000 0.000 0.003 CASE 29 : D + W3 -> Horizontal Deflection Limit: Vertical Deflection Limit: HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0.000 0.000 -0.003 2 0.323 - 0.008 0.001 3 0.250 0.560 0.004 4 0.208 1.101 0.004 5 0.173 1.596 -0.001 6 0.127 0.964 -0.004 7 0.091 0.496 -0.003 8 0.028 0.005 -0.001 9 0.000 0.000 0.001 CASE 31 : D + W4 -> Horizontal Deflection Limit Vertical Deflection Limit HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) CASE 30 : D + Clone Horizontal None .ertical HORIZONTAL NODE (in.) 1 0.000 2 -0.028 3 -0.091 4 -0.127 5 -0.173 6 -0.208 7 -0.250 8 -0.323 9 0.Of?0 :ASE 32 . D + None Horizontal None 'Tent ica 1 HORIZONTAL NC (in. ) W1 <- Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (rad.) 0.000 0.000 0 . 005 0. 001 0.245 0.002 0.469 0.002 0.830 0.001 0.606 -0.002 0.309 -0.002 -0.008 -0.001 0.000 0.003 iN 2 < - Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) O.O00 -0.003 -0.029 -0.001 -0.147 0.001 0.047 0.002 0.705 0.002 0.862 -0.001 0.606 -0.003 0.028 -0.002 0.000 -0.001 W3 <- Deflection Limit: None Deflection Limit. None VERTICAL ANGULAR (in.) (rad.) 0.000 -0.001 0.005 0.001 0.496 0.003 0.964 0.004 1.596 0.001 1.101 -0.004 0.560 -0.004 -0.008 -0.001 0.000 0.003 W4<- Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) VASE 26 . D + None Horizontal None Vertical HORI ZONTAL DIODE (in. ) 0.000 -0.097 ) -0.173 b -u.189 -0.213 9 0.000 CA: "E ?8 D + None Horizontal alone Vertical HORIZONTAL NODE 1 0.000 0.606 3 0.624 4 0.610 5 0.559 b 0.576 0.556 8 0.480 0.000 CASE 30 : D + Clone Horizontal None .ertical HORIZONTAL NODE (in.) 1 0.000 2 -0.028 3 -0.091 4 -0.127 5 -0.173 6 -0.208 7 -0.250 8 -0.323 9 0.Of?0 :ASE 32 . D + None Horizontal None 'Tent ica 1 HORIZONTAL NC (in. ) W1 <- Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (rad.) 0.000 0.000 0 . 005 0. 001 0.245 0.002 0.469 0.002 0.830 0.001 0.606 -0.002 0.309 -0.002 -0.008 -0.001 0.000 0.003 iN 2 < - Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) O.O00 -0.003 -0.029 -0.001 -0.147 0.001 0.047 0.002 0.705 0.002 0.862 -0.001 0.606 -0.003 0.028 -0.002 0.000 -0.001 W3 <- Deflection Limit: None Deflection Limit. None VERTICAL ANGULAR (in.) (rad.) 0.000 -0.001 0.005 0.001 0.496 0.003 0.964 0.004 1.596 0.001 1.101 -0.004 0.560 -0.004 -0.008 -0.001 0.000 0.003 W4<- Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) M3A 29.0 Page 30 of 40 Job:5I68790I C:\Y�BCP\FRAMES\5I68790I.01B 07/26/07 09:09:26 I 0.000 0,000 0.00O I I'D .000 O.00O -0.004 2 -0.4I2 0.02S 0.00 0.029 -0. 001 3 -O. Ell 9 O.857 0 .00 5 � J56I 10 0.0031 4 -0558 l��7 000] 4 05�9 V.54 2 0.0 10 4 5 -O559 I.471 -0�0U2 � �5�9 l. 47I 0.O02 6 -0. 629 0-542 004 558 1.357 -0 7 -0. 661 0 .IO4 -0 .00 3 0O57 -0.005 8 -U.675 -0.029 0.00I O G.4l2 0. 028 -0. 003 9 0.000 0.000 O.0O4 9 0.0O0 O.000 -0.000 CASE 33 : I.06D+C + 0.70E-> [ASE 34 1.06D+C + 0.70E<- Horizontal Deflection Limit: 0ooe Horizontal Deflection Limit: None Vertical Deflection Limit: none 7ertical Deflection Limit: None HORI ZONTAL VERTICAL amSgL�z�.R *OP,lZOmT A L VERTICAL ANGULAR NODE (io. > (io> (�ad) QODE u. > (io. } (zad.> l D.00O ��S00 -0��l l ODO0 0 000 0.0O4 2 0 .351/1 -0. 0231 0n2 � -05�U 0 023 O 000 5 0. 443 -0.526 -0.O03 3 -0. 560 -0 I48 -0.002 4 0.471 -0.986 -O.0O3 4 -0.53I -0-515 -0.005 5 0.483 -1.I59 O.0UI 5 -0.482 -1.I59 -0.00I 6 0.531 -0.515 0.003 6 -0.471 -0.986 0.003 7 0.560 -0.148 0.002 7 -0.443 -0.626 0.003 8 O.580 0.023 -0.000 8 -0.364 -0,023 0.002 9 0.000 0.000 -0.004 9 0.000 0.000 0.00I CASE 35 : D+C + 0.75L + O.75wL^ CASE 36 : D+C + 0.75L + 0.75WI-> Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL I�mSgLAR u0RIZOmTAT, VERTICAL ANGULAR NODE (in.) (io.) (rad.) QDDE (in.) (in. ) <rad.) l 0. 000 0.O00 0. 00I I 0.O0 0 0.000 0.001 2 -0.032 0.000 -0.000 Z 0.016 -0.005 -0.001 3 -0.0I8 -0.104 -0.00I 3 0.065 -0.390 -0.003 4 -0.0I0 -0.I91 -0.001 4 0.093 -0.756 -0.003 5 -0.000 -0.295 0.000 5 0.130 -1.251 -0.000 6 0.010 -0.I91 0.001 6 0.I58 -0.859 0.003 7 0.018 -0.104 0.001 7 0.190 -0.438 0.003 8 0.032 0.000 0.000 8 0.247 0.005 0.001 9 0.000 0.000 -0.001 9 0.000 0.000 -0.003 CASE 37 : D+C + 0.751, + 0.75wI cA-��'E 38 : D+C + 0.75L + 0.75w2-> Horizontal Deflection Limit: None Eoci-ontal Deflection Limit: None Vertical Deflection Limit: 0ooe �e�t Deflection Limit: None HORIZONTAL VERTICAL ANGULAR UORI3ONTAL VERTICAL ANGULAR NODE (in.) (in.) (zad.) NODE (in.) (in.) (zad.) l 0.000 0.000 0.003 I 0.000 0.000 0.004 2 -0.247 0.005 -0.00l 2 -0.535 0.022 0.000 ] -0.I90 -0.438 -0.003 J -0.I68 -0.002 8 -0.I58 -0.859 -0.003 0 -0.48I -0.554 -0.004 5 -0.150 -I.25I 0.000 5 -D.4I9 -1.345 -0.002 6 -0.093 -0.756 0.003 5 -0.409 -I. 0.003 7 -O.065 -0.390 0.O03 7 -O.]74 -0.733 0.004 8 -0.016 -O,OO� 0.00I -D.290 -0.02I 0.003 9 0.000 0. 000 -0.001 9 0P00 0.000 -0.000 CASE 39 : D+C + 0.751, + 0.75W2 CASE 40 D+C + 0.751, + 0.75W3-> Horizontal Deflection Limit: Moon Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None MSA 29.0 Page 31 of 40 Job:51687901 C: 01B 07/26/07 09:09:26 C, HOR.171 INTAL ' !C-AT ANG 1, L' R H F 1 -0'NJT,-.L VE-RTICAL ATIGULAR NODE i D F, ;in. rad .) 0 r) F Q j 0 r 00 I � C 000 Q 0 5 0 1") 1") 1 4 j. A, C; r U. 0.481 -0.5 C . UI ";4 ,. _ 4 - G . 4 61 61 iD G 0 1 0.168 0. 0 11 8 0.535 0.022 -0. 000 0. 000 G. 0 -0. 0 0 4 c 1; Cj 0 1) j -0. 0 cl CASE 41 : D+ + 0. 75L + 0.'751,13 -_ CP E 42 D+( 0.75L + 0. 7 5W4 Hori zontal Deflection Limit: IN, n e Hc- Deflection Limit: Nome re -L _ - L - ` � f t- - i - --., , i D e f l ection L i m i t bon H F, I Z Ni TA L VERTICAL .7 i • f aCt r -E rad. Jz j 1 Di J J 0 . Ol -0. 163 - 0 . 5 0 C)l 4 -0. 144 -0. 484 -0 . 1 ) 4 4 ;5 -,.ly3 -0.002 5 -0.130 -0.676 0 4 -0 . 770 -0.1)0 2 6 -0. 107 -0.3 0 . 0 0 - 0. 0.0 0 7 -0.093 -0. 202 0. 001 - 0. 4 -0.5 0 0 0 3 a -0.067 - 0.180.5 0.001 8 -0.131 -0.021 0.002 9 0.000 0.000 0 0 . , 0 0 0.000 0 . 000 CASE 43 : D+C + 0.75L 0.7FDv,74 44 D+C + 0.75S + 0. 7 5 Ho 2: -i onta Defle L Noi- nt -' 1 D e fl ec t J r-) n L ; clon e Vertical Defle^tion Limit: e r t --' c c=i i Deflecticin Limit: NrIne HORI ZONTAL VERTICAL ANGULAR HOR IZONTAL VERTICAL ANGULAR 1 (in. (in. j (rad. ID E (i n. 'I rad. 1 0 .000 0. oo0 -0.000 0 0 0.000 0 0 0 3 2 0.331 -0.021 - C, ID j. - 0.002 3 0 . 401 - 0 . 5 4 4 - G 3 1 31 -0 006 4 0. 0 . 8 0 5 - 0.002 - - 1 . 5 3 2 - +_x.006 0.419 -0.770 0.002 -2.3 0.000 6 0. 4 67 -0. 1 0. 00% 0. 064 -1.532 0.006 7 G . 484 0.021 -0. - 792 0.006 8 0 . 4 8 4 0 0 21 -0 0.001 0. 00; 9 0. 000 11) 0 I"i 9 0.000 0.000 - 0 . 01 0 3 CASE 45 : D+C + 0 77S + CASE 4 1 6, 15 + Cj. + 0.75W1<- Horizontal Deflection Limit: None Hor i z o ntal Deflection Limit: None Vertical Deflection Limit Hlcmp Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR H' F- 1 Z 0 T A L VERTICAL ANGULAR NODE (in.) (in.) (rad.) F tin (in.) (rad.) 1 0. 000 0 . 00 0 OU 0. 2 -1). 17 -0.004 -0 . 003 - 0.006 -0.003 3 -0. 0 -1.126 -0.008 4 0.039 -2.097 0.13 - 3.3 - , ) . 000 0. 2 1 2 - 2 . 20 ; 39 -21.097 0.009 0. %c" -1.126 0.000 0.0 4 0 0.008 0.441 0.006 0.003 -0.004 OU 9 0.000 0 . GOO -0. 0 r.� 9 J .001; 1) GOO -0. 004 CASE 47 : D+C + 0.75S + C). 4, D- + i 5 C) 5 W 2 PISA 29.0 Page 32 of 40 Job:51687901 C: \ABC P FP,4Ms'7- s 5 16 8 - 7 9 0 1. (D 1 B 07/26/07 09:09:26 H c, r -J Z n. t a 1 ^efiection - i r , - - : : 1 1 z 3 e f 1 e c t io r-, L i mit . NC, n e r c e f I e t on L I' m - D- : coon n L m i t 1 o r '= 0 '1 TL, I - E F: L N1 U L T I = , E F T I C AN C�U�-- R D F n ad C , j I I J . 1 9 G -2 . J1 f' 009 -0.419 -'. -0. 01 0 2 4 - 3 4 2 0 0.00 0.009 -0. 1 4 21 0. a� -_, � � - 0 . 056 0 �7G- -0 = 1 0 21 0 0 C-1 ASE 4 - + + 0 + H De f2�j t i r. Lars - r e c t i o n L i fit i t N' rl Jertical Deflection Lira`. Ilane c a I D e flec tion L im i t 1%lo n e H D R I Z 0 11 T A L `j E R 7 T 1L p I ", T AR H Z; 1 1 T L ".1 T ' ERT, I P 11 GU LAR I C, D E n ;i n. r ad . 11 E (in.) rad. 0. 000 0. 0.003 0.0 0 0.005 -0.126 -0.0., -0 . iD 00 3 - 0.012 -0.89 -0.006 -0. 938 -0. 007 4 0. 053 - 1.7 -0. 0 - 0. 007 5 0.130 2 . 751 - 0 . 0 0 0 751 0.000 6 0.198 -1 . 8'2 9 0.007 -0 -" 0 0.268 -0.933 0.007 7 2 -0.890 0.006 8 0. 1'90 0 1 - O . G 0 4 0. 002 CAVE 51 C +C + J 7 S + S 1 4 - > 52 + "l 7 1-, S 0. 758 7 4- _ - Fcri , -ontal Deflection Limit: zo n t a 1 . D e flec tion L im i t (do ne "Vertical Deflection Limi 1\1 0 n e V ertica l Deflection Limit: None HORIZONTAL VERTICAL ANGULAP HORI ZONTAL VERTICAL ANGULAR NODE (i (in. I (rad. C) D E JL r - 1 . � (in, (rad. O. 000 G . GOO 0 . 00b 0 0 0 . 0 0 2 2 - 0.677 0.023 -0. 001 -0.020 -0.004 3 - 0.589 -0. 6 62 -u.0 0. 96 - 1 . 2 -0.003 4 -0.521 - 1.534 -0 . 00 4 13.369 -2.14 -0.007 -1 -0. - 21 8 4 - 0.i %02 6 -0.36 ri. CI C -1.53 0.008 - 8 -0.137 -0.020 0 . 1) 4 6 7 O.023 001 9 0.000 0.000 U Cl 0. �'100 -0.006 CASE 53 : D+C + 0-75SUL1 <- + 0. CALI'E 54 D+C + 0.75SUL1 <- + 0.75W2 <- Horizontal Deflection Limit: None Horizontal Deflection Limit: None `,"ertical Deflection Lirr TN, Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR o 1 Z , )IN 7 1 A L VERTICAL AIIG ULAR NODE (in.) (rad. , i 1 ; in .) (in.) (fad.', -0. 00" i 1-1, 10 0 F" 10 -24' 4 jI -3.41,S 5 1 . 4 0 6 1.6S-3 -0.806 - 0. Oil 0 0 4 8 1.7-3 0.C1 -0 8 0. 105 -0.004 9 0. 000 0.000 -0. 009 9 0 . 1 0. 1 G 0 -0. 012 MSA 29.0 Job:51687901 CASE 55 D +C HCri zontal ✓erticai HOR =ZON`" _L NODE (in.) 1 0.000 2 1.157 3 1.419 4 1.497 5 1.460 6 1.639 7 1.693 8 1.66- 9 0.000 CASE 57 : D + Horizontal Vertical HORIZONTAL NODE (in.) 1 0.000 2 -1.713 3 -1.721 4 - 1.653 5 - 1.460 6 - 1.483 7 - 1.392 8 - 1.105 9 0.000 CASE 59 : D +C Deflection Limit Horizontal VERTICAL Vertical (in.) HORIZONTAL NODE (in.) 1 0.000 2 - 1.662 3 - 1.693 4 -1 . h39 5 -1.460 6 -1.497 7 -1.419 8 -1.157 9 0.000 Page 33 of 40 C: AABCP \ FRAME S \1, 0 1B 07/26/07 09:09:26 0.?5SUT,I - + Def le-Ction Limit D2flection Li_rni_ VERTICAL - ,_l1GUL (in., rad., 0.000 -0.00i -0.076 -0.008 -2.060 -0.010 -3.047 -0.006 - 2.695 0.008 -0.435 0.008 0.269 0.003 0.078 - 0.0 Ci3 Deflection L =mlt Deflection Limit VERTICAL AiiGULHR (in.) (rad.) 0.000 0.009 0.078 0.003 0.031 -0.004 -0.806 -0.010 -3.269 -0.008 - 3.410 0.007 -2.242 0.01' 0.000 0.000 0. 75SUR1 -:> + 0. Deflection Limit Deflection Limit VERTICAL ANGULAR (in.) (rad.) 0.000 0.009 0.078 0.003 0.269 -0.003 -�.4J5 - 0.0C, -._. 695 - 0.003 -3.047 0.006 -2.060 0.010 -0.076 0.008 0.000 0.001 75W3 -> CASE 60 : D +C : None 7C L, None r1 = rita HORIZONTAL 1 (in. ) 1 =.: E.IZ =.,TAL r, r _. - .270 _ 000 _ 1.684 -2.064 3 1 . 9 3 4 2.064 0.000 5 %.009 6 2.213 _.'70 11on� � r r i,� Hr;p,IZ��NTAL NODE 1 O.G00 _ -2.265 4 -x.227 5 -2.009 6 -2.050 7 - 1.956 - 0.000 75W3 -> CASE 60 : D +C : None Horizontal None Vertical HORIZONTAL 1 (in. ) 1 0.000 _. - .270 6 -2.064 7 - 1.983 -1.684 9 0.000 CASE 61 : 1.07D +C + 0.75L + 0.75E Horizontal Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR NODE (in.) (in.) (rad.) 1 0,000 0.000 O.COl -0 . J G 0.270 -0.04 � l.3 3 0.414 -1.068 -0.006 4 0.473 -1.831 -0.006 5 0.516 -2.439 0.001 6 0.600 -1.326 0.007 7 0.660 -0.556 0.005 o.75SU;L1 <- + 0.75W4 <- eflecti•on Limit: 1 1one Deflection Limit: Hone JERTI - AL ANGULAR in.) (rad.) 0. -0, 00 -6.101 -0.009 -2.354 -0.011 -3.364 -0.006 - 2.789 0.009 -0.243 0.009 0.492 0.003 0.105 -0.005 0.000 -0. oil 0.75SUR1 -> + 0.75W2 -> Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 0.012 0.105 0.004 0.303 -0.004 -0.614 -0.011 -3.363 -0.009 - 3.735 0.007 -2.542 0.012 - 0.101 0.010 0.000 0.003 0.75SUR1 -> + 0.75W4 -> Deflection Limit: None Deflection Limit: None VERTICAL ANGULAR (in.) (rad.) 0.000 0.011 0.105 0.005 0.492 -0.003 -0.243 -0.009 -2.739 -0.009 -3.364 0.006 -2.354 0.011 -0.101 0.009 0.000 0.003 CASE 62 : 1.07D +C + 0.751, + 0.75E<- Horizontal Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR NODE .in.) (in.) (rad.) 000 0. 000 0. 006 33 0.026 -0.000 3 - 0.66( - 0..556 -0.005 4 -0.600 -1.326 -0.007 5 -0.516 -2.439 -0.001 6 -0.473 -1.831 0.006 7 -0.414 -1.063 0.006 0 0 MSA 2 9. 0 Job:51687901 7. j j i C-;kSE S 7 HCl " ontal Def lect i ;n Limi e r t a I i De f I ect i L i ni t 7 B UT' T-7, L E R T I NODE in. (r -ad. 1 CII . 000 O. Ci 0 2 0. 084 -0.023 -0.00 3 0, 1 . 7 5 6 -0.01 4 0. 419 3 . 172 -0.01 5 0.516 -4 . Iz 1 5 - C, 6 6 1, A 0 56 - 1.2 44 0 ' 0 C 0 . 0 0 0 CASE 65 : 0.60D Horiz Vertical HORIZONTAL NODE (i ) 0.000 2 0. 2 0 4 3 0.110 4 0.055 5 0.00;0 6 - 0.0 5 5 10 - 0.20 4 9 0.000 + WT " Deflect-on Limi t Deflection Limit VERTICAL ANGULAR r a -0. 003 0 002 0 738, 0 01 1' 5, 1.451 0. 2 . 2 7 0C CAS 67 : 0 + W 1 < - Hcrizor DefleCtj,,)n Limi Vertical Deflection Limit 190RIZ0 VERTICAL ;NGLILAIT, NODE (rad. 1 0.000 0.000 0 o C) 0>u 3 C; f, 1 7 3 u 4 -0. 0. 560 0.002 5 -0.173 0.972 0.001 6 -0.193 0.698 - 0-003 - 0.220 0.356 - 0-003 8 -0.268 - 0-009 -0.001 9 0.000 0.000 0. 003 Page 34 of 40 07/26/07 09 :09:26 - A 0 00)3 J.75E< z r a Deflecticn L imi t : 1 e cl Ell Deflection Li mit: N one riGr.i 7 c P I C A 7 NODE in. in. ( - - ad. 7 0 027 -0 0 `4 7 1 . -0 00 0 i J- -3.172 nc, - 1.756 O.011 I'1 j 0 -0. CASE 66 : (-') . 6o D + 1 -> IiOne Horizontal Defi-ectior, Limit: Hone n e Vert"cai Deflection Limit: NDrle HOF,IZONITAL ' AL,,TG [j T R N DDE (in, in ) (rad. 0.000 -0.003 3 220 0.356 0.003 4 0.193 0. 698 0.003 O .i 73 0 .97 2 -0. 001 0.560 -0. 0 ?9, -0.002 0. 005 -0.001 000 J. - 0 Ve rt i ca l 1 Z 015, TAL NODE 0.000 - 0. 4 6- 7 3 -0. 4 5 - 7 J59 6 -0. 7 -0. 632 Pi CASE 6 9 : -) - '30 D + W2<, - Horizontal Def lection Lim," t vertica De L Ton HOR! ZONTAL ' ERTTC'AL L ' p 1 n. ) (i n.) ; (ra 1 0.000 0.000 -C) 2 0.619 - 0. 029 - 0.001 3 0.6321 -0. 100 0. 4 0.0 0. 138 0.003 5 0.559 0.347 0.0 D + ',. D e flection - flection Limit Deflection Limit None �. ANGULAR (in.) (rad.) 0.000 0.001 0. 0 . 003 0.653 0.003 0. 954 0.002 0.847 -0.002 0.138 -0.003 - 0.100 -0.001 -0.029 0.001 `?.000 0 . 003 - C 7.6 + W3 - Horizontal Limit: None, V e rt DefjeCti(-jr-j Limit: IIC,ne Hi r ") ANGULAR 1 (rad. 0. 0.000 -0.004 U. 3365 - 0.009 0.001 607 0.005 4 0. 1 . 7 MSA 229 .0 ' Page 35 of 40 Job:5I68790I C:\ABCP\FFAMES\5I68790I.01B 07/25/07 09:09:26 � O.572 0954 -00O4 7 O549 0 3 0543 -0 004 8 O. 4 67 0 .O 2 B 00l5 O 0 0 5 -0 00I 9 0 000 0. 00 0 -000l � 0OOO O.000 0 .00I CASE 71 0.60o + w3<- CASE 72 0.60o + w4-> Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR eORlZONT! VERTICAL ANGULAR NODE (in.) (in.) (rad.) NODE (in.) (in.) (rad.) 1 0.000 0.000 -0.001 l 0.000 0.000 0.000 2 -0.0I5 0.005 0.0OI 2 -3.3199 0.029 0.003 3 -0.O84 0.543 O.004 5 -�5�� �9O4 005 4 -0.I2� I.055 0.00 � � -055� 1.449 0.004 5 -0l73 I73� 01 .90l � -0559 I.613 -0.0O2 5 -O.2 1 I.193 -O005 h 2 0.53 3 -0.0f5 7 -0.257 0.60 -0.005 7 -0.h�8 0.15I -0.0O3 8 -0.336 -0.003 -0.00 1 8 -0. 688 -0.029 0.00I 9 0.000 0.1000 0.004 9 0,00O 0.000 0.004 CASE 73 : 0.60D + W4<- CASE 74 : 0.54D+C + 0.70E-> Horizontal Deflection Limit None 8ozizootaI Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: moue HORIZONTAL VERTICAL aOezZ0mT A L �E8TZCAL ANGULAR NODE (in.) {in. ) <rad. ) 1 jooE <io) (io. ) (rad.) 1 0.000 0.000 -0.004 l 0.000 0.000 -0.001 2 0.588 -0.025 -0.001 2 O4 O2 -0.023 -0 0O2 3 0. 668 0.151 0.003 3 0.46u -0.49I -O 4 0.632 0.635 0.005 4 0.482 -0.722 -O 5 0.559 1.613 O.802 5 0.482 -0.750 0.001 6 0.554 1.448 -0.004 6 0.520 -0.251 0 7 0.512 0.904 -0.005 7 0.539 -0.0I3 0.001 8 0.399 0.028 -0.003 8 0.542 O.033 -0.001 9 0.000 0.000 -0.000 9 0.000 0.000 -0 CASE 75 : 0.54D+C + 0.70E<- CASE 75 : 0.76D+C + 0.59uE-> Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None verti�aI Deflection Limit HORIZONTAL VERTICAL AmSUIAa P e�13OQTAL vEPTzCAL ANGULAR mDoE (in.) (in.) (zad uUDE (in. } (in.) (zad ) 1 0.000 0.000 0.O0� I 0.0O0 0.000 -0.003 2 -0.542 0.02 0.001 2 u�9lU.9121 -O -0.004 3 -0.539 -0.0I3 -O.00I 3 1.014 -0 -0.003 4 -0.520 -0.251 -0.002 4 1.036 -I -0.001 5 -0.482 -0.750 -0.001 5 1 .0I8 -0 0 6 -0.482 -0.722 0.00I 6 1.083 -0 0.003 7 -0.464 -0.491 0.002 7 I.I06 0 0 8 -0.402 -0.023 0�000.0011, 8 1.084 O -0.002 9 0.000 0.000 0.00I � 0.000 0.000 -0 CASE 77 : 0.76o+C + O.59uE [A�� Horizontal Deflection Lind j-jone �ocizoo'aI Deflec Limit: None Vertical Deflection Limit: moo eztical Deflection Limit' None HORIZONTAL VERTICAL A0CULA8 K0uI3OmTaL VERTICAL ANGULAR NODE (in.) <io.> (zad.) mOoE (io.) (in.) <zad > 1 0.00O 0.000 0.006 l O.0010 0.000 -V 0 3 2 -1.084 0.049 0.002 2 0.933 -0.049 ~ -0.003 3 -1.I06 0.197 -0.001 3 1.025 -0 -O'03 • 0 MSA 29. 0 Job:51687901 C:\ABCP\FRAMES\,51687901.01B 4 -1.003 - 0.0_= 0.27G 0.001 J.049 -0 0 0 2) 0.000 0 J 3 14 -0.314 0.0 J -0. 912 -0. 049 0. DOL 064 CASE 79 : 0.48D+C + 0.59QE<- Horizontal Deflection Limit: Tone Vertical Deflection Limit: None HORIZONTAL - VERTICAL ANGULAR TIODE 'in.) frad.) -1.064 0.04 0 3 -1.095 0.270 -0.001 4 -1. 0.043 Olp -0 -7 -0 . 6 -1.04 j4 0.001 -1.025 -0.741 0.003 8 -0.933 -0.049 0.003 9 0.000 0.000 0.003 Page 36 of 40 07/26/07 09:09:26 J 4 -0.702 0. 0.043 0 3 0.27G 0.001 J.049 -0 0 0 2) 0.000 • • MSA 29.0 Job:516879O1 C:AABC .O1B F7 j 1i'� SE04 P G tt RECAP LEFT COLU1 BASE Page 38 of 40 07/26/07 09:09:26 1 1 T °7o 3 _ Yes 4 4 No f,hnee} LEFT SAVE 5 11 lio 6 10 Yes 7 9 No P Yes a N 10 6 •,: e s 11 5 I'1O 1. 4 Yes 13 3 No 14 2 Yes r_ 1_ 1 Yes {R.idge1 ROOF SLOPE CHANGE 16 1 Yes Rid; e l 17 2 Yes 1h 3 No 19 4 Yes 20 5 No 21 6 Yes 2 2 7 No 23 8 Yes 2 4 9 110 25 10 Yes 26 11 No RIGHT SAVE 2 4 No (Y(nee) 2g _ Yes 29 2 Yes 30 1 No RIGHT COLUMN BASE Page 38 of 40 07/26/07 09:09:26 C SECTION 3 5� ENDWALLS AND ROD BRACING q 5- Calculations supporting the structural integrity of the endwall framing and tension rod bracing are presented in this section. Endwall components included in the analysis are the roof beam, corner columns, interior columns and, if necessary, tension bracing. In addition, the analysis contains the designs for the roof and sidewall tension bracing. Figure 4 of this section, illustrates these members schematically, along with the loadings imposed on them. The endwall roof beam is designed for the specified load combinations using the moments for a continuous beam. The interior and corner columns are designed as pinned -end compression members under the dead plus live loading. For the horizontal wind load, the interior columns are designed as simple beams. The wind forces exerted on the sidewalls are resisted where possible by the wall diaphragm or by tension bracing. The roof bracing are tension members which transfer the wind forces on the ends of the buildings to the eave where the sidewall bracing carries the sum of the forces to the foundation. Figure 5 shows the forces acting on the bracing. Page 4 of this Section defines the nomenclature used in the computer printout that follows. The printout lists the results of the stress analysis on the above building members. Included in the results are the actual and allowable stresses controlling the design of the member. The allowable stresses are based on the yield stresses being 36 KSI for Rods, 50 KSI for hot - rolled mill sections, and 55 KSI for Cold formed and factory built -up sections. SUBJEC7 TO CHANGE WITHOUT NOTICE R EVISED JUNE 11, 1998 Section 3 Page 1 9P American Buildings Company Plant Locations: Eufaula, AL - Birmingham, AL - El Paso, IL Carson City, NV - LaCrosse, VA Service Centers: Phenix City, AL - Pine Bluff, AR - Modesto, CA LaGrange, GA - Columbus, MS - Rocky Mount, NC - Jamestown, OH • • LO_ RLe RL RL RL RL2 RL,, LIVE + DEAD FR--A_ L RHE RV RV RV, RV RV RV WIND + DEAD WIND ON SIDEWALL FIGURE 4 COLUMN AND BEAM ENDWALL BRACING SUBJECT TO CHANGE WITHOUT NOTICE REVISED MARCH 3. 9998 Section 3 Page 2 American Buildings Company Plant Locations. Eufaula, AL - Birmingham AL - El Paso, IL Carson City, NV - LaCrosse, VA Service Centers. Phenix City, AL - Pine Bluff, AR - Modesto, CA LaGrange, GA - Columbus, MS - Rocky Mount. NC - Jamestown nu WIND + DEAD WIND ON ENDWALL BLDG q I I Nvvr (s) RWF (2) I RWF (2) RWF (3) PLAN I I I I I I RWF ( R IGID F CL RIGID FR AME (Z RIGID FR AME C R IGID F Z Zt FIGURE 5 COLUMN AND BEAM END WALL ROD BRACING American Buildings Company Plant Locationj:- Eufaula, AL - Birmingham, AL - El Paso, /L Carson City, NV - LaCrosse, VA Service Centers. Phenix City, AL - Pine Bluff, AR - Modesto, CA LaGrange; GA - Columbus, MS - Rocky Mount, NC- Jamestown, OH W J -__I SUBJECT TO CHANGE WITHOUT NOTICE EFFECTIVE SEPTEMBER 9. 9997 ENDWALL ELEVATION • V ��•. :.sue °� T 0 American Buildings Company Plant Locations: Eufaula, AL - Birmingham, AL - El Paso, IL Carson City, NV - LaCrosse, VA Service Centers: Phenix City, AL - Pine Bluff, AR - Modesto, CA LaGrange, GA - Columbus, MS - Rocky Mount. NO - Jamestown nN AREA - Cross - sectional area of section (in) ANG - Angle tension bracing makes with direction of wind force. A TEN - Allowable tension force in rod or cable bracing AX F /AX FOR - Actual axial force BN MOM - Bending moment BND RAT/ BN RAT - Ratio of actual to allowable bending moment CB FOR - Actual tension force in rod or cable bracing COL HT - Column Height or beam length DL - Torsional Warping of "C" Section DL - Dead Load FA - Allowable axial stress FB - Allowable bending stress FBA - Actual bending stress F -K - Foot kips H BASE - Horizontal reaction at base of column INTERACTION RATIO - K Combined axial and bending - Kips LL - Live Load LEEWARD MOMT - Side in the direction toward which the wind blows - Bending moment MNT L - Bending moment left of a point QCH MNT R - Bending moment right of a point ROC - Effective section factor for a "C" Section OCH - Polar radius of RWF gyration of "C" Section about the shear center RX - Wind force resisted by tension bracing RY Radius of gyration of a section about the major axis RYT - Radius of gyration of a section about the minor axis Radius of gyration of a "T" section composed of the compression flange and 1/3 of the compression web of a section taken about an axis in the SHR L plane of the web. SHR R Shear force left of a point SHR RAT/ SH RATIO Shear force right of a point SL Ratio of actual to allowable shear forces T FOR Snow Load ST Strut force SXT - Tension section modulus about major axis TCH - Compression section modulus about major axis ULX - Thickness of a "C Section LILY - Unbraced length along major axis LI BASE Unbraced length along minor axis TOP - Vertical reaction at base of column V V TO Horizontal reaction at top of column VYCH - Saint Venant torsion constant of "C" section WINDWARD Minor axis moment of inertia of compression area of "C" section WL Side upon which the wind blows N FOR - Wind Load WIN F Wind force resisted by tension bracing Distance from shear center to centeroid of "C" Section along X axis Section 3 Page 4 q 9 NOMENCLATURE • 0 i II Beam and Column Endwall Design American Buildings Company Job Name: 51687901 Job Part: L Ver. 29.0 Eufaula, AL Wed 1 LEW Page Jul 25 10:22:32 1 2007 BUILDING TYPE IS SINGLE GABLE psf GROUND SNOW LOAD = 50.000 ENDWALL TYPE IS RIGID FRAME SNOW EXPOSURE FACTOR = 0.900 BUILDING WIDTH = 100.000 ft BUILDING LENGTH = 100.000 ft LEFT HEIGHT = 24.833 ft RIGHT HEIGHT = 24.833 ft LEFT SLOPE = 1.000 :12 RIGHT SLOPE = 1.000 :12 BAY SPACING = 25.000 ft ROOF OVERHANG = 0.000 ft BUILDING CODE: 2003 International Building Code DESIGN SPECIFICATION: 1989 AISC Manual of Steel Construction ASD Ninth Edition COLDFORMED DESIGN SPECIFICATION: 2001 AISI NASPEC North American Cold - Formed Steel Specification CLASSIFICATION OF BUILDING: II. All buildings and other structures except those listed in Categories I, III, and IV ROOF EXPOSURE CONDITION: Fully Exposed: Roofs exposed on all sides with no shelter afforded by terrain, higher structures or trees OPEN CONDITION: Enclosed EXPOSURE (TERRAIN) CATEGORY: C. Open terrain with scattered obstructions, including surface undulations or other irregularities having heights generally less than 30 feet extending more than 1500 feet from site DESIGN ROOF LIVE LOAD = 20.000 psf COLLATERAL LOAD = 3.000 psf GROUND SNOW LOAD = 50.000 psf SNOW EXPOSURE FACTOR = 0.900 SNOW IMPORTANCE FACTOR = 1.000 SLOPED ROOF SNOW LOAD = 31.500 psf DESIGN WIND VELOCITY = 90.000 mph WIND IMPORTANCE FACTOR = 1.000 SEISMIC DATA: Maximum response acceleration at short periods Ss = 46.7 Maximum response acceleration at 1 sec periods S1 = 16.2 Seismic site soil classification D Design spectral response acceleration at short periods Sds = 0.444 Design spectral response acceleration at 1 sec periods Shc = 0.232 Seismic Design Category D Reliability factor p = 1.5 Force to concentric braced frames = pCsW p =1.5 Cs= Sds /(R /I) R =3.5 = 0.19W x 1.1 to include accidental torsion = 0.209W Force to braced frame connections = QCsW cI =2 Cs= Sds /(R /I) R =3.5 = 0.254W x 1.1 to include accidental torsion = 0.279W Force to ordinary moment frames = pCsW p =1.5 Cs= Sds /(R /I) R =3.5 = 0.19W x 1.1 to include accidental torsion = 0.209W N Beam and Column Erndwall Design Ver. 29.0 Page 2 American Buildings Company Eufaula, AL Wed Jul 25 10:22:32 2007 Job Name: 51687901 Job Part: 1 LEW Force to ordinary moment frame connections = _ <2Cslvv i)=3 Cs= Sds /(R /I) R =3.5 = 0.381W x 1.1 to include accidental torsion = 0.419W * ** DESIGN LOAD COMBINATIONS CASE LOAD FACT GROUP 1 1.000 W+ 2 1.000 W- 3 0.700 E+ * ** LOADS FY COLD FORMED = 55.0 ksi FY HOT ROLLED = 50.0 ksi FY BUILT UP = 55.0 ksi * ** ENDWALL COLUMNS MEM DESCRIPTION LOCATION BASE PLATES A BLT ROW BEND RT SHR RT CT ft in in in in - -- ----------- -- - - - - -- ------------ - - - - -- ---- - - - - -- - - - - - -- - - - - -- -- 1 RIGID -FM 0.000 0 0.000 0.00 0 0.00 0.000 0.000 2 BUILT -UP 25.000 6 0.500 12.00 2 0.75 0.732 0.265 6.0 X 0.250 in FLG, 0.134 in WEB 11.000 in 0/0 WEB 3 BUILT -UP 50.000 10 0.500 12.00 2 0.75 0.672 0.286 10.0 X 0.375 in FLG, 0.134 in WEB 11.000 in 0/0 WEB 4 BUILT -UP 75.000 6 0.500 12.00 2 0.75 0.732 0.265 6.0 X 0.250 in FLG, 0.134 in WEB 11.000 in 0/0 WEB 5 RIGID -FM 100.000 0 0.000 0.00 0 0.00 0.000 0.000 c61 HORIZ VERT GROUP TYPE M FM TO CL D START psf/ psf/ MOMT END HORIZ VERT -- - - - - -- - - -- - -- -- -- - ft - - - -- kips - - - -- kips - - -- kip -ft ft psf psf W+ UNIF C 1 1 0 0.00 14.02 0.00 - - -- 0.00 - - - -- 0.00 - - - -- 14.02 - - -- 0.00 W- UNIF C 1 1 0 0.00 -16.07 0.00 0.00 0.00 -16.07 0.00 W+ UNIF C 2 4 0 0.00 13.48 0.00 0.00 0.00 13.48 0.00 W- UNIF C 2 4 0 0.00 -14.97 0.00 0.00 0.00 -14.97 0.00 W+ UNIF C 5 5 0 0.00 14.02 0.00 0.00 0.00 14.02 0.00 W- UNIF C 5 5 0 0.00 -16.07 0.00 0.00 0.00 -16.07 0.00 E+ UNIF C 2 3 0 0.00 25.00 0.00 0.00 19.00 25.00 0.00 E+ UNIF C 3 4 0 0.00 25.00 0.00 0.00 19.00 25.00 0.00 E+ UNIF C 4 4 0 0.00 25.00 0.00 0.00 19.00 25.00 0.00 FY COLD FORMED = 55.0 ksi FY HOT ROLLED = 50.0 ksi FY BUILT UP = 55.0 ksi * ** ENDWALL COLUMNS MEM DESCRIPTION LOCATION BASE PLATES A BLT ROW BEND RT SHR RT CT ft in in in in - -- ----------- -- - - - - -- ------------ - - - - -- ---- - - - - -- - - - - - -- - - - - -- -- 1 RIGID -FM 0.000 0 0.000 0.00 0 0.00 0.000 0.000 2 BUILT -UP 25.000 6 0.500 12.00 2 0.75 0.732 0.265 6.0 X 0.250 in FLG, 0.134 in WEB 11.000 in 0/0 WEB 3 BUILT -UP 50.000 10 0.500 12.00 2 0.75 0.672 0.286 10.0 X 0.375 in FLG, 0.134 in WEB 11.000 in 0/0 WEB 4 BUILT -UP 75.000 6 0.500 12.00 2 0.75 0.732 0.265 6.0 X 0.250 in FLG, 0.134 in WEB 11.000 in 0/0 WEB 5 RIGID -FM 100.000 0 0.000 0.00 0 0.00 0.000 0.000 c61 Beam and Column Endwall Design Ver. 29.0 Page 3 American Buildings Company Eufaula, AL Wed Jul 25 10:22:32 2007 Job Name: 51687901 Job Parr: 1 LEW " MAXIMUM ENDWALL REACTIONS AND DESIGN] LOAD COMBINATIONS CASE M VERT M HORZ kips kips 1 0.0 -4.7 2 0.0 5.3 3 0.0 -2.1 4 0.0 -4.7 5 0.0 5.3 6 0.0 -3.0 LOAD FACTOR / LOAD GROUP =? 1.000 W+ 1.000 W- 0.700 E+ 1.000 W+ 1.000 W- 1.000 E+ I� 0 9 Beam and Column Endwall Design Ver. 29.0 Page 1 American Buildings Company Eufaula, AL Wed Jul 25 09:04:53 2007 Job Name: 51687901 Job Part: 1 R.EW BUILDING TYPE IS SINGLE GABLE ENDWALL TYPE IS POST AND BEAM BUILDING WIDTH = 100.000 ft BUILDING LENGTH = 100.000 ft LEFT HEIGHT = 24.833 ft RIGHT HEIGHT = 24.833 ft LEFT SLOPE = 1.000 :12 RIGHT SLOPE = 1.000 :12 BAY SPACING = 25.000 ft ROOF OVERHANG = 0.000 ft BUILDING CODE: 2003 International Building Code DESIGN SPECIFICATION: 1989 AISC Manual of Steel Construction ASD Ninth Edition COLDFORMED DESIGN SPECIFICATION: 2001 AISI NASPEC North American Cold - Formed Steel Specification CLASSIFICATION OF BUILDING: II. All buildings and other structures except those listed in Categories I, III, and IV ROOF EXPOSURE CONDITION: Fully Exposed: Roofs exposed on all sides with no shelter afforded by terrain, higher structures or trees OPEN CONDITION: Enclosed EXPOSURE (TERRAIN) CATEGORY: C. Open terrain with scattered obstructions, including surface undulations or other irregularities having heights generally less than 30 feet extending more than 1500 feet from site DESIGN ROOF LIVE LOAD = 20.000 psf COLLATERAL LOAD = 3.000 psf GROUND SNOW LOAD = 50.000 psf SNOW EXPOSURE FACTOR = 0.900 SNOW IMPORTANCE FACTOR = 1.000 0.444 SLOPED ROOF SNOW LOAD = 31.500 psf DESIGN WIND VELOCITY = 90.000 mph WIND IMPORTANCE FACTOR = 1.000 SEISMIC DATA: Maximum response acceleration at short periods Ss = 46.7 Maximum response acceleration at 1 sec periods S1 = 16.2 Seismic site soil classification D Design spectral response acceleration at short periods Sds = 0.444 Design spectral response acceleration at 1 sec periods Shc = 0.232 Seismic Design Category D Reliability factor p = 1.5 Force to concentric braced frames = pCsW p =1.5 Cs= Sds /(R /I) R =3.5 = 0.19W .: 1.1 to include accidental torsion = 0.209W Force to braced frame connections = OCsW 0 =2 Cs= Sds /(R /I) R =3.5 = 0.254W x 1.1 to include accidental torsion = 0.279W Force to ordinary moment frames = pCsW p -1.5 Cs= Sds /(R /I) R =3.5 = 0.19W x 1.1 to include accidental torsion = 0.209W 9 Beam and Column Endwall Design Ver. 29.0 Page 2 American Buildings Company Eufaula, AL Wed Jul 25 09:04:53 2007 Job Name: 51687901 Job Part: 1 REW �I Force to ordinary moment framE� connections = QCsW Q =3 Cs= Sds /(R /I) R=3.5 = 0.381W x 1.1 to include accidental torsion = 0.419W * ** DESIGN LOAD COMBINATIONS 0 CASE LOAD FACT GROUP => 0 1 1.000 D +C 1.000 L 0 2 1.000 D +C 1.000 LPAFNI- 0 3 1.000 D +C 1.000 LPAFN2 -- 0 4 1.000 D +C 1.000 LPDFNI- 0 5 1.000 D +C 1.000 LPDF -- 0 6 1.000 D +C 1.000 LPDF113 - 0 7 1.000 D +C 1.000 LPDFH4-- 0 8 1.000 D +C 1.000 S 0 9 1.000 D +C 1.000 SUL1 <- 0 10 1.000 D +C 1.000 SUR1 -> 0.00 11 1.000 D 1.000 W+ 12 1.000 D 1.000 W- 13 1.000 D +C 0.750 L 0.750 W+ 14 1.000 D +C 0.750 L 0.750 W- 15 1.000 D +C 0.750 S 0.750 W+ 16 1.000 D +C 0.750 S 0.750 W- 17 0.600 D 1.000 W+ 18 0.600 D 1.000 W- * ** LOADS GROUP TYPE M FM TO CL D D +C UNIF D UNIF L UNIF S UNIF SUL1 <- UNIF SUL1<- UNIF SUR1 -> UNIF SUR1 -> UNIF LPAFNI- UNIF LPAFNI- UNIF LPAFNI- UNIF LPAFNI- UNIF LPAFNI- UNIF LPAFN2- UNIF LPAFN2- UNIF LPAFN2- UNIF LPAFN2- UNIF LPAFN2- UNIF LPDFNI- UNIF LPDFNI- UNIF LPDFN2- UNIF LPDFN2- UNIF R 0 0 0 R 0 0 0 R 0 0 0 R 0 0 0 R 0 0 0 R 0 0 0 R 0 0 0 R 0 0 0 R 0 0 0 R 0 0 0 R 0 0 0 R 0 0 0 R 0 0 0 R 0 0 0 R 0 0 0 R 0 0 0 R 0 0 0 R 0 0 0 R 0 0 0 R 0 0 0 R 0 0 0 R 0 0 0 MOMT END kip-ft ft 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 50.00 0.00 100.00 0.00 50.00 0.00 100.00 0.00 19.00 0.00 39.00 0.00 61.00 0.00 81.00 0.00 100.00 0.00 19.00 0.00 39.00 0.00 61.00 0.00 81.00 0.00 100.00 0.00 39.00 0.00 100.00 0.00 19.00 0.00 61.00 HORIZ HORIZ VERT START psf/ psf/ ft kips kips 0.00 0.00 -6.00 0.00 0.00 -3.00 0.00 0.00 -19.00 0.00 0.00 -31.50 0.00 0.00 -52.50 50.00 0.00 -9.45 0.00 0.00 -9.45 50.00 0.00 -52.50 0.00 0.00 -0.00 19.00 0.00 -19.00 39.00 0.00 -0.00 61.00 0.00 -19.00 81.00 0.00 -0.00 0.00 C11.00 -19.00 19.00 0.00 -0.00 39.00 0.00 -19.00 61.00 0.00 -0.00 81.00 0.00 -19.00 0.00 0.00 -19.00 39.00 0.00 -0.00 0.00 0.00 -0.00 19.00 0.00 -19.00 MOMT END kip-ft ft 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 50.00 0.00 100.00 0.00 50.00 0.00 100.00 0.00 19.00 0.00 39.00 0.00 61.00 0.00 81.00 0.00 100.00 0.00 19.00 0.00 39.00 0.00 61.00 0.00 81.00 0.00 100.00 0.00 39.00 0.00 100.00 0.00 19.00 0.00 61.00 HORIZ VERT psf psf 0.00 -6.00 0.00 3.00 0.00 -19.00 0.00 -31.50 0.00 -52.50 0.00 -9.45 0.00 -9.45 0.00 -52.50 0.00 -0.00 0.00 -19.00 0.00 -0.00 0.00 -19.00 0.00 -0.00 0.00 -19.00 0.00 -0.00 0.00 -19.00 0.00 -0.00 0.00 -19.00 0.00 -19.00 0.00 -0.00 0.00 -0.00 0.00 -19.00 l�J 0 Beam and Column Endwall Design Ver. 29.0 American Buildings Company Eufaula, AL Job Name: 51687901 Job Part: 1 RFW I� Wed Page 3 Jul 25 09:04:53 2007 �I * ** LOADS (continued) 1 - - - - -- W12X14 -- - - - - -- 0.000 2 W12X14 22.879 3 W12X14 50.000 4 W12X14 77,121 0.75 0.922 HORIZ VERT GROUP TYPE M FM TO CL D START psf/ psf/ MOMT END HORIZ VERT ft kips kips kip -ft ft psf psf LPDFN2- UNIF R 0 0 0 61.00 0.00 -0.00 0.00 100.00 0.00 -0.00 LPDFN3- UNIF R 0 0 0 0.00 0.00 -0.00 0.00 39.00 0.00 -0.00 LPDFN3- UNIF R 0 0 0 39.00 0.00 -19.00 0.00 81.00 0.00 -19.00 LPDFN3 UNIF R 0 0 0 81.00 0.00 - 0.00" 0.00 100.00 0.00 -0.00 LPDFN4- UNIF R 0 0 0 0.00 0.00 -0.00 0.00 61.00 0.00 -0.00 LPDFN4- UNIF R 0 0 0 61.00 0.00 -19.00 0.00 100.00 0.00 -19.00 W+ UNIF R 0 0 0 0.00 0.00 21.30 0.00 100.00 0.00 21.30 W- UNIF R 0 0 0 0.00 0.00 21.30 0.00 100.00 0.00 21.30 W+ UNIF C 1 1 0 0.00 14.34 0.00 0.00 0.00 14.34 0.00 W- UNIF C 1 1 0 0.00 - 16.70 0.00 0.00 0.00 -16.70 0.00 W+ UNIF C 2 5 0 0.00 13.48 0,00 0.00 0.00 13.48 0.00 W- UNIF C 2 5 0 0.00 -14.97 0.00 0.00 0.00 -14.97 0.00 W+ UNIF C 6 6 0 0.00 1.'.34 0.00 0.00 0.00 14.34 0.00 W- UNIF C 6 6 0 0.00 -16.70 0.00 0.00 0.00 -16.70 0.00 FY COLD FORMED = FY HOT ROLLED = FY BUILT UP = * ** ENDWALL RAFTERS MEM DESCRIPTION LOCATION - -- ----- ft 1 - - - - -- W12X14 -- - - - - -- 0.000 2 W12X14 22.879 3 W12X14 50.000 4 W12X14 77,121 * ** ENDWALL COLUMNS MEM DESCRIPTION LOCATION ft 1 W8X10 0.000 2 WlOX12 19.000 3 W12X14 39.000 4 W12X14 61.000 5 WlOX12 81.000 6 W8X_10 100.000 55.0 ksi 50.0 ksi 55.0 ksi SPLICE PLATES in in in ------------------ 5 0.250 13.00 5 0.375 17.00 5 0.375 17.00 5 0.375 17.00 SP BLT ROW BEND RT in ---- - - - - -- - - - - - -- 0.50 0.884 4 0.75 0.674 4 0.75 0.674 4 0.75 0.884 SHR RT 0.197 0.165 0.165 0.200 BASE PLATES in in in ------------------ 5 0.375 8.50 5 0.375 10.50 5 0.375 12.50 5 0.375 12.50 5 0. :7J 10.1 5 0.375 8.50 * ** FRAME BRACE SUMMARY LOCATION IN FT FROM REF PT k BLT ROW BEND RT in ---- - 2 - - - -- 0.75 - - - - - -- 0.131 2 0.75 0.922 2 0.75 0.846 2 0.75 0.846 0.75 0.922 0.75 0.131 SHR RT CT 0.000 0.098 C 0.098 N 0.098 N 0.098 C 0.000 0 0 Beam and Column Endwall Design American Buildings Company Eufaul, Job Name: 51687901 Job Part: I� Ver. 29.0 AL 1 REW Wed Page 4 Jul 25 09:04:54 2007 COLUMN REF PT IS FF.OM THE COLUMN] BASE, R FTER.S ARE AS tlOTED CORNER COLUMN - @ FSW 7.333 18.333 CORI4ER COLUMN - @ RSW 7.333 18.333 RAFTER - REF PT FSW UPSLOPE 8.173 17.173 21.673 26.173 35.173 39.673 44.173 RAFTER - REF PT RIDGE DOWT�ISLOPE 6.000 10..x. 15.00! "i 24 . ii (i 28. 500 - 13.000 42. 000 !0-bI E 11 Beam and Column Endwall Design Ver. 29.0 Page 5 �I American Buildings Company Eufaula, AL Wed Jul 25 09:04:54 2007 �I Job Name: 51687901 Job Part: 1 REW * ** MINIMUM PURLIN STRUT SIZE BASED ON EN DWALL COLUMN LOADS COL LINE FPLAN SECTION DN CASE HORIZ ALLOWABLE - -- - - -- - - - -- - - - - - -- -- - - kips kips 2 8 RF01 9.5Z12 1 -- 12 - - - -- 3.66 --- - - - - -- 6.70 3 3 RF01 9.5212 1 12 4.21 6.70 4 3 RF02 9.5Z12 1 12 4.21 6.70 5 8 RF02 9.5Z12 1 12 3.66 6.70 * ** MAXIMUM ENDWALL REACTIONS AND DESIGN LOAD COMBINATIONS CASE M V'ERT M HORZ LOAD FACTOR i LOAD GROUP => - - -- kips - - - - - -- kips - - - - - -- ----- - - - - -- ---- 1 6.9 0.0 1.000 D +C 1.000 - - - - -- L 2 4.3 0.0 1.000 D +C 1.000 LPAFNI- 3 4.7 0.0 1.000 D +C 1.000 LPAFN2- 4 7.2 0.0 1.000 D +C 1.000 LPDFNI- - 5 7.4 0.0 1.000 D +C 1.000 LPDFN2- 6 7.4 0.0 1.000 D +C 1.000 LPDFN3- 7 7.2 0.0 1.000 D +C 1.000 LPDFN4- - 8 10.4 0.0 1.000 D +C 1.000 S 9 16.4 0.0 1.000 D +C 1.000 SUL1 <- 10 16.4 0.0 1.000 D +C 1.000 SUR1 -> 11 -5.1 -3.8 1.000 D 1.000 W+ 12 -5.1 4.2 1.000 D 1.000 W- 13 1.2 -2.8 1.000 D +C 0.750 L 0.750 W+ 14 1.2 3.2 1.000 D +C 0.750 L 0.750 W- 15 3.8 -2.8 1.000 D +C 0.750 S 0.750 W+ 16 3.8 3.2 1.000 D +C 0.750 S 0.750 W- 17 -5.4 -3.8 0.600 D 1.0JO W+ 18 -5.4 4.2 0.600 D 1.000 W- 19 1.7 0.0 1.000 D +C 20 5.3 0.0 1.000 L 21 2.7 0.0 1.000 LPAFNI- 22 3.0 0.0 1.000 LPAFN2- 23 5.5 0.0 1.000 LPDFN1- 24 5.9 0.0 1.000 LPDFN2- 25 5.9 0.0 1.000 LPDFN3- 26 5.5 0.0 1.000 LPDFN4 27 8.7 0.0 1.000 S 28 14.7 0.0 1.000 SUL1 <- 29 14.7 0.0 1.000 SUR.l -> 30 -5.9 -3.8 1.000 W+ 31 -5.9 4.2 1.000 W- 32 0.8 0.0 1.000 D � A01 y American Buildings Company Minimum Seismic And Wind Forces Calculation ( IBC2003 ) Job Number: 51- 6879 -01 Engineer: BN ft. Roof Weight D + C = Building Width = 100.00 Building Length = 100.00 FSW Eave Height = 24.83 Ridge From FSW = 50.00 Roof Pitch = 1 Canopy Width @ FSW = 0.00 Canopy Width @ RSW = 0.00 Max. Interior Bay Trib. = 25.00 Building End Bay Trib. = 13.37 Torsional Bracing: Q Yes OO No ft. Roof Weight D + C = 8.00 psf ft. Root % Snow for Seismic = 6.30 psf ft. Weight of Sidewall = 4.00 psf ft. Weight of Endwall = 15.00 psf /12 Longitudinal Partition WT. = 0.00 psf ft. Quantity of Longitudinal Part. = 0 = 0.67 ft. Transverse Partition WT. = 0.00 psf ft. Quantity of Transverse Part. = 0 ft Longitudinal Special Weight = 0.00 kips Transverse Special Weight = 0.00 kips Least Number of Braced Bay Per Sidewall = 2 Number of Interior Column = 0 Top Connection: 0 Pinned O Fixed Seismic Use Group = > • S %) = 46.70% S,( %) = 16.20% Transverse Direction(Interior): R = 3.50 f2, = 3.00 Transverse Direction(End): R = 3.50 Q, = 3.00 Longitudinal Direction: R = 5.00 n, = 2.00 Seismic Factor I = 1 F = 1.43 F, = 2.15 Sens = 0.67 Seismic Design Category = D SDS = 0.44 Site Class = D rmax = 0.25 (R = 3.5 for entire structure) rmax = 0.25 Smi = 0.35 SDi = 0.23 wmu unorruduon q = 0.00256K = 16.60 psf Longitudinal GC GC = 0.69/1.04 Transverse GC GC = 0.96/1.44 Wind Factor I = 1.00 „Wind!Seismic Forces.in'Trans�erse Direction:, Interior Bay Tributary Width = 25 ft End Bay Tributary Width = 13.37 ft 1. Wind Load Total Load = P B* H/2 = 5.8 Kips 2. Seismic Load p = 2-20 /(rmax * AB ^ 0.5) = 1.20 W = 38.23 Kips V = Q = 4.85 Kips E = P * QE 5.8 Kips E„ = 02S *D = 1.8 Kips E,, = S2 „ *Q = 14.6 Kips 1. Wind Load Total Load = P B* H/2 = 4.6 Kips 2. Seismic Load p = -20 /(rmax * AB ^0 . 5 ) = 1.20 W = 20.45 Kips V = QE = 2.59 Kips E =P * QE = 3.1 Kips E = 0.2S *D = 0.9 Kips Em = -Qn * QE = 7.8 Kips WndlSeismc' Forces in 'Longitudinai Direction; A 1. Wind Load Total Load = P *B* H/2 = 18.5 Kips 2. Seismic Load (Accidental Torsion Included) I) =2 -20 /(r *A ^0.5) = 1.20 W = 183.4 Kips V = QE = 23.3 Kips E =p *Q = 30.7 Kips E„ = 0.2Sp *D = 7.1 Kips E =Q *Q = 51.2 Kips Version 2.3.2 Quality And Service Author: WW Every Time ... All The Time 4:15 PM7/19/2007 I r� AMERICAN �. R�� -r— fpjc') Mss 2- BC4 Imo- 5 A 2-L,- U - 5. W.- W : 4. 3 5 2_`}S _ 2 -7S 2- -� �t7` - /. 3? S 2s� Cf_12.� Zt 2t� 1 -3T 5 I, ?7 G- . e 2 it f K G 2 Z (I k T�c-c. G �3C / f3 C-4 �o I L. �G�2 SECTION 4 PURLIN AND GIRT American Buildings Company 112" F7 M T T T — 68" I " �1 13/16.. X— —X g .. T T T 1 X— —X 91/2' X._ X 12" 6" x— —X 91 /2' ,tom X— —X 12" X— —X SOJ� 50L 50L � 7/6" 1" 113/16" 3/4 "'C 2 1/2" 718"' 3' 1� 3 1!6" 21/2" 3' 3 1/8" 4 Page l 7 AMERICAN BUILDINGS COMPANY'S Standard Purlins and Girts are light gage 8" x 2 1/2" "Z" and "C" 9 1/2" x 3" "Z" and "C" and 12" x 3 1/2" "Z" and "C" sections (with stiffened flanges) cold formed from 55,000 Psi yield steel. The fully braced section properties and capacities computed in accordance with 2001 North American Specifications are as follows: DIMENSIONS PROPERTIES AND CAPACITIES Moments and shears used in selecting "Z" and "C" sections and connections for the Purlin and Girts were found by the stiffness method of analysis. To meet varying load requirements, the "Z" and "C" members shall be of simple span or lapped 2' - 0 11 , T -O ", 4' -0 ", 5' -0" or 6' -0" over the interior frames to form a continuous beam. The purlin sections were then designed for the maximum positive moments and for the moment and shear combination at the beginning and termination of the laps. The double "Z" and "C" sections were also checked for the maximum negative moments over the interior frames. A M E R I C A N B U I L D I N G S C F r o n t R o o f D e s i (typical) Designer: BN Version Nu Job Number: 51687901, Module: 1 Date /Time: ------------------------------------------------- Type Width Length Ridge Dist R..Col.Elev LRF 100.000 ft 100.000 ft 50.000 ft 0.000 ft ------------------------------------------------- S.Wall Eave Ht. Lean -To Width E.Wall Type Col Front: 24.833 ft 0.000 ft Left 4 Rear: 24.833 ft 0.000 ft Right 1 Building Code: 2003 International Building Code 0 0 M P A N Y g n nber: Ver. 29.0 07/19/07 11:23 AM Slope(F) Slope(R) No.BAYS 1.000 :12 1.000:12 4 -------------------------- _Spc. Girt Type Overhang S I 0.000 ft S I 0.000 ft Building Use Category: II. All buildings and other structures except those listed in Categories I, III, and IV (Show importance Factor = 1.000) (Wind Importance Factor = 1.000) Roof Dead Load = 1.500 psf Collateral Load = 3.000 psf Roof Live Load = 20.000 psf Ground Snow Load = 50.000 psf Snow Exposure Category: Fully Exposed (Snow Exposure Factor = 0.900) Thermal Condition: All structures except as indicated below (Thermal Factor = 1.000) Roof Snow Load = 31.500 psf Wind Velocity = 90.000 mph Open Condition: Enclosed Wind Exposure Category: C. Open terrain with scattered obstructions, including surface undulations or other irregularities having heights generally less than 30 feet extending more than 1500 feet from site Design Wind Pressure (Cladding and Secondary) = 16.637 psf --------------------------------------------------------------------- - - - - -- Purlin locations on slope from peak to eave. Line Dist. Design Interesting AR Ledge R.edge Weight No. ---------------------------------------------------------------------- (ft) Spacing Line Clip zone pkg zone pkg (lbs) 1 1.500 3.750 Yes Yes(DnHill) 601.630 2 6.000 4.500 601.630 3 10.500 4.500 Yes 601.630 4 15.000 4.500 601.630 5 19.500 4.500 601.630 6 24.000 4.500 601.630 7 28.500 4.500 601.630 8 33.000 4.500 Yes 601.630 9 37.500 4.500 Yes 601.630 10 42.000 4.293 Yes 601.630 11 46.087 4.087 601.630 Page 1 of 26 \Q P A N E L Panel type: QP26 Sx(top) = 0.039 in3; S5_(bottom) = 0.047 in3; Fy = 80 ksi Support purlin location (eave to ridge): 0.000 4.087 8.173 12.673 17.173 21.673 26.173 30.673 35.173 39.673 44.173 48.673 Applied loads and adjusted loads: 0.940 psf= 0.937 to 0.937 lb /ft D 20.000 psf= 19.862 to 19.862 lb /ft L+ 31.500 psf= 31.283 to 31.283 lb /ft S+ 52.500 psf = 52.138 to 52.138 lb /ft 3(unbalanced)- - 49.579 psf= - 49.579 to - 49.579 lb /ft W(at eave corner)- - 32.942 psf= - 32.942 to - 32.942 lb /ft W(at rake edge)- - 32.942 psf= - 32.942 to - 32.942 lb /ft W(at eave edge)- - 19.632 psf= - 19.632 to - 19.632 lb /ft W(typical)- 7.986 psf= 7.986 to 7.986 lb /ft W(typical)+ Load Combination: D + L+ Check By ASD; No Deflection Limit Net uniform load of 20.799 20.799 20.799 lb /ft Continuous spans of 4.500 4.500 4.500 ft Force = - 42.118 ft -lb; Resistance = - 140.719 ft -lb; Check Ratio = 0.299 Load Combination: D + S+ Check By ASD; No Deflection Limit Net uniform load of 32.220 32.220 32.220 lb /ft Continuous spans of 4.500 4.500 4.500 ft Force = - 65.245 ft -lb; Resistance = - 140.719 ft -lb; Check Ratio = 0.464 Load Combination: D + S(unbalanced)- Check By ASD; No Deflection Limit Net uniform load of 53.075 53.075 53.075 lb /ft Continuous spans of 4.500 4.500 4.500 ft Force = - 107.476 ft -lb; Resistance = - 140.719 ft -lb; Check Ratio = 0.764 Load Combination: D + W(at eave corner) - Check By ASD; No Deflection Limit Net uniform load of - 48.643 - 48.643 - 48.643 lb /ft Continuous spans of 4.087 4.087 4.500 ft Force = 94.302 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.808 Load Combination: D + W(at rake edge) - Check By ASD; No Deflection Limit Net uniform load of - 32.005 - 32.005 - 32.005 lb /ft Continuous spans of 4.500 4.500 4.500 ft Force = 64.811 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.555 Load Combination: D + Nat eave edge) - Check By ASD; No Deflection Limit Net uniform load of - 32.005 - 32.005 - 32.005 lb /ft Continuous spans of 4.087 4.087 4.500 ft Force = 62.047 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.531 Load Combination: D + W(typical)- Page 2 of 26 \1 Check By ASD; No Deflection Limit Net uniform load of - 18.695 - 18.695 - 18.695 lb /ft Continuous spans of 4.500 4.500 4.500 ft Force = 37.858 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.324 Load Combination: D + W(typical)+ Check By ASD; No Deflection Limit Net uniform load of 8.923 8.923 0.923 fib /ft Continuous spans of 4.500 4.500 4.500 ft Force = - 18.068 ft -lb; Resistance = - 140.719 ft -lb; Check_ Ratio = 0.128 Load Combination: D + 3/4L+ + 3 /4W(typical)+ Check By ASD; No Deflection Limit Net uniform load of 21.823 21.823 21.823 lb /ft Continuous spans of 4.500 4.500 4.500 ft Force = - 44.191 ft -lb; Resistance = - 140.719 ft -lb; Check Ratio = 0.314 Load Combination: D + 3/4S+ + 3 /4W(typical)+ Check By ASD; No Deflection Limit Net uniform load of 30.388 30.388 30.388 lb /ft Continuous spans of 4.500 4.500 4.500 ft Force = - 61.536 ft -lb; Resistance = - 140.719 ft -lb; Check Ratio = 0.437 Load Combination: 0.60D + W(at eave corner) - Check By ASD; No Deflection Limit Net uniform load of - 49.017 - 49.017 - 49.017 lb /ft Continuous spans of 4.087 4.087 4.500 ft Force = 95.028 ft -lb; Resistance = 116.766 ft -1b; Check Ratio = 0.814 Load Combination: 0.60D + W(at rake edge) - Check By ASD; No Deflection Limit Net uniform load of - 32.380 - 32.380 - 32.380 lb /ft Continuous spans of 4.500 4.500 4.500 ft Force = 65.570 ft -lb; Resistance = 116.766 ft -1b; Check Ratio = 0.562 Load Combination: 0.60D + W(at eave edge) - Check By ASD; No Deflection Limit Net uniform load of - 32.380 - 32.380 - 32.380 lb /ft Continuous spans of 4.087 4.087 4.500 ft Force = 62.774 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.538 Load Combination: 0.60D + W(typical)- Check By ASD; No Deflection Limit Net uniform load of - 19.070 - 19.070 - 19.070 lb /ft Continuous spans of 4.500 4.500 4.500 ft Force = 38.617 ft -lb; Resistance = 116.766 ft -lb; Check Ratio = 0.331 Load Combination: 0.60D + W(typical)+ Check By ASD; No Deflection Limit Net uniform load of 8.548 8.548 8.548 lb /ft Continuous spans of 4.500 4.500 4.500 ft Force = - 17.310 ft -lb; Resistance = - 140.719 ft -lb; Check; Ratio = 0.123 Load Combination: L+ No Stress Design; L /150 Deflection Limit Net uniform load of 19.862 19.862 19.862 lb /ft Continuous spans of 4.500 4.500 4.500 ft Force = 0.044 inches; Resistance = 0.360 inches; Check Ratio = 0.123 Load Combination: S+ Page 3 of 26 V� - • No Stress Design; L /180 Deflection Limit Net uniform load of 31.283 31.283 31.283 lb /ft Continuous spans of 4.500 4.500 4.500 ft Force = 0.070 inches; Resistance = 0.300 inches; Check Ratio = 0.232 Load Combination: S(unbalanced)- No Stress Design; L /180 Deflection Limit Net uniform load of 52.138 52.138 52.138 lb /ft Continuous spans of 4.500 4.500 4.500 ft Force = 0.116 inches; Resistance = 0.300 inches; Check_ Ratio = 0.387 Load Combination: 0.70W(at eave corner) - No Stress Design; L /180 Deflection Limit Net uniform load of - 34.706 - 34.706 - 34.706 lb /ft Continuous spans of 4.087 4.087 4.500 ft Force = -0.096 inches; Resistance = 0.300 inches; Check_ Ratio = 0.319 Load Combination: 0.70W(at rake edge) - No Stress Design; L /180 Deflection Limit Net uniform load of - 23.059 - 23.059 - 23.059 lb /ft Continuous spans of 4.500 4.500 4.500 ft Force = -0.061 inches; Resistance = 0.300 inches; Check_ Ratio = 0.204 Load Combination: 0.70W(at eave edge) - No Stress Design; L /180 Deflection Limit Net uniform load of - 23.059 - 23.059 - 23.059 lb /ft Continuous spans of 4.087 4.087 4.500 ft Force = -0.064 inches; Resistance = 0.300 inches; Check_ Ratio = 0.212 Load Combination: 0.70W(typical)- No Stress Design; L /180 Deflection Limit Net uniform load of - 13.743 - 13.743 - 13.743 lb /ft Continuous spans of 4.500 4.500 4.500 ft Force = -0.037 inches; Resistance = 0.300 inches; Check Ratio = 0.122 Load Combination: 0.70W(typical)+ No Stress Design; L /180 Deflection Limit Net uniform load of 5.590 5.590 5.590 lb /ft Continuous spans of 4.500 4.500 4.500 ft Force = 0.012 inches; Resistance = 0.300 inches; Check Ratio = 0.041 Roof interesting purlin line 9 (Designed Line) analysis details. Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure --------------------------------------------------------------------------- 4.500 ft B 1.625 ft 0.458 ft 9.938 ft -1.080 0.380 -1.280 0.380 Roof interesting purlin line 9 (Designed Line) analysis details. Design Data - Load Combinations No. Load Case Description ---------------------------- 1 D +C + L+ 2 D +C + LAFN- 3 D +C + LANF- 4 D +C + LDFNIL -• Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit Page 4 of 26 13 14 16 17 18 19 20 21 " 2 2 23 24 2 26 27 28 29 30 31 32 33 34 Page 5 of 26 \N� I 0 • Check By ASD; 11c, Defl ection Limit D+C + LDFMX1- Check By ASD; Nju Limit D+C + LDF1 Check By ASD; No Defl e c tion Limit D+C + LDFNi Check By AS D; No D+C + LDFII-' Check By ASD; Ilr Deflectir)r, Limit D+C + S+ Check By ASD; tlo Deflection Limit D+C + SU- Check By AS D; No Deflection Lim-Lt D+C + SEFHL- Check By ASD; 1 Deflection Limit D+C + SEFHR- Check By ASD; Ho Deflection Limit D+C + SEHFL- Check By ASD; No Deflection Limit D+C + SEHFR-- Check By ASD; No Def)ectiori Limit D+C + SDFHlL- Check By ASD; No Defiec Dr, Limit D+C + SDFHX1-- Check By ASD; No Deflection Limit D+C + SDFHX2- Check By ASD; No Deflection Limit D+C + SDFHZ3- Check By ASD; No Deflection Limit D+C + SDFHX4- Check By ASD; No Deflection Limit D- + W- Check By ASD; No Deflection Limit D+C + W- Check By ASD; No Deflection Limit D+C + W+ Check By ASD; No Deflection Limit D+C + 3/4L+ + 3/4W+ Check By ASD; No Deflection Limit D+C + 3/4S+ + 3/4W+ Check By ASD; No Deflection Limit 0.60D- + W- Check By ASD; No Deflection, Limit 0.60(D+C) + W- Check By ASD; No Deflection Limit 0.60(D+C) + W+ Check By ASD; No Deflection Limit L+ No Stress Check; L/150 Deflection Limit 1/2LAFN- No Stress Check; L/1'10 Deflection Limit 1/ No Stress Check; L/150 Deflection Limit 1/2LDFHlL- No Stress Check; L/150 Deflection Limit 1/2LDFNXI- No Stress Check; L/ljO Deflection Limit 1/2LDFNX2- No Stress Check; L/15U Deflection Limit 1/2LDFNX3- Page 5 of 26 \N� I Roof interesting purlin line 9 (Designed Line) analysis details. Design Data - Summary Span Length Mark Left Right Brace Nest End Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio Check (ft) (ft) (ft) # # --------------------------------------------------------------------------- 1L 1.625 9.5213 0.000 0.000 0 1 Nr, 10 0.727 web crippling 10 L/ 61 deflection 1 23.375 9.5213 0.000 2.917 0 1 R.End 10 0.964 bending +shear 37 L/ 257 deflection 2 25.000 9.5213 2.917 1.417 0 1 L.End 10 0.998 bending +shear 40 L/ 619 deflection 3 25.000 9.5212 1.417 2.417 0 1 R.End 10 0.996 bending +shear 41 L/ 728 deflection 4 24.542 9.5212 2.417 0.000 0 1 B.End 10 0.950 bending +shear 37 L/ 230 deflection 4R 0.458 9.5Z12 0.000 0.000 0 1 L.End 25 0.047 bolt capacity 10 L/ 54 deflection Total design weight per run = 601.630 lbs. Maximum, stress ratio = 0.998. Roof interesting purlin line 9 (Designed Line) analysis details. Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group # ib /ft(kils) feet lb /ft feet --------------------------------------------------------------------- - - - - -- Page 6 of 26 �\, 0 • • No Stress Check; L/150 Defle:t on Limit 35 1 /21,DFNX4- No Stress Check; I. /150 Deflectior; Limit 36 S+ No Stress Check; L /1',0 Deflection Limit 37 SD- No Stress Check; L /180 Deflection Limit 38 SEFHL- No Stress Check; L /180 Deflection Limit 39 SEFHR- No Stress Check; L /180 Deflection Limit 40 SEHFL- No Stress Check; L /180 Deflection Limit 41 SEHFR- No Stress Check; L /180 Deflection Limit 42 SDFHIL- No Stress Check; L /1s0 Deflection Lirct 43 SDFHXI- No Stress Check; L /ic Deflection Limit 44 SDFHX2- No Stress Check; L %180 Deflection Limit 45 SDFHX3- No Stress Check; L /180 Deflection Limit 46 SDFHX4- No Stress Check; L/180 Deflection Limit 47 0.70W- No Stress Check; L /180 Deflection Limit 48 0.70W+ No Stress Check; L /180 Deflection Limit Roof interesting purlin line 9 (Designed Line) analysis details. Design Data - Summary Span Length Mark Left Right Brace Nest End Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio Check (ft) (ft) (ft) # # --------------------------------------------------------------------------- 1L 1.625 9.5213 0.000 0.000 0 1 Nr, 10 0.727 web crippling 10 L/ 61 deflection 1 23.375 9.5213 0.000 2.917 0 1 R.End 10 0.964 bending +shear 37 L/ 257 deflection 2 25.000 9.5213 2.917 1.417 0 1 L.End 10 0.998 bending +shear 40 L/ 619 deflection 3 25.000 9.5212 1.417 2.417 0 1 R.End 10 0.996 bending +shear 41 L/ 728 deflection 4 24.542 9.5212 2.417 0.000 0 1 B.End 10 0.950 bending +shear 37 L/ 230 deflection 4R 0.458 9.5Z12 0.000 0.000 0 1 L.End 25 0.047 bolt capacity 10 L/ 54 deflection Total design weight per run = 601.630 lbs. Maximum, stress ratio = 0.998. Roof interesting purlin line 9 (Designed Line) analysis details. Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group # ib /ft(kils) feet lb /ft feet --------------------------------------------------------------------- - - - - -- Page 6 of 26 �\, 0 0 0 I T311 I F D- ALL 6.7 0.000 6. 727 0.000 2 UNIF D+C ALL 20.134 ci 0 20.134 0.000 U11 I F L+ ALL 39.379 O.Oi:)0 89.379 0.000 4 U N I F L --, F1 I -- 1L 9.379 1 . - 25 rJ17IF LAFH- i 7 9- . -') 7 9 23.375 6 ull I F LAFN-- 3 8 25 . 000 UNIF LA11F - :9.379 25.000 UNIF L A T -Il F - 4 0. C)ff) 89.379 24.542 9 UNIF LANF- 4R 89. 379 0.000 89.379 0. 458 10 UNIF LDFI 1L 8 9. 379 0.000 89. 379 1.625 11 UNIF LDFIl1L- 1 89.379 0.000 89. 339 23.375 12 UNIF LDFIqXl- 1L 89.379 0 . GOO 89.379 1 . 625 13 UNIF LDF11Y 1 - 1 3719 -1 .000 89.379 23.375 14 UNIF LDFNX1- 2 89.3 0.000 89.379 25,000 15 UNIF LDFN" 2-- ? 89.379 0.000 89.379 2 16 UNIF L 1) F ll Z 2" -- 7 89.379 25.000 17 UNIF LDFrX3- 7 0 1 . 0 , C) 89.379 25.000 18 Tj III I F L D 4 ;9.379 24.542 19 UNIF LDFNZ3- 4R 7 1 -) . 0 0 89.379 0.458 20 UNIF L D FNX 4 - 4 89.379 0.000 89.379 24.542 21 UNIF LDFNX4- 4R 0 19.379 0.000 89.379 0.458 22 UNIF S+ ALL 140. 0.000 140.772 0.000 23 UNIF SU- ALL 234.621 0.000 234.621 0.000 24 UNIF SEFHL- IL 140.772 0.000 140.772 1.625 25 UNIF SEFHL- 1 140.772 0.000 140.772 23.375 26 UNIF SEFHL- 2 70.386 0.000 70.386 25.000 27 UNIF SEFHL- 3 70.3 0.000 70.386 25.000 28 UNIF SEFHL- 4 70.386 0.000 70.386 24.542 29 UNIF SEFHL- 4R 70.386 0.000 70.386 0.458 30 UNIF SEFHR- IL 70.386 0.000 70.386 1.625 31 UNIF SEFHR- 1 70.386 0.000 70.386 2 3.375 32 UNIF SEFHR- 2 '70.386 3.00() 70.386 25.000 33 UNIF SEFHR-- 3 70.386 0.000 70.386 25.000 34 UNIF SEFHR- 4 140. 0.000 140.772 24.542 35 UNIF SEFHR- 4R 140.772 0.000 140.772 0.458 36 UNIF SEHFL- 1L 70.386 0.000 70.386 1.625 37 UNIF SEHFL- 1 70.386 0.000 70.386 23.375 38 UNIF SEHFL- 2 140.772 0.000 140.772 25.000 J 3 9 UNIF SEHFL- 3 140.772 0.000 140.772 25.000 40 UNIF SEHFL-- 4 140.772 0.000 140.772 24.542 41 UNIF SEHFL- 4R 140.772 0.000 140.772 0.458 42 UNIF S E H FF-',-- 1L 140.772 0.000 140.772 1.625 43 UNIF SEHFR- 1 1110.772 0.000 140.772 23.375 44 UNIF SEHFR- 2 140.772 0.000 140.772 25.000 45 UNIF SEHFR-- 3 140.772 0.000 140.772 25.000 46 UNIF SEHFR- 4 70.386 0.000 70.386 24.542 47 UNIF SEHFR- 4R 70.386 0.000 70.386 0.458 48 UNIF SDFHlL- 1L 70.386 0.000 70.386 1.625 49 UNIF SDFHlL- 1 70.386 0.000 70.386 23.375 50 UNIF SDFHlL- ALL 70.386 0.000 70.386 0.000 51 UNIF SDFHX1- 1L 70.386 0.000 70.386 1.625 32 UNIF SDFHY1-- 1 70.3 70.386 23.375 53 Ull I F SDFH-'/,I- 7n.3 - 0 70.386 25.000 54 UNIF SDFHXI-- ALL I u C).000 70.386 0.000 55 Ull I F SDFHZ-?-- 2 7 3 P 0.000 70.386 25.000 56 UNIF SDFHX2- 3 0.000 70.386 25.000 57 UNIF SDFHX2- ALL 70.386 0.000 70.386 0.000 58 UNIF SDFHX3-- 3 70.386 0.000 70.386 25.000 59 UNIF SDFHX3- 4 70.386 0.()00 70.386 24.542 60 UNIF SDFHX3- 4R 70.386 0.000 70.386 0.458 Page 7 of 26 n LJ 61 UNIF 62 UNIF 63 UNIF 64 UNIF 65 UNIF 66 UNIF 67 UNIF 68 UNIF 69 UNIF 70 UNIF 71 UNIF 72 UNIF 73 UNIF SDFHX3- ALL SDFHX4- 4 SDFHX4- 4R SDFHX4- ALL W- I GJ- i W- 1 W- 2 W- 3 W- 4 W- 4 W- 4R W+ ALL 70.386 0.000 70.386 0.000 70.386 0.000 70.386 0.000 - 95.832 0.000 - 95.?32 0.000 -00.8r, 8. UG Inset Inset - 80.858 0.000 - 80.858 0.000 - 95.832 15.067 - 95.832 r'. 0 28.450 0.000 0 70.386 0.000 70.386 24.542 70.386 0.458 70.386 0.000 - 95.832 1.625 - 95.832 8.308 - 80.858 23.375 - 80.858 25.000 -80.858 25.000 - 80.858 15.067 - 95.832 24.542 - 95.832 0.458 28.450 0.000 Roof interesting purlin line 10 (At eave edge) analysis details. Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- --------------------------------------------------------------------------- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure 4.293 ft B 1.625 ft 0.458 ft 9.938 ft -1.280 0.380 -1.280 0.380 Roof interesting purlin line 10 (At eave edge) analysis details. Design Data - Load Combinations No. Load ------------------------------------------------------------------------ Case Description 1 D +C + L+ Check By ASD; No Deflection Limit 2 D +C + LAFN -- Check By ASD; No Deflection Limit 3 D +C + LANF- Check By ASD; No Deflection Limit 4 D +C + LDFNIL- Check By ASD; No Deflection Limit 5 D +C + LDFNXI- Check By ASD; No Deflection Limit 6 D +C + LDFNX2- Check By ASD; No Deflection Limit 7 D +C + LDFNX3- Check By ASD; No Deflection Limit 8 D +C + LDFNX4- Check By ASD; No Deflection Limit 9 D +C + S+ Check By ASD; No Deflection Limit 10 D +C + SU- Check By ASD; No Deflection Limit 11 D +C + SEFHL- Check By ASD; No Deflection Limit 12 D +C + SEFHR- Check By ASD; No Deflection Limit 13 D +C + SEHFL- Check By ASD; No Deflection Limit 14 D +C + SEHFR- Check By ASD; No Deflection Limit 15 D +C + SDFHIL- Check By ASD; No Deflection Limit 16 D +C + SDFHXI- Check By ASD; No Deflection Limit 17 D +C + SDFHX2- Page 8 of 26 • • 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 Page 9 of 26 1 Check By ASD; No Deflection Limit D+C + SDFHX3- Check By ASD; No Deflection Limit D+C + SDFHX4- Check By ASD; No Deflection Limit D- + W- Check By ASD; No Defiectiw Limit D+C + W- Check By ASD; He Deflection Limit D+C + W+ Check By ASD; No Deflection Limit D+C + 3/4L+ + 3/4W+ Check By ASD; No Deflection Limit D+C + 3/4S+ + 3/4W+ Check By ASD; No Deflection Limit 0.60D- + W- Check By ASD; No Deflection Limit 0.60(D+C) + W- Check By ASD; No Deflection Limit 0.60(D+C) + W+ Check By ASD; No Deflection Limit L+ No Stress Check; L/150 Deflection Limit 1/2LAFN- No Stress Check; L/ Deflection Limit 1/2LANF- No Stress Check; LOU Defiection Limit 1/2LDFNlL- No Stress Check; L/150 Deflection Limit 1/2LDFNX1- No Stress Check; L/150 Deflection Limit 1/2LDFNX2- No Stress Check; L/150 Deflection Limit 1/2LDFNX3- No Stress Check; L/150 Deflection Limit 1/2LDFNX4- No Stress Check; L/150 Deflection Limit S+ No Stress Check; L/180 DeflectiQn Limit Su- No Stress Check; L/100 Deflection Limit SEFHL- No Stress Check; L/180 Deflection Limit SEFHR- No Stress Check; L/IbO Deflection Limit SEHFL- No Stress Check; L/180 Defiection Limit SEHFR- No Stress Check; L/180 Deflection Limit SDFH1L- No Stress Check; L/180 Deflection Limit SDFHXI- No Stress Check; L/190 Deflection Limit SDFHX2- No Stress Check; L/190 Deflection Limit SDFHX3- No Stress Check; L/180 Deflection Limit SDFHX4- No Stress Check; L/180 Deflection Limit 0.70W- Page 9 of 26 1 0 48 No Stress Check; L/130 Deflection Limit 0.70W+ No Stress Check; L/100 Deflection Limit Roof interesting purlin line 10 (At eao Rdgo) analysis details. Design Data - Summary Span Length Marl; Left Right Brace Nest End Load Check Control ID 6.418 No. Lap Lap Pts Mem Clip Case Ratio Check --------------------------------------------------------------------------- (ft) 3 (ft) (ft) # # 0.000 85.274 0.000 4 1L 1.625 9.5Z13 0.000 0.000 0 1 No 10 0.694 web crippling 85.274 0.000 85.274 23.375 6 UNIF LAFN- 3 10 L/ 64 deflection 1 23.375 9.5213 0.000 2.917 0 1 R.End 10 0.920 bending +shear LANF- 4 85.274 0.000 85.274 24.542 9 UNIF 37 L/ 270 deflection 2 25.000 9.5Z13 2.917 1.417 0 1 L.End 10 0.953 bending +shear 11 UNIF LDFNIL- 1 85.274 0.000 85.274 23.375 40 L/ 649 deflection 3 25.000 9.5212 1.417 2.417 0 1 R.End 10 0.951 bending +shear 85.274 23.375 14 UNIF LDFNX1- 2 85.274 0.000 41 L/ 764 deflection 4 24.542 9.5212 2.417 0.000 0 1 B.End 10 0.908 bending +shear 85.274 0.000 85.274 25.000 17 UNIF LDFNX3- 3 37 L/ 241 deflection 4R 0.458 9.5212 0.000 0.000 ., 1 V.Snd 25 0.047 bolt capacity LDFNX3 -- 4R 85.274 0.000 85.274 0.458 20 UNIF 10 L/ 57 deflection Total design weight per run = 601.630 lbs. Maximum stress ratio = 0.953. Roof interesting purlin line 10 (At eave edge) analysis details. Design Data - Applied loads No. Load Load Type Group Span Intensity From Intensity To ---------------------------------------------------------------------------- lb /ft(kips) feet lb /ft feet 1 UNIT D- ALL 6.418 0.000 6.418 0.000 2 UNIF D +C ALL 19.209 0.000 19.209 0.000 3 UNIF L+ ALL 85.274 0.000 85.274 0.000 4 UNIF LAFN- 1L 85.274 0.000 85.274 1.625 5 UNIF LAFN- 1 85.274 0.000 85.274 23.375 6 UNIF LAFN- 3 85.274 0.000 85.274 25.000 7 UNIF LANF- 2 87.274 0.000 85.274 25.000 8 UNIF LANF- 4 85.274 0.000 85.274 24.542 9 UNIF LANF- 4R 8.274 6.000 85.274 0.458 10 UNIF LDFNIL- 1L 85.274 0.000 85.274 1.625 11 UNIF LDFNIL- 1 85.274 0.000 85.274 23.375 12 UNIF LDFNXI- 1L 85.274 0.000 85.274 1.625 13 UNIF LDFNX1- 1 85.274 0.000 85.274 23.375 14 UNIF LDFNX1- 2 85.274 0.000 85.274 25.000 15 UNIF LDFNX2- 2 85.274 0.000 85.274 25.000 16 UNIF LDFNX2- 3 85.274 0.000 85.274 25.000 17 UNIF LDFNX3- 3 85.274 0.000 85.274 25.000 18 UNIF LDFNX3- 4 85.214 0.000 85.274 24.542 19 UNIF LDFNX3 -- 4R 85.274 0.000 85.274 0.458 20 UNIF LDFNX4 -- 4 85.274 0.000 85.274 24.542 21 UNIF LDFNX4- 4R 85.274 0.000 85.274 0.458 22 UNIF S+ ALL 134.307 0.000 134.307 0.000 23 UNIF SU- ALL 223.845 0.000 223.845 0.000 24 UNIF SEFHL- 11, 134.307 0.000 134.307 1.625 25 UNIF SEFHL- 1 134.301 0.000 134.307 23.375 26 UNIF SEFHL- 2 07.154 0.000 67.154 25.000 Page 10 of 26 0 0 27 UNIF SEHFL- 3 67.154 0.000 67.154 25.000 28 TjNIF SEHFL- 4 67.154 0.000 67.154 24.542 29 UNIF SEHFL- 4R 67.154 ii (i0 67.154 0.458 30 U11 IF SEFHR 1L 67.159 0.0..0 67.154 1.625 31 UNIF SEFHR. 1 67.154 0.000 67.154 23.375 32 UNIF SEFHR. _ =,7 . 1 4 q 6? .159 25.000 33 UNIF SEFHP.- 3 7.154 -x.000 67.154 25.000 34 UNIF SEFHR- 4 134.307 0.000 134.307 24.542 35 UNIF SEFHR 4R 134.307 0.000 134.307 0.458 36 UNIF SEHFL- 1L 67.154 0.00' 67.154 1.625 37 UNIF SEHFL- 1 67.154 0.000 67.154 23.375 38 UNIF SEHFL- 2 134.307 0.000 134.307 25.000 39 UNIF SEHFL- 3 134.307 0.000 134.307 25.000 40 UNIF SEHFL- 4 134.307 0.000 134.307 24.542 41 UNIF SEHFL- 4R. 134.307 0.000 134.307 0.458 42 UNIF SEHFR- 1L 1 ? . 307 i, i Ci0 134 .307 1 . 625 43 UNIF SEHFR.- 34 . 307 23.375 44 UNIF SEHFR- - 0(1 r! 134 .307 25. 000 45 UNIF SEHFR.-- 3 i34.X07 O. , 134.307 25.000 46 UNIF SEHFR- 4 67.154 (,!.000 67.154 24.542 47 UNIF SEHHR 4R 67.154 0.000 67.154 0.458 48 UNIF SDFHIL- 1L 67.154 0.000 67.154 1.625 49 UNIF SDFHIL- 1 67.154 1.000 67.154 23.375 50 UNIF SDFHIL- ALL 67.154 0.000 67.154 0.000 51 UNIF SDFHXI- 1L 67.154 0.000 67.154 1.625 52 UNIF SDFHXI^ 1 67.154 0.000 67.154 23.375 53 UNIF SDFHXI- 2 67.154 0.000 67.154 25.000 54 UNIF SDFHXI- ALL 67.154 0.000 67.154 0.000 55 UNIF SDFHX2- 2 67.154 0.000 67.154 25.000 56 UNIF SDFHX2- 3 67.154 0.00 67.154 25.000 57 UNIF SDFHX2- ALL 67.154 0.000 67.154 0.000 58 UNIF SDFHX3- 3 67.154 0.000 67.154 25.000 59 UNIF SDFHX3- 4 67.154 0.000 67.154 24.542 60 UNIF SDFHX3- 4R 67.154 0.000 67.154 0.458 61 UNIF SDFHX3- ALL 67.154 0.000 67.154 0.000 62 UNIF SDFHX4- 4 67.154 0.000 67.154 24.542 63 UNIF SDFHX4- 4R 6 - '.154 0.000 67.154 0.458 64 UNIF SDFHX4- ALL 67.154 0.000 67.154 0.000 65 UNIF W- ALL - 91.43(, 0.000 - 91.430 0.000 66 UNIF W+ ALL 27.113 0.000 27.143 0.000 Roof interesting purlin line 8 (Designed Lime) analysis details. Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure --------------------------------------------------------------------------- 4.500 ft B 1.625 ft 0.458 ft 9.938 ft -1.080 0.380 -1.280 0.380 Roof interesting purlin line 8 (Designed Line) analysis details. Design Data - Load Combinations No. Load Case Description --------------------------------------------------------------------------- 1 D +C + L+ 2 D +C + LAFN- 3 D +C + LANF- Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit Page 11 of 26 (111; 0 4 D +C + LDFNIL- Check By ASD; No Deflection Limit 5 D +C + LDFNXI -- Check By ASD; No Deflection Limit 6 D +C + LDFNX2- Ci By ASD; Ho Defl +_tior_ Limit 7 D +C + LDFHY3� Check By ASD; No Deflection Limit 8 D +C + LDFNX4- Check By ASD; No Deflection Limit 9 D +C + S+ Check By ASD; No Deflection Limit 10 D +C + SU- Check By ASD; No Deflection Limit 11 D +C + SEFHL- Check By ASD; No Deflection Limit 12 D +C + SEFHR- Check By ASD; No Deflection Limit 13 D +C + SEHFL-- Check By ASD; No Deflection Limit 14 D +C + SEHFR- Check By ASD; No Deflection Limit 15 D +C + SDFHIL-- Check By ASD; No Deflection Limit 16 D +C + SDFHXl- Check By ASD; No Deflection Limit 17 D +C + SDFHX2- Check By ASD; No Deflection Limit 18 D +C + SDFHX3- Check By ASD; No Deflection Limit 19 D +C + SDFHX4- Check_ By ASD; No Deflection Limit 20 D- + W- Check By ASD; No Deflection Limit 21 D- + WLIP- Check By ASD; No Deflection Limit 22 D- + WRIP- Check By ASD; No Deflection Limit 23 D- + WLIN- Check By ASD; No Deflection Limit 24 D- + WRIN- Check_ By ASD; No Deflection Limit 25 D +C + W- Check By ASD; No Deflection Limit 26 D +C + W+ Check By ASD; No Deflection Limit 27 1.06(D +C) + 0.70EFL+ Check By ASD; No Deflection Limit 28 1.06(D +C) + 0.70EFR+ Check By ASD; No Deflection Limit 29 D +C + 3/4L+ + 3/4W+ Check By ASD; No Deflection Limit 30 D +C + 3/4S+ + 3/4W+ Check By ASD; No Deflection: Limit 31 1.07(D +C) + 3/4L+ + 3 /4EFL+ Check By ASD; No Deflection Limit 32 1.07(D +C) + 3/4L+ + 3 /4EFR+ Check By ASD; No Deflection Limit 33 1.07(D +C) + 3/4S+ + 3 /4EFL+ Check. By ASD; No Deflection Limit Page 12 of 26 \20Y 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 5 56 57 58 59 60 61 62 63 1 /2LDFNX3- 1.07(D +C) + 3/4S+ + 3 /4EFR+ No Stress Check; Check By ASD; No Deflection L Lm i_t 1 /2LDFNX4- 0.60D + W- Check By ASD; ! Deflection Limit Check; 0.60D + WLIP- Deflection Limit S+ Clieck By ASD; No Deflection Limit 0.60D- + WRIr- No Stress Check; Clieck By ASD; Nr, Defl -ction Limit SU_ 0.60D- + WLIN- Check By T No Deft = ^tion Limit Stress 0.60D- + WRIN- L /180 Deflection Limit SEFHL- Check By ASD; No Deflection Limit 0.60(D +C) + W- No Stress Check_; Check By ASD; No Deflection Limit SEFHR- 0.60(D +C) + W+ Check By ASD; No Deflection Limit Check; 0.54(D +C) + 0.70EFL+ Limit SEHFL- Check By ASD; 110 Deflection Limit 0.54(D +C) + 0.70EFR+ Stress Check; L /180 Deflection Check By ASD; Ho Deflection Lirnit L+ No No Stress Check; L; 150 Deflecti_-�n Limit 1 /2LAFN- SDFHIL- No Stress Check; L /150 Deflection Limit 1 /2LANF- Check; L/1 Deflection Limit SDFHXl- No Stress Check; L/150 Deflection Limit 1 /2LDFNIL- No Stress Check; No Stress Check; L/150 Deflection Limit 1 /2LDFNXI- No Stress Check; L/150 Deflection Limit 1 /2LDFNX2- Deflection Limit SDFHX3- No Stress Check; L /1- Deflection Limit 1 /2LDFNX3- No Stress Check; L/150 Deflection Limit 1 /2LDFNX4- No Stress Check; L /150 Deflection Limit S+ No Stress Check; L /loo Deflection Limit SU_ No Stress Check; L /180 Deflection Limit SEFHL- No Stress Check_; L/180 Deflection Limit SEFHR- No Stress Check; L/180 Deflection Limit SEHFL- No Stress Check; L /180 Deflection Limit SEHFR- No Stress Check_; L/180 Deflection Limit SDFHIL- No Stress Check; L/1 Deflection Limit SDFHXl- No Stress Check; L /1=10 Deflection Limit SDFHX2- No Stress Check; L/180 Deflection Limit SDFHX3- No Stress Check_; L /120 Deflection Limit SDFHX4- No Stress Check; Deflection Limit 0.70W- No Stress Check; L /loo Deflection Limit Page 13 of 26 0 0 64 0.70W+ 65 0.70WLIP- 66 0.70WRIP- 67 0.70WLIN- 68 0.70WRIN- No Stress Check; L /18O Deflection Limit No Stress Check; L/180 Deflection Limit No Stress Check; L/ ?0 Deflection Limit No Stress Check; L /1?0 Deflection Limit No Stress Check; L /180 Deflection Limit Roof interesting purlin line 8 (Designed Line) analysis details. Design Data - Summary Span Length Mark_ Left Right Brace Nest End Load Check Control ID 6.727 No. Lap Lap Pts Mem Clip Case Ratio Check --------------------------------------------------------------------------- (ft) 3 (ft) (ft) # # 0.000 89.379 0.000 4 1L 1.625 9.5213 0.000 0.000 0 1 No 10 0.727 web crippling 09.379 0.000 89.379 23.375 6 UNIF LAFN- 3 10 L/ 61 deflection 1 23.375 9.5213 0.000 2.917 0 1 R.End 10 0.964 bending +shear LANF- 4 89.379 0.000 89.379 24.542 9 UNIF 53 L/ 257 deflection 2 25.000 9.5213 2.917 1.417 0 1 L.End 10 0.998 bending +shear 11 UNIF LDFNIL- 1 89.379 0.000 89.379 23.375 56 L/ 619 deflection 3 25.000 9.5Z12 1.417 2.417 0 1 R.End 10 0.996 bending +shear 39.379 23.375 14 UNIF LDFNXl- 2 89.379 0.000 57 L/ 728 deflection 4 24.542 9.5212 2.417 0.000 0 1 B.End 10 0.950 bending +shear 89.379 0.000 89.319 25.000 17 UNIF LDFNX3- 3 53 L% 230 deflection 4R 0.458 9.5Z12 0.000 0.000 0 1 L.End 37 0.047 bolt capacity LDFNX3- 4R 89.379 0.000 89.379 0.458 10 L/ 54 deflection Total design weight per run = 601.630 lbs. Maximum stress ratio = 0.998. Roof interesting purlin line 8 (Designed Line) Design Data - Applied loads No. Load Load Type Group Span Intensity analysis details. From Intensity To Page 14 of 26 ----------------------------------------------------------------- lb /ft(kips) feet lb /ft feet 1 UNIF D- ALL 6.727 0.000 6.727 0.000 2 UNIF D +C ALL 20.134 0.000 20.134 0.000 3 UNIF L+ ALL 89.379 0.000 89.379 0.000 4 UNIF LAFN- 1L .9.379 0.000 89.379 1.625 5 UNIF LAFN- 1 09.379 0.000 89.379 23.375 6 UNIF LAFN- 3 89.379 0.000 89.379 25.000 7 UNIF LANF- 2 89.379 0.000 89.379 25.000 8 UNIF LANF- 4 89.379 0.000 89.379 24.542 9 UNIF LANF- 4R 89.379 0.000 89.379 0.458 10 UNIF LDFNIL- 11, 89.379 0.000 89.379 1.625 11 UNIF LDFNIL- 1 89.379 0.000 89.379 23.375 12 UNIF LDFNX_1- 11, 89.379 0.000 89.379 1.625 13 UNIF LDFNXl- 1 89.379 0.000 39.379 23.375 14 UNIF LDFNXl- 2 89.379 0.000 89.379 25.000 15 UNIF LDFNX2- 2 89.379 0.000 89.319 25.000 16 UNIF LDFNX2- 3 89.379 0.000 89.319 25.000 17 UNIF LDFNX3- 3 89.379 0.000 89.379 25.000 18 UNIF LDFNX3- 4 89.379 0.000 89.379 24.542 19 UNIF LDFNX3- 4R 89.379 0.000 89.379 0.458 Page 14 of 26 0 9 20 U U Il I F L LDFl -- 4 4 3 3 0 0 8 8 9.379 2 4 5 4 2 21 U UNI L L D Ell 4 4 4 R. 9 9.379 0 0. 2 U UNIF S S+ - -'- L L 1 1 4!_. 7 -;2 0 0 F 1 1 4 0.7 7 2 0 0.000 23 U UNIF S SLJ- A ALL ; ; 21 3 34 'l 0.000 Page 15 of 26 Roof interesting purlin line 3 (Designed Line) analysis details. Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure -------------------------------------------------------------- 4.500 ft B 1.625 ft 0.458 ft 9.938 ft -1.080 0.380 -1.280 0.380 Roof interesting purlin line 3 (Designed Line) analysis details. Design Data - Load Combinations No. Load Case Description Page 16 of 26 n _� y • 80 TJNIF WLIP- 4P. - 8!:;.8r 000 - 80.858 0.458 81 UNIF WRIP- 1L - 80.'858 0.000 - 80.858 1.625 82 UNIF WRIP- 1 - 80.058 0.000 - 80.858 23.375 83 UNIF WRIP- - 80.858 0.000 - 80.858 25.000 84 UNIF WRIP- 3 - 80.858 0.000 - 80.858 25.000 85 UNIF WRIP- 4 -80.58 0.000 - 80.858 15.067 86 UNIF WRIP- 4 - 95.832 15.067 - 95.832 24.542 87 TJNIF WRIP- 4R - 95.832 0.000 - 95.832 0.458 88 UNIF WLIN- 1L - 68.879 0.000 - 68.879 1.625 89 UNIF WLIN- 1 - 68.79 0.000 - 68.879 8.308 90 UNIF WLIN- 1 - 53.905 8.308 - 53.905 23.375 91 UNIF WLIN- 2 - 53.905 0.000 - 53.905 25.000 92 UNIF VdLIII- 3 - 53.905 0.000 - 53.905 25.000 93 UNIF WLIN - 4 - 53.905 0.000 - 53.905 24.542 94 UNIF WLIN- 4R - 53.905 0.000 - 53.905 0.458 95 UNIF WRIN- 1L - 53.905 0.000 - 53.905 1.625 96 UNIF WRIN- 1 - 5=.905 0 .i:00 - 53.905 23.375 97 UNIF WRIN- 2 - 53.905 n;�0 - 53.905 25.000 98 UNIF WRIN- 3 - 53.05 0.000 - 53.905 25.000 99 UNIF WRIN- 4 - 5 ;i.000 - 53.905 15.067 100 UNIF WRIN- 4 - 6?.r. %9 15.067 - 68.879 24.592 101 UNIF WRIN- 4P; - 68.��79 0.000 - 68.879 0.458 102 AXLD WLIP- 1 3.301 0.000 0.000 0.000 103 AXLD WLIP- 2 -0.479 0.000 0.000 0.000 104 AXLD WLIP- 3 -0.479 0.000 0.000 0.000 105 AXLD WLIP- 4 1.539 0.000 0.000 0.000 106 AXLD WRIP- 1 1.539 0.000 0.000 0.000 107 AXLD WRIP- 2 -0.479 0.000 0.000 0.000 108 AXLD WRIP- 3 - 0.479 0.000 0.000 0.000 109 AXLD WRIP- 4 3.301 0.000 0.000 0.000 110 AXLD WLIN- 1 4.844 0.000 0.000 0.000 111 AXLD WLIN- 2 1.064 0.000 0.000 0.000 112 AXLD WLIN- 3 1.064 0.000 0.000 0.000 113 AXLD WLIN- 4 3.082 0.000 0.000 0.000 114 AXLD WRIN- 1 3.082 0.000 0.000 0.000 115 AXLD WRIN- 2 1.064 0.000 0.000 0.000 116 AXLD WRIN-3 =.064 0,000 0.000 0.000 117 AXLD WRIN- 4 4.P44 0 00 0.000 0.000 118 AXLD EFL+ 1 3.;J6 0.000 0.000 0.000 119 AXLD EFL+ 2 - il.698 ;.000 0.000 0.000 120 AXLD EFL+ 3 O.i =�B ).000 0.000 0.000 121 AXLD EFL+ 4 5.102 0.000 0.000 0.000 122 AXLD EFR+ 1 5.102 0.000 0.000 0.000 123 AXLD EFR+ 2 0.698 J.000 0.000 0.000 124 AXLD EFR+ 3 -0.698 0.000 0.000 0.000 125 AXLD EFR+ 4 3.706 0.000 0.000 0.000 Roof interesting purlin line 3 (Designed Line) analysis details. Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure -------------------------------------------------------------- 4.500 ft B 1.625 ft 0.458 ft 9.938 ft -1.080 0.380 -1.280 0.380 Roof interesting purlin line 3 (Designed Line) analysis details. Design Data - Load Combinations No. Load Case Description Page 16 of 26 n _� y �J 1 D +C + L+ Check By ._SD; No Deflection Limit 2 D +C + LAFN -- Chec)= By ASD; No D=ilecti:_)n Lim; t 3 D +C + LAI]F- Check By ASD; No Deflection Limit 4 D +C + LDFNIL- Check By ASD; No Deflection Limit 5 D +C + LDFNXl- Check_ By ASD; No Deflection Limit 6 D +C + LDFNX_ -? - Check By ASD; No Deflection Limit 7 D +C + LDFNX3-° Chec}: By ASD; No Dezl_ ion Limit 8 D +C + LDFNX4- Check By ASD; Ilo Def 1 eat r: Lirr,i 9 D +C + S+ Check By ASD; No Deflection Limit 10 D +C + SU- Check By ASD; No Defl2ct r: Limit 11 D +C + SEFHL-- Check By ASD; No Deflection Limit 12 D +C + SEFHR- Check By ASD; No Deflection Limit 13 D +C + SEHFL- Check By ASD; 110 Deflection Limit 14 D +C + SEHFR-- Check By ASD; No Deflection Limit 15 D +C + SDFHIL- Check By ASD; No Deflection Limit 16 D +C + SDFHXI- Check By ASD; No Deflection Limit 17 D +C + SDFHX2- Check By ASD; No Deflection Limit- 18 D +C + SDFHX3- Check By ASD; No Def�iectili7 Limit 19 D +C + SDFHX4- Check By ASD; No Deflection Lirnit 20 D- + W- Check By ASD; No Deflection Limit 21 D- + WLIP- Check By ASD; No Deflection Limit 22 D- + WRIP- Check By ASD; No Deflection Limit 23 D- + WLIN- Check By ASD; No Deflection Limit 24 D- + WRIN- Check By ASD; No Deflection Limit 25 D +C + W- Check By ASD; No Deflection Limit 26 D +C + W+ Check. By ASD; No Deflection Limit 27 1.06(D +C) + 0.70EFL+ Check By ASD; No Deflection Limit 28 1.06(D +C) + 0.70EFR+ Check By ASD; No Def1ecticc; Lirnit 29 D +C + 3/4L+ + 3/4W+ Check_ By ASD; No Deflection Limit 30 D +C + 3/4S+ + 3/4W+ Check By ASD; Ho Def1ect�_orr Limit Page 17 of 26 �2� Page 18 of 26 \)0 0 31 1.07(D +C) + 3/4L+ + 3 /4EFL+ Check By LSD; No Deflection Limit 32 1.07(D +C) + 3/4L+ + 3 /4EFR+ Check By ASD; No Deflection Limit 33 1.07(D +C) + 3/4S+ + 3 /4EFL+ Check By ASD; No Deflection Limit 34 1.07(D +C) + 3/4S+ + 3 /4EFR+ Check By ASD; No Deflection Limit 35 0.60D- + W- Check By ASD; 110 Deflection limit 36 0.60D- + WLIP- Check BV ASD; ido Defiler_. ion Limit 37 0.60D- + WRIP- Check By ASD; No Deflection Limit 38 0.60D- + WLIN- Check_ By ASD; No Deflection Limit 39 0.60D- + WRIN- Check By ASD; No Deflection Limit 40 0.60(D +C) + W- Check By ASD; No Deflection Limit 41 0.60(D +C) + W+ Check By ASD; No Deflection Limit 42 0.54(D +C) + 0.70EFL+ Check_ By ASD; No Deflection Limit 43 0.54(D +C) + 0.70EFR+ Check By ASD; No Deflection Limit 44 L+ No Stress Check; L /150 Deflection Limit 45 1 /2LAFN- No Stress Check; L /150 Deflection Limit 46 1 /2LANF- No Stress Check; L /150 Deflection Limit 47 1 /2LDFNIL- No Stress Check; L /150 Deflection Limit 48 1 /2LDFNXI- No Stress Check; L /150 Deflection Limit 49 1;2LDFNX2- No Stress Check; L /150 Deflection Limit 50 1 /2LDFNX3 No Stress Check; L /150 Deflection Limit 51 1 /2LDFNX4- No Stress Check; L /150 Deflection Limit 52 S+ No Stress Check; L /180 Deflection Limit 53 SU- No Stress Check; L /180 Deflection Limit 54 SEFHL- No Stress Check; L /180 Deflection Limit 55 SEFHR- No Stress Check; L %1.80 Deflection Limit 56 SEHFL- No Stress Check; T, /1 °0 Deflection Limit 57 SEHFR- No Stress Check; L/180 Deflection Limit 58 SDFHIL- No Stress Check; L/180 Deflection Limit 59 SDFHXI- No Stress Check_; L /180 Deflection Limit 60 SDFHX2- No Stress Check; L;180 Deflection Limit Page 18 of 26 \)0 • 0 6i SDFH - l3_ Left Right Brace Nest End Load Check Control ID No. Lap Lap Pts Hem Clip Case 62 SDFHX4� (ft) --------------------------------------------------------------------------- (ft) (ft No Stress Che } L/. '; =!erie ti;_; Limit 63 0.70W- 0.727 web crippling No Stress Check; L /1'0 Defle-ti-on Limit 64 0.70W+ R.End 10 0.964 bending +shear No Stress Check_; L Deflection Limit 65 0.70WLIP- 1.417 0 1 L.End 10 0.998 bending +shear 11; o Stress ChecI L /150 _- lectiCl Limit 56 0.70WRIP- 9.5212 1.417 2.417 0 1 P- End 10 0.996 bending +shear No Stress Chec }c; L /1 ' - i Deflection Lirr.it 67 0.70WLIN- deflection 4 24.542 9.5Z12 2.417 0.000 0 1 B.End 10 N'� S�'- ress L /1 ef1e( tion. Llm1t 68 0.70WRIN- 53 L/ 230 deflection 4R 0.458 9.5212 0.000 0.000 0 1 No Stress -`heck, L i - i Defl ficri L iini t Roof interesting purlin line 3 (Designed Line) analysis details. Design Data - Summary Span Length Mark Left Right Brace Nest End Load Check Control ID No. Lap Lap Pts Hem Clip Case Ratio Check (ft) --------------------------------------------------------------------------- (ft) (ft 1L 1.625 9.5213 0.000 0.000 ,'C 10 0.727 web crippling 10 L/ 61 deflection 1 23.375 9.5213 0.000 2.917 0 i R.End 10 0.964 bending +shear 53 Li 257 deflection 2 25.000 9.5213 2.917 1.417 0 1 L.End 10 0.998 bending +shear 56 L/ 619 deflection 3 25.000 9.5212 1.417 2.417 0 1 P- End 10 0.996 bending +shear 57 L/ 728 deflection 4 24.542 9.5Z12 2.417 0.000 0 1 B.End 10 0.950 bending +shear 53 L/ 230 deflection 4R 0.458 9.5212 0.000 0.000 0 1 L.End 36 0.088 bearing at bolt 10 L/ 54 deflection Total design weight per run = 601.630 lbs. 1 stress ratio = 0.998. Roof interesting purlin line 3 (Designed Line) analysis details. Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group # ---------------------------------------------------------------------------- lb /ft('gips) feet lb /ft feet 1 UNIF D- ALL 6.727 n.r,nn 5.727 0.000 2 UNIF D +C ALL 20.134 0.000 20.134 0.000 3 UNIF L+ ALL 89._. - 0.006' 89.379 0.000 4 UNIF LAFN- 1L 'i. 3 7'a 0. iiO4 89. 379 1.625 5 UNIF LAFN- 1 89.:7'+ C?C; 89.379 ?3.375 6 UNIF LAFN- 3 9.379 0.000 89.379 25.000 7 UNIF LANE 2 89.379 0.000 89.379 25.000 8 UNIF LANF- 4 89.379 0.000 89.379 24.542 9 UNIF LANF- 4R 89.379 0.000 89.379 0.458 10 UNIF LDFNIL- 1L 89.379 0.000 89.379 1.625 11 UNIF LDFNIL 1 89.379 0.000 89.379 23.375 12 UNIF LDFNXI- 1L 89.379 0.000 89.379 1.625 13 UNIF LDFNXI- 1 89.379 0.000 89.379 23.375 Page 19 of 26 1 4 UNIF LDFIE/1- 89.37' 0 0 0 89.379 25.000 15 U1lIF L D F 1' X L' - 1 9. - 25.000 16 31 T F LD FNX 2 - _;9.379 25.000 17 UNI L D FIT 3 8 9.379 , 5. C) 0 0 18 UNI LDFNX3- 4 = , x.379 rj ?OO ? 9.379 24 19 UN LDFNX3- 4 R 89.379 u 89.379 0. 458 20 UNIF LDFNZ4- 4 39.371 6.000 89.379 24.542 21 UN IF L D FlqX 4 -- 4 R 89.379 0.000 89. 3 0. 22 UN IF S+ ALL 1 .000 140.772 0.000 23 UNIF SU- ALL 234.621 0.000 234.621 0.000 24 UNIF SEFHL- lL 140.7172 0.000 140.772 1.625 25 UNIF SEFHL- 1 140. 0.000 140.772 23.375 26 UNIF SEFHL- 2 70.386 0.000 70.386 25.000 27 UN IF SEFHL- 6 0.000 70.386 25.000 28 UNIF SEFHL- 4 7 O.C)Ocj 70.386 24.542 29 UNIF SEFHL-- 4R 70.386 0 . uff; 7 0.386 0.458 30 UNIF SEFHR- 1 L 7 0.386 0.000 70.386 1.625 31 UNIF SEFHR- 1 70.3 0.ij00 70.386 23.375 32 UNIF SEFHR- 2 70.386 0,000 70.386 25.000 33 UNIF SEFHR -- 3 70.386 0.000 70.386 2� ' .000 34 UNIF SEFHR- 4 140.77 0.000 140.772 24.542 35 UNIF SEFHR- 4R 140.772 0.000 140.772 0.458 36 UNIF SEHFL- 1L 386 0 70.386 1.625 37 UNIF SEHFL- 1 70.386 23.375 38 UNIF SEHFL- 2 14; - �-772 10.0 140.772 25.000 39 UNIF SEHFL- 3 01 .000 140. 25.000 40 UNIF SEHFL- 4 140.77. 0.0100 140.772 24.542 41 UNIF SEHFL-- 4R 140.772 0.000 140. 0.458 42 UNIF SEHFR- 1L 140.772 0.000 140.772 1.625 43 UNIF SEHFR- 1 140.772 0.000 140.772 23.375 44 UNIF SEHFR- 2 1 0.000 140.772 25.000 45 UNIF SEHFR- 3 140.772 0.000 140. 25.000 46 UNIF SEHFR- 4 70.386 0.000 70.386 24 47 UNIF SEHFR- 4R 70.386 0.000 70.386 0.458 48 UNIF SDFHlL- 1L 70.386 0.000 70.386 1.625 49 UNIF SDFHlL- i 70.386 0.000 70.386 23.375 50 UNIF SDFHlL- ALL 70.386 0.000 70.386 0.000 51 UNIF SDFHX1- 1L 0.386 0.000 70.386 1.625 52 UNIF SDFHX!- 1 7 0.386 0.000 70.386 23.375 53 UNIF SDFHX1- 2 70.386 0.000 70.386 25.000 54 UNIF SDFHX1- ALL 70.386 0.000 70.386 0.000 55 UNIF SDFHX2-- G 70.386 0.000 70.386 25.000 56 UNIF SDFHX2- 3 1().386 !).000 70.386 25.000 57 UNIF SDFHX2- ALL 70.3 0.000 70.386 0.000 58 UNIF SDFHX3- 3 0.0010 70.386 25.000 59 UNIF SDFHX3- 4 70.386 0.000 70.386 24.542 60 UNIF SDFHX3- 4R 70.386 0.000 70.386 0.458 61 UNIF SDFHX3- ALL _ 0.000 70.386 0.000 62 UNIF SDFHX4- 4 70.386 0.000 70.386 24.542 63 UNIF SDFHX4- 4R 70.386 0.000 70.386 0.458 64 UN IF SD FHX4 - ALL 70.386 0.000 70.386 0.000 65 UNIF W- 1L -95.832 0.0100 - 95. 8 032 1.625 66 UNIF W- 1 - 95.832 0.000 8.308 67 UNIF W- 1 -80.858 8.3 -80.858 23.375 68 UNIF W- - 80.85P 0.000 - 80.858 25.000 69 UNIF W- 3 - 80.858 0.0!0' - 80-858 25.000 70 UNIF W- 4 -80.859 0.000 -80.858 15.067 71 UNIF W- 4 -93.832 15.067 -95.832 24.542 72 UNIF W- 4P -95.832 0.000 - 95.832 0.458 73 UNIF W+ AL L 28.450 0. 0 0 0 28.450 0.000 Page 20 of 26 \ r�L �� �� �� �� 7� 0uI� WLIP- lL I 625 75 ONIF W L p- I -�5 �000 -95 832 8 308 76 n0IF WLIP- I -8C 308 -D0 858 23. 375 77 DNZF WLIP- 2 -80 0 0.858 25. 000 78 O0IF T/qLIP- 3 -8O S 000 -O0.858 25.00O 79 ONIF WLIg- 4 -8OG59 0.000 -80.858 34 .542 80 D0IF WLZP- 4D -8O.358 0 .001 0 -B0.858 0.458 81 U0ZF WDZP- 1 -8�858 00D0 -80.858 I.625 82 U0ZF WRZP- l -80.858 O.0OO -90.R5S 23.575 83 ONIF WDZP- 85D 0,0bO -�0858 25.000 84 UNZF WRZP- 3 -80853 0 .00 0 -80.858 25.000 85 ONIF WRIP- 4 - q0V0 -80.O58 l5.067 86 01 zF wRIP- u -95.332 l5O57 -95.332 2y.542 87 OQIF wRIP 4F, -95 O.O 95.G32 O. 458 88 UNZF WLZN- IL -68G79 O00 0 -68.879 I.625 89 DNIF VqLI0- l -58879 0.0O0 -O8.879 8.308 90 omIF WLIm- I -53.905 8.308 -53.905 25.375 91 VNZF WLZ@- 2 -��905 0.00; -53.905 25.000 92 ONZF WLZN- 3 OO -53.905 25. 000 93 D0ZF WLZM- 4 -�] ��� 0000 -53.905 24.542 94 U0IF WLIN- AR 905 -53.905 0.458 95 O0ZF WRZ0- lL O00 -53.905 1.525 96 O0ZF wRIQ- I -53. 90 C 000 -53.905 23. 37": 97 ONZF wBZN- 2 -5 05 0 0O -53.905 25.000 98 DNZ� ��ZQ- J -5�.90 5 000 -53.905 25.000 99 U0IF WRZW- 4 -5J.955 0( -53.905 I5.067 100 UBIF WPIB- 4 -5 879 l5 067 -58.879 24.542 101 00ZF WRZ0- 4B -6 879 0. 000 -68.879 O. 458 102 AXLD WLIP- l 1.470 0.000 0.000 0.000 103 AxLo WLIP- 2 -0.548 0.000 0.000 0.000 104 AxLo wLzp- 3 -0.548 0.000 0.000 0.000 105 AxLo wLZe- 4 -0.548 0.000 0.000 0.000 106 AXLD WRZP- l -0-548 0.000 0.000 0.000 I07 AXLD WRIP- 2 -0.548 0.000 0.000 0.000 108 AXLD wRZg- 3 -0.549 0.000 0.000 0.000 109 AXLD W8Z9- 41 1.470 O.000 0.00C) 0.000 IIO AXLD WLI0- l 3'.236 0.000 0.000 0.000 III AXLE) wLZN- 2 �.Zl8 0? (I 0.000 O.000 I12 AXLD WLZm- 3 l2l� 0�00 0.000 0.0O0 113 AXLD WLI0- 4 l 2l O 0 0.000 0.000 1I4 axLo WRZ0- l 1.218 ).000 0.000 0.000 115 AXLo wRIm- 2 1.2In 0.000 0.000 0.000 116 AXLD wRzm- 3 1.2I8 0.000 0.000 0.000 117 AXLD WRZ0- 4 3.236 0.000 0.000 0.000 118 AXLD EFL+ I 1.343 0.000 0.000 0.000 119 AXLD EFL+ 2 -0�555 0.000 0.000 0.000 120 AXLD EFL+ 3 0.55� 0.O00 0.000 0.000 121 AXLo EFL+ 4 245� 0.0O� 0.0O0 0 .00O 122 AZLo EFP+ I 2.453 0.000 0.000 0.000 123 AXLD EFP+ 2 O55 0 .15 00 0.000 0.000 I24 AXLD EFR+ 3 -0.555 0.000 0.000 0.000 125 AXLD EFR+ 4 I.343 0.000 0.000 0.000 Roof interesting yozIio line l (Designed Line) analysis details. Design z Left Right Edge -Int. znnc Coef- -Ext. Zone Coef- SPaciog Cond Inset Inset Strip Suction Pressure Suction Pressure -------------------------------------------------'------------------------- 3.750 [t D 1.625 ft 0.458 ft 9�9]x f- -1 '}83 0 383 -1.300 0.383 Page 21 of 26 • Roof interesting purlin line 1 (Designed Lire) analysis details. Design Data - Load Combinations No. Load Case Description --------------------------------------------------------------------------- 1 D +C + L+ Check By ASD; No Deflection Limit 2 D +C + LAFN- Check By ASD; No Deflection Limit 3 D +C + LANF- Check By ASD; No Deflection Limit 4 D +C + LDFNIL- Check By ASD; No Deflect Limit 5 D +C + LDFNXI- Check By ASD; No Deflection Limit 6 D +C + LDFNX2- Check By ASD; No Defle�tiwn Limit 7 D +C + LDFNX3 -- Check By ASD; No Deflection Limit 8 D +C + LDFNX4- Check By ASD; No Deflection Limit 9 D +C + S+ Check. By ASD; No Deflection Limit 10 D +C + SU- Check_ By ASD; No Deflection Limit 11 D +C + SEFHL- Check By ASD; No Deflection Limit 12 D +C + SEFHR- Check By ASD; No Deflection Limit 13 D +C + SEHFL- Check By ASD; No Deflection Limit 14 D +C + SEHFR- Check By ASD; No Deflection Limit 15 D +C + SDFHlL- Check By ASD; No Deflection Limit 16 D +C + SDFHX1- Check By ASD; No Deflection Limit 17 D +C + SDFHX2- Check. By ASD; No Deflection Limit 18 D +C + SDFHX3- Check By ASD; No Deflection Limit 19 D +C + SDFHX4- Check By ASD; No Deflection Limit 20 D- + W- Check By ASD; No Deflection Limit 21 D- + WLIP- Check By ASD; No Deflection Limit 22 D- + WRIP- Check By ASD; No Deflection Limit 23 D- + WLIN- Check By ASD; No Deflection Limit 24 D- + WRIN- Check By ASD; No Deflection Limit 25 D +C + W- Check By ASD; No Deflection Limit 26 D +C + W+ Check By ASD; No Deflectiw Limit 27 1.06(D +C) + 0.70EFL+ Check By ASD; No Deflection Limit Page 22 of 26 \�1� Page 23 of 26 ,\I 0 0 28 1.06(D +C) + 0.70EFR+ he, }•_ By LSD; Io C -tle t o Limit 29 D + 3/4L+ + 3/4W+ Check By ASD; Ito L =c lor, L1IItit 30 D +C + 3/4S+ + 3 /4D4+ Check By ASD; No Deflection Limit 31 1.07(D +C) + 3/4L+ + 3;4EFL+ Check By ASD; No Deflection Limit 32 1.07(D +C) + 3/4L+ + 3 /4EFR+ Check_ By ASD; No C1eflectiorn Limit 33 1.07(D +C) + 3/4S+ + 3 /4EFL+ Check By ASD; No Deflectio!� Limit 34 1.07(D +C) + 3/4S+ + 3 /4EFR+ Check By ASD; Nr, D -fled ��r, Limit 35 0.60D- + W - Check By ASD; No Deflection. Limit 36 0.60D- + WLIP- Check By ASD; No Deflection Limit 37 0.60D- + WR.IP- Check By ASD; No Deflection Limit 38 0.60D- + WLIN- Check_ By ASD; No Deflection Limit 39 0.60D- + WRIN- Check_ By ASD; No Deflection Limit 40 0.60(D +C) + W- Check By ASD; No Deflection Limit 41 0.60(D +C) + W+ Check By ASD; No Deflection Limit 42 0.54(D +C) + 0.70EFL+ Check By ASD; No Deflection Limit 43 0.54(D +C) + 0.70EFR+ Check By ASD; No Deflection Limit 44 L+ No Stress Check; L/150 Deflection Limit 45 1 /2LAFN- No Stress Check; L /150 Deflection Limit 46 1 /2LANF- No Stress Check; L /150 Deflection Limit 47 1 /2LDFNIL -- No Stress Check.; L /150 Deflection Limit 48 1 /2LDFNXI- No Stress Check; L /150 Deflection Limit 49 1 /2LDFNX2- No Stress Check; L/150 Deflection Limit 50 1 /2LDFNX3- No Stress Check; L /150 Deflection Limit 51 1 /2LDFNX4- No Stress Check; L/150 Deflection Limit 52 S+ No Stress Check; L:!180 Deflection Limit 53 SD- No Stress Check; T L ii C; flecr ion Limit 54 SEFHL- No Stress Check; L /lE;C Deflection Limit 55 SEFHR-- No Stress Check; L/180 Deflection Limit 56 SEHFL- No Stress Check; L/180 Deflection Limit 57 SEHFR- No Stress Check; L /16n Deflection Limit Page 23 of 26 ,\I 0 • 58 SDFHIL- Left Right Brace Hest End Load Check Control ID No Stress Check; L /1r0 Defiection Limit 59 SDFHXl- (ft) --------------------------------------------------------------------------- (ft) (ft) # # No Stress Check.; L /180 Deflection Limit 60 SDFHX2- 0.608 web crippling No Stress Check; L/N O Deflection Limit 61 SDFHX3- R.End 10 0.806 bending +shear No Stress Check; L /1 deflection Limit 62 SDFHX4- 1.417 _! 1 L.End 10 0.835 bending +shear No Stress Check; L /1r0 Deflection Limit 63 0.70W- 9.5212 1.417 2.417 0 1 R. End 10 0.833 bending +shear No Stress Check; L %10 Deflection Limit 64 0.70W+ deflection 4 24.542 9.5212 2.417 U.000 0 1 B.End 10 No Stress Check; L /1':�0 Deflectio Limit 65 0.70WLIP- 53 L/ 276 deflection 4R 0.458 9.5212 0.000 0.000 0 1 No Stress Check; L/180 Deflection Limit 66 0.70WRIP- 10 L/ 65 deflection Total design weight per run No Stress Check; L/180 Deflection, Limit 67 0.70WLIN- Line) analysis details. Design Data - Applied loads No Stress Check; L /120 Deflection Limit 68 0.70WRIN- Span I n 7 1-- n y Frorn Intensity To Type Group No Stress Check; L /180 Deflection Limit Roof interesting purlin line 1 (Designed Line) analysis details. Design Data - Summary Span Length Mark. Left Right Brace Hest End Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio Check (ft) --------------------------------------------------------------------------- (ft) (ft) # # 1L 1.625 9.5213 0.000 0.000 0 1 No 10 0.608 web crippling 10 L/ 73 deflection 1 23.375 9.5213 0.000 2.917 0 1 R.End 10 0.806 bending +shear 53 L/ 309 deflection 2 25.000 9.5213 2.917 1.417 _! 1 L.End 10 0.835 bending +shear 56 L/ 743 deflection 3 25.000 9.5212 1.417 2.417 0 1 R. End 10 0.833 bending +shear 57 L/ 874 deflection 4 24.542 9.5212 2.417 U.000 0 1 B.End 10 0.795 bending +shear 53 L/ 276 deflection 4R 0.458 9.5212 0.000 0.000 0 1 L.End 37 0.039 bolt capacity 10 L/ 65 deflection Total design weight per run = 601.630 lbs. Maximum stress ratio = 0.835. Roof interesting purlin line 1 (Designed Line) analysis details. Design Data - Applied loads No. Load Load Span I n 7 1-- n y Frorn Intensity To Type Group # --------------------------------------------------------------------------- lb /ft(kius) feet lb/ft feet 1 UNIF D- ALL 5.606 0.000 5.606 0.000 2 UNIF D +C ALL 16.778 0.000 16.778 0.000 3 UNIF L+ ALL 74.483 0.000 74.483 0.000 4 UNIF LA FIN - 1L 74.483 0.000 74.483 1.625 5 UNIF LAFN -- 74.483 0.000 79.483 23.375 6 UNIF LAFN 3 74.483 0.000 74.483 25.000 7 UNIF LANF- 2 74.983 0.('.i?C) 74.483 25.000 Page 24 of 26 8 UNIF LAII F-- 4 71 u ^4 . 4 33 2 4.54% 9 U 1 j T F LAN F -- 4 74.4 0. 95 ~ 10 UNI LDFNlL- 1 L 74.423 1.6 11 ulq I F LDFI- 1 (j 4 4 S' 3 23.375 12 UNI LDFNX1- 1 L 433 000 74 483 1.625 13 Ull I F LDFtlZl- 1 74 4 23. 14 UNIF LDFNZ1- 4 . 4 6-1 C) 1 0 79.483 25.000 1 5 UN IF LDFHX2 7 4 . 423 0. 0 C) 74 2 5.000 16 TJ 1\1 I F LDFNX2 3 74.4 '1. 000 74.483 25.000 17 UN IF LDFNY3- 3 74 . 4 8> 0.000 74 .483 25.000 18 UN IF LDFNX3- 4 74 . 4.33 74 .483 24 5 19 UNIF LDFITX3-- 4R 74.4x 0.000 74.483 0. 458 20 UNI LDFH - 4 - 74 4 �l - �D 0 . CD) 1 0 74 -1 ' 3 24 . 5 4 2 21 TJN I F L D Fjl:' 4 - 4 < 74.4 _3 7 48 0 . 4 58 22 UNIF S+ ALL 11 7.310 0.00;0 11 3 10 0.000 23 UNIF SU- ALL 195.517 ( . ( 195. 0.000 2 4 UN IF SEFHL-- lL 11' %.310 J) . -') cl 117.310 1.625 25 Ull I F S'EFHL- l 117.310 0.000 11'7 3 10 23.375 2 6 LIN I F SE:FHL- 0 OCIC 58. 6`_"15 25. 000 17 UN SEFHL-- 5.8. 65 5 25.000 28 UNIF SEFHL - 4 58. 38.655 214.542 29 UNIF SEFHL- 4R 58.6 0.000 58. 655 0.458 30 UN IF SEFHR 1 L 65 -5 - UO 58.655 1.625 31 UNIF SEFHR- 1 (;00 58. 655 23. 375 32 UNIF SEFHR- 655 25.000 33 UNIF SEFHR- 3 53.655 G.0 58.655 25.000 34 T3111 I F SEFHR- 4 1i7.3 117 . 310 24.542 35 UN IF SEFHR- 4 R 1 17.310 0.000 117.310 0.458 36 UNIF SEHFL- 1L 58.055 0.000 58.655 1.625 37 UN IF SEHFL-- i 58.6 0.000 58.655 23.375 38 UNIF SEHFL- 2 11 0.000 117.310 25.000 39 UNIF SEHFL- 3 117.310 0.000 117.310 25.000 40 UNIF SEHFL- 4 117.310 10.000 117.310 24.542 41 UNIF SEHFL- 4R 11 0.000 117.310 0. 458 42 UNIF SEHFR- lL 117.3 0.000 117.310 1.625 43 UNIF SEHFR- 1 117.310 t) . ") C I Cj 117.310 23.375 44 UN IF SEHFR- 2 11 -. 7 10 0.000 117. 310 2 5.000 45 UN IF SEHFR- 3 ii I r� 0 . 0 C) ") 117.310 25.000 46 UN SEHFR- 4 53. 655 0.000 58. 655 24 47 UN IF SEHFR- 4R 58.655 0.000 15 IS . 655 0. 458 48 UNI SDFHlL-- lL 58 .655 0.000 58.655 1.625 49 UNI SDFHIL- 1 58.655 0.000 58. 6')1 23: 50 UNIF SDFHIIL- ALL 655 0.'J00 58.655 0.000 Ic 1 UN IF SDFH'Kl- 1L 0.000 58.655 1.625 52 UNIF SDFHX1- 1 58.6155 0.000 58.655 21 53 UNIF SDFHZ1- 2 5_:.6 x.000 58.655 25.000 54 UNIF SDFHX1- ALL 58.�J55 0.090 53.655 0.000 1 '5 UNIF SDFHX-2- 2 5 P 6 5 5 0.000 58.655 25.000 56 UNIF SDFHZ2 3 58. 1).000 58.655 25.000 57 UNIF SDFHX2- ALL F -, -) 5 JO (- 0 58.655 0.000 58 UNIF SDFHX3-- 5 5 o. oni 5S 655 - 2- .000 -1 39 UNIF SDFH 4 55 n 00C) 58.655 24.542 60 UN SDFHZ3-- 5 0. 000 58.555 0.458 61 UNIF ODFHZ3-• ALL 58 0.000 655 0.000 62 UNIF SDFHX4- 4 53.65 0 ell C) 6 S-'� 24.54"' 63 UNIF SDFHX4- 4R 655 0.000 58.655 0.458 64 UNIF SDFHX4-- ALL - f: t'j, 0.000 F 5 6 S i 0.00 65 UNIF T 1L - 31.0 0.000 - '3 ( R 4 1.625 66 UNIF W- 1 - 81 0.000 -81.034 8.308 67 UN IF W- 1 - ;7. x -67.556 23.375 Page 25 of 26 Page 26 of 26 • • 68 UNIF roll- 2 6 2 5.0 0 0 69 UNIF 6 7. 556 0C 2 S JO 70 UN W- 4 - 550 15. 067 71 UNIF TJl7 - 4 - 8 4 1 S Ol - 81. 084 24. 72 UNIF 084 ";. 73 li c,j i F 5d + ALL 7 4 1 11 T F T 7 1 75 UNI N i 1-1 - C 7 76 UNI WLI P- 1 . 556 23. 375 77 UNIF WLT 2- 25. 78 UNIF VqLI P- 3 C, 0. 0 0; 25. 000 79 UN IF WLI P- 4 G 6 6 7 5 5 6 2 4. 54 2 89 UNIF WLTE 4R 556 C 4 5 R 81 TJIII I F WRIP 1L C 0 .556 1 . 0- 2 `. 82 UN IF WRI - 6 % . 556, 2) D 37� 83 UNI WRIP- 2 - 67.556 C( 0 C) - 67. 556 2 (') 0 0 84 UN I F WRIP- 3 - 67.556 0.'_ -- 67.55 23. 000 1 UNIF WRI 4 - 1,7 C 067 86 UNI 0FT 4 4 87 UNI 5 9 U N I F W L. 1 1 6 2 1 89 Ulli I F ' , q 7 -f 1 ? 90 UNIF 1 4 11 T H - r, 2 U NIF W L i C96 u 9 2 UNIF I F " 1 lq - /A I D C 9 00 0 93 UNIF V,7 L i N - 4 6 6 C) - 45.096 %4. 5 4 2 94 UNIF WLIN- 4 R I'D 9 F 0.0('0 - 45. O. 458 95 UNIF Wr%,-N- 11 - 45 .096 0 . J 0 - 45.096 1 . 6 -2 3 96 UN I F WR IN I - 45. 096 0. 0 0 -- 45. '1.3.375 97 UNI WRIN- 2 5 . ' 9 6 0.0 ";G. - 4 5 0 9,' , 5.000 98 UNIF WRI N - t 3.000 - 45.. 25.O 0 99 UNIF W R I N - 4 4 6 - 45. (196 1 100 UN 1 5. 623 24 Uj T E' - 58.6 2 3 0. 102 AXLD E F L 9 0.000 0.000 103 AXLD EFL+ 197 0.000 0 . 0 () I D 0.000 104 AXLD T F L + 3 0.197 0.00; 0 . OGO O.0c0 105 AXLD EFL+ 4 0 `- +1 (D . 0 000 0.000 106 AXLD F-FR+ 1 1 x. 551 0 1 0 0 0.000 0.000 107 AXL EFRII 2 +? JO0 C.00O 0.000 108 AXLD EFR+ 3 0.000 0. 109 AXLD E F R + 4 9 J ('j 0. 000 0. 000 Page 26 of 26 0 A H E R I C A N B[ 7 I L D I 17 G S C O P7 P A 17 Y Front Side Wail Girt Design (t =,pi cal` Designer: BT4 iersion Number: Ver. 29.0 Job Number: 51687901, 1 9odul 1 Date; Time: )7 09:08 AH ----------------------------------------------------------------------- Type Width Length Ridge Dist R.Col.Elev Slope(F;i Slope(R) No.BAYS LRF 100.000 ft 100.000 ft 50.000 ft 0.000 ft 1.000:12 1.000:12 4 --------------------------------------------------------------------- S.Wall Eave Ht. Lean -To Width E.Wali Type Col Sr)c. Girt Type Overhang Front: 24.833 ft 0.000 ft Left 4 C I 0.000 ft Rear: 24.833 ft 0.000 ft Right 1 S I 0.000 ft Building Code: 2003 International Building Code ------------------------------------------------------------------- Building Use Category: II. All building;. snd_triei structures er,cept those listed in Categories I, III, and P: �d_�(7 Ir��;crtance Factor = 1.000) Wind Velocity = 90.000 mph Open Condition: Enclosed Wind Exposure Category: C. Open terrain with scattered obstructions, including surface undulations or other irregularities having heights generally less than 30 feet extending more than 1500 feet from site Design Wind Pressure (Cladding and Secondary) = 16.637 psf ------------------------------------------------------------- Design Z Left Right Edge - Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure ---------------------------------------------------------- 6.250 ft B 1.625 ft 0.458 ft 9.933 ft -0.980 0.890 - 1.061 0.890 Standalone wall girt line analysis details. Design Data - Load Combinations No. Load Case Description ------------------------------------------------------ 1 W- 2 W+ Check By ASD; No Deflection Limit 3 0.70W- Check By ASD; No Df_ecti 4 0.70W+ Limit No Stress Check; L/120 Deflection Limit No Stress Check; L/120 Deflection Limit Standalone wall girt line analysis details. Design Data - Summary Span Length Mark Left Right Brace Nest End Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio Check (ft) (ft) (ft) # # 1L 1.625 8214 0.000 ---------------------------- 0.000 0 1 110 0.334 web crippling 1 23.375 8214 0.000 ?_.417 0 1 No 1 1 L/ 77 0.881 deflection bending 2 25.000 8Z16 2.417 0.917 0 1 3 L/ 420 deflection Ido 1 0.955 bending +shear 3A 3.000 8214 0.917 0.000 0 1 3 L/ 787 deflection 70 1 0.768 web crippling 3B 8.000 BZ16 0.000 2.417 0 1 3 L/4339 deflection 110 1 0.936 bending +shear Page 1 of 2 0 • Page 2 of 2 \UP 3 L/1064 deflection 4 24.542 8213 2.417 0.000 0 1 bTo 1 0.929 bending 3 L/ 337 deflection 4R 0.458 8213 0.000 0.000 0 1 N 2 0.467 web crippling 1 L/ 63 deflection Total design weight per run = 340.988 lbs. kla, stress ratio = 0.955. Standalone wall girt line analysis details. Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group # ---------------------------------------------------------------------- lb/ ft(_ips) feet lb /ft feet 1 UNIF W- 11, - 110.281 0.000 - 110.281 1.625 2 UNIF W- 1 - 110.281 0.000 - 110.281 8.308 3 UNIF W- 1 - 101.933 ?.308 - 101.933 23.375 4 UNIF W- 2 - 101.933 0.000 - 101.933 25.000 5 UNIF W- 3A - 101.933 0.000 - 101.933 3.000 6 UNIF W- 3B - 101.933 0.000 - 101.933 8.000 7 UNIF W- 4 - 101.933 0.000 - 101.933 15.067 8 UNIF W- 4 - 110.281 15.( - 110.281 24.542 9 UNIF W- 4R - 110.281 0.000 - 110.281 0.458 10 UNIF W+ ALL 92.575 0.000 92.575 0.000 Page 2 of 2 \UP 0 0 A M E R I C A N B r 7 I L D I 1 G S C O F"I P A U Y F ront Side Wall Girt Des r !line #1) Designer: BN Version Number: Ver. 29.0 Job Number: 51607901, Module: 2 Date /Time: 07/20/07 08:23 AM --------------------------------------------------------------------------- Type Width Length Ridge Dist Col. Slope(F) Slope(R) Nc .BAYS LRF 100.000 ft 100.000 ft 50.00u fr_ 0.Ci00 ft 1.000: 'i2 1.000:12 4 ---------------------------------------------------------------------------- S.Wall Eave Ht. Lean -To Width E.tniall 'Type Col Spc. Type Overhang Front: 24.833 ft 0.000 ft Left 4 S I 0.000 ft Rear: 24.833 ft 0.000 ft Right 1 S I 0.000 ft Building Code: 2003 International Building Code --------------------------------------------------------------------------- Building Use Category: II. All buildings and other structures except those listed in Categories I, III, and IV (Wind Importance Factor = 1.000) Wind Velocity = 90.000 mph Open Condition: Enclosed Wind Exposure Category: C. Open terrain ° scattered obstructions, including surface undulations cr other irregularities having heights generally less than 30 feet extending more than 150:,1 feet from site Design Wind Pressure (Cladding and Secondary) = 16.637 psf --------------------------------------------------------------------------- E3667 gn �- Z Left Right Ede -Int. Zone Coef- -Ext. Zone Coef- Cond Inset Inset Strip Suction Pressure Suction Pressure B 1. 625 ft 0.458 ft 9.933 ft -1.017 0.927 -1.134 0.927 Standalone wall girt line analysis details. Design Data - Load Combinations No. Load Case Description 1 W- 2 W+ 3 0.70W- 4 0.70W+ Check By ASD; No Deflection Limit Check: By ASD; No Deflection Limit No Stress Check; L /120 Deflection Limit No Stress Check; L /120 Deflection Limit Standalone wall girt line analysis derails. ��/ Design Data - Summary V Y span Length 5 f~ . ID �rfeGY &",+(ft) 1L 1.625 Mark Left No. Lap (ft) 8213 0.000 Right Brace . lest nc L ;:ad Check Control Lap Pts 1 ^_em Cliff., Case Ratio Check (ft) 4 # 0.000 0 1 No 2 0.202 web crippling 1 1 23.375 8213 0.000 0.000 2 25.000 8212 0.000 0.000 3 25.000 8 0.000 0.000 4 9 24.542 8212 0.000 0.000 0 1 ----- -------- _. -- '� 1 0 L (% 1 IN age 1 of 2 1 L/ 70 deflection No 1 0.922 bending - Li 321 deflection ld 1 0.9�0e n inAg_ L/ 302 deflection Tio 1 0.900 bending 3 L/ 302 deflection P]o 1 0. 8 a b en ina age 1 of 2 3 L/ 308 deflection 4R 0.458 8212 0.000 0.000 0 1 i 1c 2 0.281 web crippling 1 L/ 67 deflection Total design weight per run = 454.915 lbs. Maximum stress ratio = 0.922. Standalone wall girt line analysis details. Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group ff --------------------------------------------------------------------------- lb /ft (}lips ) feet lb /ft feet 1 UNIF W- 1L - 69.189 0.000 - 69.189 1.625 2 UNIF W- 1 - 69.189 0.000 - 69.189 8.308 3 UNIF W- 1 - 62.046 8.308 - 62.046 23.375 4 UNIF W- 2 - 62.046 0.000 - 62.046 25.000 5 UNIF W- 3 - 62.046 0.000 - 62.046 25.000 6 UNIF W- 4 - 62.046 0.000 - 62.046 15.067 7 UNIF W- 4 - 69.189 15.067 - 69.189 24.542 8 UNIF W- 4R - 6.189 0.000 - 69.129 0.458 9 UNIF W+ ALL 5.556 ,�.G00 56.556 0.000 Page 2 of 2 11' "' i 0 A M E R I C A N B lv] Y Rear Side Wall Girr De:_ i grn (typical) Designer: BN Version Number: Ver. 29.0 Job Number: 51687901, Module: 1 Date /Time: 07/25/07 10:24 AM --------------------------------------------------------------------------- Type "Al idth Length Ridge Dist R.Col.Elev Slope(F) Slope(R) No.BAYS LRF 100.000 ft 100.000 ft 50.000 ft 0.000 ft 1.000:12 1.000:12 4 --------------------------------------------------------------------------- S.v,lall Eave Ht. Lean -To Width E.vval1 _;�_�� "ol Sri Girt Type Overhang Front: 24.833 ft 0.0:0 ft L.= a I 0.000 ft Rear: 24.833 ft 0.000 It F:igl i S I 0.000 ft Building Code: 2003 International Buildim0 Co, ------------------------------------------------------------------------ Building Use Category: II. All buildings and other structures except those listed in Categories I, III, and IV (Wind Importance Factor = 1.000) Wind Velocity = 90.000 mph Open Condition: Enclosed Wind Exposure Category: C. Opel; 'terrain: with scattered obstructions, including surface undulations or , ether irregu]_aritias having heights generally less than 30 feet _t -ndin� more than 1500 feet from site Design Wind Pressure (Cladding and :0= �c:ndar ✓) = 16.637 psf ----------------------------------------------------------------- Design Z Left Right Edge -Int. Zone Coef- - E.r,t. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure ----------------------------------------------------------------- 6.250 ft B 0.458 ft 1.625 ft 9.933 ft -0.980 0.890 -1.061 0.890 Standalone wall girt line analysis details. Design Data - Load Combinations No. Load Case Description ----------------------------------------------------------- 1 W- Check By ASD; No Deflection Limit 2 W+ 3 0.70W Check By ASD; No Deflection Limit 4 0.70W+ No Stress Check; L /120 Deflection Limit No Stress Check; L /120 Deflection Limit Standalone wall girt line analysis details. Design Data - Summary Span Length Mark Left Right Brace Nest End Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio Check (ft) (ft) (ft) # # 4L 0.458 8213 ------------------------------------------------------ 0.000 0.000 0 1 0 2 0.459 web crippling 1 L/ 66 deflection 4 29.542 8Z13 0.000 1.917 1 �o 1 0.901 bending 3 L/ 357 deflection 3 25.000 8215 1.917 2.417 0 1 No 1 0.939 bending +shear 3 L/1326 deflection 2 25.000 8216 2.417 2.917 0 i ldo 1 0.931 bending +shear 3 L/ 971 deflection 1 23.375 8214 2 . 417 0, i;0i.i 0 1_ �'0 1 . 896 bending Page 1 of 2 Page 2 of 2 1� I T' 406 def2ction 1R 1.625 8Z14 0.000 0.000 0 1 t]o 2 0.337 web crippling 1 L/ 75 deflection Total design weight per run = 392.774 lbs. Ma_,imum stress ratio = 0.939. Standalone wall girt line analysis details. Design Data - Applied loads No. Load Load Span Inter:: J 7 rom Intensity To Type Group ## --------------------------------------------------------------------------- lb /ft;;cips; feet lb /ft feet 1 UNIF W- 4L - 110.2 1 - 110.281 0.458 2 UNIF W- 4 -110.281- 0.000 - 110.281 9.475 3 UNIF W- 4 - 101.933 9.475 - 101.933 24.542 4 UNIF Tea- 3 - 101.92 0.000 - 101.933 25.000 5 UNIF W- 2 -101-933 0.000 - 101.933 25.000 6 UNIF W- 1 - 101.933 0.000 - 101.933 15.067 7 UNIF W- 1 -110.2 1 15.067 - 110.281 23.375 8 UNIF W- 1R - 20.28."1 0.(_`00 - 110.281 1.625 9 UNIF Gd+ ALL 92.575 0.000 92.575 0.000 Page 2 of 2 1� A M E R I C A N B U I L D I 1`] G S C O M P A N Y Rear Side Wall G_ir t�Desi , (line # 1) Designer: BN Version Number: Ver. 29.0 Job Number: 51687901, Module: 2 Date /Time: 01/20/07 08:21 AM --------------------------------------------------------------------------- Type Width Length Ridge Dist R.Col.Elev Slope(F) Slope(R) NO.BAYS LRF 100.000 ft 100.000 ft 50.000 ft 0.000 ft 1.000:12 1.000:12 4 --------------------------------------------------------------------------- S.Wall Eave Ht. Lean -To Width E.Wall Type Col_Spc. Girt Type Overhang Front: 24.833 ft 0.000 ft Left 4 S I 0.000 ft Rear: 24.833 ft 0.000 ft Right 1 S I 0.000 ft Building Code: 2003 International Building Code --------------------------------------------------------------------------- Building Use Category: II. All buildings and other structures except those listed in Categories I, III, and IV (Wind Importance Factor = 1.000) Wind Velocity = 90.000 mph Open Condition: Enclosed Wind Exposure Category: C. Open terrain w scattered obstructions, including surface undulations or other irrFaularities having heights generally less than 30 feet extending more than 1500 feet from site Design Wind Pressure (Cladding and Secondary) = 16.637 psf --------------------------------------------------------------------------- Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- J Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure 3.667 ft B 0.458 ft 1.625 ft 9.933 ft -1.017 0.927 -1.134 0.927 Standalone wall girt line analysis details. Design Data - Load Combinations No. Load Case Description 1 W- 2 W+ 3 0.70W- 4 0.70W+ Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit No Stress Check; L /1'2.0 Deflection Limit No Stress Check; L /120 Deflection Limit IAI Standalone wall girt line analysis details. Design Data - Summary Span Length Mark Left Right Brace Nest ID No. Lap Lap Pts Men (ft) (ft) (ft) # # 4L 0.458 8212 0.000 0.000 0 1 J 4 24.542 8Z12 0.000 0.000 0 1 End Load Check Control Clip Case Ratio Check P�7 0 No 3 25.000 8216 0.000 0.000 0 1 No 2 25.000 8216 0.000 0.000 1 No f 1 23.375 8213 0.000 0.000 0 _ No 2 0.281 web crippling 1 L/ 67 deflection 1 0.897 bending 3 L/ 308 deflectio 1` 1.632 bending 3 L/ 187 deflection 1 1.632 bending 3 L/ 187 deflection 1 0.922 bending Page 1 of 2 ��E / 3 L/ 321 deflection 1R 1.625 8213 0.000 0.000 0 1 Ho 2 0.202 web crippling 1 L/ 70 deflection Total design weight per run = 363.934 lbs. 1 stress ratio = 1.632. Standalone wall girt line analysis. details. Design Data - Applied loads No. Load Load Span Intensit;% From Intensity To Type Group # lb /ft(kips) feet lb /ft feet --------------------------------------------------------------------------- 1 UNIF W- 4L - 69.189 0.000 - 69.189 0.458 2 UNIF W- 4 - 69.189 0.000 - 69.189 9.475 3 UNIF W- 4 - 62.046 9.475 - 62.046 24.542 4 UNIF W- 3 - 62.046 0.000 - 62.046 25.000 5 UNIF W- 2 - 62.046 0.000 - 62.046 25.000 6 UNIF W- 1 - 62.046 0.000 - 62.046 15.067 7 UNIF W- 1 - 69.189 15.067 - 69.189 23.375 8 UNIF W- 1R - 69.189 0.000 - 69.189 1.625 9 UNIF W+ ALL 56.556 0.000 56.556 0.000 Page 2 of 2 (�� 0 0 A M E R I C A fl B U I L D I N G S C O M P A N Y Left End Wall girt Design (typical) Designer: EN Version Num - - ,sr: Ver. 29.0 Job Number: 51687901, Module: 1 Date /Time: 07/25/07 10:20 AM --------------------------------------------------------------------------- Type Width Length Ridge Dist R.Co1.E1 v 'lope(F) Slope(R) 11o.BAYS LRF 100.000 ft 100.000 ft 50.000 ft 0 - - J00 ft 1.000:12 1.000:12 4 --------------------------------------------------------------------------- S.Wall Eaue Ht. Lean -To Widtt, E.' ✓Ja1_ Tj1- - 1 Spc. Girt Type 0- ,erhang Front: 24.833 ft 0.000 ft Lei` 4 I 0.000 ft Rear: 24.833 ft 0.000 ft Right I S I 0.000 ft Building Code: 2003 International Buildi:y Code --------------------------------------------------------------------------- Building Use Category: II. All buildings and other structures e: those listed in Categories I, III, and IV (Wind I ^ Factor = 1.000) Wind Velocity = 90.000 mph Open Condition: Enclosed Wind Exposure Category: C. Open terrain with .scattered otstructiorns, including surface undulations or hamming heights generally less than 30 feet ;tending more than _'0c( feet from site Design Wind Pressure (Cladding and Sc -_: radar,;; = 1 . 37 psf Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure --------------------------------------------------------------------------- 6.000 ft I 0.000 ft 0.000 ft 9.933 ft - 0.983 0.893 -1.066 0.893 Standalone wall girt line analysis details. Design Data - Load Combinations No. Load Case Description 1 W- 2 W+ 3 0.70W- 4 0.70W+ Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit No Stress Check; L /120 Deflection Limit No Stress Check; L /120 Deflection Limit Standalone wall girt line analysis details. Design Data - Summary Span Length Mark Left Right Brace Nest Enc1 Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio Check (ft) (ft) (ft) # # 1 25.000 9.5Z13 0.000 0.000 No 1 0.948 bending 3 L/ 280 deflection 2 25.000 9.5213 0.000 0.000 2 L No 1 0.923 bending 3 L/ 288 deflection 3 25.000 9.5213 0.000 0.000 _ 1 Ho 1 0.923 bending 3 L/ 288 deflection 4 25.000 9.5213 0.000 0. U 1 C7c 1 0.948 bending 3 L% 280 deflection Page 1 of 2 1 �k Total design weight per run = 494.610 lbs. Ma-imum stress ratio = 0.948. Standalone wall girt line analysis details Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group # --------------------------------------------------------------------------- lb /ft rs feet lb /ft feet 1 UNIF W- 1 - 7.0�=� 2 0.00 - 106.432 9.933 2 UNIF G1- 1 -_9 . 1 9.933 -98— 137 25. 000 3 UNIF W- 2 - 98.137 0.000 - 98.137 25.000 4 UNIF W- 3 - 98.137 0.000 - 98.137 25.000 5 UNIF W- 4 - 98.137 0.000 - 98.137 15.067 6 UNIF W- 4 - 106.432 15.067 - 106.432 25.000 7 UNIF W+ ALL 89.153 0.000 89.153 0.000 Page 2 of 2 �q I 0 0 ndrn� (> V1 e- A M E R I C A N B U I L D I N G S C 0 M P A N Y Left End Wall Girt Desi (line #1) Designer: BN Version Number: Ver. 29.0 Job Number: 51687901, Module: 2 Date /Time: 07/20/07 08:31 AM --------------------------------------------------------------------------- Type Width Length Ridge Dist R.Col.Elev Slope(F) Slcpe(R) No.BAYS LRF 100.000 ft 100.000 ft 50.000 ft 0.000 ft 1.000:12 1.000:12 4 --------------------------------------------------------------------------- S.Wall Eave Ht. Lean -To Width E.Wall Type Col_Spc. Girt Type Overhang Front: 24.833 ft 0.000 ft Left 4 S I 0.000 ft Rear: 24.833 ft 0.000 ft Right 1 S I 0.000 ft Building Code: 2003 International Building Code ---------------------------------------------------------------------------- Building Use Category: II. All buildings and other structures except those listed in Categories I, III, and IV (W-I-nd Importance Factor = 1.000) Wind Velocity = 90.000 mph Open Condition: Enclosed Wind Exposure Category: C. Open terrain with scattered obstructions, including surface undulations or other irregularities having heights generally less than 30 feet extending more than 1500 feet from site Design Wind Pressure (Cladding and Secondary) = 16.637 psf --------------------------------------------------------------------------- [3.66 Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- 7 pacing Cond Inset Inset Strip Suction Pressure Suction Pressure ft I 0.000 ft 0.000 ft 9.933 ft -1.032 0.942 -1.155 0.942 Standalone wall girt line analysis details. Design Data - Load Combinations No. Load Case Description ---------------------------------------------------------------------------- 1 W- 2 W+ 3 0.70W- 4 0.70W+ Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit No Stress Check; L /120 Deflection Limit No Stress Check; L /120 Deflection Limit Standalone wall girt line analysis details. Design Data - Summary Span Length Mark Left Right Brace Nest ID No. Lap Lap Pts Mem (ft) (ft) (ft) # # - - - - - -- ----------------------------- 1 19.000 9.5215 0.000 0.000 0 1 2 20.000 9.5212 0.000 0.000 3 22.000 9.5212 0.000 0.000 4 20.000 9.5212 0.000 0.000 No A) No No 5 19.000 9.5215 0.000 0.000 0 0 1 0 1 0 1 No End Load Check Control Clip Case Ratio Check 1 0.888 bendi�gz i 744 defle 1 0.555 bending 3 L/ 993 deflection 1 0.672 bending 3 L/ 746 deflection 1 0.555 bending 3 993 deflection 1 e ing Page 1 of 21 3 L/ 744 deflection Total design weight per run = 493.444 lbs. Maximum stress ratio = 0.888. Standalone wall girt line analysis details. Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group # --------------------------------------------------------------------------- lb/ft(k-ips) feet lb /ft feet 1 UNIF W- 1 - 71.068 0.000 - 71.068 9.933 2 UNIF W- 1 - 62.986 9.933 - 62.986 19.000 3 UNIF W- 2 - 62.986 0.000 - 62.986 20.000 4 UNIF W- 3 - 62.986 0.000 - 62.986 22.000 5 UNIF W- 4 - 62.986 0.000 - 62.986 20.000 6 UNIF W- 5 - 62.986 0.000 - 62.986 9.067 7 UNIF W- 5 - 71.068 9.067 - 71.068 19.000 8 UNIF W+ ALL 57.495 0.000 57.495 0.000 Page 2 of 2 , 0 0 A M E R I C A N B U I L D I N G S C Left End Wall Girt Design (typical) Designer: BN Version Nui Job Number: 51687901, Module: 2 Date /Time: ------------------------------------------------- Type Width Length Ridge Dist R.Col.Eiev LRF 100.000 ft 100.000 ft 50.000 ft 0.000 ft ------------------------------------------------- S.Wall Eave Ht. Lean -To Width E.Wall Type Col_ Front: 24.833 ft 0.000 ft Left 4 Rear: 24.833 ft 0.000 ft Right 1 0 M P A N Y nber: Ver. 29.0 07/25/07 11:42 AM -------------------------- Slope(F) Slope(R) No.BAYS 1.000:12 1.000:12 4 -------------------------- - Spc. Girt Type Overhang C I 0.000 ft S I 0.000 ft Building Code: 2003 International Building Code --------------------------------------------------------------------------- Building Use Category: II. All buildings and other structures except those listed in Categories I, III, and IV (Wind Importance Factor = 1.000) Wind "Velocity = 90.000 mph Open Condition: Enclosed Wind Exposure Category: C. Open terrain with scattered obstructions, including surface undulations or other irregularities having heights generally less than 30 feet extending more than 1500 feet from site Design Wind Pressure (Cladding and Secondary) = 16.637 psf ------_- C 5 De g n( Z C Left Right Edge - - Int. Zone Coef- Ext. Zone Coef- -- Spacing Cond - - -- Inset - - -- - - -- - Inset Strip Suction Pressure Suction Pressure 5.008 ft I 0.000 ft 0.000 ft 9.933 f� -0.996 0.906 -1.091 0.906 Standalone wall girt line analysis details. Design Data - Load Combinations No. Load Case Description -------------------------------------------------------------------------- 1 W_ Check By ASD; No Deflection Limit 2 W+ Check By ASD; No Deflection Limit 3 0.70W_ No Stress Check; L /120 Deflection Limit 4 0.70W+ No Stress Check; L /120 Deflection Limit Page 1 of 2 ` '*11 Standalone wall girt line analysis details. Design Data - Summary Span Length Mark Left Right Brace Nest End Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio Check (ft) -------- (ft) (ft) # # ---------- - - - 2 25.000 9.5212 0.000 0.000 1 1 No 1 0.96 bending 3 L/ 385 deflection 3 25.000 9.5212 0.000 0.000 1 1 No 1 0.969 bending 3 L/ 385 deflection ---9 :41-6 - -ben i n g 3 `T - - 3 - - f 6 ___t12:f ar Page 1 of 2 ` '*11 0 Total design weight per run = 561.458 lbs. M Standalone wall girt line analysis details. Design Data - Applied loads No. Load Load Span Intensity Type Group # lb /ft(kips) -------------------------------------------- 1 UNIF W- 1 - 90.919 2 UNIF W- 1 - 82.956 3 UNIF W- 2 - 82.956 4 UNIF W- 3 - 82.956 5 UNIF W- 4 - 82.956 6 UNIF W- 4 - 90.919 7 UNIF W+ ALL 75.457 1 0 xximum stress ratio From Intensity feet lb /ft --------------- - - - -- 0.000 - 90.919 9.933 - 82.956 0.000 - 82.956 0.000 - 82.956 0.000 - 82.956 15.067 - 90.919 0.000 75.457 0.969. T feet 9.933 25.000 25.000 25.000 15.067 25.000 0.000 Page 2 of 2 �11 I A M E R I. A I4 B TJ I L D _. _ U H L Z_ 11 Y Right End Wall -=sign (t y1 >ical Designer: BN Versi orn 1jurnber: Ver. 29.0 Job - dumber: 51657901, Module: 1 Date /Time: 0? =5/Fi7 02:58 AM --------------------------------------------------------------------------- Type Width Length Ridge Dist R.Col.Elev Slope(F) Slope(R) No.BAYS LRF 100.000 ft 100.000 ft 50.000 ft 0.000 ft 1,000:12 1.000:12 4 --------------------------------------------------------------------------- S.Wall Eave Ht. Lean -To Width E.Wall Type Col Spc. Girt Type Overhang Front: 24.833 ft 0.000 ft Left 4 C I 0.000 ft Rear: 24.833 ft 0.000 ft Right 1 S I 0.000 ft Building Code: 2003 International Building Code --------------------------------------------------------------------------- Building Use Category: II. All buildings and other structures except those listed in Categories I, III, and IV (Wind Importance Factor = 1.000) Wind Velocity = 90.000 mph Open Condition: Enclosed Wind Exposure Category: C. Open terrain ,!jith scattered obstructions, including surface undulations or other- irregularities having heights generally less than 30 feet extending more than 1500 feet from site Design Wind Pressure (Cladding and S(-condary) = 16.637 p---f --------------------------------------------------------------------------- Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure --------------------------------------------------------------------------- 6.167 ft I 0.000 ft 0.000 ft 9.933 ft -0.997 0.907 -1.093 0.907 Standalone wall girt line analysis details. Design Data - Load Combinations No. Load Case Description --------------------------------------------------------------------------- 1 W- 2 W+ 3 0.70W- 4 0.70W+ Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit No Stress Check; L /120 Deflection Limit No Stress Check; L /120 Deflection Limit Standalone wall girt line analysis details. Design Data - Summary Span Length Mark Left Right Brace hest End Load Check Control ID No. Lap Lap Pts Hem Clip Case Ratio Check ------------------------------------------------------------------------ (ft) (ft) (ft) # # 1 19.000 9.5212 0.000 0.000 0 1 tlo 1 0.857 bending 3 Li 678 deflection 2 20.000 9.5212 0.000 0.000 0 1 Ho 1 0.902 bending 3 L/ 611 deflection 3 22.000 9.5214 0.000 0.000 1 1 No 1 0.985 bending 3 L; 361 deflection 4 20.000 9.5212 0.000 0.000 0 1 No 1 0.902 bending 3 L/ 611 deflection 5 19.000 9.5212 0.000 0.000 0 1 'No 1 0.857 bending Page 1 of 2 ,Z 3 L/ 678 deflection Total design weight per run = 534.443 lbs. 19a.-_imum stress ratio = 0.985. Standalone wall girt line analysis details Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group --------------------------------------------------------------------------- lb /ft �kis) feet lb /ft feet 1 UNIF W- 1 - 112.161 0.000 - 112.161 9.933 2 UNIF W- 1 - 102.249 9.933 - 102.249 19.000 3 UNIF W- 2 - 102.249 0.000 - 102.249 20.000 4 UNIF W- 3 - 102.249 0.000 - 102.249 22.000 5 UNIF W- 4 - 102.2tC (I.i 0 - 102.299 20.000 6 UNIF W- 5 - 102 24 - 102.249 9.067 7 UNIF W- 5 - 11_.1,1 '1.067 - 112.161 19.000 8 UNIF W+ ALL 93.015 0.000 93.015 0.000 Page 2 of 2 ` �U r 0 A M E R I C A N B U I L E U T N G S C O M P A N Y R� Wall Girt Design (line #1) Designer: BN Version Number: Ver. 29.0 Job Number: 51687901, Module: 2 Date /Time: 07 /20/07 08:31 AM --------------------------------------------------------------------------- Type Width Length Ridge Dist R.Col.Elev Slope(F) Slope(R) No.BAYS LRF 100.000 ft 100.000 ft 50.000 ft 0.000 ft 1.000:12 1.000:12 4 --------------------------------------------------------------------------- S.Wall Eave Ht. Lean -To Width E.Wall Type Coi_Spc. Girt Type Overhang Front: 24.833 ft 0.000 ft Left 4 S I 0.000 ft Rear: 24.833 ft 0.000 ft Right 1 S I 0.000 ft Building Code: 2003 International Building Code --------------------------------------------------------------------------- Building Use Category: II. All buildings and other structures except those listed in Categories I, III, and IV (Wind Importance Factor = 1.000) Wind Velocity = 90.000 mph Open Condition: Enclosed Wind Exposure Category: C. Open terrain with scattered obstructions, including surface undulations or other irregularities having heights generally less than 30 feet extending more than 1500 feet from site Design Wind Pressure (Cladding and Secondary) = 16.637 psf --------------------------------------------------------------------------- Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- S acing Cond Inset Inset Strip Suction Pressure Suction Pressure --------------- - - -- 3.667 ft I 0.000 ft 0.000 ft 9.933 ft - 1.032 0.942 -1.165 0.942 Standalone wall girt line analysis details. Design Data - Load Combinations No. Load Case Description --------------------------------------------------------------------------- 1 W- 2 W+ 3 0.70W- 4 0.70W+ Check By ASD; No Deflection Limit Check By ASD; No Deflection Limit No Stress Check; L /120 Deflection Limit No Stress Check; L /120 Deflection Limit Standalone wall girt line analysis details. Design Data - Summary L/ 993 deflection No 1 7 / Span Length Mark Left Right Brace ?lest ID No. Lap Lap Pt s 1 (ft) L/ 993 -=',t) (ft) # # -------- _ - 1 19.000 9.5215 0.000 0.000 0 i 2 20.000 9.5212 0.000 0.000 0 1 3 22.000 9.5212 0.000 0.000 0 1 4 20.000 9.5Z12 0.000 0.000 0 1 t ` 5 9.5215 0.000 0.000 0 ^~ 1 End Load Check Control Clip Case Ratio Check No �1 0.888 bending` ---- _3 L/ 744 deflection No 1 0.555 ben 1ng - 3 L/ 993 deflection No 1 0.672 bending 3 L/ 746 deflection No 1 0.555 bending 3 L/ 993 deflection No 1 `O --1��-rm- -_ Page 1 of 2 • • 3 L/ 744 deflection Total design weight per run = 493.444 lbs. Ma:>>imum stress ratio = 0.888. Standalone wall girt line analysis details. Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group # ----------------------------------------------------------------- lb /ft(}_ips) feet lb /ft feet 1 UNIF W- 1 - 71.068 0.000 - 71.068 9.933 2 Ub]IF W- 1 - 62.986 9.933 - 62.986 19.000 3 UNIF W- 2 - 62.986 0.000 - 62.986 20.000 4 UNIF W- 3 - 62.986 0.000 - 62.986 22.000 5 UNIF W- 4 - 62.986 0.000 - 62.986 20.000 6 UNIF W- 5 - 62.986 0.000 - 62.986 9.067 7 UNIF W- 5 - 71.068 9.067 - 71.068 19.000 8 UNIF W+ ALL 57.495 0.000 57.495 0.000 Page 2 of 2 c� 0 0 SECTION 5 PANELS r • PANEL PROFILE Section 5 Page 1 it 4" 4+ 4 , 11W •= 30• 3A. 3/6' )rer 314 � [l J17132' P ARTIAL CROSS SECTION American Buildings Company T ct -• - -a 1" /, -.1-M toi, comomea bending and shear (B +S), deflection (D), web crippling (C), and panel pullover (P), The controlling check Is noted In the table. Defleion was limited to span/150 2. Section Properties have been calculated In accordance with the 2001 Noah American Specification for the Design of Cold - Formed Sleel Structural Members, 3, Minimum yield strength of 29, 26 and 24 gage steel Is Bo,o00 psi, Minimum yield strength of 22 gage steel is 50,000 psl, 4. Steel panels are either aluminum -zinc alloy or G -90 coated. The base metal thickness was used in determining section properties. 5. Positive load (POS) is applied Inward toward the panel supports and Is applied to the outer surface of the full panel cross- section. Negative load (NEG) Is in the opposite direction. 0 .PANEL PROFILE The contro 2. Section Propert ies have been calculated in accordance with the 2001 North American Spedlrcatlon for the Design o Cold Formed SEee/ lo ver tructura Members. lling check 3. Minimum yield strength of 29, 26 and 24 gage steel is 60,000 psi. Minimum yield strength of 22 gage steel is S0 ,00o psi. 4. Steel panels are either aluminum -zinc alloy or G -90 coated, The base metal thickness was used in determining section properties. S. Positive load (POS) Is applied Inward toward the panel supports and Is applied to the outer surface of the full panel cross - section. Negative load (NEG) Is in the opposite direction. �, American Buildings Compan] rl ; PARTIAL CROSS SECTION 12" is/is" 64. 5/8" PANE_ L PROFILE PARTIAL CROSS SECTION Section 5 Page 2b �;. American Buildings Compan rs notes In the table. Deflection was limited to span/120 2, Se V o� r1cmg ana shear (B +S), deflection (0), web crippling (C), and panel pullover (P), The controlling check Section Properties have been calculated In accordance with the 2001 North American Specification for the Design of Cold- formed Steel Structural Members. 3, Minimum yield strength of 29, 26 and 24 gage steel is 80,000 psi, Minimum yield strength of 22 gage steel is 50,000 psi. 4, Steel panels are either aluminum -zinc alloy or G -90 coated. The base metal thickness was used In determining section properties. 5, Positive bad (POS) is applied Inward toward the panel supports and Is applied to the outer surface of the full panel cross- section. Negative load (NEG) is in the opposite direction. � 0 American Buildings Company 24" 1" 2 29/32" -- 2" I � 3" 4 9/16' 51116 51/16 49/161 3/4" 2 3/8" 2 3/8" SUBJECT TO CHANGE WITHOUT NOTICE REVISED SEPTEMBER a 20D4 Section 5 Page 3 PANEL CROSS SECTION a t�h " =br toy, comorneo bending and shear (B +S) and deflection (D). The controlling check is noted in the table. Deflection was limited to span/15o 2. Section Properties have been calculated in accordance with the 2001 North American Specificafion for the Design of Cold - Formed Steel Structural Members. 3. Minimum yield strength of 24 and 22 gage steel is 5o,000 psi, 4. Steel panels are either aluminum -zinc alloy or G -90 coated. The base metal thickness was used in determining section properties. 5, Positive load (POS) Is applied Inward toward the panel supports and Is applied to the outer surface of the full panel cross - section. PANEL PROFILE CROSS SECTION Deflection was limited to span /150 V4 / `vmoinea oencing and shear (B +S) and deflection (D). The controlling check Is noted in the table. 2. Section Properties have been calculated in accordance with the 2001 /forth American Specification for the Design of Co1r�Fomted Steel Structural Members. 3. Minimum yield strength of 24 and 22 gage steel is 50,000 psl. 4. Steel panels are either aluminum-zinc alloy or G•90 coated, The base metal thickness was used in determining section properties. 5. Positive load (POS) is applied inward toward the panel supports and is applied to the outer surface of the full panel cross - section. 4 9 /16' 5 Ill 6" 51/16" 49/16' yq" L23/8' 19 1/4" 2 AM- 3a fm i9 " - • • C omp any • 215/16 1/2' E 16" NET COVERAGE 41/4" 7/8" 11 60, 5. 13/4" T 2 7/8" 7/18' 31132. +1/16..D. 7 /8' +0" -1/32" CROSS SECTION Deflection was limited to sp.Wj2O _. .. 1-1. 1Vh — ... w1nea Denaing and shear (B+S), deflection (D) and web crippling (C). The controlling check Is noted in the table, 2. Section Properties have been calculated In accordance with the 2001 North American Specffica6on for the Design o f c o ld-F ormed S 3. Minimum Yield strength of 24 gage steel is 50,000 psi, Steel Members 4. Steel Panels are either aluminum -zinc alloy or G-90 coated, The base metal thickness was used In determining section properties, a/ Structural be 5. Positive load (POS) Is applied Inward toward the panel supports and Is applied to the outer surface of the full panel cross-section, Negative load (NEG) Is In the oppo direction. Section 5 Page 4 i ► American Buildings Compani PANEL PROFILE PANEL PROFILE LOC -SEAM LOC -SEAM 360 1 63/64" I I :a2" 16" CROSS SECTION Section 5 Page 5 A mer i can Bui C ompa ny Ut111'� limited to span/15o — k °r' .-IICRr (J / , combined bending and shear (B +S) and deflection (D), The controlling check is noted in the table, Deflection was 2. Section Properties have been calculated in accordance with the 2001 North American Specification for the Design of Cold - Formed Steel Structure/ Members, 3, Minimum yield strength of 24 and 22 gage steel is 50,000 psl. 4, Steel panels are either aluminum -zinc alloy or G -90 coated. The base metal thickness was used In determining section properties, 5. Positive load (POS) Is applied Inward toward the panel supports and is applied to the outer surface of the full panel cross - section. PANEL PROFILE LOC -SEAM LOC -SEAM 360 1 63/64" ' � 2 12" CROSS SECTION Section 5 Page 6 -a POP American Buil C Syr limited to span/150 I w w linear In +s1 and deflection (D). The controlling check is noted In the table. Deflection was 2. Section Properties have been calculated In accordance with the 2001 North American Specification forthe Design of Cold - Forme 3. Minimum yield strength 01`24 and 22 gage steel is 50,000 psi. d Steel Structural Members. 4. Steel panels are either aluminum -zinc alloy or G -90 coated. The base metal thickness was used In determining section properties. 5. Positive load (POS) Is applied inward toward the panel supports and Is applied to the outer surface of the full panel cross - section. 0 e' 314" 1" 3/4" 3 1/2' 3/4' IM LT 1 7lu 45 34" SUBJECT TO CHANGE W/THDUT NOTICE REVISED SEPTEMBER 7, 2005 j 0 American Buildings Company Section 5 Page 7 PANEL PARTIAL CROSS SECTION ro M- on =er tai, comotneo bending and shear (9 +S), deflection (D), web crippling (C), and panel pullovet (P), The controlling check Is noted In the table, Deflection was limited to span/1 So 2. Section Properties have been calculated in accordance with the 2001 North American Specification for the Design of Cold-Formed steel Structural Members. 3. St eel pa yield strength of 29, 26 and 24 gage steel Is 80, mum yield strength of 22 gage steel Is 50,000 psi, 000 psi. Mini 4. Steel panels are either aluminum -zinc alloy or G -90 coated. The base metal thickness was used In determining section properties. S. Positive load (POS) Is applied Inward toward the panel supports and is applied to the outer surface of the full panel cross - section. Negative load (NEG) Is in the opposite direction. 10 • 0.3300" INSIDE 0.0625" INSIDE 1,7500" 1.4335' 0.9261" 1,6300" 12" 16 "ar 18" NET COVERAGE PANE_ L PROFILE CROSS SECTION Section 5 Page 8 i Deflection was limited to — ing tol, snear (s), combined bending and shear (B +S) and deflectlon (D). The controlling check is noted in the table. spNl5o 2, Section Properties have been calculated In accordance with the 2001 North American Specification far the Design of Cold - Formed Steel Structural Members 3, Minimum yield strength of 24 and 22 gage steel Is 50,000 psl. 4. Steel panels are either aluminum -zinc alloy or G -90 coated, The base metal thickness was used in determining section properties, S. Positive load (POS) Is applied Inward toward the panel supports and Is applied to the outer surface of the full panel cross - section. 0 SECTION 6 MISCELLANEOUS I.I. SCOPE,.,.,,,., 3 1.1.1. i ntent ........ ............................... 3 1.1.2, Performance ................. 3 1.1,3. Product Change ........... ............................... 1.2. BUILDING D ESCRIPTION „,,,,,,,,,,,, 3 1.2.1. Gable ..................... 1. 2,2. Single Slope.,...,.,. 3 ....... ..............................3 1,2.3, Lean- To,.,,.,,,, 1.3. BUILDING NOMENCLATURE, 3 1.3,1. Roof Slope.,.,.,.,, ” " " "" 1.3.2. Width ................. ............................... 1.3.3. Eave Height ........................ 3 1,3.4. Length ....... ............................... 3 1, 3.5: Bay Spacing ( Standard ) .............................. 1.3.6, Bay Spacing " "" "' " ""' 3 Y P gS ( hadowPane l),,,,,,,,,,,,,,,,,,,,,,,,,, 1.4. DRAWINGS AND C " " " "" "' 3 ERTIFICATION,,,,,,,,,,,,,, 3 1.4.1, Drawings .. ............................... 1.4,2, Cerfifications........... .................3 1.4,3, AISC Certific ........... .: .......................................... 3 2. STRUCTURAL STEEL DESIGN 2.1. GENERAL...,,,.,,, Z Z 1,1. Structural Mill Sections ......................... 3 1.2. Cold Formed Sections .................. ..............................3 2.2, DESIGN LOADS,,,,,,,,,,,,, 2,2.1. Loading Criterra...., ..............................4 2.2,2. Most Severe Conditions ... ............................... 4 2.2,3. Load protections..,,.... . " " " " " "' 4 2.2.4. Speclal Loads ........................... . 2.3. DESIGN POLICY ........................ 2.3.1. Standard Design practices ... 2,3.2. Rigid Frame Design ........... . .. ......................... 4 3. BASIC MATERIAL SPECIFICATIONS 3. 1. PRIMARY FRAMING STEEL 5 3,1.1. A411-Rolled Sections,., 3.1.2. Built -Up Sections ......................... ..............................5 3.1.3. Endwa/l "C" Sections ................... 5 3 2SECONDARYFRAMING STEEL„ ................ "' 5 3.2. I.RodedFormed Sections: 5 ............... .. 3.2.2. RonedFormed Sections (Galvanized ) . . . . . . . . . . . . 5 3.3.ROOFAND WALL PANEL MATERIAL 5 3.3.1, 26 Ga geMaterial — Aluminum- ZincAlloy- Coated ............. 5 3, 3.2.24 Gage Material — Aluminum- Zinc Alloy - Coated.. , , ... , , „ 5 3.3.3, 24 Gage Materia Aluminum - ZincAlloy- Coated,,,,,,,,,,,,, 5 3.3, 4.22 Gage Material - Aluminum- Zinc Alloy- Coated . . . ........ . . 5 3.3.5, 26 Ga Zinc - Coated (Galvanized),,,,,,,,,,,,,,, 5 3,3.6. 24 Gage Material — Zinc - Coated (Galvanized).........., 5 3.3.7, 22 Gage Material— Zinc - Coated (Galvanized),,,,,,,,,,,,,,,,, 5 4.1. GENERAL....,...... 4,1.1. Field Bolt Assembl................ 5 y . 4.1.2. Shop Connections ........................ ............................... 5 4,1.3, Identification Mark,,,,,,,,,,,,,,,,,, 4.1.4. Visuall nspection ......................... 4.2, PRIMARY FRAMING 4.21. Rigid Frame ................................. ..............................5 4,2.2. EndwallFrames ..................... 6 4.2,3, Plates, Stiffeners, etc .............. ............................... 6 4.2.4, Bolt Holes .................................... ..............................6 4,3, SECONDARY FRAMING,,,,,,,,,,,,,,,,,,,,,,,, 6 4.3,1. Purlins and Gilts 4.3.2, Eave Struts 66 4.3.3. BaseAng /e ............................. 4,4. BRACING,,,.,,, 6 4.4.1. Diagonal Bracing ........................... ..............................6 4,4.2, Flange Bracing ............................. ............................... 6 4.4.3. Special Bracing ............................ 6 5. ROOF AND WALL COVERING 5.1. GENERAL ........... ............................... 6 51.1. Wall Panel ........ ............................... 6 5.1.2. Roof Panel ................................... ..............................6 5.1.3, Liner and Soffit Panef ..................... ..............................6 5.1,4. Facade Fascia Panel ............ ............................... 6 5.1,5 Long Span /ll Panel .. ............................... ., 6 5.1, 6. Architectural IN Panel .................... ............................... 6 5.1,7. Architectural "V "Rib Panel ............... ..............................6 51,8. Multi -Rib Liner Panel ...................... ..............................6 5.1.9. Long Span Liner Panel .................. ............................... 6 51,10. Shadow Panel ............................. ..............................7 5.1,11. Soffit Liner Panel ......................... ............................... 7 51.12. Standing Seam Panel . ............................... ...... 7 5.1,13. Loc Seam Pane1 ......................... ............................... 7 51,14. Mansard Fascia Panel ......................... ....... 7 51.15 Seam Loc Pane / ......................... 7 5.2, PANEL DESCRIPTION ....................... 7 52.1. Long Span 111 Panel ................ .7 52.2. Architecturallll panel .............. " ,,,,,,.,,..,,,.,,,,,,,,,,,,,, l 5.2.3. Architectural "V "Rib Panel ............... .............................7 52,4. Multi -Rib panel ............................... 5.2.5. Shad6wPanel ..... ............................... 7 52.6. Soffit Liner Panel....,. 557, Standing Seam Panel .................. 7 5.2,8. Loc Seam Panel . ............................... . 7 5.2.9. Mansard Fascia PaneL,, , , "" ,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,, 7 5.2,10. Seam Loc Panel .................... ............................. 7 5.2.11. Panel Length ........................... 8 52.12 Endwall Edge Cuts ...... . .............. ............................... 8 52,13. Oilcanning ......................... ...................... 8 SS(AHC}Rcv.0910S, Americnn &nildings Compnny FMOWS 6,1, FASTENERS,,,,,,,,,,,,,,, 6.1.1. Structural Solfs ................. ............................... , 6.1.2. Fasteners for Roof Panels., 6.1,3, Fasteners for Roof Panel Side Laps 6.1.4. Fasteners for Roof Panels and Flashing ......................... 6.1.5, Fasteners for Roof Panel Clips .. ............................... 6.1.6. Fasteners for Wall Panels,....,.,,,,, 6.1, 7. Fasteners for Wall Panel Side Laps—, ..........................„ 6.1, 8. Fasteners for Shadow Panels,,,,,,,,,,,,,, 6,1.9, Blind Fasteners (Rivets),,,,,,,,,,,,,,,, 6,2. PANEL CLIPS ,,,,,,,,; 6.2.1, Standing Seam 11 Panel Clips ............................. 6.2.2 Loc Seam Panel Cl ips ................... ............................... 9 6.2.3, Mansard Fascia Panel Clips ....... .1, ... I .... I ............. I... g 6.2.4. Standing Seam 360 Panel Clips ...... ............................... 9 6.2,5, Seam Loc Panel Clips,,,,,,,,,,,,,,,,,,,, g 6,3. CLOSURES AND SEA " " " " " "" 6.3.1. Closure Strips ........................ 9 6.3.2 Metal Closures ....... 6.3.3. Sealer Long Span and Multi -Rib panels .......:................. g 6.3.4. Sealer, Standing Seam, Loc Seam & Seam Loc ............... 9 6.3.5. Sealer Standing Seam and Loc Seam Panels,,,,,,,,,,,,,,,, g 6.3,6. Caulk...,... 6.4. GUTTER, FLASHINGS AND DOWNSPOUTS ,,,,,,,,,,,,,,,,,,,,,,,,,,10 6.4, 1. Gutters, and Fl ashings ................. ............................... 10 6.4.2, Downspouts.. ........ ...... 10 7. PAINTING 7,1, STRUCTURAL PAINTING,,,,,,,,,,,,,,,,,,,, 10 7.1,1, Shop Applied Primers 71.2. Pre - painted Cold Formed Materials ,,,,,,,,,,,,,,,,,,,,•,•,,,,, 7.1.3, Abrasions After Handl ing ............................ 7.2, LONG LIFE COATED PANELS,,,,,,,,, 10 7.2.2, Prime Coat 7.2:1. Base Metal ................................ ............................... 10 ........................ 10 7.2,3. E' xterlorCoat .............................................. :. .. 10 7.2.4. interior Finish.,,..,.,,,,, " " " "" 7,3. PREMIUM 70 COATED PANELS„ . '• " "' " """' 10 7.3. 1. Base Metal ............. .,.....,.. ...,.,.....,,..............,.10 73.2. Prime Coat...,........ 7.3.3. Exterior Coat ......................... 10 73,4. Interior Finish ............. .................. .............................10 7,4,PREMIUM 70M COATED PANELS,.,,,,..,,,, 11 7,4.1. Base Metal .............. . 7.4.2. Prime Coat ......................... ............................... 74,3, Exterior Coat 11 7,4,4. Interior Finish .................... 11 8 8.1: WINDOWS. 8 8.1.1. Standard Windows .......................... .............................11 8 8.1.2. Narrow Light Windows .................................................. 11 8 8.1.3: Thermal Barrier Windows ............... ............................... 11 8 8.2. PERSONNEL DOORS ............. 12 8 8.2.1. Doors . ............................... ..........................12 8 8.2.2. Door Frames .................................. .............................12 9 8:2:3. Locksets ........................................ .............................12 9 8.2.4. Panic Devices .............................. ............................... 12 9 825, Threshold .............. 12 8.3. PRE - ASSEMBLED PERSONNEL DOORS.... 12 83, 1. Doors .......... ............................... 12 8.3.2. Door Frames .................................. .............................12 8; 3.3. Locksets ............................ . 12 8.3.4. Panic Devices .............................. ............................... 12 8.3.5. Threshol d..............:................ ............................... .....12 8.4. OVERHEAD DOOR FRAMING .................. .............................12 8.4.1. Support Framing ....... ............................... 84 GRAVITY VENTILATORS ...................... ............................... 12 8.5.1. Ridge Ventilator ............................. .............................12 8.52.20 "Round Ventilator ............ ............................... 8.6. LOUVERS ................. ...... 13 8.6, 1. Standards ...... ............................... ............................13 8.7. SKYLIGHTS .................................... .... ......... 1...............,..... 13 8.7.1. Roof Panels ................................. ............................... 13 8.7,2. Wall Panels ..................... .........I...........I........, ,........13 8.8. INSULATION .......................... ............................... . . . ...........13 8.8.1. Standards ...................................... .............................13 8.8.2: Facings ........... ............................... ,13 8.8.3. Thermal Bl ocks ............................. 13 8.8.4. Rigid Foam Insulation ....................... 8.9. ROOF CURBS .............................................................. I... 13 8.9, 1. Standards ................. . ........................... 13 8.10. PIPE FLASHING ..................... ............................... ...........14 8.10,1. Standards .............................. ............................... . ...14 9. ERECTION AND INSTALLATION ,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,, 10, BUILDING ANCHORAGE AND FOUNDATION .........................14 11. WARRANTIES ..................................... ............................... 14 SS(AM- ACY.09M, American BnilQingr Compuy FA10000S • • 4� AMj .IC N ULDN S COMPANY STANDARD SPEOFICITIONS 1 GENERAL 1.3.2 Building "Width" is measured from outside to outside of 1.1 SCOPE sidewall gifts except Shadow Panel which is outside to outside of panels, 1.1,1 The attached specifications cover the standard materials and components used in the design and fabrication of American Buildings Company's metal building systems, 1,1.2 These specifications are an outline of performance to insure that the architect, engineer, builder and /or owner understand the basis for design, manufacture and application of all American Buildings Company's metal building systems, 1.1.3 Due to a continuing program of research and development, specifications in this manual are subject to change without notice. 1.3.3 Building "Eave Height" is measured from the bottom of the base plate on the column to the intersection of the roof and sidewall sheets. 13,4 Building "Length" is measured from outside to outside of endwall girts except Shadow Panel which is outside to outside of panels, 1,3,5 Standard "Bay Spacing" shall be 20', 25' or 30' between frame centerlines (except at end bays), unless otherwise specified, for buildings with Architectural III (A3P) or Long Span III (L3P) walls panels, 1.2 BUILDING DESCRIPTION 1.2.1 Gable (LRF, RF, LRF -M, RF -M, GC, GC -M) is a continuous frame building, The primary frames have tapered columns and rafters with continuous sidewall girts bypassing the column or uniform depth columns and tapered rafters with Simple span sidewall gifts inset into the column line, Also it may have one or more interior columns. The bottom flange of the tapered rafter is horizontal for buildings with uniform depth columns and no interior columns, 1.2.2 Single Slope (LSS, LSS -M, SSF) is a continuous frame building, The primary frames have tapered columns and rafters with continuous sidewall girts bypassing the column or uniform depth columns and uniform depth or tapered rafters with Simple span sidewall girts inset into the column line, Also it may have one or more interior columns, 1.2,3 Lean -To (L)) is a single slope extension to a primary structure which provides structural support. These units usually have the same standard roof slope and girt design as the building to which they are attached, 1,3 BUILDING NOMENCLATURE 0,1 Standard Roof Slope a) 1" of rise for each 12' of horizontal run (Gable, Lean - To), b) 4' of rise for each 12" of horizontal run (Gable, Lean - To), c) 1/2' of rise for each 10' of horizontal run (Gable, Lean -To). d) 1/4" of rise for each 12" of horizontal run (Single Slope, Gable, Lean -To) 116 Standard "Bay Spacing" shall be 20', 24' or 28' between frame centerlines (except at end bays) for buildings with Shadow Panel (HFP) walls. 1.4 DRAWINGS AND CERTIFICATION 1.4.1 Drawings: American Buildings Company shall furnish complete erection drawings for the proper identification and assembly of all building components. These drawings will show anchor bolt settings, transverse cross sections, sidewall, endwall and roof framing, flashing, and sheeting and accessory installation details. 1.4.2 Certifications: Standard drawings and design analysis shall bear the seal of a registered professional engineer upon request. 1,4.3 RISC Certification, Category MB: All American Buildings Company's buildings systems shall be engineered and fabricated to meet the RISC certification standard for Category MB, 2 STRUCTURAL STEEL DESIGN 2.1 GENERAL 2,1.1 All structural mill'sections or welded built -up plate sections shall be designed in accordance with the AISC Specification for Structural Steel Buildings," Allowable Stress Design and Plastic Design, June 1, 1989 with supplement No,1 2.1.2 All Cold- Formed steel structural members shall be designed in accordance with the 2001 edition of the "North American Specification for the Design of Cold= Formed Steel Structural Members," SS(ABQ -Rev, 09105, Amerionn Buildings Conipwy Fh100005 0 0 i� AMER B UIL D NGS COMPANY ST�\NDARD SPECIFICATIONS 2.2 DESIGN LOADS 2.2.1 The design loads for the building shall be, in addition to their own dead load, the live, wind, snow and seismic loads required of the following as specified: a) Standard Building Code, by the Southern Building Code Congress International, Inc. b) The BOCA National Building Code, by the Building Officials and Code Administrators, Inc, c) Uniform Building Code, by the International Conference of Building Officials. d) International Building Code, by the International Code Council, e) National Building Code of Canada, by the National Research Council of Canada. f) Metal Building Systems Manual, by the Metal Building Manufacturers Association, 2.2.2 The building components shall be designed to meet the most severe conditions of load combinations set by the specified building code, but in no case be less than that produced by the following load combinations: A. Building dead load plus roof live load (or snow) B. Building dead load plus wind load 2.2.3 Roof live and snow loads shall be applied on the horizontal roof projection. Wind loads shall be assumed to act horizontally and shall be applied as pressure and suction perpendicular to the building surfaces, 224 Where local jurisdiction dictates, designs based on other than above listed loads, combinations of loads, or method of load application may be obtained upon request. 2.3 DESIGN POLICY 2.3,1 American Buildings Company's standard design practices incorporate Serviceability Limits from the Metal Building Systems Manual, 2002 edition, (reprinted from AISC Steel Design Guide Series #3, "Serviceability Design Considerations for Low-Rise Buildings "), Owner requirements that exceed these considerations must be included in the building order documents. The applicable building code may also provide deflection limitations. Vertical Deflections *Roof Snow = Factored 50 Yr. Ground Snow Purlins Roof Live or *Snow Load supporting metal roof only 0150 supporting ceiling tiles U240 supporting plaster /drywall ceiling U360 Rafters Roof Live or *Snow Load supporting metal roof only 0150 supporting ceiling tiles U240 supporting plaster /drywall ceiling L /360 Floorjoist/ Beams Floor Live Load supporting concrete slabs U360 supporting plywood deck, etc. U240 Crane Runway Crane Vertical Static Load Top Running Cranes: CMAA Classes A, B, C U600 CMAA Class D L /800 CMAA Classes E, F 01000 Underhung and Monorail Cranes: CMAA Classes A, B, C U450 Jib Crane Crane Vertical Load U225 Lintel Beams Total Load U600 < 0.3" Horizontal Deflections: **10Yr. = 50yr. X 75% Wall Panels * *10 Yr. Design Wind Pressure U120 Girts * *10 Yr. Design Wind Pressure supporting metal wall U120 supporting masonry wall 0240 < 11/2' Frame * *10 Yr, Design Wind Pressure supporting metal wall H /60 supporting masonry wall H /100 Crane Lateral Load or * *10 Yr. Wind Pressure: pendant operated crane H /100 @ Runway cab operated crane H/240< 2"@ Runway Crane Runways Crane Lateral Load L /400 Spandrel Beams * *10 Yr, Design Wind Pressure L /240 The following serviceability limits of American Buildings Company are also used for project design. Vertical Deflections: Roof Panels Roof or Live Snow Load L /150 SS(ABC)•Rev.09/OS,Americnn Buildings Cempnny FM00005 4 r ICAN BUILDINGS - COMPANY S ' ANDAM SPECIFICATIONS Expansion and Contraction• 3.3.2 Panel material as specified shall be 24 gage AZ50 or AZ55 Longitudinal Expansion Joint aluminum -zinc alloy - coated steel, conforming to the every 1000 feet requirements of ASTM A 792, Grade 80, Minimum yield Transverse every 200 feet Expansion Joint strength shall be 80,000 psi. 2.3.2 It is the policy of American Buildings Company to design rigid frames for the increased loading associated with two - span continuous p urlins and girts, This applies to all loads With a load path through a purlin or girt, An increase of 25% is normally associated with two equal bays. This is not applicable to the frame loading when purlins or girts are designed as "single- span" 33.3 Panel material as specified shall be 24 gage AZ50 or AZ55 aluminum -zinc alloy - coated steel, conforming to the requirements of ASTM A 792, Grade 50, Class 2. Minimum yield strength shall be 50,000 psi. 3.34 Panel material as specified shall be 22 gage AZ56 or AZ55 aluminum -zinc alloy- coated steel, conforming to the requirements of ASTM A 792, Grade 50, Class 2, Minimum yield strength shall be 50,000 psi, 3 BASIC MATERIAL SPECIFICATIONS 3.1 PRIMARY FRAMING STEEL 3.1,1 Steel for mill - rolled structural sections shall conform to the requirements of ASTM specification A 36 or ASTM A 572 Grade 50 or 55 as applicable. 3,1.2 Steel for all built -up sections shall meet as applicable the physical and chemical properties of: A. ASTM A 1011, Grade 55. B. ASTM A 572, Grade 55. C. ASTM A 529, Grade 55, 3.1,3 Steel for all endwall "C" sections shall meet the physical and chemical properties of ASTM A 1011, Grade 55, 3.2 SECONDARY FRAMING STEEL 3.2.1 Steel used to form purlins, girls, eave struts and "C' sections shall meet the physical and chemical properties of ASTM A 1011, Grade 55, 3.2.2 Steel used ' to form zinc - coated (galvanized) purlins and girts shall meet the physical and chemical properties of ASTM A 653, Grade 50, 55 ksi minimum yield and G90 Coating designation as described in ASTM A 924, 3.3 ROOF AND WALL PANEL MATERIAL Exterior panels shall conform to one of the following: 3.3,1 Panel material as specified shall be 26 gage AZ50 or AZ55 aluminum -zinc alloy- coated steel, conforming to the requirements of ASTM A 792, Grade 80, Minimum yield strength shall be 80,000 psi, 3.3.5 Panel material as specified shall be 26 gage zinc - coated (galvanized) steel, coating designation G90, conforming to the requirements of ASTM A 653, Grade 80, Minimum Yield strength shall be 80,000 psi. 3.3.6 Panel material as specified shall be 24 gage zinc - coated (galvanized) steel, coating designation G90, conforming to the requirements of ASTM A 653, Grade 80. Minimum yield strength shall be 80,000 psi. 3.3.7 Panel material as specified shall be 22 gage zinc - coated (galvanized) steel, coating designation G90, conforming to the requirements of ASTM A 653, Grade 50, Class 3. Minimum yield strength shall be 50,000 psi, 4 STRUCTURAL FRAMING 4.1 GENERAL 4,1,1 Framing members shall be shop fabricated for field bolted assembly. The surfaces of the bolted connections shall be smooth and free from burrs or distortions. 4,1.2 All shop connections shall be in accordance with the American Welding Society (AWS) Code for Building Construction or the Canadian Welding Bureau (CWB), as applicable, Certification of welder qualification will be fumished when required and specified at order entry. 4.1,3 All framing members where necessary shall carry an easily visible identifying mark. 4.1.4 Visual inspection methods will be used for verification of weld quality as outlined by the AWS Structural Steel Welding Code, Visual Inspection Acceptance Criteria, Table 6,1, 4.2 PRIMARY FRAMING 421 Rigid Frame: All rigid frames shall be welded, built -up "in sections or mill - rolled structural sections. The columns and the rafters may be either uniform depth or tapered. SS(ABC) -Rev. 09105, Americnn Buildings Company WOODS • 0 . - — AM ER- IC AN STANDARD SPECIFICATIONS 4.2.2 Endwall Frames: All endwall roof beams and endwall columns shall be cold- formed "C" sections, mill- rolled structural sections, or built -up "I" sections as required by design, 4.2.3 Plates, Stiffeners, etc,: All base plates, splice plates, cap plates, and stiffeners shall be factory welded into place on the structural members, 4.2,4 Bolt Holes, etc.: All base plates and flanges shall be shop fabricated to include bolt connections holes. Webs shall be shop fabricated to include cable brace or rod brace holes and flange brace holes. 4.3 SECONDARY FRAMING 4.3.1 Puriins and Girts: Pudins and girls shall be cold - formed "Z" or "C" sections with stiffened flanges. They shall be pre - punched at the factory to provide for field bolting to the primary framing, They shall be simple or continuous span as required by design, 4.3.2 Eave Struts: Eave Struts shall be unequal flange, cold- formed "C" sections. 5 ROOF AND WALL COVERING 5.1 GENERAL 5.1.1 Wall panels shall be either American Buildings Company's Long Span III Panel (L3P), Architectural III Panel (A3P), Architectural "V" Rib (AVP) or Shadow Panel (HFP). 5.1.2 Roof panels shall be either American Buildings Company's Long Span III Panel (L3P), Standing Seam II Panel (S2P), Standing Seam 360 Panel (S3P), Loc Seam Panel (LOC) or Seam Loc Panel (SLC). 5,13 Liner and soffit panels shall be either American Buildings Company's Multi -Rib Panel (MRP), Long Span III Panel (L3P), Architectural III Panel (A3P) or Soffit -Liner Panel (SLP). 5.1.4 Facade fascia panels shall be either American Buildings Company's Long Span III Panel (L3P), Architectural III Panel (A3P), Shadow Panel'(HFP), Mansard Fascia Panel (MFP) or Seam Loc Panel (SLC). 43.3 Base Angle: A base member will be supplied by which the base of the wall covering may be attached to the 5,1.5 American Buildings Company's Long Span III (L3P) roof and wall panels as specified shall be 29, 26, 24 gage perimeter of the slab, This member shall be secured to the concrete 80,000 psi or 22 gage 50,000 psi. Pre- painted panels shall have American Buildings Company's Premium 70 Plus slab with concrete anchors as shown on the drawings, (Kynar 5000) Finish. An embossed finish is available as 4.4 BRACING an option. 4.4,1 Diagonal Bracing: Diagonal bracing in the roof and sidewall 5.1.6 American Buildings Company's Architectural III (A3P) wall shall be used to remove longitudinal loads (wind, crane, panels as specified shall be 29, 26, 24 gage 80,000 psi or etc.) from the structure. This bracing will be furnished to 22 gage 50,000 psi, Panels shall have American Buildings length and equipped with bevel washers, cut washers and Companys Premium 70 Plus (Kynar 5000) Finish. An nuts at each end. It may consist of rods threaded at each embossed finish is available as an option, end or galvanized cable with suitable threaded end anchors. 5,1.7 American Buildings Company's Architectural "V" (AVP) wall panels as specified shall be 29, 26, 24 gage 80,000 psi or 4.4,2 Flange Braces: The compression flange of all primary 22 gage 50,000 psi, Panels shall have American Buildings framing shall be braced laterally with angles connecting to Companys Premium 70 Plus (Kynar 5000) Finish, An the webs of purlins or girts so that the flange compressive embossed finish is available as an option, stress is within allowable limits for any combination of loadings, 5,1.8 American Buildings Company's MOIN -Rib (MRP) liner panels as specified shall be 29, 26 dr 24 gage (nominal) 4,4.3 Special Bracing: When diagonal bracing is not permitted in pre - painted steel, Panels shall have American Buildings the sidewall, a rigid frame type portal, fixed base columns, Company's Reflective White Long Life Finish. or wall diaphragm must be used, Wind bracing in the roof and /or walls need not be furnished where it can be shown 5,1,9 American Buildings Company's Long Span III (L3P) liner that the diaphragm strength of the roof and /or wall covering panels as specified shall be 29 gage 80,000 psi. Panels is adequate to resist the applied wind forces; shall have American Buildings Company's Reflective White Long Life Finish. 5,1.10 American Buildings Company's Shadow Panels (HFP) shall be embossed 24 gage 50,000 psi. Panels shall have American Buildings Company's Premium 70 Pius (Kynar 5000) Finish, SS(ABC)- Rey. 09 /0S, American Buildings Compnny FM00005 0 l be 24 gage 50,000 ps have American m ) shall Buildings Company's Premium 70 Plus (Kynar 5000) Finish. 5.1.12 American Buildings Company's Standing Seam II (S2P) and Standing Seam 360 (S3P) Roof Panels as specified shall be 24 or 22 gage 50,000 psi, Pre - painted panels shall have American Buildings Company's Premium 70 Plus (Kynar 5000) Finish. 5.1.13 American Buildings Company's Loc Seam Panels (LOC) as specified shall be 24 or 22 gage 50,000 psi. Pre - painted panels shall have American Buildings Company's Premium 70 Plus (Kynar 5000) Finish. 5,1.14 American Buildings Company's Mansard Fascia Panels (MFP) as specified shall be 24 gage 50,000 psi. pre. painted panels shall have American Buildings Company's Premium 70 Plus (Kynar 5000) Finish, 5.1,15 American Buildings Companys Seam Loc Panels (SLC) as specified shall be 24 or 22 gage 50,000 psi. Pre - painted panels shall have American Buildings Company's Premium 70 Plus (Kynar 5000) Finish, 5.2 PANEL DESCRIPTION 5,2,1 American Buildings Company's Long Span III Panel (L3P) shall have major ribs 1 1/4" high, spaced 12" on center for an even shadowed appearance, The panels are reinforced between the ribs for added strength. Each panel shall provide 36" net coverage in width, A minimum 1/2 :12 roof slope is required. All roof panel side laps shall be at least one major rib and shall have a purlin bearing leg on the bottom section of the lap, 5.2.2 American Buildings Company's Architectural III Panel (A3P) shall have a configuration consisting of ribs 1 1/4" deep spaced 12" on center producing a decorative smooth shadow-line with seml- concealed fasteners. Architectural III panels shall provide a 36" net coverage In width, 523 American Buildings Company's Architectural "V" Panel (AVP) shall have a configuration consisting of ribs 15/16 deep spaced 12" on center producing a sculptured appearance with semi- concealed fasteners, Architectural 'Y rib panels shall provide a 36" net coverage in width, 5.2.4 American Buildings Company's Multi -Rib Panel (MRP) shall have a configuration consisting of ribs 3/4" deep. spaced 6" on center, Each panel shall provide 36" net coverage in width. 5.2,5 American Buildings Company's Shadow Panel (HFP) shall have a configuration 16" wide and 3" deep with a center rib is 6" wide and 1.1/2" deep producing contrasting shadow patterns with concealed fasteners. Each panel shall provide 16" net coverage in width, 5.2.6 American Buildings Company's Soffit Liner Panel (SLP) shall have a configuration consisting of 1" interlocking ribs, The interlocking ribs are designed to conceal the panel fasteners, The Soffit Liner Panel shall provide a net coverage of 12" in width. 5.2,7 American Buildings Company's Standing Seam II (S2P) and Standing Seam 360 (S3P) Roof Panel shall have a configuration consisting of 2" high (3" including seam) by 4 3/4" wide rib, spaced on 24" centers. Panels shall be joined at the side laps with an interlocking seam standing 1" above the major rib, Each panel shall provide 24" net coverage in width, The female panel seam shall have factory applied sealant. 5.2.8 American Buildings Company's Loc Seam Panel (LOC) shall have a configuration 16" or 12" wide with 2" high vertical male and female ribs offering a flat profile with optional pencil ribs, The female seam shall have factory applied sealant. The panel seam shall be Interlocked by a specially designed electric seaming machine, 5.2.9 American Buildings Company's Mansard Fascia Panel (MFP) shall have a flat surface with a male and female interlocking 1" seam. Panels shall have a 10-3/16" or 18- 5/8" net coverage in width, A solid 318" minimum plywood decking or equivalent with a minimum 3:12 roof slope is required. 5.2,10 American Buildings Company's Seam Loc Panel (SLC) shall have a flat surface with a male and female interlocking 1 3/4" seam. The female panel seam shall have factory applied sealant. Panels shall have a 12 ", 16" or 18" net coverage in width. A minimum 3 :12 roof slope is required, 5.2.11 Panel Length: All wall panels shall be continuous from sill to roof line and all roof panels shall be continuous from eave to ridge except where length becomes prohibitive for handling purposes, Roof par)el end laps shall be a minimum 6" for Standing Seam and Loc Seam panels and a minimum 4" for Long Span III panels. Wall panel end laps shall be a minimum 3 ", 5.2.12 Endwall Edge Cuts: All endwall panels for buildings with less than 1 % to 12 roof slopes shall be square cut. All endwall panels (excluding Shadow panels) for buildings with a roof slope over 11/212 shall be bevel cut. 5.2,13 A certain amount of waviness called "oilcanning" may exist in the flat portion of the panel. Minor waviness of the panel is not sufficient cause for rejection, Oilcanning does not affect the structural integrity of the panel, SS(ABC) -Rev. 0910$ American Buildings Company FM00005 0 f. N J/ 1: BUILDINGS O STANDARD SPECIFICATIONS MISCELLANEOUS MATERIAL SPECIFICATIONS 6,1 FASTENERS 6.1.1 Structural Bolts: All bolts used in primary splices and secondary framing connections shall be ASTM A325 as required by design, drilling carbon steel screws with an integral hex washer head. Roof fasteners shall be assembled with an EPDM washer. Standard roof fasteners shall havea corrosive resistant coating over zinc plating, Standard fasteners shall be used on unwarranted aluminum -zinc alloy - coated roofs only, 61.2 Fasteners for Roof Panels: All roof panels shall be attached to secondary framing members by the following: A. Premium roof fasteners shall be No. 12 X 11/4" or No, 14 X 1" self - drilling carbon steel screws with a molded zinc alloy or capped stainless steel cupped hex washer head. Roof fasteners shall be assembled with an EPDM washer. Premium roof fasteners shall be used on all pre - painted or warranted roofs, B. Standard roof fasteners shall be No. 12 X 1 1/4" or No. 14 X 1" self - drilling carbon steel screws with an integral hex washer head, Roof fasteners shall be assembled with an EPDM washer. Standard roof fasteners shall have a corrosive resistant coating over zinc plating. Standard fasteners shall be used on unwarranted aluminum -zinc alloy- coated roofs only. 6.13 Fasteners for roof panel side laps and flashing connections: Long Span III Roof Panel side laps and flashing connections shall be stitched by the following: A, Premium roof fasteners shall be No, 14 X 7/8" self - drilling carbon steel screws with a molded zinc alloy or capped stainless steel cupped hex washer head. Roof fasteners shall be assembled with an EPDM washer. Premium roof fasteners shall be used on all pre- painted or warranted roofs. B. Standard roof fasteners shall be No. 14 X 7/8" self - drilling carbon steel screws with an integral hex washer head, Roof fasteners shall be assembled with an EPDM washer, Standard roof fasteners shall have a corrosive resistant coating over zinc plating. Standard fasteners shall be used on unwarranted aluminum -zinc alloy - coated roofs only. 6.1.4 Fasteners for roof panel to flashing connections: Loc Seam and Standing Seam roof systems shall be the following: A. Premium roof fasteners shall be No. 14 X 1" self- drilling carbon steel screws with a molded zinc alloy or capped stainless steel cupped hex washer head, Roof fasteners shall be assembled with an EPDM washer. Premium roof fasteners shall be used on all pre - painted or warranted roofs, B, Standard roof fasteners shall be No, 14 X 1" self- 6.1,5 Fasteners for the Roof Panel Clips: All Standing Seam and Loc Seam Panel Clips shall be attached to the purlins by the following: A. Self- drilling screws for attaching expansion clips shall be carbon steel No. 12 X 11/4" hex -head, cadmium or zinc plated, The fasteners are applicable for use with fiberglass blanket insulation with thicknesses up to and including 6 inches. B. Self- drilling screws for attaching expansion clips on bar joists shall be carbon steel No. 12 X 11/4" Tek 4 or No. 12 X 1 1/2" Tek 5 hex -head, cadmium or zinc plated. The fasteners are applicable for use with fiberglass blanket insulation with thicknesses up to and including 6 inches. 6.1.6 Fasteners for Wall Panels and Liner Panels: All Long Span III, Architectural III, Architectural "V" or Multi -Rib Panels shall be attached to the secondary framing members by means of self - drilling carbon steel screws, No. 12 X 11/4' hex washer head, cadmium or zinc plated. The fasteners shall be color coordinated with a premium coating system which protects against corrosion and weathering. The fasteners are applicable for use with fiberglass blanket insulation up to 4" (6" for Architectural III and Architectural "V" Panels) in thickness. 6.1.7 Fasteners for Wall Panel side laps and Liner Panel side laps: All Long Span III, Architectural III, Architectural "V" or Multi -Rib Panel side laps shall be stitched by means of self - drilling carbon steel screws, No, 14 X 7/8" cadmium or zinc plated. The fasteners shall be color coordinated with a premium coating system which protects against corrosion and weathering. 6.1.8 Fasteners for Shadow Panels: These fasteners shall be carbon steel, yellow chromate over zinc plate finish, No. 12 X 1" self - drilling hex -head screws with a special 1/2" X 1" rectangular locking nut, 6,1,9 Blind Fasteners: All blind fasteners shall be 1/8" diameter, high strength 6052 painted aluminum rivets as manufactured by USM POP or equal. 6.2 PANEL CLIPS 6.2.1 Panel clips (SSPC series) for the Standing Seam Il Roof Panel shall be of a two part assembly. The tab portions are 21/2" wide, die formed SAE 1050 high carbon spring SSMC) -Rev, 09/4 Amerlcnn Buildings Compnay WHOM 0 0 J ,, i dou neat treated to Rockwell 45C to 500 with fluorocarbon coating for corrosion resistance, or 301 shall be from 60 °F to +212 °F. stainless steel. The base portion of the clip shall be 21/4" 6.3.4 Sealant: American Buildings Company's Standing Seam, or 3 1/4" (for thermal blocks) in height. The base shall be Loc Seam and Seam Loc Roof Panels side laps shall have die formed from 12 gage, zinc - coated (galvanized) steel, factory applied mastic, SikaLastomer -511 or equal, Its Total expansion capability of the clip assembly shall be 2 composition shall be 85% solids by weight, Service 1/2 , temperature range shall be from -60 °F to +220 °F. 6.2.2 Panel clips (LSEC series) for the Loc Seam Panel shall be 6.3.5 Sealant: All American Buildings Company's Standing Of a two part assembly. The tab portion shall be a nominal Seam and Loc Seam Roof end laps, roof flashing laps, 2 3/8" or 3 1/8" (for thermal blocks) in height and 3" in ridges and eave shall be sealed with tape mastic, Sika width, die formed from 24 gage aluminum coated steel. Sika -Tape TC -95 or equal. The material shall be non - The base shall be die formed from 18 gage, zinc - coated staining, non - corrosive, non - toxic, and non - volatile. (galvanized) steel. Total expansion capability of the clip Composition shall be 100% solid ethylene propylene assembly shall be 11/4", copolymer tape. Service temperature shall be from -60°F 623 Panel clips (MFPC series) for the Mansard Fascia panel to +2127 shall be a nominal 1" height and 1 1/2" in width, The clip 6.3.6 Caulk: Eaves, endlaps, ridge and eave closures are sealed shall be die formed from 26 gage zinc - coated (galvanized) with non - skinning butyl caulk, SikaLastomer -511 or equal. steel, or aluminum -zinc alloy- coated steel. Its composition is 85% solids by weight. Service 6.2.4 Panel clips (S3PC series) for the Standing Seam 360 panel downspout j nts a roof acc ssories, ors, windows, and is a two part assembly. The tab portion is die formed .031 louvers shall be sealed with polyurethane caulk, Sika, thick aluminum -zinc alloy - coated steel. The base shall be SikaFlex 219LM or approved equal. It shall meet or die formed from 12 gage, zinc- coated (galvanized) material exceed the requirements of Federal Specification TT -S- 21/4" or 31/4" (for thermal blocks) high and 6" long. The 002300, Type 11, Class A. expansion capability is 2 112 ". For higher uplift values requirements, optional panel clips (S3PC -_R) consists of 6.4 GUTTER, FLASHING AND DOWNSPOUT panel clip (83PC -_) with an additional panel to clip fastening base which is 16 gage, zinc - coated (galvanized) 6,4.1 Gutters and Flashings: All standard exterior gutters are 26 material. gage G90 zinc - coated (Galvanized) or AZ50 aluminum -zinc aoy- 6.2.5 Panel clips (SLPC series) for the Seam Loc panel are a flashi g a is e 26 gage G90 zinc-coated (galvanized) or AZ50 nominal 1 3/4" in height and 3 3/4" in width (UL90) and 1 aluminum -zinc alloy- coated steel with a pre - painted finish. 3/4" in height and 2" in width (Standard) die formed 18 All other gutter and flashings shall be a minimum 26 gage gage zinc - coated (galvanized) steel. steel, 6.3 CLOSURES AND SEALANTS 6,4.2 Downspouts: All downspouts shall be 29 gage zinc - coated 6.3,1 Closure Strips: The corrugations of the roof and wall panels (galvanized) or aluminum -zinc alloy-coated steel with color shall be filled with pre - formed closed cell non - shrinking, coordinated, pre - painted finish, rectangular in shape, laminated polyethylene closures along the eave, ridge and 7 PAINTING rake when required for weathertightness, 6.3,2 Metal Closures: The corrugations and pan area of the ASTM testirig is performed on specifically and carefully Standing Seam II and Standing Seam 360 Roof Panel shall prepared test coupons, These tests are designed to be filled with formed metal closures. The cldsures shall be accurately compare varying products in a controlled formed from 20 gage steel to the shape of the configuration. environment and may or may not be indicative of actual The closure exterior finish shall be AZ55 aluminum -zinc field results, alloy coated. 6,33 Sealant: Long Span Panel roof side laps, end laps, roof 7.1 STRUCTURAL PAINTING flashing laps, ridges and eave shall be sealed with 1/2" X Primer systems are not intended as finish coat paint 1/8" tape mastic, Sika Sika -Tape TC -95 or equal. The systems and do not offer the uniformity of appearance, material shall be non - staining, non - corrosive, non -toxic • durability or corrosion resistance of a top oat applied over and non - volatile, Composition shall be '100% solid a primer, Primers are ' designed to promote the wetting ethylene propylene copolymer tape, Service temperature action and adhesion of a top coat and offer only short -term corrosion protection from ordinary atmospheric exposure, SS(ABC)•Rev.09 /OS, American Buildings Company FA10000S 0 0 AMER_1CAN'BU1LDfNGS COMPANY r q v - I . STANDAKD SPEOFICATIONS' 7,11 Shop Applied Primers —All uncoated structural . steel members shall be cleaned of all foreign matter and loose mill scale as per requirements of the Structural Steel Painting 'Council cleaning specification SSPC -SP2 and SSPC -SP1 as required. Structural steel members will then receive a one mil coat of American Buildings Company's red oxide primer. Primer meets or exceeds the Performance requirements of the specification SSPC -15, for Type 1 Red Oxide Paint. Primer is not intended as a finish coat and is compatible only for top coating with aliphatic solvent based alkyd enamels, 7.1.2 Pre - painted Cold Formed Materials — At American's option, cold formed secondary structural framing may use pre - painted coil stock which eliminates the need for shop applied primer. Primer will be applied in a thickness of 0.45 — 0.55 mils, Primer is not intended as a finish coat, Due to lubricants used to aid the roll forming process, the application of a tie coat must be used prior to application of a topcoat. 7.1.3 Abrasions caused by handling after painting as well as the flaking of tight mill scale are to be expected, American Buildings shall furnish primer to allow for touch -up of these areas by the contractor, 7.2 LONG LIFE COATED PANELS 7.2.1 Base Metal shall be 29, 26 or 24 gage G90 zinc - coated (galvanized) orAZ50 aluminum -zinc alloy- coated steel. 7.2.2 Prime Coat: The base shall be pretreated and then primed with an epoxy or urethane type primer for superior adhesion and superior resistance to corrosion. The dry film thickness shall be 0.2 mils, 7.2,3 Exterior Coat: After priming, the exterior side shall be given a Long Life coating, baked in excess of 500 °F to a controlled dry film thickness of 0.7 to 0,8 mils, Excellent weatherability and resistance to coating deterioration shall be evident when subject to the following tests: Test Test Method Performance Specular Gloss ASTM D 523 25 -35 degrees on a Specular Gloss ASTM D 523 std. Amer 60 deg, Dry Film ASTM D 3363 Meter F -211 Hardness ASTM D 3363 F minimum Q.U.V. Weatherometer ASTM G 53 Passes 300 hours, no Direct Impact ASTM D 2794 objectionable color Reverse Impact ASTM D 2794 change, chalking or Humidify ASTM D 2247 blistering Passes 1000 hours Resistance , ASTM D 1308 Excellent/No Removal Salt Spray ASTM B 117 Passes 750 hours SS(ABC) -Rev. 09105, American Building W00005 s Company Resistance Reverse Impact ASTM D 2794 Passes No Removal Microbial Attack ASTM G 22 Passes 7.2.4 Interior Finish: The interior finish shall have a parchment or gray polyester topcoat over an epoxy or urethane primer, The dry film thickness shall be 03 mils, 7.3 PREMIUM 70 PLUS COATED PANELS 7.3,1 Base Metal shall be 29, 26, 24 or 22 gage G90 zinc - coated (galvanized) orAZ50 aluminum -zinc alloy- coated steel, 7.3.2 Prime Coat: The base metal shall be pretreated and then primed with an approved epoxy, urethane, or water base primer, The dry film thickness of the primers shall be 0.25 mils minimum. 7.3.3 Exterior Coat: After priming, the exterior side shall be given a finish coat of a 70% minimum Kynar 5000 (PVDF) formulation, The dry film thickness of the topcoat shall be 0.70 mils minimum. The total dry film thickness shall be 0.95 mils minimum. Excellent weatherability and resistance to coating deterioration shall be evident when subject to the following tests: Test Test Method Performance Specular Gloss ASTM D 523 Low Gloss, 5-10 at 60 Degrees Dry Film Hardness ASTM D 3363 F minimum Film Adhesion ASTM D 3359 Excellent/No Removal Direct Impact ASTM D 2794 Excellent/No Removal Reverse Impact ASTM D 2794 Excellent/No Removal Abrasion Resistance ASTM D 968 Exceeds 60 liters Chemical Resistance , ASTM D 1308 Excellent/No Removal Salt Spray Resistance ASTM B 117 Passes 1000 hours Humidity Resistance ASTM D 2247 Passes 1000 hours Color Retention ASTM D 2244 No objectionable change. Max, 4 Delta E units (Hunter) Color Chalk Resistance ASTM D 659 Change No objectionable change. Minimum rating of 9 Roof panels with the Premium 70 Plus finish must have a minimum 1/2:12 roof slope to qualify for Material Warranty, 7,3.4 Interior Finish: The interior finish shall have a parchment or gray polyester topcoat or backer over an epoxy, urethane, or water base primer. The dry film thickness shall be 0,50 mils, 10 E • "c-1vuulvl ium UUATED PANELS They shall comply with the performance requirements of 7,4.1 Base metal shall be 29, 26, 24, or 22 gage G90 zinc- AAMA / NWWDA 101/LS, 2 -97 for a Performance Class of coated (galvanized) or AZ50 aluminum -zinc alloy - coated HS -R25, steel, 8,1.2 Narrow light Windows shall be wall units 2' -0" X 7' having 7,4.2 Prime Coat; The base metal shall be pretreated and then dark bronze aluminum frames 1 3/4" X 4" and V solar Primed with an approved epoxy, urethane, or water base bronze annealed insulated glass. The glazing stop shall primer, The dry film thickness of the primers shall be 0;4 snap on using stainless steel spring clips. There shall be mils minimum, no exposed screws on the Glazing Bead, The glass shall 7.4.3 Exterior Coat; After priming, the exterior side shall be given be set against the fin using Butyl Tape and sealed on interior and exterior with silicone to insure a watertight seal a finish coat of a 70% minimum Kynar 500@ (PVDF) formulation. and to enable truck shipment without damage or glass The dry film thickness of the topcoat shall be slippage, 1,0 mils minimum. The total dry film thickness shall be 1,4 mils minimum. Excellent weatherability and resistance to 8.1.3 The Thermal Barrier Windows shall be horizontal slide coating deterioration shall be evident when subject to the following tests; units with a bronze finish. They are available in 3' -0" X 3'- ", 0", 4'4' X X -0 4' -0" X 4' -0" and 6' -0" X 3' -0" size that are Test Test Method Performance Specular Gloss self flashing to American Buildings Company's Architectural III, Architectural "V" Rib and Long Span III ASTM D 523 Medium Gloss, 30 -40 wall panels. A 2' -0" X 6' -0" fixed glass unit is available, at 60 degrees Dry Film Hardness ASTM D 3363 F minimum They shall be furnished with a 5/8" insulated glass and a polyurethane thermal barrier, Film Adhesion ASTM D 3359 Excellent/No Removal Direct Impact ASTM D 2794 Excellent/No Removal 8.2 PERSONNEL DOORS Reverse Impact ASTM D 2794 Excellent/No Removal Abrasion Resistance ASTM D 968 Exceeds /No liters 8,2.1 Standard personnel doors shall be 3' -0" X 7' -0" and 13/4" Chemical Resistance ASTM D 1308 Excellent/No Removal Salt Spray Resistance manufactured from 18 gage zinc - coated (galvanized) steel, ASTM B 117 Passes 1000 hours Humidity Resistance Doors shall have a textured finish and shall be painted ASTM D 2247 Passes 2000 hours Color Retention ASTM D 2244 No objectionable white. Doors shall meet Federal Specification RR- D -575b and Commercial Standards CS- 242 -62 and PS4 change. Max, 4 Delta -66. Doors shall be one of the following; E units (Hunter) Color Change Chalk Resistance ASTM D 659 No objectionable A. Dominion Building Products, g "Premium" Knockdown, (polyurethane core) finish painted or equal. change. Minimum B. Dominion Building Products, "Standard ", Knock down, rating of 9 (polystyrene core) prime painted or equal. Roof Panels with the Premium 70M finish must have a minimum 1/212 roof slope to qualify for Material Warranty. 1, Doors shall have square edges for non -hand installation. 7.4,4 Intedor Finish; The interior finish shall have a parchment or 2. Doors shall be flush and have vertical seams reinforced with continuous 16 gage channels, gray polyester topcoat or backer over an epoxy, urethane 3. Doors shall be provided with top and bottom inverted or wafer base primer. The dry film thickness of the backer shall be 0,50 16 gage galvanized steel channels spot - welded within mils minimum, the door, 8 ACCESSORIES 4. Doors "A" and "B" shall be reinforced, .stiffened, and sound deadened with impregnated kraft honeycomb 8.1 WINDOWS core completely filling the inside faces of the door and laminated to the Inside faces of the panels. 84,1 Standard windows shall be horizontal 5. Doors shall be reinforced for applicable hardware; slide units with a bronze finish, 3' -0" X 3' -0" and 4' -0" X 3' -0" in Architectural 8'2.2 Door frames shall be 16 gage zinc - coated (galvanized) III, Architectural "V" Rib and Long Span III Panel Walls and steel, painted white and shall be one of the following; 4'-0" X 3' -0" in Shadow Panel Walls. They shall be furnished complete with 7/16" hermetically sealed double A. Dominion Building Products, "Premium" Knock down, glass, hardware and half screen, Windows shall be self - finish painted having a Jamb depth of 5 3!4" with a 14 flashing to American Buildings Company's wall panels, B. Domain on J Bui ding Products, "Standard" Knock down, SS(ABC) -Rev. 09105, American Bnilclin� C ompany FA400005 11 C7 1, Door jambs shall be constructed for non -hand installation. 2. Door frames "A" and "B" shall have factory applied kerf weather- stripping. 3. Doorframes shall be shipped as a package, one pair of jambs (hinge and strike for single openings or 2 hinge jambs for double openings), heads, sill plate, sub jambs, 9111 clips, weather- strip, threshold, hinges and fasteners, 8.2.3 Standard Locksets shall be on of the following: A. Yale CRE 8722 Mortise Lockset, US26D flnish, or equal. B. PDQ SK116PHL26D /S Lever Handle Lockset or equal, 8,2.4 Exit devices shall be one of the following: A. Yale 7100 Styline series rim device with a stainless steel finish. 8,2.5 Door threshold shall be aluminum, supplied with flat head screws and expansion shields for attachment to masonry floor. 8.3 PREMIUM PRE - ASSEMBLED PERSONNEL DOORS 8.3,1 Pre - assembled personnel doors when specified shall be 3'- 0" X T -0" X 13/4" manufactured from 18 gage zinc - coated (galvanized) steel with White or Bronze baked on painted finish. Doors are insulated Polyurethane Core (R14.97). 8,3,2 Door frames shall be 16 gage zinc - coated (galvanized) steel with White or Bronze baked on finish paint, 8,3.3 Standard Lockset shall be one of the following: A. Entry lock with lever handles will be on both sides, Key -in -knob on exterior side and thumb turn push button on interior side. Shall be PDQ SK116PHL26D /8, Meets ANSI 156.2 series 4000 Grade 2 requirements. B, Mortise lock with lever handles on both sides, Shall be Yale CRE8722 Grade 1. Meets ANSI A156,13 series 1000 requirements, 8,3,4 Exit device shall be Yale 7100 Series or equal. 8,3.5 Thresholds are constructed of aluminum alloy #6063 -T5 with mill finish, ADA compliant, All fasteners and anchors included for complete installation. SS(ABQ- Rev.09/0S,American Bnildings Company FA100005 • 8.4.1 Overhead door support framing shall be designed to resist applicable horizontal wind loads and shall consist of channel jambs with a channel header at the top of the opening, 26 gage steel, color coordinated flashing shall be provided to conceal panel edges at the opening unless otherwise specified. 8.5 GRAVITY VENTILATORS 8,5,1 Gravity ridge ventilators shall be manufactured from galvanized steel and painted white. The ventilator body shall be 24 gage and the skirt shall be adjustable to match the roof slope, Chain operated damper will be furnished. Ventilators shall be equipped with standard bird screens and riveted end caps. Ventilators shall be 10' long and have a 9" or 12" throat. 8.5.2 20" round ventilators shall be 24 gage and shall have an adjustable base for ridge mounting or a pitched base for on -slope mounting. 8.6 LOUVERS 8,6.1 Louvers shall be manufactured from 20 gage zinc - coated (galvanized) steel, painted white, and shall be self - framing and self - flashing. They shall be equipped with adjustable dampers unless otherwise specified, Nominal size shall be 3' -0" X 4' -0" for Long Span III (L3P), Architectural III (A3P) and Architectural 'v" (AVP) walls and 4' -0" X 4' -0" for Shadow Panel (HFP) walls, 8.7 SKYLIGHTS 8.7.1 Roof skylight panels shall be translucent fiberglass reinforced panels made in the same configuration as the metal panels. They shall be manufactured with a 2 ounce woven fiberglass cloth reinforcement in addition to random strand mat or cut glass fibers for structural strength. They shall meet or exceed applicable requirements of ASTM D3841 -80 Type 1, and ICBO Research Report No, 1412. Material weight shall not be less than 8 ounces per square foot. Impact Test: Skylights shall resist penetration when subject to a 100 pound cylindrical weight with a 5 3/4" diameter (26 square inches) dropped from *a height of 70 ". Flammability rate of material shall be no greater than 2 in /min when tested under ASTM D635. Coefficient of heat transmission (U- factors) shall be no greater than 0,8 BTU /Hr /Sq, ft. degree F. Available insulated skylights shall have a light transmitting foam sandwiched between a standard weight exterior panel and a 4 ounce nominal weight interior panel. Skylight panels shall be equivalent to STRONGLIGHT panels as manufactured by Lasco Industries, or equal. 12 AMER-ICAN BUILDIN(�s CoMpANy STANDA SPEOFICATIONS ENGINEERING PROPERTIES (STRONGLIGHT Skylight) P-- rO—L?� Test Method Nominal Value Shear Strength ASTM D 732 11,000 psi Bearing Strength ASTM D 953 A 13,400 psi Tensile Strength ASTM D 638 19,000 psi 8.7.2 Wall sidelight panels shall be translucent fiberglass panels made in the same configuration as the wall panels. They shall meet or exceed applicable requirements of ASTM D3841 -80 Type 1, and ICBO Research Report No. 1412. Material weight shall not be less than 6 ounces per square foot. 8.8 INSULATION 8.8.1 Fiberglass Blanket Insulation shall be available in 2 ", 3 ", 4" and 6" thicknesses. (Other roof insulation systems are available with thickness up to 12 inches), Maximum application thicknesses are as follows; 8.8.2 FACINGS COLOR WHITE WMP- WMp. Flame Spread* VINYL 25 VR 10* 10 FSK WMP -F Perm Rating 1.0 10* 02 5 5 * * 10* Service Tem. Min. 0 -40 -40 -40 .02 -40 *All laminated or composite flame spreads are 25. The white vinyl flame spread rating is only available based on composite testing. 8.8.3 Rigid Foam Thermal Blocks shall be cut from high density extruded polystyrene board stock, having a UL 25 flame spread rating. Thermal Blocks shall have a minimum thickness of 3/4 inch and shall be a minimum of 3 inches in width. Thermal Block material shall be Dow Styrofoam (Blue Board) or equal, 8.8,4 Foil -faced rigid insulation (Thermax@) has a glass fiber reinforced polyisocyanurate foam core. The foam core has a uniform, closed -cell structure which is resistant to the flow of heat. Aluminum foil facers laminated to each side of the product provide an effective moisture barrier.. Rigid insulation products are available in thicknesses from 1/2" to 4 ". Rigid insulation shall be Thermax by Celotex or approved equal, 8.9 ROOF CURBS 8.9.1 Roof curbs shall be manufactured from minimum 18 gage AZ55 aluminum -zinc alloy- coated steel. Curbs shall have an integral cricket type water diverter, The minimum curb height shall be 8 8.10 PIPE FLASHING 8.10.1 Pipe flashing shall be of a one piece construction and fabricated from an EPDM membrane and shall have an aluminum base that can be field conformed to any panel configuration. Pipe flashings shall be flexible for mounting on any roof slope, Service temperature ranges shall be from -30 *F to +250 °F. Three standard flashing sizes shall accommodate pipe sizes from 1/4" diameter up to 13" diameter, 9 ERECTION AND INSTALLATION The erection of the metal building and the installation of accessories shall be performed in accordance with the American Buildings Company's erection manuals and the building erection drawings. The erection shall be performed by a qualified erector using proper tools and equipment, In addition, erection practices shall conform to Section 4, Common Industry Practices found in the Metal Building Systems Manual, 2002 edition. There shall be no field modifications to primary structural members except as authorized and specified by American Buildings Company. SAFETY DURING ERECTION CANNOT BE OVER- EMPHASIZEDI 10 BUILDING ANCHORAGE AND FOUNDATION The building anchor bolts shall resist the maximum column reactions resulting from the specified combinations of loadings, The quantities and diameters shall be specified by American Buildings Company, Anchor bolt embedment designs and the anchor bolts are to be supplied by others, NOT American Buildings Company. Anchor bolt embedment and foundations shall be adequately designed by a qualified foundation engineer to support the building reactions and other loads which may be imposed by the building use; The design shall be based on the specific soil conditions of the building site, -The foundation engineer shall be retained by other than American Buildings Company, American Buildings Company assumes no SS(ABC) -Rev. 0914 American Buildings Company FM00005 13 Fiberglass Insulation Facings shall be laminated on one side with one of the facings as shown in chart below, Facings other than those shown in the chart below are available upon request. 6 0 AMER-ICAN BUI s. i _ !► responsibility of the integrity of the foundation, 11 WARRANTIES American Buildings Company offers a variety of warranties for panel coatings, roof systems weathertightness, Purchased products, and manufactured material, For specific warranty details and costs contact American Buildings Company at 334 - 687 -2032, SS(AI3C)_R— 09105, Americnn Buildings Company FM00005 14