Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
APPLICATIONS, CO, MULT DOCS - 07-00387 - American Self Storage - Addition
oe �exs °Rc v f CITY OF v REX Bul 1d, g ,.•' America's Family Community in HED P ermit ISSUED TO: PERMIT #: 0700387 INSPECTION CARD BUILDING roved NAME Miller Danny 1. EFinal h -In Date 2. FOR THE CONSTRUCTION OF: American Self Storage Additic JOB ADDRESS: 270 American St GENERAL CONTRACTOR: Owner OTHER Date roved This permit is issued subject to the regulations contained in Building Code and Zoning Regulations of the 1 Fire Department Fina City of Rexbug. It is specifically understood that this Permit does not allow any Variance to the regulations of the City of Rexburg or Zoning Codes unless specifically approved by the City Council and explained on PLUMBING the Building Permit Application as approved by the Building Inspector. Date roved 1. Sewer Service Conn Date Approved Issue B 2. Water Service Conne 10/25/2007 3. Rough -In Building Inspector THIS PERMIT MUST BE PROMINANTLY DISPLAYED AT THE BUILDING SITE 24 Hour Notice and THE BUILDING MAY NOT BE OCCUPIED OR USED WITHOUT FIRST OBTAINING A CERTIFICATE OF OCCUPANCY to make in p o appo ntments 1) A complete set of approved drawings along with the permit must be ke t on the premises during construction. p No work shall be done on any part to For Inspections Call 359 -3020 option 2 of NOTICE 2) The permit will become null and void in the event of any deviation from the in each build b eyond essive inspec without ■ accepted drawings. approval. No structural 3) No foundation, structural, electrical, nor plumbing work shall be concealed any underground work shall be be covered A CERTIFICATE OF OCCUPANCY CAN NOT ework of without approval. BE ISSUED PRIOR TO FINAL ELECTRICAL & PLUMBING INSPECTION ELECTRICAL of 4Exe �R� U� Q CITY OF RE America's Family Community Certificate of Occupancy City of Rexburg Department of Community Development 19 E. Main St. / Rexburg, ID. 83440 Phone (208) 359 -302 / Fax (208) 3593024 Building Permit No: Applicable Edition of Code: Site Address: Use and Occupancy: Type of Construction: Design Occupant Load: Sprinkler System Required: Name and Address of Owner: Contractor: Special Conditions: Occupancy: 0700387 International Building Code 2003 270 American St American Self Storage Type II, non - rated, non - combustible Commercial No Miller Danny 270 American St Rexburg, ID 83440 Owner /Lessee Storage - moderate hazard This Certificate, issued pursuant to the requirements of Section 109 of the International Building Code, certifies that, at the time time of issuance, this building or that portion of the building that vies inspected on the date listed v►es found to be in compliance Kith the requirements of the code for the group and division of occupancy and the use for 14hich the proposed occupancy Ws classified. Date C.O. Issued: September 05, C.O I Gam'' ssued b Building Official There shall be no further change in the e)asfing occupancy classification of the building nor shall any structural changes, modifications or additions be made to the building or any portion thereof until the Building Official has reviewed and approved said future changes. Plumbing Inspector: ^ Fire Inspector: 2_942n� �t" Electrical Inspector: P&Z Administrator: • • CITY OF KEXBUG 07 00387 BUILDING PERMIT APPLICATION Please i American Self Stora 19 E MAIN, REXBURG, ID. 83440 9 e A ddition 208 - 359 -3020 x326 PARCEL NUMBER: YIY LC! { We will provide this for you) SUBDIVISION: UNIT# BLOCK# LOT# (Addressing is based on the information - must be accurate) CONTACT PHONE # PROPERTY ADDRESS: �2`7 0 Aettje(C.44 St. A 3 D 8 PHONE #: Home Poo) 962-6080- Work (ZoB 6 -9 - I Cell (Sj[) x`10 - ') 8l$ OWNER MAILING ADDRESS: a70 Ao*uca&( Sr CITY: Rx'iar, STATE: TO ZIP: T94(( Ax add'- 6 56 - ooxr APPLICANT (If other than owner) (Applicant if other than owner, a statement authorizing applicant to act as agent for owner must accompany this application.) APPLICANT INFORMATION: ADDRESS STATE; ZIP EMA CITY: AN PHONE #: Home ( ) Work ( ) Cell ( CONTRACTOR AAVf44AW Slag MAILING ADDRESS: 9 7 0 Aoy,,rc4qw St. CITY A, STATE 1,0 ZIP . PHONE: Cell# 90'(99 Work# - 956 - ?Iff Fax# -249 -ds oerr ET�IAIL IDAHO REGISTRATION # & EXP. DATE SEE' PAC". 9 How many buildings are located on this property? a Did you recently purchase this property ?& Yes (If yes give owner's name) Is this a lot split? � YES (Please bring copy of new legal description of property) PROPOSED USE: Qom"& " S" Srze� f-A4url (i.e., Single Family Residence, Multi Family, Apartments, Remodel, Garage, Commercial, Addition, Etc.) APPLICANT'S SIGNATURE, CERTIFICATION AND AUTHORIZATION: Under penalt of perjury, I hereb certif that I have read this application and state that the information herein is correct and I swear that any information which may hereafter be given by me in hearings before the Planning and 'Zoning Comtnission or the Cicy Council for the City of Rexburg shall be truthful and correct. I agree to comply with all City regulations and State laws relating to the subject matter this application and hereby authorized representatives of the City to enter upon the above - mentioned property for inspections purposes. NOTE': bu )ding offic ay r oke a pcm,, o approval issued nder the provisions of the 2003 International Code in cases of an}' false statement or misrepresentation of fact n the apphcati on plans on wl permit or proval based. Permit void if not started within 180 days. Permit void if work stops for 180 days. ` :5D / oZ4n 7 Sifnatuurkof Owner/Applicant Fid Do you prefer to be contacted by fax, email o r phone? Circle One WARNING — BUILDING PERMIT MUST BE POSTED ON ON SITE! Plan fees are non - refundable and are paid in full at the time of appli anua 1 2005. City of Rexburg's Acceptance of the plan review fee does no ppr 2007 * *Building Permit Fees are due at time of application ** * *Building Permi check does not cle • • Building Safety Department- 0 City of Rexburg �U 19 E. Main ionellh @rexburg.org Phone: 208.359.3020 ext 326 Rexburg, ID 83440 www.rexburg.org Fax: 208.359.3024 Affidavit of Legal Interest State of Idaho County of Madison I Name Address City State Being first duly sworn upon oath, depose and say: (If Applicant is also Owner of Record, skip to B) A. That I am the record owner of the property described on the attached, and I grant my permission to: Name Address to submit the accompanying application pertaining to that property. B. I agree to indemnify, defend and hold Rexburg City and its employees harmless from any claim or liability resulting from any dispute as to the statements contained herin or as to the ownership of the property which is the subject of the application. t� Dated this day of , 20 Signature Subscribed and sworn to before me the day and year first above written. r�TARy' Notary PAL of Idah Residing at: U BUN ? + J T4;FI t+F K�AO My commission expires: 'J • • Please complete the entire Application! If the q does not apply fill in NA for non applicable NAME 4 4 �tCF & PROPERTY ADDRESS 970 97. Permit# SUBDIVISION N 11 Dwelling Units: r� Parcel Acres: P . ?6 A- SETBACKS i FRONT ( SIDE S'6 SIDE S a BACK a5. Remodeling Your Building /Home (need Estimate) $ t4 /A __ ..... _....._ ................._._. ............................... SURFACE SQUARE FOOTAGE. • (Shall include the exterior wall measurements of the building) First Floor Area << om 58 • Fr C8LO Unfinished Basement area Second floor /loft area Finished basement area Third floor /loft area Garage area Shed or Barn C arport /Deck (30" above grade)Area Water Meter Quantity: 044 1 Water Meter Size: Required Y PLUMBING �� Plumbing Contractor's Name: nE'I�g � �I.Uwtgi^ Business Name. ,��� P Address 76 N . 's uuwSrvat R!4 . City _r<e?CU(ZCA_ State DAB Zip g 4 No Contact Phone: �ag ) 7,56- 877 0 Business Phone: 356- S 77 o Email Fax ( 1!; 1 FIXTURE COUNT (includine rou--hed fixtures N A Clothes Washing Machine K A Sprinklers �► _ Dishwasher n A Tub /Showers K A Floor Drain ( Toilet /Urinal K A Garbage Disposal t Water Heater A Hot Tub /Spa Water Softener Sinks (Lavatories, kitchens, bar, mop) Plumbing Estimate $ (Commercial Only) 10pq 1�_ CR_ Required? Signature of Licensed Contractor License number Date The Ci ty of Rexbu s pe fee s chedule is the sam as required by the State of Idaho in 0 • Please complete the entire Application! If the question does not apply fill in NA for non applicable NAME /dA84CA,nl St:46 PROPERTY ADDRESS 0 Aw4tQ&-L S Permit# SUBDIVISION 8IA Requlre&U MECHANICAL Mechanical Contractor's Name: R(e&J?45� PLVM&11k Business Name: FE.�C&ar, Address 766 M. YEU JJQs E NWY Cit RNBJ State :WAN -6 Zip `SV'u O Contact Phone: (24 ) 3$6" —Business Phone: (fig) 356- 8770 Email Fax l Va 1, - 55 - c - 1 6 Mechanical Estimate $ 300 (Commercial /Multi Family Only) FIXTURES & APPLIANCES COUNT (Single Family Dwel ng Only) A LA Furnace K A Exhaust or Vent Ducts n A Furnace /Air Conditioner Combo � Dryer Vents Heat Pump 4 A Range Hood Vents _ 41A Air Conditioner d A Cook Stove Vents / on Cooler Bath Fan Vents A Unit Heater A A other similar vents & ducts: Space Heater N IA Decorative gas -fired appliance __L4/4,4_ Incinerator System A Boiler W A Pool Heater Fuel Gas Pipe Outlets including stubbed in or future outlets Inlet Pressure (Meter Supply) PSI Heat (Circle all that apply) Gas Oil Coal Fireplac Electric Hydronic Mechanical Sizing Calculations must be submitted with Plans & Application Point of Delivery must be shown on plans yl/c- C- /* /6 Required! Signature icensed Contractor License number The City of RexhurX i permit fee schedule is the same as 8 -9- Date the State of Idaho .7 Building Safety Department City of Rexburg 19 E Main ionelih @rexburg.org Phone: 208.359.3020 x326 Rexburg, ID 83440 www.rexburg.org Fax: 208.359.3024 OWNER'S NAME M( PROPERTY ADDR S A7 o 4p-z- �c�,.t 5-C SUBDIVISION N R PHASE A a LOT A 1 7.4 BLOCK �y EX- J Permit 907 00387 American Self Storage Addition 270 American St Required f!l ELECTRICAL Electrical Contractor's Name 3 LA"Q R- 0EZ4"- S Business Name 3e aI't4 R 0 9-9 fseS 6 Address K 3 ( AWC (00 96eTW Ci G�CAe COUr State 'sDA o Zip s Cell Phone (a0$) W1 - 6 3 9 q Business Phone Fax (;?08) '? 9 5'- GA Email F0 10- 6 WA ACT Electrical Estimate ( cost of wiring & labor $ (COMMERCIAL /MULTI - FAMILY ONLY) TYPES OF INSTALLATION (New Residential includes everything contained within the residential structure and attachedgarage at the same time) X Unto 200 amp Servic A 201 to 400 amp Service* A Over 400 amp Service* 1� A Existing Residential (# of Branch Circuits) A Temporary Construction Service, 200 amp or less, one location (for a period not to exceed 1 year) 14 A Spa, Hot Tub, Swimming Pool A Electric Central Systems Heating and /or Cooling (when not part of a new residential construction permit and no additional wiring) 91A Modular, Manufactured or Mobile Home I 1A Other Installations: Wiring not specifically covered by any of the above Cost of Wiring & Labor: $ ^� A Pumps (Domestic Water, Irrigation, Sewage) P Requested Inspections (of existing wiring) Temporary Amusement/ Industry *Includes a m eCm o ris ec s. Additional inspections charged at requested inspection rate of S40 per hour. Signature of Licensed Contractor License number Date The Ci ty of kexbr rg r peimit schedule is th sam as requi by the State of Id aho e Jun 20 2008 10:11RM LEISHMRN ELECTRIC 12083590918 p.1 Building Safety Department City of Rexburg 19 E Main /anelih @rexburg.org Phone_ 208.359.3020 x326 Rexburg. /D 83440 www.rexburg.org Fcac: 208.359.3024 OWNER'S NAME PROPERTY ADDRESS 0 SUBDIVISION PHASE LOT BLOCK "XS SHIIR. � CITY U H y y REURC. America's Family Cn�;nruu:i; Permit 907 00387 270 American St American Self Storage RequiredMf ELECTRI ElectricalContractoes Name Bron Leishman Business Name Leishman Electric Address 442 South 4th East City Rexburg State ID Zip 83440 Celi Phone (2 0E) -3 Business Phone (209) -356-3770 Fax (208) 359 -0918 F.> u fl bcleishman @msn. com Electrical Estimate (cost of wiring & labor) $ COMMERCIAL /MUI TI- FAMILY ONL') TYPE'S OFAVSTALLATIONI � � � �l L4 --I � " ��' °1��� ���Sh (We wResidendAJinchrdes evrarything contained within the residential saucau* and attsrchedgnnyc at the game time) Up to 200 amp Service's 201 to 400 amp Service* Over 400 amp Service* Temporary Construction Service, 200 amp or less, one location (for a period not to exceed 1 year) Existing Residential (# of Branch Circuits) Spa, Hot Tub, Swimming Pool Electric Central Systems Heating and /or Cooling (when =d no additional wiring) Modular, Manufactured or Mobile Home Other Installations: Wiring not specifically coveted by Cost of Wiring & Labor. $ --� lvOf • O� Pumps (Domestic Water, Itxtgation, Sewage) Requested Inspections (of existing wiring) - Temporary Amusement /industry *Includes a ammum of 3 in na Additional inspeetio» eh-Wd at .quested inspection rate of ;40 per hoar. f� -off Sign of Licensed Contractor Licm a ==i= Ik Ths �re scba d+vk is Jha ra ers,, 9sr ssgaispd by the State peunit 7 0 • Building Safety Department City of Rexburg 19 E. Main janellh @rexburg.org Phone: 208.359.3020 Rexburg, ID 83440 www.rexburg.org Fax: 208.359.3024 0 I REXBURG APPLICATION: "CONSTRUCTION PERMIT" CONSTRUCTION PERMIT #: PERMIT APPROVED: YES/ NO $50.00 FEE PAID: YES /NO - APPLICANT INFORMATION: APPROVED BY: Business Name: _Ant SQt '90464- Office Address: �-7o 5'(. 94jcgoac, spy 2 q o City State Zip Office Phone Number: ( �`� ) 6 S6 ' RCA L Contractor Performing the Work: 4r%-6e4e• ( Setf S&%t -4 eL Contact Person: DA,4oiq fAtc. - Cell Phone # ( Gqo ) 9'14 - 7 8 S - LOCATION OF WORK TO BE DONE: Street Address Where Work Will Be Done: ;L 4r&" .Arrc 5t'. Business Name Where Work Will Be Done: 40-is cu4+4 $& - f - SCO Dates For Work To Be Done: AV - To Aja PLa 8 Contact Person: QbA-.L`e Ptktu0--2. Phone Number: ( A) 65'6 -I'm(( Cell # ( -'?B(S PLEASE CHECK THE TYPE OF PERMITS) YOU ARE APPLYING FOR: ❑ AUTOMATIC FIRE- EXTINGUISHING SYSTEMS ❑ COMPRESSED GASES ❑ FIRE ALARM AND DETECTION SYSTEMS AND RELATED EQUIPMENT ❑ FIRE PUMPS AND RELATED EQUIPMENT ❑ FLAMMABLE AND COMMBUSTIBLE LIQUIDS ❑ HAZARDOUS MATERIALS ❑ INDUSTRIAL OVENS ❑ LP -GAS PRIVATE FIRE HYDRANTS ❑ SPRAYING OR DIPPING ❑ STANDPIPE SYSTEMS ;7" ORARY MEMBRANE STRUCTURES, TENTS, AND CANOPIES � 7 36 �'7 Appli ant's Signature Date V/ • • SUBCONTRACTOR LIST Excavation & Earthwork: -9Au' Q & • G& Concrete: (� ILC. M L .0 hf- S Masonry: Roofing: T - AST SUC- Sz644-Cf- '9U1 01^QG,S Insulation: Tea -f-As-( 5r� 44 6j 9 <S Drywall: 4 lA Floor Coverinsys: Plumbing: VA�� Heatinn: F acguw Electrical: Ngt3( Special Construction (Manufacturer or Supplier) Roof Trusses: (EGA( - ST r $�72Af �ul� -DDS' Floor /Ceiling Joists: � � $t ��� Sr- Z%AcD(+ Siding /Exterior Trim: -c&,' -FST SiC Z U (01 r%(&S Other: EXEMPTIONS FROM STATE REGISTRATION As of January 1, 2006, the City of Rexburg can no longer sell permits without having a copy of your State registration number or your exemption from the State registration. Please send a copy of your state registration or fill out this form showing your exemption and send it with your license renewal or your next permit application. (This list is a summarization of Idaho Code Title 54 Chapter 5205, for full definitions of these exemptions please see the State's website at ww,v.ibol.idaho.gov /cont.htm ❑ Currently State licensed pursuant to Title 54 Idaho Code, Chapters: 3 Architects, 10 Electrical Contractors /Journeyman, 12 Engineers /Surveyors, 19 Public Works Contractors (exempt from fee only registration required), 26 Plumbing /Plumbers, 45 Public Works Construction Management Licensing Act (exempt from fee only registration required), or 50 Installation of heating, ventilation and air conditioning systems ❑ Employee or volunteer of a licensed contractor or part of an educational curriculum or nonprofit charitable activity with no wages or salary ❑ Employee of a US Government agency (State, City, County, or other municipality) ❑ Public Utility doing construction, maintenance, or development to its own business ❑ Involved with gas, oil or mineral operations ❑ Supplier doing no installation or fabricating ❑ Contracting a project or projects with a total cost less than $2000 ❑ Operation of a farm or ranch or construction of agriculture buildings exempt from Idaho Building Code ❑ Any type of water district operations ❑ Work in rural districts for fire prevention purposes Owner who performs work on own property or contracts with a registered contractor to do work as long as the property is not for resale within 12 months 1< Owner or lessee of commercial property performing maintenance, repair, alteration or construction on that property ❑ Real estate licensee /property manager acting within Idaho Code ❑ Engaging in the logging industry ❑ Renter working on the property where they live with the property owners approval ❑ Construction of a building used for industrial chemical processing per Idaho Code ❑ Construction of a modular building (defined by Idaho Code) to be moved out of state I hereby CC OF that the above info ation is true and correct to the best of my knowledge. � -gO 7 Signa e // D to 4 � / . Print Name Planning & Zoning Agenda January 15, 2009 7:00 PM - City Council Chambers U � CITY OF REX Ow— America's Family Community Roll Call of Planning and Zoning Commissioners Minutes Planning and Zoning meeting — November 20, 2008 Public Hearings Unfinished /Old Business New Business: 1. Final Plat — Trehusen Subdivision — 4 West and 2 nd South _ -- Compliance j Non controversial Items Added to the Agenda 1. Reduced student parking discussion follo u 2. American Self Storage - Fencing 3. Day Care not permitted in downtown zone Hans Wentzel {►, f 4. Sign Ordinance - Temporary Signs and Bann s Report on Projects 1. New Year's Project Priority Discussion Tabled requests Building Permit Application Report Adjournment THE ABOVE SCHEDULED TIMES REPRESENT A BEST EFFORT AT SCHEDULING. IT MAY BE NECESSARY FROM TIME TO TIME TO ADJUST THESE TIMES TO ACCOMMODATE UNFORSEEN CIRCUMSTANCES. Notice: Please contact City Hall prior to any city meeting if there is any special assistance needed for disabled people planning to attend the meeting. Heads Up 1. Mike Ricks, P &Z Commissioner - Recognition of Service — February 5 P &Z meeting 2. Development Code 926 — Work Session 3. Letters regarding final plat recording 9 0 of µExs F o June 13, 2007 Mr. Chris Park Schiess & Associates 7103 South 45` West Idaho Falls, ID 83402 Dear Mr. Park: CITY OF REX _C'W Americas Family Community Upon review of American Self Storage, the following issues need to be addressed. Item 1: Water valves need to be installed at end of 12" water line and at entrance to parcel. Item 2: On page C -3, SSMH #3 cannot have the service line drop into it. Item 3: A permit from ITD will be needed to work in the right -of -way of Highway 33. Item 4: Thrust blocks to be installed at water line changes of direction. Please provide a response to the above items to the city for review. Sincerely, Joel Gray, PE Assistant City Engineer Joel Gray Assistant City Engineer 12 N. Center Rexburg, ID 83440 P. O. Box 280 Phone (208) 359.3020 ext. 331 Fax (208) 359.3024 joel@- xburg.org nsn - xburgog , ��ct ' -h`w�l - RE: Self Page l of - *VestmentO�cableone.net ��N� From: 'Tom Byrum' <tbyrum@techfaat.com> Sent: Wed Sep zZ 11:15 To: hwyz01investments@oab|eone.net Priority: Normal Subject: Rs: American Self Storage Type: Attachments Attached are the corrections for the Foundation Engineering Designs to reflect the 35 psf snow load required, Also attached are the design and engineering changes for the 1 hour FireVVaU for the North wall On Building #5, Tom Byrum National Sales Manager TECH-FAST Self Storage Buildings S15 Commerce St. Tacoma, WA 98402 (D0G)52O'O14S/ Fax (253)572-0388 Cell (2OG)481-8Q1O email: tbymm@techfaStoom ��~7����7 vv / vx�v�� / ��� ' Self S torage ��xn����� ����8 K�/��/�����T Revisions �� o�������� � D) G k , V EEO NL SEP 1 2007 CITY OF REXBURG httn .oublcooe.oetdradomaiLrJ?id=l] nobc=7064hB2OO57520— 9/12/2007 : • 09/1212007 10 :28 4809451909 • SE CONSULTANTS INC PAGE 02/02 BASIS F O R DESIGN DEAD s Roaf Panel% actual LIVE LOADS Roofs 3'3.0 psf., Snow) Wind Selsmio Use Group: Seismic Design Cal: Wind Load Fiesta: 90 mph Exposure: C I C coOE: 2003 International Bullding Code 2001 Edition of Cold- Formod Steel Design Manuel STRESSES OF MATERIALS CONGR E Footings fc = 2500 psi. STEEL Reinforcing Waldable Reinforcing Roof Deck Cold forrnad Steel m 1 1 1k f 4 11040 nc Allow. Sol[ 13eering 1500 psf Wide Flung* Tube Pipe fy - Gum psi. A Grade 60 fy c 60000 psi. A -706, Grade 80 V a 80000 psi. A-653, Orado 80 fy = 55000 psi. A-653, Grade 55 Allow. Let. Bearing 150 psi' Ift fy = 35000 psi. A.38 or fy = 50000 psi. A -512 fy - 46000 pal. A -500 fy m 36000 pal. A - 501 PRELIMINARY UNLESS SEALED ON EACH SHEEP OR ON COVER SHEET job; -,7' 0,383 Date; 8�J sy_ &C job No.: 168"0 SH.: S.E. CONSULTANTS, INC. , 0 INSIDE CLOSURE NV----------- 0 TAP[ SEALANT BETWEEN CLOSURE & PANEL #12x| 3D (2) PER CLOSURE J�^ 6" INSULATION, RUN PAST LI NE LINE l xl 1/4' HWH EAVE BY 12", FOLD EXCESS PLATED STEEL SELF EAVE CHANNEL, PER PLAN DRILLING w/ SEALING O.C. Y#SH[R, ZAC HEAD PREVENT WICKING OF MOISTURE (6) PER PANEL 0 GRID MULT�OK 24 ROOFING EAVE DRIP, Mk CA 6" INSULATION, RUN PAST LI NE LINE EAVE BY 12", FOLD EXCESS EAVE CHANNEL, PER PLAN BACK OVER FIBERGLASS TO O.C. PREVENT WICKING OF MOISTURE #12xl 112" SID AT 12' D.C. STRUT, PER PLAN 1 1/2" FLAT STRAP MK BK. R |NSUL ROLL HIGH EAVE PLATE EAVE TRIM, Mk CB EAVE DRIP, Mk CA 6" INSULATION, RUN PAST EAVE BY 12", FOLD EXCESS EAVE CHANNEL, PER PLAN BACK OVER FIBERGLASS TO PREVENT WICKING OF MOISTURE STRUT, PER PLAN AT EACH END OF 3" FLAT STOCK, MK HO, STRUT COLUMN, PER PLAN PER COL./FILLER jk STRAP LINE M PER ELEVATION G.W.B. FASTENERS, PANEL PATTERN NOTE TO ERECTOR, WRAP G.W.B. FULLY AROUND STRUT EACH SIDE � � --- N—_ I ' n*oc Cn*nno PER rLmv SEE SHEET T-1 FOR FIRE WALL � (]) ^ SO, PER EVREY DESCRIPTION DRIP EDGE DRIP EDGE, Mk A SLOPE AWAY FROM BUILDING�::� 1 HR EAVE WALL SECTION 0 CD N.TS. NON-STANDARD 0045 O C 1 Hr. Firewall per UL #U423 — Exterior application (Eave) Minimum 4" SS 20 ga. studs at 24" O.C. with 16 go eave channel at top and 16 go channel at bottom. Apply one layer 5/8" fire resistive gypsum wallboard on interior wall and 5/8" fire resistive exterior rated gypsum sheathing at exterior side applied vertically or horizontally with self tapping buglehead screws. All exposed layers shall be taped and mudded. O 1 Hr. Firewall per UL #U423 -- Exterior application (At Gable) Minimum 4" SS 20 ga. studs at 24" O.C. with (2) 16 go angles at top and 16 go channel at bottom. Apply one layer 5/8" fire resistive gypsum wallboard on interior wall and 5/8" fire resistive exterior rated gypsum sheathing at exterior side applied vertically or horizontally with self tapping buglehead screws. All exposed layers shall be taped and mudded. • LI • De I n g t n ell i gence, LLC Structural Engineering 1037 Erikson Drive Rexburg, Idaho 83440 Date: October 9, 2007 To: City of Rexburg Building Department L` Call: (208) 359 -1461 FAX: (208) 359 -0740 Subject: American Self Storage, Rexburg, Idaho — Permit #07 00387 Dear Sir or Madam: By this letter I am informing you that I am the "Professional of Record" for the above referenced project. Please call if you have any further questions. Respectfully, Scott A Spaulding, P. Design Intelligence, LLC 4 "� 4 � oi 0 q / Af7 D E C E �w -5 OCT 2 5 2007 0 CITY OF REXBURG i CALCULATIONS 0700387 American Self Storage Addition Job: American Self Storage Phase 3 Address: Building's 1, 4, & 5 Rexburg, ID (These calculations apply to the job at this address only.) Client: Tech -Fast Metal Systems Inc. (J2383) Index to Calculations Sheet 1 2 -7 8 -10 11 -13 14 -16 17 -20 21 -39 40 -56 57 -60 61 -82 L1- L27 11 -157 J1- J2 K1- K7 P1- P6 Copyright 8/07 Item Basis For Design Design Loads Roof Exterior Sheeting Exterior Sheeting Interior Sheeting Screw Reports Plans /Elevations Roof Purlin Design Beam Design Column Design Lateral Analysis i� ICBO - Panels ICBO - Remington Fasteners ICBO - Ramset Trubolt Fasteners ICBO - Acceptance Criteria Steel Decks Project Engineer Robert E. Chambers Job 1689 -07 S.E. CONSULTANTS, I 5800 East Thomas Road, Suite 104 Scottsdale, Arizona 85251 (480) 946 -2010 Fax: (480) 946 -1909 i CITY OF IRFXBURr-a M6 o8 2001 BASIS FOR DESIGN DEAD LOADS Roof Panels actual LIVE LOADS Roofs 35.0 psf., (Snow) LATERAL Wind Wind Load Basis: 90 mph Exposure: C Seismic Use Group: I Seismic Design Cat: C CODE: 2003 International Building Code 2001 Edition of Cold- Formed Steel Design Manual STRESSES OF MATERIALS CONCRETE Footings rc = 2500 psi. STEEL Reinforcing fy = 60000 psi. A -615, Grade 60 Weldable Reinforcing fy = 60000 psi. A -706, Grade 60 Roof Deck fy = 80000 psi. A -653, Grade 80 Cold formed Steel fy = 55000 psi. A-653, Grade 55 SOIL Allow. Soil Bearing Allow. Lat. Bearing 1500 psf 150 psf / ft Structural Wide Flange fy = 36000 psi. A -36 or fy = 50000 psi. A -572 Tube fy = 46000 psi. A -500 Pipe fy = 36000 psi. A -501 PRELI M I N ARY U N LESS SEALED O N EACH SH EFT O R O N CO V ER SH EET ,bb: T0383 D ate: 8/0-T By: ,eeC .b b No.: / 689-0 1 SH . : S.E. CONSULTANTS, INC. go TIC D DESIGN WIND LOADS FOR PITCHED FREE ROOFS 20031nternational Building Code V, wind speed = 90 mph Exposure Category = C 0, roof angle = 1.2 ° h, mean roof height = 8.64 ft Main Wind Force Resisting Syst ASCE7 6.5.13 K z , exposure coeff. = 0.85 K n , topography factor = 1.00 K d , directionality factor = 0.85 I,,„ wind factor = 1.00 G, gust effect factor = 0.85 P = gzGCN = 12.73 (C psf ASCE7 6.5.6.6, Table 6 -3 ASCE7 6.5.7.2, Figure 6 -4 ASCE7 6.5.4.4, Table 6 -4 ASCE7 6.5.5, Table 6 -1 ASCE7 6.5.8 0.00256K Eq. 6 -25 Roof Angle, 0 Load Case Wind Direction, y = 0°, 180° Clear Flow Obstructed Flow CNW CNL CNW CNL 7.5° A 1.1 -0.3 -1.6 -1 B 0.2 -1.2 -0.9 -1.7 15° A 1.1 -0.4 -1.2 -1 B 0.1 -1.1 -0.6 -1.6 22.50 A 1.1 0.1 -1.2 -1.2 B -0.1 -0.8 -0.8 -1.7 300 A 1.3 0.3 -0.7 -0.7 B -0.1 -0.9 -0.2 -1.1 37.5° A 1.3 0.6 -0.6 -0.6 B -0.2 -0.6 -0.3 -0.9 45° A 1.1 0.9 1 -0.5 -0.5 B -0.3 -0.5 1 -0.3 -0.7 I inaarly Inhamnlatart 1 - nPffirjP_ntS Mom AS(-;L- / 1 -toure 5 -7tfti 1 2 A 1.20 0.30 -0.50 -1.20 B -1.10 -0.10 -1.10 -0.60 Is flow obstructed (Yes /No)? Yes Load Case A SHEET OR ON P, windward roof = -6.37 psf P, leeward roof = -15.28 psf Load Case B &6C lob No.: P, windward roof = -14.01 psf P, leeward roof = -7.64 psf PRELIM IN ARY U N LESS SEALED ON EACH SHEET OR ON COVER SHEET Job: 7Z363 Date: 80T- By: &6C lob No.: )&89 -0* SH.: 2 S.E. CONSULTANTS, INC. D ESIGN WIND LOADS FOR PITCHED FREE ROOFS 2003 International Building Code Wind Direction V, wind speed = 90 mph y = o°, 180° p"^" PAW Exposure Category = C 0, roof angle = 1.2 ° a h, mean roof height = 8.52 ft Ma in Wind Force Resisting Svstem. ASCE7 6.5.13 K exposure coeff. = 0.85 K topography factor = 1.00 K directionality factor = 0.85 I wind factor = 1.00 G, gust effect factor = 0.85 P = gzGCN = 12.73 (C psf ASCE7 6.5.6.6, Table 6 -3 ASCE7 6.5.7.2, Figure 6 -4 ASCE7 6.5.4.4, Table 6 -4 ASCE7 6.5.5, Table 6 -1 ASCE7 6.5.8 0.00256K Eq. 6 -25 Roof Angle, 0 Load Case Wind Direction, y = 0 0 , 180 Clear Flow Obstructed Flow CNW CNL CNW CNL 7.50 A 1.1 -0.3 -1.6 -1 B 0.2 -1.2 -0.9 -1.7 15 0 A 1.1 -0.4 -1.2 -1 B 0.1 -1.1 -0.6 -1.6 22.5' A 1.1 0.1 -1.2 -1.2 B -0.1 -0.8 -0.8 -1.7 30° A 1.3 0.3 -0.7 -0.7 B -0.1 -0.9 -0.2 -1.1 37.5° A 1.3 0.6 -0.6 -0.6 B -0.2 -0.6 -0.3 -0.9 45- A 1.1 1 0.9 -0.5 -0.5 B -0.3 1 -0.5 -0.3 -0.7 Llneanv interpolated Goethctents from ASCE7 Fiaura R -1RR 12 A 1.20 1 0.30 -0.50 -1.20 P, leeward roof B 1 -1.10 1 -0.10 -1.10 -0.60 Is flow obstructed (Yes /No)? Yes Load Case A SHEET OR ON P, windward roof = -6.37 psf P, leeward roof = -15.28 psf Load Case B ,eEC Job N o .: P, windward roof = -14.01 psf P, leeward roof = -7.64 psf PRELIM IN ARY U N LESS SEALED ON EACH SHEET OR ON COVER SHEET Jo b: 1 D ate: 8104- B y: ,eEC Job N o .: J jp 8Q - Q* S H .: 3 S.E. CONSULT INC. International Building Code - 2003 Soil Site Class = D Seismic Use Group = 1 Ss = 16.8% S1 = 8.2% /3L Z? / IA Site Class Table 1615.1.2 (1) (Fa) Mapped spectral response acceleration at short periods (Ss) 0.25 0.50 0.75 1.00 1.25 A 0.80 0.80 0.80 0.80 0.80 B 1.00 1.00 1.00 1.00 1.00 C 1.20 1.20 1.10 1.00 1.00 D 1.60 1.40 1.20 1.10 1.00 E 2.50 1.70 1.20 0.90 0.90 F - I - I - I - I - Fa = 1.600 (interpolated) SMs = Fa ' Ss = 0.269 Site Class Table 1615.1.2 (2) (Fv) Mapped spectral response acceleration at 1 sec. periods (S1) 0.10 0.20 0.30 0.40 0.50 A 0.80 0.80 0.80 0.80 0.80 B 1.00 1.00 1.00 1.00 1.00 C 1.70 1.60 1.50 1.40 1.30 D 2.40 2.00 1.80 1.60 1.50 E 3.50 3.20 2.80 2.40 - F I - I - I - I - I - Fv = 2.4 SDs = 2/3' Sms = (interpolated) 0.179 SM1 = Fv ` Si = 0.197 SDI = 2/3 ` SMi = 0.131 Sds > Seismic Use Group I II III 0.000 A A A 0.167 B B C 0.330 C C D 0.500 I D D D Seismic Design Category = B Sdi > Seismic Use Group I 1 11 1 111 0.000 A A A 0.067 B B C 0.133 C C D 0.200 D D D PRELIMINARY UNLESS SEALED ON EACH SHEET OR ON Job: - &&383 Date: 8 04- By: , Job No.: COVER SHEET 89-0:� S .: ' S.E. CONSULTANTS, INC. Earthquake Lateral /Longitudinal Load to Column - 2003 IBC Seismic Use Group = I Seismic Design Category = B 1 = 1.00 Ss = 16.80% S1 = 8.20 % Sens = 0.269 SM1 = 0.197 R = 2.50 Height = 8.9 It T = 0.035' (hn) ^0.75 = 0.180 r Reliability /redundancy Factor = 1.00 SDS = 0.179 SDI = 0.131 (16 -35) (16 -36) V = SDS / [R11] = 0.072 W V = SDI/ [(R/QT] = 0.291 W (16 -37) V = 0.044' Si / [R/1] = 0.001 w (16 -38) V = 0.5 ` Si / [R/1] = 0.000 W V (Controls) = 0.072 W kips PRELIMINARY UNLESS SEALED ON EACH SHEET OR ON COVER SHEET 10 b: :T&W Date: 8/0:1 By: PZr, job No.: /1o89.O SH.: S S.E. CONSULTANTS, INC. IN International Building Code - 2003 Soil Site Class Seismic Use Group Ss = Si =D = I O.K. 16.8% 8.2% Site Class Table 1615.1.2 (1) (Fa) Mapped spectral response acceleration at short periods (Ss) 0.25 0.50 0.75 1.00 1.25 A 0.80 0.80 0.80 0.80 0.80 B 1.00 1.00 1.00 1.00 1.00 C 1.20 1.20 1.10 1.00 1.00 D 1.60 1.40 1.20 1.10 1.00 E 2.50 1.70 1.20 0.90 0.90 F - _ - _ - Fa = 1.600 (interpolated) SMs = Fa . Ss = 0.269 Site Class Table 1615.1.2 (2) (Fv) Mapped spectral response acceleration at 1 sec. periods (S1) 0.10 0.20 0.30 0.40 0.50 A 0.80 0.80 0.80 0.80 0.80 B 1.00 1.00 1.00 1.00 1.00 C 1.70 1.60 1.50 1.40 1.30 D 2.40 2.00 1.80 1.60 1.50 E 3.50 3.20 2.80 2.40 - F I - - i - - - Fv = 2.4 SDS = 2/3' SMs = (interpolated) 0.179 Sds > Seismic Use Group t 1 II 1 III 0.000 A A A 0.167 B B C 0.330 C C D 0.500 D D D Seismic Design Category = B Seat = Fv' Si = 0.197 SDI = 2/3 " SMi = 0.131 Sdi > Seismic Use Group I II III 0.000 A A A 0.067 B B C 0.133 C C D 0.200 D D D PRELIMINARY UNLESS SEALED ON EACH SHEET OR ON Job: �Z3v Date: ha By: iger job No.: COVER SHEET SH.: Zp S.E. CONSULTANTS, INC. Earthquake Lateral /Longitudinal Load to Column - 2003 IBC Seismic Use Group = I Seismic Design Category = B 1 = 1.00 Ss = 16.80 % St = 8.20 % SMs = 0.269 S M1 = 0.197 R = 2.50 Height = 8.67 ft T = 0.035 ` (hn) ^0.75 = 0.477 r Reliability /redundancy Factor = 1.00 SDS = 0.179 SDI = 0.131 (16 -35) (16 -36) V = SDs If [R/I] = 0.072 W V = SDI/ [(R/I)Tj = 0.297 W (16 -37) V = 0.044 • Si / [R/1] = 0.001 w (16 -38) V = 0.5 • Si / [R/1] = 0.000 w V (Controls) = 0.072 W kips PRELIMINARY UNLESS SEALED ON EACH SHEET OR ON COVER SHEET Job: �W Date: B O By: OEC Job No.: 4 SH.: S.E. CONSULTANTS, INC. ROOF DECK DESIGN n 26 GAGE, "KLIP RIB" panel 16 inch width Yield Strength, Fy = 80 ksi Tensile Strength, Fu = 90 ksi Ix = 0.045 in ^4 /FT Sx(t) = 0.0607 inA31FT Sx(b) = 0.0476 in ^3 /FT See Manufactures specifications. PRELIMINARY UNLESS SEALED ON EACH SHEET OR ON COVER SHEET Job: .T2383 Date: Q By: REC Job No.: /68?'©; SH.: 8 S.E. CONSULTANTS, INC. Light Gauge Kli W n Featuring Zincalume° For Twice the Life! Zincalume combines the strength of steel with the corrosion resistance of aluminum for twice the life of most zinc coatings. K ip -Rib* is a performance rated structural standing seam panel system that snaps positively over concealed anchor clips for quick installation and exceptional strength. Klip -RibO is the preferred panel for pre - engineered metal building systems. ❑ Klip -Ribo has been tested in accordance with UL580 and meets UL Class 60 wind uplift requirements. ❑ Has been tested for air infiltration per ASTM El 680, and water infiltration per ASTM Ell 646. ❑ Can be installed over solid substrates or spaced support members. ❑ Integral ribs have the bold appearance of a batten, but without separate snap -on battens. Preferred for high visibil- ity applications with less likelihood of oil canning than panels with wide flat areas. ❑ Klip- RibOls locking seam reduces field labor by eliminating field seaming. www.aepspan.com 8„ ; I - 8" -:11.� I 16" Net Coverage Detail of interlocking rib lagltt auge Khp Ribs ecftoa Pioperfies, ~� ❑ Its patented 21 -gauge clip engages two ribs and allows panels to be disengaged if needed. ❑ Can be installed on pitches as low as 1:12. ❑ Panels are stiff enough to be shipped without wooden crates. The stretch wrap packaging protects the panels from water and dirt and reduces job site waste. ❑ Readily available in Zincalume° Plus for unpainted appli- cations, also available in variety of colors in the DuraTechTmnt coating system. i3 AEP , 6 SPAIN Engineered Solutimzr in Metal Tacoma, WA 800 - 733 -4955, 253- 383 -4955 FAX 253 - 272 -0791 Fontana, CA 800- 272 -2466, 909 - 823 -0401 FAX 909 - 823 -2625 Ca Light GaugeKfi , Ri bO Allowable Load (Ibs. /ft') Notes: • Top values based on allowable stress. Bottom values based on allowable deflection of U180. • Steel conforms to ASTM A792 (Zincalume'), minimum yield 80,000 psi. • Values are based on the American Iron and Steel Institute (AISI) "Specifications for the Cold- Formed Steel Design Manual" 0996 Edition). • Spans greater than 5'0" do not have a UL60 rating but are acceptable under certain load and span conditions. For slopes lower than 2:12, applica- tions in snowfall areas, or spans greater than 5', please contact your AEP Span representative for recom- mendations. Loading Table Legend f —Load limited by flexural bending stress 0180 —Load limited by a deflection of 1/180 of the span L —Span SS— Single span �- r DS— Double span f i TS— Triple span < Specifications subject to change without notice. Jft AEP a SPAN Engineered Solutions in Metal Zincalume• is a registered trademark of BHP Steel pLA) Pty Ltd ® ASC Profiles Inc. May 2002 Printed in USA Revision 5M (PS141) Jt Span Gauge Span Conditions 3' -0" 3' -6" 4' -0" 4' -6" 5' -0" 5' -6" 6' -0" 6' -6" 7' -0" SS f 152 111 85 67 54 45 38 32 27 U180 152 111 85 67 54 44 33 26 21 26 DS f 138 101 78 61 49 41 34 29 25 0180 138 101 78 61 49 41 34 29 25 TS f 173 127 97 77 62 51 43 36 31 U180 173 127 97 77 62 51 43 36 31 Notes: • Top values based on allowable stress. Bottom values based on allowable deflection of U180. • Steel conforms to ASTM A792 (Zincalume'), minimum yield 80,000 psi. • Values are based on the American Iron and Steel Institute (AISI) "Specifications for the Cold- Formed Steel Design Manual" 0996 Edition). • Spans greater than 5'0" do not have a UL60 rating but are acceptable under certain load and span conditions. For slopes lower than 2:12, applica- tions in snowfall areas, or spans greater than 5', please contact your AEP Span representative for recom- mendations. Loading Table Legend f —Load limited by flexural bending stress 0180 —Load limited by a deflection of 1/180 of the span L —Span SS— Single span �- r DS— Double span f i TS— Triple span < Specifications subject to change without notice. Jft AEP a SPAN Engineered Solutions in Metal Zincalume• is a registered trademark of BHP Steel pLA) Pty Ltd ® ASC Profiles Inc. May 2002 Printed in USA Revision 5M (PS141) Jt EXTERIOR WALL DECK DESIGN ., 26 GAGE, SUPER-SPAN 36 inch width Yield Strength, Fy = 80 ksi Tensile Strength, Fu = 90 ksi Ix = 0.038 in ^4 /FT Sx(t) = 0.0461 W3 /FT Sx(b) = 0.0712 in ^3 /FT See Manufactures specifications. PRELIMINARY UNLESS SEALED ON EACH SHEET OR ON COVER SHEET job: J ? Date: 810* By: PAC Job No.: )6-69-0* SH.: // S.E. CONSULTANTS, INC. SU ___ a n® Featuring ZincalUMe Twice the Life! Zincalume combines the strength of steel with the corrosion resistance of aluminum for twice the life of zinc coatings. S uper -Span° is an economical, structural, through- fastened roof or wall panel suitable for all- around general usage. ❑ . Super -Span• has been tested in accordance with UL580 and meets UL Class 90 wind uplift test requirements. ❑ Structural spanning allows panel to be installed over solid substrates or spaced support members. 1/4" H 1 1/4" Ml" 6 Tl 1. r " l2" 36 "coverage ❑ Full- bearing sidelap rib provides consistent weather - resistant joint ❑ Provides traditional metal roof or wall appearance with 1 1/4" high trapezoidal major ribs at 12" on center with one minor rib between each major rib. ❑ Tested for air infiltration.per ASTM E1680, and water infiltration per A5TM El 646 (with field- applied side - lap sealant). ❑ Manufactured with high tensile steel for greater load capability. . ❑ Matching trim packages are available in the same gauge and color as the roof panel. ❑ Fiberglass skylight panels are available in the matching profile. • Can be installed on pitches as low as 1:12 with field applied mastic. ❑ Can be crimp curved to accommodate radiused applications. ❑ 26 gauge Super -Span° available in a wide variety of standard colors with the DuraTech -nt coating system. AEP SA .4 LN Engineered Solutions in Metal Tacoma, WA 800 - 733 -4955, 253 - 383 -4955 FAX 253 - 272 -0791 Fontana, U 800 -272 -2466, 909 - 823 -0401 FAX 909 -823 -2625 Sut)er-S Super-Span ° Allowable Spans (ft-in) Loads (psf) 10 15 20 25 30 35 40 45 1 5o Gauge Conditions 7' -6' SS f U180 10 -6 7 -6 B -7 6 -7 7 -5 6 -0 6 -7 5 -6 6 -1 5 -2 5 -7 4-11 54 4 -8 5-0 4 -6 4 -8 4 -5 26 DS f 0180 13 -1 10-1 10 -8 8 -10 9 -2 8 -0 8-4 7 -5 7 -6 7 -0 7 -0 6 -7 6 -6 64 6 -2 6 -1 5 -10 5 -10 25 TS f VI BO 13 -1 9 -2 10 -11 8-0 9 -9 7 -3 8 -8 6-9 7 -B 6-4 1 7 -7 6 -0 • 6 -7 5 -9 6 -6 5 -7 5-6 54 84• 5S f U180 10 -3 8 -3 8-5 7 -3 7 -3 6-7 6 -6 6 -1 5 -11 5 -9 5 -6 5 -5 5 -1 5 -1 4 -10 4-10 4 -7 4-7 24 DS f U180 13-0 11 -1 10 -7 9 -8 9 -2 B-10 B -2 8 -2 7 -6 7 -6 6-11 6-11 6 -6 6-6 6 -1 6 -1 5 -9 5 -9 192 141 108 85 69 57 48 40 35 30 27 TS f U180 12 -1 10 -3 10 -6 A -11 9 -1 A-1 8 -2 7 -A 1 7 -5 7 -1 6-10 c_o 6 -5 Cc 6 -1 I , 5 -9 -- Super-Span° Allowable Load (lbs. /ft') Span Gauge Condition 3' -0" 3' -6" 4' -0" 4' -6" 5' -0" s' -6" 6' -0" 6' -6" 7' -0" 7' -6' 8' -0" f 123 90 69 55 44 36 31 26 23 20 17 SS 11180 123 90 66 46 34 25 20 15 12 10 8 26 f 190 139 107 84• 68 56 47 40 35 30 27 DS U180 190 139 - 107 84 68 56 47 37 30 24 20 f 192 141 108 85 69 57 48 40 35 30 27 TS -11180 192 141 108 85 62 47 36• 28 22 18 15 f 118 87 66 52 42 35 29 25 21 18 16 5S U180 118 87 66 52 42 34 26 20 16 13 11 24 f 188 138 105 83 67 55 47 40 34 30 26 DS U180 188 138 105 83 67 55 47 40 34 30 26 f 185 136 104 82 66 55 46 39. 34 29 26 TS - 1U, 110 185 136 104 82 66 55 46 39 31 1 25 1 21 Notes: " Steel conforms to ASTM A792 (Zincalumeh 40,000 psi minimum yield for 24 gauge and ASTM A792 80,DOD psi minimum yield for 26 gauge. " Values based on the ,6mencan Iron and Steel Institute (ALSO 'Specifications for the Design of cold - Rolled Steel Structural Members'(1986 edition, with 1989 Addendum). " Span/Load combinations to the right of the bold line apply to walls only. Specifications *subject to change without notice Loading Table Legend f -Load limited by flexural bending stress L -Span (Inches) U180 -Load limited by a deflection of 1/180 of the span SS- Single span DS- Double span f f f TS- Triple van or More a A E P SPAN Engineered Solutions in Metal ., Zincalume" is a registered trademark of BHP Steel ULA) Pty Ltd INTERIOR WALL DECK DESIGN 29 GAGE, NORCLAD 36 inch width Yield Strength, Fy = 80 ksi Tensile Strength, Fu = 90 ksi Ix = 0.006 in ^4 /FT Sx(t) = 0.0133 in ^3 /FT Sx(b) = 0.0219 in "3 /FT See Manufactures specifications. PRELIMINARY UNLESS SEALED ON EACH SHEET OR ON COVER SHEET Job: ..7 Date: 00 By: 6XC Job No.: / d W-01- SH.: 19 S.E. CONSULTANTS, INC. NOR-CLADO Featuhiq HI Zincalume® ForTwice the Lifel Zincalume combines the strength of steel with the corrosion msistance of aluminum for twice the life of zinc coatings N orClad' is a light gauge, exposed fastener panel with 36" coverage used in residential and agricultural roof and wall applications. ❑ Full 36" coverage means fewer panels to handle and install, saving time and money. ❑ Weather - Resistant Lap System Anti- siphon groove pfovides better weather tightness than most other light, exposed fastener panels. ❑ Purlin- Bearing Leg speeds installation of panels and improves the quality of panel side laps. ❑ Quick, economical trim packages include standard trim pieces available, saving fabrication and installation time and money. ❑ Available in a wide variety of attractive colors In DuraTechxl or bare Zincalume'. ❑ Manufactured with high tensile steel for strong load capability. ❑ Fiberglass skylight panels are available to match the profile of the metal panels. 36' Net Coverage I l s� �. .;tea . e we The DuraTech xl and Zincalume® Coating System BHP Steel Building Products has enhanced the performance of Nor -Clad' roofing with the DuraTechxl paint system You can depend on superior color retention with DuraTechxl. This paint technology combined with our proven Zincalume mated steel is a system that promis- es a lifetime of durabilty. * BHP BHP Steel Building Products USA Inc. Sacramento- 800 - 726 -2727, 916 - 372 -6851 FAX 916 -372 -7606 ' Los Angeles- 800-272-2466,909-823-0401 FAX 909-823 -2625 Tempe- 800 -S51 -2062, 602. 598 -1200 FAX 602 - 598 -I219 Tacoma - 800- 73349S5, 253 - 383 -09SS FAX 253 -272 -0791 Salem - 800 - 272 -7023, 503 -390 -7174 FAX 503 - 390-7443 Spokane- 800 -T76- 8771, 509 -S3S -0600 FAX 509 -M1346 Anchorage - 800-478-2727,907-349-2727 FAX 907 -344 -7095 Salt Lake City - 800 -441 -2477, 801- 978 -0888 FAX 801- 978 -9099 / �el NOR-CLAD" DuraT echx1 Life1i.e Durability New Color Retention Comparison Lifetime Nor -Clads Allowable Load (psf) Span (ft -in) Load/Span Table 2 -0 2 -6 3 -0 3 -6' 4 -0 4 -6 5 -0 29 Gauge SS f IA20 80- 80 51 51 35 35 26 22 20 15 16 10 13 7 DS f U120 131. 131 84 84 58 58 43 43 33 33 26 25 21 19 TS . f U120 129 129 83 83 57 57 42 42 32 30 25 21 21 15 SS f 0120 118 118 75 75 52 52 39 32 29 22 23 16 19 12 26 Gauge DS f U120 210 210 134 134 93 93 68 68 52 52 41 36 34 26 TS f . 0120 191' 191 122 122 85 85 62 62 48' 44 38 30 31 22 Loading Table Legend f -Load limited 4 flexural bending stress L-Span (Inches) Lrioa -Load limited bkdeBection SS- Single span DS- Double span TS-Triple span or More i Specifications subject to change without notice. Notes: Steel conforms to ASTM A -792 (Zincalume•), 80,000 psi minimum yield. - Values are based on the American Iron and Steel Institute (AISI) Specifications for the Design of Cold- Formed Steel Structural Members . (1986 edition, with 1989 Addendum). - Values to the right of the bold line apply to wall applications only. OBHP BHP Steel Building Products USA Inc. Zincalume• is a registered trademark of BHP Steel (]LA) Pty Lid 0 BHP Steel Building Products USA Inc Seulember 1998 Printed in USA Revision SM (PS168) �C T+fE FOLLOWING IS BASED ON THE 2001 EDITION OF THE COLD - FORMED STEEL DESIGN MANUAL d = Nominal screw diameter dw = Larger of Head or Washer Diameter, not larger than 1/2" Factor of Safety = 3.0 Pas = allowable shear force per screw Pns = nominal shear strength per screw Pat = allowable tension force per screw Pnt = nominal tension strength per screw Pnot = pull -out per screw Pnov = pull -over per screw t1 = thickness of member in contact with the screw head t2 = thickness of member not in contact with the screw head Fu1 = tensile strength of member in contact with screw Fu2 = tensile strength of member not in contact with screw = 11===== = = = = == = = = = = == = = = = == ====== = = = = = == = = = = == = = = = = == = = = = = == = = = = == = = = = == 11= II t1 = 0.0598 in. Approximate Gauge = 16 Full = 90000 psi, Fy = 80000 psi II II t2 = 0.0598 in. Approximate Gauge = 16 Fu2 = 65000 psi, Fy = 55000 psi 11 II Screw No. 12 II 11 Shank Diam. = 0.216 in. II SECTION E4.3.1 CONNECTION SHEAR GOVERNED BY BASE METALS t2/t1 = 1 t2 /ti — 1.0, USE EQUATIONS E4.3.1 TO E4.3.3 WHEN t2 /t1 — 1.0 WHEN t2/t1 >= 2.5 Equation E4.3.1 = 1855.4 Ibs /screw Equation E4.3.4 = 3138.8 Ibs/screw Equation E4.3.2 = 3138.8 Ibs /screw Equation E4.3.5 = 2266.9 Ibs /screw Equation E4.3.3 = 2266.9 Ibs /screw Pns (smallest of the above:) = 1855.4 Ibs /screw Pns (smallest of the above:) = 2266.9 Ibs /screw Pas = Allow. Shear per SCREW = Pns/ (F.S. of 3.0) = 618.5 Ibs /screw ' Allow. Shear Capacity of Screw 625.0 # /screw ' Based on "HILTI" w/ F.S. of 3.0 SECTION E4.4, TENSION Equation E4.4.1.1, Pullout Force, Pnot = 713.7 Ibs /screw Equation E4.4.2.1, Pullover Force, Pnov = 2522.8 Ibs /screw Pnt = nominal tension strength per screw = lesser of Pnot & Pnov Pnt = 713.7 Ibs /screw Pat = Allow. Tension per SCREW = Pnt/ (F.S. of 3.0) = 237.9 Ibs /screw II II II II II Allowable Shear per Screw = 618.5 lbs/screw II II Allowable Tension per Screw = 237.9 Ibs /screw II II II II II II NOTE: Shear Governed By Base Metals. II II II - -- -------- - - - - -- NOTE: 1. Minimum Spacing of screws shall not be less than 3d 2. Minimum Edge Distance of screws shall not be less than 3d (May be 1.5d in direction perpendicular to force, when connection is subject to shear in one direction.) 3. The head of the screw or the washer shall have a diameter, dw of not less than 5/16 inch, washers shall be at least 0.050 inch thick. 4. Values may be increased 33% for wind or earthquake loads. PRELIMINARY UNLESS SEALED ON EACH SHEET OR ON COVER SHEET V Job: Date: 0:1 By: "r, Job N SH.: S.E. CONSULTANTS, INC. THE FOLLOWING IS BASED ON THE 2001 EDITION OF THE COLD - FORMED STEEL DESIGN MANUAL d = Nominal screw diameter dw = Larger of Head or Washer Diameter, not larger than 1/2" Factor of Safety = 3.0 Pas = allowable shear force per screw Pns = nominal shear strength per screw Pat = allowable tension force per screw Pnt = nominal tension strength per screw Pnot = pull -out per screw Pnov = pull -over per screw t1 = thickness of member in contact with the screw head t2 = thickness of member not in contact with the screw head Full = tensile strength of member in contact with screw Fu2 = tensile strength of member not in contact with screw = 11 = = = == = = = = == ======= ====== ====== = = = = = == = = = = == = = = = = == = = = = = == = = = = == = = = = == II= II t1 = 0.0747 in. Approximate Gauge = 14 Fu1 = 90000 psi, Fy = 80000 psi II II t2 = 0.0598 in. Approximate Gauge = 16 Fu2 = 65000 psi, Fy = 55000 psi II II Screw No. 12 II II Shank Diam. = 0.216 in. II SECTION E4.3.1 CONNECTION SHEAR GOVERNED BY BASE METALS - ------ ______ -- t2/t1 = 0.8005 t2 /t1 — 1.0, USE EQUATIONS E4.3.1 TO E4.3.3 WHEN t2 /t1 <= 1.0 WHEN t2/t1 — 2.5 Equation E4.3.1 = 1855.4 Ibs /screw Equation E4.3.4 = 3920.9 Ibs /screw Equation E4.3.2 = 3920.9 Ibs /screw Equation E4.3.5 = 2266.9 Ibs /screw Equation E4.3.3 = 2266.9 Ibs /screw Pns (smallest of the above:) = 1855.4 Ibs/screw Pns (smallest of the above:) = 2266.9 Ibs /screw Pas = Allow. Shear per SCREW = Pns/ (F.S. of 3.0) = 618.5 Ibs /screw ' Allow. Shear Capacity of Screw 625.0 # /screw Based on "HILTI" w/ F.S. of 3.0 SECTION E4.4, TENSION Equation E4.4.1.1, Pullout Force, Pnot = 713.7 Ibs/screw — Equation E4.4.2.1, Pullover Force, Pnov = 3151.4 Ibs /screw Pnt = nominal tension strength per screw = lesser of Pnot & Pnov Pnt = 713.7 Ibs /screw Pat = Allow. Tension per SCREW = Pnt/ (F.S. of 3.0) = 237.9 Ibs /screw II II II II II Allowable Shear per Screw = 618.5 Ibs /screw II II Allowable Tension per Screw = 237.9 Ibs /screw II II II II II II NOTE: Shear Governed By Base Metals. II II II ------- ------ - - - - -- - - - - - -- -- - - - -- - - - - - -- - - - - -- - - - - -- - - - -- - - - -- - -- NOTE: 1. Minimum Spacing of screws shall not be less than 3d 2. Minimum Edge Distance of screws shall not be less than 3d (May be 1.5d in direction perpendicular to force, when connection is subject to shear in one direction.) 3. The head of the screw or the washer shall have a diameter, dw of not less than 5/16 inch, washers shall be at least 0.050 inch thick. 4. Values may be increased 33% for wind or earthquake loads. PRELIMINA RY UNLESS SEALED ON EACH SHEET OR ON Job: _T ?,383 Date: By: Job No.: COVER SHEET 168? S .: / S.E. CONSULTANTS, INC. THE FOLLOWING IS BASED ON THE 2001 EDITION OF THE COLD - FORMED STEEL DESIGN MANUAL d = Nominal screw diameter dw = Larger of Head or Washer Diameter, not larger than 1/2" Factor of Safety = 3.0 Pas = allowable shear force per screw Pns = nominal shear strength per screw Pat = allowable tension force per screw Pnt = nominal tension strength per screw Pnot = pull -out per screw Pnov = pull -over per screw t1 = thickness of member in contact with the screw head t2 = thickness of member not in contact with the screw head Full = tensile strength of member in contact with screw Fug = tensile strength of member not in contact with screw = 11===== = = = = == = = = = = == = = = = == = = = = == = = = = = == = = = = == = = = = = == = = = = = == - - - - -- - - - = == 11= II t1 = 0.1046 in. Approximate Gauge= 12 Fu1 = 90000 psi, Fy = 80000 psi II 11 t2 = 0.0598 in. Approximate Gauge = 16 Fu2 = 65000 psi, Fy = 55000 psi II II Screw No. 12 II II Shank Diam. = 0.216 in. II SECTION E4.3.1 CONNECTION SHEAR GOVERNED BY BASE METALS t2 /t1 = 0.5717 t2 /t1 — 1.0, USE EQUATIONS E4.3.1 TO E4.3.3 WHEN t2 /t1 <= 1.0 WHEN t2/t1 >= 2.5 Equation E4.3.1 = 1855.4 Ibs /screw Equation E4.3.4 = 5490.2 Ibs /screw Equation E4.3.2 = 5490.2 Ibs /screw Equation E4.3.5 = 2266.9 Ibs /screw Equation E4.3.3 = 2266.9 Ibs /screw Pns (smallest of the above:) = 1855.4 Ibs /screw Pns (smallest of the above:) = 2266.9 Ibs /screw Pas = Allow. Shear per SCREW = Pns/ (F.S. of 3.0) = 618.5 Ibs /screw * Allow. Shear Capacity of Screw 625.0 # /screw SECTION E4.4, TENSION * Based on "HILTI" w/ F.S. of 3.0 Equation E4.4.1.1, Pullout Force, Pnot = 713.7 Ibs /screw Equation E4.4.2.1, Pullover Force, Pnov = 4412.8 Ibs /screw Pnt = nominal tension strength per screw = lesser of Pnot & Pnov Pnt = 713.7 Ibs /screw Pat = Allow. Tension per SCREW = Pnt/ (F.S. of 3.0) = 237.9 Ibs/screw II II II it II Allowable Shear per Screw 618.5 Ibs /screw II II Allowable Tension per Screw = 237.9 Ibs/screw II II II II II it NOTE: Shear Governed By Base Metals. II II II NOTE: 1. Minimum Spacing of screws shall not be less than 3d 2. Minimum Edge Distance of screws shall not be less than 3d (May be 1.5d in direction perpendicular to force, when connection is subject to shear in one direction.) 3. The head of the screw or the washer shall have a diameter, dw of not less than 5/16 inch, washers shall be at least 0.050 inch thick. 4. Values may be increased 33% for wind or earthquake loads. PRELIMINARY UNLESS SEALED ON EACH SHEET OR ON COVER SHEET 8 n Job: –T&3W Date: Q By: "C Job No.: IM9-0 SH.: I7 S.E. CONSULTANTS, INC. SCREW CAPACITIES IN LIGHT GAUGE COLD FORMED STEEL THE FOLLOWING IS BASED ON THE 1996 EDITION OF THE COLD - FORMED STEEL DESIGN MANUAL DEFINITIONS: d = Nominal screw diameter .� dw = Larger of Head or Washer Diameter, not larger than 1/2" Factor of Safety = 3.0 Pas = allowable shear force per screw Pns = nominal shear strength per screw Pat = allowable tension force per screw Pnt = nominal tension strength per screw Pnot = pull -out per screw Pnov = pull -over per screw t1 = thickness of member in contact with the screw head t2 = thickness of member not in contact with the screw head Fu1 = tensile strength of member in contact with screw Fug = tensile strength of member not in contact with screw SECTION E4.3.1 CONNECTION SHEAR WHEN t2/t1 <= 1.0 Equation E4.3.1 Pns = 4.2(t2 11 3 * d) 11 0.5 * Fu2 Equation E4.3.2 Pns = 2.7 t1 * d * Fu1 Equation E4.3.3 Pns = 2.7 t2 * d * Fu2 WHEN 1:241 >= 2.5 Equation E4.3.4 Pns = 2.7 tl * d * Fu1 Equation E4.3.5 Pns = 2.7 1:2 * d * Fu2 Pas = ALLOW. SHEAR PER SCREW = Pns/ (F.S. of 3.0) SECTION E4.4, TENSION Equation E4.4.1.1, Pnot, Pull -out force = 0.85 tc d Fu2 Equation E4.4.2.1, Pnov, Pull -over force =1.5 t1 dw Fu1 Pnt = nominal tension strength per screw = lesser of Pnot & Pnov Pat = ALLOW. TENSION PER SCREW = Pnt/ (F.S. of 3.0) NOTES: 1. Minimum Spacing of screws shall not be less than 3d 2. Minimum Edge Distance of screws shall not be less than 3d (May be 1.5d in direction perpendicular to force, when connection is subject to shear in one direction.) 3. The head of the screw or the washer shall have a diameter, dw of not less than 5116 inch, washers shall be at least 0.050 inch thick. 4. Values may be increased 33% for wind or earthquake loads. PRELIMINARY UNLESS SEALED ON EACH SHEET OR ON COVER SHEET job: 1 Date: 81 0* BY: RdC, lob No.: 1689-0 SH.: 20 S.E. CONSULTANTS, INC. ,i3LD PURLIN PLAN M.T.S. (eLac , > E De- : S PS F 1 L is p,3 F TL --/ O P3 Co le 7� %o . ) ,eoli) o 120- s - 5 r.G�p - �iv7Ec, oe, q C /6 A!5o&) ♦ 8 Gl4 - d��/ c E: E x,r': e c 1 4 O Fz: X 6j/9Y C_ : eo c /6 2 Be D 2c EAST ELEVATION SGHE N.T.S WEST ELEVATION � LE: N.TS J l l 1 1 I {_!_L Y/\ I I V I I 1 1 SCALE; N.T.S �/ J I V VI \ I I I L_LL VI'l I illl V SCALE: N.T.S B6D I 2, M L K J Q Q Q Q Q Q B A r� rr rx r� � � � t + x r� p■u - tom .at�i a 234 D I sss s w at r �ms� m sus sm O 0 \ R 10 11 12 13 14 SECTION H SCALE N.T.S. (BLDG 1 15 SOFFIT AT HALLWAY 24 SECTION B SU1LE N.T.S. (BLDG 1 ,BZD / It - 7---------------- 4 �> ROOF PLAN SCAM' W.T.S. (BLDG 1) - - - - - - - - - - - - - - - - - 25 (BLDG 4) 1 / : -4c /eo -4C /to w / (/) eoid /8 64 17W ' ivEe DL = S PSF L L = 3S Ps F TL - </Q IR3 F 2G S ♦ - PAL / ,V,5 (7 ) DL % Jr" 3 L 35 RS F TL % -90 p3F : W e/6 -� c Ilep C le F PURLIN PLAN (CON B SCALE N.T.S. (BLDG 4) SOUTH ELEVATION (CONT. SCALE ICLS 3 C I 4 2� �w a uc S` NORTH E LEVATION E SCAM N.TS 2C NORTH ELEVATION E: CONT. E SCALE N.T.S A v B C D- ------------------------------------------------------- - - - - -- - - - - -- -�- E F { i G ROOF PLAN SCALE. N.T.S. (BLDG 4) V J 3C i i A v B C D- ------------------------------------------------------- - - - - -- - - - - -- -�- E F { i G ROOF PLAN SCALE. N.T.S. (BLDG 4) V J 3C I -- L--------------- - - - - -- ROOF PLAN ACONT.) SCALE Q.T.S. 3 4 SLID 4 sow NII ra No ,= Iwn 4mg U m scans N:N lYK M. 'A 1 / 6 -- .. w Vr� • v...�. Y SECTION C scue N.TS (BLDG 4) 3(f EAST ELEVATION_ �r_� 5041- N.T.S v WEST ELEVATION _ (E1 $ai - N.T.S E G F E D C B A r� r-w Iru 1 -rr� -- .. w Vr� • v...�. Y SECTION C scue N.TS (BLDG 4) 3(f EAST ELEVATION_ �r_� 5041- N.T.S v WEST ELEVATION _ (E1 $ai - N.T.S )3/-,tD 5 Dt = S P.3 F LL 3SP3F TL: -4OP3F Z C n C n n C n C C 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 C C C .0 C C C rUKUN F LAIN B SCµE H.T.S. (BLDG 5) Poe/5 ( 7 1 ,p.) 1 � Cot cllv7Ar /y�q7 C'N IV" C L 3' Y Y-! — — Y-! Yr Y! Y� Y� YI — f4 Y� Yom' NI Yf Yt YT Yt YI — Y1 f I Mt YI I I I I I - : - -, I I I I I I I t 4 2 k � 4 1 , 2'r15G�1 STRIP Y( M! �..� • /(3111b�S�� � AT IXD ALL SP(Jf1S rUKUN F LAIN B SCµE H.T.S. (BLDG 5) Poe/5 ( 7 1 ,p.) 1 � Cot cllv7Ar /y�q7 C'N IV" C L 3' PURLI PLAN (CONT. B SCALE. N.T.S. (BLDG 5 Po �/� 31 ivvR i n tLtyf\1 L- / E 1 scx�: N.r.s 04 a S a NORTH ELEVATION (CONT.) SGIE: N.T.S SGLE; N.T.S V Z54D 340 SOUTH ELEVATION CONT. p SCAM N.T.S 061D S T ar VA f-r� e UMM: • r or, r MWAS {{ ML-w raa ars I ° ftm SOFFIT AT HALLWAY � gar �mea� mrw &T ��wa f ■rte l�������■ r� T4-r- --M- NEIL SECTION SCAM' N.T.S. (BLDG 5) C 3= EAST ELEVATION SCN-L N.T.S v WEST ELEVATION SCJSE: N.T.S f G r� T4-r- --M- EAST ELEVATION SCN-L N.T.S v WEST ELEVATION SCJSE: N.T.S W-0 r i 1 3 W-0 #-- ----------------------------------------------------- ROOF PLAN H SCALE: N.T.S. (BLDG 5) r i 1 #-- ----------------------------------------------------- ROOF PLAN H SCALE: N.T.S. (BLDG 5) C r LJ11 y �I, V i V . 1 r L.1 s�iur w rs. (BLDG 5) \ ' ' 1 J C r LJ11 y �I, V i V . 1 r L.1 s�iur w rs. (BLDG 5) \ ' ' 1 2 PURL/N L ` I Code Requirements= IBC Structures Basic Geomet Roof slope = 0.25/12 Length = 10.00 feet Tributary Width = 5.00 feet Total Tributary Area = 50.00 Sq. Ft. Total Live Load = 35.00 psf Dead Load = 5.00 psf Live Load (reduced) = 35.00 psf Snow Load = 35.00 psf Total Gravity Load = 40.00 psf Wind Uplift = 14.01 psf w (dead) = D.L. x Trib. Lgth. = 25.00 Ibs /ft. w (live) = L.L. x Trib. Lgth. = 175.00 Ibs /ft. w (snow) = S.L. x Trib. Lgth. = 175.00 Ibs /ft. w (T.L.) = Uniform Gravity Load = 200.00 Ibs /ft. w (U.L.) = Uniform Uplift Load = 45.05 Ibs /ft. MOMENTS DUE TO GRAVITY LOADS M (Simple) = w (T.L.) x L ^2 / 8 = 2.500 ft -kips MOMENTS DUE TO WIND LOADS M (Simple) = w (W.L.) x L ^2 / 8 = 0.563 ft -kips MAXIMUM END REACTIONS DUE TO GRAVITY LOADS R(Simple) = w(T.L.) x L / 2 = 1.000 kips MAXIMUM END REACTIONS DUE TO WIND UPLIFT LOADS R(Simple) = w(U.L.) x L / 2 = 0.225 kips MINIMUM NUMBER OF SCREWS REQUIRED FOR END SUPPORT Maximum capacity of #12 screw in shear = 0.618 kips Minimum number of screws required = 2 - #12 screws See detail for actual number of screws required. See CFS computer run for design size ;5L D / C ZF / e < T y,p-) PRELIMINARY UNLESS SEALED ON EACH SHEET OR ON COVER SHEET Job: -TOM3 Date: 804 By: PjfL �lO Job No.: Sq SH.: 44 S.E. CONSULTANTS, INC. CFS Version 4.11 Section: 6x2.25Z16.sct 6 x 2.25 Z 16 Gage Library Rev. Date: 8/18/20062:01:13 PM By: Steve Schaub, P.E. Section In Steve Schaub, P.E. S.E. Consultants, Inc. Material: A607 Class 1 Grade 55 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 55 ksi Tensile Strength, Fu 70 ksi Warping Constant Override, Cw 0 in Torsion Constant Override, J 0 in'4 Z- Section, Thickness 0.059 in Placement of Part from Origin: X to center of gravity 0 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size (in) (deg) (in) Coef. (in) 1 0.9110 - 50.000 0.18750 None 0.000 0.0000 2 2.1250 0.000 0.18750 Single 0.000 0.0000 3 6.0000 90.000 0.18750 Single 0.000 0.0000 4 2.1250 0.000 0.18750 Single 0.000 0.0000 5 0.9110 - 50.000 0.18750 None 0.000 0.0000 Page 1 Distance (in) 0.4555 1.0625 3.0000 1.0625 0.4555 CFS Version 4.11 Analysis: IBC purlin analysis std.anl 10' purlins Rev. Date: 8/3/200711:19:36 AM By: Steve Schaub, P.E. Steve Schaub, P.E. S.E. Consultants, Inc. Page 1 Analysis Inputs Members Section File Revision Date and Time 1 6x2.25Z16.sct 8/18/2006 2:01:13 PM Start Loc. End Loc. Braced R ex ey (ft) (ft) Flange (in) (in) 1 0.0000 10.0000 Top 0.5000 0.0000 0.0000 Supports Type Location Brg Length K (ft) (in) 1 XYT 0.0000 1.000 1.0000 2 XYT 10.0000 1.000 1.0000 Loading: Dead Load Type Angle Start Loc. 1 (deg) (ft) 1 Distributed 90.000 0.0000 Loading: Live Load Live Load 1.0000 Type Angle Start Loc. Loading (deg) (ft) 1 Distributed 90.000 0.0000 Loading: Wind Load 0.6000 3 Type Angle Start Loc. (deg) (ft) 1 Distributed 90.000 0.0000 Load Combination: D +L End Loc. Start End (ft) Magnitude Magnitude 10.0000 -0.03 -0.03 k /ft End Loc. Start End (ft) Magnitude Magnitude 10.0000 -0.17 -0.17 k /ft End Loc. Start End (ft) Magnitude Magnitude 10.0000 0.07 0.07 k /ft Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Live Load 1.0000 Load Combination: 0.6D +W Loading Factor 1 Beam Self Weight 0.6000 2 Dead Load 0.6000 3 Wind Load 1.0000 End Loc. Start End (ft) Magnitude Magnitude 10.0000 -0.03 -0.03 k /ft End Loc. Start End (ft) Magnitude Magnitude 10.0000 -0.17 -0.17 k /ft End Loc. Start End (ft) Magnitude Magnitude 10.0000 0.07 0.07 k /ft CFS Version 4.11 Page 2 Analysis: IBC purlin analysis std.anl Steve Schaub, P.E. 10' purlins S.E. Consultants, Inc. Rev. Date: 8/3/200711:19:36 AM By: Steve Schaub, P.E. Member Check - 2001 AISI Specification - US (ASD) Load Combination: D +L Design Parameters at 5.0000 ft: Lx 10.0000 ft Ly 10.0000 ft Lt 10.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 6x2.25Z16.sct Cbx 1.1364 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: Top Moment Reduction, R: 0.5000 AISI Eq. Loads: P Mx Vy My Vx <= 1.0 AISI (k) (k -f t) (k) (k -ft) (k) + 0.000 = Total 0.0000 2.5293 0.0000 0.0000 0.0000 Applied 0.0000 2.5293 0.0000 0.0000 0.0000 Vx Strength 6.5597 3.2685 3.3186 0.8847 4.2921 (k) Effective section properties at applied loads: - 0.6699 0.0000 0.0000 Ae 0.68951 in'2 Ixe 3.8201 in'4 Iye 0.9458 in'4 0.0000 Sxe(t) 1.2734 in Sye(1) 0.3528 in'3 4.2921 Sxe(b) 1.2734 in A 3 Sye(r) 0.3528 in Interaction Equations AISI Eq. C5.2.1 -1 (P, Mx, My) 0.000 + 0.774 + 0.000 = 0.774 <= 1.0 AISI Eq. C5.2.1 -2 (P, Mx, My) 0.000 + 0.774 + 0.000 = 0.774 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.599 + 0.000 = 0.599 <= 1.0 AISI Eq. C3.3.1 -1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 Member Check - 2001 AISI Specification - US (ASD) Load Combination: 0.6D +W Design Parameters at 5.0000 ft: Lx 10.0000 ft Ly 10.0000 ft Lt 10.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 6x2.25Z16.sct Cbx 1.1364 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: Top Moment Reduction, R: 0.5000 Loads: P Mx Vy My Vx (k) (k -f t) (k) (k -ft) (k) Total 0.0000 - 0.6699 0.0000 0.0000 0.0000 Applied 0.0000 - 0.6699 0.0000 0.0000 0.0000 Strength 6.5597 1.6342 3.3186 0.8847 4.2921 Effective section properties at applied loads: Ae 0.68951 in Ixe 3.8201 in Iye 0.9458 in Sxe(t) 1.2734 in Sye(1) 0.3528 in Sxe(b) 1.2734 in'3 Sye(r) 0.3528 in Interaction Equations AISI Eq. C5.2.1 -1 (P, Mx, My) 0.000 + 0.410 + 0.000 = 0.410 <= 1.0 AISI Eq. C5.2.1 -2 (P, Mx, My) 0.000 + 0.410 + 0.000 = 0.410 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.042 + 0.000 = 0.042 <= 1.0 AISI Eq. C3.3.1 -1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 2 PURLIN BCD / (OF-' L I Code Requirements = IBC Structures Basic Geomet Roof slope = 0.25/12 Length = 25.00 feet Tributary Width = 5.00 feet Total Tributary Area = 125.00 Sq. Ft. Total Live Load = 35.00 psf Dead Load = 5.00 psf Live Load (reduced) = 35.00 psf Snow Load = 35.00 psf Total Gravity Load = 40.00 psf Wind Uplift = 14.01 psf w (dead) = D.L. x Trib. Lgth. = 25.00 Ibs /ft. w (live) = L.L. x Trib. Lgth. = 175.00 Ibs /ft. w (snow) = S.L. x Trib. Lgth. = 175.00 Ibs /ft. w (T.L.) = Uniform Gravity Load = 200.00 Ibs /ft. w (U.L.) = Uniform Uplift Load = 45.05 Ibs /ft. MOMENTS DUE TO GRAVITY LOADS M (Simple) = w (T.L.) x L ^2 / 8 = 15.625 ft-kips MOMENTS DUE TO WIND LOADS M (Simple) = w (W.L.) x L ^2 / 8 = 3.520 ft -kips MAXIMUM END REACTIONS DUE TO GRAVITY LOADS R(Simple) = w(T.L.) x L / 2 = 2.500 kips MAXIMUM END REACTIONS DUE TO WIND UPLIFT LOADS R(Simple) = w(U.L.) x L / 2 = 0.563 kips MINIMUM NUMBER OF SCREWS REQUIRED FOR END SUPPORT Maximum capacity of #12 screw in shear = 0.618 kips Minimum number of screws required = 5 - #12 screws See detail for actual number of screws required. See CFS computer run for design size X2 /��X PRELIMINARY UNLESS SEALED ON EACH SHEET OR ON COVER SHEET w Job: -TC383 Date: 810I By: � Job No.: ���� SH.: `'18 S.E. CONSULTANTS, INC. CFS Version 4.11 Page 1 Section: 12x2.5Z12.sct Steve Schaub, P.E. 12 x 2.5 Z 12 Gage S.E. Consultants, Inc. Rev. Date: 8/3/20071:12:02 PM By: Steve Schaub, P.E. Section I Material: A607 Class 1 Grade 55 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 55 ksi Tensile Strength, Fu 70 ksi Warping Constant Override, Cw 0 in Torsion Constant Override, J 0 in ^ 4 Z- Section, Thickness 0.105 in Placement of Part from Origin: X to center of gravity 0 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 0.990 - 50.000 0.18750 None 0.000 0.000 0.495 2 2.500 0.000 0.18750 Single 0.000 0.000 1.250 3 12.000 90.000 0.18750 Single 0.000 0.000 6.000 4 2.500 0.000 0.18750 Single 0.000 0.000 1.250 5 0.990 - 50.000 0.18750 None 0.000 0.000 0.495 CFS Version 4.11 Analysis: IBC purlin analysis std.anl 25' purlins Rev. Date: 8/3/20071:14:05 PM By: Steve Schaub, P.E. Steve Schaub, P.E. S.E. Consultants, Inc. Page 1 Analysis Inputs Members Section File Revision Date and Time 1 12x2.5Z12.sct 8/3/2007 1:12:02 PM Start Loc. End Loc. Braced R ex ey (ft) (ft) Flange (in) (in) 1 0.000 25.000 Top 0.5000 0.0000 0.0000 Supports Type Location Brg Length (ft) (in) 1 XYT 0.000 1.000 2 XT 10.000 1.000 3 XT 15.000 1.000 4 XYT 25.000 1.000 Loading: Dead Load Type Angle Start Loc. (deg) (ft) 1 Distributed 90.000 0.000 Loading: Live Load Type Angle Start Loc. (deg) (ft) 1 Distributed 90.000 0.000 Loading: Wind Load Type Angle Start Loc. (deg) (ft) 1 Distributed 90.000 0.000 1 1 14 1.0000 1.0000 1.0000 1.0000 End Loc. Start End (ft) Magnitude Magnitude 25.000 -0.03 -0.03 k /ft End Loc. Start End (ft) Magnitude Magnitude 25.000 -0.17 -0.17 k /ft End Loc. Start End (ft) Magnitude Magnitude 25.000 0.07 0.07 k /ft Load Combination: D +L Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Live Load 1.0000 CFS Version 4.11 Page 2 Analysis: IBC purlin analysis std.anl Steve Schaub, P.E. 25' purlins S.E. Consultants, Inc. Rev. Date: 8/3/20071:14:05 PM By: Steve Schaub, P.E. Load Combination: 0.6D +W Loading Factor 1 Beam Self Weight 0.6000 2 Dead Load 0.6000 3 Wind Load 1.0000 Member Check - 2001 AISI Specification - US (ASD) Load Combination: D +L Design Parameters at 12.500 ft: Lx 25.000 ft Ly 5.000 ft Lt 5.000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 12x2.5Z12.sct Cbx 1.0048 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: Top Moment Reduction, R: 0.5000 Moment Reduction, R: 0.5000 Loads: P Mx Vy My Vx Vy (k) (k -ft) (k) (k -ft) (k) (k -ft) Total 0.0000 16.139 0.0000 0.000 0.0000 0.0000 Applied 0.0000 16.139 0.0000 0.000 0.0000 Applied Strength 2.0172 16.271 9.0243 2.225 8.9705 Effective section properties at applied loads: 14.941 9.0243 Ae 1.9039 in ^ 2 Ixe 37.899 in"4 Iye 2.500 in - 4 Sxe(t) 6.2666 in'3 Sye(1) 0.8108 in'3 Iye 2.500 Sxe(b) 6.3671 in Sye(r) 0.8108 in Interaction Equations 0.8108 in Sxe(b) AISI Eq. C5.2.1 -1 (P, Mx, My) 0.000 + 0.992 + 0.000 = 0.992 <= 1.0 AISI Eq. C5.2.1 -2 (P, Mx, My) 0.000 + 0.992 + 0.000 = 0.992 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.984 + 0.000 = 0.984 <= 1.0 AISI Eq. C3.3.1 -1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 Member Check - 2001 AISI Specification - US (A Load Combination: 0.6D +W Design Parameters at 12.500 ft: Lx 25.000 ft Ly 5.000 ft Lt 5.000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 12x2.5Z12.sct Cbx 1.0048 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: Top Moment Reduction, R: 0.5000 Loads: P Mx Vy My Vx (k) (k -ft) (k) (k -f t) (k) Total 0.0000 -3.988 0.0000 0.000 0.0000 Applied 0.0000 -3.988 0.0000 0.000 0.0000 Strength 2.0172 14.941 9.0243 2.225 8.9705 Effective section properties at applied loads: Ae 1.9359 in'2 Ixe 38.162 in ^ 4 Iye 2.500 in�4 Sxe(t) 6.3603 in Sye(1) 0.8108 in Sxe(b) 6.3603 in Sye(r) 0.8108 in -3 CFS Version 4.11 Page 3 • Analysis: IBC purlin analysis std.anl Steve Schaub, P.E. 25' purlins S.E. Consultants, Inc. Rev. Date: 8/3/20071:14:05 PM By: Steve Schaub, P.E. Interaction Equations AISI Eq. 05.2.1 -1 (P, Mx, My) 0.000 + 0.267 + 0.000 = 0.267 <= 1.0 AISI Eq. C5.2.1 -2 (P, Mx, My) 0.000 + 0.267 + 0.000 = 0.267 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.060 + 0.000 = 0.060 <= 1.0 AISI Eq. C3.3.1 -1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 2 PURL/N L1 Code Requirements= IBC Structures Basic Geomet Roof slope = 0.25/12 Length = 10.00 feet Tributary Width = 5.00 feet Total Tributary Area = 50.00 Sq. Ft. Total Live Load = 35.00 psf Dead Load = 5.00 psf Live Load (reduced) = 35.00 psf Snow Load = 35.00 psf Total Gravity Load = 40.00 psf Wind Uplift = 14.01 psf w (dead) = D.L. x Trib. Lgth. = 25.00 Ibs /ft. w (live) = L.L. x Trib. Lgth. = 175.00 lbs /ft. w (snow) = S.L. x Trib. Lgth. = 175.00 Ibs /ft. w (T.L.) = Uniform Gravity Load = 200.00 Ibs /ft. w (U.L.) = Uniform Uplift Load = 45.05 Ibs /ft. MOMENTS DUE TO GRAVITY LOADS M (Simple) = w (T.L.) x 1- / 8 = 2.500 ft -kips MOMENTS DUE TO WIND LOADS M (Simple) = w (W.L.) x L ^2 / 8 = 0.563 ft -kips MAXIMUM END REACTIONS DUE TO GRAVITY LOADS R(Simple) = w(T.L.) x L / 2 = 1.000 kips MAXIMUM END REACTIONS DUE TO WIND UPLIFT LOADS R(Simple) = w(U.L.) x L / 2 = 0.225 kips MINIMUM NUMBER OF SCREWS REQUIRED FOR END SUPPORT Maximum capacity of #12 screw in shear = 0.618 kips Minimum number of screws required = 2 - #12 screws See detail for actual number of screws required. See CFS computer run for design size Be- D 3 -9 F , 5 G Z /G <Tyo. PRELIMINARY UNLESS SEALED ON EACH SHEET OR ON COVER SHEET Job: -=83 Date: © h* By: �� job No.: 163� SH.: 53 S.E. CONSULTANTS, INC. CFS Version 4.11 Section: 6x2.25Z16.sct 6 x 2.25 Z 16 Gage Library Rev. Date: 8/18/20062:01:13 PM By: Steve Schaub, P.E. Section In Steve Schaub, P.E. S.E. Consultants, Inc. Material: A607 Class 1 Grade 55 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 55 ksi Tensile Strength, Fu 70 ksi Warping Constant Override, Cw 0 in Torsion Constant Override, J 0 in'4 Z- Section, Thickness 0.059 in Placement of Part from Origin: X to center of gravity 0 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size (in) (deg) (in) Coef. (in) 1 0.9110 - 50.000 0.18750 None 0.000 0.0000 2 2.1250 0.000 0.18750 Single 0.000 0.0000 3 6.0000 90.000 0.18750 Single 0.000 0.0000 4 2.1250 0.000 0.18750 Single 0.000 0.0000 5 0.9110 - 50.000 0.18750 None 0.000 0.0000 Page 1 Distance (in) 0.4555 1.0625 3.0000 1.0625 0.4555 CFS Version 4.11 Analysis: IBC purlin analysis std.anl 10' purlins Rev. Date: 8/3/20071:28:25 PM By: Steve Schaub, P.E. Steve Schaub, P.E. S.E. Consultants, Inc. Page 1 Analvsis Inputs Members Section File 1 6x2.25Z16.sct Start Loc. End Loc. Braced R ex (ft) (ft) Flange (in) 1 0.0000 10.0000 Top 0.5000 0.0000 Supports Type Location Brg Length K (ft) (in) 1 XYT 0.0000 1.000 1.0000 2 XYT 10.0000 1.000 1.0000 Loading: Dead Load Type Angle Start Loc. 1 (deg) (ft) 1 Distributed 90.000 0.0000 Loading: Live Load Live Load 1.0000 Type Angle Start Loc. Loading (deg) (ft) 1 Distributed 90.000 0.0000 Loading: Wind Load 0.6000 3 Type Angle Start Loc. (deg) (ft) 1 Distributed 90.000 0.0000 Load Combination: D +L Revision Date and Time 8/18/2006 2:01:13 PM ey (in) 0.0000 End Loc. Start End (ft) Magnitude Magnitude 10.0000 -0.03 -0.03 k /ft End Loc. Start End (ft) Magnitude Magnitude 10.0000 -0.17 -0.17 k /ft End Loc. Start End (ft) Magnitude Magnitude 10.0000 0.07 0.07 k /ft Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Live Load 1.0000 Load Combination: 0.6D +W Loading Factor 1 Beam Self Weight 0.6000 2 Dead Load 0.6000 3 Wind Load 1.0000 Revision Date and Time 8/18/2006 2:01:13 PM ey (in) 0.0000 End Loc. Start End (ft) Magnitude Magnitude 10.0000 -0.03 -0.03 k /ft End Loc. Start End (ft) Magnitude Magnitude 10.0000 -0.17 -0.17 k /ft End Loc. Start End (ft) Magnitude Magnitude 10.0000 0.07 0.07 k /ft US Version 4.11 Page 2 Analysis: IBC purlin analysis std.anl Steve Schaub, P.E. 10' purlins S.E. Consultants, Inc. Rev. Date: 8/3/20071:28:25 PM By: Steve Schaub, P.E. Member Check - 2001 AISI Specification - US (ASD) Load Combination: D +L Design Parameters at 5.0000 ft: Lx 10.0000 ft Ly 10.0000 ft Lt 10.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 6x2.25Z16.sct Cbx 1.1364 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: Top Moment Reduction, R: 0.5000 AISI Eq. Loads: P Mx Vy My Vx <= 1.0 AISI (k) (k -f t) (k) (k -f t) (k) 0.000 Total 0.0000 2.5293 0.0000 0.0000 0.0000 0.0000 Applied 0.0000 2.5293 0.0000 0.0000 0.0000 Applied Strength 6.5597 3.2685 3.3186 0.8847 4.2921 Effective section properties at applied loads: 3.3186 0.8847 Ae 0.68951 in'2 Ixe 3.8201 in'4 Iye 0.9458 in ^ 4 Sxe(t) 1.2734 in Sye(1) 0.3528 in'3 in'4 Iye Sxe(b) 1.2734 in - 3 Sye(r) 0.3528 in Interaction Equations AISI Eq. C5.2.1 -1 (P, Mx, My) 0.000 + 0.774 + 0.000 = 0.774 <= 1.0 AISI Eq. C5.2.1 -2 (P, Mx, My) 0.000 + 0.774 + 0.000 = 0.774 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.599 + 0.000 = 0.599 <= 1.0 AISI Eq. C3.3.1 -1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 Member Check - 2001 AISI Specification - US (ASD) Load Combination: 0.6D +W Design Parameters at 5.0000 ft: Lx 10.0000 ft Ly 10.0000 ft Lt 10.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 6x2.25Z16.sct Cbx 1.1364 Cby 1.0000 My) ex 0.0000 in Cmx 1.0000 Cmy 1.0000 (P, Mx, ey 0.0000 in Braced Flange: Top Moment Reduction, R: 0.5000 (Mx, Vy) Loads: P Mx Vy AISI My Vx (My, Vx) (k) (k -f t) (k) <= 1.0 (k -ft) (k) Total 0.0000 - 0.6699 0.0000 0.0000 0.0000 Applied 0.0000 - 0.6699 0.0000 0.0000 0.0000 Strength 6.5597 1.6342 3.3186 0.8847 4.2921 Effective section properties at applied loads: Ae 0.68951 in Ixe 3.8201 in'4 Iye 0.9458 in Sxe (t) 1.2734 in - 3 Sye (1) 0.3528 in'3 Sxe(b) 1.2734 in Sye(r) 0.3528 in"3 Interaction Equations AISI Eq. C5.2.1 -1 (P, Mx, My) 0.000 + 0.410 + 0.000 = 0.410 <= 1.0 AISI Eq. C5.2.1 -2 (P, Mx, My) 0.000 + 0.410 + 0.000 = 0.410 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.042 + 0.000 = 0.042 <= 1.0 AISI Eq. C3.3.1 -1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 ROOF BEAM ;81-Z) / Structures Basic Geomet Roof slope = 0.25/12 Length = 5.00 feet Tributary Width = 10.00 feet Total Tributary Area = 50.00 Sq. Ft. Total Live Load = 35.00 psf Dead Load = 5.00 psf Live Load (reduced) = 35.00 psf Snow Load = 35.00 psf Total Gravity Load = 40.00 psf Wind Uplift = 14.01 psf w (dead) = D.L. x Trib. Lgth. = 50.00 Ibs /ft. w (live) = L.L. x Trib. Lgth. = 350.00 Ibs /ft. w (snow) = S.L. x Trib. Lgth. = 350.00 Ibs /ft. w (T.L.) = Uniform Gravity Load = 400.00 Ibs /ft. w (U.L.) = Uniform Uplift Load = 90.10 Ibs /ft. MOMENTS DUE TO GRAVITY LOADS M (Simple) = w (T.L.) x L ^2 / 8 = 1.250 ft -kips MOMENTS DUE TO WIND LOADS M (Simple) = w (W.L.) x L ^2 / 8 = 0.282 ft -kips MAXIMUM END REACTIONS DUE TO GRAVITY LOADS R(Simple) = w(T.L.) x L / 2 = 1.000 kips MAXIMUM END REACTIONS DUE TO WIND UPLIFT LOADS R(Simple) = w(U.L.) x L / 2 = 0.225 kips MINIMUM NUMBER OF SCREWS REQUIRED FOR END SUPPORT Maximum capacity of #12 screw in shear = 0.618 kips Minimum number of screws required = 2 - #12 screws See detail for actual number of screws required. See CFS computer run for design size 6 C ►t PRELIMINARY UNLESS SEALED ON EACH SHEET OR ON COVER SHEET Job: � 3 Date: By: Job No.: I68 SH.: S S.E. CONSULTANTS, INC. CFS Version 4.11 Section: 6x2.25C 16.sct 6 x 2.25 C 16 Gage Library Rev. Date: 11/6/20069:39:32 AM By: Steve Schaub, P.E. Steve Schaub, P.E. S.E. Consultants, Inc. Page 1 Section Inputs Material: A607 Class 1 Grade 55 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 55 ksi Tensile Strength, Fu 70 ksi Warping Constant Override, Cw 0 in Torsion Constant Override, J 0 in C- Section, Thickness 0.059 in Placement of Part from Origin: X to center of gravity 0 in (in) Y to center of gravity 0 in 0.000 Outside dimensions, Open shape 0.000 0.0000 Length Angle Radius Web 0.000 (in) (deg) (in) 1 0.7730 270.000 0.18750 None 2 2.2500 180.000 0.18750 Single 3 6.0000 90.000 0.18750 Single 4 2.2500 0.000 0.18750 Single 5 0.7730 - 90.000 0.18750 None k Hole Size Distance Coef. (in) (in) 0.000 0.0000 0.3865 0.000 0.0000 1.1250 0.000 0.0000 3.0000 0.000 0.0000 1.1250 0.000 0.0000 0.3865 5� US Version 4.11 Analysis: IBC beam analysis.anl Beam Analysis Rev. Date: 7/27/20075:21:50 PM By: Steve Schaub, P.E. Steve Schaub, P.E. S.E. Consultants, Inc. Page 1 Analvsis Inputs Members Section File Revision Date and Time 1 6x2.25C16.sct 11/6/2006 9:39:32 AM Start Loc. End Loc. Braced R ex ey (ft) (ft) Flange (in) (in) 1 0.0000 5.0000 Top 0.4000 0.0000 0.0000 Supports Type Location Brg Length (ft) (in) 1 XYT 0.0000 1.000 2 XYT 5.0000 1.000 Loading: Dead Load Type Angle Start Loc. (deg) (ft) 1 Distributed 90.000 0.0000 Loading: Live Load Type Angle Start Loc. (deg) (ft) 1 Distributed 90.000 0.0000 Loading: Wind Load Type Angle Start Loc. (deg) (ft) 1 Distributed 90.000 0.0000 Load Combination: D +L K 1.0000 1.0000 End Loc. Start End (ft) Magnitude Magnitude 5.0000 -0.05 -0.05 k /ft End Loc. Start End (ft) Magnitude Magnitude 5.0000 -0.35 -0.35 k /ft End Loc. Start End (ft) Magnitude Magnitude 5.0000 0.14 0.14 k /ft OA Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Live Load 1.0000 Load Combination: 0.6D +W Loading Factor 1 Beam Self Weight 0.6000 2 Dead Load 0.6000 3 Wind Load 1.0000 K 1.0000 1.0000 End Loc. Start End (ft) Magnitude Magnitude 5.0000 -0.05 -0.05 k /ft End Loc. Start End (ft) Magnitude Magnitude 5.0000 -0.35 -0.35 k /ft End Loc. Start End (ft) Magnitude Magnitude 5.0000 0.14 0.14 k /ft OA CFS Version 4.11 Page 2 • Analysis: IBC beam analysis.anl Steve Schaub, P.E. Beam Analysis S.E. Consultants, Inc. Rev. Date: 7/27/20075:21:50 PM By: Steve Schaub, P.E. Member Check - 2001 AISI Specification - US (ASD) Load Combination: D +L Design Parameters at 2.5000 ft: Lx 5.0000 ft Ly 5.0000 ft Lt 5.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 6x2.25C16.sct Cbx 1.1364 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: Top Moment Reduction, R: 0.4000 Loads: P Mx Vy My Vx Vx (k) (k - ft) (k) (k - ft) (k) Total 0.0000 1.2572 0.0000 0.0000 0.0000 Applied 0.0000 1.2572 0.0000 0.0000 0.0000 Strength 9.7738 3.0762 3.3186 0.8455 4.2761 Effective section properties at applied loads: Ae 0.67481 in'2 Ixe 3.7107 in'4 Iye 0.4788 in - 4 Sxe(t) 1.2369 in�3 Sye(1) 0.6856 in ^ 3 Sxe (b) 1.2369 in'3 Sye (r) 0.3086 in'3 Interaction Equations AISI Eq. AISI Eq. C5.2.1 -1 (P, Mx, My) 0.000 + 0.409 + 0.000 = 0.409 <= 1.0 AISI Eq. C5.2.1 -2 (P, Mx, My) 0.000 + 0.409 + 0.000 = 0.409 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.167 + 0.000 = 0.167 <= 1.0 AISI Eq. C3.3.1 - 1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 Member Check - 2001 AISI Specification_- US (ASD) Load Combination: 0.6D +W Design Parameters at 2.5000 ft: Lx 5.0000 ft Ly 5.0000 ft Lt 5.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 6x2.25C16.sct Cbx 1.1364 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: Top Moment Reduction, R: 0.4000 Loads: P Mx Vy My Vx (k) (k -ft) (k) (k -f t) (k) Total 0.0000 - 0.3394 0.0000 0.0000 0.0000 Applied 0.0000 - 0.3394 0.0000 0.0000 0.0000 Strength 9.7738 2.9489 3.3186 0.8455 4.2761 Effective section properties at applied loads: Ae 0.67481 in Ixe 3.7107 in'4 Iye 0.4788 in Sxe(t) 1.2369 in Sye(1) 0.6856 in Sxe(b) 1.2369 in Sye(r) 0.3086 in Interaction Equations AISI Eq. C5.2.1 -1 (P, Mx, My) 0.000 + 0.115 + 0.000 = 0.115 <= 1.0 AISI Eq. C5.2.1 -2 (P, Mx, My) 0.000 + 0.115 + 0.000 = 0.115 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.012 + 0.000 = 0.012 <= 1.0 AISI Eq. C3.3.1 -1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 1.'i INTERIOR COLUMN ~ ° p L Structures Basic Geornet 4C /^� ( ) GRAVITY LOADS Column Height = 8.48 ft Total Tributary Area UoColumn ================================================================================= = 37.50It"2 Dead Load = 5.00pof Collateral Load ~ 0.00 pof Roof Live Load = 35.00paf Snow Load = 35.00 pnf Wind Uplift ================================================================================= = 14.01 pof Ommd Load to Column = 0.19 kips Collateral Load buColumn = 0.00 kips Live Load toColumn = 1.31 kips Wind Load bnColumn = 0.53 kips ================================================================================= Total Gravity Load UuColumn (P) = 1.50 kips Total Wind Load bnColumn (P) = '0.34 kips See CFS computer run for design size PRELIMINARY UNLESS SEALED ON EACH JH EET OR ON COVER SHEET S.E. CONSULTANTS, INC. • CFS Version 4.11 Section: 4x2.25C16.sct 4 x 2.25 C 16 Gage Library Rev. Date: 8/9/200610:02:09 AM By: Steve Schaub, P.E. Section I Steve Schaub, P.E. S.E. Consultants, Inc. Material: A607 Class 1 Grade 55 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 55 ksi Tensile Strength, Fu 70 ksi Warping Constant Override, Cw 0 in'6 Torsion Constant Override, J 0 in C- Section, Thickness 0.059 in Placement of Part from Origin: X to center of gravity 0 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size (in) (deg) (in) Coef. (in) 1 0.7730 270.000 0.18750 None 0.000 0.0000 2 2.2500 180.000 0.18750 Single 0.000 0.0000 3 4.0000 90.000 0.18750 Single 0.000 0.0000 4 2.2500 0.000 0.18750 Single 0.000 0.0000 5 0.7730 - 90.000 0.18750 None 0.000 0.0000 Page 1 Distance (in) 0.3865 1.1250 2.0000 1.1250 0.3865 (fl CFS Version 4.11 Analysis: Analysis interior column IBC.anl interior column analysis Rev. Date: 7/30/20079:38:08 AM By: Steve Schaub, P.E. Steve Schaub, P.E. S.E. Consultants, Inc. Page 1 Analvsis Inputs Members Section File Revision Date and Time 1 4x2.25C16.sct 8/9/2006 10:02:09 AM Start Loc. End Loc. Braced R ex ey (ft) (ft) Flange (in) (in) 1 0.0000 8.4800 None 0.0000 0.0000 0.0000 Supports Type Location Brg Length (ft) (in) 1 XYT 0.0000 1.000 2 XT 5.0000 1.000 3 XYT 8.4800 1.000 Loading: Dead Load Type Angle Start Loc. (deg) (ft) 1 Axial NA 0.0000 Loading: Live Load Type Angle Start Loc. (deg) (ft) 1 Axial NA 0.0000 Loading: Wind Load Type Angle Start Loc. (deg) (ft) 1 Axial NA 0.0000 2 Distributed 90.000 0.0000 Load Combination: ASD 1: D +L Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Live Load 1.0000 K 1.0000 1.0000 1.0000 End Loc. Start End (ft) Magnitude Magnitude 8.4800 0.1900 0.1900 k End Loc. Start End (ft) Magnitude Magnitude 8.4800 1.3100 1.3100 k End Loc. Start End (ft) Magnitude Magnitude 8.4800 - 0.3400 - 0.3400 k 8.4800 -0.04 -0.04 k /ft J` 1 CFS Version 4.11 Analysis: Analysis interior column IBC.anl interior column analysis Rev. Date: 7/30/20079:38:08 AM By: Steve Schaub, P.E. Load Combination: ASD 2: .6D +W Steve Schaub, P.E. S.E. Consultants, Inc. Member Check - 2001 AISI Specification - US (ASD Page 2 Load Combination: ASD 1: D +L Design Parameters at 4.2400 ft: Lx 8.4800 ft Ly 5.0000 ft Lt 5.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 4x2.25C16.sct Cbx Loading Factor 1 Beam Self Weight 0.6000 2 Dead Load 0.6000 3 Wind Load 1.0000 Load Combination: D + 0.75(L +W) in Braced Flange: Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Live Load 0.7500 4 Wind Load 0.7500 Steve Schaub, P.E. S.E. Consultants, Inc. Member Check - 2001 AISI Specification - US (ASD Page 2 Load Combination: ASD 1: D +L Design Parameters at 4.2400 ft: Lx 8.4800 ft Ly 5.0000 ft Lt 5.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 4x2.25C16.sct Cbx 1.2142 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None Moment Reduction, R: 0.0000 AISI Eq. C3.3.1 Loads: P Mx Vy My Vx AISI Eq. (k) (k -f t) (k) (k -ft) (k) = 0.000 Total 1.5000 0.0170 0.0000 0.0000 0.0000 Applied 1.5000 0.0170 0.0000 0.0000 0.0000 -0.226 Strength 6.7952 1.7453 3.8424 0.7327 4.2761 0.3698 Effective section properties at applied loads: Ae 0.55681 in Ixe 1.4450 in'4 Iye 0.4148 in'4 Sxe (t) 0.72252 in'3 Sye (1) 0.49369 in Sxe(b) 0.72252 in Sye(r) 0.29419 in'3 Interaction Equations AISI Eq. C5.2.1 -1 (P, Mx, My) 0.221 + 0.010 + 0.000 = 0.231 <= 1.0 AISI Eq. C5.2.1 -2 (P, Mx, My) 0.117 + 0.010 + 0.000 = 0.127 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.000 + 0.000 = 0.000 <= 1.0 AISI Eq. C3.3.1 -1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 Member Check - 2001 AISI Specification - US (ASD) Load Combination: ASD 2: .6D +W Design Parameters at 4.2400 ft: Lx 8.4800 ft Ly 5.0000 ft Lt 5.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 4x2.25C16.sct Cbx 1.2142 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None Moment Reduction, R: 0.0000 Loads: P Mx Vy My Vx (k) (k -f t) (k) (k -f t) (k) Total -0.226 0.3698 0.000 0.0000 0.000 Applied -0.226 0.3698 0.000 0.0000 0.000 w US Version 4.11 Analysis: Analysis interior column IBC.anl interior column analysis Rev. Date: 7/30/20079:38:08 AM By: Steve Schaub, P.E. Strength 18.338 1.7453 Steve Schaub, P.E. S.E. Consultants, Inc. 3.842 0.7327 4.276 Page 3 Effective section properties at applied loads: Ae 0.55681 in Ixe 1.4450 in'4 Iye 0.4148 in Sxe(t) 0.72252 in Sye(1) 0.49369 in Sxe(b) 0.72252 in Sye(r) 0.29419 in'3 Interaction Equations AISI Eq. C5.1.1 -1 (Mx, My, T) 0.186 + 0.000 + 0.012 = 0.199 <= 1.0 AISI Eq. C5.1.1 -2 (Mx, My, T) 0.212 + 0.000 - 0.012 = 0.200 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.043 + 0.000 = 0.043 <= 1.0 AISI Eq. C3.3.1 -1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 Member Check - 2001 AISI Specification - US (ASD) Load Combination: D + 0.75(L +W) Design Parameters at 4.2400 ft: Lx 8.4800 ft Ly 5.0000 ft Lt 5.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 4x2.25C16.sct Cbx 1.2142 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None Moment Reduction, R: 0.0000 Loads: P Mx Vy My Vx (k) (k -ft) (k) (k -ft) (k) Total 0.9175 0.2867 0.0000 0.0000 0.0000 Applied 0.9175 0.2867 0.0000 0.0000 0.0000 Strength 6.7952 1.7453 3.8424 0.7327 4.2761 Effective section properties at applied loads: Ae 0.55681 in ^ 2 Ixe 1.4450 in Iye 0.4148 in"4 Sxe(t) 0.72252 in'3 Sye(1) 0.49369 in'3 Sxe(b) 0.72252 in'3 Sye(r) 0.29419 in Interaction Equations AISI Eq. C5.2.1 -1 (P, Mx, My) 0.135 + 0.171 + 0.000 = 0.306 <= 1.0 AISI Eq. C5.2.1 -2 (P, Mx, My) 0.072 + 0.164 + 0.000 = 0.236 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.026 + 0.000 = 0.026 <= 1.0 AISI Eq. C3.3.1 -1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 Ca... EXTERIOR COLUMN c3LD C Structures Basic Geometry GRAVITY LOADS Column Height = 8.50 ft Lateral Tributary Width to Column = 7.50 ft Total Tributary Area to Column (Axial Loading) = 25.00 ft ^2 Dead Load = 5.00 psf Collateral Load = 0.00 psf Roof Live Load = 35.00 psf Snow Load = 35.00 psf Wind Uplift = 14.01 psf Wind (Lateral) = 15.28 psf Dead Load to Column = 0.13 kips Collateral Load to Column = 0.00 kips Live Load to Column = 0.88 kips Wind Load to Column = 0.35 kips Total Gravity Load to Column = 1.00 kips Total Wind Load to Column (Axial) = 0.23 kips Total Wind Load to Column (Lateral) = 0.115 kips /ft See CFS computer run for design size PRELIMINARY UNLESS SEALED ON EACH SHEET OR ON Job: -�W Date: By: Job No.: COVER SHEET �tGL7� SH.: E�(D S.E. CONSULTANTS, INC. CFS Version 4.11 Section: 4x2.25 C 16. sct 4 x 2.25 C 16 Gage Library Rev. Date: 8/9/200610:02:09 AM By: Steve Schaub, P.E. Section In Steve Schaub, P.E. S.E. Consultants, Inc. Material: A607 Class 1 Grade 55 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 55 ksi Tensile Strength, Fu 70 ksi Warping Constant Override, Cw 0 in ^ 6 Torsion Constant Override, J 0 in C- Section, Thickness 0.059 in Placement of Part from Origin: X to center of gravity 0 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size (in) (deg) (in) Coef. (in) 1 0.7730 270.000 0.18750 None 0.000 0.0000 2 2.2500 180.000 0.18750 Single 0.000 0.0000 3 4.0000 90.000 0.18750 Single 0.000 0.0000 4 2.2500 0.000 0.18750 Single 0.000 0.0000 5 0.7730 - 90.000 0.18750 None 0.000 0.0000 Page 1 Distance (in) 0.3865 1.1250 2.0000 1.1250 0.3865 US Version 4.11 Analysis: Analysis exterior column IBC.anl exterior column analysis Rev. Date: 7/30/200710:16:55 AM By: Steve Schaub, P.E. Steve Schaub, P.E. S.E. Consultants, Inc. Analvsis Inputs Page 1 Members Section File Revision Date and Time 1 4x2.25C16.sct 8/9/2006 10:02:09 AM Start Loc. End Loc. Braced R ex ey (ft) (ft) Flange (in) (in) 1 0.0000 8.5000 None 0.0000 0.0000 0.0000 Supports Type Location Brg Length K (ft) (in) 1 XYT 0.0000 4.000 1.0000 2 XT 5.0000 1.000 1.0000 3 XYT 8.5000 4.000 1.0000 Loading: Dead Load Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Axial NA 0.0000 8.5000 0.1300 0.1300 k Loading: Roof Live Load Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Axial NA 0.0000 8.5000 0.8800 0.8800 k Loading: Wind Load Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Axial NA 0.0000 8.5000 - 0.2300 - 0.2300 k 2 Distributed 90.000 0.0000 8.5000 0.12 0.12 k /ft Load Combination: ASD 2: D +L Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Roof Live Load 1.0000 CO( CFS Version 4.11 Analysis: Analysis exterior column IBC.anl exterior column analysis Rev. Date: 7/30/200710:16:55 AM By: Steve Schaub, P.E. Load Combination: ASD 3: .6D +W Load Combination: ASD 5: (D +L /2 +W) Loading Factor Factor 1 Beam Self Weight 0.6000 2 Dead Load Roof Live Load 0.6000 3 Wind Load 1.0000 1.0000 Load Combination: ASD 4: (D +L +W /2) Moment Loading R: 0.0000 Factor 1 Beam Self Weight 1.0000 2 Dead Load Eq. 1.0000 3 Roof Live Load 1.0000 4 Wind Load 0.5000 Load Combination: ASD 5: (D +L /2 +W) Steve Schaub, P.E. S.E. Consultants, Inc. Page 2 Member Check - 2001 AISI Specification - US (ASD) Load Combination: ASD 2: D +L Design Parameters at 4.2500 ft: Lx 8.5000 ft Ly 5.0000 ft Lt 5.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 4x2.25C16.sct Cbx Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Roof Live Load 0.5000 4 Wind Load 1.0000 Steve Schaub, P.E. S.E. Consultants, Inc. Page 2 Member Check - 2001 AISI Specification - US (ASD) Load Combination: ASD 2: D +L Design Parameters at 4.2500 ft: Lx 8.5000 ft Ly 5.0000 ft Lt 5.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 4x2.25C16.sct Cbx 1.2153 Cby 1.0000 My) ex 0.0000 in Cmx 1.0000 Cmy 1.0000 (P, Mx, ey 0.0000 in Braced Flange: None Moment Reduction, R: 0.0000 (Mx, Vy) 0.000 + Loads: P Mx Vy Eq. My Vx Vx) 0.000 + (k) (k -ft) (k) (k -ft) (k) Total 1.0100 0.0171 0.0000 0.0000 0.0000 Applied 1.0100 0.0171 0.0000 0.0000 0.0000 Strength 6.7885 1.7455 3.8424 0.7326 4.2761 Effective section properties at applied loads: Ae 0.55681 in ^ 2 Ixe 1.4450 in - 4 Iye 0.4148 in'4 Sxe(t) 0.72252 in - 3 Sye(1) 0.49369 in'3 Sxe(b) 0.72252 in ^ 3 Sye(r) 0.29419 in ^ 3 Interaction Equations AISI Eq. C5.2.1 -1 (P, Mx, My) 0.149 + 0.010 + 0.000 = 0.159 <= 1.0 AISI Eq. C5.2.1 -2 (P, Mx, My) 0.079 + 0.010 + 0.000 = 0.089 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.000 + 0.000 = 0.000 <= 1.0 AISI Eq. C3.3.1 -1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 Member Check - 2001 AISI Specification - US (ASD) Load Combination: ASD 3: .6D +W Design Parameters at 4.2500 ft: Lx 8.5000 ft Ly 5.0000 ft Lt 5.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 4x2.25C16.sct Cbx 1.2153 Cby 1.0000 ex 0.0000 in • CFS Version 4.11 Eq. C5.1.1 -1 (Mx, My, Page 3 Analysis: Analysis exterior column IBC.anl Steve Schaub, P.E. = 0.527 exterior column analysis AISI S.E. Consultants, Inc. C5.1.1 -2 Rev. Date: 7/30/200710:16:55 AM 0.589 + 0.000 - 0.008 = 0.581 By: Steve Schaub, P.E. AISI Eq. C3.3.1 -1 (Mx, Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None Moment Reduction, R: 0.0000 Vx) Loads: P Mx Vy My Vx (k) (k -f t) (k) (k -f t) (k) Total -0.152 - 1.0283 0.000 0.0000 0.000 Applied -0.152 - 1.0283 0.000 0.0000 0.000 Strength 18.338 1.7455 3.842 0.7326 4.276 Effective section properties at applied loads: Ae 0.55681 in'2 Ixe 1.4450 in'4 Iye 0.4148 in Sxe(t) 0.72252 in Sye(1) 0.49369 in Sxe(b) 0.72252 in'3 Sye(r) 0.29419 in'3 Interaction Equations AISI Eq. C5.1.1 -1 (Mx, My, T) 0.519 + 0.000 + 0.008 = 0.527 <= 1.0 AISI Eq. C5.1.1 -2 (Mx, My, T) 0.589 + 0.000 - 0.008 = 0.581 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.331 + 0.000 = 0.331 <= 1.0 AISI Eq. C3.3.1 -1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 Member Check - 2001 AISI Specification - US (ASD) Load Combination: ASD 4: (D +L +W /2) Design Parameters at 4.2500 ft: Lx 8.5000 ft Ly 5.0000 ft Lt 5.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 4x2.25C16.sct Cbx 1.2153 Cby 1.0000 My) ex 0.0000 in Cmx 1.0000 Cmy 1.0000 (P, Mx, ey 0.0000 in Braced Flange: None Moment Reduction, R: 0.0000 C3.3.1 -1 (Mx, Vy) Loads: P Mx Vy AISI My Vx (My, Vx) (k) (k -ft) (k) <= 1.0 (k -ft) (k) Total 0.8950 - 0.5022 0.0000 0.0000 0.0000 Applied 0.8950 - 0.5022 0.0000 0.0000 0.0000 Strength 6.7885 1.7455 3.8424 0.7326 4.2761 Effective section properties at applied loads: Ae 0.55681 in Ixe 1.4450 in'4 Iye 0.4148 in'4 Sxe(t) 0.72252 in Sye(1) 0.49369 in'3 Sxe(b) 0.72252 in Sye(r) 0.29419 in ^ 3 Interaction Equations AISI Eq. C5.2.1 -1 (P, Mx, My) 0.132 + 0.300 + 0.000 = 0.431 <= 1.0 AISI Eq. C5.2.1 -2 (P, Mx, My) 0.070 + 0.288 + 0.000 = 0.358 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.079 + 0.000 = 0.079 <= 1.0 AISI Eq. C3.3.1 -1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 Member Check - 2001 AISI Specification - US (ASD) Load Combination: ASD 5: (D +L /2 +W) Design Parameters at 4.2500 ft: Lx 8.5000 ft Ly 5.0000 ft Lt 5.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 -4( CFS Version 4.11 Analysis: Analysis exterior column IBC.anl Steve Schaub, P.E. exterior column analysis S.E. Consultants, Inc. Rev. Date: 7/30/200710:16:55 AM By: Steve Schaub, P.E. Section: 4x2.25C16.sct Cbx 1.2153 Cby 1.0000 ex Cmx 1.0000 Cmy 1.0000 ey Braced Flange: None Moment Reduction, R: 0.0000 0.027 + 0.585 + Loads: P Mx Vy My C3.3.1 -1 (k) (k -ft) (k) (k -ft) Total 0.3400 - 1.0215 0.0000 0.0000 Applied 0.3400 - 1.0215 0.0000 0.0000 Strength 6.7885 1.7455 3.8424 0.7326 Effective section properties at applied loads: Ae 0.55681 in'2 Ixe 1.4450 in'4 Iye Sxe(t) 0.72252 in'3 Sye(1) Sxe(b) 0.72252 in Sye(r) Interaction Equations Page 4 0.0000 in 0.0000 in Vx (k) 0.0000 0.0000 4.2761 0.4148 in ^ 4 0.49369 in ^ 3 0.29419 in ^ 3 AISI Eq. C5.2.1 -1 (P, Mx, My) 0.050 + 0.594 + 0.000 = 0.644 <= 1.0 AISI Eq. C5.2.1 -2 (P, Mx, My) 0.027 + 0.585 + 0.000 = 0.612 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.327 + 0.000 = 0.327 <= 1.0 AISI Eq. C3.3.1 -1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 -4I Structures Basic Geomet GRAVITY LOADS P L � INTERIOR COLUMN /6 (-7�_ � Column Height 8.67 ft Total Tributary Area to Column = 5010 ftA2 ================================================================================= Dead Load = 5.00 pof Collateral Load = O.OUpmy Roof Live Load = 35.00 pof Snow Load = 35.00pmJ Wind Uplift = 14.01pof ================~================================================================ Dead Load hoColumn = 0.25 kips Collateral Load boColumn = 0.00 kips Live Load boColumn = 1.75 kips Wind Load 0oColumn = 0.70 kips ================================================================================= Total Gravity Load $o Column (P) = 2.00 kips Total Wind Load $uColumn (P) = '0.45 kips See CFS computer run for design size PRELIMINARY UNLESS SEALED ON EACH SHEET OR ON COVER SHEET S.E. CONSULTANTS, INC. CFS Version 4.11 Section: 4x2.25C 16. sct 4 x 2.25 C 16 Gage Library Rev. Date: 8/9/200610:02:09 AM By: Steve Schaub, P.E. Section I Steve Schaub, P.E. S.E. Consultants, Inc. Material: A607 Class 1 Grade 55 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 55 ksi Tensile Strength, Fu 70 ksi Warping Constant Override, Cw 0 in Torsion Constant Override, J 0 in ^ 4 C- Section, Thickness 0.059 in Placement of Part from Origin: X to center of gravity 0 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size (in) (deg) (in) Coef. (in) 1 0.7730 270.000 0.18750 None 0.000 0.0000 2 2.2500 180.000 0.18750 Single 0.000 0.0000 3 4.0000 90.000 0.18750 Single 0.000 0.0000 4 2.2500 0.000 0.18750 Single 0.000 0.0000 5 0.7730 - 90.000 0.18750 None 0.000 0.0000 Page 1 Distance (in) 0.3865 1.1250 2.0000 1.1250 0.3865 T' CFS Version 4.11 Analysis: Analysis interior column IBC.anl interior column analysis Rev. Date: 7/30/200710:46:07 AM By: Steve Schaub, P.E. Steve Schaub, P.E. S.E. Consultants, Inc. Page 1 Analysis Inputs Members Section File Revision Date and Time 1 4x2.25C16.sct 8/9/2006 10:02:09 AM Start Loc. End Loc. Braced R ex ey (ft) (ft) Flange (in) (in) 1 0.0000 8.6700 None 0.0000 0.0000 0.0000 Supports Type Location Brg Length (ft) (in) 1 XYT 0.0000 1.000 2 XT 5.0000 1.000 3 XYT 8.6700 1.000 Loading: Dead Load Type Angle Start Loc. (deg) (ft) 1 Axial NA 0.0000 Loading: Live Load Type Angle Start Loc. (deg) (ft) 1 Axial NA 0.0000 Loading: Wind Load Type Angle Start Loc. (deg) (ft) 1 Axial NA 0.0000 2 Distributed 90.000 0.0000 Load Combination: ASD 1: D +L Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Live Load 1.0000 I.1 1.0000 1.0000 1.0000 End Loc. Start End (ft) Magnitude Magnitude 8.6700 0.2500 0.2500 k End Loc. Start End (ft) Magnitude Magnitude 8.6700 1.7500 1.7500 k End Loc. Start End (ft) Magnitude Magnitude 8.6700 - 0.4500 - 0.4500 k 8.6700 -0.05 -0.05 k /ft :-4 CFS Version 4.11 Page 2 Analysis: Analysis interior column IBC.anl Steve Schaub, P.E. interior column analysis S.E. Consultants, Inc. Rev. Date: 7/30/200710:46:07 AM By: Steve Schaub, P.E. Load Combination: ASD 2: .6D +W Loading 1.2244 Factor 1.0000 ex 0.0000 in 1 Beam Self Weight 1.0000 0.6000 1.0000 ey 0.0000 in 2 Dead Load Flange: None 0.6000 Reduction, R: 0.0000 3 Wind Load P 1.0000 Vy My Vx Load Combination: D + 0.75(L +W) (k -f t) (k) (k -ft) (k) Loading -0.300 Factor 0.000 0.0000 0.000 1 Beam Self Weight -0.300 1.0000 0.000 0.0000 0.000 2 Dead Load 1.0000 3 Live Load 0.7500 4 Wind Load 0.7500 Member Check - 2001 AISI Specification - US (ASD) Load Combination: ASD 1: D +L Design Parameters at 4.3350 ft: Lx 8.6700 ft Ly 5.0000 ft Lt 5.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 4x2.25C16.sct Cbx 1.2244 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None Moment Reduction, R: 0.0000 Loads: P Mx Vy My Vx (k) (k -f t) (k) (k -ft) (k) Total 2.0000 0.0178 0.0000 0.0000 0.0000 Applied 2.0000 0.0178 0.0000 0.0000 0.0000 Strength 6.7308 1.7468 3.8424 0.7320 4.2761 Effective section properties at applied loads: Ae 0.55681 in'2 Ixe 1.4450 in Iye 0.4148 in'4 Sxe(t) 0.72252 in Sye(1) 0.49369 in Sxe(b) 0.72252 in Sye(r) 0.29419 in'3 Interaction Equations AISI Eq. C5.2.1 -1 (P, Mx, My) 0.297 + 0.011 + 0.000 = 0.308 <= 1.0 AISI Eq. C5.2.1 -2 (P, Mx, My) 0.156 + 0.010 + 0.000 = 0.166 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.000 + 0.000 = 0.000 <= 1.0 AISI Eq. C3.3.1 -1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 Member Check - 2001 AISI Specification - US (ASD Load Combination: ASD 2: .6D +W Design Parameters at 4.3350 ft: Lx 8.6700 ft Ly 5.0000 ft Lt 5.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 4x2.25C16.sct Cbx 1.2244 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None Moment Reduction, R: 0.0000 Loads: P Mx Vy My Vx (k) (k -f t) (k) (k -ft) (k) Total -0.300 0.4993 0.000 0.0000 0.000 Applied -0.300 0.4993 0.000 0.0000 0.000 CFS Version 4.11 • Analysis: Analysis interior column IBC.anl interior column analysis Rev. Date: 7/30/200710:46:07 AM By: Steve Schaub, P.E. Strength 18.338 1.7468 Steve Schaub, P.E. S.E. Consultants, Inc. 3.842 0.7320 4.276 Page 3 Effective section properties at applied loads: Ae 0.55681 in Ixe 1.4450 in Iye 0.4148 in"4 Sxe(t) 0.72252 in'3 Sye(1) 0.49369 in Sxe(b) 0.72252 in Sye(r) 0.29419 in'3 Interaction Equations AISI Eq. C5.1.1 -1 (Mx, My, T) 0.252 + 0.000 + 0.016 = 0.268 <= 1.0 AISI Eq. C5.1.1 -2 (Mx, My, T) 0.286 + 0.000 - 0.016 = 0.269 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.078 + 0.000 = 0.078 <= 1.0 AISI Eq. C3.3.1 -1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 Member Check - 2001 AISI Sr)ecification - US (ASD Load Combination: D + 0.75(L +W) Design Parameters at 4.3350 ft: Lx 8.6700 ft Ly 5.0000 ft Lt 5.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 4x2.25C16.sct Cbx 1.2244 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None Moment Reduction, R: 0.0000 <= 1.0 Loads: P Mx Vy My Vx + 0.000 (k) (k -f t) (k) (k -f t) (k) Total 1.2250 0.3842 0.0000 0.0000 0.0000 Applied 1.2250 0.3842 0.0000 0.0000 0.0000 Strength 6.7308 1.7468 3.8424 0.7320 4.2761 Effective section properties at applied loads: Ae 0.55681 in Ixe 1.4450 in ^ 4 Iye 0.4148 in Sxe(t) 0.72252 in ^ 3 Sye(1) 0.49369 in'3 Sxe(b) 0.72252 in ^ 3 Sye(r) 0.29419 in Interaction Equations AISI Eq. C5.2.1 -1 (P, Mx, My) 0.182 + 0.233 + 0.000 = 0.415 <= 1.0 AISI Eq. C5.2.1 -2 (P, Mx, My) 0.096 + 0.220 + 0.000 = 0.316 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.046 + 0.000 = 0.046 <= 1.0 AISI Eq. C3.3.1 -1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 EXTERIOR COLUMN Structures Basic Geometry GRAVITY LOADS ,36D 's 4 ` S 9C 1 6 CTyP Column Height = 8.50 ft Lateral Tributary Width to Column = 5.00 ft Total Tributary Area to Column (Axial Loading) = 25.00 ft ^2 Dead Load = 5.00 psf Collateral Load = 0.00 psf Roof Live Load = 35.00 psf Snow Load = 35.00 psf Wind Uplift = 14.01 psf Wind (Lateral) = 15.28 psf Dead Load to Column = 0.13 kips Collateral Load to Column = 0.00 kips Live Load to Column = 0.88 kips Wind Load to Column = 0.35 kips Total Gravity Load to Column = 1.00 kips Total Wind Load to Column (Axial) = 0.23 kips Total Wind Load to Column (Lateral) = 0.076 kips /ft See CFS computer run for design size ET O R ON PRELIMINARY UNLESS SEALEQD O`-/ f`f -C N EACH SHEET Job: �Wa Date: 8 O* By: ' job No.: COVER SHEET 1 SH.: S.E. CONSULTANTS, INC. CFS Version 4.11 Section: 4x2.25C 16.sct 4 x 2.25 C 16 Gage Library Rev. Date: 8/9/200610:02:09 AM By: Steve Schaub, P.E. Section In Steve Schaub, P.E. S.E. Consultants, Inc. Material: A607 Class 1 Grade 55 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 55 ksi Tensile Strength, Fu 70 ksi Warping Constant Override, Cw 0 in Torsion Constant Override, J 0 in'4 C- Section, Thickness 0.059 in Placement of Part from Origin: X to center of gravity 0 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size (in) (deg) (in) Coef. (in) 1 0.7730 270.000 0.18750 None 0.000 0.0000 2 2.2500 180.000 0.18750 Single 0.000 0.0000 3 4.0000 90.000 0.18750 Single 0.000 0.0000 4 2.2500 0.000 0.18750 Single 0.000 0.0000 5 0.7730 - 90.000 0.18750 None 0.000 0.0000 Page 1 Distance (in) 0.3865 1.1250 2.0000 1.1250 0.3865 Gi CFS Version 4.11 • Analysis: Analysis exterior column IBC.anl exterior column analysis Rev. Date: 7/30/200711:00:19 AM By: Steve Schaub, P.E. Analvsis Inputs Steve Schaub, P.E. S.E. Consultants, Inc. Page 1 Members Section File Revision Date and Time 1 4x2.25C16.sct 8/9/2006 10:02:09 AM Start Loc. End Loc. Braced R ex ey (ft) (ft) Flange (in) (in) 1 0.0000 8.5000 None 0.0000 0.0000 0.0000 Supports Type Location Brg Length K (deg) (ft) (in) NA 1 XYT 0.0000 4.000 1.0000 2 XT 5.0000 1.000 1.0000 3 XYT 8.5000 4.000 1.0000 Loading: Dead Load Type Angle Start Loc. (deg) (ft) 1 Axial NA 0.0000 Loading: Roof Live Load Type Angle Start Loc. (deg) (ft) 1 Axial NA 0.0000 Loading: Wind Load Type Angle Start Loc. (deg) (ft) 1 Axial NA 0.0000 2 Distributed 90.000 0.0000 Load Combination: ASD 2: D +L Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Roof Live Load 1.0000 End Loc. Start End (ft) Magnitude Magnitude 8.5000 0.1300 0.1300 k End Loc. Start End (ft) Magnitude Magnitude 8.5000 0.8800 0.8800 k End Loc. Start End (ft) Magnitude Magnitude 8.5000 - 0.2300 - 0.2300 k 8.5000 0.08 0.08 k /ft :TC CFS Version 4.11 Page 2 Analysis: Analysis exterior column IBC.anl Steve Schaub, P.E. exterior column analysis S.E. Consultants, Inc. Rev. Date: 7/30/200711:00:19 AM By: Steve Schaub, P.E. Load Combination: ASD 3: .6D +W Loading Factor 1 Beam Self Weight 0.6000 2 Dead Load 0.6000 3 Wind Load 1.0000 Load Combination: ASD 4: (D +L +W /2) Load Combination: ASD 5: (D +L /2 +W) Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Roof Live Load 1.0000 4 Wind Load 0.5000 Load Combination: ASD 5: (D +L /2 +W) Member Check - 2001 AISI Specification - US (ASD) Load Combination: ASD 2: D +L Design Parameters at 4.2500 ft: Lx 8.5000 ft Ly 5.0000 ft Lt 5.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 4x2.25C16.sct Cbx Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Roof Live Load 0.5000 4 Wind Load 1.0000 Member Check - 2001 AISI Specification - US (ASD) Load Combination: ASD 2: D +L Design Parameters at 4.2500 ft: Lx 8.5000 ft Ly 5.0000 ft Lt 5.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 4x2.25C16.sct Cbx 1.2153 Cby 1.0000 My) ex 0.0000 in Cmx 1.0000 Cmy 1.0000 (P, Mx, ey 0.0000 in Braced Flange: None Moment Reduction, R: 0.0000 (Mx, Vy) 0.000 + Loads: P Mx Vy Eq. My Vx Vx) 0.000 + (k) (k -ft) (k) (k -ft) (k) Total 1.0100 0.0171 0.0000 0.0000 0.0000 Applied 1.0100 0.0171 0.0000 0.0000 0.0000 Strength 6.7885 1.7455 3.8424 0.7326 4.2761 Effective section properties at applied loads: Ae 0.55681 in ^ 2 Ixe 1.4450 in Iye 0.4148 in'4 Sxe(t) 0.72252 in Sye(1) 0.49369 in - 3 Sxe(b) 0.72252 in Sye(r) 0.29419 in'3 Interaction Equations AISI Eq. C5.2.1 -1 (P, Mx, My) 0.149 + 0.010 + 0.000 = 0.159 <= 1.0 AISI Eq. C5.2.1 -2 (P, Mx, My) 0.079 + 0.010 + 0.000 = 0.089 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.000 + 0.000 = 0.000 <= 1.0 AISI Eq. C3.3.1 -1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 Member Check - 2001 AISI Specification - US (ASD) Load Combination: ASD 3: .6D +W Design Parameters at 4.2500 ft: Lx 8.5000 ft Ly 5.0000 ft Lt 5.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 4x2.25C16.sct Cbx 1.2153 Cby 1.0000 ex 0.0000 in [r14 CFS Version 4.11 Page 3 Analysis: Analysis exterior column IBC.anl Steve Schaub, P.E. exterior column analysis S.E. Consultants, Inc. Rev. Date: 7/30/200711:00:19 AM By: Steve Schaub, P.E. Cmx 1.0000 Cmy 1.0000 T) ey 0.0000 in Braced Flange: None Moment Reduction, R: 0.0000 T) 0.387 + 0.000 Loads: P Mx Vy Eq. My Vx Vy) 0.143 (k) (k -ft) (k) AISI (k -ft) (k) (My, Total -0.152 - 0.6761 0.000 <= 1.0 0.0000 0.000 0.0000 Applied -0.152 - 0.6761 0.000 1.7455 0.0000 0.000 4.2761 Strength 18.338 1.7455 3.842 0.7326 4.276 Effective section properties at applied loads: Ae 0.55681 in'2 Ixe 1.44$0 in�4 Iye 0.4148 in Sxe(t) 0.72252 in Sye(1) 0.49369 in Sxe(b) 0.72252 in Sye(r) 0.29419 in Interaction Equations AISI Eq. C5.1.1 -1 (Mx, My, T) 0.341 + 0.000 + 0.008 = 0.349 <= 1.0 AISI Eq. C5.1.1 -2 (Mx, My, T) 0.387 + 0.000 - 0.008 = 0.379 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.143 + 0.000 = 0.143 <= 1.0 AISI Eq. C3.3.1 -1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 Member Check - 2001 AISI Specification - US (ASD Load Combination: ASD 4: (D +L +W /2) Design Parameters at 4.2500 ft: Lx 8.5000 ft Ly 5.0000 ft Lt 5.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 4x2.25C16.sct Cbx 1.2153 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None Moment Reduction, R: 0.0000 = 0.257 Loads: P Mx Vy My Vx 0.033 (k) (k -f t) (k) (k -f t) (k) Total 0.8950 - 0.3261 0.0000 0.0000 0.0000 Applied 0.8950 - 0.3261 0.0000 0.0000 0.0000 Strength 6.7885 1.7455 3.8424 0.7326 4.2761 Effective section properties at applied loads: Ae 0.55681 in Ixe 1.4450 in ^ 4 Iye 0.4148 in Sxe(t) 0.72252 in'3 Sye(1) 0.49369 in Sxe(b) 0.72252 in'3 Sye(r) 0.29419 in Interaction Equations AISI Eq. C5.2.1 -1 (P, Mx, My) 0.132 + 0.195 + 0.000 = 0.326 <= 1.0 AISI Eq. C5.2.1 -2 (P, Mx, My) 0.070 + 0.187 + 0.000 = 0.257 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.033 + 0.000 = 0.033 <= 1.0 AISI Eq. C3.3.1 -1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 Member Check - 2001 AISI Specification - US (ASD) Load Combination: ASD 5: (D +L /2 +W) Design Parameters at 4.2500 ft: Lx 8.5000 ft Ly 5.0000 ft Lt 5.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 • CFS Version 4.11 Eq. C5.2.1 -1 (P, Mx, Analysis: Analysis exterior column IBC.anl Steve Schaub, P.E. exterior column analysis 0.439 S.E. Consultants, Inc. Rev. Date: 7/30/200711:00:19 AM C5.2.1 -2 (P, Mx, By: Steve Schaub, P.E. 0.027 + 0.383 + 0.000 = 0.410 Section: 4x2.25C16.sct AISI Eq. C3.3.1 -1 Cbx 1.2153 Cby 1.0000 ex Cmx 1.0000 Cmy 1.0000 ey Braced Flange: None Moment Reduction, R: 0.0000 0.000 + Loads: P Mx Vy My (k) (k -ft) (k) (k -ft) Total 0.3400 - 0.6693 0.0000 0.0000 Applied 0.3400 - 0.6693 0.0000 0.0000 Strength 6.7885 1.7455 3.8424 0.7326 Effective section properties at applied loads: Ae 0.55681 in'2 Ixe 1.4450 in'4 Iye Sxe(t) 0.72252 in Sye(1) Sxe(b) 0.72252 in"3 Sye(r) Interaction Equations Page 4 0.0000 in 0.0000 in Vx (k) 0.0000 0.0000 4.2761 0.4148 in'4 0.49369 in 0.29419 in AISI Eq. C5.2.1 -1 (P, Mx, My) 0.050 + 0.389 + 0.000 = 0.439 <= 1.0 AISI Eq. C5.2.1 -2 (P, Mx, My) 0.027 + 0.383 + 0.000 = 0.410 <= 1.0 AISI Eq. C3.3.1 -1 (Mx, Vy) 0.140 + 0.000 = 0.140 <= 1.0 AISI Eq. C3.3.1 -1 (My, Vx) 0.000 + 0.000 = 0.000 <= 1.0 8e LATERAL ANALYSIS Description: The mini - storage building is constructed of typical light gage framing. The resistance to lateral forces is provided by light gage panel shear walls. Method: On the wind /seismic load sheet contained in the calculations typical building profiles are drawn with the calculated resulting wind forces per linear foot shown. These wind /seismic forces are used to calculate the diaphragm forces shown on the "diaphragm force diagram" using the tributary length of building between shear walls. The shear wall locations are shown on the "shear wall location plan ". The shear walls are indicated on the "shear wall location plan" by a number contained in a hexagon pointing to a dark dotted line adjacent to a wall or the wall is shaded. The "shear wall location plan" and the "diaphragm force diagram" are dimensioned to show shear wall lengths. The dotted line or solid line symbol on the "shear wall location plan" represents the actual length of wall used to calculate the force per foot in the wall. The force in each shear wall is the force from the "diaphragm loading diagram" divided by the length of the shear wall as measured from the "shear wall location diagram ". The length of wall used for shear walls does not include doors, windows, alcoves or other openings. The shear wall construction is described in the shear wall schedule. Shear Wall: The shear wall schedules used for this analysis were developed using the Steel Deck Institute Diaphragm Design Manual, 2 nd Edition. This manual has an ICBO report (see sheet P1 -P6). See sheets following schedule for shear wall design for the shear walls used on this project. PRELIMINARY UNLESS SEALED ON EACH SHEET OR ON COVER SHEET Job: -12383 Date: NO* By: &C Job No.: 1689-01 SH.: -A'/ S.E. CONSULTANTS, INC. ,C ©AID D..409 G�eOOK2/77 r �. O. 0.3 3 z e.a.. 0.9 9 z 0 '� 0- �e a_ , 0. Co �b 3 . *-4 — &)iND 8 Par) = (o1.9 `a PL F (Govee"--s) y -I{ = ( 0.042) ( 8.:tS PsF) (5 ') + (2 )( 10.0 FT) (I >'s F)I = 3 / AGE' Yz = (0.0 2)[(8,)EZ ) (200 / ) +(28)(5.OFr)(IP3 )� = /3 . 0 PLC (6-041E6M-5 L� x FLOOR PLAN A SCALE N.T.S. (BL.DG 1 ,- D / PGA"V Q Q Q; Q �.g:, �= 0 v -_Wj L M is FLOOR PLAN SCALE N.T.S. (BLDG t) A 3 3 S 3 J Us 3 3 1 i •'l 1 '1 •'T •T "1 1 ' ♦ Irs rs I Ml 7 Ns is r'� rs ��'' rs t� is t rs rs Ts t t! rs rs t t1 is Ts 3 3 3 3 3 3 3 3 3 3 r t— wa[ � u• at ' t 1 o ' S . I S 01.1 � o S ► S a o T � I I ( o I 0 euc �_ o - 0 rr r-{ H SI.t I 0' t s ,.�, n.maol � - - ¢I . • .o' ac .+z nw4 enc am A A /Y-Mc 01.1 N , q ws ao. rwanol - - - - - - o 0 0 0 0 0 01 s �GE Iw r«minl ,� ..�aAl -- - 0 0 0 of r. N f r• OI o; o o� 0 0 0 0 0 0 0 o 0 0 0 fl 0 1 q — o 0 - , I I SO O o k ! rs 5 rs S rs S rs � r S u r r r r 5 S S S r r r rs r rs r — r r r rs rs r1 r r-� rs rs rs rs ss rs rs t rs rs r rs rs rs r� S S S S S S S S S S S S S 5 S S S S S S S S IL IL S IL S S S 4 S o l o D o Y s of of o 0 0 of 0 0 0 0 0 0 CQ 0 0 O; fl O (Fl O O O : t ( I I t r rt B rAm Au i 11 1 I I i t I is FLOOR PLAN SCALE N.T.S. (BLDG t) A L. Us L. ,, Of/ D C �C C �C C C C p. zS "- 'e n :k:k r- c. �99 - Q 4 FLOOR PLAN A SCAM N.T.S. (BLDG 4) (,Je tv D Z E3 94 Y � [ (6 .4S 'P3F)( **) ( /)l /O_o 25 1 2 Nr 3 4 5 6 V{ N! VT N! 7 8 9 10 11 i2 13 14 N! N{ ✓{ ✓{ NT ✓{ M{ Nt 15 ✓t 16 17 18 19 20 21 22 23 24 N{ N! NT ✓! ✓! ✓t N! Nr N{ V! pall �n Nr (i Ps F) f r r! r (r r f! r (r r f! r r! r Y! r (! r r{ r r{ r rT r f{ r Y! r r{ Y r{ r (T r fr r rT fT r ft r rr r r! r f! 2 CJ U U U O O Z 2 2 2 Q 2 2 t COLMM t rr r{ Y t t 0 r ! r! r{ rr ( T r! f r fT r T r! f! ft f! rr fT fT r{ Y! r! fr f-e f-f r r! f! r! ff rT rr ft rr fr r! Y! r! f! YT rT c. �99 - Q 4 FLOOR PLAN A SCAM N.T.S. (BLDG 4) (,Je tv D Z E3 94 Y (0.042) [ (6 .4S 'P3F)( **) ( /)l /O_o Y T = ( 0.0 2 ) [ ( 6 T-S Ps F ) ( 3 8 0 ') -�- ( 3 9) (-S": o ter) (i Ps F) (cm6c.-m-S) .z 5 z) -q .0 0109 1) 0. eo :5 z ea. FLOOR PLAN H.T.S. ( (CON SGV. OA E: BLDG 4) WIND C) le a 8 P 9- E: e'.. ( - ) 3FISry) IG p. 33 x W t ti r.An VIA = (U_0T2)[ (8. P 3 F)(30') + ( 1 ) ( ) 0,0 F T) ( IepsF) ] = / ? end /,-� �t Y -T = (0.0 7- 2 ) ( 5.7 PS F ) (3 BO ") + ( 3 �) (S. 0 Fz ( I PS F I = OS3 . -;I F 25 r{ 26 wf 27 wf 28 wf 29 rf 30 r{ 31 Nf 32 33 rf rf 34 rf 35 r I 36 r f 37 3g wf 3c w{ r rf f{ r r{ r{ f f{ r rf r 0 QQ o i � rf OO f{ OO r { Q r{ fl r f O f { Q r { ff 0 CO O 12� O p t f{ FLOOR PLAN H.T.S. ( (CON SGV. OA E: BLDG 4) WIND C) le a 8 P 9- E: e'.. ( - ) 3FISry) IG p. 33 x W t ti r.An VIA = (U_0T2)[ (8. P 3 F)(30') + ( 1 ) ( ) 0,0 F T) ( IepsF) ] = / ? end /,-� �t Y -T = (0.0 7- 2 ) ( 5.7 PS F ) (3 BO ") + ( 3 �) (S. 0 Fz ( I PS F I = OS3 . -;I F .� 6 1!2iT S'NEi9� C�iQLL 1.o�.9ron� SAN w 1 l n n 10 11 12 13 ,14 (15 16 17 18 19 20 21 22 23 24 25 tz C � C F C �C C C C FLOOR PL P A SCALE: N.7S (BLDG 4) ` I C}SC _TNTE,6106 3HEAC LJOUZ U3 C t &rT ECG 10 e S H E A 6 LJ t_f,� I wr rr rr rr wr rr rr rr rr rr wr rr rr rr wr rr — rr rr rr rr r1 rr rr � �. rr rr • rr r r rr r rr r rr r rr r rr r rr r rr r rr ' rr r rr r r{ r rr r rr rr r rr r rr r rrfu rr r . x-•� rr r rr r rr r rr '' rr r rr 0 I T; o I o f o f fl o 0 0 o r o o f o 0 o f o ' rr rr I t i i I I 20 Z I � i I I I i I I I I I i I t I I 1 i I I I I ! ! I — z� � f 0 0 IL 0 0 © 0 0 0 0 0 0 0 0 o o o 0 0 0 l o 0 © 0 0 rr r rr rr rr rr rr rr rr rr rr rr rr sr rr rr rr rr rr rr rr rr rr rr rr � a f fr rr rr rr rr r.e r.�• .�• . � r: s .1 .� . � ... _ > > _ _ .. .. _ _ _ _ FLOOR PL P A SCALE: N.7S (BLDG 4) ` I C}SC _TNTE,6106 3HEAC LJOUZ U3 C t &rT ECG 10 e S H E A 6 LJ t_f,� I ,B LD 4 � /�E•giZ lvigG �aCi9TipN n C r 1 25 26 27 28 29 30 31 n a n n FLOOR PLA (CO SCALE: N.T.S. BLDG 4� A L7 ✓{ ✓l ✓{ Y{ M! M{ M{ M{ R, Y! Y! ✓{ ✓{ Y! __ r f{ f! r f{ r l{ r [{ r [{ [ M1 f! [{ [! 3 l l f f l 0 0 0 l f! [{ o f [{ o f! o f f{ o f f! o [! o f! o f! o ft o f! 0 I{ f! f! r FLOOR PLA (CO SCALE: N.T.S. BLDG 4� A L7 23/-D 5 Z),A P,41,eA ,4 O n D D1,9 G.t?A/ Lt ND l- 8.50/ ���; 28 p5F 2 (0 S F (30 ') + (i)( F (i P3 F) .] = Q 2 v (,33 o') + (5) (S.0 FT) L 0.33 0. ep� 9 Z ea. . 0 9 O. L I I I I I I_ I. r i_ I. ,D1,o9p11,e1q G172 �44 OAD D1AC,E'.,9/) Zdl ND 10 2 Y' 1 ( 0. 042) (8 •4SpSF)(30) +(1)(IO,O FT) (I'P3F) I = ) ?, 6 e ;9-0 YT= (0.042)[(8. 330 ) (35)(S.OFT)(IPSF 22o.5 /De F (60.q: J- ( FLOOR PLAN CONT. A SCAM N.T.S. (BLDG 5) 36 D Us E- US �, PLi9/U �HCA Ovq -LS a H EA (, U) A Uk.,,5 PLi9/U Z3L,D ti O 0 _FLOOR PLAN ( (CONT . A SCALE N.T.S. (BLDG S) Us k. �. EA L fo e, �► -� �fl� l �c.�.S �ou9 >. o itG. J. �, SHEAR WALL SCHEDULE FOR EXTERIOR WALLS SINGLE STORY Mark Wall Construction Column / Hold Downs 1/2" dia. x 3 -3/4" 5/8" dia. x 4 -1/4" 26 ga. SuperSpan panel #12 Frame Fasteners - 3 screws / sheet at mid support, lightgage columns (16,18, 20) at 5' -0" c/c w/ Cont. 16 ga (min) 3 screws /sheet at end supports and edge fasteners at base angle or channel with 60" c/c., #14 stitch fasteners - 30" c/c. at sidelaps 0.144 inch dia. X 1 -1/4" embed. powder driven pins @12" o.c. V wind = 85 plf V seismic = 80 plf V = 185 plf 26 ga. SuperSpan panel lightgage columns (16,18, 20) at 2E #12 Frame Fasteners - 6 screws / sheet at mid support, 5' -0" c/c w/ Cont. 16 ga (min) 6 screws /sheet at end supports and edge fasteners at base angle or channel with 60" c/c., #14 stitch fasteners - 30" c/c. at sidelaps 0.144 inch dia. X 1 -1/4" embed. powder driven pins @12" o.c. V wind = 170 plf V seismic = 160 plf V = 185 plf 26 ga. SuperSpan panel #12 Frame Fasteners - 3 screws / sheet at mid support, lightgage columns (16,18, 20) at 5' -0" c/c w/ Cont. 16 ga (min) 3 screws /sheet at end supports and edge fasteners at base angle or channel with 12" c/c., #14 stitch fasteners - 12" c/c. at sidelaps 0.144 inch dia. X 1 -1/4" embed. powder driven pins @10" o.c. V wind = 210 plf V seismic = 197 plf V = 222 plf 4E 26 ga. SuperSpan panel #12 Frame Fasteners - 6 screws / sheet at mid support, lightgage columns (16,18, 20) at 5' -0" c/c w/ cont. 16 ga (min) 6 screws /sheet at end supports and edge fasteners at base angle or channel with 12" c/c., #14 stitch fasteners - 12" c/c. at sidelaps 0.144 inch dia. X 1 -1/4" embed. powder driven pins @ 6" o.c. V wind = 284 plf V seismic = 267 plf V = 277 plf 1) Use a min. of (2) fasteners @ all jamb locations near F.O.'s. 2) Use 1/2" dia. X 3 -3/4" Ramset Tru -bolts wedge anchor (min. 2 -1/4" embed.) @ jambs 3) Use 5/8" dia. X 4 -1/4" Ramset Tru -bolts wedge anchor (min. 2 -3/4" embed.) @ interior columns (Ps /Pt) (513) + ( < 1.00 anchor interaction equation. Anchor Type Pt (Ibs) Vt (Ibs) 1/2" dia. x 3 -3/4" 5/8" dia. x 4 -1/4" 595 840 1190 1780 PRELIMINARY UNLESS SEALED ON EACH SHEET OR ON COVER SHEET Job: _T 2%3 Date: 8 C4 By: P,6C Job No.: Ilo8 7 SH.: .L1 S.E. CONSULTANTS, INC. SHEAR WALL SCHEDULE FOR INTERIOR WALLS SINGLE STORY Mark Wall Construction Column / Hold Downs O #12 26 ga. Norclad panel Frame Fasteners - 4 screws / sheet at mid support, Lightgage columns (16, 18, 20ga), at 5' -0" c/c. Angle Clip (CL4) at 4 screws /sheet at end supports and edge fasteners at col. base w/ (1) -5/8" dia. Anchor 60" c/c., #8 stitch fasteners - 30" c/c. at sidelaps and (4) #12 fasteners from col. to base clip V wind = 79 plf V = 356 plf (max) V seismic = 74 plf 2U 26 ga. Norclad panel #12 Frame Fasteners - 8 screws / sheet at mid support, Lightgage columns (16, 18, 20ga), at 5' -0" c/c. Angle Clip (CL4) at 8 screws /sheet at end supports and edge fasteners at col. base w/ (1) -5/8" dia. Anchor 60" c/c., #8 stitch fasteners - 30" c/c. at sidelaps and (4) #12 fasteners from col. to base clip V wind = 135 plf V = 356 plf (max) V seismic = 127 plf O #12 26 ga. Norclad panel Frame Fasteners - 8 screws / sheet at mid support, Lightgage columns (16, 18, 20ga), at 5' -0" c/c. Angle Clip (CL4) at 8 screws /sheet at end supports and edge fasteners at col. base w/ (1) -5/8" dia. Anchor 60" c/c., #8 stitch fasteners - 30" c /c. at sidelaps and (4) #12 fasteners from col. to base clip V wind = 167 plf V = 356 plf (max) V seismic = 157 plf 1) Use a min. of (2) fasteners @ all jamb locations near F.O.'s. 2) Use 1/2" dia. X 3 -3/4" Ramset Tru -bolts wedge anchor (min. 2 -1/4" embed.) @ jambs 3) Use 5/8" dia. X 4 -1/4" Ramset Tru -bolts wedge anchor (min. 2 -3/4" embed.) @ interior columns (Ps /Pt) (513) + ( VS/Vt) (5/3) < 1.00 anchor interaction equation. Anchor Type Pt (Ibs) Vt (Ibs) 1/2" dia. x 3 -3/4" 5/8" dia. x 4 -1/4" 595 840 1190 1780 CL4 Angle Clip: L 2 X 2 X 3/16 X 3-3/4" long PRELIMINARY UNLESS SEALED ON EACH SHEET OR ON COVER SHEET Job: .2383 Date: elff B g6C Job No.: I(j8q- O -T SH.: L13 S.E. CONSULTANTS, INC. SHEAR WALL SCHEDULE FOR INTERIOR WALLS SINGLE STORY Mark Wall Construction Column / Hold Downs 1/2" dia. x 3 -3/4" 5/8" dia. x 4 -1/4" 29 ga. Norclad panel Lightgage columns (16, 18, 20ga), #12 Frame Fasteners - 4 screws / sheet at mid support, at 5' -0" c/c. Angle Clip (CL4) at 4 screws /sheet at end supports and edge fasteners at col. base w/ (l)-5/8" dia. Anchor 60" c /c., #8 stitch fasteners - 30" c/c. at sidelaps and (4) #12 fasteners from col. to base clip V wind = 79 plf V = 356 plf (max) V seismic = 74 plf 29 ga. Norclad panel Lightgage columns (16, 18, 20ga), 2U #12 Frame Fasteners - 8 screws / sheet at mid support, at 5' -0" c/c. Angle Clip (CL4) at 8 screws /sheet at end supports and edge fasteners at col. base w/ (1) -5/8" dia. Anchor 60" c /c., #8 stitch fasteners - 30" c/c. at sidelaps and (4) #12 fasteners from col. to base clip V wind = 135 plf V = 356 plf (max) V seismic = 127 plf O #12 29 ga. Norclad panel Frame Fasteners - 8 screws / sheet at mid support, Lightgage columns (16, 18, 20ga), at 5' -0" etc. Angle Clip (CL4) at 8 screws /sheet at end supports and edge fasteners at col. base w/ (1) -5/8" dia. Anchor 60" c/c., #8 stitch fasteners - 30" c /c. at sidelaps and (4) #12 fasteners from col. to base clip V wind = 167 plf V = 356 plf (max) V seismic = 157 plf 1) Use a min. of (2) fasteners @ all jamb locations near F.O.'s. 2) Use 1/2" dia. X 3 -3/4" Ramset Tru -bolts wedge anchor (min. 2 -1/4" embed.) @ jambs 3) Use 5/8" dia. X 4 -1/4" Ramset Tru -bolts wedge anchor (min. 2 -3/4" embed.) @ interior columns (Ps/Pt) + (VsNt) < 1.00 anchor interaction equation. Anchor Type Pt (Ibs) Vt (Ibs) 1/2" dia. x 3 -3/4" 5/8" dia. x 4 -1/4" 595 840 1190 1780 CL4 Angle Clip: L 2 X 2 X 3/16 X 3-3/4" long PRELIMINARY UNLESS SEALED ON EACH SHEET OR ON COVER SHEET )o b: J 83 Date: 8 By: JPZC Job No.: M 89 - 0 SH.: 1-14 S.E. CONSULTANTS, INC. 6 -Shear SDI DIAPHRAGM SHEAR DECK: 1.25" Deck, #12 Frame Fastening, #14 Stitch Fastening 26 ga SuperSpan ( One Story and Upper Floor Exterior Walls) ATTACHMENT PATTERN: 6 screws /sheet to supports 6 screws /sheet at ends 60 " o.c. edge fastener spacing attached to column? - 1 (1/0) 30 " o.c. sidelap fastener spacing attached to column? - 0 (1/0) L = 10 length (ft) n = 1 # of columns not at end L. = 60 span (in) n = 0 # of edge fasteners not attached to column L„ = 5 column spacing(ft) n = 4 # of seam fasteners not attached to column W = 36 deck width (in) N = 2.0 # of fasteners/ft at end support D = 1.25 deck height (in) a, = 1.4722 (Ex dist factor at end condition t = 0.0195 deck thickness (in) a 2 = 1.4722 (Ex dist factor at column condition Q = 907 support fastener (Ibs) Ex = 613.5 Q = 459 seam fastener (Ibs) Ex = 613.5 1 = 0.0384 panel moment of inertia irft do = 12 corrugation pitch, in. Fy = 80 ksi panel s = 13.036 developed flute width 2(e + wf) + f inches. ULT SHEAR CAPACITY BASED ON EDGE FASTENER ULT SHEAR = (2a, +n + n e )Q,/L ULT SHEAR = 400.5917 pif ULT SHEAR CAPACITY BASED ON INTERIOR PANEL A = 1 (one fastener per location, at edge) X = 1- DL„/(240t X = 0.8135 as = Qs /Qf a = 0.5061 ULT SHEAR = (( 1 )) + qas) +((( 2 ) +( 4 Exe 2 )u(w 2 )))QWL ULT SHEAR = 407.38 plf ULT SHEAR CAPACITY BASED ON END OF PANEL B = (nsas) +((( +( /(w B = 4.8645 ULT SHEAR = (Q +(( _ ( /(L +13 2 )) 0.5 Qf ULT SHEAR = 428.71 pif = . SAFETY FACTOR (SF) = 2.35 wind (mechanical connections) 2.50 seismic S„ = 400.59 Of (lowest of ultimate shear capacities) S = S"/SF S= 170 pif -wind S = 160 pif seismic Stability Check: Sc= 12.95x10 (1 Sc= 2.2968 kif Sc= 2297 plf Ssc= Sc/(f.$) factor of safety=2.0 Ssc= 1148 pif S = 170 ptf - wind ALLOWABLE DIAPHRAGM SHEAR CAPACITY S = 160 pif - seismic 5.0- 26SuperSpan As \6 -Shear Page 1 7/31/2007 6 -Shear SDI DIAPHRAGM SHEAR DECK: 1.25" Deck, #12 Frame Fastening, #14 Stitch Fastening 26 ga SuperSpan ( One Story and Upper Floor Exterior Walls ) ATTACHMENT PATTERN: 6 screws /sheet to supports 6 screws /sheet at ends 60 " o.c. edge fastener spacing attached to column? - 1 (1/0) 30 " o.c. sidelap fastener spacing attached to column? - 0 (1/0) L = 5 length (ft) n = 0 # of columns not at end L = 60 span (in) n = 0 # of edge fasteners not attached to column L„ = 5 column spacing(ft) n = 2 # of seam fasteners not attached to column W = 36 deck width (in) N = 2.0 # of fasteners /ft at end support D = 1.25 deck height (in) a, = 1.4722 (ExJw) dist factor at end condition t = 0.0195 deck thickness (in) a = 1.4722 (Ex dist factor at column condition Q = 907 support fastener (Ibs) Ex = 613.5 Q = 459 seam fastener (lbs) Ex = 613.5 1 = 0.0384 panel moment of inertia in /ft do = 12 corrugation pitch, in. Fy = 80 ksi panel s = 13.036 developed flute width 2(e + wf) + f inches. ULT SHEAR CAPACITY BASED ON EDGE FASTENER ULT SHEAR = (2a, +r +nXWL ULT SHEAR = 534.1222 plf ULT SHEAR CAPACITY BASED ON INTERIOR PANEL A = 1 (one fastener per location, at edge) X = 1 -DL„ /(240e s) X = 0.8135 a = % /O a = 0.5061 ULTSHEAR = (( -1 ))+ has ) + ((( 2 nvExa 2 ) +( 2 )) 1 (w 2 )))QWL ULT SHEAR = 459.43 plf ULT SHEAR CAPACITY BASED ON END OF PANEL B = (nsas) +((( +( /(W B = 2.9056 ULT SHEAR = (Q,NBy(((B +((NL) _ (N 2 B 2 /(L +B 2 )) o.5 Qf ULT SHEAR = 506.15 plf = . SAFETY FACTOR (SF) = 2.35 wind (mechanical connections) = 2.50 seismic S„ = 459.43 plf (lowest of ultimate shear capacities) S = SJSF S= 196 plf -wind S = 184 plf seismic Stability Check: Sc= 12.95x10 (1 Sc= 2.2968 klf Sc= 2297 plf Ssc= Sc/(f.$) factor of safety=2.0 Ssc= 1148 plf S = 196 plf - wind ALLOWABLE DIAPHRAGM SHEAR CAPACITY S = 184 plf - seismic 5.0- 26SuperSpan.x1s \6 -Shear Page 1 7/31/2007 �1 3 -Shear SDI DIAPHRAGM SHEAR DECK: 1.25" Deck, #12 Frame Fastening, #14 Stitch Fastening 26 ga SuperSpan ( One Story and Upper Floor Exterior Walls ) ATTACHMENT PATTERN: 3 screws /sht to supports 3 screws /sht at ends 60 " o.c. edge fastener spacing attached to column? - 1 (1/0) 30 " o.c. sidelap fastener spacing attached to column? - 0 (1/0) L = 10 length (ft) n = 1 # of columns not at end 4 = 60 span (in) n = 0 # of edge fasteners not attached to column L� = 5 column spacing(ft) n = 4 # of seam fasteners not attached to column W = 36 deck width (in) N = 1.0 # of fasteners/ft at end support D = 1.25 deck height (in) a, = 0.7361 (Ex dist factor at end condition t = 0.0195 deck thickness (in) a = 0.7361 (EVw) dist factor at column condition Q = 907 support fastener (Ibs) Ex = 306.75 Q = 459 seam fastener (Ibs) Ex = 306.75 1 = 0.0384 panel moment of inertia i0th: do = 12 corrugation pitch, in. Fy = 80 ksi panel s = 13.036 developed flute width 2(e + wf) + f inches. ULT SHEAR CAPACITY BASED ON EDGE FASTENER ULT SHEAR = (2a, +n +n ULT SHEAR = 200.2958 plf ULT SHEAR CAPACITY BASED ON INTERIOR PANEL A = 1 (one fastener per location, at edge) = 1- DL„/(240t X = 0.8135 a s = % /Qf a = 0.5061 ULT SHEAR = (( 2 A( X 1 )) + nea s ) + ((( 2 nPExp 2 ) +( /(w)))Qt L ULT SHEAR = 278.58 plf ULT SHEAR CAPACITY BASED ON END OF PANEL B = (ns(xs) +((( +( B = 3.4444 ULT SHEAR = (QfNB) /(((B2) +((NL)2))0.5) _ (N +B Qf ULT SHEAR = 295.38 pif = . SAFETY FACTOR (SF) = 2.35 wind (mechanical connections) 2.50 seismic S„ = 200.3 Of (lowest of ultimate shear capacities) S = SJSF S = 85 plf -wind S = 80 plf seismic Stability Check: Sc= 12.95x10 (1 Sc= 2.2968 klf Sc= 2297 plf Ssc= Sc/(f.$) factor of safety=2.0 Ssc= 1148 plf S = 85 plf - wind ALLOWABLE DIAPHRAGM SHEAR CAPACITY S = 80 plf - seismic 5.0- 26SuperSpanAsX3 -Shear Page 1 7/31/2007 �/ i 3 -Shear SDI DIAPHRAGM SHEAR DECK: 1.25" Deck, #12 Frame Fastening, #14 Stitch Fastening 26 ga SuperSpan ( One Story and Upper Floor Exterior Walls ) ATTACHMENT PATTERN: 3 screws /sht to supports 3 screws /sht at ends 60 " o.c. edge fastener spacing attached to column? - 1 (1/0) 30 " o.c. sidelap fastener spacing attached to column? - 0 (1/0) L = 5 length (ft) n = 0 # of columns not at end L = 60 span (in) n = 0 # of edge fasteners not attached to column L = 5 column spacing(ft) n = 2 # of seam fasteners not attached to column W = 36 deck width (in) N = 1.0 # of fasteners /ft at end support D = 1.25 deck height (in) a = 0.7361 (Ex dist factor at end condition t = 0.0195 deck thickness (in) a = 0.7361 (Ex dist factor at column condition Q = 907 support fastener (Ibs) yX, = 306.75 Q = 459 seam fastener (Ibs) Ex = 306.75 1 = 0.0384 panel moment of inertia in ° /ft do = 12 corrugation pitch, in. Fy = 80 ksi panel s = 13.036 developed flute width 2(e + wf) + f inches. ULT SHEAR CAPACITY BASED ON EDGE FASTENER ULT SHEAR = (2a +r P U 2 ) +n ULT SHEAR = 267.0611 plf ULT SHEAR CAPACITY BASED ON INTERIOR PANEL A = 1 (one fastener per location, at edge) k = 1- DL„/(240t k = 0.8135 a = Q /Q a = 0.5061 ULT SHEAR = (( 2 A( � 1 ))+ Nas) +((( +(4E)(� ULT SHEAR = 287.68 pif ULT SHEAR CAPACITY BASED ON END OF PANEL B = (nsae) +((( +( /(W B = 1.9589 ULT SHEAR = (Q /(((B +((NL) _ (N2B2 /(L2N2 +62))1.1 Qf ULT SHEAR = 330.86 pif = . SAFETY FACTOR (SF) = 2.35 wind (mechanical connections) 2.50 seismic S. = 267.06 plf (lowest of ultimate shear capacities) S = SJSF S = 114 plf -wind S = 107 pif seismic Stability Check: Sc= 12.95x10 (1 Sc= 2.2968 kif Sc= 2297 pif Ssc= Sc/(f.$) factor of safety=2.0 Ssc= 1148 plf S = 114 plf - wind ALLOWABLE DIAPHRAGM SHEAR CAPACITY S = 107 plf - seismic 5.0- 26SuperSpan.x1s\3 -Shear Page 1 7131/2007 iM 4 -Shear SDI DIAPHRAGM SHEAR DECK: 0.625" Deck, #12 Frame Fastening, #8 Stitch Fastening 29 ga Norclad ( Interior Partition - One Story / Upper Floor Interior Partitions ) ATTACHMENT PATTERN: 4 screws /sheet to supports 4 screws /sheet at ends 60 " o.c. edge fastener spacing attached to column? - 1 (1/0) 30 " o.c. sidelap fastener spacing attached to column? - 0 (1/0) L = 10 length (ft) n = 1 # of columns not at end L = 60 span (in) n = 0 # of edge fasteners not attached to column L, = 5 column spacing(ft) n = 4 # of seam fasteners not attached to column w = 36 deck width (in) N = 1.3 # of fasteners /ft at end support D = 0.625 deck height (in) o = 1 (Ex dist factor at end condition t = 0.0133 deck thickness (in) a = 1 (Ex dist factor at column condition Q = 618 support fastener (Ibs) Ex = 430 Q = 211 seam fastener (Ibs) Ex = 430 1 = 0.0062 panel moment of inertia in ° /ft do = 9 corrugation pitch, in. Fy = 80 ksi panel s = 9.5781 developed flute width 2(e + wf) + f inches. ULT SHEAR CAPACITY BASED ON EDGE FASTENER ULT SHEAR = (2a +n +n ULT SHEAR = 185.4 plf ULT SHEAR CAPACITY BASED ON INTERIOR PANEL A = 1 (one fastener per location, at edge) 1, = 1 -DL„ /(240e ) k = 0.8871 a = QS /Qf a = 0.3414 ULT SHEAR = (( 2A( X- 1))+ n s a s )+ (((2r +(4Ex /(w ULT SHEAR = 193.47 plf ULT SHEAR CAPACITY BASED ON END OF PANEL B = (neas) +(((2npExp2) +(4F-x.2)y(W2)) B = 3.3564 ULT SHEAR = (QfNB) /(((B2) +((NL)2))o 5 _ (N2B2 /(L2N2+B2))0.5 Qf ULT SHEAR = 201.15 plf = . SAFETY FACTOR (SF) = 2.35 wind (mechanical connections) 2.50 seismic S„ = 185.4 Of (lowest of ultimate shear capacities) S = SJSF S = 79 plf -wind S = 74 plf seismic Stability Check: Sc= 12.95x10 (1 Sc= 0.4413 klf Sc= 441 plf Ssc= Sc/(f.$) factor of safety=2.0 Ssc= 221 plf S = 79 plf - wind ALLOWABLE DIAPHRAGM SHEAR CAPACITY S = 74 plf - seismic 5.0- 29Nordad.x1s\4 -Shear Page 1 7/31/2007 419 4 -Shear SDI DIAPHRAGM SHEAR DECK: 0.625" Deck, #12 Frame Fastening, #8 Stitch Fastening 26 ga Norclad ( Interior Partitions - One Story / Upper Floor Interior Partitions ) ATTACHMENT PATTERN: 4 screws /sheet to supports 4 screws /sheet at ends 60 " o.c. edge fastener spacing attached to column? - 1 (1/0) 30 " o.c. sidelap fastener spacing attached to column? - 0 (1/0) L = 10 length (ft) n = 1 # of columns not at end L = 60 span (in) n = 0 # of edge fasteners not attached to column L„ = 5 column spacing(ft) n = 4 # of seam fasteners not attached to column w = 36 deck width (in) N = 1.3 # of fasteners /ft at end support D = 0.625 deck height (in) a = 1 (Ex dist factor at end condition t = 0.0195 deck thickness (in) a = 1 (Ex dist factor at column condition Q = 719 support fastener (Ibs) Ex = 430 Q = 297 seam fastener (Ibs) E x e 2 = 430 1 = 0.0092 panel moment of inertia in ° /ft do = 9 corrugation pitch, in. Fy = 50 ksi panel s = 9.5781 developed flute width 2(e + wf) + f inches. ULT SHEAR CAPACITY BASED ON EDGE FASTENER ULT SHEAR = (2a +n +n l_ ULT SHEAR = 215.7 plf ULT SHEAR CAPACITY BASED ON INTERIOR PANEL A = 1 (one fastener per location, at edge) 1. = 1 -DL„ /(240t k = 0.9068 as = Qs /Qf a = 0.4131 ULT SHEAR = (( 2 A( , - 1 ))+ nsas ) +((( +(4Exe ULT SHEAR = 248.53 plf ULT SHEAR CAPACITY BASED ON END OF PANEL B = (nsas) +(((2r),Ex 2 ) +( /(w B = 3.643 ULT SHEAR = (QfNB)/(((B2) +((NL)2))o.5) _ (N2B2 /(L2N2 +13 2))0 s Qf ULT SHEAR = 252.67 plf = . SAFETY FACTOR (SF) = 2.35 wind (mechanical connections) 2.50 seismic S„ = 215.7 Of (lowest of ultimate shear capacities) S = S„ /SF S = 92 plf -wind S = 86 plf seismic Stability Check: Sc= 12.95x10 (1 Sc= 0.7906 klf Sc= 791 pif Ssc= Sc/(f.$) factor of safety=2.0 Ssc= 395 plf S = 92 plf - wind ALLOWABLE DIAPHRAGM SHEAR CAPACITY S = 86 plf - seismic 5.0- 26Nordad.x1s44 -Shear Page 1 7/31/2007 1 2 ` OVERTURNING Section of Wall P \— Panel Stud Tv L Resistine Force Lateral Load on section of wall P = V *L B Tension on Anchor Due to Overturning Tv = [ (M / L) - (FR)] / 1000 H Shear on Wall Shear on Anchor V Va =P Overturning Moment M = P *H Resisting Force FR = (roof DL + Wall DL)* 0.6 Tension & Shear on Anchor V (plo Dead Trib. Trib. Va (lbs) Wall 39.8 398 3540.61 Bldg Load Length Width Area Weight H L FR (psf) (ft) (ft) (ft^2) (psf) (ft) (ft) (lbs) 1 1 10 5 50 1 8.896 10 83 Tension & Shear on Anchor V (plo P (lbs) M (ft -lbs) Tv (lbs) Va (lbs) COVER SHEET 689 -0 ; S 39.8 398 3540.61 271 398 Type of Anchors: Drop -In Expansion Anchors 0.625 in. dia. Exp. Anchors Vallow = 2133 lbs /anchor 33% increase? N per column Tallow = 1643 lbs /anchor SSI? N Min. Embed = 2 in. Spacing Req'd = N/A in. (VREQ'D / Vallow) ^(5/3) + (TREQD / Tallow) ^(5 /3) = 0.11 < 1.00 OK PRELIM IN AR Y lob: J C3 �.3 U N LESS SEALED ON EACH SHEET OR ON D ate: 9/4 By: ��C )ob N o.: COVER SHEET 689 -0 ; S S.E. CONSULTANTS, INC. OVERTURNING . rw,.n Lateral Load on section of wall P = V *L �Ir_?G D 4 Tension on Anchor Due to Overturning Tv _ [ (M / L) - (FR)] / 1000 H Shear on Wall Shear on Anchor V Va =P Overturning Moment M = P *H L Resisting Force FR = (roof DL + Wall DL)* 0.6 ResistinJ7 Force Tension & Shear on Anchor V (plf) Dead Trib. Trib. Va (lbs) Wall 220 11906.741 109 Bldg Load Length Width Area Weight H L FR (psf) (ft) (ft) (ft ^2) (psf) (ft) (ft) (lbs) 4 1 10 5 50 1 8.667 10 82 Tension & Shear on Anchor V (plf) P (lbs) M (ft-lbs) Tv (lbs) Va (lbs) 22 220 11906.741 109 1 220 Type of Anchors: Drop -In Expansion Anchors 0.625 in. dia. Exp. Anchors Vallow = 2133 lbs /anchor 33% increase? N per column Tallow = 1643 lbs /anchor SSI? N Min. Embed = 2 in. Spacing Req'd = N/A in. (VREQ'D / Vallow) ^(5/3) + (TREQ'D / Tallow) ^(5 /3) = 0.03 < 1.00 OK PRE LIM IN A p RR Y Job: J�� N LESS SEA LED O N EAC H S EET O R O N Date: 8 y O& Job No.: CO V F S EET _ 16 69-0 7 5 H .: S.E. CONSULTANTS, INC. OVERTURNING Section of Wall P . \— Panel Stud Tv L Resistinja Force '84D S Lateral Load on section of wall P = V *L Tension on Anchor Due to Overturning Tv _ [ (M / L) - (FR)] / 1000 H Shear on Wall Shear on Anchor V Va =P Overturning Moment M = P *H Resisting Force FR = (roof DL + Wall DL)* 0.6 Tension & Shear on Anchor V (If) Dead Trib. Trib. Va (lbs) Wall 22 220 11906.741 Bldg Load Length Width Area Weight H L FR (psf) (ft) (ft) (ft ^2) (psf) (ft) (ft) (lbs) 5 1 10 5 50 1 8.667 10 82 Tension & Shear on Anchor V (If) P (lbs) M (ft -lbs) Tv (lbs) Va (lbs) C O V E R S H E E T /d&-Q SH.: L 22 220 11906.741 109 1 220 Type of Anchors: Drop -In E xpa n sion Anchors 0.625 in. dia. Exp. Anchors Vallow = 2133 lbs /anchor 33% increase? N per column Tallow = 1643 lbs /anchor SSI? N Min. Embed = 2 in. Spacing Req'd = N/A in. (VREQ'D / Valiow) ^(5/3) + (TREQ'D / Tallow) ^(5 /3) = 0.03 < 1.00 OK P R E L I M I N A R V Job: -a30 U N L E S S S E A L E D O N E A C H S H E E T O R O N Date: 8LO By: "C Job No.: C O V E R S H E E T /d&-Q SH.: L S.E. CONSULTANTS, INC. 23 6 D / X- BRACING AT ROOF P 00. W P = total load p = load per brace TAN a = H/N Tension on cross -brace T = P /cosa H Vertical Force Tv = P *H/W As Required F (ksi) = 55 Bldg Lateral Trib. I a (rad) a (deg) Load Length P (k) I T (k) (plf) (ft) 8.896 1 485 10 4.85 As = T/F, Fr (ksi) = 0.6Fy * 1.33 43.89 Bldg H (ft) W (ft) I a (rad) a (deg) P (k) I # braces I p (k) I T (k) lAs fin-21 T, (k) 4 8.896 10 0.73 41.66 4.85 5 0.97 1 1.3 0.03 0.86 Area of 16 gage x 1.5" = (1.5in)(0.0598in) = 0.0897 in ^2 Therefore use 16 gage x 1.5 in. cross braces Allowable shear on 4 #12 tek screws Vallowable = 822 lbs * ( 4 ) = 3.29 kips (see screw report) PRELIMINARY UNLESS SEALED ON EACH SHEET OR ON COVER SHEET 8 10 b: JU383 Date: U By: .&EC Job No.: 4( 9 9- 0j_( SH.: S.E. CONSULTANTS, INC. ,LLD / OF,r X- BRACING AT ROOF P 0. W H P = total load TAN a = H/N Tension on cross -brace T = P /cosa Vertical Force Tv = P *H /W As Required F (ksi) = 55 As = T /Fr p = load per brace Fr (ksi) = 0.6Fy * 1.33 43.89 Bldg H (ft) W (ft) a (rad) a (deg) P (k) # braces p (k) T (k) As (in ^2 Tv (k) 1 8.896 5 1.06 1 60.66 1 0.30 6 0.05 0.1 0.00 1 0.09 Area of 16 gage x 1.5" = (1.5in)(0.0598in) = 0.0897 in ^2 Therefore use 16 gage x 1.5 in. cross braces Allowable shear on 4 412 tek screws Vallowable = 822 lbs * ( 4 ) = 3.29 kips (see screw report) PRELI M I N ARY U N LESS SEALED O N EACH SH EEr O R O N CO V Eft SH EET ,b 12383 D ate: 8 0� By: 46r, .b b No.: /60 SH.: Bldg Lateral Trib. Load Length P (k) (plf) (ft) 1 59.67 5 0.30 S.E. CONSULTANTS, INC. 7 -7/ n 4 X- BRACING AT ROOF - W P = total load TAN a = H/N p = load per brace Tension on cross -brace T = P /cosa H Vertical Force Tv = P *H /W As Required F (ksi) = 55 As = T /Fr Bldg Lateral Trib. a (rad) 1 a (deg) Load Length P (k) T (k) (plf) (ft) 1 8.67 4 650 10 6.50 Fr (ksi) = 0.6Fy * 1.33 43.89 Bldg H (ft) W (ft) a (rad) 1 a (deg) P (k) # braces p (k) T (k) As (in ^2 Tv (k) 4 1 8.67 1 10 0.71 1 40.93 1 6.50 1 9 0.72 1 1.0 1 0.02 1 0.63 Area of 16 gage x 1.5" = (1.5in)(0.0598in) = 0.0897 in ^2 Therefore use 16 gage x 1.5 in. cross braces Allowable shear on 4 # 12 tek screws Vallowable = 822 lbs * ( 4 ) = 3.29 kips (see screw report) PRELI M I N ARY U N LESS SEALED O N EACH SH EEr O R O N CO V ER SH EET .b b: -T?Z8.3 D ate: 8 O By: �Rffi ,b b No.: Z 84 -0 SH.: L S.E. CONSULTANTS, INC. 84 1D S X- BRACING AT ROOF P ► W P = total load p = load per brace TAN a = H/N Tension on cross -brace T = P /cosa H Vertical Force Tv = P *H/W As Required F (ksi) = 55 Bldg Lateral Trib. a (rad) a (deg) Load Length P (k) T (k) (plf) (ft) 5 5 22 10 0.22 As = T/Fr Fr (ksi) = 0.6Fy * 1.33 43.89 Bldg H (ft) W (ft) a (rad) a (deg) P (k) # braces 1 p (k) 1 T (k) s (in ^2 Tv (k) 5 8.67 10 0.71 40.93 1 0.22 8 0.03 0.0 1 0.00 0.02 Area of 16 gage x 1.5" = (1.5in)(0.0598in) = 0.0897 in ^2 Therefore use 16 gage x 1.5 in. cross braces Allowable shear on 4 #12 tek screws Vallowable = 822 lbs * ( 4 ) = 3.29 kips (see screw report) PRELIMINARY UNLESS SEALED � �ON EACH SHEET OR ON COVER SHEET Cl Job: Date: 0 T By: ( C&C Job No.: 1 ?08q :f SH.: L S.E. CONSULTANTS, INC. TM 2 --, G 1 ICBO Evaluation Service, Inc. • 5360 Workman Mill Road, Whittier, California 00601 ER -2757 Reissued May 1, 2001 • www.icboes.org Filing Category: ROOF, WALL AND FLOOR PANELS—Steel '(216) IMSA STEEL FLOOR AND ROOF DECK IMSA BUILDING PRODUCTS INC. 2110 ENTERPRISE BOULEVARD WEST SACRAMENTO, CALIFORNIA 95691 1.0 SUBJECT IMSA Steel Floor and Roof Deck. 2.0 DESCRIPTION 2.1 General: Ail decks are fluted sections and cold- formed from steel sheets. Deck types include ASC2, ASC3, B, BR, BF. N, NR, NF, 2W, 2WF, 3W, 3WF, CP -32, CF, Deep Deck, •Mini -V Beam-, 1-111-36 Box Rib"', and Nor - Clad ®. All-dimensions and embossments are shown In Figure 1. When the deck webs are embossed for composite action, sections are re- ferred to as HFForrn type. Whenthe deckflanges orwebs are perforated for acoustical effects, sections are referred to as Acustadek- type. The "F designation refers to cellular units composed of fluted upper sheets resistance- welded to flat sheets. 2.2 Roof Deck Types B, BR, BF, N, NR, NF: Decking is made from steel conforming to ASTM A 653 Desig- nation SS, minimum Grade 33, and ASTM A 924 with a galva- nized finish; ASTM A 611, minimum Grade C with a painted finish; or ASTM A 611, minimum Grade C with a mill finish. All steel has a 38,000 psi (261.9 MPa) rhinlmum yield strength and a 52,000 psi (358.5 MPa) minimum tensile strength. These decks are also available as Acustadekn' type. The decking may be used with lightweight insulating con- crete fill in accordance with evaluation report ER-3260, ER -3081' or ER -3627. 2-3 Composite Floor Deck Hl -Form Types B, BR, BF, N, NR, NF, 2W, 2WF, 3W, 3WF*' Deckling is made from steel conforming to ASTM A 653 Desig- nation SS, minimum Grade 33,'and ASTM A 924 with a galva- nized finish; ASTM A 611 minimum Grade C with a painted fin- ish; ow• ASTM A 611 minimum Grade C, with a mill finish. A8 steel has a 38,000 psi (261.9 MPa) minimum yield strength and a 52,000 psi (358.5 MPa) minimum tensile strength. The decking may be used with or without concrete fill. All decking with concrete made from normal weight, expanded shale or pumice aggregates Is reinforced with a 6 x 8 W1.4 x 1.4 welded -wire mesh centered in the concrete fill. If fill thicker than 3 1 4 inches (82.55 mm) is used, the concrete must be re- Inforced In each direction with a steel area of 0.00075 times the area of concrete over the top of the deck The concrete must have a minimum 28-day compressive strength of 3,000 psi (20.68 MPa). 2.4 ELECTRI- DECKo: • t ELECTRI -DECK® flopr decks are cellular sections, cold - formed from galvanized steel complying with ASTM A 653 Designation SS, minimum Grade 33, and ASTM A 924 with minimum yield strength of 38 ksi (261.9 MPa), and a 53,400 psi (368.1 MPa) minimum tensile strength. Deck types in- clude ASC2 (24), ASC2 (30), ASC3 (24) and ASC3 (30). The decks are formed by resistance- welding fluted top sections to flat bottom sheets in the manufacturing facility. The flat sheets contain the sidelap configuration. Deck sections used for composite action with concrete have embossed webs. Sec- tions are galvanized In accordance with ASTM A 653 and ASTM A 924, Class G-60 minimum. 25 AcustadekTM Perforations: 2.5.1 B, BR, N, NR and Deep Deck Type Decks: The width of the perforated area is 0.877 Inch (2228 mm) for B and BR, 1.815 inches (46.1 mrp) for N and NR, 3.502 inches (88.95 mm) for 4 Deck, 5.002 Inches (127.05 mm) for B-fnch -deep Deck and 6.502 inches ' (165.15 mm) for 7 -deep Deck, to outside of holes. The holes are cen- tered on each web running the full panel length. The pattern consists of 0.127 - inch - diameter (3.23 mm) holes spaced 0.375 Inch (9.53 mm) on centertransverse to the panel length and 0.325 Inch (826 mm) on center (staggered) longitudinal- ly. 252 BF, NF, 2WF, 3WF and Cellular Deep Deck Type Deck: The perforations are in the flat sheet The width of the perforated area is 3.821 Inches. (91.97 mm) for BF, 5.351 inches (135.97 mm) for NF, 6.652 inches (168.96 mm) foi 2WF and 3WF, and 8.002 inches (20325 mm) for Cellular Deep Deck, to of holes, centered under each tot Hangs running the full panel length The pattern consists o 0.15744 ch- diameter (3.99 mm) holes spaced 0.433 Ind (11.00 mm) on center transverse to the panel length an( 0.375 inch (9.53 mm) on center (staggered) longitudinally fo the BF. NF, 2WF, and 3WF. The pattern consists c 0.12744 ch- diameter (323 mm) holes 'spaced 0.375 Ind (9.53 mm) on center transverse to the panel length and 0.32 Inch (826 mm) on center ( staggdred) longitudinally for th Cellular Deep Deck. 2.6 Concrete Pan CP-.32 Deck: Decking is made from galvanized steel conforming to ASTi A 653 Designation SS, Grade 80, and ASTM A 924 with minimum yield strength of 80,000 psi (551.6 MPa) and a min mum tensile strength of 62,000 psi (565.4 MPa) for No. 20, 2 24 and 26 gage, or ASTM A 653, Designation SS, minimui Grade 33 and ASTM A 924 with a minimum yield strength i 38,000 psi (2610 MPa) and a nlinimurn tensile strength 52,000 psi (358.5 MPa) for No. 18 gage. Consisting of flute sections 1 Inches (34.9 mm) deep at pitch of 4 9 116 inch( (115.89 mm), the decks may be used with or without Ilgt weight insulating concrete fill. If used, the concrete fill must t at least 2 inches (50.8 mm) thick overthe top•flutes. The flgt weight insulating concrete must have a minimum compre sae strength of 140 psi (0.96 MPa) when tested In accc dance with ASTM C 495, and must conform to the followir specifications: REPORTS' are not to be cmutrued as representing acsthetict or any other attrn3uus not speciaslly addressed nor are they to be construed as an endorsement of the subject of the report or a recommendation for its are. There s no wanwiry by 1CB0 Evaluation Service, lw_ express or implied as to any finding or other matter in this rrp*M or as to any product covered by the report Copyriotst m 2001 !lNSI Page 1 of Page 2 of 56 1. Oven -dry weight of 25 to 30 pounds per cubic foot (400 to 480 kg/m 2. 1 -to-6 mix by volume of cement to aggregate. 3. Aggregate shall comply as a Group 1 aggregate per ASTM C 332. The lightweight aggregate shall be tested in accordance with ASTM C 495. Allowable diaphragm shear values may be determined in accordance with this evaluation report or ICBO ES evaluation report ER -3260 or ER -3627. 2.7 CF Decks: Decking Is made from galvanized steel conforming to ASTM A 653 Designation SS, Grade 80, and ASTM A 924 with a minimum yield strength of 80,000 psi (551.6 MPa) and a mini - mumtensile strength of 82,000 psi (565.4 MPa) forNo.20, 22, 24 and 26 gage, or ASTM A 653, Designation SS, minimum Grade 33 and ASTM A 924 with a minimum yield strength of 38,000 psi (262.0 MPa) and a minimum tensile strength of 52,000 psi (358.5 MPa) for No. 18 gage. CF -1 3 /8 Is identical to CP32. CF- z/e is 7 /8 inch (222 mm) deep at it pitch of 2 2 13 inches (67.7 mm). . 2.8 Shearvent System with B Deck: The system consists of the B deckfabricated as noted in Sec- tion 2.2. The system has allowable diaphragm shear values based on special welding, as specified in Table 8 and Figure 6. Allowable vertical loads are based on section properties of the Type B steel deck The system also has a two-hourflre -re- sistive rating and additional diaphragm shear values when constructed In accordance with current ICBO ES evaluation report ER -3081, ER3260 or ER-3627. 29 Q-Max® System: This is a special end - support system consisting of a No. 16 gage `U shaped restraining device and the B deck described in Section 22 The restraining device is used only at shear- collecting elements transverse to the corrugations. Attach- ments, allowable shears, and flexibility factors are shown in Tables 6A and 68 and Figure 5.- 2.10 Deep Deck and Cellular Deep Deck Types 4 1 / 2 ,6 and r/2 Inch: Decking Is made from steel conforming to ASTM A 653, SS Grade 33 and ASTM A924. The decking is either painted, gal- vanized or mill - finished. The minimum yield strength Is 33,000 psi (228 MPa), and minimum tensile strength is 45,000 psi (310.3 MPa). Decking depths are 4 1 /2, 6 and 7 1 12 Inches (114.3, 152.4 and 190.5 mm), respectively, with a width of 12 inches (304.8 mm) or 24 inches (609.6 mm) for cellular deep deck The decking may be used with lightweight insufating concrete in accordance with ICBO ES evaluation report ER -3081, ER3260 or ER -3627. 211 Concrete Diaphragms with Shear Studs: Concrete diaphragm systems with shear studs may be used with deck Types B, BR, BF, N, NR, NF, 2W, 2WF, 3W and 3WF. The deck thickness must be at least No. 22 gage. M'ul- mum reinforcement consists of 6 x 6 W1.4 x W1.4 welded - wire fabric placed 1 Inch (25.4 mm) below the top of the con- crete. Where concrete fill Is thicker than 3 1 14 inches (8T.5 mm), the concrete must be reinforced in each direction with a steel area equal to 0.00075 times the area of concrete over the top of the flutes. Additional reinforcement requirements along with shear values are shown in Table 20. Deck must be fastened to supports and members parallel to flutes using arc spot (puddle) welds. Deck types, weld patterns and stud de- tails are provided in Figures 1, 2 and B. 2.12 Mini -V BeamTM, HR-36T" and Box Ribm Sections: Decking is made from steel conforming to ASTM A 792, ASTM A 653, or ASTM A 611 with a minimum yield strength of 80,000 psi (551.6 MPa) and a minimum tensile strength of ER -2757 82,000 psi (565.4 MPa) for No. 26 gage, or to ASTM A 792, ASTM A 653 or ASTM A 611 with a minimum yield strength of 38,000 psi (2620 MPa) and a minimum tensile strength of 45,000 psi (358.5 MPa) for Nos. 18, 20, 22, and 24 gage. The deck coating shall be either Zincalume®, G -90 galvanized, or a painted finish. Mint -V Beam panel section and strength. properties are noted in Table 28. Mlni -V- Beam allowable reactions based on web crippling are noted In Table 29. The allowabla vertical and horizontal diaphragm shear capacities and flexibility factors for Mini -V Beam are noted in Table 30. HR -36 and Box Rib panel section properties are noted in Table 3VMlni -V- Beam panels are attached to diaphragm perimeter and intermediate structural steel supports with #12 -24I W BuildexTEKS or ICH TRAXX fasteners as shown in Figure 9 and as described in evaluation report ER -3056. The spacing of screws to transfer shear to elements parallel to the panel flutes shall be determined by equations in Note 5 of Table 30. Panel sheet -to -sheet attachments shall be with #12-14 ITW Buildex TEKS or ICH TRAXX fasteners spaced' according to the values listed in Table .30. TEKS or iCH TRAXX fasteners must penetrate beyond the steel supports or bottom panel sheet a minimum of three pitches of thread. 2.13 Nor -Clad Section: Decking Is made from steel conforming to ASTM A 792 or ASTM A 653 with a minimum yield strength of 80,000 psi (551.6 MPa) and a minimum tensile strength of 82,000 psi (565.4 MPa). The deck coating shall be either Zlncalumes, G -90 galvanized, or a painted finish. The panels are rolled in 364nch (914.4 mm) coverage widths with 5 /e-lnch -deep (15.68 mm) ribs spaced 9 Inches (229 mm) on center as shown In Figure 1. Panel section and strength properties are listed in Table 32. The allowable vertical and horizontal dia- phragm shear capacities and flexibility factors are noted in Table 33. NorcladO panels are attached to intermediate and end wood support members spaced not more than 24 Inches (609.6 mm) on center with No. 9-15 by 1 (38.10 mm) Woodgrlp screws spaced 9 inches (229 mm) on center. The wood supporting members must be minimum 2-by -6 Douglas -fir larch wood joists with a specific gravity of at least 0.50, and fasteners must fully penetrate the members a mini- mum of 1 inches (38.10 mm). Woodgrip fasteners have a 1 / 4 -inch (6.4 mm) hex washer head with a 1 /r inch - diameter (12.70 mm) washer and a 0.114nch - thick- by- 3 / -lnch- diameter (2.79 mm by 9.53 mm) EPDM seal washer. Wood- grip fasteners are spaced 12 Inches (304.8 mm) on center, maximum, for diaphragm perimeter members parallel to the panel span. Panel- to-panel sidelap connections shall be Witt 1 /414 by 7 /e -inch (22.23 mm) Impax Lap self - drilling screws spaced 24 inches (609.6 mm) on center. Impax fasteners have a 5 /16 -inch (7.94 mm) hex washer head with a S/ 8 -inch. diameter (15.88 mm) metal washer bonded to a 0.060-inch. thick (1.52 mm) EPDM sealing washer. Woodgrip and Impa) screws are manufactured from steel conforming to ASTM f 510 with a minimum tensile strength of 120,000 psi (82721 MPa) carbon trfded to a minimum surface hardness of 5( Rockwell C by Construction Fasteners, inc. 2.14 Welding: For all decking described, welding is with E60 or E70 fille metal having a minimum diameter of 1/e inch (32 mm). Othe weld requirements must comply with AWS D13 - 98. Allow able tension loads for arc spot welds are determined in accor dance with Section 2217 of the 1997 Uniform Bur7dng Code" NBC). 2.15 Resistance Welds: Where Types BF, NF, 2WF, 3WF or Cellular Deep decks an used as bare deck, vertical loads are based on section prop ernes in Table 2A for Types B, N, 2W, 3W or Deep Deck, un less special calculations are provided demonstrating that the resistance welds develop the full section properties of the cel Page 3 of 56 lular decks. Resistance welds shall be placed in rows parallel to the flutes. See Figure 3 for details. 2.16 Design: 2.16.1 General: The allowable load tables are established on the base metal thicknesses noted in Table 2. The concrete fill utilizes regular or expanded shale aggregates and has a minimum compressive strength of 3,000 psi (20.68 MPa). Additional design criteria are in the 'General Notes' preced- ing the tables in this report. The decking must be clean and free of foreign materials prior to placement of concrete. 2.162 Vertical Composite Load: Values in tables indicate maximum unshored clear spans and allowable composite su- perimposed loads for deck with concrete fill. Spans contain- ing trench headers must be designed as noncomposite, using section properties of the deck as noted in Tables 2A and 2B. Composite sections cannot be used to support loads which are predominately vibratory, such as for operation of heavy machinery, reciprocating motors and moving loads. Large concentrated loads must be analyzed and designed accord - ingly. The allowable superimposed load tables give one -, two- or three -span conditions for construction loading with maximum spans to be used without midspan shoring and the allowable superimposed loads based on a simple -span condition for composite behavior. The determination of shoring limits is based on the strength or deflection of the deck section using a construction uniform live load of 20 psf (957.6 Pa) or a con- centrated construction live load of 150 pounds (6675 N). One row of shoring Is required at rHdspan for values to the right of the heavy line In the load tables. The dead load in- cludes the weight of concrete deposited as a result of the deflection of the deck during the pouring sequence. No allow- ance is made forwefghts resulting from the deflection of sup- porting framing members. The deflections resulting from the tabulated loads are less than the first, second and fourth Gmf- tations specified in Table 9.5b In ACI 318 -95. To meet the third limitation in the table, special calculations are required. 2.16.3 Diaphragm Shear and Flexibility: The one -third stress increase (or 0.75 reduction of the resulting forces) per- mitted for Allowable Stress Design in the UBC for load com- binations containing wind or seismic forces shall not be used for shear values in the diaphragm tables. The ASC3 (24) cellular deck units can be used in a blended diaphragm system consisting of alternating cellular and non- cellular fluted units used with and without a trench header. The noncellular, fluted units are 3W35. All decks must have a minimum G60 galvanized coating. The trench width Is a maximum of 36 inches (914.4 mm). Trench header centerline shall be placed not less than 31 inches (788 mm) from the centerline of the supporting parallel beam or girder. See Table 26 for allowable diaphragmshear values and flexibility factors of blended decks with a trench headerand nonblended decks of 3W36 units with a trench header. For blended systems of ASC3 and 3W36 units without a trench header, the dia- phragm shear capacity shall be the lower shear capacity of the two deck types, and the nexibirty factor shaft be the great- er flexibility factor of the two decks. Decks are attached to supporting framing members with arc spot welds' in the patterns shown in Figure 2. 2.17 Restrained Fire- resistive Ratings: CP-32, 2W, 3W, B and N decks may be used in two-hour fire - resistive roof deck assemblies with exposed soffits, provided: 1. The fill type, thickness and construction are as set forth in evaluation report ER -3081, ER -3260 or ER -3627, or Table 7-C of the UBC. 2- The maximum clear span for CP -32 In No. 26 gage deck is 6 feet, 8 inches (2.032 m), and in heavier gages up to 8 feet, 6 inches (2.591 m). ER -2757 3. The decks are attached to supporting structural elements as set forth in the accompanying tables. . 4. No conduits or pipes are embedded in the concrete. HI -FormO Types B, BR, BF, N. NR, NF, 2W, 2WF, 3W, 3WF, ASC2 and ASC3, when used with a structural concrete fill, have atwo-hourffrs- resistive ratingwith exposed soffitswhen used as either a roof or floor, provided: 1. The maximum clear span for the B, BR, and BF decks is 12 feet (3.658 m), and for the N, NR, NF, 2W, 2WF, ASC2, ASC3, 3W, 3WF decks is 13 feet, 2 Inches (4.01 m). 2. Minimum steel gage shall be No. 22 for fluted units and No. 20120 for cellular units. Unit finishes may be galva- nized, phosphatized, painted or mill finished. 3. Electrical Inserts may be installed when flreprooflng is sprayed -on the deck soffits in accordance with current ICBO ES evaluation report ER -1244 or ER -4607. 4. Minimum attachments to supports are as follows: a. All welds at each support are Y2 -inch- effective -diam- eter (12.7 mm) arc spot (puddle) welds. Weld patterns include three welds at 12 inches (304.8 mm) on center (maximum) for 24- inch -wide (609.6 mm) units, and four welds, at 12 inches (304.8 mm) on center (maxi- mum), for 304nch- or 36- inch -wide (762 or 914 mm) units. Where welded shear connectors coincide with arc spot welds, the arc spot welds may be eliminated. b Attachments to chords or struts areas specified in the 'General Notes' c. Sidelaps are button - punched at 3 feet (914.4 mm) on center for interlocking deck Types B, BR, N, NR, NF, 2W, 2WF, ASC2, ASC3, 3W and 3WF. For nestable deck Types B. BR, N and NR, use 1 1 / 2 -inch (38.1 mm) seam welds at 3 feet (914.4 mm) on center. When us- ing a blend of interlocking and nestable decks, use 1 / 2 -lnch (38.1 mm) seam welds at 3 feet (914.4 mm) on center. 5. The concrete fill above the top flange is either3 / inches (82.55 mm) for 110 pounds per cubic foot (1762 kg/m structural lightweight concrete with t = 3,000 psi (20.68 MPa), or 4 1 12 inches (114.3 mm) for 150 pounds per cubic foot (2403 kg/m normal- weight concrete with f,= 3,500 psf (24.13 MPa). 6. The concrete fill is reinforced with minimum 6 x 6 W1.4 x W1 Xwelded -wire fabric, placed at the center of the fill. 7. No conduits or pipes are embedded in the concrete. The Interior spans of continuous steel - framed construction slabs may be assumed to be restrained for fire- resistive construction. The perimeter spans are assumed unrestrained unless restraint is substantiated by the design engineer and approved by the building official. For additional restrained fire- resistive ratings, see Table 1. 2.18 Unrestrained Fire - resistive Ratings: 1. Types B, BF, N, NF, 2W, 2WF, ASC2, ASC3, 3W and 3WF decks with a structural concrete fill are one- or two-hour fine- resistive roof or floor decks with exposed soffits, pro- vided: a. The minimum deck thickness Is No. 22 gage. b. Attachments are in accordance with item 4 of the sec- ond paragraph of Section 2.17. c. The cc.-xrete fill is structural lightweight with expand- ed shale or slate aggregate and 4 to 7 percent en- trained air. Other concrete properties include 110 pounds per cubic foot (1762 kg/m) density, 3,000 psi (20.68 MPa) compressive strength at 28 days, and 3 (82.55 mm) fill above the top flange of the deck. d. The unrestrained assembly is assigned a one -hour fire - resistive rating when the supports are minimum W8 x 17 steel beams, and a two-hourfire- resistive rat- Page 4 of 56 Ing when the supports are minimum W8 x 28 steel beams. e. No conduits or pipes are embedded in the concrete. 2- One -hour and two -hour unrestrained fire- resistive ratings for steel decking with lightweight insulating concrete and insulation board are described In current ICBO ES evalu- ation report ER -3260. 3. Fire- resistive ratings when fireproofing material is spray - applied to the deck soffit are described in current ICBO ES evaluation reports ER -1244, ER -4607 and ER -4818. 2.19 Special Inspection: 2.19.1 Concrete: Continuous special inspection for con- crete and concrete reinforcement is in accordance with Sec- tions 1701.5.1 and 1701.5.4 of the UBC. The Inspector's du- ties include sampling and testing, and verification of concrete. mixes, reinforcement types and placement, and concrete placement 2.192 Jobsite Welding: Continuous or periodic special in- spectlon for welding is In accordance with Section 1701.5.5 of the UBC. Prior to proceeding, the welder must demonstrate his ability to produce the prescribed weld to the special in- spector's satisfaction. The inspector's other duties include verification of materials, weld preparation, welding proce- dures, and welding processes. 2 -20 Identification: Labels on each bundle of the decking bear the type and gage, together with the IMSA Building Products logo, the Custom- er's name, and the ICBO ES evaluation report number (ER- 2757). 3.0 EVIDENCE SUBMITTED Data in accordance with the ICBO ES Acceptance Criteria for Steel Decks (AC43), dated July 1996, and reports of flre -re- sistance tests. 4.0 FINDINGS That IMSA Steel Decking complies with the 1997 Uniform Building Code — , subject to the following conditions: 4.1 Concrete - filled composite sections are not used for loads that are predominantly vibratory. ER -2757 4.2 Allowable loads conform to values In the tables of this report. The Index to tables describes the con- tents of each table. 4.3 Where used as a diaphragm: 4.3.1 The one -third stress increase (or 0.75 re- duction of the resulting forces) permitted for Allowable Stress Design In the UBC for load combinations containing wind or seis- mic forces, shall not be used for shear val- ues In the diaphragm tables. 4.3.2 Allowable shear values are limited to values set forth in the accompanying tables for the types of deck Involved. 43.3 Diaphragm deflections shall not exceed the permitted relative deflections of walls be- tween the diaphragm level and the floor be- low. See Table 27 for diaphragm flexibility and deflection limitations. 4.4 Vertical load design of deck without a concrete fill Is based on section properties set forth In this re- port. Vertical load capacity of concrete - filled, com- posite deck systems is set forth in the tables in this evaluation report. 4,5 Special Inspection in accordance with Section 219 is required for all concrete and field welding. 4.6 All decking may be used for the fire - resistive roof deck shown in this report or as setforth In Table 7 -C of the UBC, provided the fill type, thickness, metal gage and construction are as specified therein. 4.7 Flre- resistive assemblies are assumed to be unre- strained unless evidence substantiating adequate thermal restraint Is submitted to and approved by the building official. 4.8 Allowable loads and deflections are as set forth In this report Calculations and details demonstrating that the loads applied to the decks complywith this report are submitted to the building official for ap- proval. 4A All cellular deck types are fabricated at the West Sacramento, Califomla, facility. This report Is subject to re- examinatlon_ln one year. Page 5 of 56 ER -2757 General Notes: The following notes apply to all of the tables in this report unless otherwise noted. 1. The allowable diaphragm shears listed in the tables are in pounds per linear foot (N /m). 2. Allowable superimposed loads listed in the tables are in pounds per square foot (Pa). 3. The base -metal thickness for all decks 1s indicated in Tables 2A, 213, 28, 31 and 32. For decks with specified yield strength of 80,000 psi (551 MPa), yield strength used for design shall be 60,000 psi (413 MPa). 4. Deck panel seams may be fastened by welds or button punches, as indicated in the report. The length of seam welds shall be a mini - mum of 1 1 /2 inches (38.1 mm). The seam attachment, where required, shall be in accordance with the appropriate table, not to exceed 3 feet (914.4 mm) on center.' 5. Arc seam or spot (puddle) welds shall have an effective fusion area to supporting members at least equivalent to 3 / 8 inch (9.525 mm) by 1 Inch (25.4 mm) long or 11 2 inch (12.7 mm) in diameter. See Figure 4. 6. Puddle weld patterns for Types ASC2, ASC3, B, BR, BF, N, NR, NF, 2W, 2WF, 3W and 3WF are shown in Figure 2. For CF 1 3 /8 and CP -32 decks, see Figure 7. For Q -Max® Systems, see Figure 5. For Shear -VentTM Systems, see Figure G. 7. Spacing of marginal welds to members parallel to flutes: a. Arc seam or spot (puddle) welds to members such as chords and to collector elements such as struts or ties shall have a spacing In feet (mm) equal to 35,000(tXv (For SI: 6,130(t M- where: f = Uncoated base metal thickness of fluted steel deck, in inches (mm). v = Actual diaphragm shear at marginal supports or actual shear transferred to collector, In pounds per foot (Wm). b. Fillet welds to members such as diaphragm chords shalt have a spacing In feet (mm) equal to 480 (i (For Si: 84 ( /,,, where: kv = Length of weld, in inches (mm) [not less than 1 1 /2 inches (38 mm)]. v = Actual diaphragm shear to be transferred to chords, in pounds per foot (N/m). c. Fillet welds attaching the diaphragms to struts, ties or other collector elements shall have a spacing in feet (mm) equal to 300 (4)1Y (For SI: 52.5 l,,,lv), where v is the actual shear to be transferred to the collector element, in pounds per foot (N /m). d. Weld spacing is limited to 3 feet (914.4 mm), maximum 8. Regarding attachments at interior lines of shear transfer perpendicular to deck corrugations: The shear transfer from a diaphragm to interior He or strut lines perpendicular to deck corrugations shall not exceed the shear values indicated in the tables. Two lines of puddle welds may be used to develop the actual shear transfer to these collector elements. 9. Where individual panels are cut, the partial panel shall be fastened in a mannerto fully transfer the shears atthe point of the diaphragmr to the adjacent full panels for the values specified In the tables. 10. The minimum 28 -day compressive strength for structural concrete shall be 3,000 psi (20.68 MPa). The appropriate concrete density (normal weight or structural lightweight) is indicated in the tables, The minimum concrete depth shall be 2 inches (50.8 mm) over the top flange, and the concrete is reinforced with a minimum 6 x 6 W1.4 x W1.4 welded -wire fabric. The reinforcement shall be placec near the center of the fill over the top flange. If the fill exceeds a 3 1 /4 -inch (82.55 mm) thickness over the top flange, reinforcemen Is required in each direction equal to 0.00075 times the area of concrete fill over the metal deck 11. All decks with structural concrete fill may be considered rigid. diaphragms, i.e., F< 1. 12. For decks with concrete fill, the diaphragm shear values and flexibility factors apply to deck sections with or without embossments 13. The diaphragm shear values, for decks without fill, also apply to the acoustical version of the specific deck, known as Acustadek- 14. Composite deck panel seams shall be fastened at 36 inches (914.4 mm) on center, maximum, to reduce differential deflection durini concrete placement This can be accomplished with welds, button punches or screws. 15. For decks with structural concrete rill, the diaphragm shear values and flexibility factors applywhether or not the sidelaps are attached 16. Deck panel seams may be fastened with self - tapping or self - drilling screws in place of button punches without affecting the tabulates allowable diaphragm shear and flexibility factors under the folowing conditions: a. Screws are minimum No. 10 size, with a minimum 3/4 7Inch (19.1 mm) length b. Screw spacing Is no greater than tabulated button -punch spacing. c. The deck material-base -metal thickness is minimum No. 22 gage [0.0299 Inch (0.737 mm)]. 17. For decks with structural concrete fill, the allowable diaphragm shear and flexibility factors shall apply to galvanized, painted, or phos phatized/Painted decks. I Page 6 of 56 TABLE NUMBER SUBJECT 1 Fire- Resistive Ratings 2A. 2B Section Properties 3. Allowable Reactions 4. Allowable Weld Capacities Roof Deck INDEX TO TABLES AND FIGURES PAGE NO. TABLE NUMBF..R SUBJECT 6 20 Diaphragm Shears for'lypes B, BF, - BR. 7.8 M. NF, NR. 2W, 2WF, 3W and 3WF 9 Decks with Concrete Fill and Shear Studs 10 21 2W Superimposed Load with Studs B Deck 5 B Deck Diaphragm Shears 6A Q -Max Diaphragm Shears (with lap welds) 6B Q -Mmk* Diaphragm Shears (without Lap welds) 7 B Deck With Lightweight Insulating Fill 8 Shear Vtdm Diaphragm Shears 9 N Deck Diaphragm Shears C732 / CF 1318 I0 CP32 and CF 13/9 Diaphragm Shears 11 C732 Diaphragm Shear with Insulating Fill 12 CP32 Deck Anac:hrnen 2W and 3W 13 2W Diaphragm Shears without fill 14 3W Diaphragm Shears without fill Deep Deck 15A. 15B Deep Deck Diaphragm Shear Floor Deck DIaphuagm Shears and Superimposed Load Capacities 23 24 25 16 B, BR and BF Deck with Structural Concrete Fill 26-29 17 N, NR and NF De& with Structural Concrete Fill 30-33 18 2W and 2WF Deck with Structural Concrete Fill 34-38 19 3W and 3WF Deck with Struchn -A Concrete Frill 39-43 Superimposed Load 22 ASb (24) Deck with 145 pcf Concrete 23 ASC3 (24) Deck with 110 pcf Concrete 13.14 Diaphragm Shear 15 24 ASM (24) Deck with 110 pcf Concrete 16 25 ASC3 (24) Deck with 145 pcf Concrete 16 26 ASC3 (24) Deck with Trench Header 17 B-36. BR -36, BF -36, N -24, NR -24, NF -24, 2W24, 35M PSI SIA Mlle 2W36. 2WF24, 2WF36, 3W24, 3W36. 3WF24 & U8 8ffi 27 Diaphragm Flexibility Limitations 18, 19 28 Mni- V- BeamTM Section Properties 2 HOUR 29 Mmi- V- BeamTM Allowable Reactions 4 3 116" 30 Mutt- V- BeamTM Diaphragm Shear (with Screws) 19-21 31 HR -36TM and Box RibTM Section Properties 22 32 Nor-ClaO Section Properties 22 33 Nor-Clad" Diaphragm Shears (with Screws) FIGURE SUBJECT 1 Deck Profiles 2 Weld Patterns 3 Resistance Weld Details 4 Weld Details 5 Q-Mai Detains 6 Shear VentTM Details 7 Weld Patterns for Concrete Pan Deck (CF32) 8 Shear Stud Details 9 Mmi- V- BeamTM Profile and Attachment Pattern 10 Nor -Cladm Pmfde and Attachment Pattern TABLE f- FIRE RESISTIVE RATINGS 1.2.3 TYPE OF DEC( CONCREM rM CONCRETE DUCKNESS RESTRAINED FIRE RESMTIVE RATING Hi-Form Type: No>mal Weight 3W 1 HOUR L50 PCP 4% 2 HOUR B-36. BR -36, BF -36, N -24, NR -24, NF -24, 2W24, 35M PSI SIA 3 HOUR 2W36. 2WF24, 2WF36, 3W24, 3W36. 3WF24 & U8 8ffi 2W 1 HOUR 3WF36, A5C? ASC3 110 PCF V " 2 HOUR 3000 PSI 4 3 116" 3 HOUR CP- 32,,B -36, BR -36, BF-36. M-24. NR -24 AND See Evaluation Report 2 1 /4" 2 HOUR NF -24 FR- -3081, ER -3260, ER-3627 . 2" 1 HOUR err UBC Table 7-C 'For maximum clear spans, steel regairemeats, attachments and concrete reinforcing see Section 2.17 of this report =For reduced concrete thiclmess, see ER -1244. 3 Thicknesa of eonaete above top of deck flute. I Page 7 of 56 ER -2757 TABLE 2ASECTION PROPERTIES tw= =' DECK BASE METAL 1 POST VE S HEGATIVE S TYPE GAGE THICKNESS PHI PHI) (IN') i6 N 1.582 0.976 0975 16 .0598 0379 0.407 OA15 B 19 .042 1.128 0.692 0.694 18 .0478 0.302 0.321 0.336 BR 20 .0359 022 0235 0.246 22 .0299 0.178 0.18 0.195 16116 .05981.059 0215 0112 0.712 18116 .04781.059 0.615 0.445 0.585 18118 .04781.047 0541 0.436 0.561 BF 18120 .04781.036 0.474 0.428 0.47 20116 .03591.059 0.484 0195 1453 2(918 .03591.047 0.447 0289 1435 200 . 03591.038 0192 02 82 0.398 N 16 .0598 1716 0.862 0.949 . Deep 18 .0478 1.33 0.689 0.765 NR 20 .0359 0.945 0.467 0554 22 0299 0771 0.361 0.449 16116 .0598!.059 3.029 1.198 1.545 Deep 18116 .04781.059 3.597 0.878 1.342 D& w 18/16 .04781047 231 0.861 1228 NF 18!20 .04781.036 1.95 0.841 0.946 7 W 20/16 .035.91.059 1.987 0595 1.04 4245 20118 .03591.047 1.868 0.562 0.977 14.47 20!10 .03591.036 1.666 0.566 0.65 .047 16 .059 0752 OR 0.67 2D 18 .047 0.601 •0535 0538 2W 19 .042 0.543 0.464 1481 0.195 0263 0263 20 .035 0.465 0.397 0.411 0205 21 .033 0.423 D338 0.376 0.169 22 Am 0.38 0298 0.339 0.131 16/76 .0591.059 1.196 0.771 0749 0.072 0.094 18!16 .0471059 1.003 0.621 0.609 0.051 0.113 18!18 ` .0471.047 0.928 0.611 0.592 2WF 18@0 .047LO36 0.901 0.601 0.6 0.035 • 0.078 20/16 .1351.059 0797 0.429 0.463 .0195 20!18 .039.047 0741 0.423 1451 =20 .039.036 0174 1416 1435 For St 11ed►= 25.4 rmt,1 foot m 304.8 m% 10.6894 Pa. DECK BASE METAL 1 POSITIVE S NEGATIVE S TYPE GAGE THICKNESS (IH') (IN9 PHI) i6 .059 1.582 0.976 0975 18 .047 126 0.78 0.777. 3W 19 .042 1.128 0.692 0.694 20 .035 0938 0.55 0.574 21 A33 0.881 0.511 054 22 .029 1769 0.433 0.471 16116 .0591.059 235 1.113 1.08 18116 .0471.059 1.984 0.899 0.873 18118 .0471.047 1.832 0.885 0.855 3WF 16@0 .0471.035 1.662 097 0932 2(916 MV-059 1.585 0.646 0.666 20116 D39A47 1.469 0.634 0.646 20110 .(:151.036 1928 0.623 0.623 4 W* 14 .075 5.49 2.056 2.056 . Deep 16 .059 4.36 1908 1.635 18 .047 3.42 1256 1.313 20 .0359 2.44 0924 0.957 14 .075 10.78 3.085 3.087 Deep 16 .059 8.55 2.406 2.451 D& w 18 .047. 6.68 1.692 1.966 20 0359 4.79 1386 1.314 7 W 14 .075 1826 4238 4245 Deep 16 .059 14.47 3.3 3.367 Dad 18 .047 1128 2593 2528' 2D .0359 8.11 1.899 1.67 18' .048 0.195 0263 0263 CP32" 20 .0374 0.146 0205 0205 CF 138' 22 .0314 0.122 0.169 0.169 24 .0254 0.098 0.131 0.131 26 .0195 0.072 0.094 0.094 20 .0374 0.051 0.113 0.113 CF 718» 22 .0314 0.043 0.095 0.095 24 .0254 0.035 • 0.078 0.078 28 .0195 0.027 0.060 0.060 TABLE NOTES~ 1 Talnrlated vakas am based on a 14mk de sedSm Pmpedles based on 38XD W i ld X84 cmwi here tilled. (TetrsOe strength - 52,000 Psl) The wom *AoaiadekTM as Wild deck type refers b web or pan perforaBmL See Sedlon 23 for addi8mW demlk 4) The ttarm M -FomM" Is used as a mCk b to deck "m B. BR. BF, N, NR, NF, 2W, 2WF, 3W and 3WF, when Ore webs are wbossed as deta8ed to Flgom I. 5) "Ptoperdes based on 80,000 psi ykdd. (ran* shm1h = 82,000 psq unless noted othewta 'Properties based on 38,OOD psi (T= mh s6er4% = 52,000 ps1) 7 BR and NR hdlcals Wailed pa for W*h the sedm modu8 are to be reversed. 8) The Bat mmber Is the gage or t8dmess of Wed by sheet The sewed rwmberls the gage or t ditess of IM bottom sheet 9) "- Pmpeft based on 33.000 0 ybId. (Tensk strength - 45,000 ls) 10)A1 sec8on properdas are netvakm Page 8 of 56 ER-2757 TABLE 2B - SECTION PROPERTIES' " A " a . DECX TYPE GAGE' BASE WAL THICKNESS' lw) d POSITIVE S NEGATIVE S 20/20 .0351.035 1.339 0.620 0.570 7 Y:' 20118 .0351.047 1.455 0.622 0.598 ASC3 20116 .0351.059 1.536 0.628 0.627 Cellular 18120 .0471.035 1.664 0.827 0.744 24' 18118 .0471.047 1.812 0.850 0.779 fleckW" 18/16 .0471.059 1.933 0.868 0.813 16116 .0591.059 22 93 1.071 0.995 20120 .0351.035 1.137 0.497 0.463 20118 .0351.047 1.224 0.502 0.489 ASC2 2086 .0351 1.299 0.527 0.516 ASC3 30' 18120 ' .059 .0471.035 1.415 0.675 • 0.604 - 18118 .047/.047 1.538 0.693 - 0.635 Ded"* 18116 .0471.059 1.636 0.707 0.669 1886 16116 .0591.059 1.947 0.873 0.816 DECK TYPE GAGE' BASE METAL THICKNESS' (IN) I (IN POSITIVE S PNO H NEGATIVE s ' 0 ) 20120 .0351.035 0.618 0.411 0.395 7 Y:' 20118 .0351.047 0.674 - 0.421 0.415 ASC2 20116 .0351.059 0.719 0.430 0.435 Cellular 18120 .0471.035 0.761 0.576 0.514 24' 18118 .0471.047 0.835 0.592 0.539 fleckW" 18116 .0471.059 0.895 0.605 0.564 16116 .0591.059 1.060 0.746 0.689 20120 .0351.035 0.526 0.334 0.321 20/18 .0351.047 0.572 0.343 0.339 ASC2 20/16 .0351.059 0.607 0.349 0.358 30' 18/20 .0471.035 0.650 0.470 0.417 - 18118 .0481.048 0.711 0.433 " 0.440 Ded"* 18116 .0481.059 0.760 0.492 0.463 1886 16116 .059/.059 0.904 0.608 0.565 DECK TYPE GAGP . USE META THIC c KNESS' (IN) I POSITIVE S NEGATIVE S 20120 .0351.035 4.14 1.14 126 7 Y:' 20118 .0351.047 4.39 1.13 1.57 4 W 20/16 20116 .0351.059 4.84 1.13 1.65 Cellular 18120 .0471.035 4.68 1.75 1.54 Deep 18118 .0471.647 5.35 1.79 1.85 fleckW" 18116 .0471.059 18.16 3.17' 4.03 18116 .0471.D59 5.93 1.82 215 16116 .0591.059 6.86 244 245 20120 .0351.035 . 7.25 1.55 1.78 20118 .0351.047 8.23 1.55 2.24 6' .0351.059 8.93 1.55 235 Cellular Deep 18120 .047/.035 8.85 254 224 Ded"* 18118..0471.047 9.99 2.51 265 1886 .0471.059 11.10 249 3.05 16116 .0591.059 1288 : 3.52 3.49 for St 1 lndr = MA aM l toot= 304.3 eve, 1 PSI 7 6894 Pa. DECK TYPE GAGES BASE METAL THICKNESS' FONIT SITIVE S NEGATIVE S (M 20 120 .0351.035 .12.02 1.97 2.23 7 Y:' 20118 .0351.047 13.51 1.97 '2.90 20/16 .0351.059 14.36 1.97 3.10 Cellular 18120 .0471.035 14.63 3.20 2.93 Deep 18118 .0471-047 16.36 3.18 3.53 [}ecJc"" 18116 .0471.059 18.16 3.17' 4.03 16/16 .0591.059 21.08 4.63 4.63 1) Tabuhted values are based on a 1 -fo*Wa secilm . 2) Th e 39 ca9 ns e usam ba sed � o .0DO p n yield abess, inept whew nobxL (T&-Aa 31rwVh - 53,400 ps4 properties vetNkaflon of the strength of the mslstanmwalcls abdrirg the fluted elemnt to the Pat elem The standard resistance weld spacing used forto development of Tat~'. -s 12 and 23 we strewn In Fq= 3. 4) The ltrst nundar Is Pm gage ortftldmess dfluted bop sheet. The second number is the gage or t kimess of tat bottom street 5) "' Prope line based an 33.000 psi yield. (rands strength = 45ADD A 6) Al section properfles am net valnes. I Page 9 of 56 ER -2757 TABLE 3 - ALLOWABLE REACTION BASED ON WEB CRIPPLING For St 1 Inch = 25.4 mm. t plf =14594 Wm 'The W number 12 the gage of Euled sheet The second number Is to gage of Eat boom sheet See Table 2A & 29 for nquired base metal IhIckna . M ALLOWABLE LOAD (PLF) REACTION LOCATION DECK GAGE BEARING END OF TYPE GAGE LENGTH DECK INTERIOR TYPE 16 1.5' 2604 4571 B. BR 18 1.5' 1566 2905 & BF 20 1.5' 776 1615 CP�2 22 1.5' 468 1101 16 1.5' 1934 3439. N, NR 18. 1.5' 1148 2165 & NF 20 1.5' 556 1185 22 1.5' 329 .797 1s 2.0' 1202 2098 4 18 2.0' 719 1329 2W 19 2.0' 551 1059 & 2WF 20 20' 348 729 21 2.0' 297 642 Deck 22 20' 205 501 16 20' 1194 2100 18. 20' 708 1322 3W 19 20' 539 1050 & 3WF 20 20' 337 718 Deep 21 2.0' 287 631 22 2.0' 196 489 Deck 20120 2.0' 285 648 20 3.0' 20118 2.0' 285 648 3.0' 2095 20116 2.0' 285 648 ASC3 18120 2.0' 537 1245 2137 24' • 18 18/18 2.0' 537 1245 18116 2.0' 537 1245 3.0' 311 16116 2 0r 998 2020 304 678 20120 Z.0' 228 519 678 20118 2.0' 228 519 ASC2 20116 2-0' 228 519 18/20 ASC3 562 1287 24,E 18120 2.0' 430 996 562 30.3 18116 2.0' - 1287 18118 2.0' 430 996 20120 18116 2.0' 430 996 20118 2.0' 16/16 20' 799 1617 For St 1 Inch = 25.4 mm. t plf =14594 Wm 'The W number 12 the gage of Euled sheet The second number Is to gage of Eat boom sheet See Table 2A & 29 for nquired base metal IhIckna . M ALLOWABLE LOAD (PL.F) REACTION LOCATION DECK GAGE BFJARING END OF TYPE LENGTH DECK INTERIOR 18 1.5' 1702 3170 20 1.5' 1083 2831 CP�2 22 1.5' 673 1959 CF - 1318 24 1.5' 416 1238 26 1.5' 260 704 14 3.0' 2282 3721 4 16 3.0' 1362 2316 Deep 18 -3.0' 815 1477 Deck 20 3.0' 390 853 14 3.0' 2188 3610 6' 16 3.0' 1289 2226 Deep 18 3.0' 757 1403 Deck 20 3.0' 351 793 14 3.0' 2095 3499 7 T 16 3.0' 1216 2137 Deep 18 3.0' 700 1330 Deck 20 3.0' 311 733 20120 2.0' 304 678 20118 2.0' 304 678 20116 2.0' 304 678 ASC2 18/20 2.0' 562 1287 24,E 18118 2.0' 562 1287 18116 2.0' 562 1287 16116 2,0' 1035. 2076 20120 2.0' 243 542 20118 2.0' 243 542 20116 20' 243 542 ASC2 18120 2.0' 450 1030 300 * 7l/ .18118 20' 450 1030 18116 2.0' 450 1030 16116 2.0' 828 1660 For St 1 Inch = 25.4 mm. t plf =14594 Wm 'The W number 12 the gage of Euled sheet The second number Is to gage of Eat boom sheet See Table 2A & 29 for nquired base metal IhIckna . M Page 10 of 56 TABLE 4 - ALLOWABLE ARC -SPOT WE=LD CAPACITY' -; 3 For St 1161 =4.45 N. Me mWnn spotweld e6edbe [uslon diameter (d.) Is 0.50'. ?A&xrabb values have been baeased one-third forwlnd or earthquake ba ft 'See AWS 01.1 -M for addN mW weld detah and mqutaements. ER -2757 Z Allowable Arc Spot (puddle) Weld Profile Gage Ca acf Shear Ibs Tensile Ibs 22 1128 756 B Deck 20 1575 901 N Deck 18 2511 1184 16 3098 1461 22 1067 734 " 2W Deck 21 1350 831 3W Deck 20 1504 880 19 2106 1047 18 2472 1163 16 3060 1443 20 1450 1098 Deep Deck 18 16 2139 2648 1419 1757 14 3303 2191 20120 3357 1583 20118 3759 1772 BF Deck 20116 4214 1987 NF Deck 1mc 3791 1787 181118 4209 1985 18116 4753 2241 16116 5300 2499 20120 3361 1584 20118 3763 1774 2WF Deck 20116 4218 1989 3WF Deck 18120 3763 1T74 181/18 4173 1968 -18116 4717 2224 . 16116 5263 2482 For St 1161 =4.45 N. Me mWnn spotweld e6edbe [uslon diameter (d.) Is 0.50'. ?A&xrabb values have been baeased one-third forwlnd or earthquake ba ft 'See AWS 01.1 -M for addN mW weld detah and mqutaements. ER -2757 Z Page 11 of 56 2 3/1 ] s/r 11 1/27 1 3 < - TYPE 8 -36 (intariock) 2 3 /5' }--" 3 3/6 } } 1 3 /<' TYPE 8-35 (nestable) (BR -35 SIMILAR k IM/OM) 4 3 /4 7 I/4 3/r ]. } Ir DECK PROFILES I 1 TYPE N - (inteAock) .s 3/5 2 3/< I 2 F--24 TYPE N -24 (nestobts) (NR SAW k I+1VE3M) ER -2757 ( --s- � I I I TYPE 3W36 (Sntwiack) TYPE 2W36 (Interlock) + 1/2 TYPE HR-36- r l' — f 4t ltr ] 1 /4 s/r * /r 3r TYPE BOX RIB" . ]r TYPE NOR- C1/10S ,F_1ED ED, f TYPE W -24 TYPE 3WF35 CELLULAR PROFILES TYPE 2WF36 COMPOSITE DECK EMBOSSMENT DETAILS TYPE CF -7/8 < t/2 - • rr 7 I/2' DEEP DECK CELLULAR TYPES Agr / yh. t • as<' 1 3 1 3 A U 1 3 1/t t/r + ] /s- s/ru I/r f ' TYPE B WET! EUBOSS.IE sM �•--_� ]/< TYPE N WEB BABOSSW04TS IO 0 000 t R]- s2s t.o:2s• .asr 131Irr: TYPE 3W EIMOSSL91ITS 37s' TYPE 2W E]1BOS9YENTS s/r thr t t/2• wr t/2' r r" D TYPE ASC3 TYPE ASC2 TYPES ASC3 t ASC2 EuBOSSUENT PATTERNS TYPES A=3 k A= WBOSSIDITS FIGURE 1 —DECK PROFILES AND EMBOSSMENT DETAILS TYPE ASC2 E < t/2 ; r 7 1 /2 DEEP DECK TYPES ] /e' 15 /Ir 4" 3 S /a' ]x' TYPE CP -32 (CF 1 3/8 Stu) OR u1M- V -13Ekt- (CP32 INVERTM) • j 2/ 3' - 1t-- -f - _�! �7 /r a__. I 3/,6- 4 1 1/2 1 s /6 2r 4 30' TYPE ASC3 7 /a ] 311r < 7/6 L s 3 /tc• <' t t /<• t s /s• ]0' ( --s- � I I I TYPE 3W36 (Sntwiack) TYPE 2W36 (Interlock) + 1/2 TYPE HR-36- r l' — f 4t ltr ] 1 /4 s/r * /r 3r TYPE BOX RIB" . ]r TYPE NOR- C1/10S ,F_1ED ED, f TYPE W -24 TYPE 3WF35 CELLULAR PROFILES TYPE 2WF36 COMPOSITE DECK EMBOSSMENT DETAILS TYPE CF -7/8 < t/2 - • rr 7 I/2' DEEP DECK CELLULAR TYPES Agr / yh. t • as<' 1 3 1 3 A U 1 3 1/t t/r + ] /s- s/ru I/r f ' TYPE B WET! EUBOSS.IE sM �•--_� ]/< TYPE N WEB BABOSSW04TS IO 0 000 t R]- s2s t.o:2s• .asr 131Irr: TYPE 3W EIMOSSL91ITS 37s' TYPE 2W E]1BOS9YENTS s/r thr t t/2• wr t/2' r r" D TYPE ASC3 TYPE ASC2 TYPES ASC3 t ASC2 EuBOSSUENT PATTERNS TYPES A=3 k A= WBOSSIDITS FIGURE 1 —DECK PROFILES AND EMBOSSMENT DETAILS TYPE ASC2 E < t/2 ; r 7 1 /2 DEEP DECK TYPES ] /e' 15 /Ir 4" 3 S /a' ]x' TYPE CP -32 (CF 1 3/8 Stu) OR u1M- V -13Ekt- (CP32 INVERTM) • j 2/ 3' - 1t-- -f - _�! �7 /r Page 12 of 56 0 0 0 o f W.Id. • • i • • • • 7 W.M. 8 -36 AND BF -36 0 0 • 3 Wrd. O O t W.W. C UD LNES (TYP) Jr ► r-i r I r TYPE BF -36 2W. 3W. 2WF AND 3WF ASCS k ASC2 Nam WELDNU PATTERNS ABOVE ALSO APPLYTO THE CMAJA 1R AND NESMLE VEP -90NS CFTHE DECK TYPE NOIF3 FIGURE 2 — WELD PATTERNS (At Perpendicular Supports) DCIMR NiEMR UNE Von.= EYTf7tlOR UNE WELDS I I I I l I TYPE 2WF36 OR 3WF35 /—*Ub Uws TYPE NF -24 ER -2757 C O 2 WWda • • • • t W.Ida H-24 & NF-24 0 0 0 o t W.We F Waz uEs Mr) i�� I �� I ��I • TYPE ASC2 DEEP DECX CELLULAR TYPES F VM UMES (rtlff) TYPE ASC3 DM OF RESMANCE DMK LNR WE= �. Tr xE At 3 a WEM AT r &- FIGURE 3 - CELLULAR DECK RESISTANCE WELD PATTERNS Z& L SIDE SEAM WELD TOP SEAR WELD BUTTON PUNCH sw+Da4c ARC SEAM WELDS ARC SEAM WELDS (PUDDLE) WL 4. - 11r m IRIS d. - 11r W4 ARC SPOT WELD FILLET ARC SPOT WELD (WASHER WELD) (PUDDLE) FIGURE 4 — WELD DETAILS I Page 13 of 56 DECK GAGE TABLE 5 SEAM ATTACHMENT Button Pundr At12'O.C. - ALLOWABLE PUDDU WELDS t DIAPHRAGM FOR (In q F SHEARS B-38 AND BF -36 Pounds per 1155 43' +2BR (q) ARID INTERLOCK UneA Foot)iz3.4 991 4.9 +23R FLEXIBILITY DECK DECK SPAR 874 5.5+•2OR FACTOR (f-) (Feet) !r-0' 788 8.1 +1711 Button PuWci At 24'0.C. 4 q 1077 912 794 706 871 4 -i +1511 /.1 +14R F 45 +28R 52 +MR 59 +20R 6,8 +1 RR 1118 Top Seam Weld 4 q 1683 1529 1421 134.4 B35 At170.C. 69 +35R F 3.8 +2aR 3,8 +23R 3.5 +2OR 3.4 +17R 1147 Top Seem Weld 4 q .1341 1181 1068 9B4 At 24'0.C. F 4.4 +28R 4.3 +23R 4.3 +20R 42+17R Stria Seam Weld 4 q 2138 1992 1893 1823 At12'O.C. F 3J +28R 3.1 +23R 3.0 +2OR 29 +17R Side Seam Weld At24'QC, 4 q 1570 1412 1303 1224 16 F 39 +2611 3.8 *MR 3.7 +2011 3J +17R Button Punch At 12'0.C. 7 q 1652 1408 1234 - 1]05 F 37 +6911 42 +SBR 4J +S OR. 5.3 +4.3R Button Punch At24'O.0 7 q 1570 1323 1150 Will F g6 +6,911 4.4 +5.BR 5.0 +5.OR 5.6 +4311 Top Seam Weld 7 q 2212 1982 1a21 1705 At12'O.C. F 3.4 +69R 3.4 +5.BR 3.3 +5011 3.3+4311 Top Seam Weld 7 q 1850 1610 1442 1317 At 24' 0Z. F 39 +69R 3.8 +5,BR 3.8 +S.OR 3.8 +4.3R Side Seam Weld 7 q 296 2476 2326 2221 At1 F 3.1 +89R 3.0 +5.8R 29 +5.011 28 +4.3R 51de Sew amW At 24'0.0C- 7 q 2091 1858 1694 1575 . F 35 +6,911 35 +5.BR 35 +5.011 3.4 +4.3R t Punch 4 q 806 597 562 A t I 2'OC F 5.9 +54R 6.7 +45R .619 75 +39R 82 +34R Button Punch At24'Or 4 Q 736 626 548 489 F 63 +54R 7.2 +45R 82 +39R 92 +34R Top Seam Weld 4 q 1215 1112 1032 968 At12'OC F 5A +5411 4.8 +45R 47 +3911 45 +34R Top Seam Weld At24'0& 4 q g4D 752 Sail F 80 +5411 59 +45R 5.7 +39R 5.6 +34R Side Seam Weld 4 q 1580 1482 1406 1341 At17 O.C. F 4.3 +54R 41 +4511 39 +3911 3,7 +34R Side Seam Weld At24'OC. 4 q 1123 1018 940 875 18 F 53 +5411 5,1 +45R 5.0+39R 4.8 +34R BuBatPunch At 1Z Of 7 q 1178 1008 889 - F 5.0 +14R 57 +1111 6.4 +1011 7.1 +9R Button F;ra At14'OC 7 q 1102 932 811 721 f 52 +1 RR 6A +1111 69+1OR 77 +9R Top Seam Weld 7 q 1538 1359 1232 113E f 46 +1411 45 +1111 4.4 +1011 43 +9R Top Seam Web 7 q 1258 1079 952 858 At24'O.C- F 5.2 +14R 52+1111 52 +10R 5.1 +9R Side Sam Weil At 1Z O.4 7 q 1911. 1732 1606 1511 F 4.0 +14R 39 +1111 3.8 +1OR 3.7 +911 Side Seam Web 7. q 1445 1268 1139 1044 At 24* O.0 F 4.8 +14R 47 +11R 4.6 +1011 45 +9R Forst ltrrdh =25.4rnm,t foot= 3048 am,1 , p8 14.594 Nlm hR Is the vec9d bad span of deck unas (L,) &ided by the length (W 01 fie deck unit R = LR.r. 2See Table 27 of this report br dlaoMrn tlm2ik Cmllations. Vedr end laps ID be .2 Inches mini ran over supports, 4 See Flprm 2lorsupportweld patterns, ER -2757 9 - -0` 10'_0' 721 668 6.7 +15R - T3 - + 44R 639 Sail 7,4; +15R 81 +14R 1288 1242 3.4 +15R . 3.3 +14R 9 20 871 4 -i +1511 /.1 +14R 1773: 1736 28 *1511 L7 +14R 1164 _ 1118 36 +1511 3.5 +14R 1005 927 5.8 +3911 6,4 +3.5R 916 B35 6.3 +3 SR 69 +35R 1617 1550 32 +3.911 3.2 +3511 1221 1147 3.8 +3911 - 3f+ - 3 71 r 1895 L8 +39R I u +3511 +-wK 97 +27R 444 406 t +3 RR 111 +27S 917 878 +3011 T2 - 27R 638 598 +3OR 5.4 +27R 1291 1251 +3011 35 +27R +8R PKI 42 +8R I 4.1 +711 785 7T7 5.1• +811 5.1 +7R 1438 1380 3.6 +8R 3.5 +7R 971 913 4.5 +811 V 4.4 +7R Page 14 of 56 TABLE 5 -ALLOWABLE DIAPHRAGM SHEARS (q) AND FLEXIBILITY FACTOR (F) FOR B -36 AND BF -38 INTERLOCK DECK On Pounds per Lineal Foot)'.Zm (CONTINUED) ER -2757 D ECK GAGE SEAUATTACHRENTS PUDDLE DECK SPAN(Feet) WELDS$ 5 r -0' 7`-0' 8'-0 g• -0` l -0 . Button Punch 4 q 420 420 410 410 380 350 At 12'0.Q F 11.0 +129R 112 +107R 113 +9211 115 +80R 11.7 +7111 11.8 +64R Button Punch 4 q 340 340 340 330 310 2B0 At24'0.C. F 13.0 +129R 131 +10711 13.4 +92R 13.6•&80R 13.8 +7111 14.1 +6411 Top Seam Wald 4 q 450 450 450 440 440 440 At1Z'O.0 F 5,4 +129R 5.0 +107R 4.8 +92R 4.4 +6011 4.1 +7111 4A +8411 Top Seam Weld 4 q 340 340 340 340 - TO 340 340 At24 O.C. F 6.4 +12911 5.8 +1078 53 +92R +8011 4.7 +71R 45 +6 RR Side 5aam Weld 4 q 605 T56 121 694 B74 658 At IT O.C. F 53 +1298 55 +10711 5.3 +9211 5A +8OR 4.8 +7111 4.6 +64R Side Seam Weld 4 q 543 494. 458 432 412 395 2 0 At24'0.C. F 1 ?.7 4-129R 72 +107R 69 +9211 6.6 +BDR 6.4+ 11R, 0 +6 RR Bunion Punch 7 q 740 740 710 630 560 500 At 12 O.C. F 10.4 +32R 10.6 +27R tOS +23R 110. +2DR 113 +1811 115 +1611 Button Pundit 7 q 670 660 640 560 500 450 At24'0.C' F 11.3 +32R 11.6 +27R 11.6 +23R 12.1 +2011 12.4 +18R 126+16R Top Seam Weld 7 q 90D 890 880 840 750 680 At12'O.C. F 96 +3211 85 +27R 7.8 +23R 71 +2DR 81 +1811 64 +1fiR Top Seam Weld 7 q 790 780 RD 740 660 6D0 At24'0.0 f 108 +32R 9.4 +2711 8.5 +2311 79 +2OR 7.4 +1811 7.0 +16R Side Seam Weld 7 q 939 665 812 773 742 - 718 At ITO.C, F 51 +32R 5.4 +27R 51 +23R 5A +20R 4.8 +1811 4.7 +1 RR Side Seam Weld 7 q 677 602 549 510 479 455 At24'OC F 7.0 +3211 68 +2711 6.6 +7311 6.4+ 62 +18R 6.0 +16R Button Punch 4 q 320 320 120 320 310 280 At12'O.C. F 145 +2228 141 +18511 14.8 +159R 15.0 +13911 • 15.2 +12311 15.4 1111R Button Punch 4 q 260 260 260 250 25D 220 At24*041 F VA +222R 17.6 +1858 179 +159R 18.1 +13911 18.4 +123R � 185 +111R Top Seam Weld 4 q 36D 360 360 360 360 360 At12'op- F 69 +2228 8.1 +185R 5.7 +15SR 5.4 +13SR 5.1 +1238 49 +111R Tap Seam Weld 4 q 1 280 280 270 DO 270 270 At24'OC, F I 8.1 +2228 71 +185R 6.6 +MR 61 +139R 58 +123R 5.6 +111R Side Seam Weld 4 q 519 492 473 458 447 438 At12'O.C. F 7.1 +2278 6.8 +1658 62 +159R 5.9 +1398 57 +123R 55 +111R Side Seam Weld 4 q 337 309 290 276 264 256 22 At24'0.C` f 95 +2228 89 +185R 8.4 +15911 8.0 +139R 7.7 +12311 •7.4 +111R Button Punch 7 q 570 570 550 500 450 410 At- 12'or, F 13A +56R 14.1 +46R 143 +39R 145 +34R 14A +3111 15.1 +2811 Button Punch 7 q 51D 500 500 450 400 360 At2C(J.C' F 152 +MR 155 +46R 159 +39R 162 +34R 16.5 +31R 18.8 +28R Top Seam Weld 7 q 700 700 -- 69D 690 820 560 AtIT04- F 12.5 +56R 11.1 +4611 100 +39R 9.2 +34R 8.8 +31R 82 +28R Top Seam Wald 7 q 610 610 6D0 600 540 490 At24'0& F 13.9 +56R 123 +46R 11.1 +39R 102 +34R 9.5 +3111 9A +MBR Side Seam Weld 7 q 596 555 525 504 487 473 AtITM F 69 +56R 65 +46R 61 +3911 6.0 +34R 5.7 +31R 55 +2BR Sk% Seam Weld 7 q 414- 372 343 321 304 291 C nr C4 � Iw61& _ At_ w N a � .�� ...► � 7 �� 7C / � L - _ u rn � F u L 8.8 +56R 8.4 +46R 8.1 +3911 7.8 +3411 74 +31R 7.3 +2BR hR Is the verbal load span of deck iamb (W dtvWed by the length J4) of the dark unll R = I.4 ZSee Table 27 of this report for dlaphrapm lludbk 6mitaftm Veclr end laps b be 2 Inches mm&w m over suppot L $See Figure 2 b suppodweld pagams. • I Page 15 Of 56 TABLE 6A - ALLOWABLE DIAPHRAGM SHEARS (q) AND FLEXIBILITY FACTOR (F) FOR. Q -MAX* USING B DECKWITH LAP SPLICEWELDSIXIA ER -2757 1. See Figure 5 for abdimarits and detalla . - .�� V'•` 2. See Table 27 for diaphragm Aatabaty 6mita5ons. 3. A safety fadar d3.00 has been applied to W>*bd values 4. Forwind IOads, values maybe rmddpded by a factor of 1.10. 1 . Fd— i/r 16 GA. 1 RESTPAIN11 ELEMENT REQUIRED END SUPPORT WELD ARC SPOT (PUDDLE) WELD AT 12' O.0 AT 12' O.C. EACH FLUTE Z twr EACH FLUTE (H - qurrad) LAP OR SPLICE WELD ARC SPOT (PUDDLE) WELD EACH FLUTE 1 1/2 TDP SEAM <TTPrAL -- WELD At 12' O.C. REQUIRED SUPPORT AND SEAM WELD REQUIRED BOUNDARY WELD FIGURE 5--Q -MAX* DETAILS ' I NUMBER LAP OR SPLICE DECK SPAN DECK OF PUDDLE WELD REWIRED GAGE SEAM ATTACHMENT WELDS 5 -0' TV 8'-0' g -0' 10'-0' TOP SEAM WELD AT q 1200 1030 920 - 830 770 22 1r D.C. 7 YES F 33 4.0 42 4.3 •4.4 TOPSEAMWELDAT q 1440 1280 1130 1020 940 20 1 O.C. 7 YES F 3.2 3.3 3.4 3.5 3.7 TOP SEAM WELD AT q 1860 1760 1510 1410 1290 18 L. -LPL • t t2' D.C. -.L � AG I �-. 1 L 7 F 2.3 24 25 2.6 2.7 1. See Figure 5 for abdimarits and detalla . - .�� V'•` 2. See Table 27 for diaphragm Aatabaty 6mita5ons. 3. A safety fadar d3.00 has been applied to W>*bd values 4. Forwind IOads, values maybe rmddpded by a factor of 1.10. 1 . Fd— i/r 16 GA. 1 RESTPAIN11 ELEMENT REQUIRED END SUPPORT WELD ARC SPOT (PUDDLE) WELD AT 12' O.0 AT 12' O.C. EACH FLUTE Z twr EACH FLUTE (H - qurrad) LAP OR SPLICE WELD ARC SPOT (PUDDLE) WELD EACH FLUTE 1 1/2 TDP SEAM <TTPrAL -- WELD At 12' O.C. REQUIRED SUPPORT AND SEAM WELD REQUIRED BOUNDARY WELD FIGURE 5--Q -MAX* DETAILS ' I Page 16 of 56 ER -2757 18 TABLE 6B - ALLOWABLE DIAPHRAGM SHEARS (q) AND FLEXIBILITY FACTOR q FOR Q -MAX@ USING B -DECK WITHOUT LAP (T-) SPLICE WELDS'A .s DECK GAGE SEAM ATTACHMENTS 811 1171 7 5 +25R 75 +2 3R F q DECK SPAN 58 +311 1649 2 2 8.6 +2311 1459 6.8 +2111 1450 W-d• T' -0• r_v 9' -0• 10' -0• 4.8 +2411 701 89 +4BR 962 7.6 +411 1247 6.1 +311 1551 5.1 +2111 577 9.7 +4211 865 83 +35R 1121 87 «2.6R 1396 4 998 854 155 683 629 7.4 +1BR Top Seam F 7.4 +5.611 T.8 +4811 81 +4211 83 +3.8R 85 +3.411 20 f 12 inches O.C. q 1232 1162 1120 947 1277 1209 F 6.3 +4.7R 87 «4R 6.9 +3.5R 72 +3.111 7.3 +28R 18 q 1584 1491 1436 1407 1398 F 5 +3-511 5.4 +311 5.6 +2611 5.8 +2311 6 +2.1R 16 q 1960 1643 1774 1737 1723 F 4.2 +2811 45 +2411 4.7 +21R 4.9 +19R 5.1 +1.JR 22 Q 877 752 666 564 522 F 8 +5611 85 +4BR 8.8 +1211 95 +3BR 9.6 +3.4R 20 Top Seam Welds q i o92. 1029 993 858 18 Inches O.C. F 6.6 +47R 72 +411 75 +15R e2 +3111 790 E, 18 12' -0 q 1414 1326 1779 1177 811 1171 7 5 +25R 75 +2 3R F q 5.4 +3511 1759 58 +311 1649 6.1 +28R 1585 8.6 +2311 1459 6.8 +2111 1450 16 5.3 +1.4R Top Seam Welds 24 Inches O.C. F q F q F q F q 45 +28R 818 8.4 +-5.611 1022 T.1 + 1330 - i6 1858 4.8 +2411 701 89 +4BR 962 7.6 +411 1247 6.1 +311 1551 5.1 +2111 577 9.7 +4211 865 83 +35R 1121 87 «2.6R 1396 5.8 +19R 525 ;0 +3.811 Boo 8.6 +3.111 1100 7 +23R 1367 5.8 +1711 451 10.7+3.411 685 9.3 +2BR 1021 - 75 +2111 1258 20 18 16 6.9 +1911 7.4 +1BR F 4.7+2611 5.1 +2.4R 5.5 +2111 5 . 9 +1.9R 6.4 +1711 MR 1 Inch = 25.4 mn% 11001 - 304.8 M'n,1 pf =14594 Nhn 1- See Figure 3 for attarlunents and details. (No Lap Weld Requlr94 2 R Is line vw5af load span of deck units (W divided by the length M of the deck unit R = Lrt 3. Sea Table 27 for diaphragm Av bMy bmlaftm 4. A safety factor of 3.00 has been applied to tabulated vabes. 5. Forwlnd loads, values maybe multiplied by a factor of 1.10. 11' -0• 12' -0 587 554 8.8 +3.iR 87 +28R 881 830 7 5 +25R 75 +2 3R 1398 ;409 8.1 +1.9R 62 +lBR 1775 1740 52 +1511 5.3 +1.4R 49D 436 97 +31R 103+28R 738 655 85 +2511 8.9 +23R 1176 1119 6.9 +1911 7.4 +1BR 1456 1386 59 +1.5R 63 +1.411 426• 377 10.8 +3.1R 11.4 +2BR f 568 9.4 +2.511 99 +2.3R 1029 973 77 +1911 82 +1 m 1277 1209 65 +1.511 7 +tea_ 1 Flt Is the same as fortta concrete pan (CP.M deck wh h a min6rarrn density o(25 pounds per able foot An andug washer shall be installed beach deck unit at diaphragm perimeter support and at polnb of sheartansfer. The armor washer shall consist of No.14 gage steel angular member, 2 inches htph, spaced 2 feet 0 Inches on center. The base contains a % Inch diameter hole for a "6 6 ping weld In beam connection. The anchor bark notched to support a 3184rh dlameterccn5r=n mltdordhg bar. 2 Seam atlad whc Fnr M deck - h tbn punch at 38 Inches oA 3 L = Vertical bad span of deck unit in feet , 4 MW MM Sparc L b compute diaphragm shears shad be 6 feet 0 Inches for all gages. 5 F1azQ>lillyr and span -b -depth ralbs af diaphragm am Muted by the values given In Table V. . 1 TABLE 7 - ALLOWABLE DIAPHRAGM SHEARS (q) AND FLEXIBILITY FACTOR (F) FOR GALVANIZED TYPE B DECK WITH 2 INCHES OF LIGHTWEIGHT INSULATING FILL1x3A5 Page 17 at 56 TABLE 8 • ALLOWABLE DIAPHRAGM SHEARS (q) AND FLEXIBILITY FACTOR (F) FOR: SHEAR VENTm SYSTEM USING B -DECK f. ER -2757 For SC 1 Inch z Z5.4 nTR T 1001= 3U4.0 RYn,1 P3 -14.5M MOL ISea Figure 6 for abdtmants and detallt 1 Ses Tab% 27 for diaphragm lfaxib k 6dtatbm- LIGHTWEIGHT INSULATING CDNCRETE KEYDECK MESH 2150 -2 -1919 WD NORMAL TO FLUTES -7 AT 12' AT END OF DECK UNITS 1/2' DA. EFFECTIVE PUDDLE MELD SPAC118: AT EACH FLUTE AT DECK UNIT SPICES ARC SPOT (PUDDLE) WEIR EACH FLUTE 1 1/2' TOP SEW WELD OR BUTTON PUNCH AT 24' O.C. REQUIRED SUPPORT AND SEAM WELD FIGURE "HEAR VENT DETAILS t/Y INSULATION BOARD t/r I f t/2' `�' 1a CA. RESTRAINIHG ElEUENT r TYPICAL SECTION s 1/Y AT FRAMING PARALLEL TO FLUTES NO. OF SPAN DECK PUDDLE LAP OR SPLICE WEIR 6'-0' T -0' W-w 9'-0 iw-T GAGE SEAM ATTACHMENT WELDS REQUIRED BUTTON PUNCH 7 YES q 1050 970 910 860 810 24* O.C. MAX. F 5.0 5.9 6.7 7.5 8.4 22 SEAM WELD 7 YES 1360 TOP q 1470 1270 1200 1140 2 O. C. MAX. F 3.6 4.2 4.8 5.4 6.0 BUTTON PUNCH 7 YES q 1210 1120 1040 980 930 24' O.C. MAX. F 4.2 4.9 5.6 6.3 7.0 20 7 YES TOP SEAM WELD q 1690 1560 1460 1380 1310 24' O.C. MAX. F 3.0 3.5 4.0 • 4.5 5.0 BUTTON PUNCH 7 YES q 1500 1380 1290 1220 1160 24' O.C. MAX. F 3.1 3.7 4.2 4.7 5.2 8 SEAM WELD 7 YES 1940 TOP q 2100 1810 1710 1620 24• O.C. MAX. F 2.2 26 3.0 3.4 . 3 .7 For SC 1 Inch z Z5.4 nTR T 1001= 3U4.0 RYn,1 P3 -14.5M MOL ISea Figure 6 for abdtmants and detallt 1 Ses Tab% 27 for diaphragm lfaxib k 6dtatbm- LIGHTWEIGHT INSULATING CDNCRETE KEYDECK MESH 2150 -2 -1919 WD NORMAL TO FLUTES -7 AT 12' AT END OF DECK UNITS 1/2' DA. EFFECTIVE PUDDLE MELD SPAC118: AT EACH FLUTE AT DECK UNIT SPICES ARC SPOT (PUDDLE) WEIR EACH FLUTE 1 1/2' TOP SEW WELD OR BUTTON PUNCH AT 24' O.C. REQUIRED SUPPORT AND SEAM WELD FIGURE "HEAR VENT DETAILS t/Y INSULATION BOARD t/r I f t/2' `�' 1a CA. RESTRAINIHG ElEUENT r TYPICAL SECTION s 1/Y AT FRAMING PARALLEL TO FLUTES Page 18 of 56 TABLE 9 - ALLOWABLE DIAPHRAGM SHEARS (q) AND FLEXIBILITY FACTOR (F) FOR N -24 AND NF- 24- DECKi, (1NTERLOK S NESTABLE) ER -2757 DECK GAGE SEAMATTACHMENTS PUDDLE WELDS DECK SPAN (FEET) a g 10 12 14 Button Punch Q 12'O.C. 2 q 630 520 450 410 380 F 11.5 +185R 14.1 +139R 16.4 +111R 18.8 +92.68 20.5 +79.48 Button Punch Q 24'O.C. 2 q 540 430 360 32D 290 132 +185R 18.8 +139R 202 +1118 ES - +926R 26J +79AR 1 %i Seam Wald 12'O.0 2 1230 1130 1070 1040 1020 IF g,g +1858 5.8 +1398 52 +111R 4.8 +9268 45 +79.4R 16 24'O.0 2 840 T30 670 630 610 9.0 +1858 81 +1398 75 +1118 7A +9268 85 +1948 8ution Po h @ 1T 0.C. 4 1000 800 680 600 0 F 69 +20.6R 8.8 +15AR 10.7 +1248 127 +103R 14.6 +BAR Button Puuu h ® 24'O.0 4 q 92D 710 590 510 450 F 7.4 +20.68 9.7 +15AR 121 +1248 14.6 +10.3R 17.3 +8.8R. 1 h Saam Wald @ 127O.0 4 q 1560 1370 1270 1210 1180 F +20,6R 4.8 +15.4R 4.4 +12.4R 41 +10.3R '4.0 +B.BR 1 Y; Seam Wald @ 24'O.C. 4 q 200 1000 890 •82D 770 F +20.68 rl 5.8 +15AR 5.7 +1248 55 +10.38 5.4 +89R Button Punch Q 42'O.Q 2 q 440 370 330 310 290 F + 362 8 189 + 2718 215 +2178 231+1818 259 +1558 Button Punch Q 2 CA 2 q 370 300 .250 230 210 F 187 +3628 23.4 +271R 277 +2178 31J +1B1R 35.4 +1558 1 %' Seam Wald Q 1700 2 q 830 760 7 DD 690 670 F 8.6 +362R 75 +271R 6.7 +2178 6.1 +1818 5.6 1-1558 18 1 W Seam Weld Q 24 0Q' 2 q 550 480 440 410 390 f 122 +3628 103 +271R 9A +2178 9.0 +1818 8.4 +155R Button Punch @ 120.Q 4 q 710 560 500 440 410 F 95 +4028 120 +30.1R 14A +24AR 16J +20.1R 189 +1728 Button Pt uh Q 24'OC 4 kq 640 500 420 360 330 10A +40.28 135+AIR 16J +24.1R 199 +20.1R 231 +1718 1 Yi SaamWeld Q 12'QQ 4 q 1110 960 8T0 810 770 F 6.6 +40.28 6.1 +3D.1R SJ +24.1R 5.4 +80-1R 5.1 +1728 1 Seam Weld Q 24'O.Q 4 q 830 680 590 530 •490 F 82 +4028 73 +AIR 75 +24AR 73 +80,18 7.0 +1718 Button Punch Q 1TO.Q 2 q 260 230 210 2D0 190 F 222 +857R 2S.7 +643R 284 +514R 3DJ +429R 327 +367R 2 Button Punch @ - 24'O.C. 2 q 2D0 170 150 130 120 F 28,3 +6578 343+643R 393 +5148 442+4298 48.3 +3678 1 Xi Seam Weld ® 1YO.Q 2 q 420 390 380 370 360 F 11J +8578 9.9 +6438 8.7 +5148 79 +4298 72 +3678 1 K' Seam Weld @ 24• = 2 q 260 240 220 210 200 F 173 +8578 15.0 +6438 13.3 +514R 121 +429R 11.1 +3678 Bu� a OA 4 q 420 350 300 280 250 F 14.1 + 95.3R 17.3 +71.48 202 +5728 22A +47.6R 25.2 +403R Button Punch 0 2r ac. 4 q 360 280 1 240 210 190 F 16.1+953R 2D5 +71AR 24.8 +572R 289 +47.6R 33.0+40.BR 1 K'seamweld @ 170Q 4 q 550 480 •450 420 410 F 9.3 +95.3R 8.4 +71AR 71 +57.2R 72 +47.6R 6.7 +40.88 13T Seam Weld @ 24'QC. 4 q 390 330 290 260 250 F 121 +95.38 113 +71AR 10.8 +5718 10-0 +47.6R 95 +40.BR Page 19 of 56 TABLE 9 - ALLOWABLE DIAPHRAGM SHEARS (q) AND FLEXIBILITY FACTOR (F-) FOR N -24 AND NF -24 DECK 1 . 2 . 3 (INTERLOK & NESTABLE) - CONTINUED ER -2757 DECK GAGE SEAMATTACHMERTS PUDDLE WELDS DECK SPAR (FEET) 6 8 10 12 14 Button Punch ® 1r O.C. 2 q 190 170 160 150 140 • F 26.7 +14848 30.1 +1110R 326 +MR 343 +741R 365 +6358 Batson Punch @ 24 O.C. 2 q 140 120 100 100 g0 F 357 +1480R 42.4 + 111OR 473 +8398 525 +74111 1 565 +MR 1 Y. Seam Weld Q irO.C. 2 q 280 260 250 250 240 F 13.8 +148011 11.6 +110R 102 +839R 9.1 +74111 84 +63511 i %; Seam Weld Q 2 O.C. 2 q - 170 150 140 140 130 F 21.1 +1480R 18.0 +1110R 159 +B39R 143 +741R 13.0 +63511 22 Bubo Punch (r4 12'0.C. 4 q 290 240 220 200 190 F 179 +16511 21.3 +12311 '243 +9838 27.0 +82.38 29,4 +70.6R Bullon Punch® 24.0.0. 4 q 240 190 160 150 -130 F 21.0 +1658 26.3 +1238 312 +983R •359 +82.311 — 4 K3 1 Y; Seam Weld @ irO.C. 4 q 350 310 290 280 Y70 F 11.3 +165R 101 +1238 9.1 +SUR 6.4 +8238 7.9 +70.68 1 W Seam Wet! Q 24' O.C. 4 q 240 200 180 • 170 160 F 153 + MR 14.0 +1238 129 +98311 1 12.1 +82311 1 11.4 +70.68 For Sk 1 inch - 25A rnm, t foot = 3049 =% 1 pf =14594 Wm 'Minimum yield strength b 38 kit. 2 R Is the vedcal bad span (4) of deck units dlvlded by the length (Ls) of the deck unit Both units In feet. R = L1tr. 3 Gea Table 27 for diaphragm flmdblldp knitaltorm TABLE 10 — ALLOWABLE DIAPHRAGM SHEARS (q) AND FLEXIBILITY FACTOR (F) FOR INVERTED CP -32, CF 1 -318 INCHES WITH TEK SCREWSI A ; 4,5 q - Akwable shear on diapbogm In pounds par scot F = Palely bcto4 The average mic"c hes a diaphragm vmb w1A defied in a span of 1 foot under a sitar of 1 pound par foot R - Ralb of vertical load span of deck in In length of each deck pane( Lz R - LA.% both units In feet The spa** of sc ma as to dwrds. souls, shear transfer elements, parallel to the panel flutes Is equal to: s =11.8000gs.%&ere t= Bess metal tlddmess of dad simst In k dm qs -AchW sheer on diaphragm In pounds per foot The equsllon Is also applicabb for the specing of fasteners at ovariapping serums In which either adjacent panel Is cut b Less than 32 Inches in width. 'the number of scrams indicated does riot Include tiuose In Ilre seams at true Interior bearings and perimeter supports normal to the flutes required by footnote no. 2 above. Place one screw In each seal and In each Nub at all defto Interior bswbgs and perimeter supports normal to the flutes. Sam stroll be Nm t2 -24 Se14084 k*dKh to supporling members and No. 12-14 Stitch for deck to deck attachrnsnt For the burscrw pattern to supporting members place one screw In the first MW. frith and seventh flutes For the seven -screw pailem to supporflng members place one scram at each Bute. For flute numbers sae *ak h below. See Table 27 tot dfaptrragm flmrlbft Bmfla9ona 32- Page 20 of 56 TABLE 10 - ALLOWABLE DIAPHRAGM SHEARS (q) AND FLEXIBILITY FACTOR (F) FOR INVERTED CP -32, CF -1318 INCHES WITH TEK SCREWS' ,2, Ms - (CONTINUED) ER -2757 DECK GAGE SUMATTACHMENTS NO. TEKS @ DECK SPAN (FEET) SUPPORTS 4 8 8 10 TEKS @ 12' O.C. 4 q 210 F 132 +465R 210 210 210 10.9 +3108 9.8 +23311 9.1 + 186R TEKS @ 18' O.C. ' 4 q 140 F 17.1 +465R 140 140 140 13.3 +3108 11.6 +2.33R 105 +18SR TEKS @ 24' O.C. 4 q 1D0 F 21.3 + 465R 10D 100 100 15.9 +310R 13A +233R 120 + 18SR TEKS MID-SPAN 4 q 100 F 213 +4658 60 50 40 21.6 +31OR 213 +233R 221 +1868 26 TEKS @ THIRD POINTS 4 q 150 F 15.8 +465R 100 80 60 15.9 +31011 16.1 +2338 162 +186R TEKS @ QUARTER POINTS .4 q 210 F 132 +465R 140 110 8 133 +310R 13.4 +233R 135 +186R TEM @ 12' O.C. 7 q 230 F 128 +58M 230 23D 230 101 +38911 9.7 +29.1R 9.1 +23.311 TEKS @ 18 O.C. 7 q 150 F 16.1 +58?11 150 150 150 13.0+�38.811 11.4 +29.1R 10.5 +232R TEKS @ 24' O.C. 7 q 110 F 19A +58.111 110 110 110 152 +38911 13.1 +29.111 113 +23311 TEKS @ MID-SPAN 7 q 110 • F 19.4 +25211 70 60 40 199 +3898 20.1 +29.1R 2DA +23.311 TEKS @ THIRD POINTS 7 q 170 F 15.0 +25211 110 80 70 152 +38.811 15.4 +29.1R 15.6 +23.38 TEKS @ QUARTER POINTS 7 q 230 F 128 +58211 150 110 90 13.0 +3891 .13.1 +29.111 133 +23.38 TEKS @ IT D.C. 4 q 290 F 9.9 +313R 29D 290 290 83 +2DSR 75 +1568 7.0 +185R TEKS @ 18' O.C. 4 q 190 F 18.5 +31311 190 190 190 10.0 +209R 8.8 +1568 8.1 +18511 TEKS @ 24' O.C. 4 q .140 F 15.8 +313R 140 140 140 11.8 +209R 10.1 +156R 9.1 +185R TEKS @ MID-SPAN 4 q 140 F 15.2 +313R 90 70 60 155 +209R 15.7 +15611 16.0 +1858 24 TEKS @ THIRD POINTS 4 q 220 F 11.7 +3138 140 110 90 11.8 +209R 12.0•t -1568 12.6 +185R TEKS @ QUARTER POINTS 4 q 290 F 93 +313R 190 140 120 10.0 +209R 10.1 +1568 1012 +185R TPKS @ 12' O.C. 7 q 320 F 9.6 +39.18 310 310 300 _82 +26.1R 7.4 +19.611 7.0 +15JR TEKS @ 11I! O.C. 7 q 220 F 111 +39.1R 210 210 200 !1J +26.1R 8.7 +19.611 8A +15J11 TEKS @ 24' O.C- 7 q 170 F 13A +39.1R 160 160 150 112 +28.1R 93 +19.6R 9.0 +15JR TEKS @ MID-SPAN 7 It 170 F 13.8 +39.1R 110 80 60 14.1 +26.111 14A +19.611 14J +15711 TEKS @ THIRD POINTS 7 q 240 F 11.0 +39.1R 160 120 90 112 +26.111 11.4+19.611 11.6 +15.78 TEKS @ QUARTER POINTS 7 q 320 F1 9.6 +39JR 210 160 120 1 9.7 +26.18 1 9.9 +19.6R 10.0+15JR I Page 21 Of 56 TABLE 10 -ALLOWABLE DIAPHRAGM SHEARS (q) AND FLEXIBILITY FACTOR (F) FOR INVERTED CP-32, CF 1 318 INCHES WITH TEK SCREWSWAA- (CONTINUED) ER -2757 DECKGAGE SENT ATTACHMENTS NO. TEKS Q SUPPORTS DECX SPAN (FEET) 4 6 8 10 TEKS @ 12' O.C. 4 q 380 370 370 370 F 7.9 +228R 6.1 +1528 6.0 +114R 5.7 +91.111 TEKS @ 18' O.C. 4 q 260 250 250 250 F 9.7 +22811 8.0 +1528 7.1 +1148 6.5 +91.1R TEKS @ 24' O.C. 4 q 190 190 190 190 F 11.6 +228R 9.3 +152R 8.1 +114R- 7.3 +91.111 MS, @ MID-SPAN 4 q 190 130 90 80 F 11.6 +22BR 11.8 +152R 120 +11411 12.3 +91.1R 2 � TEKS ® THIRD POINTS 4 q 290 190 140 110 F 9.1 +228R 9.3 +152R 9.4 +11411 95 +91AR TEKS @ QUARTER POINTS . 4 q 380 250 190 150 F 7.9 +22BR 8.0 +1528 e.i +114R 8.2 +91.1R TEKS @ 1Z O.C. 7 q 420 400 390 .380 F 7.6 +2BSR 85 +19.011 6.0 +142211 5.7 +11AR TEKS 9 18' O.C. - 7 q • 290- 280 270 260 F 9.1 +2858 7.T +19.011 6.9 +1428 65 +11.4R TEKS @ 24' O.C. 7 q 230 210 200 200 F 10.4 +28.511 8.8 +19MR 7.8 +1428 72 ±11.4R TEKS @ MID-SPAN 7 q 230 150 110 90 F 10.4 +28.511 107 +19.oR 11.0 +1428 11.3 *11.4R TEKS @ THIRD POINTS 7 q 320 210 . 160 130 F 8.8 +28S11 8.8 +19.011 8.9 +1418 9.1 +11.4R TEKS @ QUARTER POINTS 7 q 420 280 200 160 F 7.6 +28511 7.7 +19.011 7.8 +14.28 7.9 +11AR mm a 12' O.C. 4 q 470 460 450 4m F 65 +175R 55 +117R 5.1 +87ER 4.8 +7U.1R TBS 18' O.C. 4 q 330 310 310 300 F 7.9 +175R 6.6 +117R 5.9' +UAR 5.4 +70AR TEKS 24' O.C. 4 q 250 240 230 230 F 92 +17511 7.6 +117R 63 +87.611 6.1 +70.1R TEKS @ MIDSPAN 4 q 250 170 120 100 F1 92 +17511 9.4 +11711 9.6 +87.611 9.8 +70.iR TEKS @ THIRD POINTS 4 q 360 240 180 140 F 7.4 4-17SR 7.6 +117R 77 + 87.68 7.8 +70.111 �O TEKS 0 QUARTER POINTS 4 q 470 310 230 190 F 65 +17511 6.6 +1178 8.7 +67.611 6.8 +70.1R . TEKS 0 17 O.C. T q 530 490 480 470 F 62 +21.98 5.4 +14.6R 5.0 +11.011 4.8 +BAR TEKS @ 18' O.C. 7 q 380 350 330 320 F 73 +21.98 8.3+14.611 5.8 +11.0R 5.4 +BAR TEKS @ 24' O.C. 7 q 310 270 260 250 F 8.3 +21.9R 7.1 +14.6R 6.5 +11.011 6.0 +BAR TEKS @ MID-SPAN 7 q- 310 2DO 150 120 F 83 +21SR 85 +14.6R 8.8 +11.OR 9.0 +BAR 79M Q THIRD POINTS 7 q 420 270 2DO 160 F 7.0 +21.911 7.1 +14.68 7.3 +11.OR 7.5 BAR TEKS 0 QUARTER POINTS 7 q 530 350 260 2DO Fl 62 +213R 6.3 +14.611 65 +11.OR 6.6 +BAR rw Q9- 9 KFJJ - IWA UU14 1 wAR ,W% -o "UM 1 99 _i4 ,y9 M7L Page 22 of 56 ER -2757 F i�o�n.� 7bG81t. +335 157711. +342 2D811L +367 26421E +563 4' 594) +243 8041E +245 80311. +271 t + 340 I 8211E +365 MK +372 10861E +399 14151 +484 For St 1 Inch - 25.4 mm, t foot - 304.8 nM I plf =14.594 Nlm,1 psi = 6894 Pa. 14151E +834 1) The allumbis tabulated values are based on decks being lined with a mintrrum 24nch depth over the lop flange of ilghlwetght insulating c m=18 having a minimum 28 dap ulgmate compresslve strength of 140 psL No Inaeases are permitted for selsmlc or wind forces 2) The formla above he he are for fig without mesh and ihose below the Me are for 118 with 24 ch hexagonal wire mesh woven from No -19 gage galvantmd with adNonal longilnidinal Na16 gage wire spaced 3'/, inches an canter placed at the app=lmta center of the concrete. 3) Sparing of weld washers to members parallel to flutes shag be as totb= (a) Tinno feet 0 inch on cenierfor diaphragms wilhoul anchor bar supports having shear lass than 40D pounds per loot (b) One foot 0 Inch on center for dlaptvagms without andwr bar supports having shear 400 pounds per foal or greater. (c) Eight indrm on center for diaphragms without anchor bar supports having shears 950 pounds per foot or greater N fervals phragms with 5-2 and S3 weld patterns to supports shag be attached at boundaries by alternating weld washers and anchor bar supports at 1 foot 4) Flexibility fadom for gals table shall be assumed to be 5 to 10. See Table 27 for diapluagm ile tffdy gmgatlo ns, 6) L - Span, In feed between members supporting ver&W bads 7) Forweld patterns we Table 12 and Figure 7. The first letter of the al adrment lndlcales wel ft patlem to mdedor supports and One fes second fetter hrilca welding pattern le interior supports. Provide Na 3 ban continuous at exterior supports whom anchor bar supports era required (Type 5 weld pattern). 8) Welds are % 4nrh aff8dve dlarnetar in tieu ofwasharwelds. Mawr washers are made with 711&bch diameter hole for weift. TABLE 12 - CP -32 DECK ATTACHMENT 1 .2 CONNECTION TYPE DESCRIPTION OF 32 -INCH WiDE DECK END CONNECTION TO SUPPORTING MEMBERS 2 ONE FASTENER' AT EACH LAP AND TWO INTERMEDIATE FASTENERS. 3 ONE FASTENER AT EACH LAP AND FASTENER IN EACH REM4UNiNG CORRUGATION. 4 ONE ANCHOR BAR SUPPORT AT EACH LAP AND TWO INTEMIEDIATE ANCHOR BAR SUPPORTS, 5 ONE ANCHOR BAR SUPPORT AT EACH LAP, TWO INTERMEDIATE ANCHOR BAR SUPPORTS AND FASTENERS IN EACH REMAINING CORRUGATION. For St 1 Ind' = 25.4 nm 1) Fasteners consist of Na 14 gage sheet washers abched by plug welds to supporting members Qrmugh a 3& Inch diameter hole in tIxi wash (Wed wash) oml8ed on Na 18 gaga) be 2) Anchor bar supports Consists MI No.16 gage steel ear type wed throcgh a 711 Wndi�larneter hck line andlor bar s washer with varyln<j height ilea encbor bar support }s mnneded to the deck and supporting member wren a Phan uppont is designed to support a No3 reinforcing bar running transverse to the dlredion of the CDnugaB= WELD PATTERNS FOR CONCRETE PAN DECK (CPU) Z • • • • 4 U U U U $ U • U s • U • U FIGURE? T TABLE 11— ALLOWABLE DIAPHRAGM SHEAR FOR CP -32 DECK WITH 2 INCHES OF INSULATION. LIGHTWEIGHT CONCRETE FILL WITH AND WITHOUT REINFORCING MESH On pounds per linear foot) MINIMUM SPAR ATTACHMENTS' L FOR DECK GAGE C COMPUTING 2 -2 3-2 4-2 5 5-2 SHEAR 5 5 3 18' T T 43011L +252 54222 +252 50171L +294 61191. +296 7 744% 430% +252 5222A. +252 5017A. +294 61191. +296 7 744511.♦ MI 71. +267 31681E +268 33831E +296 42841E +298 5 5209).♦ ?Z 5 2525!. +281 3209). +305 33811E +311 42821. +336 5 5209A,� 18451E +262 23801E +264 24M +291 32DZ1L +293 1656). +292 1 9ANA + nnn ER -2757 F i�o�n.� 7bG81t. +335 157711. +342 2D811L +367 26421E +563 4' 594) +243 8041E +245 80311. +271 t + 340 I 8211E +365 MK +372 10861E +399 14151 +484 For St 1 Inch - 25.4 mm, t foot - 304.8 nM I plf =14.594 Nlm,1 psi = 6894 Pa. 14151E +834 1) The allumbis tabulated values are based on decks being lined with a mintrrum 24nch depth over the lop flange of ilghlwetght insulating c m=18 having a minimum 28 dap ulgmate compresslve strength of 140 psL No Inaeases are permitted for selsmlc or wind forces 2) The formla above he he are for fig without mesh and ihose below the Me are for 118 with 24 ch hexagonal wire mesh woven from No -19 gage galvantmd with adNonal longilnidinal Na16 gage wire spaced 3'/, inches an canter placed at the app=lmta center of the concrete. 3) Sparing of weld washers to members parallel to flutes shag be as totb= (a) Tinno feet 0 inch on cenierfor diaphragms wilhoul anchor bar supports having shear lass than 40D pounds per loot (b) One foot 0 Inch on center for dlaptvagms without andwr bar supports having shear 400 pounds per foal or greater. (c) Eight indrm on center for diaphragms without anchor bar supports having shears 950 pounds per foot or greater N fervals phragms with 5-2 and S3 weld patterns to supports shag be attached at boundaries by alternating weld washers and anchor bar supports at 1 foot 4) Flexibility fadom for gals table shall be assumed to be 5 to 10. See Table 27 for diapluagm ile tffdy gmgatlo ns, 6) L - Span, In feed between members supporting ver&W bads 7) Forweld patterns we Table 12 and Figure 7. The first letter of the al adrment lndlcales wel ft patlem to mdedor supports and One fes second fetter hrilca welding pattern le interior supports. Provide Na 3 ban continuous at exterior supports whom anchor bar supports era required (Type 5 weld pattern). 8) Welds are % 4nrh aff8dve dlarnetar in tieu ofwasharwelds. Mawr washers are made with 711&bch diameter hole for weift. TABLE 12 - CP -32 DECK ATTACHMENT 1 .2 CONNECTION TYPE DESCRIPTION OF 32 -INCH WiDE DECK END CONNECTION TO SUPPORTING MEMBERS 2 ONE FASTENER' AT EACH LAP AND TWO INTERMEDIATE FASTENERS. 3 ONE FASTENER AT EACH LAP AND FASTENER IN EACH REM4UNiNG CORRUGATION. 4 ONE ANCHOR BAR SUPPORT AT EACH LAP AND TWO INTEMIEDIATE ANCHOR BAR SUPPORTS, 5 ONE ANCHOR BAR SUPPORT AT EACH LAP, TWO INTERMEDIATE ANCHOR BAR SUPPORTS AND FASTENERS IN EACH REMAINING CORRUGATION. For St 1 Ind' = 25.4 nm 1) Fasteners consist of Na 14 gage sheet washers abched by plug welds to supporting members Qrmugh a 3& Inch diameter hole in tIxi wash (Wed wash) oml8ed on Na 18 gaga) be 2) Anchor bar supports Consists MI No.16 gage steel ear type wed throcgh a 711 Wndi�larneter hck line andlor bar s washer with varyln<j height ilea encbor bar support }s mnneded to the deck and supporting member wren a Phan uppont is designed to support a No3 reinforcing bar running transverse to the dlredion of the CDnugaB= WELD PATTERNS FOR CONCRETE PAN DECK (CPU) Z • • • • 4 U U U U $ U • U s • U • U FIGURE? T FIGURE? T Page 23 Of 56 TABLE 13 - ALLOWABLE DIAPHRAGM SHEARS (q) AND FLEXIBILITY FACTOR (F) FOR 2W36 AND 2WF36 DECK WITHOUT CONCRETE FILLIA ER -2757 DECK GAGE SEAM ATTACHMENTS PUDDLE WELDS I DECK SPAN (Feet) 6 7 B 9 10 11 12 BUTTON PUNCH at12'ac 4 q F 870 770 700 640 600 560 530 5.4 +34R 5.4 +30R 5.4 +26R 5.4 +23R 5,4 +21R 5.3 +19R 5.3 +17R BUTTON PUNCH at18'o.c 4 q F 820 ' 720 650 590 540 500 470 5.6 +34R 53 +3OR 5.7 +26R 5.7 +23R 5.8 +21R 5.8 +19R 5.8 +17R 16 BUTTON PUNCH M24'o.a 4 q F 790 690 520 560 510 480 440 5.8 +34R 5.8 +3OR 5.9 +26R 5.9 +23R 6.0 +21R 8.1 +199 - 6.1 +17R U TOP SEAM WELD atIZo.a TOP SEAM WELD atl8'ox. 4 q F 4 q F 1400 1310 1240 12DO 1160 1130 1110 39 +34R 1170 4.4 +34R 3.8 +30R 1060 4.3 +30R 3.8 +26R 1010 4.2 +26R 35 +23R 960 4.1 +23R 3.4 +21R 92D 4.0 +21R 3.4 +19R 880 39 +19R 3.3 +17R 860 3.8 +17R TOP SEAM WELD at24'or- 4 q F 1060 960 890 840 79D 760 730 41 +34R 4.8 +30R 45 +26R 4.4 +23R 4.4 +21R 7 4.3 +19R 42 +17R BUTTON PUNCH atI?ma 4 q F 590 530 480 450 420 400 380 7.4 +65R 7.3 +58R 72 +51R 7.2 +45R T.1 +41R 7A +37R 6.9 +34R BUTTON PUNCH at18'ac 4 q F 550 480 440 400 370 350 330 7.8 +68R 7.8 +58R 7.8 +51R 79 +45R 7.8 +41R 7.7+37R• 77 +34R 18 BUTTON PUNCH at24'aa 4 q F 520 460 410 380 350 320 300 8.1 +68R 8.1 +58R 82 +51R 82 +45R 9.2 +41R 82 +37R 82 +34R v TOP SEAM WED atlYoc 4 q 990 920 870 830 800 770 750 F 5.1 +6BR 4.9 +58R 4.7 +51R 4.6 +45R 4.4 +41R 4.3 +37R 4.2 +34R TOP SEAM WELD at18'Dr. 4 q 810 750 89D 650 620 590 570 F 5.9 +68R 5.7 +58R 55 +51R 5.3 +45R 5.2+41R 5.1 +37R 49 +34R TOP SEAM WELD at24'ac. 4 q 720 660 600 560 530 5D0 480 F 6.4 +68R 62 +58R 6.0 +51R 59 +45R 5.8 +41R 5B +37R 53 +34R BUTTON PUNCH at12'oc BUTTON PUNCH at18'ac 4 4 q 330 F 10.8 +165R q 290 300 105 +1428 260 280 10.3 +124R 240 260 10.0 +ti0R 220 250 9.8 +99R 210 . 230 g,6 +90R 200 230 9.4 +83R 190 F 119 +1658 11.7 +142R 115 +124R 113 +110R 11.1 +99R 109 +90R 109 +83R 2 0 BUTTON PUNCH at24'n.a. 4 q 280 240 220 200 190 180 170 F 125 +1658 12.4 +1428 12.2 +124R 12.1 +1108 12.0 +99R 119 +90R 111 +83R TOP SEAN WELD atIrOx. 4 q 480 450 430 410 400 390 380 F 7.1 +165R 6.7 +142R 8.4 +1248 62 +11OR 59 +M 5.7 +90R 53 +83R TOP SEAM WED at18'ac 4 q 380 350 330 320 300 290 280 F 8.4 +1658 8.0 +1478 7.8 +124R 7.3 +11OR 7.1 +99R 69 +90R 6.6 +93R TOP SEAM WED at24'aa 4 q 330 300 28D 270 • 25D 246 230 F 93+1658 8.9 +142R 8.6 +124R 8.3 +110R 8A +99R 72 +9OR 7.6 +93R BUTTON PUNCH at 12' o.c 4 q 220 200 190 180 170 170 160 F 133 +29DR 12.9+249R 125 +2188 12A + 194R 11.7. +174R 113 +158R 11.0 +145R BUTTON PUNCH 918:o.a 4 q 190 170 160 150 140 130 ' 130 F 15.1 +29DR 141 +249R 143 +21BR 139 +1948 13S +174R 133 +158R 13.0 +1458 22 BUTTON PUNCH atXmm 4 q 180 160 140 . 130 13D 120 110 F 182 +2908 15.9 +249R 15.5 +2188 15.2 +194R 149 +174R 14.7 +15BR 14.4 +1458 G TOP SEAN WELD at 17' *Aa 4 q 300 290 280 270 250 250 250 F I 8.6 +29Ot 8.1 +249R 7.7+218R 73 + 1948 TA + 174R 8.8 +1568 65 +14S8 TOP SEAN WELD at18'ac 4 q 230 220 210 2D0 190 190 180 F 10.3 +2908 9.7 +2498 92+2188 8.8 +194R 8S +174R 82 +ISE 7.9 +145R TOP SEAN WELD A20 4 q 200 180 170 170 160 150 150 F 11.8 +29DR 11.0 +249R 103 +2188 10.1 +194R 9.7 +174R 9.4 +158R 9.0 +14511 w - LJ.1"at% .0 ILKIN 1 pu - M.,;. i IVm. IR Is The vedcW bad epan of deck unite"divided by the length"of The deck and R - L 2. 2 See Tabb 27 of Thh mpod for diaphragm kmVily knb5one. 2 See F pun 2 fa suppod weld patteme. I Page 24 of 56 TABLE 14 - ALLOWABLE DIAPHRAGM SHEARS (q) AND FLEXIBILITY FACTOR (F) FOR 3W36 AND 3WF36 DECK WITHOUT CONCRETE FILL'A ER -2757 DECK GAGE 16 � Q 2 0 22 For St SEAMATTACHMENTS BUTTON PUNCH at12'ox- BUTTON PUNCH at16'o.c BUTTON PUNCH at24'ac 70P SEAM WELD at12'o.c 70P SEAM WELD at18'o.c TOP SEAM WELD at24'ax- BUTTON PUNCH at12 - o.c BUTTON PUNCH at18'o.c BUTTON PUNCH at24'oc TOP SEW WELD at12'ac TOP SEAM WELD at18'cc TOP SEAM WELD at24'oc BUTTON PUNCH atIrox. BUTTON CH at III! ac BUTTON PUNCH at24'ac TOP SEAM WELD at 17 ac TOP SEAM WELD ali8'oc TOP SEAM WELD a124'ot BUTTON PUNCH at Irma BUTTONS at l8: ac BUTTON PUNCH at2Car TOP SFAM WELD at 17 DA TOP SEAM I'MI D atl1t'ac TOP SEAM WELD 424'o.a 1 Inch = 25.4 mm 1 foot = 3U PUDDLE WELDS 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 mm i n M q 6 820 7 720 DECK 8 650 SPAN (Feet? S 6D0 10 560 11 520 12 500 F q 5.2 +49R 770 5.2 +42R 670 5.2 +37R 600 5.2 550 5.2 +29R 510 52 +278 470 5.2 +24R 440 F q 5.5+49R 740 5.5 +42R 650 5.5 +37R 580 5.6 +32R 520 5.8 +29R 480 5.6 +27R 440 5.6 +24R 410 F 5.6 +49R 1320 5.7 +42R 1230 5.7 +37R 1170 5.8 +32R 1130 5.8 +29R 1090 5.9 +27R 1060 '5.9 +24R 1040 F q 3.6 +49R 1100 3.7 +42R 1010 3S +37R 950 3.4 +32R 900 3.3 +298 860 3.3 +27R 830 32 +24R 810 F q 4.3 +49R 990 4.1 +42R 900 4.0 +37R 840 4.0 +32R 790 3.9 +29R 750 3.8 +27R 710 3.7 +24R 690 F q F q 4.6 +49R 540 72 +96R 490 4.5 +42R 480 7.1 +83R 440 4.4 +37R 440 7.0 +72R 1 390 4.3 +32R 410 6.9 +64R 360 4.2 +298 380 6.8 +58R 340 42 +278 360 69 +53R 310 .4.1 +248 340 8.7 +488 300 F q 7.7 +96R 470 7.8+838 420 7.6 +72R 370 7.5 +64R 340' ' • 7.5+58R 310 75 +538 " 290 7,4 +48R 700 F q 7.9 +96R 910 73 +838 860 7.9 +728 820 7.9 +64R 790 7.9 +58R 770 7.9 +53R 750 T9 +48R 740 F q F q 5.D +96R T40 5 96R 660 4.6 +93R 690 53 +638 600 4.6 +728 650 5.3 +72R 560 4.4 +64R 620 5.1 +64R _ 530 4.3 +588 60D 5.0 +58R 510 4.1 +538 580 4.9 +538 490 4.0 +48R 560 4.8 +48R 470 F q 62 +96R 290 6.0 +83R 260 5.8 +728 240 5.7 +648 230 5.6 +58R 220 5.4 +53R 210 5.3 +48R 200 F q F q 105 +2338 260 115 +233R 240 102 +200R 230 11.3 +2008 210 9.9 +175R 210 11.1 +1758 190 9.8 +155R 200 109 +155R 180 9.4 +1408 180 10.7 +1408 17D 9.2 +1278 170 105 +1278 160 8.9 +117R 170 10.3 +117R 15D F q F q F q F q F q F q F q F q F q F = 121 +2338 470 63 +2338 370 81 +2338 320 83 +2338 200 13.0 +4108 170 14.6 +4108 150 157 +4108 290 83 +4108 230 9.9 +4108 190 11.1 +4108 u soe w... 120 +2008 440 65 +2DOR 340 7.7 +2008 290 8.6 +2DOR 18o 124 +351R 150 142 +351R 140 153 +351R 280 72 +3518 210 9.3 +3518 180 105 +3518 11.8 +1758 420 6.2 + 175R 320 73 +1758 270 82 +175R 170 120 +3DBR 140 13.8 +306R 130 15.0 +3DBR 270 73 +3068 200 8.8 +3068 170 10.0 +3D8R 11.7 +1558 410 5.9 + 155R 310 7.0 +1558 260 73 +1558 160 11.5 +2738 130 13.4 +2738 __ 120 14.7 +2138 260 7.0 +2738 200 8.4 +273R 160 9.6 +2738 115 +14OR 400 5.7 + 140R 300 6.8 +1408 250 7.7 +1408 150 11.1 +2468 120 13+2 +2468 110 143 +2468 260 6.7 +246R 190 8.1 +2468 150 92 +2468 I 11.4 +127R 390 55 + 127R 290 6.6 +1Z7R 240 7.4 +1278 150 10.8 +2248 12D 127 +2248 100 14,t +224R 250 fiS +224R 180 7.8 +224R 150 89 +224R 113 +117R 380 5.3 + 117R 280 64 +117A 230 72 +117R 140 10S +2DSR 110 124 +205R 100 13.8 +2D5R 250 6.2 +2058 180 7S +2D5R 150 6.6 +2058 +R Is fhe verkal load span of dads unh"dMded by lha lem1h (U) of ft deck unit R= LAG. ZSea Table 27 of fhls mpod for dlaptuagm kmb88y 8n ftatbns. 'See Flgun 2 for support weld paffems. Page 25 of 56 TABLE 15A - ALLOWABLE DIAPHRAGM SHEAR (q) AND FLEXIBILITY FACTOR (F) FOR 4 % -INCH, 6 -INCH AND 7'/2 -INCH -DEEP DECKS TWO ARC SPOT (PUDDLE) WELDS TO SUPPORT MEMBERS BUTTON PUNCH SEAMS AT 12 INCHES O.C. ER -2757 GAGE SPAN GAGE 21 6'-0' rr ry s• -0• 10'-0- 11'-0• 12' -0• 1r -0 14 - -0• 1s'-0' 16' -0' tr -0 - lad• 20 iFa 170 170 170 4M 170 Igo 320 , 460 F 629 + 18411 64.5+ 175R 662+ 167R 67.7+ 159R F 31.4+ 583R 34.9+ 50DR 38.1+ 43711 41.0+ 31R 43.8+ 35OR 46.4+ 318R 48.8+ 292R 51.1+ MR 53.3+ 25OR 55.4+ 233R 57.4+ . 219R 59.3+ 20SR 61.1+ . 194R 18 270 530 480 440 410 38D 360 350 340 320 310 310 300 290 60.0+ 60R F 21A + 241R 24-2+ 206R 27.0+ 1B1R 29,6 + I 161R 32-1+ 144R 34.5+ 131R 36-9+ 120R 39.2+ 111R 41.3 + 103R 43.5+ 96R 45S + 90R _475+ 8511 4U + BOR 16 350 780 690 630 330 540 510 490 460 450 430 420 410 400 S3.5+ 28R F 15.4 + '12211 17.7 + 104R 19.9+ 91R 221 + 81R 24.2 + 73R 26.3+ 66R 28.4+ 60R 30.4+ 56R 324 + 521 34.4+ 48R 38.3 + 4511 382 + 43R 40.0 + 40R 14 340 780 690 630 580 540 510 490 460 450 430 420 410 400 56-5+ I 26R F 15.4 + 1228 171+ 104R 19.9+ 91R •221 + SIR 242 + 73R 26.3 + 66R 28.4 + 60R 30.4 + 56R 32.4 + 52R 34.4 + 4811 363 + I 45R 38 2+ 43R 40.0 + 40R GAGE SPAN GAGE 21 r-4 .22' -0' 2A' -0' 25 *.r 26' 0' ZT' -0' 2t - -0• 29'd' 30'-0- 20 16' -0' 190 340 jBQ iFa 170 170 170 4M 170 Igo 320 , 460 F 629 + 18411 64.5+ 175R 662+ 167R 67.7+ 159R 69.2+ 152R 70.7 + 146R 721 + MR 73S + 135R 74.8 + MR 78.1 + 125R 77.4+ 121R 73.6+ 117R 18 11.4+ 290 280 280 280 270 270 260 26D 250 250 250 240 2928 F 51.3 + 76R 53.2+ 72R 543+ 6BR 567 + 65R 58.3 + •62R 60.0+ 60R 61.6+ 57R 63.1 + 5511 64.7 + 5311 662 + 51R 67.8 + 491 69A + OR 16 720 390 380 370 370 360 360 350 350 350 340 340 330 10.4+ F 41.8+ 38R 43.6+ 36R 453+ 34R 47A + 33R 48.7 + 31R 50.3+ 30R 513+ 29R S3.5+ 28R 55.0+ 27R 56 . 5 + 26R 58.0+ 25R 59.5+ 24R 14 144R 390 380 370 370 360 360 350 350 350 340 340 330 1190 F 41.8+ 38R 43.6+ 36R 45.3+ 34R 47.0+ 33R 483 + - 31R 50-3+ 30R 51.9- 2911 53.5+ 28R 55.0 +• 2711 56-5+ I 26R 58D + 2511 59.5+ 24R ror Z)[ I uAar= ta.4 mm. 7 =1- juca mrrl, 1 pQ = 14.5k rum TABLE 15B - ALLOWABLE DIAPHRAGM -SHEAR (q) AND FLEXIBILITY FACTOR (F) FOR 4' /rINCH, 6 -INCH AND 7 %- INCH -DEEP DECKS TWO ARC SPOT (PUDDLE) WELDS TO SUPPORT MEMBERS TOP SEAM WELDS AT 12 INCHES O.C, 2.3 GAGE SPAN GAGE 21 r-4 r -0' r-0' r-r 10'-0 11' -0• 1P 4' 13'-0" 14'-0' ma , 16' -0' 1r -F 340 20 _j 450 430 410 4M 32D Igo 320 , 460 35D 35D 9.5+ ' 340 9.0+ F 179+ 16.6+ 155+ - 145+ 137+ 13D+ 124+ 119+ 11.4+ 11.0+ 107+ 103+ 10.0 1528 146R 583R 5008 437R 38911 350R 318R 2928 269R 25OR 233R . 21911 2D6R 1948 18 610 920 860 820 760 760 730 720 700 690 670 660 660 650 68+ F 129+ 12.1+ 11.4+ 103+ 10.4+ '93+ 95-+ 92+ 89+ 8.6+ 83+ 8.1* 19+ 5SR 53R 241R 20SR 1B1R 161R 144R 131R 12011 I 111R 10311 I 96R 9011 8SR 80R 16 _t 1320 1250 1190 1150 1 1120 1100 1080 1070 1060 1050 1040 1040 1040 5.3+ F 9.7+ 9.2+ 8.8+ 8.4+ 8.1+ 7.8+ 75+ 73+ 7.0+ 6.8+ 6.7+ 65+ 63+ 25R 24R 1228 1D4R 91R 81R 73R 661 80R. 56R 52R 48R 45R 43R 4011 14 1320 1250 1190 1150 1120 1100 1080 1070 1060 1050 1040 1040 1040 F 9.7+ 9.2+ 8.8+ 8.4+ 8.1+ 7.8+ 75+ 7.3+ 7.0+ 6.8+ 8.7+ 65+ 63+ 12211 10411 91R 81R 7311 I 66R 6DR 5611 5211 48R 4SR 43R 4011 GAGE 1r_r 20'-0' 21 2Y-0 23'-0• - 24 -0' 2s -0• ira 2r-r 24'-0' 30'-V 20 340 340 340 _ no 330 330 32D 320 320 320 F 9.7+ 9.5+ ' 92+ 9.0+ 8.8+ 8.6+ 8.4+ 8.1+ 8.0+ 7.9+ 77+ 194R 17SR 197R 159R 1528 146R 14OR r8.3 13OR 12SR 121R 117R 640 630 630 620 620 620 610 600 600 600 600 F 17+ 7.5+ 73+ 72+ 7A+ 69+ 68+ 65+ 6.4+ 63+ 62+ 76R 72R 66R 65R 62R 60R 57R 5SR 53R SIR 49R 48R 16 1040 1030 1020 1010 1000 990 990 980 970 970 960 960 F 61+ 6.1+ 59+ 5.8+ 5.7+ 5.6+ 55+ 5.4+ 5.3+ 5.3+ 52+ 5.1+ 3811 36R 34R 33R 31R 3DR 29R 28Ft 2711 26R 25R 24R 14 1040 1030 1020 1010 1000 990 990 980 970 970 960 ' 960 F 62+ 6.1+ 5.9+ 5.8+ 5.7+ 5.6+ 55+ 5.4+ 5.3+ 53+ 52+ 5.1+ 36R 3611 34R 3311 1 3111 1 3011 1 29R 2611 I 27R 26R 25R 24R For St 18ttih 2 25.4 mm.1 toot= 304.8 RYr41 pl( =14594 Wnl 1 R Is the ver5ml bad span at deck unb JW &dad by the IeNth (L:) of She deck unt R = Lt:. 2 See Table 27 for diaphragm ftmbW 6m8allons. s Deddng unit are welded 10 support at each ftly with buo arc spot or arc seam welds. if Page 26 of 56 ER -2757 " TABLE 16 — B, BR AND BF DECK WITH STRUCTURAL CONCRETE FILLIAo ALLOWABLE SUPERIMPOSED LOAD (psf AND DIAPHRAGM SHEAR (ptf) No. of SPAN Gags Spins W w-41 p -0■ T•6" 8' -0' 8'-6' w-al 9'-6' 10' -0' 10'-6' 11' -0' 11'-6' 12' -0' 3 Y.' 1 230 SLAB 2 230 204 183 165 DEPTH 22 3 230 204 183: -- q 1501 1462 1429 1401 1316 1 1354 1334 1317 1301 1287 1214 1262 1251 qT 1710 1656 1609 1569 1533 1502 1474 1449 1427 1407 1388 1372 1356 CONC 1 301 267 239 RETE 2 301 267 239 218 198 179 — TYPE- 20 3 301 287 239 216 196 179 _ - q4 1568 1522 1483 1448 1419 1392 1369 1348 1329 1312 1295 1282 1269 q7 1820 1 1754 1698 1650 1607 1570 1537 1507 1480 1456 1434 1413 1395 LT111fT* 1 301 267 239 215 195 179 x^ 140 Ila 2 PCF 301 267 239 215 196 179 164 151 t8 3 301 267 239 '215 198 179 164 151 140 130 q4 1721 1660 1607 1562 1522 1487 1456 1428 1403 1380 _ 1359 1340 1323 q 2056 1%9 1895 1830 1714 1724 1879 1639 1604 1571 1542 1515 1491 SLAB 1 300 266 236 215. 195 178 163 151 - 140 — 3; WT' 2 23.0 300 266 238 215 195 178 163 151 140 130 PSF 18 3 300 266 238 215 195 178 163 151 140 130 t2t 113 tOb Q4 1890 1613 1748 1691 1641 1597 1558 1523 1492 1463 1437 1414 1392 q7 2309 2201 2107 2026 1955 1893 1838 1786 1743 1703 1666 1632 1602 No. of SPAN Gags Spans g � 0■ 5._6- T -0' 7'-8' 8'-d' 9' -0' ' 10' -0' Iw-V 11'-0' 4■ 1 - SLAB DEPTH 2 268 238 y 213 22 3 268 238 213 ~ - q4 1659 1620 1587 1559 1534 1512 1492 1475 1459 1445 1432 142D 1409 47 1868 1814 1767 1727 1691 1660 1632 1607 1585 1 1546 15M 1514 CONC 1 350 311 " RETE 2 TYPE: 350 311 278 251 228 208 _ — - _ - - 20 3 350 311 278 251 228 208 c q4 1726 1680 1641 1608 1577 1550 1527 1506 1467 1470 1454 1440 1427 q7 1978 1912 1856 1808. 1765 1728 1695 1665 1638 1614 1591 1571 1553 LTWT' 1 349 309 277 250 227 Y 110 2 PCF 349 309 277 250 227 - - _- 207 190 _ - 18 3 349 309 277 250 227 207 190 175 1621 q4 1879 1818 1765 1720 1680 1645 1614 1588 1561 1538 1517 1498 1481 47 2214 2127 2M 1988 1931 1882 1837 1797 1762 1729 1700 1673 1649 SUB 1 347 307 275 248 225 206 189 174 - wr. 2 273 347 307 275 248 225 2D6 189 174 161 150 Y 140 - PSF 16 1, 347 307 275 248 225 206 189 174 151 150 131 44 2048 1971 1906 1849 1799 1755 1716 1681 1650 1621 1595 1572 1550 47 2467 2359 2265 2184 2113 2(151 1995 1946 1901 1861 1824 1790 1760 For St: 1 indh = 25.4 nm,1 foot a 304.8 uc; t pd =14.544 Wn% 1 pd =16.0181gf/m',1 pst- 47.88 Pa,1 psl = 6894 Pa. 'Shoring calculaallom based on deck supporlIN dead bad of concrete plus elfier 20 pd uniform construction Eve load or 150 pmrd-conmrd ated Eve laad for kwm Dead bad deflection MAed m U180 span te%1% but trot to exceed 3: Inc Morbtg Is requited at mldspan for supedmposed load values to the tight of 0e heavy Ines In shaded bom 3 3feei for do& b have a nft m yleid sbergth of 38,000 psi (Tensle sbaNl h = 52,000 psi). 'Total slab depth Is nohrdtraf depot from top of concrete fa bottom of steel dec t. 'Concrete 10 to have mtn!'ntim =npressive strenglt f. - 3,000 psi at the age of 28 days. 'Suppodmaclk na lorspans due to dead bads and constrodlon We bads may not 6xm the values set forth in Table 3. 'q' = Abnble dhaphmp shear In pit: wIlh four support welds per dads unt of = AlbwaBe dlaphmp shear In A wb seven suppoif welds per deck unt 'See Table 27 for dlaphragm lm*blgr Nations. For all concrete filled dlaphregms, F is less Dun 1. 'LTWT = Sbuctnal Ightwelpht ONW = Nomraf•we%ht Page 27 of 56 TABLE IS- B, BRAND BF DECK WITH STRUCTURAL CONCRETE FILL' ALLOWABLE SUPERIMPOSED LOAD (psQ AND DIAPHRAGM SHEAR (PIQ — {CONTINUED ER -2757 LTVm .s.im®�,',_�•.�+� Sol-Ilks " j �ysm MOM SLAB R IM rl . smom PSF © G BfiDl.irJ i.1��.�c_n msY -. MI !E mg ! l 1� � `; .�� Em 1 ! JII sm 1 1 1 I M 0= 1 1 MR Em CONC E am MR ©� E Em k kEi d - R� - - - m S I IN - I Si I I -75 M , I I 1 Page 28 of 56 ER -2757 1 TABLE 16 - B, BRAND BF DECK WfTH STRUCTURAL CONCRETE FILLI- ALLOWABLE SUPERIMPOSED LOAD (psQ AND DIAPHRAGM SHEAR (pIQ — (CONTINUED) Page 30 of 56 TABLE 17 - N, NR AND NF DECK WITH STRUCTURAL CONCRETE FILLt- ALLOWABLE SUPERIMPOSED LOAD (psq AND DIAPHRAGM SHEAR (plo ER -2757 ..w ..� . wua.- " -. • n-µ ..wa- ..u•..0 uwti 1+u - 19. 77 IVU4 1 to - mu 10 Fwnr. 7 psi -4i m ra. tforfootnot!s i" Table 1s. .l- . No. of SPAN S pans rte• r•0• r •r rr rr i rr irr 1r 11• irr 1ri' 17r trr trr 14'4• 1 7-r ir•1• 1rr S' 1 195 177 161 148 - —' DEPTH 195 177 161 148 136 126 117 110 102 22 3 195 177 161 148 136 126 117 110 102 - — - ' q 12&4 1271 1261 1251 1242 1235 1228 1221 1215 1210 1205 1201_ 1198 1192 1189 1185 ` 1182 1174 4 1398 1373 1352 1332 1315 1300 1266 1273 1261 1251 1241 1232 1223 1218 1208 1201 1195 1189 CONC 1 257 233 213 195 1B0 167 155 144 �• �c RSTE 2 — • 127 TYPE 257 233 213 195 180 157 155 144 135 119 20 3 257 233 213 195 160 167 155 144 135 127 119 112 103 q2 1283 1268 1256 1244 1234 1224 1216 1206 1201 1195 1189 1184 1178 1174 1159 1165 1162 1158 q4 1444 1415 1389 1368 1345 1326 1309 1294 1280 1287 1255 1245 1234 1225 1218 1208 1201 1194 LTWT• 1 260 236 215 197 182 169 157 148 137 128 121 114 107 = 110 2 PGF 260 236 .215 197 162 169 157 1 146 137 128 121 114 107 i02 97 18 3 260 238 215 197 162 169 157 146 137 128 121 114 107 102 97 91 B3 76 q2 1306 1287 1269 1254 1240 1228 1216 12DB 1197 1188 1180 1173 1168 1160 1154 1149 1144 1139 q 1555 1518 1481 1450 1423 1396 - 1375 1155 1337 1320 1304 1289 1276 1263 1252 1241 1231 1221 SLAB 1 262 238 217 199 184 170 158 147 13B 129 122 115 108 103 97 Wr. _ 283 2 262 238 217 199 194 170 158 147 138 129 122 115 *108 103 97 93 Be 94 PSF is 3 252 238 217 199 184 170 158 147 138 129 122 115 108 103 97 93 88 84 q2 1347 1322 1301 1281 1264 1249 1235 1222 1210 1199 1190 1181 1172 1164 1157 1150 1144 1138 q4 1682 1632 1589 1551 1516 1485 1457 1431 1408 1 1387 1367 1349 1332 1317 1302 1289 1276 1264 No. of SPAN Spans rr rr r {• rr . rr 1rr irr trr irr trr te-0r 213 193 176 _ SLAB DEPTH 2 213 193 176 162 i49 138 126 120 22 3 213 193 176 162 149 138 128 120 04� omql 2 1429 1419 1409 1400 1393 1386 1379 1373 1359 1354 1350 1347 1343 1340 1337 I S6 1531 1510 1490 1473 1458 1444 1431 1419 1390 1381 1374 1366 1359 1353 1347 CONC 1 280 254 232 213 196 182 1691 — M@5 1 n pE 2 280 254 232 213 196 182 169 157 147 138__ 20 3 260 254 232 213 196 182 169 157 147 136 130 123 8 q 1441 1427 1414 1402 1392 1382 1374 1366 1359 1353 1347 1342 1338 _ 1332• 1327 1313 1320 1316 q 1602 1574 1547 1542 1503 1484 1467 1452 1438 1425 1413 1403 1392 1383 1374 1366 1359 1352 LTWT' 1 281 255 233 214 197 162 170 158 148 139 131 123 110 _ PCF 2 281• 255 233 214 197 182 170 158 148 139 131 123 116 110 - 18 3 281 255 233 214 197 182 170 156 148 139 131 123 Ile 110 105 99 95 '- q 1464 1444 1427 1412 1398 1386 1374 1364 1355 1346 133B 1331 1324 1318 1312 1307 1302 1297 0 1713 1674 1639 1608 1581 1556 1534 1513 1495 1478 1462 1447 1434 1421 1410 1399 t389 1379 SLAB 1 262 256 233 214 198 183 170 159 148 139 131 123 117 110 W. _ 309 2 282 256 233 214 198 183 170 159 148 139 131 123 117 110 105 100 95 PSF 1s 3 282 256 233 214 f 198 183 170 159 148 139 131 123 117 _ 110 105 100 95 90 q2 1505 1480 1459 1439 1422 1407 1393 1380 1368 1357 1348 1338 1330 13?2 1315 1308 1302 1296 q 1840 1 1790 1747 1709 11674 1643 ISIS 1589 1566 1545 1525 1 1507 1 1490 1475 1460 1447 1434 1422 ..w ..� . wua.- " -. • n-µ ..wa- ..u•..0 uwti 1+u - 19. 77 IVU4 1 to - mu 10 Fwnr. 7 psi -4i m ra. tforfootnot!s i" Table 1s. .l- . 4 Page 31 of 56 TABLE V - N, NR AND NF DECK WITH STRUCTURAL CONCRETE FILLI- ALLOWABLE SUPERIMPOSED LOAD (p4 AND DIAPHRAGM SHEAR (plt) - (CONTINUED) ER -2757 aq. Ho. of SPAN ����5 trr tt i• tra• tr +• tr.r ' yd��q `a:,E'1 _ m� {G� u-0• a a• era• tr4- tm- — a� - .7 n 1 Sw DEPTH 8 'ti 1 244 221 –.�»`' �1f}5' SLAB DEPTH 2 244 221 20Z 185 171 158 - - 22 3 244 221 202 185 1 171 158 _ _ t ' e • _ "= - a m _ - _ ` 1580 9 1679 1668 1656 1648 1637 1630 1623 c 1810 1605 1600 1598 1591 1587 1584 . ��" h . R i t "� 1574 .. I•JC 1793 Idt S�� } RETE 1727 1 1710 1695 1681 1668 1656 1646 C � 1627 1618 1610 1603 1598 1590 .584 CONC 1 319 290 265 243 224 Y.` REME TYPE 2 319 290 265 243 ®®®®MIMM 207 193 ®®® 168 ©®IM •1:1 © /i: ® 11 ® ®k®®®® 290 265 ® ®®®EM 224 207 �®©mim 180 168 158 ®m ® 4 �xa ��'Y'l ...- M lie PcF 1651 1639 1629 1819 1811 1603 1596 1590 1584 1578 1573 1569 1564 1560 1557 1553 0 1839 1810 1764 176) 1740 1721 1704 1689 1675 1662 1650 1640 11629 162D 1611 1603 1598 1588 LTWP 1 319 290 1 264 243 22412U7 193 180 168 156 PCF 2 319 290 1 264 243 224 207 193 180 168 158 148 140 132 Irk 18 3 319 290 264 243 224 207 193 180 168 158 148 140 1 132 125 119 - 4 _ 1701 1681 1664 1649 1635 1623 1811 1601 1592 1583 1575 1568 1561 1555 1 1544 1539 1534 Q 1950 1911 1976 1845 1818 1793 1771 1750 1732 1714 1699 1684 1671 1658 1647 1636 116251 1618 ER -2757 Far St 1 tch - 25.4 atm, t toot = 304.8 mA 1 pQ -14594 Wrk 1 pd - 16.01E Wrnz,1 pd - 47.86 Pa. wFor foofiotas we Table ii I aq. Ho. of SPAN trr tt i• tra• tr +• tr.r tr -1• u-0• a a• era• tr4- tm- Spans rr ur r {• I I r-r I tra• tr r 8 'ti 1 244 221 �1f}5' SLAB DEPTH 2 244 221 20Z 185 171 158 - - 22 3 244 221 202 185 1 171 158 _ _ t ' e • _ "= - a m _ - _ ` 1580 9 1679 1668 1656 1648 1637 1630 1623 1616 1810 1605 1600 1598 1591 1587 1584 1577 1574 9 1793 1788 1747 1727 1 1710 1695 1681 1668 1656 1646 1636 1627 1618 1610 1603 1598 1590 .584 CONC 1 319 290 265 243 224 Y.` REME TYPE 2 319 290 265 243 224 207 193 180 168 ., 20 3 319 290 265 243 1 224 207 1 180 168 158 4 1678 1664 1651 1639 1629 1819 1811 1603 1596 1590 1584 1578 1573 1569 1564 1560 1557 1553 0 1839 1810 1764 176) 1740 1721 1704 1689 1675 1662 1650 1640 11629 162D 1611 1603 1598 1588 LTWP 1 319 290 1 264 243 22412U7 193 180 168 156 PCF 2 319 290 1 264 243 224 207 193 180 168 158 148 140 132 e 18 3 319 290 264 243 224 207 193 180 168 158 148 140 1 132 125 119 - 4 _ 1701 1681 1664 1649 1635 1623 1811 1601 1592 1583 1575 1568 1561 1555 1 1544 1539 1534 Q 1950 1911 1976 1845 1818 1793 1771 1750 1732 1714 1699 1684 1671 1658 1647 1636 116251 1618 SLAB 1 318 269 254 242 223 1 207 191 179 158 1 157 148 139 132 WT. 37J3 2 318 2591 264 242 223 207 191 179 168 157 148 139 132 125 118 ' PSF 18 3 318 289 264 242 223 207 191 179 168 157 148 139 132 125 118 112 107 102 9 1742 1717 1696 1616 1659 1644 1629 1617 1605 1594 1585 1575 1567 1559 1552 1545 1539 1533 qd 2077 2027 1954 1946 1911 1880 1 1852 1828 18D3 1782 1762 1744 1727 1712 1697 1684 1611 1659 SPA Far St 1 tch - 25.4 atm, t toot = 304.8 mA 1 pQ -14594 Wrk 1 pd - 16.01E Wrnz,1 pd - 47.86 Pa. wFor foofiotas we Table ii I Page 32 of 56 TABLE 17 — N, NR AND NF DECK WITH STRUCTURAL CONCRETE FILLI- ALLOWABLE SUPERIMPOSED LOAD (psi] AND DIAPHRAGM SHEAR (pls — (CONTINUED) ER -2757 For St 1 inch = 25.4 mm, t W2 3043 mm,1 pd a 14594 Wn% 1 pd =16.018 kgW,1 psi = 47.68 P` "For footmbn sea Table It Is MZI SLAB DE 11:lm�7m ®gym ®l�'!m ®sE7 ® ® ® ®mm>m l�m�mi�7s1 ®iliFtr7�lm��mmpmm® CONC PETE t'lmm�..�- 1lmmmm ®mom ®�']tlmmiJ�mm !Llmm ®m�t�m�mtlmmmm ®miEJ® Emma !w7-M ' > 3 9 PCF ODD ©SFr7m� ®SL7 ®!m ® ®>l�l�r7� Ii. Qsi7 ®Ems= mmumil Elm �1•mEfi37tlmmm ®milm�itmemmm Pj tlm ®m 1 ®�mmmIsmm m ®�i ®m ®miller ®i1�+1 ®�i�iii ®m@M® • a S' / O ® ®��� ®}�'� C= f4lrJr�:�Yf I -°•^ �isTi��YL� �— GwV:'++-= 'JJGf.�LL"rlt�u.M 1111111111111 1�^1�1111�1�1�11111��1�11111� ®���w ®��w�,// ®w.1,y�r'm ��.i■�� ®i�.w ®1,`w'�� ®� �ai�u. �11111111�i1�111111iY��� ®� 111111111111111. ® ®�` �luW ".�fY�Sw -.1L'Y .�: Nye.�pW{r�ytly�.vp��,� { V.Iff -. �5;'M!E,2'2 ©m©nmmm�� ® 1 © „ ®� ®��� ®���III 'ia7�2'iS�l.�'9L�._ �.�Ss7NJFw`�r' .�.•��.�1��i�.'�+mnb 11111111 ����® ® �{��._�- 1 ��'1�y � ® �' 111111111 ®� � 11 ��a��i ®r--����� 111111111111111111 " �111111�1111111 Y` ®11111111�111111111 ®1111111 ®11111111 ����$_���� Mi.�.:�.l�f w�i yy .�� �� 111111111111111 111111111y.L`�a 11111111 ®111m 111111111111111 ®1111111' ® ®® ®11111111111111111 r�f�i]1✓�a.11��SNa. LtIFa1�-�1 l E - 7 cd ' 1111111111111111111111111' �3�1111111� ®11111111�11111111�' 11m ®11111111' ® �111111111 :J..1 111111111� G12a� 11111111111 '11111' ' � '1111111 '1111111'®m1111111' ®�iCl 1.®�L�-®® ®mm® ®11111111,1 11111 �11111mm® [y.)�`y� 1 :1 1111111• �11111�® iiL.tt®® 1111111111111�11111�1111�11111YrJ11111� t'�, -a '� ' [- ©11111111 111111 ®111111 F��1�{lawa�y� /1LC7.L"YJ v s.�, M sw 2tf KE � ± =1 � Mm ,�� 1 ©11111111�111111m {1m1�_ ® � ! ® . ' i T' ���x�±"�S�P.�1v! �iLM1aT•� + y 7: . . 1 C . � ., � - 'fl? "'ll`v,� _' . ' . . YY ®�.1.�"�C��i �' !! !' � ! � �"t•rr'fit[a..��9['sJ� " � 1 �- N+•.LLt' � • y 3 � cv ' �� �111�® < [ i. Y�11111 �. Yi11111�11111 •�i.+a1111a..�_111111'�i�i 11111 `�111111111111�.i ®11111 ^I � 1F � as ♦ ♦. 1 ��-�:� r$� 1C F""'.b'. .1 © al It 1111111 ©11111114r� ®1111111 �I. nr�•. i S +�•. �� =-''! ' © 1��1 ®1 � � �.` � 7�' � wr�, 111111111�11111�11111�11111iVi . ; ._1� -+� /. /.' f.�•a 11111'�i� 1 y/ � /�,,- /µ iJ1111f�'® y / /� /_ II. �y � �� L IT� }, . L L1 11111.�.1..[i � �` ®1111Li�11111�iY ^.11 _ . �a)♦ -ar] w•♦ E 1 . T � �` E � ` w ( i �_ lm ®mmE , �+ ( . ! � ■ E �� '.� rt+�: � t • �r• EE_�77m ry� r1 / /.� 1111111111111111111 111111 —11111111 ®11111�•111'�� ®11111111W.': iv 1 l3�ft �Id:�P�]:1...�,I'- - �t.�rl.'K+O�Y _ � 1 . ! ',�y1� { {{ �:�y_ ^_- ^iy_�II 11111111111111111111'J_ ■ ` iw` � w,i`-- 1111111 � 11111 11 m 1111111 ® D � D® L 1� ®11111111 ®= .YCT.��.r�i3 �Jr �C�L"���W "�' " �x�_C 1�1111111111 Ltf F1. 11111` /!1' / �m �i11111� /1. ®tfLLf 11111���11111� ' 1111111111 �111111��11111L11 _11111�111111111111L��111111 .1,�11111�11111�111111- ®111111' ©r111111 L'a111111 For St 1 inch = 25.4 mm, t W2 3043 mm,1 pd a 14594 Wn% 1 pd =16.018 kgW,1 psi = 47.68 P` "For footmbn sea Table It Page 33 of 56 TABLE 17 - N, NR AND NF DECK WITH STRUCTURAL CONCRETE FILL ALLOWABLE SUPERIMPOSED LOAD (psQ AND DIAPHRAGM SHEAR (piq - (CONTINUED) wFor bobotes see Table 16. ER -2757 1 . Page 34 of 56 "For loolnofes see Table 16. ER -2757 z� TABLE 18 — 2W AND 2WF GALVANIZED DECK WITH STRUCTURAL CONCRETE FILU- ALLOWABLE SUPERIMPOSED LOAD (psf AND DIAPHRAGM SHEAR (piQ Page 35 of 56 TABLE 18 — 2W AND 2WF GALVANIZED DECK WITH STRUCTURAL CONCRETE FILL ALLOWABLE SUPERIMPOSED LOAD (psf AND DIAPHRAGM SHEAR (A — (CONTINUED) SLAB DEPTH CONC BETE TYPE LTWTV 110 PCF SLAB wr 389 PSF 6 3116" SLAB DEPTH CoNC RETE TYPE~ LT" 110 PCF SLAB WT. 473 PSF ER -2757 ++For footnotes we Table 16. I3 No. of SPAN Gage Sans 6' -0" 6' -0" 7' -0' 7'•6" 8' -0' r-6 9' -0' 9'-8' 1D' -0' 10' 6" ii' -0' 11'•6" 12'-0" 1 322 278 1A2 _ 2 322 278 242 213 189 169 ;m,�Q�`q 22 3 322 278 242 213 189 169 3 1743 1723 17DS 1689 1678 1664 1654 1644 1638 1628 1621 1815 1609 1BB8 1851 1319 1791 1767 1746 1726 1709 1694 1680 1668 1658 1846 1 342 295 258. 342 295 2S8 227 202 181 163y 141 21 342 23S 258 227 202 181 163 147 [ k3 1752 1729 1709 1691 1676 1662 1650 1840 1830 162) 1513 160 1599 1932 1889 1853 1821 1794 1769 1748 1720 1711 1695 1581 1668 1656 353 3D5 266 23S 2D9 2 353 1 305 266 235 209 187 168 1 152 20 3 1 353 3DS 268 235 2D9 1 187 168 1 152 139 : '. ::gam ° - 3 1759 1734 1712 1694 1678 1663 1650 1639 1839 1620 1611 1603 1598 4 1955 1910 1871 1838 1808 1783 1760 1739 1721 1704 1689 1675 1662 1 39J 340 298 263 235 210 190 172 2 393 340 298 263 235 210 19D 172 157 144+: 19 3 393 340 298 263 23S 210 190 172 157 t{4 133 3 1788 1758 1732 1710 1691 1674 1658 1645 1632 1621 1611' 1602 1593 4 2042 1988 1942 1902 1866 1835 1808 1 1783 1761 1741 1723 17M 1691 1 424 368 323 286 255 229 207 188 172 'y -• *. --,- :. y � ti. 2 424 368 323 286 255 229 2D7 188 172 158 115 18 3 424 1 3% 323 2B6 255 229 2D7 188 172 158 145 134 125 3 1814 1 1781 1752 1727 1705 1688 1669 1654 1840 1627 1816 1608 1598 4 2109 1 2D48 1996 1951 1912 1877 1847 1619, 1794 1772 1751 1733 1715 1 511 445 393 349 313 2B2 258 233 214 197 182 R 511 445 393 1 349 313 282 256 233 214 197 _- 182 168 1 157 18 S11 445 393 349 313 2831 256 133 214 197 182 168 157 1BBB 1846 1609 1778 1751 1727 17DS 1688 166L 1653 1639 1628 1614 2278 2202 2137 2080 2031 1937 1949 1914 1893 1855 1 1329 1806 1784 No. of SPAN. Gage Spans 6' - 0" 6'•6' 7' -0' 7' -0' 8' -0' 8'•6' 9 9 10' -0' 10'-6" 11' 4" 1 385 332 ' V., : 1 .1 2. " '711' .5. i ,` qp 2 385 332 290 255 226 = Al 1» 22 3 385 372 290 255 226 "r �f ,: ► - -0 .AFL 3 20J9 2D19 2001 1988 1972 1960 1950 1940 1932 1924 1917 1911 1905 2184 2147 2115 2087 2063 2D42 2023 2006 1990 1976 1954 1952 1942 1 409 2 409 353 308 212 241 216 21 3 409 353 368 272 241 216 194 - 3 2049 2D25 2005 1987 1572 1958 1946 1936 1926 1917 1909 1902 1895 7221 2185 2149 2117 2090 2065 2D44 21124 tow 1991 1977 1964 1952 1 422 365 318 281 y 2 422 365 318 281 250 223 201 ; ' s,.... --- 20 3 422 365 318 281 250 1 723 291 1920 3 2DS5 2030 2009 1990 1974 1959 1947 1935 1925 1916 1907 1900 f89J 2251 2208 2187 2134 21D5 2079 2056 2035 2D17 2000 1985 1971 1958 1 469 407 3% 315 2B0 252 227 A y _ - 2 469 407 356 315 2BO 252 227 206 988 19 3 469 407 356 315 280 2S2 227 208 188 172 159 3 21184 I 2D54 2029 2006 1967 1970 1954 1941 1921 1917 1907 1898 1890 4 2331 2284 2238 2198 2163 2132 2104 2079 2057 2037 2019 2002 1987 1 506 439 385 341 3D4 214 247 225 - A 1 = ` 2 506 434 US 341 3D4 274 247 22S 205 188 - 18 3 508 439 385 341 304 274 247 225 205 188 174 16D :- 3 2110 2077 2048 7023 2001 1982 1965 1950 1938 1923 1912 1902 1892 2405 2344 2293 1 2248 2203 2174 2143 2115 2D90 2D68 2047 2029 2D12 1 6D9 S31 468 416 373 338 305 278 255 235 609 S31 46B 418 373 338 305 278 253 235 17 1 16 6D9 531 468 416 373 336 305 271 255 235 217 201 187 21 b4 2142 2106 2074 2047 2023 2001 1982 1965 1949 1935 1922 1910 2574 2498 2433 1378 2327 2281 224$ 2710 2179 21St 2125 2102 2060 t Inch =25.4 mm, root = 304.8 mm, pl =14.594 Wm,1 pd =16.018 kolm? Dsf - 47.68 Pa. ++For footnotes we Table 16. I3 Page 36 of 56 I'm twinotes see Tapia I& TABLE 18 - 2W AND 2WF GALVANIZED DECK WITH STRUCTURAL CONCRETE FILLIAG ALLOWABLE SUPERIMPOSED LOAD (Ilan ANn MAbsaaar -u CUCA M 1-1r ER -2757 -T, Page 37 of 56 14 17or footnotes see Table I& ER -2757 Z TABLE 18 —2W AND 2WF GALVANIZED DECK WITH STRUCTURAL. CONCRETE FILL WO ALLOWABLE SUPERIMPOSED LOAD (ps;) AND DIAPHRAGM SHEAR (1310 — (CONTINUED) Page 38 of 56 TABLE 18 -2W AND 2WF GALVANIZED DECK WITH STRUCTURAL CONCRETE FILLS - ALLOWABLE SUPERIMPOSED LOAD (psf AND DIAPHRAGM SHEAR (pil— (CONTINUED) '- see Table I& ER -2757 1) Page 39 of 56 ER -2757 ' TABLE 19 - 3W AND 3WF GALVANIZED DECK WITH STRUCTURAL CONCRETE FI_LLI- ALLOWABLE SUPERIMPOSED LOAD (psQ AND DIAPHRAGM SHEAR (plo No. o f SPAN Gage 8 ' - 0 ' 1 8' 9'-0' 9'•4' 10'-0' 10' 4' 11'0 11' -0' 12'-0' 12' -0" v-4 13 5' 1 249 228 209 193 -�_ - 5 '199;:. B z .. - �, 10. _ •_. ; e SLAB 2 249 228 2D9 193 178 168 149 Si 1 _. lr DEPTH 22 3 249 228 209 193 178 166 149 133 120 3 1281 1269 1259 1249 1241 1217 1226 1220 1214 1208 1203 1199 1145 1191 1187 _ 4 1372 1351 1332 1315 1299 1285 1273 1261 1251 1241 1232 1224 1218 1209 1202 1 272 248 228 210 194 151 2 272 248 228 210 194 181 169 155 139 ^$ CONC 21 3 272 248 224 210 194 181 164 1 155 139 126 113 " _ n:. 9< v RETE q3 1281 1267 1255 1245 1235 1225 1218 1211 12D4 1198 1193 1187 1142 1178 1174 TYPE: 4 1399 1314 1353 1333 1116 1300 1288 1273 1261 1250 1239 1230 1221 1213 1205 1 263 258 237 218 202 188 169 ` g, •- • : _: . 4 ' .__ ._ B9= • - y 2 283 258 237 218 202 188 175 164 149.'i1T 20 3 293 258 237 218 202 188 175 164 149 134 122 110 3 1283 1268 1258 1244 1234 122S 1218 12D8 1201 1195 1189 1193 1 1178 1173 1169 LTWTv 1414 1388 1365 1344 1326 1309 1294 1280 t267 1255 1245 1235 1225 1217 1209 110 1 120 292 268 247 129 217 198 186 167 145 ". - - � - - PCF 2 120 292 268 247 229 213 198 188 174 164 150 19 3 . 320 292 268 247 229 213 198 188 174 164 150 135 124 113 - 5 3 1296 1279 1263 1250 1217 1226 1216 1207 1198 1191 1183 1177 1171 1165 1159 1471 1440 1411 1388 1366 f348 1328 1111 1296 1282 12fi9 1257 1248 1235 1225 $(A$ 1 315 315 289 267 247 230 214 200 188 17! 150 ..: 0 WT. 2 345 315 289 267 247 230 214 200 188 177 167 154 141 - 320 18 3 346 315 289 267 247 230 214 2D0 188 177 167 154 140 in 117 3 1310 1291 1274 1259 1245 1232 1221 1211 1201 1192 1184 1177 1170 1164 PSF 1158 4 1517 1482 1452 1424 1399 1377 1356 1338 1320 1305 1290 1271 1264 1253 1242 1 401 368 338 312 287 158 232 209 189 172 158 142 129 * ]_r A03 368 338 312 287 258 232 2D9 189 172 156 142 129 122 112 16 403 368 338 312 287 258 232 2D9 189 172 158 142 129 122 112 1356 1332 131D 1291 1274 1258 1244 1231 1219 1208 1198 1189 1180 1172 1164 1 a4 1538 1592 1554 1519 1488 1460 1434 1411 1389 1369 1351 1 1334 1319 1304 1290 No. of SPAN Gaga SDang I r-0' C -0' 9'-0" 9'-d' 1D' -0' 10'-4' 11'-0' 11'•4' 12' -0' 12'•3' 13' -0' 13'-6^ 14' -0' 14 15' -0' 5'6' 1 273 249 229 211 x:165 1 . ,, `' _8 • _.. l_� SLAB 2 273 249 229 211 195 181 139: "a2.5�7, DEPTH 22 3 - 271 249 229 211 195 181 169 152 P _.18 - : 0 -: • ' - � 3 1439 1427 1417 1407 1399 1391 1384 1378 1372 1366 1361 1357 1353 1349 1345 1530 1509 1490 1473 1457 1443 1431 1419 1409 1399 1390 1382 1374 1387 1360 1 297 271 249 230 211 195 53� _121 2 297 271 249 230 113 198 154 172 = :12 CONC 21 3 297 271 249 230 213 198 184 172 159 141 RETE 1439 1425 1413 1403 1397 1384 1378 1389 1362 1356 1351 1345 1340 1336 1332 TYPE: 4 1557 1S?2 1511 1491 1474 1453 1444 1431 1419 1408 1397 1388• 1379 1371 1363 1 309 282 259 239 221 205c�1 2 309 282 259 239 221 205 192 20 3 309 282 259 239 1 221 205 192 179 168 154 139 3 1441 1425 1414 1402 1392 1383 1374 1356 1359 1353 1347 1 1341 1338 1331 130 LTVYP Q4 1571 1546 1523 1502 1484 1467 1452 1438 1425 1413 1403 1 1393 1383 1375 1366 110 1 348 318 292 269 249 232 216 202 179 - : PCF 2 348 318 292 269 249 232 216 202 190 178 1685 19 3• • 348 318 292 269 249 232 216 2D2 190 178 168 156 142 1454 1437 1421 1408 139S 1384 1374 1365 1356 1349 1341 1335 1329 1323 1317 1629 1598 1571 1546 1524 15D4 1486 1469 1451 1440 1427 1415 1404 1393 1383 SLAB 1 375 343 315 29D 269 250 233 218 204 154 WT. 2 375 343 1 315 290 259 250 233 218 204 192 161 Al E 36.6 18 3 375 343 1 315 290 265 250 233 218 2D4 192 181 171 1 62 148 135 PSF q3 1468 1449 1432 1417 1403 1390 1379 1 1369 1359 1 1342 1335 1325 1322 1316 1675 1540 1610 1582 1557 . 1535 1514 14% 1478 1463 1448 1435 1422 1 1411 1400 1 437 399 358 338 313 291 Al 2S3 238 224 211 199 =• ._ _ 437 399 368 338 311 291 271 253 238 224 211 199 189 179 170 18 3 437 399 366 338 1 313 1 •291 271 253 238 224 211 199 189 179 170 1514 1490 1468 1449 1432 1418 1402 1389 1377 1 1368 1356 1347 1338 1330 1322 1794 iTSO I 1712 1677 1648 1618 1592 1569 1 1547 I 1527 1509 1492 1477 1462 1444 For St 1 bli =25.4 em, t toots 304.8 mm. I pd =14594 Wm,1 pd = 16.018 kgh1P,1 psf - 47.88 Pa WFor foobotes see Table 16. - I� Rage 40 of 56 TABLE 19 — 3W AND 3WF GALVANIZED DECK WITH STRUCTURAL. CONCRETE FILLI. ALLOWABLE SUPERIMPOSED LOAD (psf) AND DIAPHGRAGM SHEAR (pIq — (CONTINUED) No. of I SPAN Snans 4 =0' r•4' 9' -0' 9'-4' 17 -0' 10'-4' 11' -0' 11'i' 12' -0' I 12' -S' 1 13' -0' SLAB 2 311 1 311 284 1 284 25111 261 241 223 _ YJ; ` xzyc X145:., 133 `- :. • :' DEPTH 22 3 311 284 261 241 223 1 207 193 218 204 191 180 3 1678 1664 1554 1644 1636 1628 1621 1615 1609 1803 1598 1590 1SB4 1578 1573 1568 1564 1767 1746 1725 17DS 1694 1688 1668 1656 1648 1838 1827 1662 1650 1 338• 3D9 284 262 y 381 „ 3D8 283 245 227 2 338 309 284 262 242 225 210 332 3D6 - 283 263 CONC 21 3 338 309 1 284 262 242 225 210 196 184 - }27• RETE 245 q3 1578 1662 1659 1640 1630 1821 1613 1606 1599 1693 1587 TYPE 1621 Q4 1794 1769 1748 1728 1711 1695 1681 1668 1656 1644 1634 1783 1761 1 352 321 29S 2 252 1652 1841 1630 1620 1 428 389 ER -2 For St 1 ha = 25.4 mn41 foot a 304.8 9x9,1 pd =14594 WM 1 pd =16 18 wrrP, 1 psf = 47.88 Pa. "For lootnotss sis Tabu 16. 14 2 352 321 295 272 252 234 218 Z ar"t 20 3 3S2 321 295 272 252 234 218 204 191 180 3 1678 1663 1650 1639 1629 1620 1611 1603 1596 1590 1SB4 1578 1573 1568 1564 LTWP 1806 1783 1760 1739 1721 1704 1689 1675 1662 1650 1639 1629 162D 1612 1603 110 1 398 381 332 3D8 283 263 245 227 PCF 2 398 361 332 3D6 - 283 263 245 1 230 216 Nh .17A 1 ' . - 19 3 396 361 332 306 283 253 245 230 216 2D3 191 181 - 3 1691 1674 1658 1646 1632 1621 1611 1602 1593 1588 1678 1672 1665 1560 1554 4• 1868 1835 I 1808 1783 1761 .1741. 1723 1705 1691 1677 1664 1652 1841 1630 1620 1 428 389 357 329 305 283 264 247 SLAB 2 428 389 357 329 305 2&1 264 247 -232 218 206 . ST WT. 16 3 426 389 .357 329 305 283 264 247 232 218 2D6 194 184 43.6 c13 170S 1686 1669 1654 1610 1627 1616 1608 1596 1587 1579 1572 1565 1559 Ism PSF 04 1 1912 1877 1847 1819 1794 1772 1751 1733 1715 1700 1685 1672 1659 1 1648 1637 1 494 451 414 382 3S3 328 306 257 269 253 238 _ .. � .r 4% 451 414 382 353 328 3D1 287 269 253 Z3B 225 213 202 ` - 16 494 4S1 •414 382 353 328 308 287 269 253 238 22S 213 202 - '192 ^ ' 1751 1777 1705 1686 1669 1653 1639 1628 1814 1603 1593 1564 1575 1567 1559 2031 1987 1949 1914 1883 1885 1829 1806 1784 1761 1746 1729 1]14 1699 1685 NO. of SPAM Gas Snans C -0' 1'i' 9' -0' Y-r 1o' -0' 10 11'4" 11'1' ir-r 12' -0 13'-0" t3'4' 7 3116 1 3 u RNM EKE - 'SLAB 2 363 331 304 280 `2z1T'' - : iEE7`: ter.. 'i i .i? (3. DEPTH' 22 3 363 331 3D4 250 259 241 MIn - 3 1972 1960 1950 1940 1932 1924 1 1917 1911 1905 1900 1895 1890 1886 1882 1878 / 2063 2042 2023 2008 1990 1976 1964 1452 1942 1 1932 1923 1915 •1907 1900 189] 1 394 360 330 2 394 360 330 304 282 y . COHC 21 3 394 360 330 304 252 262 244 228 :r„ - 1s10B BETE 1972 1958 1948 1938 1926 1917 1909 1902 1895 1889 1684 1878 1874 1869 1865 TYPE; 7090 2D65 2D44 2024 2007 1991 1977 1964 1952 1941 1930 1921 1912 1901 1897_ 1 409 373 1 343 318 2 409 373 343 316 293 20 3 409 373 343 316 293 272 „ 3 1974 1959 1947 1935 1925 1916 1907 1900 1893 1888 ism 1875 1869 1865 1860 LTWT' t14 210S 7079 2058 2035 2017 2000 1985 1971 19% 1947 1936 1926 1918 1908 1900 110 1 460 420 385 355 329 306 765 PCF 2 460 420 38S 355 319 309 285 267`, ti9i9Z - 12 3 460 420 385 355 329 306 22S 267 250 235 3 1967 1970 1954 1941 1926 1917 1907 1898 - 1890 1882 1875 1868 1862 1656 1851 4 2163 I132 2104 2D79 2057 2037 2019 2D02 1987. 1973 1960 1948 1937 1975 1917 SLAB 1 494 451 414 382 353 323 306 287+`125 `382 _ - wr. 2 494 451 414 382 353 321 3D6 287 269 ~ 261 : - 52.1 1e 3 494 451 414 382 353 321 306 287 269 238 5 - 22 PSF 43 7001 1982 1965 1950 1936 1923 1912 1902 1892 1884 1676 1868 1 1861 1855 1849 04 2208 2174 2143 2115 2090 2068 2D47 2D29 2012 19% 1981 1968 11 1914 1933 1 671 522 479 442 409 380 354 332 311 293 571 522 479 442 409 380 I 3S4 332 311 293 278 - 571 522 479 442 409 380 354 332 311 293 276 261 la 234 _ 16 2047 2073 2001 1982 1995 1949 1935 1922 1910 1899 1889 1880 1871 1863 1855 04 1 2327 1 2284 2245 221D_ 2179 2151 2125 2102 2080 2061 2040 2025 2010 1995 1982 For St 1 ha = 25.4 mn41 foot a 304.8 9x9,1 pd =14594 WM 1 pd =16 18 wrrP, 1 psf = 47.88 Pa. "For lootnotss sis Tabu 16. 14 Page 41 of 56 $Tor footnotes see Table A ER -2757 19 TABLE 19 — 3W AND 3WF GALVANIZED DECK WITH STRUCTURAL CONCRETE FILLI ALLOWABLE SUPERIMPOSED LOAD (pst AND DIAPHRAGM SHEAR (plf) — (CONTINUED) Page 42 of 56 $'For footvits see Table IL ER -2757 14 TABLE 19 — 3W AND 3WF GALVANIZED DECK WITH STRUCTURAL CONCRETE FILLI•i" ALLOWABLE SUPERIMPOSED LOAD (psj AND DIAPHGRAGM SHEAR (pIQ — (CONTINUED) Page 43 of 56 TABLE 19 - 3W AND 3WF GALVANIZED DECK WITH STRUCTURAL CONCRETE FILLi• ALLOWABLE SUPERIMPOSED LOAD (psf) AND DIAPHRAGM (plt - (CONTINUED) uFarbo *s sea Table iL ER -2757 I Page 44 of 56 TABLE 20 - ALLOWABLE DIAPHRAGM SHEARS FOR TYPES 13,13F. BR, N, NF, NR 2W, 2WF, 3W AND 3WF DECKS WITH CONCRETE FILL AND SHEAR STUDSI 1 CRETETYPE �a 3,000 Psi CONCRETE THICKNESS" SPACING OF SHEAR STUDS' 18" 18" 24" 32" NW F 2 - 2'Yz 4,730 4,530 3,400 2,550 LW E 2 - 2'/:' 4 3 860 2,900 2,180 LW 3 - 3'/: 4,350 3 860 2,900 2.180 ER -2757 Forst 1 Inch = 25.4 mm, i foot = 304.8 mnh,1 pK =14.594 NMI, 1 pd =16.018 kglm',1 paf = 47.89 Pa. I psi - 6894 Pa, t Ibf = 4.45 N,1 kip = 4.45 K 'Values must not exceed 1990 pK for 2 % inch nomhal- weight concrete st" 1,900 pt for 2 % Inch structural Nhtweight concrete slabs, and 2,200 pK for 3 Y. Inch structural lightweight concrete slabs, unless mesh having an area of 0.0075 I fines the g=s area of concrete Is used Sbc by six - W4 x W4 m9eh this requirement for 2 Y, inch slabs and 4 x 4 - W4 x W4 qua0flesfor3' /.Inch slabs. Mud diarmiar must not exceed 25 9mes the thicimess of ft steel support, unless stud Is located diredfy over support web. sSee Flpurea 1 and 8 for qusOfying dear types and weld patems. for IDcal sheartransfarvift the Held of the diaphragm, % Inch-cilameter scuds having shearvelues of 69 kips per stud for nohmal weight connate fib and 5.8 kips per stud for lightweight concrals, except as noted hereafter. shall be used. For DeckTypes 9.36 and BF-36, wham the width of concrete at the stud Is less than 225 Inches, vafum of 5.71dps and 4.9 Idps, respectively, must be used. For Dads Types N-24 and NF -24, where the width of concate at the stud Is lass than 4.5 inches,'/. Inch - diameter studs with values of 35 kips and 3.0 kip% respectively. must be used. s See Table 27 larolephragm Flexibility Umbdons. 'Stendlog seam sldetaps of dada must be Wtoned by button punches at 36 indnes on cantor. Heatable seams must be fastened using either No. 12 sa tapping screws or 1 % Inch - long. fdletwelds at 38 Inches on cotter. ?NW - Normal weight (145 pd). LW - sirvdmal tghlweight (110 pd). 'Comets 61clamss. k is measured from top flute of fatal deck. KDedc Types M BF38, BR-35. ZW36 and 2WF36. Identified In Figure 1. require X Inch - diameter studs minimum. Five -able s- Indh-diamatsr scuds mWmum are required for Deck Types NR -24, 3W36 and 3WF38. For Deck Type N -24 and NF -24, 3A Ind-,d'amstar studs minimum are required and the tabulated shears must be reduced by a factor of 074. APPROVED STUDS TO PERPENDICI FLUTES Sr SPACING A' TABLE 20. SHEAR STUDS AT SUPPORTS PARALLEL TO FLUTES TYPICAL EXTERIOR OR INTERIOR SHEAR TRANSFER STUDS FIGURE 8 - SHEAR STUD DETAILS �l Page 45 of 56 ER -2757 For St 1 t1d1 =25.4 mm,1 foot = 304.8 Rm i Psf = 47.88 Pa. 'Ses Tabu iS for a-imer g mquhementL rSLAB' ttikknem h the t W slab lhldnmL TABLE 21- ALLOWABLE SUPERIMPOSED LOAD (psQ FOR 2W DECK WHEN %INCH•DIAMETER STUDS ARE USED AT THE SUPPORTING BEAMS CANCREtE SLAB STUDS AT 1V oc ` STUDS AT 3V OC T}{yD1wE$S d SPAN SPAR TYPE GAGE SOr' TD' 6C' 9'C ttro' 11'0' 1Zro' 6'7 7'0' tv P7 1QV 11'0' 120' 22 400 320 240 185 145 115 90 345 245 180 16 125 100 80 47,' ?D 100 390 295 _225. 180 145 115 400 280 t95 135 155 125 105 LTWT 18 400 400 370 295 235 160 140 400 390 280 205 155 115 140 16 400 400 370 330 265 195 150 400 400 360 270 205 155 12D 22 400 395 295 Z25 175 140 115 400 305 260 200 155 120 95 2p 400 400 36D 280 220 175 145 400 335 230 170 195 155 125 LTWT i8 400 400 400 370 295 235 195 400 400 340 245 175 210 175 16 400 400 400 400 360 300 235 400 400 400 325 240 180 130 22 400 400 385 295 235 185 150 400 400 345 260 200 155 120 6 %' 20 400 400 400 370 290 235 190 400 400 295 330 255 200 160 LTWT 18 40D 400 400 400 390 315 260 400 400 400 290 200 280 230 16 40D 400 400 4DD 400 400 330 400 1 400 1 400 400 290 205 290 22 400 315 230 175 135 105 85 400 290 215 165 125 100 80 4W 20 400 365 285 220 170 135 110 400 296 215 160 160 125 105 NWT 18 400 400 375 290 230 185 150 400 390 275 200 140 175 140 16 400 400 400 360 285 230 190 400 400 360 265 195 145 180 22 4D0 4W 305 230 180 140 • 110 400 380 28D 215 165 130 100 5r" 20 4D0 400 375 290 225 180 145 400 380 280 265 205. 165 130 NWT 18 400 400 400 385 305 245 200. 400 400 340 235 285 230 185 16 400 400 400 400 385 310 255 40D 400 400 325 235. 290 235 22 400 400 375 2B5 225 175 140 400 400 350 265 205 160 125 6V. 20 400 400 400 360 280 225 160 400 400 400 325 250 195 155 NWT 18 400 400 400 400 11 3BD 1 305 1 250 400 400 390 260 3S5 280 225 16 1 400 1 400 400 400 1 400 1 390 t 320 400 400 400 375 255 360 295 For St 1 t1d1 =25.4 mm,1 foot = 304.8 Rm i Psf = 47.88 Pa. 'Ses Tabu iS for a-imer g mquhementL rSLAB' ttikknem h the t W slab lhldnmL Page 47 of 56 TABLE 22- ALLOWABLE SUPERIMPOSED LOAD (psf) FOR ASC3 (24) DECK WITH CONCRkTE.DENSITY OF 145 pcVA - (CONTINUED) 'Aflowa%super4nposed loads am In pounds per square foot Shoring is required for ded spans to the fight of the darkened ver!M fines =The concrete shag have a minimum 28 day compressive strength of 3,000 PSI Mm W number of the dadr gages Is the gage of the fluted top sheet The semnd number Is the gage of the flat bottom sheet Sea Table 213 for the naquked base metal thkknem ER -2757 14 - - - - - -.- r ...__.._..,. Y..,—. �. ..,..nyuu-,�p�— v.c�ra,1Fw— oc79 Page 48 of 56 ER -2757 TABLE 23 — ALLOWABLE SUPERIMPOSED LOAD (psQ FOR ASC3 (24) DECK WITH CONCRETE DENSITY OF 110 pcf'.? �. ® ® ® ®�m��. ' � �1�1 ppy� � p�3��i�.�����m ��;�, ,_r""� y� d• � 3 � 4i 1 prove r � :�Y„ •- �_n; -.�_� .9N �"' !cb M awl. =off• 1 esx>_tv.� mm Fig -im t on rL BON ® ® M nv It U. RM M-0 ma3MM imm mm E:, ���+L7 mm imimmim E3 m im Flm im 20 MEN Mm. Emu REM <y � a © � ® � ®©101 ME 3 ® 10 ®im®omsm 1 1 r I: 111 t _ Page 49 of 56 TABLE 24 -DIAPHRAGM SHEAR CAPACITY FOR ASC3 (24") WITH CONCRETE FILL (pIQ (110 PCF CONCRETE) ER -2757 MAL aLAa DEM Mar Ned �• SPAN ra• rr ra• ri• tra- tr {• tr•r tr {• tra• trr tr-0• u•a- tr.a• try rra• 20120 Q 1540 1510 1500 1480 1460 1450 1430 1420 1410 1400 1390 1380 1370 1360 1350 F 1.12 1.14 1.15 1.17 1:18 1.19 1.20 1.22 1.23 124. 1.24 1.25 126 127 128 5'A. 20!18 Q 1640 1600 1580 1550 1530 1510 1490 1470 1450 1440 1430 1410 140 0 1390 1360 F 179 F 0.91 0.93 0.95 0.95 0.98 0.93 1.00 1.01 1.02 1 1.03 1.04 1.05 1.06 127 1.08 Q 2011E 0 1740 1700 1670 1640 1610 1580 1560 1530 1510 1500 1480 1460 1450 1440 1420 F 0.76 0.78 080 0 81 0.83 0.34 0.85 0.87 0.88 0.89 0.90 091 092 093 093 SLAB YYT. 18!20 Q 1540 1520 1500 1480 1460 1450 1430 1420 1410 1400 1390 1380 . 1370 1360 1350 110 0.99 F 1.12 1.14 1.15 1.17 1.18 1.19 1.20 122 123 1.24 1.24 1.25 125 127 128 PCF 18118 Q 1640 1600 1560 1550 1530 1510 1490 1470 1450 1440 1430 1410 1400 1390 1380 0.83 0.64 F 031 0.93 09S 9.96 0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05 1.05 1.07 1.08 1870 18116 Q 1740 1700 1670 1640 1610 1580 1560 1530 1510 1500 1480 1460 1450 1440 1420 oil 0.72 F. 0.76 0.78 0.80 0.81 013 0.84 015 0.87 0.88 .0.89 0.90 091 0.92 093 1 0.93 1870 16116 Q 1740 1700 1670 1640 1610 1580 1560 1530 .1510 1500 1480 1460 1450 1440 1420 0.71 0.72 F 0.76 0.78 6.80 0.81 0.83 0.84 0.85 0.87 I 0.88 1 019 0.90 091 0.92 093 0.93 mru SLAB DErTH cwr H1.61 Spass SPAN r-0• rr I rte• rte• tr.4• t r-r ff -v !1'i• Sr tr trr trr 14' rr-0• 220M Q 1780 1760 1740 1720 1700 1680 1670 1660 1640 1630 11610 1610 1600 1590 F 097 0.98 0.99 1.01 1.02 1.02 1.03 1.04 US 1.06 1.06 1.07 1.07 1.08 1.09 6114 - 2YH 0 1870 1840 1810 1790 1760 1740 1720 1710 1690 1680 1660 1650 1640 1630 1620 F 179 0.81 0.82 0.63 0.84 0.85 0.86 0.87 0.88 0.89 0.90 090 0.91 0.91 092 20116 Q 1980 1940 1900 1670 1840 1820 1790 1770 1750 1730 1720 1700 1690 1670 1660 F 0.67 0.68 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.77 078 0.79 0.79 0.90 SLAB WT. 110 1880 Q 1780 1760 1740 1720 1700 1680 1670 1660 1640 1630 1620 1610 1610 1600 1590 F 0.97 0.98 0.99 1.01 1.02 1.02 1.03 1.04 1.05 1.06 1.06 1.07 1.07 1.08 1.09 PCF lof18 Q 1870 1840 1810 1790 1760 1740 1720 1710 1690 1680 1660 1650 1640 1630 1620 F o79 aat 0.92 0.83 0.64 015 0.65 0.97 0.68 90 0 091 0 .91 o 92 lolls Q 1980 1940 1900 1870 1840 1820 1790 177 1750 1700 1690 1670 t66o F 0.67 o.6i! 0.70 oil 0.72 0.73 0.74 0.75 0.76 117301T20 0.78 US 0.79 0.80 16116 Q 1980 1940 1900 1870 1840 1820 1790 1770 1750 1700 1690 1670 1660 F 0.67 0.69 0.70 0.71 0.72 073 0.74 075 176 0.78 079 on 0.80 for sC 1 FM - MA mm, 1 EM = 3W5 M 1 Po =14.594 NIM 1 Pd =16.018 kWrOT 1 pst = 47.88 Pa- ?V is the albwebte diaphragm shear mpedlp in potres par Meal toot rF• is be subw fad Ma fltst number d the desk gages Is the gage of the fluted top sheet The wand number is the gage of the fiat bottom sheet See Tabb 2B iorOts requited base metal ftines.L 'See7able ZT for diaphragm f &Ry OmrTallons. I. Page 50 of 56 TABLE 25- DIAPHRAGM SHEAR CAPACITY FOR ASC3 (24 ") WITH CONCRETE FILL (pIQ (145 PCF CONCRETED -" ER -2757 sua a auE+ � � r r -0• r ri P P-0' 9 9' -0• 1 10' -0• 1 10'4 t tr-0" 1 11••1 , ,r -0 , ,rte , ,r u 7 77 8' 1 14 -0" 1 1l'4' " "'-V oEr77i Q 1 1950 1 1920 1 1900 1 1880 1 1870 1 1850 1 1840 1 1820 1 1810 1 1800 1 1790 1 1780 1 1770 1 1770 1 1760 201ZD Q F 0 0.89 0 090 0 091 0 0.92 0 0.92 0 0.93 0 0.94 0 0.95 0 0.95 0 0.98 0 0.98 0 0.97 0 097 0 0.98 0 0.98 q 2 2040 2 2010 1 1980 1 1960 1 1930 1 1910 1 189D 1 1870 1 1860 1 1840 1 1830 1 1820 1 1810 1 1800 1 1790 5'�' 2 20116 q F 0 0.73 0 0.74 0 0.75 0 0.78 0 0.77 0 0.18 0 0 -79 0 0.79 0 0.80 0 0.81 0 0.81 0 0.82 0 082 0 0.83 0 0.83 2110 2 2070 2 2040 2 2010 1 1990 1 1960 1 1940 1 1920 1 1900 1 1880 1 1870 1 1850 1 1840 1 1830 0 0.62 0 0.63 0 0.64 0 0.65 0 0.66 0 0.67 0 0.68 0 0.6B 0 0.69 0 0.70 0 0.70 0 071 0 0.72 0 0.72 0 0.73 1950 1 1920 1 1900 1 1680 1 1870 1 1850 1 1840 1 1820 1 1810 1 1800 1 1790 1 1180 1 1770 1 1770 1 1760 0.89 0 090 0 091 0 0.92 0 092 0 093 0 094 0 0.95 0 0.95 0 0.98 0 096 0 0.97 0 097 0 0.98 0 0.98 PCF 2 2040 2 2010 1 19M 1 1960 1 1930 1 1910 1 1890 1 1870 1 1860 1 1840 1 1830 1 1820 1 1810 1 1800 1 1790 0 R 2150 2 0.73 0 074 0 0.75 0 0.76 0 0.77 0 0.78 0 0.79 0 0.79 0 0.80 0 0.81 0 0.81 0 0.82 0 0.82 0 0.83 0 0.83 2150 • •2110 2 2070 2 2040 2 2010 1 1990 1 1960 1 1940 1 1920 1 1900 1 1880 1 1870 1 1850 1 1840 1 1830 0.62 0 0.63 0 0.64 0 0.85 0 0.68 0 0.67 0 0.68 0 0.68 0 0.69 0 0.70 0 070 0 0.71 0 0.72 0 0.72 0 0.73 2 2150 2 2110 2 2070 2 2040 2 2010 1 1990 1 1960 1 1940 1 1920 1 1900 1 1880 1 1870 1 1850 1 1840 1 1 830 0 0.62 0 0.63 0 0.64 0 0.65 0 0.66 0 0.67 0 0.68 0 0.68 0 0.69 0 0.70 0 0.70 0 0.71 0 0.72 0 0.72 0 0.73 TO T AL e en.or SLAB G GJIGE' 1 ' 1 11'1' 1 11' -0' 1 12'1• 1 13' -0' 1 17' 8• 1 14' 4• J J r r. 1 15'-0• DEPTH 2190 2 2164 2 2140 2 2120 2 2110 2 2090 0 0 2 2060 2 2050 2 2040 2 2030 2 2020 2 2010 2 2000 2 2000 20120 f fl 2 0.79 0 0.80 0 0.81 0 0.81 0 0.82 0 0.83 3 1 0 ' 0.84 0 0.84 0 055 0 0.85 0 0.85 0 0.86 0 0.86 0 0.86 2280 2 2250 2 2220 2 2190 2 2170 2 2150 0 0 2 2110 2 2100 2 2080 2 2070 2 2D60 2 2050 2 2D30 2 2020 6' 2 20116 j i YA.7 i i 1JAI i u.uo u.ua 00.64014 20116 2390 2310 2280 2250 2220 2202140 2120 2110 2090 2000 2070 F 0.56 057 057 0.58 0.59 0.60 Ob0.62 0.63 0.63 0.63 0.64 0.64• S1A13 Q 2190 2160 2140 2120 2110 2090 2082040 - 2030 2020 2010 2000 2000 WT. 1820 145 F 0.79 0.80 OBt 0.81 0.82 0.83 080.85 0.85 O.BS 0.88 D.B6 0.86 PCF 18116 q 2280. 2250 2220 2190 2170 2150 2132080 2070 1 2060 2050 2030 2020 F 0.65 0.66 ON 0.68 0.69. 0.69 on 1 0.70 0.71 0.71 0.72 0.72 1 0.73 0.73 0.74 18118 Q 2390 2350 2310 2280 2250 2220 22DO 2180 2160 2140 2120 2110 2090 2080 2070 F 0.56 057 0.57 0.56 OM 0.60 0.60 0.61 0.62 0.62 0.63 0.63 0.63 0.64 0.64 16116 0 2390 2350 2310 2280 2250 2710 22DO 2180 2160 2140 2120 2110 2090 2080 2070 F 0.56 057 057 0.58 0.59 0.60 0.60 0.51 0.62 0.62 OB3 A63 0.63 0.64 0.64 Toro sad Sus GAGE - sue• !' -0• 1'4' 9' -0• e1' 10'•0• 10 - 1 - 1T -0• 11'1•• 12'-0' 12'1' 13' -0' 13'1• 14'-0' 1r4• 15'-0• DEPIH 2020 0 2910 1080 2860 2B40 2820 2810 2790 2780 2770 2760 2750 2740 2730 2720 2710 F 0.59 0.60 0.60 0.61 0.61 0.61 0.62 D.62 0.62 0.63 0.63 053 013 0.63 0.64 7 54• 20116 Q 3000 2970 2940 2910 2890 2B70 2850 2830 2820 280D 2790 2770 2760 2750 2740 F 0.50 050 OS1 051 052 OM 052 0.53 0.53 0.53 053 0.54 0.54 0.54 0.54 20116 Q 3110 3070 3030 3000 2970 2940 2920 2900 2880 2B60 2840 2830 2810 2800 2780 F 0.43 0.43 444 0.44 0.45 0.45 0.48 0.46 0.46 0.46 0.47 0.47 0.47 0.47 0.48 YYTg 1620 Q 1910 2880 2860 2840 2820 281D 2790 2780 2770 2760 2750 2740 273D 2720 2710 i F 0:`28 050 O-W Ob1 • 0.61 0.61 0.62 0.62 0.62 0.63 0.53 063 0.63 0.63 0.64 PCF 16116 q 3D00 2970 2940 2910 2890 2870 2850 2830 2820 2800 2790 2770 2760 2750 2740 F 0.50 030 OS1 051. .0-52 0.52 052 0-53 0.53 0.53 0-53 0.54 0.54 054 0S4 18M6 Q MID 3070 3030 30DO 2970 2940 2920 2900 2880 2880 2640 2830 2810 2800 2780 F 0.43 443 444 444 0.45 0.45 0.46 .0.48 446 0.46 0.47 0.47 0.47 0.47 0.48 16118 q 3110 3070 3030 3000 2970 2940 2920 2900 2880 2860 2840 2830 2810 2800 080 F 0.43 443 QM 0.44 445 0.45 0.46 0.46 446 0.46 0.47 0.47 0.47 047 448 r nr c:1- i to = 25 -4 mn.1 foot= 304.8 Om 1 G6. 14594 Wm.1 Dd = 16.018 ka&P.1 psf = 47.88 Pa. 11W Is the allowable diaphragm shear rapadiy In prids W Ineal foot rF is the fm' factor. - M &A nwdw alto dea gages Is the gage of the Outad by sheeL The 30=W number is the gage of the fl8t boDDm 31189t See Table 2B for the mq&W base metal 1h u ess. , 'See Table 27 for diaphragm Bexb V f lhnb50ns. �C 11W Is the allowable diaphragm shear rapadiy In prids W Ineal foot rF is the fm' factor. - M &A nwdw alto dea gages Is the gage of the Outad by sheeL The 30=W number is the gage of the fl8t boDDm 31189t See Table 2B for the mq&W base metal 1h u ess. , 'See Table 27 for diaphragm Bexb V f lhnb50ns. �C Page 51 Of 55 TABLE 26 — ALLOWABLE SHEAR AND FLEXIBILITY FACTORS ON DIAPHRAGMS USING ASC3 (24) ELECTRIC-DECK FLOOR SYSTEM WITH TRENCH HEADERVA0 Dear GAGE COMBmncN BASE METAL TACME58 M04ES) A=WAM E DIAPHRAGM tom) FlEweiurrFAcioRs CELLUt.ARASC3(24) CELLULAR Nowcantm FLum Fur NoN_canVrt3W36 F. F, 2020 20 through 16 0.035 0.035 0.035 tfaongh 0.059 1670 0.42 0.89 20118 20 through 15 0.035 0.047 OMS bough 0.059 1670 M42 0.89 20116 20 through 16 0.035 0.059 0.035 though 0.059 1670 CIA 0.89 18120 20 through 16 0.035 0.035 0.035 though 0.059 1670 0.42 0.89 16118 20 through 16 0.047 0.047 0.035 through 0.059 1670 0.42 0.89 18116 20 through 18 0.047 0.059 0.035 through 0.059 1670 1 - 0.42 0.89 16116 20 through 16 0.059 OL59 OA35 through 0.059 1670 0.42 0.89 Nona 20 through 18 None None 0.035 through 0.059 1710 (X42 1.5 For St 1 inch - 25A mm,1 foot - 304.8 mm,1 pff = 14.594 Nhn,1 psi = 6894 Pa. %bxlmum dads span is 12 feet Vzodmurn hench headerwldlh is 38 inched. Sea Figure 2 for deck In suppodweld patters. Concrete 51 is 2 X inc3hes minumm above top of dedk flutes. Concrete Is normal wekght concrete wdh a minimum compressive strength. of 3000 psi at 2D days and Is relnforcedwtih 5 x 6 W1.4 x W1.4 welded -wire fabric complying with AST I A185. The fabric is centered within the comet. fit + bxfbitly factor value Is the average micro inches a diaphragm web wa deflect In a span of 1 foot under a shear of 1 pound per foot See Table 27. F. = FlaxrbIlty factor for concrete. R = Fkodbilty factor for trendy. For decks with trench headers, d. Is equal to the cakulatad deflec8on of the trench header added to the deflexion of the concrete Waldo of the trendy. TABLE 27 — DIAPHRAGM FLE)CIBLITY LIMITATIONIX� For St 1 Inch = 25A fnm, t toot = 304.8 nun,1 pff =14594 HIm,1 psi = 6894 Pa VW diaphragms are b be inve38gated regarding trek texlbW and recommended spandepth limitations. Refer to above table for deterrnuhaton of value of F. 7 Roof diaphragms suppatng masonry or concrete walls are to have their defle dlons Bn ited to the following amount Where.. Awall = Hz r, N =Unsupported height of wall In feat 0.01 I - Thldmess of wag In inches. E= Mbdukn of efastdly of wag material for deffecdfal detennlnaton In pounds per square InctL '6 = Abmabls compressive strength alwal material h textre kh Fuids per square Inch. For concrete. fe? 0.45 t. For masonry, 4= F. = 02V. 7 N total dalleclim A of the diaphragm maybe computed kern the eluatiM A — A,+ A. Where: s w = QMe L F Ap Flea ai deflection of the diaphragm deterr k kt to same manner as the detectm4 beams 10` A. = The web dafledon may be detemhkhed by be egratom Where L = Distance In feet bebwasn vertical resisting element (such as shear walk and the pow to which the detection h to be determined. q.. = Average shear in diaphragm th pounds per toot am length L F ■ Fie 1 tfy factor: The average mlaoinc hes a diaphragm web rya der[W In a span of 1 toot under a shear of 1 pound per foot Vhen apptyir4 these limilatons to cantilevered diaphragms, the albwable span-depth ratio will be hag that shmm I5 SPAN-0EM UWATION AM7Owm SPAN el ROTATON NOT CON wERm N DIAPHRAGIA ROTATION comma um rN DUPmAcm REb8rT1Y FEET FOR MASONRY MASONRY OR CONCRETE FLE)OBLE MASONRY OR CONLRM FLDdEM CATEGORY F OR CONCRETE WAILS WALLS WAUS WA" -WALLS Very Flexthle More than Not used Notused 21 Notused 1X:1 150 Ffexlble 70- 150 200 21 or as required for 3:1 Not used 2:1 deflection Semift ble 10-70 400 2 X :1 or as required for 4:1 As required for 2X:1 deffedfon deflection Semirigid 1 -10 No tmilaton 3:1 or as required for detection 5:1 As required for detiection 3:1 Rigid Less than 1 No knitabon As required lordelaction No Amitation As required for detledlon 3X:1 For St 1 Inch = 25A fnm, t toot = 304.8 nun,1 pff =14594 HIm,1 psi = 6894 Pa VW diaphragms are b be inve38gated regarding trek texlbW and recommended spandepth limitations. Refer to above table for deterrnuhaton of value of F. 7 Roof diaphragms suppatng masonry or concrete walls are to have their defle dlons Bn ited to the following amount Where.. Awall = Hz r, N =Unsupported height of wall In feat 0.01 I - Thldmess of wag In inches. E= Mbdukn of efastdly of wag material for deffecdfal detennlnaton In pounds per square InctL '6 = Abmabls compressive strength alwal material h textre kh Fuids per square Inch. For concrete. fe? 0.45 t. For masonry, 4= F. = 02V. 7 N total dalleclim A of the diaphragm maybe computed kern the eluatiM A — A,+ A. Where: s w = QMe L F Ap Flea ai deflection of the diaphragm deterr k kt to same manner as the detectm4 beams 10` A. = The web dafledon may be detemhkhed by be egratom Where L = Distance In feet bebwasn vertical resisting element (such as shear walk and the pow to which the detection h to be determined. q.. = Average shear in diaphragm th pounds per toot am length L F ■ Fie 1 tfy factor: The average mlaoinc hes a diaphragm web rya der[W In a span of 1 toot under a shear of 1 pound per foot Vhen apptyir4 these limilatons to cantilevered diaphragms, the albwable span-depth ratio will be hag that shmm I5 J-5, Page 52 Of 56 TABLE 28 - MINI- V -BEAMTM SECTION PROPERTIES 1.44 DECK TYPE GAGE BASE RETAL THICKNESS ON) 1 (INq POSITIVE S (WI) NEGATIVE S OW) 28• 0.018 0.073 0.097 0.092 26' 24 0.024 0.099 0.137 0.137 MIn�V Beamn+ 22 0.029 0.12 0.165 0.165 453 20 0.035 0.144 0.198 0.198 1650 1B 0.047 0.194 0264 0- rul ar. I uial - IJA mm. I =1= su4.0 mm I psi = 00M Yd. TABLE NOTES: 1) Tabulated Yak= are based on a 14bot wide sedlon. 2) Pmpe&s based cn 38,000 psi yield stwvt , exceptwhere noled. (fensHe strength = 52,000 psi) 3) "- Pmpwttes based on 80,000 psi yield sbeNk (Tensile st qlh = 82,W0 psQ 4) Ad secion pmpadin am net values. • TABLE 29 - MINI -V BEAMTM ALLOWABLE REACTIONS For St 1 Inds - 25.4 im % I pA =14.594 Wm. 1) Pmpertm Lased on 38,000 psi yield strengh except where nofed. ( Tensile strength - 52.000 psi) 2) -" Pmpertles based on 80,000 psi yield strength (Tens% strength = 82,000 ps) c PROFILE OF MINI -V BEAM"' 4 8 15, SCREW FASTENER PATTERNS TO SUPPORT BEAUS PATTERN 4 DECK TYPE GAGE IAINIMUM BEARING ALLOWABLE LOAD MS) REACTION LOCATION END OF INTERIOR LENGTH DECK 26' is 234 528 24 1.5 321 732 Mlnl- V-8eam 22 1S 453 1110 20 1.7 776 1650 18 15 1620 3040 ER -2757 PATTERN 7 C FIGURE 9— MINI -V -BEAM "- DIAPHRAGM SHEAR WITH SCREWS Page 53 of 56 TABLE 30 - MINI- V- BEAMTH DIAPHRAGM SHEAR CAPACITY (q) and FLEXIBILITY FACTOR (F) WITH ITW BUILDER TEKS OR I.C.N. TRAXX SCREWSI• ER -2757 GAGE SIDE2.AP ATTACHMENT TRAXX PATTERN SPAN a -0' S -0' 6' -0' T -0' 8' -0` 9' -V (� 12' o.a 4 179 176 174 173 172 172 1+211R F 155 +527R 13.9 +422R 12.9 +3518 121 +30111 11.5 +263R 11 +2348 106 Q 18' ac 4 123 121 119 118 117 116 F 19.4. +527R 172 +422R 15.8 +351R 14.5 +301R 13.6 +263R 13 +2348 124 +211R Q 24' ac 4 q 96 93 91 90 89 89 88 F 23 +527R 202 +4228 182 +351R 16.8 +3018 152 +2B3R 14.8 +2348 14.1 +211R lAld -Span 4 q 96 • 76 64 54 48 42 ' 38 F 23 +527R 23.1 +422R 23.2 +351R 233 +301R 23.4 +263R 23.4 +23411 235 +211R t� Thkd Points 4 q 137 110 91 78 65 61. 55 F 18.1 +527R 182 +42211 182 +351R 183 +301R 18.4 +263R 18.4' +234R 185 +211R 26 Quarter Points 4 q 179 143 119 102 89 79 71 F 15.5 +577R 15.6 +422R 15.8 +351R 15.7 +301R 153 +263R 15.8 +234R 151 +211R V 4117 o c 7 183 180 178 178 175 174 173 F 15.4 ±65.9R 139 +52711 122 +43SR 121 +37.6R .11.5 +32.9R 11 +29.311 107 +263R ® 18' ac 7 128 - 125 122 120 119 118 117 F 19 +65.9R 169 +52711 155 +43.98 14.4 +37.6R 13.6 +329R 13 +29.3R 124 +283R 24' or- 7 100 97 94 93 92 91 90 F 223 +65.9R 19.8 +52.78 18 +439R 157 +37.6R 15.8 +329R 14A +29.38 14.1 +263R M1dSpan 1 100 80 67 57 50 44 40 F 1223 +65.9R 225 +527R 225 +439R 22.7 +37.6R 228 +32.98 23 +29.38 23.1 +28311 � Third Points T q 1 142 113 94 81 71 63 55 F 17.8 +M R 17.9 +5278 18 +43SR tat +37.68 182 +32.9R 183 +293R 183 +263R Quarter Points 7 q 163 147 122 105 92 81 73 F 115.4 +MAR 15.4 +5278 155 +43911 15.6 +37.68 153 +3298 151 +29.38 152 +26311 Q 17 aG 4 q 225 221 218 218 215 214 213 F 113 +3428 102 +274R 9.47 +2288 8.92 +196R 8.5 +171R 8.16 +1528 79 +137R Q 18' as 4 q 158 152 150 148 146 145 144 F 14 +3478 12S +274R 11.4 +228R 10.6 +1968 10 +171R 956 +1528 9.17 +137R §24' 4 122 118 115 1* 112 111 110 F 16.5 +3428 14.6 +274R 133 + 22BR 123 + 19GR 11.5 +171R 109 + 152R 10.4 +137R a M "pan 4 4 122 98 81 70 61 - 54 49 F 165 +3428 16.6 +274R 163 +228R 187 +196R 163 +171R 18.9 +ISM 17 +137R Q TIM Points 4 q 173 139 115 99 Be 77 69 F 13.1 +34211 113.2 +274R 133 +22BR 133 +196R 13.4 +171R 13.4 +152R 135 +13711 24 Quarter Points 4 . 225 160 150 128 112 100 90 F 113 +3428 11A +274R 11A +22SR 115 +196R 11.5 +171R 115 +1528 11.8 +137R 4$ 12'oz 7 232 227 , 223 220 218 217 216 F 112 +4288 102 +34.2R 9.44 +M R 891 +24.4R 8.51 +21AR 8.19 + 19R 93 7 +17.1R Q 18' O.c 7 I117 164 158 155 . 152 150 148 147 F +47-BR 12.3 +34.28 11.3 +28.SR 10.6 +24AR 10 +21AR 9S6 +19R 9.19 +17.1R 24' or. 7 130 124 120 118 116 114 113 F 159 +42.88 143 +34,28 13.1 +26.58 121 +24.4R 11.4•' +21AR 109 +19R 10.4 +17.1R L&ISpan .7 130 104 86 74 64 57 51 F 159 +42.8R 16 +34.28 161 +28.511 163 +24AR 18.4 +21AR 16S +19R 165 +VAR 0 Thhd points 7 181 145 120 103 90 80 72 F IF 129 +42.BR 13 +34.28 111 +28.58 131 +24AR 13.2 +21AR 133 +19R 13.4 +17.1R @OnderPoints T 232 188 . 155 132 116 Im 92 1 11.6 112 +42.88 113 +34.2R 113 +28.5R 11.4 +24AR 11.4 +21AR 11.5 +1911 +17.111 151 Page 54 of 56 TABLE 30 • MINI- V- BEAMTM DIAPHRAGM SHEAR CAPACITY (q) AND FLEXJBILITY FACTOR (F) WITH ITW BUILDEX TEKS OR I.C.H. TRAXX SCREWS ER -2757 GAGE SIDEUP ATTACHMENT TRAXC PATTERN SPAN 4'-0' S-0' 8' -0' T-0" 8' -0' 9' -0' 10' -0' 12'0.c 4 290 284 2B0 277 27S 273 272 6.6 +103R F 9.42 +258R 8.52 +206R 7.9 +1728 7.45 +147R 7.1 +129R 612 +115R (� 18' o.c 4 204 - 198 193 190 188 186 185 7.67 +103R F 11.8 + 258R 10.4 + 20611 9.51 + 172R 8.87 + 147R 838 +129R 7.99 +115R 24' o.C. 4 q 160 . 154 150 147 145 143 142 F 13.6 +258R 12.1 +206R 11 +1728 102 +147R 9.6 ±129R 9.11 +115R 8.7 +103R MldSpan 4 Q 160 128 107 91 80 71 64 - F 13.6 +258R 131 +206R 13.7 +1728 13.8 +147R 133 +129R 14 +115R 14.1 +103R (ft Thi Points 4 9 225 180 150 128 112 100 90 F 109 +258R 11 +206R 11 +1728 11.1 +147R 11.1 +129R 112 +115R 11.3 +1038 2 � Quartet Points 4 290 232 • 193 168 145 129 116 F 9.42 +25BR 9.47 +206R 9.51 +1728 9.56 +147R 9.8 +129R 9.65 +115R 9.69 +103R 12'ox. 7 4 1 302 293 288 283 2110 278 276 F 19.29 +3228 8.46 +25.BR 7.87 +21.5R 7.44 +18.4R 7.11 +111.1R 6.85 +14.38 6.63 • +12.9R a 19' O.C. 7 q .. 215 207 201 197 194 191 189 F 11.3 +32.211 102 +25.BR 9.41 +215R 8.82 +1BAR 8.38 +16.111 8 +14.38 7.7 +12911 ® 24'a.c T 172 163 • 157 153 150 148 146 F 13 +32.2R 11.8 +25.BR 10.9 +21.5R 10.1 +18.4R '9.53 +16.1R 9.08- +14.38 8.7 +129R Q MldSpan 7 172 137 114 98 85 76 68 F 13 +3218 132 +25.8R 133 +21.5R 13.4 +18AR 13S +16.1R 13.6 +14.38 13.8 +12.9R Third Points 7 237 189 157 135 118 104 . 94 F 101 +3218 10.7 +25.BR 10.8 +215R 10.9 +ISAR 11 +16.111 11.1 +1438 11.1 +12.98 Quarter Points 7 q 302 241 1 201 172 150 133 120 F 9.29 +32.28 9.35 +25.88 9.41 +215R 9.47 +18AR 9.53 +16.1R 9.59 +14-3R 9.65 +12.98 (k IT 0.C. 4 q 376 366 360 355 352 349 347 F 7.83 +194R 7.11 +155R 6.6 +13OR 6.Z +111R 5.94 +97.2R 571 +SUR 5.53 +77.7R (A 18' o c 4 ` q 267 257 250 246 242 239 237 F 9.59 +194R 8.62 +155R 793 +13OR 7.41 • +111R 7.01 +97.2R 6.69 +86.4R 6.43 +777R Q 24'o4 4 q 212 202 195 191 187 185 162 F 11.1 +194R 9.99 +1558 9.15 +13OR 851 +111R 8.02 +9728 7.62 +86.4R 7.29 +77.7R Lwpan 4 212 169 141 . 12D 105 93 84 F 11.1 +;S4R 112 +155R 113 +130R 11.4 +111R 113 +9728 11.6 +86AR 117 +77.78 !� Th6d Points 4 q 294 235 195 167 146 130 117 F 9.03 +194R 9.09 +1558 9.15 +13OR 921 +111R 927 +97.28 9.33 +86.4R 9.39 +77.78 2 0 Quarter Points 4 q 376 301 250 214 187 166 149 F 713 +194R 7.88 +155R 793 ' +UOR 79 7 +11111 8.02 +97.28 8.0 8 +SSAR 8.11 +7778 12' 0.m 7 394 380 371 365 360 356 353 F 7.7 +24.38 7.04 +19AR 8.57 +18211 622 +139R 595 +12.1R 5.73 +10.88 5.56 +17R 18'0 T 214 271 262 255 250 247 244 F 9.3 +24.38 8.45 +19AR 7.83 +16.28 7.36 *1398 699 +121R 6.69 +10.88 6.45 +9.7R 24' o c 7 q 230 216 207 200 195 192 189 F 10J +2438 918 +19AR 896 +16.28 8.4 +1398 7.95 . +12.1R 7.59 +10.BR 7.29 +9.711 a MldSpan 7 q 230 183 152 130 113 100 90 F 101 +2438 10.8 +19AR 109 +16.28 11 +139R 11.1 +121R 112 +10.BR 11.4 +9.7R Q Third Points 7 312 249 207 177 154 137. 123 F 879 +24.3R 8.87 +19AR 896 +18211 9.04 +13.98 9.12 +121R 92 +10AR 9T7 +97R Ouar6at Pofnb 7 4 394 315 262 224 195 173 156 F U +24.38 7.77 +19AR 17.83 +16.28 7.89 +1398 7.95 +12111 8.01 +10.811 8.07 +9.7R It Page 55 of 56 ER -2757 _ ATTACHMENT PATTERN 4 5 -0' r-a I T•4' I r o 9' -0' 10'•0' 12' 0. C. 4 q 570 F 5.85 +125R 550 5.33 +99AR 537 4.97 +83.3R 527 520 515 511 4.7 +71AR 4.49 +624R 4.32 +55.5R 4.18 +SDR 18 o.c 4 q 411 F - 7.D8 +125R 391 6.42 +99.9R 378 5.94 +83.3R 369 - 362 356 352 538 +71.411 5.29 +624R 5.06 +55SR 4.87 +50R (� 24' ox- 4 q 332 F 8.13 +125R 312 7.37 +99.98 - 299 6.81 +83.3R 290 283 2T7 273 6.38 +71AR 6.03 +624R 5.75 +55SR 552 +5011 Mid-Span 4 q 332 F 18.13 +125R 264 8.22 +99.911 220 8.31 +83.3R 188 164 145 130 6.39 +71.4R 8.48 +624R 8.56 +55.5R 8.65 +SOR Q TM Points 4 q 451 F 8.69 +125R 360 8.75 +SUR 299 8.81 +83.3R 256 223 198 178 6.87 +71AR 1 8.93 +624R 6.99 +55.5R 7.05 +SDR Quarter Points 4 570 HF5.85 +125R 455 529 +99.98 378 5.94 +83.38 323 283 251 225 599 +71.48 6.03 +62411 8.08 +555R 6.12 +SOR 18 a 17 o.c 1 F 72 601 5. . +15.6R 577 5.27 +125R 559 - 4.94 +10AR 546 538 529 52N3 . 459 +8.9R 4.5 +7.8R 4.34 +69R 421 +62R 18'o c T 4 446 F 6.61 +15SR 418 6.26 +125R 400 5.85 +10.48 387 378 370 . 364 533 • +8.9R 527 +7.BR 5.07 +69R '4.69 +6.211 24 o G 7 q 367 F 771 - +ISAR 339 7.1 +12.58 321 6.63 +IDAR 3D8 298 291 285 6.27 +83R 5.97 +7.BR 512 +69R 5-51 +6.2R @MAdSpan 7 4 367 F 17.71 +15.5R 292 7.92 +125R 242 7.94 +10.411 2D6 179 159 142 8.05 +8.9R 8.1B +7.8R 8.27 +OR 8.38 +62R Thud Points 7 q 486 F 6.47 +155R 3117 655 +12SR 321 6.83 +10AR 1 274 239 211 190 671 +BAR 6.79 +7.8R 6.87 +69R 6.95 +82R ®Quarter Points 7 604 F 5.72 +15.6R 482 5)9 +12511 1 406 1515 +IDAR 342 1 298 264 237 591 +8.911 i 5.9T +7.811 I 6.03 +6.9R 8.09 +6211 For St 1 Inch = 25.4 mm, i foot - 304.8 mm, i pff � 14594 Nhn. Table Notesc 1) q - Aflaxabte diaphragm shearin pounds per Bneai foot 2) R - Ratio of VW11 t load span of lhe`dadk b letg9t 01 each deck panel 3) F - Fk*lty Factor. The average mho kdws a diaphragm web A dolled In a span of 1 foot under a shear of 1 pound per foot 4) PaBems of TEKS & ICH TRAXX screw iastafts b supports members are shown In Flgurs 9. 5) The spa*Q of scows, a, In tell, bslardrg sheet to 31 udural framing along a Bute transferring shear b a chard, strhd, or other element parallel to the flutes shag be: a4 = 25,0001'-m I q(19tu" for Noe 29 and No. 26 gage decla and a, s 22.MDP for N& 24, No, 22- No. 20 and Na 18 gage decks where: f= lht mess of dedrin inches q - nequlrod design shear (allarrabb stress design) at sh^ar transfer. N pB 6) No incrusa In strrss Is permlhd for wind or selmk fort 7) TEKS & ICN TRW wows shall be type 112 -24 for sheet to hff* -q and t12 -14 for sheet to sh eel 8) See Table 27 for dlaptuagm ft&'Tty Bmitatioas TABLE 31- HR -36 AND BOX RIBTL SECTION PROPERTIES +- Deck Type Gape Weight (psf) Base Metal Thickrim 1 Positive S (INJ Positive I (IN`) Negative S (INJ Negative I (INJ 29 Q.74 0.0139 0.062 0.056 0.055 0.059 HR -36Ta 28 0.90 0.017 0.080 0.074 0.075 0.075 26 0.98 0.0186 0.090 0.083 0.064 0.084 BOX RIBW -26 Q.95 1 0.0183' 0.066 1 0.057 1 0.065 0.071 For St 1 Inch a 25.4 mm,1 foot - 304.8 rmf.10 - 6894 Pa,1 psf a 47.88 Pa. 1) Tabulated vakm am based an a 14od - wide sedon. 2) Properties are based on WAM psi yield strength (Tensile sbengl a 82.000 pso 3) Al sedon properties are netvalues. J- TABLE 30 - MINI -V BEAMTM DIAPHRAGM SHEAR CAPACITY (q) AND FLEXIBILITY FACTOR (F) WITH ITW BUILDEX TEKS OR I.C.H. TRA XX SCREWS14 Page 56 of 56 TABLE 32 • NOR -CLAD@ SECTION PROPERTIES t.2,] ER -2757 Gage Weight s Base Metal Positive S Thickness IN IN Positive I N Negative S Negative 1 (IN) 29 0.61 0.0133 0.0133 0.0073 0.0219 0.0062 For 3L' 1 Itch - 25A mm, 1 loot- 304.8 rrt74 1 pal - 6894 Pa.1 pat 2 41.88 Pa. Table Nahm 1. Tabulated valLm are based m a 14botwlde secfw. 2. Proper6m based an 80,000 psi yield sbangih. (Twsb strength= 62.000 psi 3. All section pmpertjasars netvalues. TABLE 33 - NOR-CLADe ALLOWABLE DIAPHRAGM SHEAR AND FLEXIBILITY FACTOit t,2 v Type 1 Minimum Gage I Max Deck Span I Shear Value — Q —F Nor -Glade 129 ga 17 -0' 125 plf 152 For SI: 1 rods : 25A m>L 1 loot* 304.8 nary 1 pC - 14.594 Nim 1 psf - 47-BB Pa. Table Nolen -1. See Table 21 of this report for dtaphragn Ifexiblllllf Om8ailorts. 2- Panel aitadled v ith Y94S x 1'r Woodgrlpn+ scam to intemredlete and end support member as shown in Figum 10. 3. ' Panel-to-pbal Melap cmmectlorrs shal be wtlh'1A4 x716 Lap SD sawn A24 inr w on carder. A. Panel attached with 99 -15 11 W Wootre scram spaced 121n has on canler to dlapbrapm pedrnetar mambas para8d to the panel span. L7 EDGE DISTANCE WOODGRI* 19 SCREW x 1 1W LO AS EACH RIB , ,_2x MIMMUM DOUGUIS -RR LARCH WOOD SUPPORTS O 24 MIMMUM SPECIFIC GRAVITY. G - OS DECK END — SECT WOODGRIP t9 SCREW x 1 1 1 r CIC. 36' 0 1 o.c. - � r4 �r _ W. L44-1 1 0' i 16 WOOD ;UPPORT NOR -CUB DECK SEC TION DECK EDG PARALLEL TO R IB SIDE LAP FASTEMNG IMPAX 1/4 -14 x Ile' SCR O 24' O.C. MID SPAN WOODGRP e9 SCREW x 1 1? LONG O EACH RIB � 2xM INU M DOl1GLAS -FIR LARCH WOOD SUPPORTS O 2r MC. M UMUM SPSMb GRAM, G - OS DECK END ELEVATI FIGURE 10— NOR -CLAD I ` J Llit' �ru� BO Evaluation Service I nc. IC Acuedfted by tfie a ���' y American Naitanal Standards Institute 5360 WORKMAN MILL ROAD • WHITTiER, CALIFORNIA 90601 -2299 - f••• • A subsidiary corporation of the International Conference of Building Officials EVALUATION REPORT ER -506; Copyright 0 2001 ICSO Evaluation Service, Inc. Reissued April 1, Zoo Filing Category: FASTENERS— Manual, Pneumatic or Power - driven Steel Studs and Nails (066) REMINGTON LOW - VELOCITY POWDER - ACTUATED FASTENERS 3.0 EVIDENCE SUBMITTED DESA INTERNATIONAL Data in accordance with the iCBO 5s Acceptance Criteria fc INDUSTRIAL Power -driven Fasteners in Concrete, Steel and Masonry EiE BO BO WLING GREEN, KENTUCKY ENTUCKY 42102 ments (AC70). dated September 1995. 1.0 SUBJECT. 4.0 FINDINGS Remington Low - velocity Powder - actuated Fasteners. That the Remington Low - velocity Powder - actuated Fa: teners described In this report comply with the 1997 Un 20 DESCRIPTION: form Building Codd", subject to the following cond 21 General: lions: The Remington low-velocit gt ty shank diameter o f 0. fasteners are drive pins with a nominal shank diameter of 0.144 Inch (3.65 4.1 The fastener Installation complies with this repo and the manufacturer's Instructions. _ mm) or 0.205 inch (5.20 mm). The fasteners are manufac- 42 Maximum allowable shear and tension values ar tured from AIS1 1055-1085 modified steel wire. They are aus- as noted in this report. No Increase is permitted is tempered to a Rockwell C hardness of 53 -56. The fasteners wind or seismic loading conditions. are mechanically zinc plated to a minimum thickness of 0.0002 inch (0.0051 mm). The plating is in conforrnancd with 4.3 Where wood members are attached by fastener ASTM A 164, Type RS. The Remington fasteners have a bending yield stress, of 265,000 psl (1827 MPa). The fas- Into steel or concrete, the connection to wood mu. be investigated to ensure that the allowable woc tenets are installed with emington's low- velocitypowder -ac- tuated fastening tool and are Intended to be Installed In nor- stresses am not exceeded. Washers are requrred order that wood - bearing stresses will not excec mal- weight concrete and steel. For connections resisting allowable values where connections are subjectc to tension forces. tension loads, a steel washer conforming to ASTM A 366 must be used. The washer must be a minimum of 3 14 Inch 4.4 • Attachment of sill plates to the perimeter of co (19.1 mm) In diameter and 0.06 inch (152 mm) In thickness. crets slabs Is allowed under the following conc The three types of Remington fasteners recognized In this dons: report are drive -pin fasteners, threaded -stud fasteners, and angle -clip fasteners. Allowable loads.are shown in Tables 1 4.4.1 No cold joint exists between the slab ar foundation below the plate. through 3 for eachtype of fastener Installed in normal - weight concrete. Allowable loads for the fasteners installed in steel 4.42 No plate Is Installed on slabs supported i are shown in Table 4. The fastener spacing requiremerits for concrete block walls. attachmant ofwoodpiateto concrete footing orslabarefound 4.4.3 The maximum spaclrig of fasteners attac in Table 5. The allowable loads for attachment of drywall Ing wood plates to concrete complies w I channel to concrete footing or slab are shown In Table 8. Tibia S. 22 Installation: 4:01A The fasteners are limited to Installation The Installation of fasteners into concrete and steel ]s by a Re- Seismic Zones 0, 1, 2 and 3, and in are; mington low - velocity powder - actuated fastening tool. The d of speed u with a basic wind s p p to 80 mph p ( 1 fastening procedures must comply with the manufacturses largh)' . recommendations. 45 The minimum concrete thickness must be thr 2.3 Identification- times the fastener penetration Into concrete. The fasteners are Identified by a label on the packaging, not- 4.6 The fasteners are driven Into concrete only aft Ing the manufacturer's name (DESA Intemationan, the cata '• the designated compressive strength • has bey log number, the fastener size, and the evaluation report num- reached. ber (ICBO ES ER- 5067). This report is subject to re- examination In two years. Evaluation reports ofICBOEvafu Won Service, Inc, are isued solely to prv" information m ClarsA arembers ofICBO, atilimrg the code upon which the rep is bared Evaluation reportr are not to be construed as representing aesthetics or any otheraM -Outes not rpeci)Sm fy addressed nar as an endorsement arrecommi datioa for ase of the subject report I his report is based upon independent tests or other technical data tubmidedby the appfie=L The ICRO Evaluation Servite, lie, trehniealstaff has reviewed) test results and/or other&f4 but does notpassess test facEdes to make an independent verif ication. Thars it no warrant] by ICBO Evaluation Service, Inc, erpr arimpTied, as t o any "Findr mear othermatterin the reportorasto any product covered by the report This duclaiwerincludes, but is not limited to, merrhantabrZ Page 2 of 2 ER -6067 TABLE 1— ALLOWABLE LOADS FOR REMINGTON LOW - VELOCITY MINIMUM EDGE DRIVE -PIN FASTENERS INSTALLED IN NORMAL - WEIGHT CONCRETE (pounds) CONCRETECOMPRESSNESTREN(ITH CONCRETE COMPRESSIVE STRENGTH 1DNINUM SHANKDUIMET'ER SHANK EDGE MINIMUM 25 pd 7,SO0 pd 3 Pal ],Stq pd 4AM P21 CATALOG OIAYt7FA PENETRATION DISTANCE SPACING T ! T S T YINIMta! ;yeppd 2.3 2 ,=pd sSaaOct 4,000'pd HUMBER c pnchu) pnohu{ ache T 3 3 T ! SP 125 — SP 300 0.144 1 3 4 75 160 90 150 105 160 125 165 140 165 RDN32 — RDN72 0.144 1 3 4 21S 185 225 185 235 190 245 195 255 195 MIC64 3 4 200 b kbid 3 1 315 L 380 1 375 445 435 For SIt 1 inch = 25.4 rant. l lbf = 4.45 N.1 psi = 6.89 kPa. IThe fasteners shall not be driven until the concrete has reached the designated compressive strength 2 Tbeallowableshearandtensionvalues arcfurtheindicatedfaste Connectedwoodorsteelmembers „ tbeinvestigatedseparately iaac ordance design cutmia. 3T =j tension. S = sprat TABLE 2— ALLOWABLE LOADS FOR REMINGTON LOW - VELOCITY THREADED -STUD FASTENERS INSTALLED IN NORMAL - WEIGHT CONCRETE (pounds) For SI: 1 inch = 25.4 mm. l lbf = 4AS N.1 psi = 6.89 kPa. IThe fasten shall not be driven until the connate bas reached the designated compressive strzagth '?'II= allowable shrar and tension values arc forthe indicated fasteners only. Connected wood or steel memben mustbe investigated separately in accordance with accept design crite 3 T = tension. S = shear TABLE 3— ALLOWABLE LOADS FOR REMINGTON LOW-VELOCITY ANGLE -CLIP FASTENERS INSTALLED IN NORMAL -WEIGHT CONCRETE (pounds) SHANKDUWETER MINIMUM MINIMUM EDGE MWINUM CONCRETECOMPRESSNESTREN(ITH W AR SHANKDUIMET'ER SHARK DISTANCIS EDGE YINIMta! ;yeppd 2.3 2 ,=pd sSaaOct 4,000'pd CATALOG NUMBER CATAT0G MAM ETER PENEMATION DICE STAN SPACING T c6u) ACC 125 0.144 i ! T 105 100 AtxDN32 400 NUMBER sk) MCW) Poch") ul - TSC 375 0.204 1 3 4 200 b kbid 3 1 315 L 380 1 375 445 435 510 For SI: 1 inch = 25.4 mm. l lbf = 4AS N.1 psi = 6.89 kPa. IThe fasten shall not be driven until the connate bas reached the designated compressive strzagth '?'II= allowable shrar and tension values arc forthe indicated fasteners only. Connected wood or steel memben mustbe investigated separately in accordance with accept design crite 3 T = tension. S = shear TABLE 3— ALLOWABLE LOADS FOR REMINGTON LOW-VELOCITY ANGLE -CLIP FASTENERS INSTALLED IN NORMAL -WEIGHT CONCRETE (pounds) For S1: 1 inch = 25.4 mm. l lbf = 4.45 N.1 psi - 6.89 kPa. ITbe fasteners shall not be driven until the concrete has reached a minimum compressive strength of 2,000 psi. 2 1ba allowable tension values are for the angle clip fastena assembly only. Connected wires mast be investigated separatrly in accordance with accepted design c im TABLE 4— ALLOWABLE LOADS FOR REMINGTON LOW VELOCITY FASTENERS INSTALLED IN STEEL (pouncrs) CATALOG SHANKDUWETER MINIMUM MINIMUM EDGE STEELTHIOMESS CONCRETE COMPRE9SNE STRENGTH=2,000 pat W AR SHANKDUIMET'ER PENETRATION DISTANCIS MINIMUM SPACING Tanaton ObUclue Tendon CATALOG NUMBER (Inch) (inch) - nchns (inch") 1 12 ACC 125 0.144 1 3 4 105 100 AtxDN32 400 680 - For S1: 1 inch = 25.4 mm. l lbf = 4.45 N.1 psi - 6.89 kPa. ITbe fasteners shall not be driven until the concrete has reached a minimum compressive strength of 2,000 psi. 2 1ba allowable tension values are for the angle clip fastena assembly only. Connected wires mast be investigated separatrly in accordance with accepted design c im TABLE 4— ALLOWABLE LOADS FOR REMINGTON LOW VELOCITY FASTENERS INSTALLED IN STEEL (pouncrs) CATALOG SHANKDUWETER MINIMUM EDGE DISTANCE MWIMUMSPACING STEELTHIOMESS TENSION W AR NUMBER Qnch) (Inch) (Inchan) (Inch) (pounds,) (pounds) SP SO —SP 30D 0.144 1 12 1 12 /T6 330 680 RDM6 — RDN72 MTC72 0.144 1 12 1 1 4 400 680 For SE 1 inch - 25.4 mm. I lbf - 4.45 N. ITbe entire pointed "portion of the fasteaa must penetrate the steel to obtain the tabulated values. 2 1be allowable shear and tension vahucs an for the above- indicated fastener only. Connected wood or steel member — Investigated separately in accordance, accepted design criteria. - TABLE r-- ALLOWABLE FASTENER SPACING FOR ATTACHMENT OF WOOD PLATE TO NORMAL - WEIGHT CONCRETE FOOTING OR SLAB Onchrse) For; SL• 1 inch - 2S.4 mm.1 psi - 6.89 kPa. ISpacings arts based upon the attarltmeat of 24nch n=iW thidmess wood sill plates, having a specific gravity of 148 or gseates, to Conatte floor slabs or footin. accordan= with Section 2326.6 of the code for maxilmrm two -sorry buildings. 2 AI1 Walls shall have fistcaea plated 6 itches from the ends of sill plates, with ma)dm= spacing betweat as shown in the table. hulicated fisten Dball have two pins plaed 6 inches and 10 inra%" respectively. from each end of sM plates with maw spacing between as shown in the t 4 Al1 fasten mast be installed with a rainimtmr inch diameter, 16 gaga (0.06 inch) washes TABLE r-- ALLOWABLE LOADS FOR ATTACHMENT OF DRYWALL CHANNEL TO NORMAL - WEIGHT CONCRETE FOOTING.OR SLAB.' WM ER D OI/ERAIi LEHO, Ti HEAD DIAMETER SHANK � ETER CONCRETE COMPRESSIVE STRENGTH - 2.000 pal Irdad0 naa ring k►WIerr Hanbawing Pamanna Easarlarwaw CATALOG NUMBER ) cb) 2,ODO Shear so or RDN19 SP 300 or 3 0300 0.144 13 3.0 1S SPIN 300 For; SL• 1 inch - 2S.4 mm.1 psi - 6.89 kPa. ISpacings arts based upon the attarltmeat of 24nch n=iW thidmess wood sill plates, having a specific gravity of 148 or gseates, to Conatte floor slabs or footin. accordan= with Section 2326.6 of the code for maxilmrm two -sorry buildings. 2 AI1 Walls shall have fistcaea plated 6 itches from the ends of sill plates, with ma)dm= spacing betweat as shown in the table. hulicated fisten Dball have two pins plaed 6 inches and 10 inra%" respectively. from each end of sM plates with maw spacing between as shown in the t 4 Al1 fasten mast be installed with a rainimtmr inch diameter, 16 gaga (0.06 inch) washes TABLE r-- ALLOWABLE LOADS FOR ATTACHMENT OF DRYWALL CHANNEL TO NORMAL - WEIGHT CONCRETE FOOTING.OR SLAB.' WM ER D cE) R PENP -h)) OH AT TACHm ITEM STRENGTH. r (Pail TYPE OF LOAD l SP 75 0.144 S IB No. 25 Gage Steel Channel 2,ODO Shear so or RDN19 0.I44 is No. 20 Gage Steel Channel 2,000 Shear 75 For SI: 1 inch = 25.4 mm, l Ibf = 4AS N, I kd = 619 MPa, I psi = 6.89 kFL IThe fastener shall not be driven until the concrete has reached a minimum strength of 2,000 psi. 2 1be No. 20 and No. 25 gave steel cbanneb musthave a ninirnumbase -metal thic3mes! of 0.035 inch and O.MD inch, respectively, and mrutbe for=d from steel h. a miaiumm specified yield strength of 33 ksi ��sor y •�'`° '�= iCBO Evaluation Service, Inc. � 5360 WORKMAN MILL ROAD WHITTiEA, CALIFORNIA 90601 -2299 � _oss' •" A subsidiary corporation of the International Conference of Building Officials EVALUATION REPORT Copyright ® 2000 iCBO Evaluation Service, Inc. ER -137 Reissued March 1: 2ot Flung Category: FASTENERS -- Concrete and. Masonry Anchors (066) ITW RAMSET/RED HEAD SELF - DRILLING, TRUBOLT WEDGE, AND MULTi -SET 11 CONCRETE ANCHORS ITW RAMSETIRED HEAD 1300 NORTH MICHAEL DRIVE WOOD DALE, ILLINOIS 50191 1.0 SUBJECT ITW Ramset/Red Head Self - Drilling, Trubolt Wedge, and Multi Sat 11 Concrete Anchors. 2-0 DESCRIPTION 2.1 i7W Ramset/Red Head Self- Drilling Anchor. 2.1.1 General: The ITW Ramset/Red Head anchor is a self- drilling concrete expansion shell anchorwith a single cone ex- pander. Both elements are made from heat-treated steel. The steel for the body conforms to AISi C- 12L14, and the steel for the plug conformsto AIS I C -1010. The anchor has elghtsharp teeth at one end and Is threaded internally at the other end. The outer surface of the tubular shell at the toothed and has annular broaching grooves and lour 'milled slits. At its threaded end, the anchor is provided with an unthreaded chucking cone that has an annular break -off groove at its base forflush mounting. Anchor shell and expandercone are electrodeposit zinc and chromate - plated.. 21.2 Installation: Embedment, spacing, edge distance, and concrete requirements are shown in Tables 1 and 2. The anchors are Installed by a Model 747 Roto -Stop Hammer, by air or electric impact hammer, or by hand. The anchoris used as a drill in fomring the hole In normal - weight concrete. After the hole Is formed, the anchor must be removed and the hole thoroughly cleaned. The hole depth is regulated by the drill chuck A Red Head plug must be set into the bottom of the an- chor prior to insertion in the hole. The concrete anchor must be driven over the plug, to cause expansion of the anchor In the hole. The chucking end of the anchor is broken off with a hammer blow. Verification that the anchor has been Installed properly is evidenced by the fact that the anchor does not project above the surface of the concrete and the red plug is visible at the bottom of the hole. 22 nW RamseLf led Head Truboft Wedge Anchor. 22.1 General: The Trubolt Wedge anchor Is a stud bolt type of dmp.4n anchor. The anchors are cold- formed or machined from zinc - plated and chromate- dipped carbon steel, hot- dipped galvanized carbon steel or staWess sthel. Steel used to produce the anchors complies with AISi C to AISI C-1022 and AISI C -1213 carbon steels, Type 304 orType 316 stainless steels. Hot -dpped galvanizing compiles with ASTM 153 Class C requirements. The expander sleeves are fabri- cated from stainless steel orcarbon steel meeting the require- ments ofType 302 orAISi C - 1010, respectively. Cold - forme anchor studs are available only for the. - , 3 /84nct 1 /z - inch - 5 18 and 3/A Inch - diameter (8.4, 9.5,127, t5 and 1.9.1 mm) wedge anchors. Tha' anchor stud Is thread at its upper and and has a straight cylindrical section reduc In diameter, around which the expander sleeve is formed, stralght - tapered section enlarging to a cylindrical base acts increase the diameter of the expander ring as the stud is fig! ened in the concrete hold. The expander ring,.which is form around the stud bolt, consists of a split watt "coined" groove at each end. The expander ring is design to engage the walls of the concrete hold as • the tapered port] of the stud is forced upward against Its interior.- - 22.2 Installation: Embedmenk spacing, edge distan and concrete requirements are shown in Tables 3, 4, 5 a 1 o. Holes must be predrilled In normal - weight or Oghtwell concrete with carbide - tipped masonry drill bits manufactw within the range of the maximum and minimum dnil tip dims sions of ANSI 821215 -1994. The anchors must be instal in holes the same nominal size as the anchor size, will greater depth than the length of embedment desired, but less than the rrinimum embedment The hole must cleaned out prior to Installation of the anchor. The and must be tapped into the hole to the embedment depth desir but no lessthan the minimum embedment A standard hex onal nut and washer must be used over the material be fastened and the nut tightened until the mlnimuminstallai torque, as indicated In Tables 3 and 10, is reached. 23 ITW RamsetlRed Head Multi-Set 11 Anchor. 23.1 General: The MulthSet anchors are designed to installed In a predrilled hole equal to the anchor diameter.' anchor consists of a shell formed from carbon steel mee the minimum requirements of AISI 0-1213 and an expans plug formed from carbon steel meeting-the minimum fegL menu of AISI C -1010. The expansion and is divided into 1 equal segments by radial slots. The expansion plug Is pre sembled and is cylindrical in cross section. 2.3.2 Installation: Embedment, spacing, edge distar and concrete requirements are shown in Tables 8, 7 an Holes must be preddled in normal- weight or lightwelght c crate with carbide - tipped masonry drill bits manufach within the range of the me:dmum and minimum drill tip dirt sloes of ANSi 8212.15 -1994. The anchors must be lnsta In preddOed holes, the hole depth and diameter for each chor size being listed in Tables 6, 7 and 9. After the hol ddlied, it is cleared of all cuttings. The - anchor is set by In. Ong the expansion shell and then driving the cone expar with a setting tool provided with each anchor size. When Evalaatdon reports of IC30 E►aluatlon Servdcy Inc, are hvwd solely to provide information to Ch=A members of ICBO, ttftTianr the code aeon which the n isbered Evahtadon reports an not to be consrrrmdas represeatdnraesMedes amity otheradributesnotspecdf=gy addrsssedaoras an endorsement orreeomi datdon for use of the subjed report 77th report ft based upon independent tests or other fe rry d=1 data sabmidted by the appEcant The ICBO Evaluation Senvice Ina., technical da$hm reviewe, testrunki and/or otherdata, but does not possess test fac0les to mate an independent vaVkatdon. there is no warranty br ICBO Evaluation Sa vdcr, Ina., es2 orimplded, as to any "Flnirwr" or othermatterin the r eport orasto anyprodud covered by the report T7tds diidadmerfncludes, but it not Idmited to, merchantab 1 page 1 Page 2 of 7 ER -1372 cone expander is driven down Into the anchor, the legs of the shell expand. 2.4 Design: Allowable static loads are as set forth in Tables 1, 3, 6, 9 and 10. Allowable loads for anchors subjected to combined shear and tension forces are determined by the following equation: (Psl p� + (VW V) 5/3 5 1 where: P = Applied service tension load. Pt = Allowable service tension load. V = Applied service shear load. Vt = Allowable service shear load. The anchors cannot be subjected to vibratory loads. Sources of such loads Include, for example, reciprocating en- gines, crane loads and moving loads due to vehicles. 2-5 Special Inspection: When special inspectlonls required, compliance with Section 1701.52 of the code Is necessary.The special inspector must be on the jobsite continuously during• anchor installation to verify anchor type, anchor dimensions, concrete type, con- crete compressive strength, hole dimensions, anchor spac- Ings, edge distances, stab thickness, anchor embedment and tightening torque. 26 identification: 4.0 FINDINGS That the ITW RamsettRed Head fasteners described in this report comply with the 1997 Uniform Building Coddm, subject to the following conditions: 4.1 Anchor sizes, dimensions and Installation are as set forth in this report 42 Allowable shear and tension loads are as set forth • . In Section 2.4. 4.3 Calculations justifying that the applied loads corn• ply with this report are submitted to the building of flciai for approval. 4.4 Special Inspection is provided as set forth in Sec tion 2.5. 4.5 4.5 4.7 4A Anchors are limited to installation in uncrackec concrete, which Is concrete subjected to tensile stresses not exceeding 170 psi (1.2 MPa) as in duced by external loads, deformations and Inter lo Anchors are limited to nonflre- resistive construe tlon unless appropriate data Is submitted to derr onstrate anchor performance Is maintained In fire resistive.situatlons. Anchors are manufactured at Highway 12, Mich gan City, Indiana, with inspections by P FS Corpora tion (NER- QA251). Use of electroplated or mechanically plated carbo steel anchors Is limited to dry, interior location: Use of hot - dipped galvanized carbon steel Is pe; mitted In exterior- exposure or damp environment: Except for ITW Ramset/Red Head Carbon Steel an Stainless Steel Trubolt Wedge anchors embedde In normal- weight concrete, as noted in Table 3, us of anchors in resisting earthquake or wind loads beyond the scope of this report. The anchors are not subjected to vibratory load: such as those encountered by supports for recll rotating engines, crane loads and moving loac due to vehicles. The concrete anchors are identified by their dimensional characteristics, the anchor size, and by the length code 4.9 stamped on the anchor. The conical- shaped expander plugs are colored red. See Figure 1 for additional details. Length codes are in Table 8. Packages are identified with the anchor type and size, the manufacturer's name and address, and the name of the quality control agency, PFS Corporation. 4.10 3.0 EVIDENCE SUBMITTED Data complying with the ICBO ES Acceptance Criteria for Ex pahsion Anchors in Concrete and Masonry Elements (AC01), dated January 1999. This report Is subject to m- examinatlon.In two years. TABLE 1— TW RAMSET/RED HEAD SELF-DRILLING ANCHOR ALLOWABLE SHEAR AND TENSION VALUES (pound3rA . SOLT DIAMETER ANCHOR DIAMETER MINIMUM EMBEDMEW DEPTH (lnehas) V. pal 'P. 4.000 psi Toulon Shaer Tension shear with Special Inspeetiona W11hou! Special hupeellen vnth - Special Inapaclton Vlnthout specW Inspection 11 71 16 1 415 210 295. 650 325 365 319 9 /16 171 32 78S 395 770 1,035 520 650 12 u116 21 1,150 575 920 1.555 775 930 l2 /n 2 U10 755 1,605 2,485 1,240 1.755 14 1 3 /4 1,985 995' 2,495 3.165 1,585 2,575 For Sh I inch 2S.4 mm, 1 1bf 4AS K 1 psi = 6.89 kPL tThe tabulated sbearand tensile values we for anchors installed is normal weight concrete baring the designated ultimate compressive strength at the time of insull2dc Values bra been tatmtated for both ASTM A 307 and A 449 bolts installed with the device. 2 Ihese tension ralues are apple able only when the anchors are installed with sptxiial inspection as set forth in Sectinn 25. 3 Tba minimum cw=te thicbras is 1 times the embedment depth, or the embedment depth plus three times Ibr anchor diameter, whichever is gn:atrs *M aa cbors ate illustrated as follows: K; Page 3 of 7 ER -1372 ' TABLE 2- RECOMMENDED SPACING AND EDGE DISTANCE REQUIREMENTS FOR ITW RAMSETIRED HEAD SELF - DRILLING ANCHORI For SL- 1 inch = 25.4 mm IT In interpolation may be used for inte>mediate spacing and edge duta TABLE 3-47W RAMSETIRED HEAD TRUBOLT WEDGE ANCHOR ALLOWABLE SHEAR AND TENSION VALUES (Pounds) DESCRIPTION is . 4,000 pet f's r 6,000 pal MIn.Allowahle Tension A11a Allowable spacing Tension Tension Edge olaisnce Edge Distance spacing BatureanAnchors HOLY ANCHOR MIN. EMBEDMENT Regnitsdlo Olrtale Mee: (Inches) Lead F. Applied RagUiadto Obtain May- (Inc!!") Load Factor Applied_ DIAMETER (I nch) DIAMETER Inch DEPTH (Inches) Working Load (Inehea) . O." for Taeslon . 0.73 for Shear Working Load (Inch") .096 for Tension : 0.70 for Shear 1 /4 1 16 1 1 132 1 /16 I 37 /i 1,116 /a 91 16 171 32 2 1/16 1 5318 2 116 /2 ll /16 2 1 /92. 3 1 7 1l /11 27 /32 2 5 /32 4 1{ 2 116 all/is 43/ /4 1 3 5 1 /16 21/1 113/1 511/16 For SL- 1 inch = 25.4 mm IT In interpolation may be used for inte>mediate spacing and edge duta TABLE 3-47W RAMSETIRED HEAD TRUBOLT WEDGE ANCHOR ALLOWABLE SHEAR AND TENSION VALUES (Pounds) For SL- 1 inch - 25.4 mm, I psi = 6.89 IcPa, l Ibf • ft - 1355 818 N - n6, I lbf - 4.45 N. 1 7Eae tabulated sbcar and tensile values are forancLoss iasalledin ;tone- aggmgate eoncaetcbaving the designateduld ate comprm sNe strength at the dme of installed 2 1hc bales ass dulled with bits complying with ANSI B2MIS -1994. lbo bit diameter equals the anchor diametet 3 1:bese tension values art: applicable only when the anchors at installed with special inspecdoa as set forth in Section 2-5. •lbe m eontzeto thir]310313 1 times the embedment depth, or the embedment depth plus three times the anchor diameter, wbiebcver is great= SAIlowable static loads may be i =wed one - third for earthquake or wind resistance in accotdanco with Section 1612.33 of the code. No ftatbcr increase is allow 6 'Mis anchors are In mated as follows: K f' s 2,000 pa( is . 4,000 pet f's r 6,000 pal Tension Tension Tension ANCHOR DIAMETER INSTALLATION TOROUI_. EMBEDU04T DEPTH With Special Without Special With specf vAthout special Wfih Speeiel Without special (I nches) bf • chew Inspeona Inspection Shear Inspection Inspection Shear Inspection Inspection shear 1 4 8 1 1 /8 295 150 350 44S 225 350 475 240 350 1 525 265 420 825 410 ' 420 825 410 ' 420 2 565 280 825 410- 825 410 /1 25 1 1 /2 420 210 580 560 280 655 710 355 790 3 870 435 1,000 1.485 740 1,035 1,530 765 1,125 4 1,200 600. I.495 740 1,530 765 /2 55 2 1 /4 1,165 580 1,190 1,275 640 1,190 1,760 880 2,760 4 1,165 S80 1.810 2,410 1,205 1,810 2.705 1755 2,040 6 1,335 665 2.410 1,205 2,705. 1,355 /s 90 2 1,645 820 1,780 1.795 900 1,780 2,430 1,215 2,405 - 5 1,645 820 2,400 3,730 1,865 2,975 4,095 2,045 3.130 7 1 /2 1,765 880 3,755 1,880 4,095 2,045 14 175 3 1,780 890 2730 2,710 1,355 ' 3,430 3,325 1,665 3,995 6 /a 2,745 1,375 5,080 4,425 2.210 5,935 5,065 2.530 5,935 10 2,745 1.375 4,470 2,235 5,895 2.950 /, 250 314 2,380 1.190 3,29D 3,685 1.840 4,145 4,355 2.180 4,790 6 3,665 I,835 5,22D 5,235 2,620 7,200 6,090 3,D45 7,200 8 3,665 1,835 5 2,790 6,090 3,045 1 30D 442 3,485 • 1,745 4,020 5,045 2,520 5,705 5,295 2,650 6,120 7 3,650 1,825 7,170 5,995 3,000 9,485 8,315 4,160 9,520 9 4,675 2 6,635 3,315 8,315 4,160 1 14 500 5 1 12 4,535 2,270 5,820 6,595 3,300 7,365 8,410 4,205 8,445 8 6,83$ 3,413 ' 8.770 10,825 5,410 11,0as 11,385 • 5,695 12,640 10 9,035 I 4,515 11,385 5,69S 14,075 7.040 For SL- 1 inch - 25.4 mm, I psi = 6.89 IcPa, l Ibf • ft - 1355 818 N - n6, I lbf - 4.45 N. 1 7Eae tabulated sbcar and tensile values are forancLoss iasalledin ;tone- aggmgate eoncaetcbaving the designateduld ate comprm sNe strength at the dme of installed 2 1hc bales ass dulled with bits complying with ANSI B2MIS -1994. lbo bit diameter equals the anchor diametet 3 1:bese tension values art: applicable only when the anchors at installed with special inspecdoa as set forth in Section 2-5. •lbe m eontzeto thir]310313 1 times the embedment depth, or the embedment depth plus three times the anchor diameter, wbiebcver is great= SAIlowable static loads may be i =wed one - third for earthquake or wind resistance in accotdanco with Section 1612.33 of the code. No ftatbcr increase is allow 6 'Mis anchors are In mated as follows: K Page 4 of 7 • ER -137 TABLE 4— RECOMMENDED SPACING AND EDGE DISTANCE REQUIREMENTS FOR TENSION LOADS FOR ITW RAMSETIRED HEAD TRUBOLT WEDGE ANCHORSI For = 1 mch =25.4 mtn 1 1'mcar interpolation may be used for inta mediatme spacing and edge distances. 2 Spaeings and edge distances shall be divided by 0.75 when anchors art placed in structural lightweight concrete in accordance with 'Fable 10. TABLE S— RECOMMENDED SPACING AND EDGE DISTANCE REQUIREMENTS FOR SHEAR LOADS FOR nW RAMSETIRED HEAD TRUBOLT WEDGE ANCHORS DESCRIPTION Edge Distance Min. Edge le Edge MItimEdge Min. Allowabla Spacing Bstiwe.n ANCHOR EMBEDMENT Ra sired to Obtain Max Dlatanu (Inches) 3 do Required to Obtain NaX. Working Anehora (Indre. ) DIAMETER Inches DEFTH (Inches) Working Load (Inches) load Factor Applied ■ 0.16 Load (Inch") Load Ftdor Applied a 0.70 1 /4 1 /3 2 1 315 /16 2 (Sea Figure 2) 1"116 l /16 1 • 37 1a lu! 2 1 21 /a 1 1i 13 /16 3 15/' /3 11 /2 25/1 15 /16 5114 2 / 3 4 1 2 3 . 3 4 3 1 6 3 /2 211 4•. 411 3 3 /a Z 19116 71 63/ 6 331116 191 16 6 411 21 14 9 4112 /a 51 /4 43716 3 115 6 9'/3 711 /16 413/16 37111 5 la 7 1 2 5 - 5 /i 15 16 2 /16 11 5 14 3 6 511116 5 27 1l 2 11 /1 913/16 511/ 11 10 7 3 15 S 7 11 3 /4 6 6 1 116 6 3 1 16 3 /1 13 /3 12112 i 61 /4 ]5 a 6 3 12 6 1 4 1 1'2 731 7 7 3 /16 311 /16 15 14 7 /1 7 6 91/ 7 /i 39 /16 14 71 /a 1 51 /2 /11 413 /16 191/4 9 a a 4 16 10 7 33/4 is 782 For = 1 mch =25.4 mtn 1 1'mcar interpolation may be used for inta mediatme spacing and edge distances. 2 Spaeings and edge distances shall be divided by 0.75 when anchors art placed in structural lightweight concrete in accordance with 'Fable 10. TABLE S— RECOMMENDED SPACING AND EDGE DISTANCE REQUIREMENTS FOR SHEAR LOADS FOR nW RAMSETIRED HEAD TRUBOLT WEDGE ANCHORS •FOr SU 1 Inch = 25.4 mrn N/A = Not applicable. 4-inear interpolation may be used for intemIediate spacing sad edge distances 2 Spaeiags and edge d'tsta shall be divided by 0.7S when anchors are placed in st mcmral figbtwel& concrete in aceordance with Table !0. k DESCRIPTION (� Edge Ol�atance MlL%9a ' MItimEdge MbL Allowable Required Ta Obtakl Max Dinee at Whldt Distance the Load Factor Dlatanca at Which the Land Factor Spacing g�� n ANCHOR EMBEDMENT Werktnq (Inch") Applied ■ tLaO App (Inebae) Applied ■030 (Inch ") p aqulred to Obtatn Mez Ancho Mchora • (Indus) DIAMETER (In rhmal DEM nchea (Sae Figure 2) (Sea Figure 2) (Sao Figure 2) WorkJnq Land (Inch") Load F:cter Applied a IL40 /4 1 1151 2 1 1 5 116 1 N/A NIA V 3 2 1 /1 1 2. 3/i 13 NIA 514 2 /a 3 4 1 2 6 . 3 12 . 21 /4 3151 2116 NIA 7711 315/16 41 /3 531 16 3 191 16 63 /16 3 la 214 5 4 6 ' 671 3 371 N/A 113/16 9 7111 4 1 16 3 /4 31/4 5 3 MIA 11 /a 511/16 61 /i 8 5 2 9 5 11 3 61 4 /16 8 /16 6 N/A 31 /a 131 1g 12 69 ,16 6 1 4 7 3 MA ]5 77/ 7 101116 73/ 311/16 1 4 3 /4 7 F- ,,,4 5 11 6 N/A 19 9 8 11 a 4 i s $ •FOr SU 1 Inch = 25.4 mrn N/A = Not applicable. 4-inear interpolation may be used for intemIediate spacing sad edge distances 2 Spaeiags and edge d'tsta shall be divided by 0.7S when anchors are placed in st mcmral figbtwel& concrete in aceordance with Table !0. k Page 5 of 7 ER -137: TABLE 6-1TW RAMSE - rMED HEAD MULTI-SET II ANCHOR ALLOWABLE SHEAR AND TENSION VALUES (pounds) r' s 2,000 pal ! ■ 4,000 pal l ■ 1,000 pd ' MINIMUM Ton Ion Tension Tenalon BOLT ANCHOR EMBEDMENT With Without With wnhote r napedlon vn� Without DIAMM DIAMETER DEPTH special Spsdal Spa 1&1 Special !ch E' Inch (Inche Inspection In :petllon Shur InapacUon4 Shear Insp Inepsetlon Shaer pedal 1 /, 1 420 210 270 590 295 30D 745 375 /8 112 1 /= 74S 375 790 950 475 625 325 1,560 780 465 1 /2 /� 2 82S 415 1,145 1,460 730 875 2,075 1,035 600 /1 /= 2 1,375 1 685 1,860 2,160 1,080 1385 2.755 1,375 910 /4 1 3 /16 2.070 1,035 2,620 2 1,185 1.920 3,065 I,S30 1,215 For STs 1 inch 25.4 mm, 1 Ibf = 4.45 N, 1 psi = 6.89 kpa. 'The tabulatedsbcar and tensile values are for mebon instated in stone- aggregate canctete having the designated ultimate co=p=siveslreagth at the lime Values have been. tabulated for both ASTM A 307 and A 449 bolts imtaled with the device of iastallatia z1he holes are drilled with bits complying with ANSI BZ12.15 -1994. Mm bit diameter equals the anchor diatnet= 3 7beso tension value$ are applicable only whm the anchors are installed with special inspection as set forth in Section 2-5. 4 '1he minimum concrete thidmess is 1 /2 times the ranliedmeat depth, or the ®bedment depth plus three times the anchor diametc. whicbever is g ar•* STbe anchors aro illustrated as follows: TABLE 7— RECOMMENDED SPACING AND EDGE DISTANCE REQUIREMENTS FOR 1TW RAMSETIRED HFe n mi if Tt_crr a A.,..., --I ' IT",, lnirspohdon maybe used for intc=daw spacing and edgo dist"res 2 SPacings and edge distances shall be divided by (17S whm anrlrols are placed in structural lightwcight con=te in aeeordance with Table 9. TABLE B-- LENGTH IDENTIFICAT)ON CODES ' COOE LENM OF ANCHOR (Inches) (nuns DESCRIPTION Black 1 <2 38 <51 B Edge Dis tance Min. Anoweble Edge Matsnca Spacing UK AUmeabls Spednq BOLT ANCHOR EMBEDMENT Obbhl Mnr. n Load feda�Applied Obtaain Maa. Bst Aechon (Igchu Appned DIAMETER nch DIAMETER (inch) DEPTH pnchea) ng Load WorkiWorking (huhaa) : d20 for Tenalon a0.70forShear BIM . Load Fader aOJQ fair Tension 1 14 /4 3 /n. 1 1 114 (I s . MU far Shear 51<511; 127 < 140 16 < 17 406 < 432 7/1 311 13/ . /s 12 1 /a 2 /1 1 /16'. 5 / 16 2 S 2 5 /1 2 31 /2 131 7 31/2 /� /t 21/2 43 /a 23 /16 83/4 � 4 /4 1 331 16 5 /1 2 116 11 - 5 ' IT",, lnirspohdon maybe used for intc=daw spacing and edgo dist"res 2 SPacings and edge distances shall be divided by (17S whm anrlrols are placed in structural lightwcight con=te in aeeordance with Table 9. TABLE B-- LENGTH IDENTIFICAT)ON CODES ' COOE LENM OF ANCHOR (Inches) (nuns A Black 1 <2 38 <51 B Whita 2 < 2 51 <63 C Red 2 63 <76 1) Green 3 < 3 76 < 89 E Yellow 3 <4 89 <102 F BIM . 4 < 4 102 < 114 330 <366 V 14 < 15 114 H Browa 51<511; 127 < 140 16 < 17 406 < 432 Y 140 < L52 J K IA N/A 6 < 6 <7 152 < 165 165 < 178 L NIA 7 < 7 178 < 191 NIA 7 < 8 191 < 203 CODE iF1i0TTt OFANCHOR N 8 < 811 _ 203 < 216 O - 8 1 /2<9 _ 216 < 229 P 9 < 9 229 <241 Q 9 < 10 241 < 254 R 10<11 2S4 <267 S 11 < 12 267 <305 T 12 < 13 305 < 330 U 13 < 14 330 <366 V 14 < 15 366 <381 W 15 < 16 381 <406 X 16 < 17 406 < 432 Y 17 < 18 432 <457 Z 18<19 457 <483 K Page 6 of 7 ER -137 TABLE 9--ITW RAMSETIRED HEAD MULTI -SET 11 ANCHOR ALLOWABLE SHEAR AND TENSION VALUES (pound3r Z LOWER FLUTE OP s rFEL DECK wrist ' L1Gf{TWE1pHT CONCRETE LIGHTWEIGHT CONCRETE FILL !'. a 3,000 pal 1'. ■ 3.000 pal M1NlMUM Tension ANCHOR EMBEDMENT Tension e0EX DIAMETER DIAMETER DEPTHS VAth Spacial Wnhout Spedal With spacial w1thout Sppaacial ( Inch) (Inch) pnchea)s tnapecegna er Inspection Shear Inspection Inspection Shen /1 11 2 1 965 482 1,105 • 835 417 1,105 /2 /a 2 1,020. 510 1,410 • 800 400 1.235 /t /1 2 1,570 785 2,610 1,490 745 1,460 3 3 /16 2,750 1 3,945 2,045 1.022 2,280 For SL 1 inch - 25.4 mm, l lbf = 4.45 N, 1 psi - 6.89 kEa. IThe tabulated shear and tensile values are for anchors installed in sbuctu al lightweight concrete having the designated ultimate compressive strength at the time of insta latian. Values have been tabulated for both ASTM A 307 and A 449 bolts installed with the device. rlha holes are drilled with bits complying with ANSI B212_15 -1994. The bit diameter equals the anchor diametm 3 'I7hese tension values are applicable only when the anchors are installed with special inspection as set forth in Section 2-5. 4 1nstallation details are in Figure 3. Spacing and edge distances are h Table 7 as modified by Footnote 2. " TABLE ]0 -(TW RAMSETIRED HEAD TRUBOLT WEDGE ANCHOR ALLOWABLE SHEAR AND TENSION VALUES (pcunds) ror au 1 • CJI = v.4 MM. l pis = aSY era, 1 1bt = 4.45 N. NIA = Not applicable. 1 Tho tabulated shcar and tensile values are for aachDts installed is •t**+' +++*mot ligbtweight connote having the designated compressive su=gth at the time of iastallatior 2 lhe holes are drilled with bib complying with ANSI 821215- 1994. 'the bit diameter equals the anchor diametee 3 11=o tension. values are applicable only when the an chors, arc installed with special inspection as set forth in Section 2 4 1nstallation details art in Figure 3. Spacing and edge distance are In Tables 4 mad 5 as modified by Footnote 2. Self -Dribs S olt size) Tmbolt Wedge Anchors W arbon Steel (anchor size -)e length) Mum -Set 11 RM -Carbon Steel (bolt size) FIGURE 1- 1DENTIFICATiON SYMBOLS FOR THE VARIOUS ANCHORS LOWER FLUTE OP STEEL DECK Wmi Ur.HTVPEIG11T L112HTvmmff CONCRETH t , a 3,000pa1 CONCRETE FILL 1 �s3.000Pal Tension Tension ' MINIMUM ANCHOR DIAMETER (I nch) n INSTALL TORQUE nib. EMBEDMENT DEPTHS Wllh Specials to pecilon Wllhout Spadai Inapt With 9pa InspecU Withou! 3ppeedal pnchea)a an Shear lnapectlon Shear 31 1 25 1 530 265 930 475 237 790 3 735 367 1,060 710 355 1,000 1 2 55 2 900 450 1,760 850 425 1,345 3 1.180 590 1.655 1,120 560 1.655 4 N/A N/A 1,730 1,200 600 1,610 11 90 3 1.500• 750 2,310 1.180. 590 1,375 5 1.490 ' 745 2,320 1,545 822 Z285 !c 175 3 1,790 895 3,150 1,460 730 0 S /4 2,2.25 1,112 3,980 1,760 ggp ror au 1 • CJI = v.4 MM. l pis = aSY era, 1 1bt = 4.45 N. NIA = Not applicable. 1 Tho tabulated shcar and tensile values are for aachDts installed is •t**+' +++*mot ligbtweight connote having the designated compressive su=gth at the time of iastallatior 2 lhe holes are drilled with bib complying with ANSI 821215- 1994. 'the bit diameter equals the anchor diametee 3 11=o tension. values are applicable only when the an chors, arc installed with special inspection as set forth in Section 2 4 1nstallation details art in Figure 3. Spacing and edge distance are In Tables 4 mad 5 as modified by Footnote 2. Self -Dribs S olt size) Tmbolt Wedge Anchors W arbon Steel (anchor size -)e length) Mum -Set 11 RM -Carbon Steel (bolt size) FIGURE 1- 1DENTIFICATiON SYMBOLS FOR THE VARIOUS ANCHORS ACCEPTANCE CRITERIA FOR STEEL DECKS 1.0 INTRODUCTION 1.1 Scope: The purpose of this criteria is to establish requirements for recognition of steel deck panels in ICBO Evaluation Service, Inc. (ICBO ES), evaluation reports under the 1997 Uniform Building Code T " ( UBC) or the 2000 International Building Code (IBC). Editions of the standards applicable to each code are summarized in Table 1 1.2 References: 1.2.1 1997 Uniform Building Code', International Conference of Building Officials. , 1.2.2 2000 International Building Code ® , International Code Council. 1.2.3 Specification for Design of Cold- Formed Steel Structural Members, 1986 with December 1989 addendum, American Iron and Steel Institute (AISI) (referred to as 1986 ASO Specifications). 1.2.4 Load and Resistance Factor Design Specification for Cold- Formed Steel Structural Members, March 1991, American Iron and Steel Institute (AISI) (referred to as 1991 LRFD Specifications). 1.2.5 Specification for the Design of Cold- Formed Steel Structural Members, 1996 edition, American Iron and Steel Institute (AISI) (referred to as 1996 Specifications). 1.2.6 TM 5- 809 -10, Seismic Design for Buildings, Departments of the Army, Navy and Air Force, 1982. 1.2.7 Diaphragm Design Manual, No. DDMO2. Steel Deck Institute, 1987. 1.2.8 Composite Steel Deck Design Handbook, No. CDD2, Steel Deck Institute. r 1.2.9 Standard for the Structural Design of Composite Slabs, ANSIIASCE 3 -91, ASCE, 1994. 1.2.10 Design and Control of Concrete Mixtures, 13th edition, Portland Cement Association, 1988. 1.2.11 ACI Standard 211.1, Standard Practice for Selecting Proportions forNonnal Weight, Heavy Weight and Mass Concrete, ACI. 1.2.12 UL Standard 209, 6th edition, UL, 1987. 1.2.13 American Society for Testing and Materials. 1.2.13.1 Standard Test Methods and Definitions for Mechanical Testing of Steel Products (ASTM A 370). 1.2.13.2 Standard Specifications for Steel Sheet, Electrolytic Zinc- Coated, for Light Coating Weight [Mass] Applications (ASTM A 591). 1.2.13.3 Standard Specification for Steel Sheet, Zinc - Coated (Galvanized) or Zinc -Iron Alloy- Coated (Galvannealed) by the Hot -Dip Process (ASTM A 653). 1.2.13.4 Standard Specification for General Requirements for Steel Sheet, Metallic- Coated by the Hot - Dip Process (ASTM A 924). 1.2.13.5 Specification for Steel Sheet, Cold - Rolled, Carbon, Structural, High - Strength Low -Alloy and High - Strength Low -Alloy with Improved Formability (ASTM A 1008). 1.2.13.6 Standard Practice for Making and Curing Concrete Test Specimens in the Field (ASTM C 31). 1.2.13.7 Standard Specification for Concrete Aggregates (ASTM C 33): 1.2.13.8 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens (ASTM C 39). 1.2.13.9 Standard Test Method for Density, Relative Density (Specific Gravity) and Absorption of Coarse Aggregate (ASTM C 127). 1.2.13.10 Standard Specification for Lightweight Aggregates for Structural Concrete (ASTM C 330). 1.2.13.11 Standard Specification for Lightweight Aggregates for Insulating Concrete (ASTM C 332). 1.2.13.12 Standard Test Method for Compressive Strength of Lightweight Insulating Concrete (ASTM C 495). 1.2.13.13 Standard Specification for Foaming Agents Used in Making Preformed Foam for Cellular Concrete (ASTM C 869). 1.2.13.14 Standard Test Methods of Conducting Strength Tests of Panels for Building Construction (ASTM E 72). 1.2.13.15 Standard Method for Static Load Testing of Framed Floor or Roof Diaphragm Constructions for Buildings (ASTM E 455). 2.0 GENERAL 2.1 Composite Assembly: Assembly composed of a steel deck, concrete fill and steel reinforcement. The steel deck normally has web embossments to provide a mechanical bond to the concrete fill and establish combined concrete and deck resistance to applied loads. 2.2 Diaphragm: Horizontal assembly that resists wind, earthquake and other lateral forces. Analogous to a horizontal beam with interconnected floor or roof deck units acting as the beam web, intermediate joists or acting as web stiffeners and perimeter beams or reinforcement, usually on the diaphragm perimeters, . acting as beam flanges. 2.3 Cellular Deck: Fluted deck, resistance - welded to an essentially flat plate or another fluted deck. 2.4 Fluted Deck: Cold- formed steel sheet with flanges altemating from top to bottom. 2.5 Steel Deck: Fluted or cellular deck cold- formed from sheet steel. 3.0 BASIC INFORMATION The following information is necessary. 3.1 Data concerning material specifications; section properties; maximum allowable spans and/or maximum allowable loads; and lateral, mechanical or material bracing requirements. 3.2 Method of field identification. Each panel shall have a legible label, stamp or embossment, indicating the manufacturer's name, logo or initials; the evaluation report number, and the acronym "ICBO ES ". In addition to the above information, each bundle of panels shall have a legible label, also indicating material minimum base metal thickness R ACCEPTANCE CRITERIA FOR STEEL DECKS (uncoated) in decimal thickness or mils: minimum specified yield strength [if greater than 33 ksi (228 MPa)]; and identification in accordance with Section 2203.3 of the UBC. I 3.3 Quality control program in accordance with Section 7.0. ' 3.4 Installation instructions. 4.0 MATERIALS 4.1 Steel: Steel specifications shall comply either with Section A.3 of the 1986 ASD Specifications or 1991 LRFD Specifications (UBC), Section A -3of the 1996 Specifications (IBC or UBC), or ASTM A 1008 (IBC or UBC). 4.2 Galvanized Finish: For galvanized steel, the galvanized coating shall be described and shown to comply with ASTM A 924. Coating weight shall be verified in accordance with the standard. 4.3 Paint Finish: The' type of paint used for painted decking shall be described. 4.4 Phosphatized Finish: The temporary preservative coating applied to surfaces receiving concrete fill shall be described. 4.5 Steel Deck: 4.5.1 Steel deck profiles shall be described by drawings showing fluting patterns, edge treatments, base metal thickness and coated thickness. For cellular decks, the resistance weld pattern shall be reported and shown on the drawings. 4.5.2 Minimum steel thickness shall complywith Section A3.4 of either the 1986 ASD Specifications or 1991 LRFD Specifications (UBC), or Section A3.4 of the 1996 Specifications (IBC or UBC). 5.0 ANALYSIS 5.1 Section Properties: Section properties shall be determined in accordance with Section C1 of the 1986 ASD Specifications or 1991 LRFD Specifications (UBC), or Section C1 of the 1996 Specifications (IBC or UBC). The section properties report shall include the base -metal design thickness; full moment of inertia ( /,); effective moment of inertia, normal position (I.); effective moment of inertia, inverted position (/,,): effective section modulus, normal position (S,,,) at Fr and effective section modulus, inverted position (S.,) at F In lieu of section moduli, nominal moment strength, M,,, is permitted. Under uniform loads, the following equations are permitted to determine deflections: Simple span: t = (l, + 21,,,) / 3, or I„ Multiple span: I = (l,+ 21,,)/ 3, (1,+ 21„) / 3, or the minimum of 1,,, and 1,, 5.2 Web Crippling: Web crippling values shall be determined in accordance with Section C3.4 of the 1985 ASD Specifications or 1991 LRFD Specifications (UBC), or Section C3.4 of the 1996 Specifications (IBC or UBC). For decks with Rlf, Nit or " ratios that exceed limitations specified in the applicable specifications, full -scale tests are necessary to determine applicable end reactions and interior reactions. See Section 6.1 of this criteria. 5.3 Diaphragm Capacity: Steel deck diaphragm capacities are determined by using one of the following references: 5.3.1 Technical Manual 5- 809 -10, Seismic Design for Buildings, Section 5 -6 for Bare and Concrete Filled Assemblies, Departments of the Army, Navy and Air Force, 1982. 5.3.2 Diaphragm Design Manual, No. DDMO2, published by the Steel Deck Institute Inc.; except that factors of safety shall be as set forth in Section D5 of the 1986 ASD Specifications or 1991 LRFD Specifications (UBC), or Section DS of the 1996 Specifications (IBC or UBC). 5.3.3 For steel deck assemblies that exceed the scope outlined in the above two references, full -scale testing is required. See Section 6.2. 5.4 Composite Assemblies: The design and analysis of composite slabs shall comply with ANSI /ASCE 3 -91. The design program includes full -scale testing. As an alternative, the procedures in the 'Composite Steel Deck Design Handbook, are permitted. Other rational methods for analyzing composite decks will be considered with prior concurrence of the ICBO ES staff. 5.5 Cellular Decks: To fully develop section properties of the assembled deck, welds shall be placed to develop the shear flow at the intersection of the two sheets. Resistance weld strengths are noted in Table E2.6 of the 1986 ASD Specifications or 1991 LRFD Specifications (UBC), or Table E2.6 of the 1996 Specifications (IBC or UBC). 6.0 TEST REQUIREMENTS 6.1 Web Crippling: 6.1.1 For assemblies with ratios exceeding limitations in Section C3.4 of the 1986 ASD Specifications or 1991 LRFD Specifications (UBC), or Section C3.4 of the 1996 Specifications (IBC or UBC), tests are conducted in accordance v✓ith Section 11 of ASTM E 72 on three similar specimens. Two series are required for each assembly. one series for interior reactions and a second series for end reactions. The series for interior reactions may be waived if the results for end reactions exceed values determined by Section C3.4 of the applicable specification. The test assembly described in Figure 3 of ASTM E 72 may be modified to place the loading plates at a location that will ensure web crippling failure as opposed to other failure modes for the deck. Both end reactions and interior reactions shall be evaluated in accordance with the conditions set forth in the applicable specification. The tested bearing width will be the minimum width recognized in the report For deck profiles available in multiple gages, only the least thickness in each profile is required to be tested. 6.1.2 Conditions of Acceptance: The decks are loaded to failure or dysfunctional distortions and the loads causing web crippling are recorded. The determination of nominal resistance, R„ shall be based on Sections F1 and .F2 of the 1986 ASD Specifications or 1991 LRFD Specifications (UBC), or Section's F1 and F2 of the 1996 Specifications (IBC or UBC). For ASD, the allowable design strength, R„ is as follows: R. = R.10 where: D = 1_6 CP I ACCEPTANCE CRITERIA FOR STEEL DECKS For LRFD, equation F1 -1 in the 1991 LRFD Specifications (UBC) or equation F1.1 -1 in the 1996 Specifications (IBC or UBC) applies. The results are then compared to the design equations in Section C3.4 of the 1986 ASD Specifications or 1991 LRFD Specifications (UBC), or Section C3.4 of the 1996 Specifications (IBC or UBC). The lowest result, from either testing or calculations, will determine the allowable value noted in the evaluation report. Where design capacities are derived from testing, the value will apply to heavier thicknesses. If the calculated result is the lowest value, capacities for heavier thicknesses are permitted to be calculated in accordance with the applicable specification. 6.2 Diaphragm Testing: For diaphragm construction exceeding design limitations in Section 5.3, full -scale testing in accordance with ASTM E 455 is required. Either the cantilever beam test or a simple beam test is permitted. Loading procedures shall follow Section 7.2 of ASTM E 455. For decks available with more than one finish, the following guidelines apply: 6.2.1 Test results conducted on decks with concrete fill with one finish may be extended to decks with alternate finishes within the types noted in Sections 4.2, 4.3 and 4.4. 6.2.2 Test results conducted on decks without concrete fill may be extended to the finish types noted in Sections 4.2, 4.3 and 4.4. Conditions of Acceptance: The test results are recorded and reduced by factors of safety described in Section D5 of the 1986 ASD Specifications or 1991 LRFD Specficiations (UBC), or Section D5 of the 1996 Specifications (IBC or UBC), to obtain the allowable shear loads. The reduced shear loads and deflections are compared with the calculated procedures using equations in the diaphragrri design references. Equations may be modified to achieve a correlation coefficient between the equations and test data of 0.95 or better. For each deck type, at least two different configurations (i.e., connections, deck thickness) shall be tested to provide an adequate data base for reconciling variations with the design equations. 6.3 Composite Stabs: For recognition in composite slabs where both steel and hardened concrete resist vertical loads, performance tests evaluating shear bond shall be conducted in accordance with Chapter 3 of ANSUASCE 3-91. At least two full - scale specimens of each deck type shall be evaluated. In addition, flexural tests in accordance with Section 4.2.3.2 are required for decks more than 3 inches (76 mm) deep or formed from low - ductility steels, having a ratio of F„ / F less than 1.08, using three identical flexural strength test specimens. The test results shall be recorded and evaluated in accordance with Section 4.2.4 of the standard. Data shall be analyzed in accordance with Section 5.4 of this criteria. Other test evaluation methods require prior concurrence of the ICBO ES staff. 6.4 Test Specimens: 6.4.1 Steel: Steel decks used in all tests shall be evaluated by material property tests to determine the tensile strength, yield strength, and elongation in accordance with the appropriate standard for the steel grade. In addition, the base metal thickness shall be determined, exclusive of coatings. Test results shall be based on the evaluation of five specimens in each thickness. The specimens shall be selected from different panels on the test deck. 6.4.1.1 Concrete: To obtain desired concrete compressive strengths, the mix should follow recommendations for proportioning in the Vesign and Control of Concrete Mixtures; ACI 211.1; and Chapter 19 of the UBC or IBC. Concrete test cylinders shall be prepared and tested in accordance with ASTM C 31 and ASTM C 39. 6.4.1.2 Normal- weight Concrete: Normal- weight aggregate in the concrete shall comply with ASTM C 33. Aggregate description shall include the rock and mineral components, shape, hardness, maximum size and grading specification. Concrete cylinders shall be field -cured in accordance with ASTM C 31 for 28 days, with a five -day allowable minus tolerance. Two tests of two cylinders shall be performed and the average compressive strength reported during a 24 -hour period immediately preceding and following any test series. Two cylinders constitute one test. The average of two tests, or four cylinders total, establishes the compressive strength of the testing medium. For tests conducted with concrete aged 90 days or more, the compressive strength shall be the average of three test cylinders aged a minimum of 90 days and tested in accordance with ASTM C 39. 6.4.1.3 Structural Lightweight Concrete: Lightweight concrete shall comply with the same requirements as normal - weight concrete in Section 6.4.1.2, except for the aggregate specification. Lightweight aggregate shall be identified by the generic or trade name, shape, size, maximum size, grading specification and compliance withthe requirements in ASTM C 330. 6.4.1.4 Insulating Concrete: lightweight aggregates for insulating concrete shall comply with ASTM C 332. Aggregate shall be described by group, rock and mineral components, expansion process, shape, maximum size, grading specification and unit weight. Concrete cylinders shall be field- cured. Compressive strength shall be determined according to ASTM C 495. Two tests of two cylinders shall be performed and the average compressive strength reported during a 24- hour period immediately preceding and following any test series. Two cylinders constitute one test. The average of two tests, or four cylinders total, establishes the compressive strength of the testing medium. 6.4.1.5 Cellular Concrete: Cellular concrete shall comply with ASTM C 869. Concrete cylinders shall be field - cured. Compressive strength shall be determined according to ASTM C 495. Two tests of two cylinders shall be performed and the average compressive strength reported during a 24 -hour period immediately preceeding and following any test series. Two cylinders constitute one test. - The average of two tests, or four cylinders total, establishes the compressive strength of the testing medium. 6.4.2 Welding: Arc -spot and seam welds are performed in accordance with Section E2 of the 1986 ASD Specifications or 1991 LRFD Specifications (UBC), or Section E2 of the 1996 Specifications (IBC or UBC). Welding process, filler metal weld size, fusion diameter, location and any weld defects such as cracks shall be reported. The fusion diameter may be determined from the welder's qualification tests. 4 ACCEPTANCE CRITERIA FOR STEEL DECKS �. ! 6.4.3 Mechanical Fasteners: Mechanical fasteners shall be installed in accordance with manufacturer's recommendations. A detailed description of fasteners shall be provided, including length, diameter, thread pitch, head diameter, head shape and penetration distance through the metal. Screws shall comply with ICBO ES Acceptance Criteria for Tapping Screw Fasteners (AC118). Power - actuated fasteners shall comply with ICBO ES Acceptance Criteria for Power -driven Fasteners in Concrete, Steel and Masonry Elements (AC70). 6.4.4 Button punching methods and the resulting connection require detailed descriptions. 6.5 Testing Laboratories, Reports of Tests and Product Sampling: 6.5.1 Testing laboratories shall comply with the ICBO ES Acceptance Criteria for Laboratory Accreditation (AC89). 6.5.2 Test reports shall comply with the ICBO ES Acceptance Criteria for Test Reports and Product Sampling (AC85) and additionally include the following information: 6.5.2.1 Dates of tests and of reports. 6.5.2.2 Detailed identification of specimens. 6.5.2.3 Detailed drawings of specimens, describing physical characteristics and including section profiles and other construction details. 6.5.2.4 Detailed descriptions of test specimens and test assemblies, attachment of specimens to the fixture. location of load points, deflection gages, deflection points and other items as applicable. Ambient conditions at the date of construction, curing period and date and time of tests shall be reported. The ambient conditions include relative humidity, temperature and wind speed. 6.5.2.5 Results of tests on individual materials, in accordance with Section 6.4, shall be included. If the test specimen construction deviates from typical field construction, deviations shall be reported. 6.5.2.6 The test report shall state that tests were conducted in accordance with the applicable methods and the ICBO ES acceptance criteria. 6.5.2.7 Statements indicating whether the constructed test specimens meet actual or intended construction shall be included. If the test specimen construction deviates from typical field construction, deviations shall be reported. 6.5.2.8 Test results shall be reported, including load - deflection readings, maximum load applied, failure mode, total time under load at the various load levels and photographs of tested specimens before and after testing. 6.5.2.9 A recognized independent agency shall provide calibration certification of test equipment. The certification shall be traceable to the National Institute of Standards and Testing (NIST) and be within one year of test dates. 6.5.3 Product Sampling: Products and materials for testing shall be sampled in accordance with either Section 6.1 or 6.2 of AC85. 7.0 QUALITY CONTROL 7.1 General: For all decks, a quality control manual, prepared in accordance with the ICBO ES Acceptance Criteria for Quality Control Manuals (AC10), shall be submitted. Inspections by an ICBO ES accredited quality control agency are not required. 7.2 Cellular Decks with Resistance Welds: This section applies to cellular decks, where individual sheets are connected by resistance welds. Typical welded sheets shall be evaluated using the tension shear test in Sections 5.18 and 5.19 of UL 209 and a peel test in accordance with Sections 5.20 and 5.21 of the UL Standard. I 7.3 All Decks: An in -house quality control program shall be established that includes the following: 7.3.1 Verification of incoming steel -coil material in the form of mill certificates, service center certificates, independent laboratory tests or in -house testing with calibrated test equipment. Tests shall verify the following, if the steel does not conform to one of the steel specifications noted in Section A3.1 of the 1986 ASD Specifications or 1991 LRFD Specifications (UBC), or Section A3.1 of the 1996 Specifications (IBC or UBC): material thickness, yield strength, tensile strength, galvanized coating and ductility. Ductility compliance shall be determined in accordance with Section A3.3 of the 1986 ASD Specifications or 1991 LRFD Specifications (UBC), or Section A3.3 of the 1996 Specifications (IBC or UBC). 7.3.2 Periodic testing for material thickness (uncoated) may be conducted in -house or by an independent laboratory. Periodic testing consists of testing one out of every 120 pieces. Periodic testing of coated material is permitted, provided complete details covering the method of thickness determination are included in the quality control manual. 7.3.3 Records shall be kept of all mill certificates, service center certificates, independent laboratory tests and i in -house tests for a minimum of two years. 7.3.4 Tests shall be conducted in accordance with the following: Yield strength —ASTM A 370 Tensile strength -ASTM A 370 Galvanized coating (hot -dip process} —ASTM A 653, Section 8.1.4 Galvanized coating (electrolytic�ASTM A 591, Section 6 Additionally, ductility compliance shall be determined in accordance with Section A3.3 of the 1986 ASD 'Specifications or 1991 LRFD Specifications (UBC), or Section A3.3 of the 1996 Specifications (IBC or UBC). Minimum acceptance criteria for each test shall be specified in the quality control manual.■ N ACCEPTANCE CRITERIA FOR STEEL DECKS TABLE 1 —CROSS REFERENCE OF STANDARDS EDITIONS r STANDARD 1997 UBC 2000 IBC ASTM A 370 1995 1995 ASTM A 591 1989 (1994) 1989 (1994) ASTM A 653 1995 1997a ASTM A 924 1995 1995 ASTM A 1008 2001 20D1 ASTM C 31 1991 1996 ASTM C 33 1993 1997 ASTM C 39 1993a 1996 ASTM C 127 1988 1988 ASTM C 330 1989 1997 ASTM C 332 1983 1987 (1991) ASTM C 495 1991a 1991 a ASTM C 869 1991 1991 ASTM E 72 1995 1995 ASTM E 455 1976 (1991) 1976 (1991)