Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
ENGINEERING CALCS - 05-00205 - Rexburg LDS Temple - Foundation
REPORT Geotechnical Engineering Evaluation Rexburg Temple Rexburg, Idaho Prepared by J. Paul Bastian, P.E. Teri Bowman, E.T. STRATA, Inc. 3340 Kings Way #3 Chubbuck, Idaho 83202 P. 208.237.3400 F. 208.237.3449 Prepared for Mr. Lanny Herron Architectural Nexus, Inc. c/o LDS Physical Facilities Dept. 135 N. Main Street, Ste 200 Logan, UT 84321 June 21, 2005 IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratageotech.com STRaTa GEOTECHNICAL ENGINEERING 8 MATERIALS TESTING ' Zn-l~c~r.=Yy Frowt -l~lzc ~vounG uP ' June 21, 2005 File: LDSCHU P05038A ' Mr. Lanny Herron Architectural Nexus, Inc. c/o LDS Physical Facilities Department ' 135 North Main Street, Suite 200 Logan, Utah 84321 RE: REPORT ' Geotechnical Engineering Evaluation Rexburg Temple Rexburg, Idaho ' Dear Mr. Herron: STRATA, Inc. has performed the authorized geotechnical engineering evaluation for the proposed LDS Temple planned at the intersection of 700 South and 200 East in Rexburg, Idaho. The purpose of our geotechnical engineering evaluation was to explore the subsurface soil and geologic conditions within the proposed development area and ' to provide geotechnical engineering recommendations to assist project planning, design and construction. The work was performed in accordance with our proposal dated April 12, 2005. This report summarizes the results of our field evaluation, laboratory testing, engineering opinions, and geotechnical recommendations. The soil and groundwater conditions at the site are presented in the following report. Specific geotechnical opinions and recommendations for foundation design, earthwork construction, pavement, lateral earth pressure and stormwater discharge are included in the report. The geotechnical ' recommendations presented must be read and implemented in their entirety. Portions or individual portions of the report cannot be relied upon without the supporting text of relevant sections. ' The success of the proposed construction will depend on following the report recommendations and good construction practice. We recommend that STRATA be retained to provide geotechnical testing and consultation services during construction to verify our report recommendations are followed. It has been our experience that maintaining continuity with a single geotechnical consultant reduces errors and contributes to overall project success and economy. ' IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratageotech.com 440 `s p #3 Click, tdo 83202 F'. 208.237.3400 F. 208.337.3449 Rexburg Temple File: LDSCHU-P05O38A Page 2 We appreciate the opportunity to work with you on this project. Please do not hesitate to contact us if you have any questions or comments. ~. ~, r~lG;, 1; ~ `.~ ~~ 'r~ ~~~ tom- :~~ w JBP/tlb Cc: Vern L. Martindale LDS Physical Facilities Department 50 East North Temple Street Room No. 1100 Salt Lake City, Utah 84150 Sincerely, STRATA, Inc. Teri Bowman, E.T. Project Assistant ~ ~~ ~ ~~ J. Paul Bastian, P.E. Project Engineer IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratag eotech.com TABLE OF CONTENTS PAGE INTRODUCTION ~ PROPOSED CONSTRUCTION 2 SUBSURFACE EVALUATION PROCEDURES 2 SUBSURFACE CONDITIONS 3 LABORATORY TESTING 3 GENERAL OPINIONS AND RECOMMENDATIONS 3 SITE PREPARATION 4 EXCAVATION CHARACTERISTICS 5 TEMPORARY AND PERMANENT SLOPES 5 STRUCTURAL FILL 5 FLEXIBLE AND RIGID PAVEMENT DESIGN $ CONCRETE SLAB-ON-GRADE FLOORS 10 PERIMETER WALL DRAINAGE 11 SEISMICITY 11 SITE GEOLOGY 12 FOUNDATION DESIGN 13 WET WEATHER CONSTRUCTION 15 SURFACE AND SUBSURFACE DRAINAGE 15 VOID DETECTION AND REMEDIATION ALTERNATIVES 16 ADDITIONAL SERVICES RECOMMENDED ~ 7 REVIEW OF PLANS AND SPECIFICATIONS 17 CONSTRUCTION OBSERVATION AND TESTING 17 EVALUATION LIMITATIONS ~ $ IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.st ratageotech.co m ' REPORT Geotechnical Engineering Evaluation Rexburg Temple ' Rexburg, Idaho ' INTRODUCTION STRATA, Inc. has preformed the authorized geotechnical engineering evaluation ' for the proposed LDS Temple located on the southwest corner of 700 South and 200 East in Rexburg, Idaho. A Vicinity Map is presented on Plate 1. The purpose of the , ` geotechnical engineering evaluation was to assess the general soil and geologic conditions within the proposed development area and to provide geotechnical and soil ' related construction recommendations with respect to the proposed temple. Our recommendations are based on our field observations and laboratory test results. To provide this evaluation of the site we conducted the following scope of work: ' 1. Notified utility mark out prior to boring and the excavation of the test pits. 2. Reviewed site map and topography maps provided by Architectural Nexus, Inc. 3. Observed the advancement of 39 borings and the excavation of 8 test pits within ' the proposed project limits. The borings extended to depths of up to 20 feet and were terminated in basalt bedrock. Test pits extended 3 to 7 feet below the existing ground surface and were terminated at the basalt contact. The soil encountered in the test pits was described and classified referencing ASTM D 2487 and D 2488 Unified Soit Classification System (USCS), and the soil profiles were logged. The borings and test pits were backfilled at the time of excavation. ,' Backfill was not compacted or landscaped. 4. Conducted laboratory testing, which included grain-size distribution, R-value, ' Atterberg limits and moisture content. 5. Analyzed the field and laboratory data to provide the project team and KPFF ' Engineering with geotechnical opinions and recommendations regarding site preparation, structural fill, site surface and subsurface drainage, allowable bearing pressures for conventional foundations, lateral earth pressures, pavement sections, soil improvements where unsuitable soil is encountered, concrete slab-on-grade preparations and additional services recommended. ' 6. Prepared and provided 19 copies of our final summary report of findings, opinion, and geotechnical recommendations to assist design planning and construction. ' IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratageotech.com ' Rexburg Temple File: LDSCHU P05038A ' Page 2 PROPOSED CONSTRUCTION '' The project site is located on the northeast corner of 700 South and 200 East in Rexburg, Idaho. We understand the proposed temple will consist of a three story, approximate) 16,000 quare-foot structure with concrete floors. The temple will be a ' concrete and block structure with a brick the or stucco veneer. Conventional s read P ' footings for perimeter wall and interior column foundations are proposed to support structural loads of 600 kips or less. Stormwater will be discharged on-site. Parking ' and access roads for cars and service vehicles is planned on the south side of the temple. We understand the parking area is planned to accommodate approximately ' 200 automobiles and light trucks or recreational vehicles. The parking area will be designed predominantly for auto parking and the access roads will support occasional ' delivery and service vehicle truck traffic. ' SUBSURFACE EVALUATION PROCEDURES Thirty-nine borings were drilled on April 14 through April 17, 2005 and eight ' exploratory test pits were excavated on April 19, 2005 within the proposed parking and access road area identified on the Site Map provided by Architectural Nexus, ' Incorporated. The boring and test pit locations are identified and presented on Plate 2, Site Plan, LDS Temple. ' The borings were drilled with a truck mounted CME 75 auger and core drill rig. Test pits were excavated using atire-mounted excavator with a 24-inch bucket ' equipped with standard soil excavation teeth. The soil and rock encountered in the borings and test pits was visually classified and described referencing ASTM D 2487 ' and D 2488, USCS. Select soil samples were obtained for laboratory testing. The USCS is provided on Plate 3 and should be referenced to interpret the terms used throughout this report. The subsurface soil profile was logged and the exploratory logs and laboratory test data are presented in the Appendices to this report. The test pits ,' were loosely backfilled at the conclusion of the field evaluation. We recommend the test pits be re-excavated during the site preparation phase of work for the paved areas and ' the material replaced and compacted as described in the Structural Fill section of this ' IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratag eotec h.com ' Rexburg Temple File: LDSCHU P05038A ' Page 3 report. Replacing the loose backfill with structural fill will help reduce the potential for ' large isolated settlements in the test pit locations. SUBSURFACE CONDITIONS ' Subsurface soil conditions in test pits typically consisted of 2.0 to 6.5 feet of brown fine sandy silt (ML) underlain by basalt bedrock. The sandy silt was found to be ' of uniform condition and have similar composition across the site. The silt was underlain by hard to very hard basalt bedrock with isolated areas of cinders or voids. ' Groundwater was not encountered in the locations explored to a depth of 20 feet. We do not anticipate groundwater will be encountered within the planned excavation depths ' as we understand the proposed construction. The Test Pit Logs and Boring Logs are presented in Appendix A of this report. LABORATORY TESTING ' Rock and soil samples were tested in our laboratory to assess grain-size ' distribution, R-value, moisture content, Atterberg limits, pH and resistivity. Laboratory testing was performed referencing ASTM test procedures. The laboratory test results ' are presented in Appendix B of this report. ' GENERAL OPINIONS AND RECOMMENDATIONS Our geotechnical opinions and recommendations are presented in the following ' sections to assist project planning, design, and construction of the proposed temple. Our recommendations are based on the results of our field evaluation, laboratory ' testing, our experience with similar projects in the area, and our understanding of the proposed construction. These opinions and recommendation reflect our conversations ' with the project team and are based, in part, on preliminary information provided to us by Architectural Nexus, Inc. and the structural engineer. If design plans change, such ' as loading conditions, foundation sizes or configuration, STRATA should be notified to review our report recommendations and make necessary modifications. ' Soil conditions in the test pits were observed to be relatively uniform. However, soil and rock conditions may vary across the site. These changes in conditions may not ' IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratageotech.com Rexburg Temple File: LDSCHU P05038A ' Page 4 be apparent until construction. If the subsurface conditions change from those ' observed in the boring and test pit locations, the construction schedule, plans, and costs may change. Site Preparation At the time of our field evaluation, there was minimal vegetation on the site. However, we anticipate that vegetation in the upper 2 to 3 inches on the site will increase significantly between the time this report is prepared and the time that ' construction commences on the temple. Soil containing roots and vegetation is not ' suitable for support of the planned pavement sections or concrete floors of the temple and must be removed from the site at the commencement of construction. ' We understand that the foundation loads planned for the temple will be 6000 pounds per square foot (psf). While this bearing pressure is within the capacity of the ' basalt rock, the native sand/silt soil will not support this magnitude of pressure without experiencing significant consolidation which would manifest in settlement of the ' structure. Therefore, all surficial sand/silt soil is unsuitable for support of foundations and should be removed from the proposed foundation locations to expose the underlying basalt rock. The native soil may be stockpiled for reuse as landscaping fill. The native soil is suitable for sup ort of the proposed concrete floors and 1 pavement sections in parking and access road areas provided it is properly moisture conditioned and compacted as outlined in the following sections of this report. ' Prior to placement of fill in the floor, parking and access road locations, we recommend the native soil surface be proofrolled with a minimum of five passes of a ' large vibratory roller with a drum weight greater than 5 tons. If pumping or unstable soil ' replaced with structural fill. We recommend final subgrade preparation for sidewalks and building areas include compaction of the upper 8 inches o exposed subgra a soil to at least 92 percent of the maximum dry density as determined by ASTM D 1557 (Modified Proctor). ' subgrade soil should be properly moisture conditioned prior to attempting is observed during the proofrolling operation, the unstable soil should be removed and compaction efforts. The contractor should anticipate scarification and moisture ' IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratag eotech.co m ' Rexburg Temple File: LDSCHU P05038A ' Page 5 conditioning in order to achieve moisture levels needed for adequate compaction. STRATA should review the compaction process prior to placing structural fill. Native soil should be proofrolled in floor and pavement areas and removed from foundation locations to expose the underlying basalt rock as described above. Following this preparation, placement of structural fill for foundations and concrete floor slabs may ^ commence. Excavation Characteristics Native soil may be excavated using conventional soil excavation techniques. The upper fine sandy silt soil can be excavated to near vertical for excavations up to 5 feet in de th. Trench excavations dee er than 5 feet should allow rovisions for p p p v i I . AI rnativel dee er excavations to be slo ed back at 1.5H:1 V horizontal to ert ca to ' p ~ ) Y, p trenches and excavations may be shored or braced in accordance with OSHA regulations and local codes. The basalt rock encountered on the site is moderately to closely fractured. While ' the basalt can be excavated or blasted to achieve vertical slopes, the risk of falling rock is present and retaining structures or wire mesh covering will be required on rock faces over 6 feet in height. Temporary and Permanent Slopes The on-site soil is easily eroded by water and prone to sloughing and slope or ' trench instability. Excavations for utility trenches in the silt to depths of 5 feet can be made with a vertical slope. Trench excavations deeper than 5 feet should be braced in ' accordance with OSHA regulations. Temporary slopes in the silt may be at a 1.5H:1 V slope and permanent slopes may be at a 2H:1V slope. Care should be taken to route 1 run-off away from slopes to avoid erosion or saturation of the slope. Permanent slopes should be re-vegetated as quickly as possible to reduce the risk of erosion and improve slope stability. IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratageotech.com Rexburg Temple File: LDSCHU P05038A ' Page 6 Structural Fill Because the foundation loads imposed by the planned structure will be significant, structural fill beneath foundations or footings must consist of soil classified 1 as GP, GW or GM soil types according to the USCS. Aggregate and rocks comprising the gravel should be hard and durable and should not experience significant crushing or ' breaking while being compacted. Structural fill supporting concrete slab-on-grade floors or pavement sections ' should consist of GP, GW, GM, SP, SW, SM or ML soil types according to the USCS. The sandy silt soil on the site is not suitable for use as structural fill beneath foundations ' and should be removed from foundation locations as part of the site preparation. The sandy silt is suitable for use as structural fill beneath concrete slab-on-grade floors or ' paved areas. Structural fill for all applications should be of high quality and should not be saturated or contain vegetation, organic matter, frozen clods, debris or other deleterious materials, and should meet the soil classification requirements for the soil types listed ' previously. Structural fill should not contain rocks or aggregate larger than 6 inches in any dimension because compaction equipment will tend to ride on the larger aggregate. This hinders uniform compaction of the lift and can lead to poorly or non-uniformly compacted fill. ' Structural fill in pavement areas or in areas where concrete floors will be constructed should be placed in loose lifts that are 8 inches or less in thickness. Each lift should be compacted to at least 92 percent of the maximum dry density of the soil, as determined by ASTM D 1557. Structural fill will be required beneath foundations where the planned elevation of the bottom of the footings is higher than the basalt contact. In order to provide uniform ' support of foundations this will require removal of all the native sandy silt and its replacement with compacted gravel structural fill. Structural fill placed beneath ' foundations should be placed directly on the basalt bedrock in uniform 6-inch-thick loose lifts and each lift should be compacted to 95 percent of its maximum dry density ' per ASTM D 1557. The compaction requirements outlined above assume that heavy compaction equipment such as vibratory rollers with a minimum drum weight of 5 tons is 1 ' IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratageotech.com ~~ i~ i~ i~ Rexburg Temple File: LDSCHU P05038A Page 7 used. The maximum loose lift thickness should be reduced where smaller and/or lighter compaction equipment is used. STRATA should be retained to perform field density testing of structural fill to verify contractor compliance with the above minimum compaction criteria. Lateral Earth Pressure and Coefficient of Friction It is our understanding that all retaining walls will have wall drainage systems installed. We recommend STRATA be retained to review the wall drainage systems and final wall designs. All retaining and foundation wall systems should be designed to resist lateral earth pressure from the retained soil behind the structure and surcharge from equipment, slopes or vehicles adjacent to the walls. We recommend a coefficient of friction of 0.45 be used for footing and wall design for concrete cast directly on the basalt or compacted gravel. We recommend lateral earth pressures for conventional, drained wall systems be estimated using the following equivalent fluid pressures (efp) from Table 1. Table 1. Rankine Lateral Earth Pressures Rankine Lateral Earth Pressure Case ' t rest case ~(no wall movement) case (wall movement away from soil mass) case I(wall movement toward soil mass) Equivalent Fluid Pressure (EFP) 60 pcf* 40 pcf* 300 pcf* *These values are based on drained conditions. Pounds per Cubic Foot (pcf). Lateral surcharge pressures due to hydrostatic pressure, equipment, slopes, storage loads, etc., have not been included in the above lateral earth pressure recommendations. The lateral earth pressure coefficient of 0.5, acting over the entire wall height could be used to estimate the lateral earth pressure induced on walls due to adjacent surcharge loads from equipment and the slope behind the structure. Below- IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratageotech.co m Rexburg Temple File: LDSCHU P05038A Page 8 grade walls will be subject to load influences from adjacent equipment structures and ' foundations. Design of below-grade walls should account for seismic load influences using an equivalent, dynamic lateral fluid pressure equal to 20 pcf. The dynamic pressure should be added to the design static equivalent fluid pressure. The above estimated passive equivalent fluid pressure will be reduced to 240 pcf during earthquake loading conditions. Care must be taken during the use of heavy and/or vibratory equipment near the face of walls (in a zone extending 5 feet back from the wall) to avoid creating an ' undesirable degree of over-compaction in the soil immediately along the walls and imposing high stresses on the walls. Walls designed for little or no wall movement ' should be monitored during the backfilling process through survey and string line methods. ' Typical methods for wall drainage are illustrated on Plate 4, Schematic of Wall Drainage System and are discussed further in the Perimeter Wall Drainage section of this report. Retaining walls should be designed for internal and external stability. We recommend STRATA be retained to provide a global stability analysis of the final slope geometry, including the designed retaining walls. ' Flexible and Rigid Pavement Design We recommend that all topsoil and vegetation be removed from the proposed pavement area. The upper 6 to 8 inches of fine sandy silt exposed by removal of the topsoil and vegetation should be compacted in-place to at least 92 percent of its maximum dry density as determined by ASTM D 1557 using a large (5-ton drum weight) vibratory roller prior to placement of subbase or base course for the pavement section. ' STRATA should be retained to verify the upper 6 to 8 inches of the native subgrade has been proofrolled and structural fill has been compacted as outlined. Providing the site preparation procedures are accomplished as described above, the following minimum pavement sections are recommended for the main access road ' and automobile parking areas. ' IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratageotech.com Rexburg Temple File: LDSCHU P05038A ' Page 9 Flexible Pavement: ' 2.5"- Class III asphalt concrete top course. 4.0"- 3/4-inch-minus, crushed sand and gravel base course. ' 8.0"- Pit-run sand and gravel subbase course. Rigid Concrete Pavement: ' 6.0" - 4000 ounds er s uare inch si com ressive stren th at 28 p p q ~p ) p 9 ~ days) Portland cement concrete with a maximum 4-inch slump and 4 to 6 percent entrained air ' 6.0" - 3/4-inch-minus, crushed sand and gravel base course compacted to at least 92 percent of its maximum dry density per ASTM D 1557. ' Note: We recommend a curing membrane be place on all finished exterior concrete surfaces immediately after finishing. ' The above-recommended flexible pavement sections are based on a maximum 20-year design life. The flexible pavement sections provided above are also based on an estimated structural support R-value of 46 for the near-surface soil. The access road pavement section is also based on an estimated Traffic Index (TI) of 6.0. The TI of 6.0 ' is based on 1000 automobiles, 20 two-axle trucks, and 2 three-axle trucks per day. The subbase should consist of 6-inch-minus, well-graded sand and gravel ' consistent with Idaho Standards for Public Works Construction (ISPWC) Section 801 with less than 10 percent passing the No. 200 sieve, and should have an R-value of at ' least 65. The subbase should be compacted to at least 92 percent of its maximum dry density as determined by ASTM D 1557. The base course should consist of 3/4-inch-minus, well-graded, crushed sand and gravel with less than 8 percent passing the No. 200 sieve and should be consistent with ISPWC Section 802, and should have an R-value of at least 80. The base course should be compacted to at least 92 percent of the maximum dry density of the soil per ASTM D 1557. The asphalt concrete for the flexible pavement area should have material ' properties as specified in ASTM D 3515 and have a mix design with a maximum ' IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratag eotech.co m Rexburg Temple File: LDSCHU P05038A ' Page 10 aggregate size between 3/4 and 3/8-inch. The asphalt concrete should be compacted ' as required by ISPWC Sections 809 and 810. Poor maintenance and crack repair of the new pavement will allow saturated ' conditions to occur in the pavement section and in the underlying silt subgrade. The native sandy silt is frost susceptible and may soften if saturated and experience a ' reduction of load bearing capacity. Saturated conditions in the subgrade may create conditions where expansion or frost boils can occur as well as a reduction in subgrade strength. Either or both of these occurrences would result in higher maintenance requirements and a potentially shortened service life of the pavement. Therefore, we ' recommend that crack maintenance be accomplished in all pavement areas as needed and at least once every 2 to 4 years. Timely maintenance will help reduce the potential ' for surface water infiltration into the pavement section and underlying subgrade. ' Concrete Slab-on-Grade Floors We recommend that concrete slab-on-grade floors be underlain by at least 6 ' inches of 3/4-inch-minus, well-graded, crushed sand and gravel base course to provide a leveling course and moisture protection for the slab. The base course shall be placed over the native basalt or structural fill compacted to at least 92 percent of its maximum dry density as determined by ASTM D 1557 (Modified Proctor). The native silty sand is ' suitable for support of the concrete slab-on-grade provided the upper 6 to 8 inches is compacted in-place to at least 92 percent of its maximum dry density per ASTM D 1557. ' The base course should be compacted to at least 92 percent of its maximum dry density as determined by ASTM D 1557. subgrade areas that become soft, wet or disturbed must be over-excavated to dense, native soil or basalt and replaced with granular structural fill. The base course and vapor barriers should be installed after the majority ' of under slab plumbing and utilities are completed. Floor slabs should be designed for the anticipated use of equipment or storage loading conditions. Based on correlation to .' our field and laboratory test results, we recommend a modulus of subgrade reaction (k) of 230 pounds per cubic inch (pci) can be used for concrete floor slab design, based on ' a sandy silt subgrade with at least 6 inches of properly compacted 3/4-inch-minus base course sand and gravel beneath the floor slab. ' IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.st rata geotech.co m ' Rexburg Temple File: LDSCHU P05038A Page 11 Moisture migration through floor slabs can break down a floor covering, its ' adhesive or cause various other floor covering performance problems. We recommend the owner consider a vapor barrier for concrete slab-on-grade floors. Vapor barriers ' should consist of a thick (10 mil), puncture resistant, polyethylene sheeting covered with and additional 2-inch-thick layer of clean, coarse sand placed between the base course ' and the concrete slab-on-grade floors. Form stakes should never be allowed to penetrate the barrier. Although these recommendations are used, water vapor '' migration through the concrete floor slab is still possible. Floor covering should be selected accordingly. Manufacturer's recommendations should be strictly followed. Perimeter Wall Drainage We recommend below-grade walls be drained to reduce the potential for instability, leakage or seepage. Free-draining, granular structural fill should be used to backfill all below grade walls. Locally supplied top and base course gravel conforming to ITD specifications and with less than 10 percent passing the No. 200 sieve is an ' acceptable backfill. Two typical wall drainage details are presented on Plate 4, ' Schematic of Wall Drainage System. Wall and foundation drain systems may be combined; however, they should never be connected to roof drains. The foundation and ' wall drainage systems should be sloped as necessary to effectively remove water and prevent ponding or trapped water in the system. All retaining walls greater than 4 feet ' should be drained and designed to resist sliding, overturning, bearing and global stability failures. From our experience, segmental landscape walls can realize some design efficiencies if accomplished by the geotechnical engineer while performing global stability assessments. No matter how the wall design is performed, global stability must ' be considered for landscape walls. ' Seismicity We understand the 2003 International Building Code (IBC) will be utilized for ' project structural design. Section 1615.1 of the 2003 IBC outlines the procedure for evaluating site ground motions and design-spectral response accelerations. STRATA '' IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratageotech.com Rexburg Temple File: LDSCHU P05038A Page 12 utilized site soil and geologic data and the project location to establish earthquake loading criteria at the site referencing Section 1615.1 of the 2003 IBC. Based on the results from exploration, and our review of well logs in the area, we recommend a Site Class B be utilized as a basis for structural seismic design for the project. The Maximum Considered Earthquake (MCE) maps from the 2003 IBC were referenced to develop the site response spectrum for Site Class B. The recommended response spectrum is presented in Table 2, below. This response spectrum assumes a 5 percent critical damping ratio in accordance with the IBC, Section 1615.1. Asite- specific study was not performed. Structural design may use the spectral response at period T=0.2 for peak ground acceleration at the site. Individual seismic response criteria as utilized to develop the response spectrum are presented in Table 2 below. Table 2. Seismic Response Criteria for IBC 2003 ' Site Geology Design Criteria Value IBC 2003 Reference SS 0.5 Figure 1615(1) S, 0.18 Figure 1615(2) FA 1.0 Table 1615.1.2(1) F„ 1.0 Table 1615.1.2(2) SMS 0.5 Equation 16-38 SM, 0.18 Equation 16-39 Sps 0.33 Equation 16-40 Sp, 0.12 Equation 16-41 To 0.079 Section 1615.1.4 TS 0.364 Section 1615.1.4 ' The geology of eastern Idaho, specifically the Rexburg area, is characterized by a complex series of volcanic calderas, volcanic vents, faults and basalt flows overlain by ' varying depths of windblown soil. The Rexburg hill consists of a rhyolite caldera associated with the Yellowstone volcanic hotspot. After the rhyolite "volcano" became ' IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratag eotech.co m 0 i 0 ~:~;_ <~; M.~x~`~ .t? d ' Foundation Design The site preparation procedures discussed above must be implemented prior to ' initiating foundation preparations. We recommend all foundations for the temple bear ' on basalt bedrock or properly placed and compacted structural fill over basalt bedrock. If native soil is removed and structural fill is required to achieve the desired footing ' elevation, the width of excavation should increase 1 foot horizontally on each side of the footing for every 2 feet of native soil removed to expose the basalt bedrock. All structural fill in the bottom of excavations for footings and foundations should be compacted in-place to at least 98 percent of its maximum dry density per ASTM D 1557. ' IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratageotech.com Rexburg Temple File: LDSCHU P05038A Page 13 discontinuities in the rhyolite core and covered much of the present-day Rexburg hill. Following emplacement of the basalt, windblown silt or "loess" covered the basalt to various depths. Based on our experience at BYU-Idaho and the above discussion, the conditions observed on the site are typical for the area. The basalt observed on the site is variable in nature and changes in appearance and engineering performance in short lateral and vertical distances. A cinder zone was observed and delineated on the Site Plan. The basalt on-site was observed to be massive and may contain inclusions of the rhyolite clasts. Cinder zones and voids are not uncommon and should be anticipated Figure 1 below illustrates typical basalt properties in the Rexburg area. Figure 1. Typical Rexburg Area Basalt ' Rexburg Temple File: LDSCHU P05038A ' Page 14 The native sandy silt excavated below footings may be reused as landscaping fill ' or structural fill in pavement or floor slab areas. The following recommendations should be accomplished for all foundations for the temple. ' 1. Site Observation: STRATA should be retained to observe all footings (soil improvement) over-excavations to verify dimensions, structural fill, and to verify that all bearing surfaces have been prepared in accordance with this report. ' 2. Exterior Footings: Exterior footings should bear at least 36 inches below the final exterior grade to help reduce frost effects. Interior ' footings should bear a minimum of 18 inches below the finished floor elevation . ' 3. Footing Widths: Minimum strip footing widths should be consistent with the IBC . ' 4. Footing Subgrade: Loose soil, rock or debris must be removed from the basalt foundation bearing surface prior to placement of structural fill or concrete. Footings should never be constructed ' over loose, saturated or frozen soil. If loose or unstable areas are observed prior to placing structural fill or concrete, they should be over-excavated to competent basalt and replaced with compacted granular structural fill. Structural fill should extend a minimum of 1 ' foot beyond the footing sides of the footing for every 2 feet of vertical depth. ' S. Allowable Bearing Value: If the above recommendations are accomplished, a maximum allowable bearing value (ABV) of 6,000 ' psf could be used for the footing design. 6. Anticipated Settlement: If the above bearing soil, site preparation, ' earthwork and foundation recommendations are accomplished, we anticipate total settlement will be less than 1/4 inch and differential settlement will be less than 1/8 inch per 25 feet of wall length, or between similarly loaded footings that are not less than 25 feet apart. ' 7. Liquefaction Potential: Potential for liquefaction on the site is limited to the fine sandy silt covering the site as the underlying basalt bedrock will not liquefy. In order for liquefaction to occur in ' the sandy silt, the soil would need to be saturated and loose during a seismic event. Since the sandy silt layer is relatively thin and underlain by moderately fractured basalt, it is unlikely that saturated ' IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratageotech.co m Rexburg Temple File: LDSCHU P05038A t Page 15 conditions will occur and remain on the site. Therefore, it is our opinion that the potential for liquefaction on the site is very low. ' 8. Soil Profile Classification: Our site geologic research, exploration findings, and our experience in the project vicinity indicate structural ' design may utilize a Site Class B for seismic design referencing Section 1615 of the 2003 IBC. 1 Wet Weather Construction ' We recommend that site construction be undertaken during dry weather conditions. If the site preparation and grading is undertaken during wet conditions, the native or re-compacted silty or sandy soil will be susceptible to pumping or rutting when subjected to heavy loads from rubber-tired equipment or vehicles which exert a point load. Wet weather earthwork should be performed by low pressure, track-mounted equipment that spread and reduce the vehicle load. Work should not be performed ' immediately after rainfall. All soft and disturbed areas should be excavated to undisturbed soil and backfilled with structural fill. Alternatively, the area should be moisture conditioned and re-compacted to structural fill requirements. Assuming the soil is wet and soft but not disturbed, the initial layer of fill placed over the native soil should ' be at least 12 inches, but no greater than 24 inches, in depth. Compaction of the fill should be sufficient to prevent pumping of the native soil. ' Subgrades that become disturbed under construction traffic will require over- excavation to remove soft or disturbed soil. Over-excavated soil should be replaced with compacted structural fill. In summary, careful construction procedures are critical to the successful grading operation if the on-site soil is at or above optimum moisture ' content and loose. Consulting STRATA prior to initiating this type of construction is recommended to help improve earthwork efficiency and achieve a stable subgrade. Surface and Subsurface Drainage '' Site grading, including all sidewalks and landscaped area grading, should slope a minimum of 2 percent away from the proposed building to help prevent ponding and to 1 direct surface runoff away from the structure. All runoff from downspouts, roof areas, ' IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratageotech.co m Rexburg Temple File: LDSCHU P05038A ' Page 16 sidewalk areas, landscaped areas, and other large volumes of stormwater should be directed and maintained away from the structure and not be allowed to infiltrate the soil beneath the building area, sidewalks or footings. All drainage should be directed to an ' approved discharge and/or collection facility, such as shallow detention ponds or seepage beds, located a minimum of 50 feet away from building foundations. The ' native silty sand encountered in the test pits can be used for stormwater disposal. Filtration beds in the native soil should be designed using an infiltration rate of 20 ' ~ minutes per inch. Gravel used to construct filtration beds should be separated from the native soil by a non-woven filter. If silt or clay fines are permitted to enter the gravel, it ' will greatly reduce the infiltration rate and reduce the efficiency of the stormwater disposal system. It will be critical to control water from the structure to reduce the ' potential for soil saturation that could create conditions where ice heaving or differential movement of sidewalks or other improvements could occur. Void Detection and Remediation Alternatives ' Borings have been drilled at each structural column location to detect voids in the basalt, or zones within the basalt that may be composed of highly porous and weaker I, ' volcanic rock or cinders. Areas of possible voids or cinders have been detected in borings 22 through 25 and 28. This information has been used to delineate, by ' interpolation, the horizontal and vertical limits of the area in which voids or cinders can ' be anticipated. The horizontal limits of the area are shown on Plate 2. It should be ' noted that actual horizontal and vertical limits of the area may vary from those depicted by our interpolation. The actual extents may not become apparent until construction ' and could cause changes to the scope of remediation work required to prepare foundation locations. The thickness of the void or cinder zone is t icall 0.5 to 1.0 foot and the Yp Y horizontal extent of the area appears to be localized. Remediation alternatives may ' include: 1) blasting to collapse the areas, 2) using concrete or grout to fill the zones and 3) excavation of the basalt, voids or cinders and replacement with compacted structural ' fill. ' IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratag eotech.co m ' Rexburg Temple File: LDSCHU P05038A ' Page 17 Since the area of concern is localized and appears of limited extent, it is our ' opinion that specific areas in foundation locations can either be excavated or filled with Portland cement concrete more efficiently than they can be collapsed by blasting. Remediation of the basalt bedrock will only be required in foundation locations and should consist of drilling one boring in each foundation location in the area defined ' and pumping a low shrink, low viscosity Portland cement grout or concrete into the void, or layer of cinders at a pressure of 25 psi until the area has been filled and will not accept additional grout. We recommend that an engineer from our office be on-site to observe the grouting operation. ' Loading on the concrete floor slab is much less than the loads supported by footings for the structure. The rock cores obtained at the site indicate approximately 1 ' to 3+ feet of competent basalt with a compressive strength of approximately 4,000 to 8,000 psi above the area of concern. Based on the high compressive strength of the basalt rock and the relatively light floor loads, remediation of the basalt under the concrete floors will not be required. ADDITIONAL SERVICES RECOMMENDED ' Review of Plans and Specifications We recommend that STRATA be retained to review the civil and structural ' foundation plans and earthwork specifications prior to bidding of the construction documents. It has been our experience that having the geotechnical consultant from ' the design team review the construction documents reduces the potential for errors, and also reduces costly changes to the contract during construction. STRATA can provide ' review of the construction documents on a time and expenses basis. Construction Observation and Testing ~, We recommend that STRATA be retained to observe the exposed subgrade in all ' building footing trenches, floor slab and pavement areas to verify site stripping and excavation has been accomplished to the recommended native bearing soil, that all soft ' or unsuitable soil has been removed as described above, and that all bearing surfaces have been prepared and retaining wall drainage systems installed in accordance with ' IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratageotech.com Rexburg Temple File: LDSCHU P05038A ' Page 18 this report. STRATA can provide construction materials testing and special inspection ' for earthwork, concrete, asphalt, masonry, and steel. If we are not retained to perform the recommended services, we cannot be responsible for soil engineering-related ' construction errors or omissions. The recommended services are not included in this evaluation and would be billed on a time and expense basis. EVALUATION LIMITATIONS This geotechnical engineering report has been prepared to assist planning and ' design of the proposed new temple located on the corner of 700 South and 200 East in ' Rexburg, Idaho. Our services consist of professional opinions and recommendations made in accordance with generally accepted geotechnical engineering principles and ' practices. This acknowledgment is in lieu of all express or implied warranties. ' The following pl Plate 1: Plate 2: ' Plate 3: Plate 4: Appendix A: ' Appendix B: ates accompany and complete this report: Vicinity Map Site Plan, LDS Temple Unified Soil Classification System (USCS) Schematic of Wall Drainage System Exploratory Boring & Test Pit Logs Laboratory Results .' ' IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratageotech.com ~..F ~ ..~,, ~~~~r .. ~,.. T,. :- ~ I~~~I~ ter w ~ ... ~. ,~, ~: , . ~ ~~ ~~~ `~ 1 .. n c ~ ,., ...~ ..m oa.... 4....,n , ~~. .,.:. ~1h ~ '' .. ~-~' ~El-~~~ . ~v w. . ..,.. _~ TEMPLE SITE .,e'~, ~: p '' ~ r++~ .. E~i~ l~'~cm C~tf I~ o i soo N r ~G ~~ SCALE Vicinity Map s -r R aT a GEOTECHNICAL ENGINEERING & MATERIALS TESTING ,TK-l~c~r~~y brow[ -/~lzc G~rouK~ U~ m m _~ 'T1 Q ~• Z X C D m 0 z 0 m a m 0 0 a w N O O ~~ e~~ ~~ N ~j ~`~ nz~ N ~~~ ~~~ y Z N ~~my Y ~~pz DZ~ ~~ \ ~m ces ~g i ~~ ~~ Ces ~g ^ ~~ ces ~~ ~~ N ~" o~ ~ pw $~ ~~ yes ~~ Q~ yes ~- ~m ~ ~~ ~~ ~6 ~~ ~pQ~pQ Ki V L~j m6 ~ ~~ K y i ~~ ~~ ~ e ~ N ~- ~~ Z ~~ ~~ ~~ yes ~~ ~~ ~_ ~~ `es ~~ Q~ ~' ~ `es ~~ ~~ ~~ w :~ '. r-, - I4 ~ o ~ 1t3~ . ,>~ W o w w ~ ~ W oc ~ n o pp W w _ ~~ w ~ W - ~ i w o ~' ~W° ~ n .~ ~ o ~ ~ o0 00 ~ ~~ ~ ~ ~~ ~~ ~R ~ p~ ~~_ ~~ •~w ~ ~ ~~ ~ ~ ®y ~~ ~, W W - W O w W W W W T `~~$, o0 -- ,~ ~-~ W w ^ .. ^ ~ -~ ~ ~~ ~o~ r ~ ; r- x v v~ _ ~ _ ~ _~ ~ ~ o c~ rt e _ ~ r ~ r D v ~. m z O D m r~ OD ~D ~~ ~ ~ cn v -a .-~ _X a 3~ X o- 3~ 0 n o ~ ~ ~ ~ ~o DO ~ ~ 0 v ~ 0 o ,~ - ~; o ,o o~ ~~ ~ ~ D N _° ~ ~ ° o c" ~ . .. W r*' O N O ~- o ~ ~ m a i, . - --: r rn rn Z v To ^ ~~. ~~ r ~ .~ ~ ~ .~ n O ~o ~~ 0 M 0 UNIFIED SOILS CLASSIFICATION SYSTEM AND ROCK DESIGNATION MAJOR DIVISIONS GRAPH SYMBOL LETTER SYMBOL TYPICAL NAMES ~~~~,~~:... .. GW Well-Graded Gravel, CLEAN ~~ Gravel-Sand Mixtures. GRAVELS (~~ ~ ~ GP Poorly-Graded Gravel, . ° .=. ~ Gravel-Sand Mixtures. GRAVELS Silty Gravel, Gravel- GRAVELS GM Sand-Silt Mixtures. WITH Clayey Gravel, Gravel- COARSE FINES GC Sand-Clay Mixtures. GRAINED Well-Graded Sand, SOILS CLEAN SW Gravelly Sand. SANDS Poorly-Graded Sand, SP Gravelly Sand. SANDS • Silty Sand, S ' ® ' ' ~ SM Sand-Silt Mixtures. W TH FINES . •; • ~. SC Clayey Sand, ~ Sand-Clay Mixtures. ® ' E Inorganic Silt, Sandy j j ! ML or Clayey Silt. SILTS AND CLAYS Inorganic Clay of Low CL to Medium Plasticity, LIQUID LIMIT Sandy or Silty Clay. LESS THAN 50% j ; ! i i Organic Silt and Clay , , E i ~ ' j ~ ~ „ ~ } ~ OL of Low Plasticity. FINE GRAINED Inorganic Silt, Mica- SOILS MH ceous Silt, Plastic Silt. SILTS AND CLAYS Inorganic Clay of High D LIMIT CH Plasticity, Fat Clay. LIQUI Organic Clay of Medium GREATER THAN 50% OH to High Plasticity. Muck and Other Peat PT , Highly Organic Soils. SOIL CLASSIFICATION CHART Standard 2-Inch OD Split-Spoon Sample California Modified 3-Inch ' OD Split-Spoon Sample II Rock Core a Shelby Tube 3-Inch OD Undisturbed Sample - Groundwater After 24 Hours 0 Groundwater at Time of Drilling ~` ~` RQD ;~~>;~~ Rock Quality ~' ~ ~' ~ Designation BG Baggie Sample BK Bulk Sample RG Ring Sample BORING LOG SYMBOLS GROUNDWATER SYMBOLS TEST PIT LOG SYMBOLS s -r R a~- a GECTECHNIrq~, ''„N~ NiNGB MATERIHt.STES fiNG 'j r~-/~r~ri:f~.l n~.a -l-lkr E~rouh~l U~- NOTE: THIS DRAWINGS' CROSS-SECTIONS MAY BE USED FOR GRAVITY WALLS. THIS IS NOT A STRUCTURAL DETAIL. 2% SLOPE ~~ \\~~; ~` ~\ \A. 12-INCH a ~// ~~i'~.~. ~ SOIL COVER f_ -~ ~' `~ ~~ ~ ~ ~ ~ f ~ UNDISTURBED NATIVE OR WALL MEMBRANE AS APPROVED BY THE ~ ,CLEAN,` (1-INCH) ~ COMPACTED MATERIAL PROJECT ENGINEER .: DRAIN ,ROCK ~ ~ I " ~a vU ~ -- ° ~, `~`~ NON-WOVEN FILTER FABRIC 3/4 IN. BASE a COURSE o CONCRETE FLOOR ~. o c7Q o o a ° c Qo ~flo,.,~oo a 4-INCH-DIAMETER, 1.5' PERFORATED PVC PIPE. 0.5% MINIMUM LONGITUDINAL SLOPE -) ~ ~ ° ~ -'U c~C ~) ( a a Q. v 4 p Dec j a "d a C _i ~ I-, ~I III! "Ilf~` lii~i ,r~ ~ iii=.=~' 2% SLOPE ,---. v a f w u d ,, e e ~ a Q d' e ~ = d 3/4 IN. BASE ~ ' ~, COURSE e i~- CONCRETE °" FLOOR b 0 00 o p oa o d a o°o 0 00 0 soda ea iil=i~~- 4 ~~ Iii a d d aI ~ I I Y~ i I f i! i j ~ j! ! ~I INFORMATIONAL ONLY (NOT TO SCALE) UNDISTURBED NATIVE OR ! COMPACTED MATERIAL I j\\~~j ~12-INCH ~: /'~/~ ; SOIL COVER NOTE: WALL MEMBRANE AS REFER TO MANUFACTURER'S APPROVED BY THE SPECIFICATIONS AND TEXT PROJECT ENGINEER OF REPORT FOR INFORMATION REGARDING DRAINAGE UNDISTURBED NATIVE OR SYSTEM, WALL DESIGN AND COMPACTED GRANULAR RELATED GEOTECHNICAL MATERIAL CONSIDERATIONS. MIRADRAIN OR EQUIVALENT SAND OR GRAVEL BACKING 4-INCH-DIAMETER, PERFORATED PVC PIPE LAID WITH A 0.5% MINIMUM AL O s -r R a~- a OPE WITH S (1 -INCH \ DRAIN J GEOTFGHNICAL FNGINEEi2iNG 8 MATERIALS TESTING + ~ - RAPPED ROCK W `.~~`<>,.~~ ,°~a-, ~F- =~~~-<~`'~Y IN FILTER FABRIC. SCHEMATIC OF WALL DRAINAGE SYSTEM LUS(:I1U rubU3tfA ruo- ~ C: 4 ii ii 0 u APPENDIX A ii -Q L^~ -~ .a ~a a ~~ 0 _: _o `, 0 rn a -a O _, O -s a ' =0 ~~ ~g .C iL '~9 -/ JS -N `J '" E ~_,~ ' U Boring No. 1 Nv, o ~~ NLS ~~o w ~ WO~ Subsurface Soil ~ ~ N a ~ ~ ~ o ~ ~ J gym„ o ~ ~ ~ ~ U c °% REMARKS Description ~ v = ~ N ~ ~ m ~ m ~ ~ ` . ° ~ ~ Fine Sandy SILT (native) - ML ~ Ground Surface Elev: 5077.61 brown, loose, slightly moist. ~ j 1 ~;, , ;~ ',i{ 2 ~~ l ~,I ;, ` '~ 's , l ~ 2 3 ~ ~~; ~ 2 g 17 4 ,, 4 ~;j~~ s,i~ I BASALT -Gray to black, RX ~'~^>' strong to very strong, rj >~<^>~ moderately to widely spaced ,ti°. ;ti fractures. Highly fractured '`^~' < 0 3' / Ft El 5071 75 from 4.5 to 5.0 feet. ^>; >; ev: g . L 6 '~~^'; >;<^> >~~^>~ 7 ' ` >;~^>; 55 >ti<^>; >~<^>N 8 ' L , >;~^>; 7 ~ ~/~> > , ~ 7 L >;~^7; 9 >~~^>~ ~, ~~ >;<^>; 10 '~~^'; ~~ > ~^>~ ~ ~~ >~~^>~ 11 ~~ ';<^'; c > ~<n> ~ c ' ~ ' ~ `" ` 60 RQD > with depth 12 >;~^>; ~~ >;~^>; >;~^>; 13 ` >ti~^>ti ' L ' 7 ~/~> > , 1 7 L ~ `^~ 14 ' ' ~~ > ~<^> Boring Terminated at 15' ' L ~ , ;,'. , `^ in Basalt. 7 L ' ' File: LDSCHU Boring Number: 1 Project No.: P05038A Date Drilled: April 14, 2005 BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core Ta sTr~a t Depth to Groundwater: NA Logged By: JPB ~°'~ Sheet 1 of 1 '"' 'r "'~"` '""`"` ~~ 1 ~` ~¢ 0~ N ~\ C~ 3 na tU v~ vp '-~ d _u 0 -n =N d yo f~ -z -~ _~, S _a H 0 E ~_~~ U Boring No. 2 = ~ ~, ~ o J ~ ~ ~, ~ ~ ~ ' w o Subsurface Soil w ~ v Q ~ ~ ~ o ~ ~ J N o ` _ ~ o i; ~ ~ REMARKS Description ~ v ~ ~ N ~- vQi m ~ m ~ ~ ~ ° a ~ Fine Sandy SILT (native) - ML i ~ Ground Surface Elev: 5079.03 brown, loose, slightly moist. Alfalfa roots to ~2'. 1 2 j 3 "' t BASALT -Gray to black, RX V V ^~ ~~ ~ ^ strong to very strong, 4 L ~~ L Fractured at 3.5-4.5 feet moderately to widely spaced ~~ ~~~~ Coring began at 4.5 feet. fractures. Highly fractured L ~, L zone from 3.5 to 4.5 feet. V ~~a ^> ^> rj < L ~, C V ^ V y ^~ ~<^~ L ~7 L V ^ yV ^> ~<^> 6 L ~7 L V ^ yV ^~ ~<^~ V ^ yV ^~ V<^> 7 ~', ~ 50 Ftg Elev: 5071.75 V ^ V y ^~ Y<^~ L ~7 L V ^ yV ^~ V<^~ g L ~7 L V ^ V Y ^~ <^~ L ~7 L V ^ yV ^~ V<^~ 9 L ~7 L V V ^ y ^~ V<^~ L '7 L V ^ VV ^~ V<^~ 1 O L ~7 L V ^ yV ^~ V<^~ L ~7 L V ^ yV ^~ V<^~ 11 ` '~ ` v ^ ~v ^~ Y<^~ L ~7 C V ^ yV ^' `~'^' ' S~ RQD > with depth 12 ` ~ ` V ^ yV ^~ V<^~ L ~7 L V ^ yV ^> ~<^> 13 `'~ ` V ^ yV ^~ ~<^~ L ~~ L V ^ V y ^~ ~<^~ Boring Terminated at 14 in Basalt. 15 File: LDSCHU Boring Number: 2 ~ EXPLORATOR Project No.: P05038A Date Drilled: April 14, 2005 BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Groundwater: NA Logged By: JPB `"``~ J°£"`' ' `°`"`"°~ Sheet 1 of 1 ~I A Z 'a 'm .o O. N "~ ' JN ~~ 07 =L 0 d w =U _6 C 00 O ~N _~ tL O s -i .t ~N E N U Boring No. 3 = ~ ~, ~ o ~ N ~ ~ ~, o ~ ~ ~ ~ ~ ~ o Y Subsurface Soil a ~ W N Q J ~ ~ ~ o ~ ~ C ~ o _ O- ~ ~ O d% REMARKS Description ~ o = ~ } v, Q~ ~, J m ~ ~m L ~ C - C n. a ~ ~ Fine Sandy SILT (native) - ML ~ i I i 1 , I Ground Surface Elev: 5080.12 brown, loose, slightly moist. I ; Alfalfa roots to ~2'. i i i ~ 1 pi's ;~l ~ ;; ! 2 i1 !~'ii= ~' ~"; (jl ii 3 ~) ;lip; ,~; li~~~ ,~~ BASALT -Gray to black, RX L ^ ~ ^L ^ strong to very strong, 4 , ~y`', ~ `" Fractured at 3.5-5.0 feet moderately to widely spaced ~ ~ Coring began at 5.0 feet. fractures. Highly fractured ~ ~y~~ ~ zone from 3.5 to 5.0 feet. L °`^ ~ 5 ^ J ~ >;<^'; y L ~ ^ J V ~ ~ , ~<N L ~~J ~ 6 V '~`^'~ L ~ ^ J V ~~<^~ ~ L ~' ^ 7 V ~;<^~; 50 ~~~ V ~;<^~; ~~~ $ V '~`^~ ~ Ftg Elev: 5071.75 ^~ J ~~<^~ ~ L ~ ~ v ~ V ';`^'; g L ~, J V L ~`^L ~ ^~J ^ 10 V L ~~`^~~ ~ ^ J ^ V ~~<^~~ L ~ ^ J >;~^>; 11 L ~ ~ v '~ `^ L ~ L ~ ^' ^ 12 J ';<^'; L ~ 50 RQD > with depth ^ J ~ V >j~^>; G ' ~ J ~ V ~'~^~' 13 L ^' ~ V V ~~<^~ ~ L ~ ^ J ^ V >;~^>; 14 L ^~J ^ V 7;~^1; L ~~J ~ >;~^>; 15 ~~ `~ File: LDSCHU Boring Number: 3 EXPLORATORY Project No.: P05038A Date Drilled: April 14, 2005 BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a ~ Depth to Groundwater: NA Logged By. JPB ~°~ ~,.' Sheet 1 of 2 ~~' '~ ~°^ " z =Y r¢ ~~ m ~0~ Boring No. 3 = ~ w ~ ~, cn v J o ~ ~ ~, ~ ~ ~ o ~ ~ ~ $ ~ o w ~ = ~ ' w ~ ~ REMARKS Subsurface Soil ~ ` m o ~ Description ° v ~ ~ v}i ~ m ~ ~ ~ ~ ° ~ ~ BASALT -Gray to black, RX v " ~a strong to very strong, widely ^'y~^' L ~ L spaced fractures. , ., ^ „v 16 L L ~ ^' y`^' 7 y th roves as de RQD Im ' ^~ `^~ 60 p p L , L J ^ J increases. RQD=90-100%. y ^~ y`^~ 17 L ~7 L J J ^ y ^~ ~<^~ L ~.~ L J ^ yJ y 18 L ~7 L ^~ `^~ J ^ V y ^~ ~~^~ G '~7 L J ^ yJ ^~ y`^~ 19 L ~7 G J ~ J y ^~ ~t^~ L ~7 L V ^ yJ ^~ ~<^~ Boring Terminated in competent basalt at 20.0'. 21 22 23 24 25 26 27 28 29 30 File: LDSCHU Boring Number: 3 EXPLORATORY Project No.: P05038A Date Drilled: April 14, 2005 BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a ~ Depth to Groundwater: NA Logged By: JPB ~~' ,,.';< % '~~ '°~ Sheet 2 of 2 'rJ ~, `J ii ri -t H ~ Ri a °a ~ m ' ^,N ~; o -, 3 N `t ~ ~i ~~ ma _~ =L Y~ ^ O ~ :v -r N~ In - I ~o ^=°_ L ss° ~_ -i U j Yl '6 -% ~L E d ~_,. Boring No. 4 = ~ ~, cn o J ~, N ~ ~ o w ; w Subsurface Soil W `~ n a ~ ~ ~ ~ o a ~ ~ ~ o ~ ~O ~ ~ U c °~ REMARKS Description o s ~ ~ ~ ~ m ~ m ~ ~ ~ ° a ~ Fine Ssany SILT (native) - ML ' ' I Ground Surface Elev: 5075.83 brown, loose, slightly moist. ~ i i Alfalfa roots to ~2'. ~ ~ I I ~~ l 1 j~ ~ ~l' I, i 2 I~ 1 ~' ~! f ~ ~ ~ ~ Ftg Elev: 5071.75 3 I ~j' !11 BASALT -Gray to black, RX ^' ,; ~ strong to very strong, > ~<"> ~ ` Fractured at 4.0-5.0 feet moderately to widely spaced ~' ,; ~ Coring began at 5.0 feet. fractures. Highly fractured 5 ~ ~<"~ zone from 4.0 to 5.0 feet. ~' ,, ~ <" L ~ L ~ ~' ~ ~ 6 V ~;<^~; ' ~ L ~<"L ~ ~~J 7 ~ ~`"~ ~ 50 ^~J V <" L ~ L ~ ~ 8 ^ J V ~<" ~ L L ^~J v <" L ~ L ~ ~~J ~ 9 ~<" ~ L L ^' >V~">V L ~ L ~ ' ^ J 10 L ~<"L ~ ^~~ '<" ' L L ~~J v ~ `"~ 11 ' ' ' ^ V V >V~">V c ~ L ~ G ~~„G ~ 50 ROD > with depth 12 ^> V <" L ~ L ~ ~ ~ J V ~<" ~ 13 L L ^~~ v > V~"> V G ~ L ~ ' ^ ~ V > V <"> V 14 L' `' ^~J v L ~<"L ~ Boring Terminated at 15' in ~~~ ~ " Basalt. ~ ~` ~ File: LDSCHU Boring Number: 4 EXPLORATOR Project No.: P05038A Date Drilled: April 14, 2005 ~ BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a ~ Depth to Groundwater: NA Logged By. JPB any ~ t,,~~`, ~ ~ %•~ ~'°f- Sheet 1 of 1 1 n Q ~Q ~N ~I T ~ ~ ' = 0~ N ~~ yo ~; 'N O\ u ~ ' C li t~ °" .a L LV ~, y `* ;~~ 1, o - I ~_8 ~~ N _~ ~;; _, ; =~r ~~ ~~ _; E /* ,. U Boring No. 5 =~ Ncn Jo ~~, N`s ~~o w ~ w~v Subsurface Soil w `~ n J ~ ~ ~ o a ~ ~ o ` o ~ c~i U c °' REMARKS Description ° v = ~ v v¢i m ~ m a ~ ` ° ~ ~ Fine Sandy SILT (native) - ML ~ ~ ~ , ~ ~ Ground Surface Elev: 5076.78 brown, loose, slightly moist. t ~ I Alfalfa roots to ~2'. 1 i ~ k jtl y i j ~ ~ ~ ~ 2 ; ~i ~ ~ ;~ ~~ ~ ' ~~ ii i , ~ l ~ 3 ;; I l ( Il I l1 i II ~ BASALT -Gray to black, RX `~ vv ^ Ft Elev: 5071.75 g strong to very strong, > ~~^> ~ ' ' moderately to widely spaced `„ ~ ~ ., fractures. Highly fractured 5 > ~~^> ~ zone from 4.5 to 5.0 feet. L„~ ~ „ > ~~^> ~ Fractured at 4.0-5.0 feet L„~ ~ „ Coring began at 5.0 feet. 6 V <^ L ~ L ~ ' ~ J ~ > ~ > ; ^ ; ^~J ^ 7 ';<^'; L ~ 50 ~ ~ > ~~^> L ~~J ^ 8 ~<^ ~ L L ~ ~ ~ ~ V <^ L ~ L ~ ' ^ J ^ V ;`^ 9 ~ ~ ~7J ^ > ~V^> ~ < L ~ G ~ ' ^ J ^ > ~V > ~ 10 ^ L,` L, ' ^ J ^ V <^ L' L' ^~ ^ J V <^ ' 11 L' L ^~J ^ V <^ L' L' ~~~ ~ 50 ROD > with depth 12 L ` ~ ~ ~ V ~<^ ~ L L ~~J ^ V <^ 13 L ~ G ~ ~ ^ ~ v > ~<^> ~ ~ L ' ^~J ^ >;~^>; 14 ` ^~J ~ V >;~^>; L ^' ^ Boring Terminated at 15.1' in V > ~~^> ~ Basalt L'~ L' File: LDSCHU Boring Number: 5 EXPLORATOR Project No.: P05038A Date Drilled: April 14, 2005 ~ BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s ~- R aT a Depth to Groundwater: NA Logged By: JPB~TLB r~^' 'Y""'~° `~`° "'°~ Sheet 1 of 1 1 ~~ I~~ 1 Boring No. 6 =~ ~, cn o ~„ N L s ~ N g w ~ w o v Subsurface Soil w ~ c"n J ~ ~ ~ o ~ ~ ~ o L o = ~ ~ ~ ~ REMARKS Description ~ v ~ ~ ~ ~ can J m ~ m a ~ ` ° ~ ~ Fine Sandy SILT (native) - ML I ~ ~ ~ Ground Surface Elev: 5077.60 brown, loose, slightly moist. ( ~ , , j ~ I Alfalfa roots to ~2'. 1 ~ (~ I ~ i ~ t ~ 2 I ~~ ~ ~ 3 I i I I~ =, j ' ~ ~ 4 i i I ~' E , I BASALT -Gray to black, RX , V ' , V '`^~' 'ti< 'ti strop to ver strop 9 Y 9• 5 ^ ~ , Fractured at 4.5-5.0 feet moderately to widely spaced ,~~^,~ Coring began at 5.0 feet. fractures. Highly fractured ';< '; zone from 4.5 to 5.0 feet. ^ ~ Ftg Elev: 5071.75 6 >~~^> >~~^>~ x~ > > 7 ~~^ ' ` > ~~^> 50 >~~^>~ >~~^>~ 8 ` >ti<^>ti ~ L ~ '~<^' ~ L A , V? ^, V 9 ,< <, '"<^>ti ~, ~~ >;<^'; 10 '~~^'~ >~~^>~ >~~^>~ 11 ';<^'; >~~^>~ ' ~`^' ~ 50 th ROD > with de ` p 12 >~~^>~ ~~ >~~^>~ >;~^>; L '~<^' ~ ~ ~ >;~^>; L >;~^>; 14 ~~ >;~^>; Boring Terminated at 15.0' i ~~ ,^„ • , ;. `^ Basalt ° ' ~~ File: LDSCHU Boring Number: 6 EXPLORATOR Project No.: P05038A Date Drilled: April 14, 2005 BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Groundwater: NA Logged By. JPB ~~n~ ~~ "rte'-°~~ ~-~- <~~ ~~~ ~r Sheet 1 of 1 ii fl C Boring No. 7 ~ ~ ~, ~ o ~ ~, ~ ~ 3 No >- w ~ ~ w w ° .~ Subsurface Soil ~ ~ w c"n a ~ m ~ a_ Q ~ °' ~ ~a- c ~ o `` (n ' _ ~ O- ~ Y " ~ p ~ REMARKS Description o v ~ ~ ~, ~, m ~ m L ~ - c o_ a ~ ~ Fine Sandy SILT (native) - ML I I ' ~ ~ Ground Surface Elev: 5077.22 brown, loose, slightly moist. ~ ~ j Alfalfa roots to ~2'. 1 ' 1 I 2 i I 3 4 i BASALT -Gray to black, RX `~' ,; ~ strong to very strong, 5 ~ ;<"~ ; Fractured at 3.5-4.5 feet moderately to widely spaced ~ ~,, ~ Coring began at 4.5 feet. fractures. Highly fractured ';<"'; zone from 3.5 to 4.5 feet. ~ ~,,`~ 75 Ftg Elev: 5071 . 6 '~<^'~ ^~ J V <" L ~ L ~ ^~ 7 J ~ ;`"~ ; 50 ^' V V <" L ~ G ~ ~~J ~ V ~ ~<"~ ~ G ^' V > ~V"> ~ ~ a L a ' 9 ^ J ~ >,<">, L 7 J V <" G ~ C ~ ^~J 10 V ~°`"~° 7 J > ~' V"> ~' < ~ ~ < ~ ^' V 11 V ~ °`"~ ' 7 ^ J V ~<" ~ L G L ~~„` ~ rjQ RQD > with depth 12 ~~~ >;~">; L ' ^ J V ~'`"~' 13 L ~ J V L ~<"L ~ ^' ~ 1 14 V >;<">; ` ^~ ~ J v ~ ~<A~ ~ ~ a a ' Boring Terminated at 14.5' in Basalt. 15 File: LDSCHU Boring N umber: 7 EXPLORATOR Project No.: P05038A Date Drilled: April 14, 2005 BORING LOGS • Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Ground Water: NA Logged By. JPB/tlb r.,~ ~ ,,,."~ ~ ~~ °~ Sheet 1 Of 1 ii n L n s ~~ _ Z - C7 Q ~~ ~i v ~'~m ~~ _,~o _N ~\ s N T~ '=O m ~. ~~ =o v~ °'s ~;~ a a ~~ ~,, n ~g '_ L ~ O ss ,i r iN J ~. ~~ E d r „i U Boring No. 8 = ~ ~, cn o ~ ~, m ~ ~ $ w N w Subsurface Soil w ~ ~ J ~ ~ ~ o a ~ ~ o ` 'o = ~ ~ ~ REMARKS Description ~ ` ~ ~ v vQ, m ~ m ~ ~ ` ° ~ ~ - . Fine Sandy SILT (native) - ML { ~ ~ Ground Surface Elev: 5078.45 brown, loose, slightly moist. i i ~ j Alfalfa roots to ^-2'. ~ ~ 1 4~ I ( I ~ ii ~) ) 2 `` I ~ ~ l! ~ ~l 3 ~ ~, ;~ BASALT -Gray to black, RX `~' ,,` ~ strong to very strong, >~~^>~ moderately to widely spaced `„~ ~ ~ fractures. 5 ~<^ ~ L L ^~V ~ V L~<^L ~ ~ 6 ^ J ^ ~<^ ~ L L ' ^ J L ~<^L ~ ' Ft Elev: 5071.75 .. ~ ~ 7 ~ ;<^~ ; 50 ' ^ ~ ^ > ~ > ~^ ~ L ~ ^ ~ 1 >>~^>> L ^~ V ^ V >;~^>; L ~~~ ~ g V ';<^'; L ^' J ~ > ~ ~^> ~ < L' L' ^' ~ 10 J V ~°`^~~ ~ ^ J ^ V <^ L ~ L ~ ~ ~ J V `^ 11 ~' ~' ' ^ ~ ^ >~~^>~ >;<~> ~ 50 RQD > with depth 12 L ' ^ J ^ V '<^ ' L G ^' J ~ 13 v L ~~^L ~ ^~ ~ J ~;`^~; ' ~ ` 14 ~; ^~; ' ~ Boring Terminated at 13.2' in Basalt. 15 File: LDSCHU Boring Number: 8 EXPLORATORY Project No.: P05038A Date Drilled: April 14, 2005 ~ BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T F2 aT a Depth to Groundwater: NA Logged By: JPB/tlb r+~^~ xr'"-~ ~~~~ 'Urr Sheet 1 of 1 u o O ~ ~' N m ~. fU ~~o i N -~,. ''N T: ~ ' ~ a iv o a~ C - L '~ ~ n O _~~ I e %~ o D ~S ^ _~ ;? = L y9 ' =_ iN =J ~, ~ll E ': ~,. ' U Boring No. 9 ~ ~ cn N v o ~ ~ „ ~ ~ 3 ` ~ ~ 3 $ w ~ = ' w ~ REMARKS Subsurface Soil w ~ g ~ o ~ ~ J N o ~ ~ o ~ ~ Description ~ ~ ~ n ~ m ~ m a ~ ~ ° ~ ~ Fine Sandy SILT (native) - ML i ~ + ; ~ Ground Surface Elev: 5078.03 brown, loose, slightly moist. I ! ~ Alfalfa roots to ^~2'. 1 I ~ iE ~ 2 I~ ~~ ~ I ~ 3 ! ~ , , ' w BASALT -Gray to black, RX `^ ~ ~ ^ strong to very strong, 4 > ~~^> ~ moderately to widely spaced ,'~ `„ fractures. Highly fractured > ~~~> ~ from 3.5 to 5.0 feet. „~ ~ 5 >;<^>; V L ~~J ~ V `^ L ~ L ~ ~ 6 ^ J ^ ~'`^~' ~° ^ Ftg Elev: 5071.75 ~ >~~^>~ ~ ~ J ~ 7 ';<^'; 50 L ~~J ^ V <^ L ~ L ~ ~~ ~ 8 J V ~`^ '~ L L ~~J ^ V ~<^ ~ L G ' ^ J ^ V g ~;<^~; ^~ J V `^ L ~ L ~ ^' J ~ 10 v ~~`^~° ~ J ^ V >;~^>; L ~~ J ~ V > `^> 11 L ' ' ' ^ J ^ V > V > V ~^ ~ L ~ 7 h ~~~~ ~ 50 RQD > with dept 12 ~ ^ ~ ^ V ~`^ ~ L L ' ^ J ^ v <^ ~ 13 L ~ L ^' J `^ L ~ L ~ ' ^ J V > V<^> V `' `' 14 ^~J ~ > V~^> V c ~ L ~ Boring Terminated at 15' in ~;,~ ~ Basalt. ~ ~~^~ File: LDSCHU Boring N umber: 9 EXPLORATORY Project No.: P05038A Date Drilled: April 15, 2005 BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aTa ~ Depth to Groundwater: NA Logged By: JPB~tIb Sheet 1 of 1 ~~^~ ,,,f; '~ ~~ ~"'r u Q ~x~ N G ' _2 2 :~~ w~ \P ~~ ~o .N ~O ~~ O.p .~o c~ `o ~. a z ~o . W no a* I E ~p o O - I ~° a L t ~y . =: S --N i~ - ~o :-U E _~U Boring No. 10 = ~ ~, ~ o ~ a, ~ ~ ~ ~ o r ~ ~ w a~ ^ w ~ Subsurface Soil w `~ N g ~ ~~ o~ ~ N o` o` ~ ~ REMARKS Description ° v ° ~ ~ can m ~ m ~ ~ ` ° ~ ~ Fine Sandy SILT (native) - ML E I ; Ground Surface Elev: 5078.65 brown, loose, slightly moist. . I ! ~ ~ ~ Alfalfa roots to ~2'. 1 ~ ! ~ I ~ i ? ~ 2 i 3 ~ ~ 1 ~ ~ ~ BASALT -Gray to black, RX ~',,`~ strong to very strong, >;<^>; moderately to widely spaced .~' ~ ~ Fractured at 4.0-4.8 feet fractures. Highly fractured rJ >~~^~ ~ Coring began at 5.5 feet. zone from 4.0 to 4.5 feet. .,' ., ~ v >~~^>~ ' 6 ^ J V ';<^'; L ^~ V V > j<^>; > V V J> V Ftg Elev: 5071.75 7 ~<^ ~ 50 ~1' ~ ~ V >;<^>; G ^~ V 8 V > ~<^> ~ L ~ ^ J ~ V > > ;<^ ; G ^' J ~ g V ';<^'; ~' J V > j<^> a c ~' 10 J V L > ~`^> ~7 ^ J V > j~^> j L ^' V ~ V > `^> 11 ' ' ~~J ~ V > ~~^> ~ ~ r Q th RQD > with de > ~~ > ~ j p 12 ^' J V > ~~^> ~ L ' ~ V V > > 13 ;<^ ; ` ~ ^ J ~ v > ~~^> ~ L ^~J V > V<^> V 14 `' ~~ J V > V <^> V Boring Terminated at 15 in ~ ~ ~ ^ ~~ " Basalt. > ~~^> File: LDSCHU Boring N umber: 10 EXPLORATORY Project No.: P05038A Date Drilled: April 15, 2005 ~ BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aTa ~ Depth to Groundwater: NA Logged By: JPB~tIb ~ ~~~~ Sheet 1 of 1 ~~^a ~rr~ -~ ul Q v, O _i u Q' o~ Op yip -T ~i ~O >N ~~ l -a ~a ~~ ~L 1~ ~O L; tl "O ~~ p - I ~Q ~o ^ ~~ _~ ys° ~,i ~N "J c~ E "d _;: ' U Boring No. 11 = ~ ~ N cn " Jo ~ °' cn iu ~ o ~, °o o r w ~ ~ ' ^ w o .N Y REMARKS Subsurface Soil w , a v ~ ~ ~ ~ ~ ` o = c , c Description ~ v ~ ~ n ~ m ~ °D ~ ~ ` ° a ~ Fine Sandy SILT (native) - ML ~ ; Ground Surface Elev: 5074.71 brown, loose, slightly moist. R ~ ~ ! Alfalfa roots to ~2'. ~ 1 ~ y ~ ~ I 2 1 f ~ ! Ftg Elev: 5071.75 3 BASALT -Gray to black, RX ^' a ^ strong to very strong, 4 „ ';<^'; moderately to widely spaced ^ ~~ ^ fractures. Highly fractured ';<^'; ` zone from 3.5 to 4.5 feet. ^' „ ^ 5 > ~~^> ~ Fractured at 3.5-4.5 feet ^~ ~ ^ Coring began at 3.5 feet. > ~~^> ' 6 ^ J ^ V '~<^'a L ^~ ^ V V > ~<^> ~ ^ ~ `.~ 7 ' ~~^' ~ 50 L ^~J ^ V > > ;<^ ; L ^~J ^ 8 >;~^>; ^~~ ^ V >;<^>; L ^' J ^ V ';<^'~ g ' ^ V ^ V >;<^>; L ^' J ^ 10 V > °`^> ' ^ V ^ V ' ~<^> ~ G ^ ~ ^ V V ~ `^> 11 L ' ' ^' ^ J V > ;<^> ; > ~~~> ~ 50 RQD > with depth 12 ` ' ^ J ^ V > j<^> j t ^~J ^ v ~'<^~' 13 ^' ^ J v > ~~^> ~ L ^~J ^ V > ~<^> V 14 `' ^' J ^ V > ~<^> ~ ~ G ~ ^' ^ Boring Terminated at 15.6' i J > ~~^> ~ Basalt. '~ `' File: LDSCHU Boring Number: 11 EXPLORATORY Project No.: P05038A Date Drilled: April 15, 2005 BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Groundwater: NA Logged By. JPB/tlb ~<^~ ,y'~. -~~ y°~ Sheet 1 of 1 n G ~~ F ~ ~-_ ~, ~~ ~i a ~m ~\ ~'~ o N 0 3 N ~iN J~ ";O -~ -~ '~ t L . iti W ~./ ~ O aY U `~6 - I ^ N ~~ ~o ^ =~ ~, ~s ,. ~,S ~N 'O c% ~~ E d r ~,. U Boring No. 12 = ~cn o ~„ ~`r ~~~°o w a wow Subsurface Soil w `~ j g ~ Q~ o a ~ N m` o ~ ~ o ~ ~, REMARKS Description o v ~ ~, ~, m ~ ~ - ~ a ~ ~ Fine Sandy SILT (native) - ML ~ 1 Ground Surface Elev: 5075.62 brown, loose, slightly moist. Alfalfa roots to ~2'. ( ~ I 1 2 ~ I i 3 ~ ~ BASALT -Gray to black, RX ~' `~ strong to very strong, 4 >Y~~>Y moderately to widely spaced „'~ ~ „ Ftg Elev: 5070 fractures. Highly fractured > Y~„> Y zone from 3.5 to 4.5 feet. „'~ ~ „' 5 > ~~,,> ~ Fractured at 3.5-4.5 feet .~~ ~ .~ Coring began at 3.5 feet. >;<~> ^~ g J V ';<^'; ~ ~ J >;~n>; c ~~ ~ 7 '~~^'~ L 50 ^~J V >; n>; < C ~ ^ J ~ V '~<~'~ L ^' J V >;<n> j G ^~ J g V ';<^'; ^~ J V >;<n> j L ~' 10 J V L ' ~`^'' 7 ~ J V > ; n> ; < ~' J V > `~> 11 ' ' ~' J v >~~~>~ L ' ^ J >;<~>; 50 12 L ^~ J V > j<n> j C ~ ^ J V ~ `~> 13 ' ' ^~ J >;~n>; L ^~ J V > Y<A> Y 14 `' ^' J V > Y<A> D ~ ~ ~ ' ~ ~ Boring Terminated at 14.6' in Basalt. 15 File: LDSCHU Boring N umber: 12 EXPLORATOR Project No.: P05038A Date Drilled: April 15, 2005 ` BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Groundwater: NA Logged By. JPB/tlb ,~rK ~..,,.::`;.,., ~.~...<,..,-~~~-' Sheet 1 of 1 Q ~~ "~ A -S ~¢ u~ J~ ~i N -T c iO N N -, \ n ~p ' `s ~~ ;~ ~. ~ ~C L R1 ' ~O r I ~ ~,; ~~ a `N `,O ~z L O ~~ ~_> ; U J.~ =J __. E /d Y r~/ U Boring No. 13 = ~ ~, cn o ~ „ N `r ~ ~ o w ; w Subsurface Soil w ~ N J ~ ~ ~ o ~ ~ ~ o ` 'o = ~ ~ ~ ~ REMARKS Description ~ v ~ ~ v va, m ~ m ~ ~ ` ° a ~ Fine Sandy SILT (native) - ML " Ground Surface Elev: 5076.23 brown, loose, slightly moist. I f I Alfalfa roots to ^~2'. { i ~ 1 I I 2 3 BASALT -Gray to black, RX ^ ~., ^ Ftg Elev: 5070 strong to very strong, > ~<^~ ; moderately to widely spaced ^' ,, ^ fractures. Highly fractured 5 '~<~>; Fractured at 4.0-5.0 feet zone from 4.0 to 5.0 feet. ^ ~,,`^ Coring began at 4.0 feet. > ~ <„> ^' J ^ 6 >;<~> ^' J ^ > ~</~> ~ ^~ ~^ ' ^ J ^ > ~Vn> ~ < ~ L ~ ' ^ V ^ V > ~<~> ~ G ^' J ^ V >;~n>; c ^' J ^ 9 >;~n>; ^' J ^ V >;~n> j t ' ^ J ^ V > °`~> 10 ^' J ^ > ~Vn> ~ < ~ t ~ ^' ^ V > ~Vn> ~ ` 11 ' ~' ' ^ J ^ V >;~A> j C ~ ^ ^ >;<~>; 36 12 ~ ^ J ^ >;~n> j c ^~J ^ > ~ VA> ~ ,< , 13 < ^' J ^ > ~<A> ~ ' ~ L ^' J ^ V >;~n> j Boring Terminated at 14.0' in Basalt. 15 File: LDSCHU Boring N umber: 13 EXPLORATORY Project No.: P05038A Date Drilled: April 15, 2005 ~ BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Groundwater: NA Logged By: JPB~tIb ~~' ~~ rr~-°~+~ ~r-° ~~~~r Sheet 1 of 1 II____~ ~~ u E Q ~~ T y c N N `. ~ n ~o ~^ ~~ ~~ LY7 ~ - L LNG ~! ~d ~; ,~ ~~ o ,a ~o N ~ L ~o 9 ~7 U ~~ -; yU E d _,. ' U Boring No. 14 = ~ ~, cn o ~ ~ ~ ~, o ~ ~, w o Subsurface Soil w ~ N J ~ ~ ~ o ~ ~ ~ o ` o = ~ ~ ~ ~ REMARKS Description ~ s ~ ~ N vQ, m °' ~ ~ ` ° ~ a ~ Fine Sandy SILT (native) - ML ~ ~ Ground Surface Elev: 5077.07 brown, loose, slightly moist. i ~ Alfalfa roots to ~2'. 1 ,) I 2 i 3 4 BASALT -Gray to black, RX ^' ~ ~ strong to very strong, rj >;<^>; Fractured at 4.0-4.5 feet moderately to widely spaced ~' ,; ~ Coring began at 4.5 feet. fractures. Highly fractured >;<^>; zone from 4.5 to 5.0 feet. ~' ~ ~ 6 '~~^'~ ~ ^ J ^ V > > ~<^ ~ ' ~ ~ ~ ^' J ^ V >;~^> j L ~ ^ V ^ > ~ > 8 ; ^ ; c ^~ ^ J V >;~^>; L ' g ^ J ^ V ';<^'; ~' J ~ V >;~^>; ~~~, ~ Ftg Elev: 5070 10 ^' J ^ V >;~^>a L ' ^ V ^ V ~ `^~ 11 ' ' ~~J ^ V >;~^>; t ~' ~ >;<^>; 60 12 ^~ J ^ v >~~^>~ c ^~J ~ 13 V >'`^>' ~ ^ J ~ >;~^>; C ' ~ J ^ > ~<^> 14 ~ ~' `~ Boring Terminated at 14.3' in Basalt. 15 File: LDSCHU Boring Number: 14 EXPLORATOR Project No.: P05038A Date Drilled: April 15, 2005 ~ BORING LOGS Grill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a _ Depth to Groundwater: NA Logged By. JPB/tlb `Ir, Sheet 1 of 1 +~a _? 'r.-<> +~ ~.., K -f ~A _¢ ~~ ,Q ~~o ~i =o 'N r\ 3N ^:N c~ u~ ~C -` L ~T~ c% ~~ „o on ^ N ~o ~ ~~ L ~O -s -~~i S ~N `~J ~~ 1 E W U Boring No. 15 = ~ N N p ~ cn ~ ,~ o ~ ~ w o Subsurface Soil w ~ ? J ~ a ~ o ~ ~ N m ~ _ ~ o ~ ~ REMARKS Description ~ v ~ ~, ~, m ~ ` a _ ~ ~ ~ ~ Fine Sandy SILT (native) - ML I ~ I , t ~ Ground Surface Elev: 5077.53 brown, loose, slightly moist. ' j Alfalfa roots to ^-2'. 1 ~ i ~ ~ I ~ ~ 2 I ` ~ ~ ~ 3 , ~ ~ 4 1 , ~ I ~ BASALT -Gray to black, RX ., ~ ~ ., strong to very strong, 5 > ~~,,> ~ ' Fractured at 4.0-5.5 feet moderately to widely spaced ~~ ~ „ Coring began at 4.0 feet. fractures. Highly fractured > ~~„> ~ zone from 4.0 to 5.5 feet. „'~ ~ 6 ';<^'; ^~J V > j<A> , ~ ^ J ~ c ^~J >;~n>; c ~~~ ~ 8 V >~~~>a L ^~J V >; n> ~ ; G ^~J ~ n 9 > y Vn> Y ~~ a ~ ^7J V >;~A>; ~~~, ~ Ftg Elev: 5070 10 ~ ^ ~ >~~^>~ L ^' J V >'`~>' 11 L ^~J v > ~~~>; ~~ `~ >;<~>; 60 12 ' ^ J V > a~H>~ . c ^' J > ~<A> 13 ~ ^' J V > ~<n> ~ ~ L ~ ^~J V > ~<A> ~ 14 `' ~~ Boring Terminated at 14.2' in Basalt. 15 File: LDSCHU Boring Number: 15 EXPLORATOR Project No.: P05038A Date Drilled: April 15, 2005 BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Groundwater: NA Logged By: JPB~tIb ~~r~~t - ,,.....~ ~..~ ~~,~~ Sheet 1 of 1 0 s J ,- O R rl= -Q ~~ ~~o ~o ' ~' o N ~o r N ~O N `- • ~a ~~ L,, g ll~ ~~ ~. W I C ~o ca -~ ,, ~, ~o ~~ - Jo ~~~ 3 ' J S 'a ~~ E d U Boring No. 16 = ~ ~, cn o ~ ~ ~ ~, o ~ ~ w o Subsurface Soil w ~ N J ~ ~ ~ o ~ ~ ~ o ~ cn o = ~ ~ ~ REMARKS Description ~ O ~ ~ v, Q~ v, ~ m ~ m ~ ~ U c - 0 c+. o_ ~ ~ ~ Fine Sandy SILT (native) - ML ! ~ [ Ground Surface Elev: 5078.58 brown, loose, slightly moist. , ~ ~ [ [ , Alfalfa roots to ~•2'. 1 I j j ! 2 j i ~ I 3 ~~ ~) ~ ~ BASALT -Gray to black, RX `~' ,,` ~ strong to very strong, >;<^>; moderately to widely spaced `~',,`~ fractures. Highly fractured rj ~ ,<^~ , zone from 4.0 to 5.0 feet. ^' ~ ~ ~~`^~~ ' 6 ^ ~ ~ V <^ L ~ L ~ ^ ~ J ^ V <^ L ~ L ~ ~ ~ Ft El 5070 ~,, ev: g 7 ~ ;<^~ ~ 56 ' ~ ~ ^ <^ L ~ L ~ ^~J ^ $ ~<^ ~ L L ^' V >;<^>; L ' 9 ^ J ~ V ';`^'~ L ^~J ^ V > j~^>; L ^ 7 J ^ 10 V L ~<^L , ^' J ~ V <" L ~ L ~ ~ ^ J ^ V > > 11 L '`^ ' ' ~ ~ ^ > V > V <^ ~ ~ L L ' ~ ~ ;<~~ ; 60 12 ~ ^ ~ V > ~<^> Va . L ^' J ^ V L'`^L' 13 ~~ ^ J v ~<^ ~ L L ' ^ J ^ V > V<^> V ~ ~ Boring Terminated at 14.0' in Basalt. 15 File: LDSCHU Boring N umber: 16 EXPLORATORY Project No.: P05038A Date Drilled: April 15, 2005 ` BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Groundwater: NA Logged By. JPB/tlb r •:r , asp -~~.. n~: ~,~:.:: r"K{ ~ar~•< <~~ Sheet 1 of 1 GF rI= -Q 'y A ~, ~~ in ~o 9 C -N ,~ ~o pN ^. N ' I =~ -~ ", ;~ =_ L :~ ~ n i ~ O _~ O ~ U a =i ~o ~z ~~ L ~ O + 9 n ~ -, U ~ 'N6 ~~ .v E d ~; ' U Boring No. 17 = ~ ~, cn o ~ ~ ~ ~, o ~ ~ w o Subsurface Soil w ~ N ~ ~ ~ ~ o ~ ~ ~ o ~- ' 'o = ~ ~ ~ ~ REMARKS Description ~ v ~ ~ n ~ ~ m ~ m ~ ~ ~ ` ° Fine Sandy SILT (native) - ML ~ ! I I = Ground Surface Elev: 5075.74 brown, loose, slightly moist. ~ ~ i ~ Alfalfa roots to ~2'. ~ ~ I 1 ~ ~ i r 2 I ! ~ O ! 3 BASALT -Gray to black, RX L ^ ~ L ^ strong to very strong, ~^ moderately to widely spaced ` ~ ~ fractures. Highly fractured 5 ,~~~,~ zone from 4.0 to 4.7 feet. ,~, J ,~ ~~<n>~ ~~~~~;, Ftg Elev: 5070 6 L ,</1L ~ ^ ~ J ^ V <^ L ~ L '~ ~ ^ J L ^~J ~ V <^ L ~ L ~ ~ 1 ~ 7 V S G ~<^L ~ ^ ~ J ~ v ~ ~ ^~~ < G 7 9 ^ J ^ V ~;`^~; ~~~ >;<^>; G ~ ~ ~ ^ ~~`^~° 10 L ' ^ V ^ v ~<^ ~ L L ^ 7 J V `^ 11 ~' ~' ^' J ^ V ' ^ L ~ L ~ ' ~ J ^ ;<^~ ; 61 12 ~ ^ ~ V >;<^>; C ' ^ J ^ V ~;<^~; 13 ^ ~ J ^ v L ~G^La ^' ~ V V ~~<^~ a 7 L Boring Terminated at 14.1' in Basalt. 15 File: LDSCHU Boring Number: 17 EXPLORATOR Project No.: P05038A Date Drilled: April 15, 2005 ~ BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Groundwater: NA Logged By: JPB~tIb ~~,,, .,,,ar:~,.~~«~~~-~~n~0r Sheet 1 of 1 0 r O q ~~_ ~a ~o _~ N ' ~ o N ~~- N co ~ ~t ~a t~ ~~ C =_ L ^ ti, ~0 ~/0 . ,W ~a °.o ~~ a _N ~ ~'o ^ J~ ~o `~ ~_ ~U iN a ~J E _~ ,. ' U Boring No. 18 = ~ ~, cn o ~ N ~ No w ~ w a Subsurface Soil W ~ N a ~ ~ ~ o ~ ~ ~ o ~` N 'o = ~ ~ ~ ~ REMARKS Description m ~ ~ ~ ~, Q~ ~, J m ~ m ~ ~ U c _ O c+~ o_ a ~ ~ Fine Sandy SILT (native) - ML ~ i Ground Surface Elev: 5076.71 brown, loose, slightly moist. ( ~ ~ Alfalfa roots to ~2'. ~ ~ ~ 1 I ~ a j 2 ~ 3 ~ BASALT -Gray to black, RX ^ ~~ ^ strong to very strong, ';<^'; moderately to widely spaced ^',,`^ fractures. Highly fractured cj ';<^'; zone from 4.0 to 5.3 feet. ^' ,,` ^ > ~<^> L ^~J ^ 6 V ';<^'; ^~~ ^ >;<^>; ^~ ~ ^ Ftg Elev: 5070 7 '~<^'; 55 ^~J ^ >;~^> j L ~ 8 ^ V ^ 'a<^'a ~ ^~ ^ J > ~V^> ~ < ~ ~~ ~ ^ J ^ V ';`^'; 9 ^' J ^ V > j<^>; L ' 10 ^ J ^ V '~<^'~ L ^' J ^ V >;~^>; L ^' J ^ V ~ `^~ 11 ' ' ~ ^ J ^ V > > ;~^ ; ^~ ~^ ';<~'; 60 12 ~ ^ J ^ >;~^>; c ^~J ^ >;~^>; 13 ' ^ J ^ V ~ ~<^> ~ a ~ ~ ' ^ J ^ V ' ~ < ^' ~ Boring Terminated at 14.0' in Basalt. 15 File: LDSCHU Boring Number: 18 ~ EXPLORATOR Project No.: P05038A Date Drilled: April 15, 2005 ~~ BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Groundwater: NA Logged By. JPB~tIb ~~'K+ ~ ~r~>~~ ~ ~>~~ n~~~r Sheet 1 of 1 1 1 N F ~A BIZ -a u N j~ "a 0 N zo =N ~~ ~~ -~ ~; ~~ '_ C - L l~ ~~ yll~ ~n U _on N rnO -~, C _~ ~a is -iS JN ~; ll E /d r ,,. U Boring No. 19 = ~ ~, cn o ~ ~ ~ ~, ~ ~ ~ w o Subsurface Soil o ~ ~ Q o ~ ~ N m ° o ~ REMARKS Description c - ~ cn cn ~ - m J ~o ~, a ~ ~ c w - a o_ _ ~ ~ ~ Fine Sandy SILT (native) - ML i G I , Ground Surface Elev: 5077.52 brown, loose, slightly moist. (~ ~ C I Alfalfa roots to ~2'. 1 ~~ 2 ~ E 3 I 4 ~ BASALT -Gray to black, RX „~ ~ .,' strong to very strong, cJ >~~^> ~ moderately to widely spaced „~ ~ fractures. Highly fractured > ~~^> ~ zone from 4.5 to 6.0 feet. „'~ ~ 6 ';<^'; ^~ J 1 > j~^>; „~ ~ „ Ftg Elev: 5071.70 7 ';<^'; 55 ~ ~ J ^ V >~~^>; L ^' J ~ 8 V 'a~^'~ L ^' V ^ V >;~^>; ^7J ^ >;~^>; 9 ~ ~ ~ ^ >;~^>~ ~' J ~ 10 V >°`^>~ ^' J ~ V >;~^>; C ^' J ~ V ~ `^> 11 L ' ' ' ^ J ^ v > a~^> ~ . L ' ^ J ^ > °`^~' 60 12 ' ^ J ~ V > j~^>; G ^~J ^ V > `^> 13 ' ' ' ~ J ^ V > j~^>; G ^~J ^ V > ~<^> 14 ~ ` ^~J ^ V > ~<^> ~ a ~ ~ ' Boring Terminated at 14.6' in Basalt. 15 File: LDSCHU Boring N umber: 19 EXPLORATOR Project No.: P05038A Date Drilled: April 16, 2005 '~ BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Groundwater: NA Logged By: JPB~tIb z~na ~ *r~<~ -~~- ~,~_ Sheet 1 of 1 `~ O ~ ~I= 1 F7 ~¢ 0 `u o0 =,~ 1 ~ N ~~ o~ -o ?N 1 ~ `~ ;~° L . ~~ ~~ O 1Y ~, -~ u ~c on N ~ O ^ ~ ;'° L p ~~ ~s ',U J~ ~, ~' E d _; ' U Boring No. 20 ~, cn o ~ ~ ~ ~, ~ ~ ~ w o Subsurface Soil ~ ~ v a ~ ~ ~ o ~ ~ N o ` o = ~ ~ ~ ~ REMARKS Description ~ -` ~ ~ v}, v¢, m ~ °' ~ ~ ~ ° ~ ~ . Fine Sandy SILT (native) - ML Ground Surface Elev: 5073.75 brown, loose, slightly moist. ~ ~ i 1 ~~ I I ~ 2 i l ~ Ftg Elev: 5071.50 i ~ 3 ~ i I BASALT -Gray to black, RX `~' ,; ~ strong to very strong, >;<^>; moderately to widely spaced `~',`~ fractures. Highly fractured 5 >;<^>; zone from 4.0 to 4.5 feet. ~' ~ ~ >~~^>~ L ~~J ^ 6 <^ L~ ~~ ^ ~ J ^ <^ L ~ L ~ •1 ' ~ 7 ^~ ~ ~ ~ 55 ^' ~ ^ > ~<^>; L ' 8 ^ J ^ V >~<^>> L ^7J ~ V > ~ ^> ~ ~ ~ ~ ~ ~ 7 9 J V '~`^'; L ~~~ ^ ~~`"~; ' 10 ^ J ^ V ~~`^~° ~' J ^ V >;<^>; L ~ ~ J ~ V ;<^ ; 11 ~ ~ ^~J ~ v > ~<^> ~ L ~ c ~ ^' ^ J L ~~ ^ J <^ c~ L~ ' ^ J <^ 13 L~ L~ ^~ ^ ~ > ~'<^> ~' ~ ~ ~ ^~J ^ > ~~^> V 14 `' ~' Boring Terminated at 14.2' in Basalt. 15 File: LDSCHU Boring N umber: 20 EXPLORATORY Project No.: P05038A Date Drilled: April 16, 2005 ' BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core sTRaTa Depth to Groundwater: NA Logged By. JPB/tlb ~r..{~ ~.-~r=.F .< ~:~ .,%~~ Sheet 1 of 1 u ii ~1 nl a M ri p~ ' '~ O -N ~,~ ~N T\ c .~ ON ma c L L R1 n i ~ O J. d _d u -^ o n ' ~Q ~o ;' i O s 9 -~ jN =J ` 6 U~ ._ U Boring No. 21 ~ ~, cn o ~ ~ ~ ~, ~ ~ ~ ~ w o r Subsurface Soil ~ ~ N J ~ ~ ~ o a ~ a o N o = ~ ~ ~ ~ REMARKS Description ~ _ ~ ~ N va, ~ m CO °' ~' a W ` ° ~ ~ v _ ~ d Fine Sandy SILT (native) - ML i Ground Surface Elev: 5074.78 brown, loose, slightly moist. 1 i I t I I 2 ~ ~ 3 ~ I BASALT -Gray to black, RX ^' ~ ^ strong to very strong, ';<^'~ moderately to widely spaced ^',,`^ fractures. Highly fractured rj ~ ;<^~ , zone from 4.0 to 5.0 feet. ^' ,, ^ L ~<^L a ' 6 ^ V ^ ~<^ 1 V L L . ' ^ J ^ V L ~<^L ~ ^' J ^ 7 ';<^'; 56 L ^' J ^ V >;<^>; L ^' J ^ 8 V L ~ <^L '~ ~ 4 J ^ V ~<^ ~ L L ' 9 ^ J ^ V ~ ;`^~ ^' J ^ V >;<^>; L ~ 10 ^ ~ ^ V L'<^L, ^' J ^ V <^ L ~ L ~ ^' J ^ v ';<^'; 11 L ' ^ J ^ V > ~<^> ~ L ~ L ~ ^' J ^ 12 ~;<^~; ~ 61 ^ ~ ^ V > j<^>; ^' J ^ >;~^> j 13 ^~~ ^ v L ~<^L ~ ' ^ J ^ V >;<^> j 14 ^~ `^ Boring Terminated at 14.2 in Basalt. 15 File: LDSCHU Boring N umber: 21 EXPLORATORY Project No.: P05038A Date Drilled: April 16, 2005 ~~! BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Groundwater: NA Logged By: JPB~tIb r~.~a +r ~~< a ~~ ~ or.. Sheet 1 of 1 S G ' :.~ S .- Q P O O c~i ~ •v o ,N rno ~ N ~~ ~~ ~_~ N 3 ~. ~ ~ L li ~ '~ ~~ ~6 ~ O `' C ~~ ~ ~o ~s ns ' ~ U a u~ E d ~~ ' U Boring No. 22 ~ ~, cn o ~ ~ ~ y ~ ~ ~ w o Subsurface Soil w ~ ~ J ~ ~ ~ o ~ ~ J ~ o `~ (n o = ~ ~ ~ ~ REMARKS Description o O ~ >- ~, Q~ ~, m ~ m~ ~ U c _ O c +. ~ ~ ~ ~ Fine Sandy SILT (native) - ML I Ground Surface Elev: 5075.36 brown, loose, slightly moist. ~ ~ I ~ 1 I ~ ~ 2 I ~ I ~ 3 ~ 4 ~ I BASALT -Gray to black, RX ~' ,; ~ strong to very strong, rj >;<~>; moderately to widely spaced ~' ,; fractures. Highly fractured ~ ;<nL zone from 4.5 to 5.5 feet. ~' ~ 6 V <^ L ~ L ~ ^' V ~ V G~</~L ~ ~' ~ 7 '~<^'~ 56 L ~' J ~ V <^ L ~ L ~ ^' J 8 V ~<^ ~ L L 7 V V <^ L' L ~ 7 J ~ V ';<^'; g C ' ^ J V L '~ <^L ~ ~' J A 10 V ~~`~~~ ~ J V <^ L ~ L ~ ' ^ J V > V~n> V Void or cinder zone. ~ ~y'~' ~ `" Crumbled cinder remnants in ~ L core barrel. ;~^ ; ~ ~ BASALT -Gray to black, RX > ~~„> v strong to very strong widely L^, L^ , spaced fractures. >~~~>~ 54 13 ^' J > V~^> V L ~ L ~ ~' ~ `'<^L 14 ' ~' > V < A> V ~ L ~ ^' J V <^ 15 L ~ L ~ ~' File: LDSCHU Boring N umber: 22 EXPLORATOR Project No.: P05038A Date Drilled: April 16, 2005 ~ BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Groundwater: NA Logged By: JPB/tlb •<~ ~-~~~-•% ~~- ~~~rJ Sheet 1 of 2 1 ~~ ~Q ~~ z ,¢ - N O f7 ' \ m .M'. ~O IA .O T` ' ~N ^I~ y Q~ ftJ cI n ~ m G N 1: Q L = i ' ~ ~ ~ O =. ~, ,, ~o oa N -_ C p W ~o sy ~ 3 S i N J E d U ~. Boring No. 22 = ~ ~, ~ o ~ ~, ~ ~ ~, g w ~ w o Subsurface Soil w ~ N ~ ~ ~ ~ o ~ ~ n o ~- o = ~ ~ ~ ~ REMARKS Description ~ O ~ ~ ~ Q ~- cn J m ~ (n m~ ~ U c - O c .~ a a ~ ~ BASALT - Gray to black, RX '~~ ' strong to very strong, widely ~;,~~~;, spaced fractures. ~ ~`~~ ~ ^ J 16 >;<„>; ~ ~<^~ ~ 60 RQD Improves as depth ^~ ~ increases. 17 J >~~„>~ ~~J ~ V ` ~<AL , ~~J ~ 18 ;<^ ; ~ ~ ~ ^ J ~ V L ~<A` , ~~J 19 ~;`"~; ' ^ J Vv y Boring Terminated at 19.5' in Basalt. 20 21 22 23 24 25 26 27 28 29 30 File: LDSCHU Boring N umber: 22 EXPLORATORY Project No.: P05038A Date Drilled: April 16, 2005 BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Groundwater: NA Logged By. JPB~tIb ~^~ ~,,,,r{~~~^~+~~~ ~~-<•„~,;~, Sheet 2 of 2 a a n ' o N N N C O O ^ Y U d ~ °° 0 ^ L O d U Boring No. 23 = ~ ~~ o J ~, ~ L ~, o w ~ w o Subsurface Soil w `~ c"n J ~ ~~ ` o~ ~ ~ N a` o ~ ~ ~ ~ ° REMARKS Description ~ v ~ ~ ~ ~ n J m °' a ~ ` ~ ° ~ a ~ I ; ! i I Ground Surface Elev: 5076.47 Fine Sandy SILT (native) - „~ ~ ~ ~ ~ ~ i brown, loose, slightly moist. ML i ~ ~ ~ ~ 1 I,~IE j' iE~{ ~ 2 ~ I~ ~; ;~ ~~ iiE iil~ 3 ~~! ~~~~ 1 1 4 I I it: I ~~! ~ ; ~ ~ Ftg Elev: 5071.5 ~~ ~~J > ~~^> ~ BASALT -Gray to black, .~~ `.; strong to very strong, 6 > v~~, v ' ' moderately spaced fractures. RX ., ~ J ., Highly fractured zone from > ~~^> ~ 5.0 to 5.5 feet. .,'~ ~ .; ';<^'; 54 7 ^7J > y V^> ~' < ~ < a ~' J V 'a<^'a Highly vesicular zone from ' 7 ,,. '', ,. 8.5 to 9.0 . '~ ~ ' 9 „ ~ „ >~~^>~ lost return at 9' ~ ^' J ~ BASALT -Gray to black, V >;<^>; strong to very strong, widely > ~~~> ~ spaced fractures. 1 Q ~;^~ J >;~^>; c ~' J ~ > ~V^> ~ ` 11 ' ~' ~ '~ v '~ v > ~ <^> ~ ` ^~~ ~ 6Q 12 V ';<^'; ~ ~ J > ~^> j V . i ^' J >;~^> j 13 ` ^~ ^ > YV^> ~ < ~ L ~ ' ^ V V >;<^>; 14 ` ^~J >;~^>; Boring Terminated in basalt ^ ;,~ at 15.1'. '~`^'~ ~~ File: LDSCHU Boring N umber: 23 EXPLORATOR Project No.: P05038A Date Drilled: April 16, 2005 ' BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Groundwater: NA Logged By: JPB/tlb c.,~ ~v..~ ~ .r~? 3~,~- Sheet 1 of 1 f a a IN N N N N N 0 O d s d 0 0 9 ' S J a a U Boring No. 24 = ~ ~, ~ i? ~ ~ ~ `~ ~ ~, g w ~ W o Subsurface Soil W `~ N J ~ ~~ o~ ~ J N o` o= ~ ~ ~~ REMARKS Description o v ~ ~ N ~ ~ m ~ m ~ ~ ` ° a ~ Fine Sandy SILT (native) - ML ~ ' I ; ; Ground Surface Elev: 5072.44 brown, loose, slightly moist. ~ ~ ~ ` i I ~ i i Ftg Elev: 5071.50 1 2 ,; ii i ~I i I ~ ~ ~{ f ~ I i ( ~ ' ~ I l ` ~ ~ i 3 I jE ~i ~ ~ i ) i 4 I; ~ ;; ~~ ,, ji ~i ~ l ~ . t j BASALT -Gray to black, RX L ~ ^ ~,, ^ strong to very strong, ' ~<^~ ; moderately spaced fractures. ^ ~,, ^ 6 '~<^'~ L ^~ ^ ~ > > 48 ;<^ ; L ' ^ J ^ > ~V^> ~ L ^ ~ J ^ Cinder zone >~~^>~ L ^~ ^ J > ~V^> ~ Highly vesicular zone from L ^~ ^ , ~~~, ~ 8.0 to9.0'. „~ ' 9 ~„ ~~<^~~ ^~~ ^ BASALT -Gray to black, RX ~~`^~~ , strong to very strong, widely , ~~~ ~ spaced fractures. 1 Q L ~<^L ^' ^ J v '<^ ' G L ^ ~ V ^ v ' `^' 11 L ' ' ^ ~ J ^ V > ~<^> ~ ` ^' J ^ 60 12 V ';<^'; L ' ^ V ^ > Y~^> ~ L '~ L ' ^' J ^ V ~<^ ~ 13 L L ~ ^ ~ ^ ~;`^~; ^~J ^ >;~^>; 14 ^~ `^ ~ V >;<^>; Boring Terminated in basalt ^ ~~ ^ at 15'. '~<"'~ L File: LDSCHU B oring N umber: 24 EXPLORATOR Project No.: P05038A Date Drilled: April 16, 2005 i BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Ground Water: NA Logged By: JPB/tlb ..~r... .~,,~.< .,.-,~,~ Sheet 1 of 1 0 Boring No. 25 ~ ~ ~, ~ o ~ ~, ~ r ~, g w ~ w o Subsurface Soil w~ N Q m ~~ o~ ~ ~ o` o= ~ ~ ~ REMARKS Description ~ s ~ ~ v, f- can J m ~ 00 ~ ~ ` ° a ~ Fine Sandy SILT (native) - ML ~ ~ ? I ? Ground Surface Elev: 5075.54 brown, loose, slightly moist i f, ~ ' I I ~ j 1 l ~i ~ji ( ~ 1j ~l 2 i1 s f ~ Ij! ~i ~ I l l 3 ~' ; { ! 4 '~l ~;I ~~ ' ~ I ~ I ~ ~ Ftg Elev: 5070? ' i (~ k k BASALT -Gray to black, RX „~ ~ „' strong to very strong, > ~~„> ~ moderately spaced fractures. „~ ~„' ~ 6 ~ ';<^'; ~ V~ " > > 60 ~ ~<A c ^~ J >;~n>; 7 t ^~J V Cinder zon ~~ ~ e . ~ > ~VA> ~ BASALT -Gray to black, RX ~ r~~> ~ ~ strong to very strong, widely ~; ~ spaced fractures. >~~~>~ 9 ' ^ J V > ~<A>, c ^~~ ~ 10 V ~ ~`~> ~ V > j~A> j L ^' V 11 ~ ~<A> ~ ^~~ > ~~„> Highly vesicular zone from ' „~ ~„ 60 11.8 to 12.0 . >~~~>~ 12 ^~J >;~n>; c ^' J ~ > ~<N> ~ 13 ^' J V >;~n>; L ^~V V > > 14 j~n j ~~,; >~~^>~ Boring Terminated in basalt > ~~„> ~ ' at 15.6'. „ ~ `„ File: LDSCHU Boring N umber: 25 EXPLORATORY Project No.: P05038A Date Drilled: April 16, 2005 ~ BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a ~ Depth to Ground Water: NA Logged By. JPB~tIb Sheet 1 of 1 '"' ~"''~"'~" ~ ` °~~ A a 0 c o N N N N W O M 1 ~ V d ^ 0 . L L O s S ' N a i E d 1+ U Boring No. 26 = ~ ~, cn o ~ ~, N ~ ~ $ w ~' w Subsurface Soil w `~ n J ~ ~ ~ o ~ c ~ o i ~o = ~ v ~ ~ REMARKS Description ~ s ~ ~ c}n ~ can J m ~ m ~ ~ ` ° ~ ~ Fine Sandy SILT (native) - ML ~ i € I Ground Surface Elev: 5073.97 brown, loose, slightly moist. 1 ~ j ~ ' ~ ~ { 2 i ~ ~ ` I ~ ~ ~ i 3 i 4 i I Ftg Elev: 5070 I ~ I ~ ~ BASALT -Gray to black, RX ~ ~ ~ ~ strong to very strong, widely >~~^>~ spaced fractures. ., ~ ~ ., 6 ';<^'; ^~~ " >; ^>; 60 < ~ ~ ~ ' ' 7 ;<^ ; ~ ^ ~ > > ~~^ ; ' ^ J 8 V ~a<^~a ~~J V > > ;~^ ; C ' ^ J V ' ~`^'; 9 ' ^ J V > ~ > ~ RQD> w/depth ~^ ~, ~ ' , , yJ '~`^'~ 10 ~ ^ J > YV^> ~ < ~ ~ ~ ~ ^ J ~ v ~ `^' 11 ' ' ~' J ~ RX >;<^>; ` ^' J 60 12 V ';<^'; c ' ^ J v >;~^>; ' ^ V V ~ ^' 13 L '~ ' ' ^ J ~ >;~^>; L ^~J > YV^> ~ ` 14 ' `' ^' J V > j~^> j Boring Terminated in basalt ~~~ ~ at 15.0'. ~ > ~`^ File: LDSCHU Boring Number: 26 EXPLORATOR Project No.: P05038A Date Drilled: April 16, 2005 BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a ,~ ~ Depth to Groundwater: NA Logged By. JPB/tlb f Sheet 1 of 1 '~~' „','" "~' "' 1 E ' a 0 0 N ~. N Boring No. 27 = ~, v, o J ~ iu ~, o ~ ~ w o Subsurface Soil w~ v J ~ ~~ o~ ~ a o~ N o= ~ ~~ REMARKS Description ~ ~ ~ } v, Q~ cn J m ~ m~ ~ U C w - OC++ o_ a ~ o_ Fine Sandy SILT (native) - ML ` Ground Surface Elev: 5075.17 brown, loose, slightly moist. ~ I ,~ 1 s'I '~' i ~ 2 , ' ~ ~ ~~ ii' 3 ';'iii 'viii t 4 ail i ~ ~ Ftg Elev: 5070 (j(i± I BASALT -Gray to black, RX `~' „` ~ strong to very strong, widely >~<">~ spaced fractures. ~~~ .~ 6 >;<">; "~ ^ ~ >;<">; 54 ' 7 ~ '~<^'.; 4' ~ V >;~">; C ^' V >Yr >V 8 " a< < a ~ J V > j~">' c ^' J g V ';<^'~ ^' > `"> RQD> w/depth ' ' ' ^ J V ' ' 10 ,<^ , t ^7J V L , </~L ~ ' ^ V ~ v > > 11 '`" ' ' ^ >;~">; ^' ` 60 ~"> > 12 ~ a c ' ^ J V > j~">; L ' ^ V V >'~">' 13 ~~J v >~~">~ c ~ J v >;~">; 14 ` ~' >~~">; Boring Terminated in basalt at 14.5'. 15 File: LDSCHU Boring N umber: 27 EXPLORATORY Project No.: P05038A Date Drilled: April 16, 2005 ~ BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Groundwater: NA Logged By: JPB/tlb .~~E ~~2_ ~,~~~ '^'~ 'r`•°^" ~ °~ '°~ Sheet 1 of 1 1 a a a m N N N 0 Boring No. 28 il b f S = w ~ ~, cn " g o ~ ~ ~, ~ ~ ~ N ` s ~ ~ ~ ~, g a o } w ~ o c i w ~ v ~ REMARKS o Su sur ace ` v , ~ ~ o ~ ~ J c n ~ m ~ ~ c °' ° Description o s ~ ~ ~ m ~ ~ ~ a ~ Fine Sandy SILT native - ML ~ ; ` ' r ` I ` Ground Surface Elev: 5070.34 brown, loose, slightly moist. ~,~ ' j ~ ~ ;~ Ftg Elev: 5070 1 ~ ! ! 2 ,i '(l i t l`;il t 3 j k k ' If;i ~~i ;~ 4 3 ~ ~ I milli ~i ~~~ 'j'il Etil 'if! i BASALT -Gray to black, RX ~~ ^ ~., '~ strong to very strong, widely '~~^'~ L spaced fractures. '<^ ; 6 ~ ~ "~ " Highly vesicular 6-7' ~ ';~^'; 54 7 .~' ~ •~ >~~^>~ BASALT -Gray to black, ~' ,; ~ strong to very strong, widely >~<^>; spaced fractures. ~' ~ ~ g ';<^'; ' ~ >;~^>; ~' J ^ g V ';<^'; ~' J ~ V >;~^>; t ' ~ ~ > `^> Lost Circulation at 10.5' 10 ' ' ~ ~ v '~ v > ~<n> ~ ~' J ^ v ~ `^> 11 c ' ' ~ ^ v ~ v n> ~ ' ~ < ` ^' 60 12 >;~^>; , y<^,; Circulation return at 12.5' L ' i ~1 ~ ~ V >;~^>; 13 ` ~' ~ ~ RQD> w/depth '~<^'; ' ^ J ^ V '~~^'~ 14 ` ~' >~~^>~ Boring Terminated in basalt "'„~ at 15.0'. '~`^'~ File: LDSCHU Boring Number: 28 EXPLORATORY ~ Project No.: P05038A Date Drilled: April 16, 2005 BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a . ~ ~, Depth to Groundwater: NA Logged By. JPB/tlb ~ _ `r~" ~" " ~°F Sheet 1 of 1 i 0 N N Boring No. 29 = ~ ~, cn o ~ ~ N ~ ~ o ~ N w o Subsurface Soil ~ ~ o "Q ~ 00 r ~ Q~ ~ ~ ~ m~~ ~ a j~ Nm ~ _ ~ o-c Y: ~ ~ ~ ~ REMARKS Description c v ~ ~, ~, ~ ~ - oa a i ~ ~ ~ o_ ~ Fine Sandy SILT (native) - ML i c a I ( Ground Surface Elev: 5071.61 brown, loose, slightly moist. i ~ I F j ~ 1 ~~~ ~i~ ! ~ ' '~ ! i Ftg Elev: 5070 2 ,~'! (i ;,j i~l 3 ~`, i~ ~~~ 4 Il~'~ '~i i ~ ~~~1 illy i 3~(! BASALT -Gray to black, RX .; ~ ~ strong to very strong, widely > ~~^> ~ spaced fractures. „~ °„' ~ 6 ~ ';<^'; ~ ^ ~ ^ >;~^>; 60 ' 7 ^ ~ ^ '~~^'; ' ^ V ^ V '~~^'~ C ^' ^ RQD> w/depth ~ , v~^, r $ ~~ ^7J ^ V >j~^>; L ' ^ ~ ^ V ' ' g ;<^ ; ' ^ ~ ^ > > ;~^ ; ^7J ^ 10 V L >~`^'~ ^7J ^ V >j~^>j BASALT -Gray to black, RX ^~~ ^ strong to very strong, widely 11 >;<^> ` s aced fractures. P ^' ^ „ „ >~~^>~ ` ^' J ^ 60 V >;~^>; 12 ~ ^ J ^ V > j~^>; L ~ ^ J ^ >;~^>; 13 ^' ^ ~ >~~^>~ ' ^ ~ ^ > ~~^> 14 ` ^' J ^ V > a~^>; Boring Terminated in basalt . ^'v ^ at 15.0'. '~~^'~ L File: LDSCHU B oring N umber: 29 EXPLORATORY Project No.: P05038A Date Drilled: April 16, 2005 BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Groundwater: NA Logged By: JPB/tlb ~~~t~~ ~r~-x^ r~ r°uK°„f; Sheet 1 of 1 i 1 A a o ,~ ~I Boring No. 30 = ~ ~, cn o ~ ~ ~ ~, ~ ~ ~ ~ w o Subsurface Soil W ~ N Q ~ ~ ~ o ~ ~ ~ o `~ o = ~ ~ ~ REMARKS Description ~ _ ~ ~ ~ va, ~ m 0° ~ a w c ° _ ~ ~~ Fine Sandy SILT (native) - ML "; ~ i Ground Surface Elev: 5072.73 brown, loose, slightly moist. 1 ; , ~~ ~j 2 r; ~, ; !~'' ;II~ ~I~~~ ~~ 3 , ~; , t ~ ~ ~ ~ ~ ~ Ftg Elev: 5069.5 4 ii ±ji I~~~'E Basalt boulder at 4 ~ ''I Iji BASALT -Gray to black, RX L '~ L ~ ~ ~„ ~ highly fractured from 5.0 to ~ ;<^~ ; 5.7'. Below 5.7' the basalt ^ ~~ ^ is strong to very strong, with 6 ~ ~`^~ widely spaced fractures. '' „~ ^ > > 60 ~~^ ~ L ' 7 ~ ~ .~ '~<^'~ L ' ^ V ^ V <^ L ~ L ~ 7 RQD> w/depth > V~~> r 8 L ~ L , ' ^ V ^ V > > ;~^ ; L ' ~ J ^ V ;<^ ; g ~ ~ ' ^ ~;`^~; ' ^ ;<^ ; 10 ~ ~ ' ^ J ~ V <^ BASALT -Gray to black, RX L ~ L ~ '~' ., ^ strong to very strong, widely 11 '~<^'; ' spaced fractures. „ V „ ~ `^~ ~ ~ ~' ~ ~ 60 ~;<^~; 12 ' ~ ~;`^~; ' ^ J ^ V ~ <^ ~ 13 L L ' ^ J ^ V ~ <^ '~ L L ^' J ~ V >;~^>; 14 ~~~ ^ >Vr^> V Boring Terminated in basalt ~',; ~ at 15.0'. ';<^'; L File: LDSCHU Boring N umber: 30 EXPLORATOR Project No.: P05038A Date Drilled: April 16, 2005 ~ BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Ground Water: NA Logged By: JPB/tlb ~~-__~ +,-~ <~..,~k ,~.„,~f~ Sheet 1 of 1 1 ~I ~. r. a N o N d Boring No. 31 Subsurface Soil = ~ w ~ ~, ~ n g o ~ ~ ~, ~ ~ ~ o ~ ~ N o ~ o W ; = ~ ' W ~ REMARKS Description o v ~ ~ ~ ~ vai J m ` m a o ~ ` ~ ~ ° ~ ~ ~ Fine Sand SILT native - ML ` ~ ~ ~ ~ Ground Surface Elev: 5073.70 brown, loose, slightly moist. ' ' i ; ~~ik~ 1 !Ij , ~;i '~I'i ~i 2 ( Ili I~t ~~l i i 3 ~ ~ ii~~j { i ' Ftg Elev: 5070 4 j~ ~' ~~ ~~ l i ~E ~ i. Basalt boulders/fractured 5 RX ~~ ~;^~ porous basalt 4.8 to 6.5'. > ~~^> ~ ~ >~~^>~ 6 L '~`^'~ L >H~^>H '~`^'~ L 58 7 7 >~~^>~ 7 L >;~^>; BASALT -Gray to black, RX L highly fractured from 5.0 to '~`^~ 5 7' B l 5 7' th b lt $ >ti~ >ti ow . . e . e asa is strong to very strong, with ^ >ti~ ;ti ^ widely spaced fractures. L ~; > ~~^>'~ 9 >H~^>H ~ L ~ A ~ A > ~<^> 10 ~ 7 ~ ';`^'; L >ti~^>ti BASALT -Gray to black, RX ' ~`^' strong, closely spaced 11 A ~ A , „. ; ' ^ fractures. ~ ~; ~ 't' > ~^> L ,~ L A A ~O > ~~^> ~ 12 > j~^> j ` ' ` L A ~ A >;~^>; L >;~^>; 13 ` >;~^>; L A ~ A >;~^>; 14 L > ~^> ~"~~ " ~ L 7 L A A ~ ~<^> Boring Terminated in basalt ' ~ >H~ >H `^ at 15.0 . 7 L ° File: LDSCHU Boring Number: 31 EXPLORATOR Project No.: P05038A Date Drilled: April 17, 2005 BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a .. Depth to Groundwater: NA Logged By. JPB/tlb ..~ ~~~ iK;.-, 'r' ~> ~-~ ~°r Sheet 1 of 1 C r r. a o N N Boring No. 32 = ~ ~, ~ o J ~, ~' ~ t ~ N o } ~ ~ i~ W ° v Subsurface Soil w `~ ~ J ~ ~~ o~ ~ N o` o~ ~ ~ REMARKS Description ~ ` ~ ~ v}i ~ m ~ °' a ~ ` ° ~ ~ ((' " Ground Surface Elev: 5069.00 Fine Sandy SILT (native) - s ' brown, loose, slightly moist. 1 ML j ~ ' ' ~ ,~ ~;. 2 ~~ ;; ,. ~~l'i ~~€ll 3 i~llj ljF~ ~~~~ I~~~~ 4 ,i~ ;ICI i) I;~ ~ Vii; L ~ G ~ ~ ^ ~ ~~`"~~ ' 6 ^ J V ~ ~<^~ RX ' ^ J V `^ L ~ L ~ ~' ~ ~ 60 7 ~;`^~; A~~ v ~`^ ~ BASALT -Gray to black, G L „~ highly fractured from 5.0 to > ~~^> ~ 5.7'. Below 5.7' the basalt 8 `„~ ~ .; is strong to very strong, with > ~~^> ~ widely spaced fractures. `.,'~ ~ .,' g ~;<^~; ~~~ ',<^'; L ~' V 10 V ~;<^~; ' ^ J v > ~<^> ~ BASALT -Gray to black, ~' ~ ~ strong, moderately spaced 11 ~ ;<^~ ; ' fractures. ~ ~ J R X ~ ; <^~ ; ~~~ ^ 60 12 ';<^'; L ' ~ J V `^ L ~ L ~ ' 1 ~ ~ ~ V >;<^>; 13 ` ~~ ~ ~ ;`^~ ~ ~ ~ ~`^~ ; 14 ~~ ~ ~ >;<^>; L ,Boring Terminated in basal ^ ,,.+ p at 15.0'. ~ ~`^~ File: LDSCHU Boring Number: 32 EXPLORATOR Project No.: P05038A Date Drilled: April 17, 2005 ~ BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s ~- R aT a Depth to Groundwater: NA Logged By. JPB~tIb ~~~- ,r~;~, +~ ~~~~~ t~~~ Sheet 1 of 1 f,l~' C o N Boring No. 33 = ~, ~ o J ~ iu ~, o ~ ~ w o Subsurface Soil w ~ ~ ~ ~ ~ ~ o ~ ~ ~ o ` o = ~ i; ~ ~ REMARKS Description ~ v ~ ~ v}, ~- can J m ~ m ~ ~ ` ° a E Fine Sandy SILT (native) - ML ' ' ; i i j Ground Surface Elev: 5070.24 brown, loose, slightly moist. ~ ~ ((, ; ~ (' ~ 1 ~~ i i 2 ~ ~ 3 + ! j ' ,~i~, ~~I~~ 4 ~;I;, ,~ li4~l CI, I 5 ~~Ii) ~, ii BASALT -Gray to black, RX `~',,`~ highly fractured from 6.0 to 6 ~ ;<^~ ; 5.7'. Below 6.3' the basalt ~' ^ is strong to very strong, with ~ ;<^~ ; widely spaced fractures. ~' „ ~ 60 7 ~;`^~; ' 4 J 4 V > > ;~^ ; t ' 8 ~ V ~ V cam`^~~ 7 ^ V V `^ L ~ G ~ ' 9 ~ J ^ v ~a<^~a ~~v ~ v > ~ <^> ~ ^' ~ ~ 10 v L ~°`^~~ ~' V V ~<^> ~ BASALT -Gray to black, RX "'v " strong, moderately spaced 11 ~ ~<^~ ; ' fractures. ^ ~ „ >~" >~ ^ `'~ `' ^' ^ 60 J V ~ ;<^~ ; 12 ' ^ J ^ V ~`^ ~ C G ~ ^ J ^ V ^ 13 ~; ~;< ' ~ ~;`^~; ' ^ J ^ V `^ 14 tom c~ ~' ;<^~ Boring Terminated in basalt ~„~ ~ at 15.0'. ~ ~`^~ File: LDSCHU B oring N umber: 33 ~. EXPLORATOR Project No.: P05038A Date Drilled: April 17, 2005 ~ '~ BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Ground Water: NA Logged By: JPB~tIb rKf~ aya <,w a ,,~~s.,e~~ Sheet 1 of 1 ii a N O N .~. N Boring No. 34 Subsurface Soil = w ~ ~~ v J o ~ ~~, ~ ~ cn`L o ~ ~yg o ` } w ~ o ` ~ ~~ wov ~ REMARKS Description ~ s ~ ~ v F- vai ~ J m ~ m ~ ~ ~ ~ ~ ° ~ ~ ~ Fine Sandy SILT (native) - ML ; , ' ; ', Ground Surface Elev: 5071.42 brown, loose, slightly moist. ~ ~' ;E ~y 1 ~~ i; ~~f j a i ~ Ftg Elev: 5069.50 2 '~l~ 3 ii~l i,li~ !~!ii iEj~ij II I 4 I { I it ~'i ~~l~ i' > V G A> V BASALT -Gray to black, RX N' `N ' "' highly fractured from 5.0 to ' ' may ~ ~`^~ . Below 7.0 the basalt 7.0 ith 6 > < > is strong to very strong, w ; ^ ; widely spaced fractures. ,ti'• ;ti ~^ ~ >;<^>; 60 7 , L >;~^>; L >ti~^>; L 7 >;~^>; L 7 8 );~^>; L >,<A> ~ C^ 7 ~? ^, V 9 ~< L ~ >;~^>; L "~ " > ~~^> L 10 ';~^' L >ti~^>ti L > ~~^> L ~ L , G >~ ^> < " " `'~ ` 60 > V<^> 12 >;~^>; ` ~' ` L " ~ " > ~<^> ~ L 1;~^>; 13 ` > ~~^> L "~ " >;~^>; L 14 > ~^> "~ ~ " L ~ L A 7 " > j~^> j Boring Terminated in basalt , ~~^; at 15.0'. File: LDSCHU Boring Number: 34 EXPLORATOR Project No.: P05038A Date Drilled: April 17, 2005 ~ BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Groundwater: NA Logged By: JPB/tlb r..~~ ~y >< .H .~ U(~ Sheet 1 of 1 n i E? ' a lU o N N Boring No. 35 = ~ ~ ~, ~ o ~ °' N NS o W ~ ~ w o ~ REMARKS Subsurface Soil ~ g ~ ~ ~ ¢ o ~ ~ ~ ` o ~ Description ° -` ~ ~ ~ v i m ~ m ~ ~ ` ° a ~ . Fine Sandy SILT (native) - ML j (1 ~ I Ground Surface Elev: 5068.27 brown, loose, slightly moist. ~ ~ ~ r ~ I ~ ~ ~ ( Ft Elev: 5070 1 ~ f I 2 ;l ~t ~~~ , ! I l~ ~~ 3 j i f ~ / ~>' f 3,I 4 1 ~ ' k ~ II' (!I I jiI 5 ~iill ~ 'il ~I ~! BASALT -Gray to black, RX ^ ~~ highly fractured from 5.5 to 6 '~<^'~ 6.5'. Below 6.5' the basalt ^ ~~ ' ~<^' is strong to very strong, with moderotely to widely spaced ^ ~~ ^ ' 54 fractures. 7 ~<^~ ' a ~ a >~~^>~ ' ^ J V ' <^' 8 a a t ~ ^ J V >;~^>; L ' g ^ V V ';<^'; ^7J v >~~^>~ c ^~J 10 V '~`^'° ' ^ J V > a<^> a t ^7 V v '~<^'; 11 L 7 ^ J v >;~^>; ` ~~~ 60 ''`^'' 12 L ^~J V '~<^'~ L ~ ^ J v >,~^>~ 1 ~~~ > ~<^> ^~J 14 V >;~^>; ` ~~ ~ > ~ > ; ^ ; Boring Terminated in basalt ^'„~ " at 15.0'. '~`^'~ File: LDSCHU Boring Number: 35 EXPLORATORY Project No.: P05038A Date Grilled: April 17, 2005 BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Groundwater: NA Logged By. JPB/tlb ~a~ ar ~~>^~~~ ,,A, n~~T Sheet 1 of 1 r~ J ' a N N .~-. ~1 t _i Boring No. 36 = ~, v, o ~ ~ ~ ~, o ~ ~ w o N Subsurface Soil o c ? } a ~ ~ ~ N m ~ _ ~ o REMARKS Description v ~ N v, m ~ ~, o ~ - ~ ~ _ ~ ~ E Fine Sandy SILT (native) - ML I ' ! i ~ ~ Ground Surface Elev: 5068.02 brown, loose, slightly moist. I j j ' Ftg Elev: 5070 1 ' ~ ~i Iii ~ 2 ~~~ ~'~( ~~~l~~ 3 ~~' ~I ,, i.. is ,;~ ~~ l ~~ ~ i 4 i; i~~~ I!,, ~~~ , BASALT -Gray to black, RX `~' ~ ~ highly fractured from 4.5 to 5 , ~ ;<^~ ; 4.8'. Below 4.8' the basalt ^'v " is strong to very strong, with ~ ~~^~ ; moderately to widely spaced ^' ~ '~ fractures. 6 ~ ;<^~ ; ' ^ J ^ V ~<^` a ~' ~ ~ 60 7 ~ ';<^'~ L ~1 ~ J 4 V ~ <^> t ^' J ~ 8 V t~<^t~ ^' J ^ V >'<^> ; ^' J ^ <^ 9 c~ c~ ~ ~ ~ V <^ C ~ L ~ ' ^ J v ;<^ ; 10 ~ ~ ~~~ ^ ~;`^~; ~~~, v ~ `^~ 11 L ' ' ^' J ^ V ~ ~<^> ~~~ ` 60 12 ~'`^~ ' ^ J ^ V ~<^ ~ L C ~ ^ v 1 < ^~ ; ~ ; 13 ~ ~ ~~ >;<^>; L ' ^ J ^ V ` ~ <A` ~ 14 ~~~ ^ >;<^>; Boring Terminated in basalt at 14.5'. 15 File: LDSCHU B oring N umber: 36 EXPLORATOR Project No.: P05038A Date Drilled: April 17, 2005 ~ BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Groundwater: NA Logged By. JPB/tlb ' ~"`~° j ,;. ` '" "' ~ °""DOS' Sheet 1 of 1 0 0 G7 ' a M lU g ,~ 1 Boring No. 37 = ~ ~ ~ cn Jo ~ ~ ~ cn t o y °o o w ~' ~ ' w o ~ REMARKS Subsurface Soil w v g ~ ~ F- ~ ~ J ~ ` o ~ ~ ~ ~ Description ° v ° ~ v c¢n m ~ m ~ ~ ` ° a ~ Fine Sandy SILT (native) - ML ~ j ~ i Ground Surface Elev: 5069.46 brown, loose, slightly moist. ~ ~ ~ j Ft Elev: 5069.5 1 i~ i! ~~ ~l 2 ~~ ;i~ ~! ! ~ il i~ ~'I ~i 3 ~ii !~ ~~ ;II ail 4 ~i ~ A ~~ ~ li ,r BASALT -Gray to black, RX ~, ^ ~~ ^ highly fractured from 5 to 6'. '~`^'~ Below 6' the basalt is 6 ^ ~~ ^ '~`^'~ generally strong to very strong, with moderately to ~y~ ~ > ~^ widely spaced fractures. ' ~' ^~ ^ 60 7 .~ V ' ~ ` ^' ~ G ^' J ^ v >~~^>~ c ^~~ ^ v ' `^' 8 a a c 4°~ 4 v >~~^>~ c ' g ^ V ^ V '~`^'~ ^' J ^ v >~~^>~ ^~J ^ Porous zone from 9.8 to 10' 10 >'~^> j ^' ^ J V > ~<^> a t BASALT -Gray to black, the RX >~<^>; basalt has moderately to 11 ^~ ~ ^ widely spaced fractures. > ~~^> ~ `' ^' V ^ 60 V >'`^>' 12 ~ ^ ^ ~~ >;~^>; ~ ^ ~ ^ > ~^~ 13 ' ' ^' J ^ V >;~^>; L ^~J ^ 14 v >;~^>; ` ^~~ ^ >~~^>~ Boring Terminated in basalt ^',~ ^ at 15'. '~`^'~ File: LDSCHU B oring Number: 37 ,'~~ EXPLORATORY Project No.: P05038A Date Drilled: April 17, 2005 ~ ~ BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Groundwater: NA Logged By. JPB/tlb rnF~~-~ ~r -~~~a ~~~~~~<<~r-G Sheet 1 of 1 ~L ' a ' o N N .0 Boring No. 38 = ~, ~ o ~ cn o ~, o ~ ~ w o Subsurface Soil w ~ N ~ ~ ~ ~ o ~ ~ ~ o ~ o = ~ ~ ~ REMARKS Description ~_ ~ ~ N N~ m fD ~' m e w v D_ ~ 0_ Fine Sandy SILT (native) - ML ~ I Ground Surface Elev: 5070.45 brown, loose, slightly moist. E ~ ~ ~ ~ ~ Ftg Elev: 5070 1 =1 ,;~ ~~ it!'? 2 !i~y; I t ' ~ I l~l';r i { { i ~ ~ i I ~ ~ (~ ~ Lost return at 3.5' 3 ! i`i ;{ , jI'f ~ 4 =( ~ iii) 1 ;~~~i ~; ~ , ~~~;~~ I~~~ r BASALT -Gray to black, RX ~~ "~ ~ " highly fractured from 5 to 6'. >~`^'~ Below 6' the basalt is 6 " ~~ " ~ ^~ generally strong to very ~; ^ strong, with moderately to > yV~ y ^ closely spaced fractures. „~ `.; 60 7 ~~ ';<^'; 4~~ 4 V >;~^>; C ' " V " V ' ~^' a a t ' " V " V >;~^>; t ' " J " V ';<^'; g ~ " ~ " > > ;~^ ; ' Porous zone from 9.8 to 10' 10 " J " >'`^~' "' ~ " >~~^>~ BASALT -Gray to black, the RX > `~~~> `~ basalt has moderately to 11 ,'~ `~ widely spaced fractures. > ~~„> ~ ' `' "' V " 60 V >'`^>' 12 L ' " J " V >;~^>; L ' " J " V > `^> 13 ' ' ' " J " > ~ > ; ^ ; t ' " J " V ~ ~<^> 14 ~ ` "' V " V >;~^>; Boring Terminated in basalt " ~„" at 15'. '~~^'~ File: LDSCHU Boring N umber: 38 EXPLORATORY Project No.: P05038A Date Drilled: April 17, 2005 ~ BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s T R aT a Depth to Groundwater: NA Logged By. JPB~tIb ~ '~° ~'r~r°M~' °~^'°r Sheet 1 of 1 Boring No. 39 = ~ N cn o ~ „ N L ~ ~ o w ~ w Subsurface Soil w `~ N g ~ ~ ~ ` o ~ ~ ~ o ~ ~o = o ~ c °~ REMARKS Description ~ v ~ ~ c}n ~ can J m ~ m a ~ ` ° ~ ~ Fine Sandy SILT (native) - ML i ~ i ~ brown, loose, slightly moist. j j I { Ftg Elev: 5070 1 2 1 I $ ~, ~ ~ 1 i 3 t t i ~ 'ji 4 i; Ili~~ =~'' ~~~' i i ~ ~ i i ~ BASALT -Gray to black, RX ~ ^' ., ^ hard. Fractured ~ ;<^~ ; longitudinally the entire ~' ,, ^ length of the core 6 v >;<^~ ; ^' J ^ V > > ;~^ ; ` ^' J ^ 60 7 v > ~<^> a ~' V ~ V <^ C ~ G ~ ' ^ V ~ V ^ 8 ~ ,` ~ , ^' J V <^ C ~ L ~ ' ~ V ~ V ~;<^~; g ~ ~ ~ ;`^~ ^' J ^ 10 V >~`^>~ ' ^ J ^ V > j<^> j c ' BASALT -Gray to black, RX ~ J ^ > `'<^>" hard, the basalt has 11 „~ ~ ,; moderately to widely spaced > ~~^> ~ fractures. `.'~ ~ .' 60 ~'`^~' 12 ' ^ V ^ V ^ L ~< L ~ ' ^ J ^ v > ~ ^> ~' ' 0' to 13 5' Porous zone 13 13 ^ ~~ ^ Lost Circulation 13.0 . . . ~~`^~~ ^~J ^ 14 v ~~~^c~ ~ ~ ~ YV ~ > ^> Boring Terminated in basalt `~ ~~ ~ File: LDSCHU Boring Number: 39 EXPLORATOR Project No.: P05038A Date Drilled: April 17, 2005 BORING LOGS Drill Rig: CME 75 Boring Diameter: 0.2' Core s ~- R aT a Depth to Groundwater: NA Logged By. JPB/tlb rK{ ~ .r <, .~, E~u,.V Sheet 1 of 1 EXPLORATORY TEST PIT NO. 1 Project: Rexburg Temple File: LDSCHU P05038A DEPTH SOIL SOIL (Feet) CLASS DESCRIPTION 0.0-1.0 ML Fine Sandy SILT -Brown, loose to medium dense and damp to moist. 1.0 - 3.0 ML Fine Sandy SILT -Light brown, loose to medium dense and damp to moist. 3.0 RX BASALT -Gray to black, strong to very strong and moist. 4" minus material. Excavated on April 18, 2005. No groundwater encountered. Test pit terminated at 3.0 feet below existing ground surface. Excavation Equipment: Case Backhoe Logged by: JPB s -rr~a-r~ Appendix A Client No: LDSCHU P05038A EXPLORATORY TEST PIT NO. 2 Project: Rexburg Temple File: LDSCHU P05038A DEPTH SOIL SOIL (Feet) CLASS DESCRIPTION 0.0-1.0 ML Fine Sandy SILT -Brown, loose to medium dense and damp to moist. 1.0- 4.7 ML Fine Sandy SILT -Light brown, loose to medium dense and damp to moist. 4.7 RX BASALT -Gray to black, strong to very strong and moist. 4" minus material. Excavated on April 18, 2005. No groundwater encountered. Test pit terminated at 4.7 feet below existing ground surface. Excavation Equipment: Case Backhoe Logged by: JPB S TRiaTa - -ara~: .. ..Fl ,.. ,Y td.+ ~,Si ::. rf .~lhki"~ r `4i,•-r•}rr-ly ir.:=wx -lfirr ~.~fr.::.tn.~;~Uf= Appendix A Client No: LDSCHU P05038A EXPLORATORY TEST PIT NO. 3 Project: Rexburg Temple File: LDSCHU P05038A DEPTH SOIL SOIL (Feet) CLASS DESCRIPTION 0.0-1.0 ML Fine Sandy SILT -Brown, loose to medium dense and damp to moist. 1.0- 5.7 ML Fine Sandy SILT -Light brown, loose to medium dense and damp to moist. 5.7 RX BASALT -Gray to black, strong to very strong and moist. 4" minus material. Excavated on April 18, 2005. No groundwater encountered. Test pit terminated at 5.7 feet below existing ground surface. Excavation Equipment: Case Backhoe Logged by: JPB S T R 3T ~ ,, r ,~, ~. ~~ ~~. ~~a (r1..1..,..,c-trr:jr.: r, ~wt I ~i.-- ~. /e. ~trH.;f {,~~' Appendix A Client No: LDSCHU P05038A EXPLORATORY TEST PIT NO.4 Project: Rexburg Temple File: LDSCHU P05038A DEPTH SOIL SOIL (Feet) CLASS DESCRIPTION 0.0-1.0 ML Fine Sandy SILT -Brown, loose to medium dense and damp to moist. 1.0- 5.0 ML Fine Sandy SILT -Light brown, loose to medium dense and damp to moist. 5.0 RX BASALT -Gray to black, strong to very strong and moist. 4" minus material. Excavated on April 18, 2005. No groundwater encountered. Test pit terminated at 5.0 feet below existing ground sun`ace. Excavation Equipment: Case Backhoe Logged by: JPB ~T~~~~ ::~. . "j. M.J.--r-~a,r ~~ i'r..s Jfi.~- '-i~r. ~,~M. r ~~r..., Appendix A Client No: LDSCHU P05038A EXPLORATORY TEST PIT NO. 5 Project: Rexburg Temple File: LDSCHU P05038A DEPTH SOIL SOIL (Feet) CLASS DESCRIPTION 0.0-1.0 ML Fine Sandy SILT -Brown, loose to medium dense and damp to moist. 1.0- 2.8 ML Fine Sandy SILT -Light brown, loose to medium dense and damp to moist. 2.8 RX BASALT -Gray to black, strong to very strong and moist. 4" minus material. Excavated on April 18, 2005. No groundwater encountered. Test pit terminated at 2.8 feet below existing ground sun`ace. Excavation Equipment: Case Backhoe Logged by: JPB ~:::,.,~ f :.,.~,. ~: -, ,.,~~ , ., ~,~: i' ~+4J:r-'* .r ~J~ "-s~: ~e4 ~1 ir..~ ~.~ jr.-~u it.:~ Ur` Appendix A Client No: LDSCHU P05038A EXPLORATORY TEST PIT NO. 6 Project: Rexburg Temple File: LDSCHU P05038A DEPTH SOIL SOIL __ (Feet) CLASS DESCRIPTION 0.0-1.0 ML Fine Sandy SILT -Brown, loose to medium dense and damp to moist. 1.0- 4.2 ML Fine Sandy SILT -Light brown, loose to medium dense and damp to moist. 4.2 RX BASALT -Gray to black, strong to very strong and moist. 4" minus material. Excavated on April 18, 2005. No groundwater encountered. Test pit terminated at 4.2 feet below existing ground surface. Excavation Equipment: Case Backhoe Logged by: JPB STR~-T3 ! F~~i.I°JS Fr.~~~G S Wt "F ~+fi~C: f ,l;`?i .j KJ,r-nrr. ~1r f t. ~nx ~Fae• c_~Jrc'M~+t.-~ Cj~-, Appendix A Client No: LDSCHU P05038A EXPLORATORY TEST PIT NO. 7 Project: Rexburg Temple File: LDSCHU P05038A DEPTH SOIL SOIL (Feet) CLASS DESCRIPTION 0.0-1.0 ML Fine Sandy SILT -Brown, loose to medium dense and damp to moist. 1.0- 6.7 ML Fine Sandy SILT -Light brown, loose to medium dense and damp to moist. 6.7 RX BASALT -Gray to black, strong to very strong and moist. 4" minus material. Excavated on April 18, 2005. No groundwater encountered. Test pit terminated at 6.7 feet below existing ground surface. Excavation Equipment: Case Backhoe Logged by: JPB 5TR3-T'~ ~~i i. x~.r e~ _..: a r.,r- ~ r ir~r,+::4 ~ s !iii .... s'll ~-: rtr f:i~y r'ra_,KC .inn.--- ~ ~r n.srt.! Ltf-:.. r Appendix A Client No: LDSCHU P05038A EXPLORATORY TEST PIT NO. 8 Project: Rexburg Temple File: LDSCHU P05038A DEPTH SOIL SOIL (Feet) CLASS DESCRIPTION 0.0-1.0 ML Fine Sandy SILT -Brown, loose to medium dense and damp to moist. 1.0- 4.8 ML Fine Sandy SILT -Light brown, loose to medium dense and damp to moist. 4.8 RX BASALT -Gray to black, strong to very strong and moist. 4" minus material. Excavated on April 18, 2005. No groundwater encountered. Test pit terminated at 4.8 feet below existing ground surface. Excavation Equipment: Case Backhoe Logged by: JPB S T R ~-T 2s E .rr«r, era~_:GZ~a~-F -. ,~_.r.eaf erias.'_ e~tor,+:: FN#r"~f~#f frc>ri~ ~fii,--c"f`ri~rKa!41~' Appendix A Client No: LDSCHU P05038A i 0 APPENDIX B 1 u STRaTa GEOTECHNICAL ENGINEERING & MATERIALS TESTING ~K-J~cc~ri=Y~. Frowt -f'hc ~rouK~ UP Project: Rexburg Temple Page 1 of 1 ' Report To: Architectural Nexus Inc. c/o LDS Physical Facilities Department Client No: LDSCHU ' Project No: P05038A ' Material Source: Test Pit No. 1 @ 2.0' Date Sampled: 5/13/2005 Sample Location: Test Pit No. 1 @ 2.0' ' Sampled By: JBP -Strata Sieve Analysis ' Standards: ASTM C117/C136 ' Percent Sieve Size Passin No. 200 0.075 mm 89.0 .~ Moisture Content, % = 16.9 Standards: AASHTO T-265 Atterberg Limits ' Standards: AASHTO T89/T90 Liquid Limit = NV Plasticity Index = NP Note: NV = No Value, NP =Non Plastic n ' IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratageotech.com 4460 Kings y 3 Chubbuck, Idaho 83202 .208.237.3400 F. 208.237.3449 ~ s ~- r~ a-r a GEO7ECHNICAL ENGINEERING & MATERIALS TESTING ' ZK-hc~rrikr Frowi -f~hc ~rouKG U~ Project: Rexburg Temple Page 1 of 1 ' Report To: Architectural Nexus, Inc. c/o LDS Physical Facilities Department Client No: LDSCHU Project No: P05038A Material Source: Test Pit No. 3 @ 3.0' Date Sampled: 5/13/2005 Sample Location: Test Pit No. 3 @ 3.0' ' Sampled By: JBP -Strata Sieve Analysis Standards: ASTM C117/C136 Percent ' Sieve Size Passing No. 200 0.075 mm 87.0 1 0 Moisture Content, /a = 17.6 Standards: AASHTO T-265 Atterberg Limits Standards: AASHTO T89/T90 Liquid Limit = NP Plasticity Index = NP ' Note: NV = No Value, NP =Non Plastic ,~ IDAHO MONTANA NEVADA OREGON UTAH WASHINGTON WYOMING www.stratageotech.com 4450 Kings Way 3 u~ik~uck, [aka 8320 , 208.237.3400 F, 208.237.3449 R-VALUE IDAHO T-8 Project: Rexburg Temple Lab Number: B5L0728 Sample ID: TP-6 @ 3.0' File Name: LDSCHU P05038A Location: Subgrade Date Sampled: 4/20/05 Soil Description: Silt with fine Sand Sampled by: PB/Strata Date Received: 4/28/05 Tested by: CAK/Strata R VALUE DATA Percolation: None P°I^~, P°I^~ 2' -_ P°I^~ 3 Exudation, PSI - I, 147 1208 --- 386 Dry Density, PCF 101.4 it 101.8.... 102.9 Moisture Content, % __ 19.1 18.5 17.8 Exp. Pressure, PSI T--- 0.00 ~ 0.06 0.83 0 tC) M 0 a c~i °~ N °~i O a` c,i 0 N (° a ~ W r' 0 0 0 0 0 rn O O 00 0 0 0 d °o .`n (O J N 7 o ~ 0 o li ~ ~ 0 .~ °o o v 0 0 0 M 0 0 0 N O ~ O o ~ W O~ (00 LLOj ~ M N O O R value 'This report covers only material as represented by this sample and does not necessarily cover all soil fro this layer or source. Reviewed by: SOIL CONSTANTS R VALUE: 46 GRADATION: AASHTO T-11, T27 SCREEN AS RECEIVED AS TESTED SIZE '. % PASSING i i % PASSING 4 _. _ ~._- --.__. _. 3" i 2.. I 1 ~~ i 3/4" 1/2" I 3/8" I No.4 100 100 No. 8 No. 16 ~ I No. 30 ', No. 50 No. 100 No. 200 I s -~- rc a-ra ~K-Fr-~riay Frr~wc -/~k<- ~:~mu~id U~ k ff Rexburg /d~ho Temp/e Foundation Permit Package Structu~a/ Ca/cu/ations i~ KPFFPr-oject No. 204359 June 2005 Submitted to: Architecture/Nexus, /nc. 135 North Main Street, #200 Logan, Utah 84321 Submitted by.' KPFF Consu/ting Engineers 111 SW Fifth A venue, Suite 2500 Portland, Oregon 97204-3628 a • .] t Consulting Engineers June 27, 2005 Mr. Lanny Herron Architectural Nexus, Inc. 135 North Main Street, #200 Logan, Utah 84321 RE: Rexburg Idaho Temple Foundation Permit Package i~ John T. Mayer, P.E. Dear Lanny: Attached please find calculations, sheets L1 through G615, dated June 27, 2005, which verify the structural adequacy of the Rexburg Idaho Temple Foundation, as shown on drawings S001 through S704, dated June 27, 2005. Design is based on the requirements of the 2003 International Building Code. If you have any questions or need further information, please call me. Sincerely, ~~~~~~ (JTM:kb12043591calcs 06-24-05.docJ 5S10N N o`~~` ~~~ ~9~ c~F Z 2 O ~9y~~ ~ ~ _ ~~~ FMPLE G 2y'b S _. ~ __ 111 S. W. Fifth Avenue, Suite 2500 Portland, OR 97204-3628 (503) 227-3251 Fax (503) 227-7980 Seattle Tacoma Portland Eugene Ft. Bragg San Francisco Oakland Sacramento Los Angeles Irvine San Diego Phoenix Denver St. Louis e • • Summary of Lateral System The Rexburg Temple is a seven-level steel framed building located approximately 30 miles north of Idaho Falls, Idaho. The main building stands close to 83 feet tall, with a steeple extending another 100 feet. It is approximately 85 feet wide, and 190 feet long, with a partially exposed basement. Design Criteria: • Spectral Accelerations: Ss = 51%g S1 = 17%g • Site Class: B • Seismic Use Group: II p = 1.0 • .Seismic Design Category: C • R = 6.0 (Dual system of Special Concentric and Eccentric Braced Frames) • Wind: V = 90mph, Exposure C Seismic loads were found to control in both principal directions. Definitions: • The "Tower" is defined as all structure between Gridlines C and F, and 10 and 12, above reference elevation 167'-8%2". • The "Interstitial Level" is defined as all structural framing at or near elevation 162"-0". • The "Area Ways" are defined as all spaces north of Gridline A and south of Gridline H. Lateral Load Path /Basis for Design: The Tower was treated as a space frame projecting above the roof and laterally supported on the Mechanical Mezzanine and Interstitial Levels. Therefore, the seismic coefficients are: ap = 2.5, and Rp = 2.5. The Fp force was calculated and the resulting shears and overturning forces were applied to the Interstitial (shears only) and Mechanical Mezzanine Levels (both shears and axial). Similarly, the Interstitial Level load was calculated using Fp with ap = 1.0, and Rp = 2.5. The base shear was calculated for the entire building except as described above, and distributed among the six levels: Roof, Interstitial, Mechanical, 3~a, 2"a, and Main. The shear walls supporting __ the main. level were found to be much more rigid than the braced frames, creating a "load reversal". _. Therefore, the frames were discontinued at the main level, and the forces transferred though the diaphragm to the walls below in both principal directions. There is only one eccentric braced frame, occurring along Gridline 8. This was included, rather than a Special Concentric, due to door openings and ceiling heights. Bearing pressures were determined using the load combinations D + L ~ (pV/1.4 + Fp/1.4) and 0.9D ~ (pV/1.4 + Fp/1.4). Cormections of the frame to the foundations were determined using the load combination S2opV + Fp. Design was completed prior to the formal issuance of the geotechnical report, under the assumption of site class C. Because the geotechnical engineer states that the site class is B, the design is confirmed to be conservative. L2- kp~ Consulting Engineers Portland, Oregon IBC2003 Wind Design Rexburg Temple Step 1 Wind Speed V = 90 mph Directionality Factor From Table 6-4 Main cladding steeple Kd = 0.85 0.85 0.90 Step 2 Importance Factor Bldg Category II From Table 6-1 Hurricane Region no I = 1.00 (cladding = 1.25 Step 3 LDS Rexburg Temple 204359.00 6/23/2005 Exposure Category C Z Velocity exposure pressure coefficient K _ = 2.01 ? Table 6-2 zg a zg (ft) a b^ ~ b- c l (ft) a Zmm (ft) 9.5 900 2/19 1 2/13 0.65 0.2 500 1/5 15 floor height, ft 0 15 16 31 50 68 78 84 93 100 106 120 185 KZ 0.849 0.849 0.860 0.989 1.094 1.167 1.201 1.220 1.246 1.266 1.281 1.315 1.441 Step 4 Topographic Factor K_r = ~1 + K, Kz K,~Z Height of hill, H = 20 ft Dist from crest to bldg, x = 250 ft Height above low ground, z = 50 ft Dist from ~/2 height to bldg, Lh = 250 ft H/Lh = 0.08 K~ = 1.00 KZ = 1.00 K3 = 1.00 Krt = 1.00 • IBC Wind.xls Sheet1 L • • kp~ Consulting Engineers Portland, Oregon Step 5 Gust Effect Factor Rigid Structures go = 3.40 g„ = 3.40 h = 84.00 ft Bx = 158.00 ft By = 78.00 ft z = 50.40 ft It = 0.186 LZ = 544.19 Ox = 0.879 Qy = 0.852 Gx = 0.867 Gy = 0.854 Step 6 Enclosure Classification Enclosed ASCE 7 Section 6.5.9 Step 7 Internal Pressure Coefficient Figure 6-5 GCP; = 0.18 -0.18 Step 8 External Pressure Coefficients Figure 6-6 Windward 0.8 qZ LeewardX -0.3 qn Leewardy -0.5 qn Side walls -0.7 qn LDS Rexburg Temple Flexible Structures go = 3.40 g„ = 3.40 h = 185.0 ft Lx = 20.0 ft BX = 20.0 ft (3 = 0.05 of = 0.9968 gR = 4.1887 i = 111.00 ft If= 12.25 L f = 637.28 OX = 0.87 V f = 103.40 N~ = 6.14 R„ = 0.0445 Rn = 0.1145 ttn = 8.2032 RB = 0.9711 ale = 0.0443 R~ _ . 0.2802 ~~ = 2.969 R = 0.2559 Gf = 0.8606 204359.00 6/23/2005 Step 9 Velocity Pressure Section 6.5.10 __ qZ = 0.00256KZKZfKdV21 Main Building Steeple Clad ding Height qZ lvs~ Height qZ lvso Height qZ (psf) 0 14.96 77 22.42 0 18.70 16 15.17 84 22.77 16 18.96 31 17.43 93 23.26 31 21.79 50 19.28 100 23.62 50 24.10 68 20.57 106 23.91 68 25.71 78 21.17 120 24.54 78 26.46 84 21.50 185 26.89 84 26.88 • IBC Wind.xls Sheet1 L~ kp~ Consulting Engineers LDS Rexburg Temple Portland, Oregon Step 10 Design Wind Load Section 6.5.12.2 Main Building Windward Leeward Side Walls Height q~ PWX (Psf) PWy (Psf) qn lvsfl P~ (Psfl Pay (Psf) qn cash Ps 0 14.96 14.19 14.03 21.17 -10.00 -10.50 21.17 -14.82 16 15.17 14.33 14.17 21.17 -10.00 -10.50 21.17 -14.82 31 17.43 15.90 15.72 21.17 -10.00 -10.50 21.17 -14.82 50 19.28 17.18 16.98 21.17 -10.00 -10.50 21.17 -14.82 68 20.57 18.08 17.86 21.17 -10.00 -10.50 21.17 -14.82 78 21.17 18.50 18.27 21.17 -10.00 -10.50 21.17 -14.82 Steeple Windward Leeward Side Walls Height qZ PWX (Psf) PWy (Psf) qn (psi Pax (Psi Pay (Psfl qn cPSD Ps 77 22.42 20.27 20.27 26.89 -8.01 -13.35 26.89 -18.82 84 22.77 20.51 20.51 26.89 -8.01 -13.35 26.89 -18.82 93 23.26 20.85 20.85 26.89 -8.01 -13.35 26.89 -18.82 100 23.62 21.10 21.10 26.89 -8.01 -13.35 26.89 -18.82 106 23.91 21.30 21.30 26.89 -8.01 -13.35 26.89 -18.82 120 24.54 .21.74 21.74 26.89 -8.01 -13.35 26.89 -18.82 185 26.89 23.35 23.35 26.89 -8.01 -13.35 26.89 -18.82 Cladding Windward Leeward Side Walls Height qZ PWX (Psf) PWy (Psf) qn (psfj P~. (Psf) Pay (Psi qn cvsn P5 0 18.70 11.22 17.72 26.88 -4.84 -13.35 26.46 -18.52 16 18.96 11.38 17.89 26.88 -4.84 -13.35 26.46 -18.52 31 21.79 13.07 19.84 26.88 -4.84 -13.35 26.46 -18.52 50 24.10 14.46 21.43 26.88 -4.84 -13.35 26.46 -18.52 68 25.71 15.43 22.54 26.88 -4.84 -13.35 26.46 -18.52 78 26.46 15.88 23.06 26.88 -4.84 -13.35 26.46 -18.52 84 26.88 16.13 23.34 26.88 -4.84 -13.35 26.46 -18.52 Main Wind Force Re sisting System Floor Height p„~ (psf) p~,,y (psf) VX Vy o, 15 24.19 24.53 37009 28329 16 24.33 24.67 2475 3886 '~ 31 25.90 26.21 38429 62585 C° 50 27.18 27.48 46901 83650 c 'ca 68 28.08 28.36 46253 82409 ~ 78 28.50 28.77 16972 33989 77 28.28 33.62 5766.1 0 84 28.53 33.87 7489.5 8577.2 ~ 93 28.87 34.21 4870.1 5767.4 0 100 29.11 34.45 3505.4 4146.4 1.06... . .....29.31.. ....... 34.65. 6201.3 7323 __ _ . _. 120 29.75 35.09 9930.1 11666 185 31.36 36.70 EVX = 226 kip EVy = 332 kip ~JJ ~J 204359.00 6/23!2005 IBC Wind.xls Sheet1 Building Weight Diaphragms Level Location Area (sq. ft) Slab (psf) Roof/ Part.. ( sf) Framing (psf) MCE (psf) 20% of 35psf Snow Load Total Weight (kip) Roof 43 sf 5200.0 3 8 10 15 7 223.600 Mezzanine 89 sf 10200.0 46 10 15 I S 3 907.800 75 sf 4270.0 40 0 0 35 0 320.250 3rd Level 76 sf 9150.0 46 10 15 5 0 695.400 2nd Level 86 sf 12511.9 46 10 15 15 0 1076.024 46 sf 0.0 46 0 0 0 0 0.000 35 sf 2862.3 3 8 15 2 7 100.180 Main Level 103 sf 13350.0 73 10 15 5 0 1375.050 Facade 75 nsf Level in plan len th (ft) height (ft) Total Weight (kip) Roof 410.0 8.5 410 3 353.6 Mezzanine 489.0 15 410 8.5 811.5 3rd Level 489.0 9.5 489 9 678.5 2nd Level 520.0 7.5 489 9.5 640.9 Main Level 156.0 8 520 7.5 386.1 Walls • Level wall height (ft) wall length (ft) x-dir thickness (in) number wall length (ft) -dir thickness (in) number Total Weight (kip) Roof 0.0 0 0 0 0 0 0 0.0 Mezzanine 0.0 0 0 0 0 0 0 0.0 3rd Level 0.0 0 0 0 0 0 0 0.0 2nd Level 0.0 0 0 0 0 0 0 0.0 Main Level 8.0 195 8 1 273 8 I 374.4 Total Floor Weights Level ~'~'all height (ft) Area (sq. ft) Total Weight (ki ) Roof 11.5 5200.0 577.225 Mezzanine 10200.0 2039.550 3rd Level 9.4 9150.0 1373.888 2nd Level 9.4 15374.2 1817.117 Main Level 9.4 13350.0 2135.550 sf all floors = 53274.2 TOTAL BUILDING = 7(43,329 WEIGHT (kip) ~~ • Z~ kpff Consulting Engineers LDS Rexburg Temple Portland, Oregon Base Shear Calculations 2003 International Building Code Step 1 Spectral Accelerations (From NEHRP maps or USGS website) SS = 51.11 %g S~ = 16.59. %g Step 2 Site Class C Step 3 Site Coefficients (Linear interpolation of Tables 1615.1.2(1) and (2) Fa = 1.196 F„ = 1.634 Step 4 Calculate SMS+ SM1 SMS = FaSs = 61.13 %g SMS = F„S~ = 27.11 %g Step 5 Calculate SDS, Soi SDS -z/sSMS = 40.75 SD1 -2/3SM1 = 18.07 2043 59.00 6/23/2005 Step 6 Seismic Use Group (From 1616.2) Group II __ _. ___ __ Step 7 Seismic Design Category (Tables 1616.3(1) and 1616.3(2) Table 1616.3(1) = C Table 1616.3(2) = C Use Higher Value Step 8 Regular or Irregular (From Tables 1616.5.1.1 and 1616.5.1.2) Regular Step 9 Base Shear R = 6.0 From Table 9.5.2.2 I = 1.0 From Table 9.1.4 h„ = 84 ft Building Design 4-28-2005.x1s Base Shear ~~ kpff Consulting Engineers LDS Rexburg Temple Portland, Oregon Ct = 0.02 x - 0.75 }From Table 9.5.5.3.2 Ta = 0.555 sec V =CSW CS = R/~ 0.068 C - SD1 0.054 Use Max Base Shear s max - T(R/I) Cs min = 0.044S°Sl 0.018 W = 7943 kip V = 431.1 kip • 204359.00 6/23/2005 • Building Design 4-28-2005.x1s Base Shear L~ • ~ ;.~ C~1 k (~ V1 ~O V1 \O L, a ~ M d\ ~--~ M C R, ~ O ~ ~o N ~ O CC V ~ N ~+ N N ~A'~ 0 ~ (~ ~' a V a' N O~ M l~ ~p •~ ~ ~ O M 00 ~--~ 'y 'n N ~-+ ~-+ N i £" i i LSD C ~ ~ ~ N ~ 1n ~ R v ~ t/'1 ~O V't Vl CJ~ "y ~ O~ ~ r ~+ ~ ~ ~ C A ~ O N~ N N ~ „ ,~ 00 M ~ v FGT. ~A c ~. r~ .. ~' a ~c ~o ~ N M ~ ~ vo~~~o O o. ~t` u ^~c O O O O O O D\ M[~ N .-r • ~~ O M oo O v, • W y N •--~ •--~ N ~ ~ ~ ~~~ M~ 3 N N N N N ,~ ~~ O~~ N ' ~ 0 0 0 0 0 N '-. V ~ '~ .~".~ ~ ~ O M ~ .^ ,Z ~ a N N N N N HI H ~ •--~ •--~ •--~ •--~ •--~ ~ ~.~ I ~.,, ~y 0 0 0 0 0 V ~ O ~..i O G4 V . r ~ .1; . ~a~ w ~ ~ °~ .a. .d. may. d. .a' .--. .--. .--. ~ ~ ~ ~' O O O O O ,~ r O O ~ ~ ~ ~ W E"' ~ ~~ O a W ^' O O O O ','~ + M W O i O~ ~~~ oo ~ ' `~ °' O O O O O ~ (~ ~ N M v ~ [~ W ~ ... II II C~ v'~ ~ ~-+ '~" bA C 3 O M l~ V7 C~ ~O vl ~h ~ x V . ~--~ t/') \D ~ ~ .. !yy ~~ i ~ ~ M ~ ~ M i ~y W 'd' O ~p M ~--~ ' ~ M ~-- ~ O O r3 ..i -i O M 00 . ~ N .--i ~-+ N ~ .r O N O\ M ~? ~ N M M ~ r I I I I II II ~ _ W . _ _ o ;'~ ~ > o ~ ~ °' a ~" > o ~ ~, °' a N >H y a o N ,~ a x~b~~~ ~ ~ ~ o N .a ~ a ~~b~~~ `~"~ M N ~ ^ ~'" M N `~'i i' • • • N N W ~ ~ 0 0 ~ 0 d' O N 00 (~ I~ 0 O M d' ~O r O O r CS) ~ 0 0 ~ 0 ~ 0 00 O ~ ~ O d) r M ~CZ' O N N O CO CO O O CO O r Cp O O O O O I~ 0 (`M ~ CO d' cl' CO ~ r ~-- N r I~ N h 1~ N M ~ N O r. CO 00 r 0 M M r N CA M M CO ~ CJ 1C~ M M Lf) N r ~ N II Q' II Q' II ~ II W' II ~ II ~ II LY II ~ 11 ~ II ~ II ~ II ~ II ~ II ~ II ~ II ~ II ~ II (Z' II W' it a' II im' V L V L v L V L V ~ L ~~ V ~ L L ~ L ~ L~ V L L L L V L V L L L V L. ~' ~ N-~ ~ ~ ~ ~ ~ ~ w ~ ~ ~ H 4 4~ ~ H ~ M O O M f~ N ~!'> M O O M (~ O CO M O O M Cfl M to lf) M N O O M ~ ~ M M CO ~ M ~ LI') M O I~ M M ~ ~ r O 1~ M M f~ r r N I~ M M I` O N r r N 00 r r N r r N Ln N ~ N r r N tL7 II ~1 L II U L II IL L II C7 L II N L II c0 L II ~ L II m L II U L II LL L 11 ~ L II ~ L II W L 11 .-~ L II (~ L II U L II LL L 11 C7 L II ~ L W 0 H ~ 3 ~ O rn d 3 0 rn 3 E E ~ E E E E c w ~ c .~ ,° d M N y M M ~ M O ~ d I~ O O M O O r f~ O N CO O N (D 00 = f~ lL') <' ~ O O O O tf) O l!~ O ~ CA L<7 N O O 01 00 y c0 O N T O ~ O O M O N r 00 ~t Cfl d• O O O O V ~ ti M M O CA 0 0 CD O N O ~ d' N Cfl O) ~ M f~ O lf') M CO ~ N r 00 N N r M O 00 N N N r M r r N E I~ M M 0 0 0 CV N ~ E h M M O O O N N ~ E f~ M M O O O CO 00 00 O O 7 (D 00 00 O O O CD 00 00 O O N O to ' 00 Lt7 O ~ ~ (0 O ~ 00 t17 O ~ ~ c0 O ~ 00 ~ O ~ CO l1 ) N r M r r ~ O Lt7 N ~- M r r ~ CO LIB N r M >+ >, >, ~ . ~ . ~ . ~ ~ ~ ~ N O O N O O O ~ M M O M 0 ~ N N N O 0) d; O O ~t O O CD lf) tt 0) N ~ ~ ~ N ~ O ~ 0 0 Ln N 0 O ~ ( D d: C O tt N ~ O ~ O O O O O ~ O N ~ :..~ O O O O r O O N ~ :~ O O O O r N N N N N N ~ Q' Q.' M M I~ ti II W O O O d7 N O N II W N ~ ~ N 0 X O r O O O O O r O 0 N ~fi M ~ X 00 0 r N r N 00 Lf~ CO r 00 L(') r N X r M 00 N OD N r M Cp O LPL M ~ ~ M ~ M C0 LL O) M M O) O) CO tp LPL N ~ ~ N r O O O O O ~ M ~ tC) l17 ~ ~ N O C~ r r O O r r N r r r r r M M N N M M N CD N O ~ O O 00 O 'd' N N lf) N f~ N I~ N ~ 0 ~ C~ N t0 M ti N ~-- N N M N M r N I~ ct CO r r CO r r M ~ CO LI) Lf) O CO O 00 =p ~ r ~f' d' O CA ~' ti O O O (D N M d' M M M M r N > 0 0 0 O 0 0 O C O O O O O O O 0) C O O O O O J 0 L ~. 0 0 0 0 0 0 0 0 0 ~ i- 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 L 0 0 0 0 0 0 0 0 0 0 ~ ~ U N O r O r O r O <- > O 0 L.L Q) 0 r 0 r 0 r 0 r O r O r O r O 0 ~ IL N 0 r 0 r 0 r 0 r 0 r L N 'O ~ J L N "O > `- O 0) 'O AA~~ W ~ ~ ~y~ W U 11 I.L ''(n~ V ~ ~ L ~ ~ W U ~ ~ ~ ro rtS ~ LL W r ~ ~ LL W r M LL W LJ~ • • • N W W r O M ~['~ O f~ M M O M 'd' O ~ lY Q' 7 ~.. r pp M M N lf) II II ro L L f~ CNO M O M N 00 00 r N N ~ N N r C}' r r rn ~ ~ I~ tMf') M O O N I I W ~Y M ~ ~ O ~ O ~ r N O O O O O O r r w N w r Cp (O r r W d' ti ~ LC) tf') d: 00 ~ f~ 01 CO N N Cfl ~ f~ f~ 00 M O O M 00 r N 0 M r r M Cfl M O OO N r ~ II II II II II II II 11 v~ ud' v~ ~ W' V~ V~ "'~ L ` S. L L L ~ ~ W ~ M O O M N M O M Ln L17 M 00 d; O 1~ M M f~ r r N i ~ i II II II 11 II II II Lm L L L L L L u°, 3 E E w .~ ~ M oN0 O N O L ~ ~ d O O 07 ~ d' O Lf) 07 CI' d ti r N lf) O M N CO V M d' N I~ O (O lf7 r r r (p (p O ti r 00 M M r M I~ O r ~- N ~ N ~ C~O OMO OMO O O N O (~0 O lf) CO In O ~ d. p CD lf~ N r M ~-- ~- ~, .~ N ~ ~A ~ ~ O CO !~ ~ .~ O O O O r O O N N O Q' I I LL (p ~ ~ ~p M 00 00 ~ O 01 ~ N CO O O ~ ~ O r N r r _~ ~. M M ~ I~ M CMO 'O ~ 00 00 ~ d' CO CO O~ 0 0 0 0 0 0 0 U 0 0 O O O O O O L ;-. 0 0 0 0 0 0 0 O U O 0 0 0 0 0 0 Q~ r r r 'r r r r J N ~ -~ ~ ~ m U ~ C7 ~ ~ r N LL. W N ~F+ M r r M V N O N r (+7 M r r O r N N 07 ~ N ~ Lf') M Lf~ O ti ti O ~ M 0 0 I~ ~ ~ ti O r O ~ r r r I~ II II II it II II II II ~ V~ VW' Vd' V~ ~ ~ ~ L L L ` S. L L ~ ~ M M M M d' O CO M M M M 00 O r N CO (O N OD Cfl I~ ~h M M ~ t~ N M II II II II II II II L~ L L L L L L u°, 3 E E 0 0 ,~ ,~ ~ M ~ M O O N ~ s. ~ M d ~ C f~ N 00 O N M 'd' O d CD Cfl I~ O W r CO l17 V Cp In r O~ r 0 CO d' o~ N O I~ O N O 00 N N N Ln r r 7 (~D ~ 0 Q p N O r L17 Q ~ ~ CD O M r I~ r r _~ v .~ ~ °o ~ cMO o° rn ~ rn ~ O O M M O r N CO ~ r O O r 0 0 0 ~- ~~ N Q' I I tD I~ ti O O ti O W "O f~ r r f~ I~ r ~ '~ d7 h ti ~ M ~ M r- O O r 0 0 i ~ i i ~ i ~ N C ~ O j i i i i i i i J N ~ C ~ ~ ~ O '~ cLo ~ Q Q C~ _ ~n °° r ~ LL W u~ • N O LL N E m LL C_ C_ _C C_ C_ C C O M M O CO O O DD W O r 01 O o r r o m~ o O < < O O O O O O O O O D O O O W~ O O M M aD M N O~ N N M M C t 7 mUliC~~nco~ yr O O N ~'1 LL O N N O d' r O M M N M 'O O ~ N O ~ ~ O ~3 .'_.+ C O N N O~~ O N O ~ ~ O ~ ~ O ti C_ C_ C_ C_ C C C O O O O O VO' N ~ 0 0 ~ 0 0 0 O O O O O O O ~-- V O O t{ O r d O O O T O~ tfJ M O O M O lt) O N N N N v o o v o r ~n rn o o rn o v ~n ri o o ch o u'i of N N N N C_ C C C C_ C_ C_ r O O r O a M O O O 10 O 1f! N O O O O O O O O O O O O O O W DD CO a0 ~' O O ch M aD M N O M N N N N M M O m U W C7 u~ au a _a _a _a a a a I+ Y Y Y Y Y Y Y '~. WC4W ~ O O ~ O ~ V yLL O O O ~ O ~ ~ ~ 0 0 ~ 0 0 0 a a a a a a a N Y Y Y Y Y Y Y Z O O In 0 0 0 u. 0 0 0 0 0 0 0 LL~ O O M O N O V O O~ O ~ O V' O O O W O M M ~ O O O W 0 0 0 D O 0 0 0 0 ~ + O O O ~ V CO M LL m 0 0 0 0 0 0 0 0 0 ~ 0 ~ 0 O O LL 0 0 0 ~ 0 a? m M O O C? O N (V + ~ M li ~ O O O O N N '~T O O ~ O ~ ~ ~ ~ O O ~ O ~ G < 0 0 0 ~ < O O O O O N W L.L O O O O ~ N r ~ 0 0 0 0 0 0 N O O N O O O O (Y 7 O O V O O M V O O O O O < O N ~ II ~ a~ U tL (~ ~n o ~ w LL _C C_ C C_ C_ C_ C N 'NV" VN' N N O tT CO tC1 t0 CO M tf1 O O O O O O O O O O O O O O tT W W O < fh to r .-- r < < f`7 M u00i v v ~ v m ~ of ao 0o ai ~ ri ui < < < < < M C7 C_ C C C_ C_ C_ C_ O O O CO N Oi r r Q! N N M CD ~ N O ~ t0 IA < O O O O O O O O O a0 CO CO CO O O CO M M oD M d' ~ u7 N N N N O O tD m U ~- U In o C C C_ C_ C C_ C_ N M M N N of N COO r r O ~( N 'cr O O O O O O O O O O O O O O M W O W O O CO M a0 W M V V~ N N N N O O M m U W C~ ~n CD C_ O O O a0 N m a a a a a a a Y Y Y Y Y Y Y W ~ V a ~ tD ~ COD LL N~~ O O N 'cY tt ~ a d' a a a a?? 4 y Y Y Y Y Y Y Y r O m LL O O p p M N CND ~~ V W G O M < 01 O O Q1 CO aD W ~ r N N r~ R< F A O a0 l() O r H r~~ r M N< LL ~ Q O< O CV l~ ll.. O O O O M ~ N + m O. O O O aD O + r N N r~ V< + O F N O M l{7 O r H r .~ V r M N< H CO IL < O D ~ ~ N V' ~- O O O O c? .-- N LL., O ~F O O p Q V ~ M ~F O N N p n~~ ~F ~ LL CO 7 ~ CO M ~ N u' '~ CV N ~ ~ tD ~ LL ~ a a a a a a a Y Y Y Y Y Y Y W N M M N m LL o a v o~~ o U. M O O M M N N N N N M < N n n n a a a a ~ Y Y Y Y Y Y Y Z O (O Ip O tD YY CO LL °~ o o °~ r m a LL ~ N N O V N nj 7~ N r _a Y W to LL ~ IL ~ r a N Y Z ~ IL Q? O ~ ~ LL O +F M N N M~ ~ N +F M r I~ M O<~ +F ~ lL N < N ~ 7 (O LL ~ O p c.. ~ N M W p O ~ ~ ~ ~ r M V; M < ~ ~ ~ ~ N M M O W M a0 ~ O CA ~ ~ m V N < ~ U7 fD CD ~ O V < M V d' M O ~ ~t 7 'V' V' O O d' aD O tT W 0~ O r N M M N O M W t[') ~' 7 st '7 'C: O O ~ N O O O O < O O 7 ~ II ~ m U LL C7 u7 W o w W ~ ~ N N ~ O ~ M In l(7 CO ('7 C! N N M N O W LL M 7 7 Lf) O W O O N N O (O W N N N N M N N M N N M O 01 to M N (O CO N O O W ~ O O O O < O O V' ~ II ~ m U ~- U ~n ao ~ w LL ~ M r lOA LL M r O Q' V O N E m co LL ~ ~ ~ ~ ~ 1'' ~ Z= w ~ ~ ~ y C n Y a n. o. d. n Y Y Y Y Y a o. a a n. Y Y Y Y Y a o. a a a a °~ ~ ~~ N v w V r~ Y r < Y Y Y Y < r Y v O CV p~ W ch a r N O r p~ r N M N M ~7 CO E M N W ~ ~ ~ I ~ O ~ ~ M ~ ~ N C C O i i p p Q II II II II II II II II II II II II 11 II II II II ~ ~ ~ ~ ~ 1K ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ y ~ d ~ O CO ~~ M t} d' r J pOj O O C7 t0 11~ M M M N ~ O O M 01 M M M N (O E ..~. Q. J~ O~ r t0 r ~ O< N ~ OD N CV ~ V O~ N N fh O r V 'R ~ V ~ O W N N O r~ n N v ~ ~ ~U >• ~ jD • N ~ C J ~ ~ • II II II II II II II 11 IC6 II II II II II II II II d y II II II II II II II II d II O~ V d d d ~ ~+ k , K+ T' T ~ QI d d d d <D d d ~ ~+ X • K+ T • T ~ Q~ d d ~ J ~ d fX( d N T i X' %+ ~ a. d ~ d QI ~ J C7 V 0 ~ Q) d d W ~ LL ~ ~ M N L12 C _C C_ C C_ C M M d' 0 O O t0 t0 t0 M N M O O O O O O O O O O O O OD o0 oD O O (O e0 00 M ~ C' In N N N O W (O U li (g In 0 a a a a a n Y Y Y Y ~C Y O O O In N M 01 Of ~ U ~ W O O O r r r N O r a a a a a a Y Y Y Y Y Y m o N O N ~ N j N p r r M ~ N ~ M M O ~ h 0 ~ O O N O ~' C C_ C_ C_ C C_ _C rn~ v rn o a rn tD 0 !O M r N O O O O O O O O O O O O O O (07 00 0 M ~ O (~ N N N N O~ (O Q Q ~ 2 In 0 a s a s fl. a s Y Y Y Y Y Y Y W N O O N O~~ LL~ M M n V D U LL ~ 0 7A X 0 0 0 g. n a a a a a '., N .Y Y Y Y Y Y Y Z n m o ti In o ly N ~ ~ N N n 007 r r a a a aaaa ~. Y Y Y Y .Y Y .Y 0 0 0 0 0 0 0 LL O O O O O O O ly, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a a n a aC.a Cn Y Y Y Y Y Y Y ZW ~ O M ~ d' ~ LL O M to 0 0 n M M It7 0 M P 0~0 N O ~ hnO N 00 1~ l0 07 a a a anon Y Y Y Y Y Y Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ananga? N .Y .Y Y .Y Y Y Y Z ~ M N ~ N N r LL ^ O p n 01 7A O N li ~ N et~r a a a a a Y Y Y Y ~C 0 0 0 0 0 LL O O O O O ty O O O O O O O O O O n a a n N Y Y Y Y Y Z ~ ~ ~ ~~ LL (7 M M M 7A ~ r ~ ~ N • O O O O O 7T 0 0 0 0 0 LL O O O O O ~ W N N 000 ~ .O- ~ LL 0 0 0 0 0 0 ~ ~ ti O N N O + 01 W OD 61 O~ to M M (O N~ 0 H 0 N N 0 7 O p O O N p r LL O O O O O O O N M W O~~ ~~ N ~ ~ N~~ eM- N ~ M ~ r r 00 N IA LL M ~ ~ ~ ~ N 00 • 7, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7- 0 0 0 0 0 0 0 F- 0 0 0 0 0 0 0 L L 0 0 0 0 0 0 0 L L 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 F 0 0 0 0 0 0 0 F 0 0 0 0 0 0 0 ~- 0 0 0 0 0 0 0 l.L O O O O O O O 127 M M ~ 000^ ~ C O ~ ~d'a7 (.L ~ N N~ M ~~ LL N ~. O N~ M M + 0 0 0 0 0 H O O O O O LL 0 0 0 0 0 ~ M lr~j M M ~ LL ~ r r ~ r ~ ~ ~ (O ~ .0d. IA ~ O) to N ~ 0 ~ M M I!1 00 O ~ h 00 m n ~ 7 01 ~ + V ~ M M m p 0 0 0 p p LL ~ N N~ V r~ LL a~ 0 N N W c`f ~~ ~ IA .~ f`') LL N f~ O N O ~, ~ ~ ~ ~~ r ' O O t6 M W N 00 O M O) ~ (h S O N M 61 O ~ M O~ M W O N M ~ M D1 ~ M W O N ~ M Q7 ~ c7 601 ~ ~ r N r M ~ r M ' ~ ~ N O o ~ N ~ r ~ ~ o D ~ N ~ ~0 ~ ~ r ~ ~ ~ ~ r ~ ~ ~ 0 0 ~~ 0 W 0 Q) ~ N~ N N N 0 ~ N N~~~~ O O O O O N N O O O O~~ In O O O O O O O 0 0 0 0~~ 0 0 0 0 0 0 0 0 0 0 LL O O N IA LL O O O O LL O O O O LL O O O O 00 00 7 Ih m W N ~ M N ~ O O 0 N ~ c' ~ N O O O O M O 'V' Q) O 0 O O O O M ~. M l!7 O O O O N c'7 M (D t6 O O O N O 0 O 01 N O M M O N N a0 I~ O (O (O O O CO Q7 ~ O M M O N N 00 n O O O O 01 (O Q7 h M M O O N O N O to O O O D7 O 0 O M M O N O O O O 01 !a7 0 V O f0 n 7 ~ O M M O r N CO 00 ~ O M M O r N (O CO Q' In O V' O O H d' M ~ O M M O r O O O r 0 0 V r O O rO O O M r O O r 0 0 0 M O O O r O O N tD r O O r 0 (j LL (,~ II In 0 ~ W _ II ~ Q~~ 2 In a0 ~ W Q C~ II f0 Q 7~= O 0 ~ W 7 ~ Q C II 10 ~ f0 1,1 a Q Q U 2 O 0 r W l0 ~ O Q Q~ 2 to . ~ ~ ~ C- C- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ w w ~ w ~ a a a a a a a o. a a a a fl. a a s fl. o. a a o. a o. fl. Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y ~C Q1 O O H V, D7 n O~ r r 0 Y07 M M N V' ~ ~ M !vj M O ~ ~ ~ 61 e - O O N ~ ~ O O Q) ~ ~ O O n O W N 0.7 N r M~ O ~ r N ~ 0 to 117 N 0 0 d N r r pp OD. 0 0 0 0 ~ N. ~ g r N~~ O O ~~~~ R A ~ 11 II + % ~ I-' II + T II • T H II II 11 II 11 ~ + % • + T • T " II II II II II ~ \ + X • K + T • T / II tl II II 11 LL \ 'f X ~ X + T ~ T / II II II II II ~ \ + % ~ X + T ~ T / ~ f.. F 1 ' ~ F ~ F t.. H I..• H F H F 1"' ~ H ~ ~ £ O ~ O W O W y.I y.I a~ ~r y ~a ~r O a) M ~ p M M ~ O O M M M M 0 O V O 00 C 61 O O ~ 00 O O O N O Ih N 7 ~ N N r r ~ Y N N .y~ O h N~ O 0 ~' ~ ~ ~ ~' I O1 N ~ ~ n j ; ; II II II 11 II II 11 J II II II II II II 11 II J II II J II II J II II ~ 01 N j •d +d •GI + •' Q N N ~ ~ +~ •d +~ •y .. a N N .~ N N .. a d d Q ~ ~ ~ ~ ~-3 • • nn Y Y O O O O O O !Z !Z Y Y If1 M O M M W O O O O O O a?- a a nan Y Y Y Y Y Y Y W 0 0 0 0 0 0 0 LL 0 0 0 0 0 0 0 ~~ W 0 0 0 0 0 0 0 ~ 0 0 0 0 0 0 0 g n g g. a a a N .Y Y Y ~C Y Y Y Z O N N W d' O m ~ CO O~j ~ O O 00 N N M fh ~ N r OD ~ r r r T 0 0 0 0 0 0 0 ~- O O O O O O O X 0 0 0 0 0 0 0 O O +F 0 0 0 0 0 0 0 O O C L 0 0 0 0 0 0 0 O ~~~ 0 0 0 0 ~ CO ~ F (A O> (O COO n O N lL N M M ~ In CV ~ (O + ~ ~ In ~ 00 00 ~ O F O CO O O nj LL N M M ~ Ilj fV r CpN M m O M COpN OHO Q. M M 01 OO M N W ~N ~ ~ ~ r ~ rtDN ~ r O O O O n tD ~ n C0 tL O O O O~ r 0 M~ O O O O n Q7 N N W n O M M O N N o0 n ~ O O (O (O O m (O rn n N C O. ~ O M M O N O W O O M ~ O O r 0 0 0 M II a °° ~ w II ~ a Q C7 x~ o ~ w ~ ~ ~ ~ ~ n a a a ca ~~ Y Y Y Y Y n. r r M tD CO O p O O ~ N N II II II 11 II ~ fq F= F F ~ E 0 w v G n O J N ~ d d J II II . ~ ~ N ~ a a c a Q a a Y Y Y Y Y Y Y W 0 0 0 0 0 0 0 LL 0 0 0 0 0 0 0 iy 0 0 0 0 000 0 0 0 0 0 0 0 a n n n a a a y Y Y Y Y Y Y Y ? M N N N QOi tnD a LL O N N M M M n C+j ~ O N CC N r M 0 0 0 0 0 00 X 0 0 0 0 0 0 0 L L 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 F 0 0 0 0 0 0 0 LL 0 0 0 0 0 0 0 F M N N M~~ M LL O M ~.j O .d: r CO + M M M O~ O~ F O N N M O r M LL [`? Cvj ~ ~ r fG CA M CO ~. M ~ M mpOjm .- N ~ C'7 N O ~ ~t ~ ~ ~~N O O O O ~ ~ ~ 0 0 0 o ncoo u"o 000 O O O O O ~ M O M M O N N W n O O CO O O CO rn n ~ O f`') M O NCO W r O O r 0 0 0 M II ~ Q ¢ ~ x ~o~ w ~ x ~ w ~,, n a a a a t= Y Y Y Y Y 2 N N ~ O O ~ ~ 0~0 000 O O ~ ~ •0 II II II II II N ~ H ~ 1= ~ E 0 w 'O O I~ O J N d ~ d J II II C ~ ~ .~ Q Q a Qaaa Y Y Y Y Y Y .Y W 0 0 0 0 0 0 0 ~, 0 0 0 0 0 0 0 LL 0 0 0 0 0 0 0 'I O O O O O 00 a n n n a a a N Y Y Y Y Y .Y Y V O> ~ M M lL O O CO O N N r N O O N d' N ~ 0 0 0 0 0 0 0 t:. 0 0 0 0 0 0 0 LL 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 F 0 0 0 0 0 0 0 CL 0 0 0 0 0 0 0 O M M O '7 Cf) O H O CO O) M N LL N O O N O O ~ + rO In N O V ~ O ~ O tD mMN lL CV 0 0 CV 0 0 ~ M ~ ~ M O) pOj ~ ~ nj ~ M N O ~ to ~ ~ ~ ~ N O O O O M W O O O O O W 00 N u" 0 0 0 0 ~ co O O O O M~ ~ O M M O N N 00 n O (O (D O O (O O7 n ~ O M M O N M W r O O r 0 0 0 M II Q Q oU'~ x u, o ~ W ~ ~ ~ ~ ~ n a a a a .O Y Y Y Y Y w ~ N N In liY O O W N M M O O •~ II II II II II fn ~ 1= ~ F= H E 0 w p ~ O J ~ . n y r ~ ~ d J II II C ~ ~ .~ a a a anaa Y Y Y Y Y Y Y W 0 0 0 0 0 0 0 LL 0 0 0 0 0 0 0 y„ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a a n n a a a N Y Y Y Y Y Y Y Z ~ O ~ r N LL (O n W N ~ N t0 'd' n N 00 CO Ili N 0 0 0 0 0 0 0 F 0 0 0 0 0 0 0 ~- 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 ~ 0 0 0 0 0 0 0 ~- 0 0 0 0 0 0 0 F (D ~ ~ tD O ~ to lL oNO N N W MAN + x CO r n (D O H O ~ N ~ ~tj (V I~ ~ O LL Cb N N 00 M N C.Mj ~ ~ M tT ~ W ~ ~ ~ ~ ~ O ~ N W O O O O~~ O O O O O n 0 u_"o 000 O O O O N~ O O M M O. N N aD n O CO O O O O O) n a' O M M O N f0 O r O O r 0 0 0 M II ,o ~ Q Q~ x o o ~ w a a ~ ~ ~ ;; n o. a a a N_ Y Y Y Y Y ~ N N ~- "' o m j~ V V O O .Q II II II II II N ~ F ~ F ~ E 0 w 9 O n O J d ~ d J II II C ~ ~ .~ a a a a n, n n Y Y Y Y Y Y Y 0 0 0 0 0 0 0 LL 0 0 0 0 0 0 0 ~y, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n a n n a a a y Y Y Y Y Y Y Y In ~ O M LL ~ ~ ~ O G ~ ~ ri ~ ~ ~ ~ N VO N r 0 0 0 0 0 0 0 F 0 0 0 0 0 0 0 ~- 0 0 0 0 000 a a a c-aan Y Y .1 L Y Y Y Y O~~ 0 0 0 0 CO M M CO LL C71 O O ~ OOO ~ N N n 0 0 0 n n a naaa N Y Y Y Y Y Y Y Z 0 0 0 0 0 0 0 u. 0 0 0 0 0 0 0 LL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~~ 0 0 0 0 0 0 0 ~- 0 0 0 0000 + 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L L 0 0 0 0 0 0 0 • F% ~ ~N In ~ ~ ~ ~ LL ~ ~ d. 7 CD N 00 + ~ ~ N ~ ~ ~ ~ LL ~ ~ d' V CD N pp M T O M (O CO N Q. M M m 0 0) nj ~ M N W ~j ~ ~ ~ r ~ N CO ~ ~ LL O O O O ~ ~ O O O O~~ T O M M O N N W I~ ~ O O O O O) O O ~ O M M O NCO W ~ O O e- OOO M II 2 0 0 W ¢ '6 ~ Q C7 :' n a a o. a N Y Y Y Y Y ~ ~ 7 'V' N N W O O N N O O W~ N N •~ II N ~ II II II II ~ F N F E 0 L W a ~ N O J O a> c+i d J II II C ~ . ~ ~ 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 ~- 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 F 0 0 0 0 0 0 0 LL 0 0 0 0000 M O 01 M CO O N ~ M M O O CA nj ~ M N O ~j `7 ~ ~, ~~N O V V' t0 (D M M O O O O ~ 0 0 0 0 0 0 0 01 O O) O) I~ N N f~ 000 O M M O N N N f~ K O O (D O O O O) I~ ~ O M M O NCO a0 ~ 0 0 ~ 0 0 0 M I II i~ Q Q~ 2~ O ~ W x ~ ~ x I n a a a a I Y Y Y Y Y I ~ a0 0 0 0 0 I ((V O O O O I ' II II II II II i , ~ ~ H F F F O O II II N N a a a a aQn Y Y Y Y Y Y .Y u, h ~ ~ ~ O O O LL• ~y M O O O O M M 0 0 0 0 r n n a n a a a y Y Y Y Y Y Y Y Z 0 0 0 0 0 0 0 LL O O O O O O O LL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •~ 0 0 0 0 0 0 0 ~-0000000 + 0 0 0 0 0 0 0 F 0 0 0 0 0 0 0 LL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F 0 0 0 0 0 0 0 ~- 0 0 0 0 0 0 0 +x 0 0 0 0 0 0 0 ~ 0 0 0 0 0 0 0 LL0000000 M 01 Cn M CO O N ~ ry M O OO nj ~ M N O ~ M M I~ ~~ h 0 0 0 LL (h O ~ M OOO O~ M 0 0 0 0 O M M O N N O ti O O O O W (D O~ ~ O M M O NCO O ~ 0 0 ~ 0 0 0 M II ~ Q Q~ 2 1n m ~ w w O O ~ ~ a n. a a a .~ Y Y Y .1C Y C O ~ 0 0 0 0 0 m~ 0 0 0 0 H N to II II II II II IL ~ F F 1= F E 0 L W v O O O J d d J II II C ~ ~ .~ Q d Q d n n n Y Y Y Y Y .Y .Y W 0 0 0 0 0 0 LL r~~ r O O O LL O O O O M M 0 0 0 0 r n a a fi Q- a s y Y Y Y Y Y Y Y Z 0 0 0 0 0 0 0 LL o 0 0 0 0 0 0 LL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ 0 0 0 0 0 0 0 11- 0 0 0 0000 + 0 0 0 0 0 0 0 F 0 0 0 0 0 0 0 LL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f= 0 0 0 0 0 0 0 LL 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 ~ O O O O O O O LL. 0 0 0 0 0 0 0 M O O M O O N ~ M M O O O nj ~ M N O tri 0 0 0 0 0 0 0 LL ~ ~ ~ ~ O O O O f`O') X 0 0 0 0 O M M O N N O n O (D tD O O) tD 01 I~ ~ O M M O N CO W ~ 0 0 ~ 0 0 0 M II ~ Q QC7=Ino~w ~ ~ ~ ~ LL d ~. d d d .0 Y Y Y Y Y ~ M W CO V O O O O N~ O O O O d N ~ II II II II II E 0 W s ~ O O J d d J II II C ~ ~ .~ f Mt1100tT O CO tT ~ 0 ~ 00 d' CO O N tip CD CO O O O O O O O _ O ~ M ~ ~ ~ ~ _O ~_ O ~ r ~ N N ~ O n O O7 Op cD tf)Nd; M d' ~ r ~ t0 ~ N N ~ O M A O O O O ~ oO tf) O M Z ~ V'O h ~ MMa- O ~t N 00 W N f~ M O 1~ K V M N O w U ~n ~n ~n ~n rn ~ ~ N O) a0 U Z I~ (D M O 0 `- ~ x 0 0 0 ~ 0 C C U II ~ ~ ~ U O . ~ O ~ U ~ ~ to ~ 00 ' ' V' ~ N U ~ ,O LL. y W tbrd ~ 4 0 0 0 r 0 0 N ~ 0 w i V U ~ ,,... L s ~ "~ U . N C N a~ ~ ~ ~' ~ ~ a ~ X W • ~ O d M J ~ ~ N II ~ a E ~ ~ w w U II ~..__.__....__- ~ .,- .... O O O O O O O O O O ~ ~ (00 ~ ~ M N ~ O O O O O O O O O O N Z ~ n~ 0 0 0 0 0~ M O O O O O O r N~ 0 0 0 0 0 n 0 0 0 0 0 0 ~ N ~.jM N M N .--Nr 000 O OONa?ONOO O O ~ nn ~OOOOMMMC`n')0000~~~~ ~ d'MM~ M cjMM NNNN OOOO (~ to lf7 l<7 11') In l17 L() L[') L(y tt7 l17 to ll7 In tf) u7 to l(') to to to In t(y ~ Ln l!) t1y ll7 to to l!) M Z O InO M O O ~~(O SOT V I~ O to (D ~ M ~t M x O O O O O O O O O 0 0 0 w 00 N N 00 CO O O O ~ CO CO ~ tf) to W V aO M d' M~ V M ~~ ~~ ~~ N ~ 00 I~ ~ 00 ti n ~ n ~ ~ V; '7 r 0 0 0 0 O O O O 0 0 0 0 O O O O N -C J ~ ~ m~mUliC7~ ~n ao ~ m UIiC~M~nao~mUu.(7 c~nao~mUliC~ N • Project . Location Consulting Engineers Client PortlandAregon ti~ U 5~ I® ~~o ~ • • b I o00 ~~ ! 2 • Trtt.` @ 26(0'- D.. ~z ~9'{-~~. SPI rz~ 22~~ r 53 ~t -~.~ Ada ~ ~ s>~. = C~'i~s~~~ . Z(zs~ 4-s~~~= 4~"z-zs~~= ~~ ~J= (~~~~g~~~ ° (7.b k- ca 223; s.. 6~Fe G ~o~ I ~~t T4c-s.. ~ t 5 ~t .,~ r,,+~ .~ IS,» = 22Ss~ Sheet No. By Date Job No. Revised Date 548 . q 6 psi ~ 12 .1\~ 1y' = I D . Z I k~'(7 1 /~ p ~~li r [kCl'z ~/' ~('TS') r 7i(~ ,/J ~ ~ O K- = 13•zI ~ 1..~ I/O=p. 5~ ~}6,,,5~ ,~ 2 t z3 , 6 (z' = 13.75 2~~1~ CAF ~z3 * 4~`'(~~; sz,l~ ~ ~~,~C(~~ = 2•~ (k _-- 1..6.6?I~-@. I$4~-(D~_ _ (~ ~^~ ~~s ~Sn~~ A - (ao ~~f~ ~~14 5. DES) '~ 4-Sos ~ w = ~2~?s~'~4aOs~'-~ = 3` . d k @ 188 ~ • o ~' c.~.~ P..,.~.LS 75~~ A=- ~ 2~~t~~~~'~~q•s~~~s' = 576s~ w= ~?SPS~~C~~~~= 43s~.k @ IS1.' -a" (2'~Pi~,~zC~2~~* zl~~ -- C3or'~>~xC~1o~t)+Z(1~~~ ~ ~~~I~X~~~~)' 3~q1, . Z~~FS~ ~ ~~. b ~ ~ (2't~(o'~-I Z~4'~~(a`~t ~',tax~o~ ~ Z~z4`~o', ~- Z(3,~to/ = I (~~ w = ~~5~~~(Ibos~~' 87k ~ ~?4 • Project By She t No. e ~ Consulting Engineers Location Date " ( Client Revised Job No. Portland Oregon . Date ~1S~i ~S6fct /~G ~ Z 3.34-p(~ ~~ls~~~ + a-cz~z~'-~~ ~ ~-(q yZ~) + ~-C~~~t~ ~ ~-C~-~~ ~ ~-(~%Z~) ~ ~cZ3y=~) ~ ~(~)~~c Q = S~ ~t w f (Z3_ ~`Fp l~ ~ ($3 ~ ~E~ = 12.5 - k ~ Zc~l ~-a s~, 2 ~, ~B~S{3~8 37.6 PGx= 2.57 ~(~ GG~ • `k ~ 2~ -16°1} k ~~~~Z23.6?-i6~~ { ~I84Z (~+7-IG9~-+r/3 z{k}~46- I~'r~~~G.6Zkx1f~~- Ib~',~ + C36k)~~3 -llf~ + ~~3~~~(gz-Ic~t~ ~ ~~-4Sk-)(1~g--~~) ~(a7~Xr-~-t~~)+(2.~k)(z~9-1Gg ~- ~-~.~}C~~r - ~~~ - ~sssw-~ Ik~j?k+fSk~13.7-IE t1~.6'7k+ ~kt`{'~.Zk.~Zq.45k t~7k+lZ,S(~-~ !$.6~~ = Zak ~ . (~:~6 ~ err, -- 184` _ 6~/~.. ~P ~ - 184 -6~~-r _ i ~3~?' - 27, obi &t .~... _ ~c_~ol.?bkx2~D6~ _, 254 1~.~=E _ _ N ~ • • • Project . Location Consulting Engineers Client Portland.Oregon F~ yr b.. By Date Revised Date ji ~ ,~_ ~~ ts~ ~cu 0.4 ~b5 ~; '_' ~ J P ~P / ~ ~ Z a ~~p ~IP C sa, = n .~f'o'a 5 ~,,. = 2 . ~ o.4~c.o~(o4b75? ~~ ~Z g5~~? ~~ _ (.o wP a /~ 3,7 k Sheet No. L i~ Job No. ~ornr~ -_ v , ~S~ ~P ~~ __ __ ~ ~0.~9(,~(~~3-~k-~} = 26.5 k • L~ Company KPFF Consulting Engineers Apr 18, 2005 Designer John T Mayer 11:23 AM Job Number :204359 Rexburg Temple Tower Checked By: Envelope Joint Reactions ~Olflt X rkl Ic Y fkl Ic 7 fkl Ir SAX fk_f41 Ir AAV fk_ffl Ir 11A7 f4_fti • • 1 COL--G/9 max 0 1 0 1 1.232 8 0 1 0 1 ~0 1 2 min 0 1 0 1 -2.116 5 0 1 0 1 0 1 3 COL--G/11 max 0 1 0 1 4.014 2 0 1 0 1 0 1 4 min 0 1 0 1 -12.098 3 0 1 0 1 0 1 5 COL--F/8 max 0 1 0 1 -1.64 5 0 1 0 1 0 1 `'8 min 0 1 0 1 -3.893 8 0 1 0 1 0 1 7 COL--F/9 max 0 1 0 1 50.59 4 0 1 0 1 0 1 8 min 0 1 0 1 -26.338 1 0 1 0 1 0 1 9 COL--F/11 max 0 1 0 1 172.004 4 0 1 0 1 0 1 10 min `0 1 0 1 -41:869 1 0 1' '0 1 , 0 1 11 COL--F/12 max 0 1 0 1 180.293 2 0 1 0 1 0 1 12 rain 0 1 0 1 -80:686 3 0 1 `0 1 0 1 13 COL--C8 max 0 1 0 1 -1.55 7 0 1 0 1 0 1 '14 rnin 0 1 0 1 `-4.143 ! 6 0 1 0 ° 1 0 1 15 COL--C/9 max 0 1 0 1 52.41 3 0 1 0 1 0 1 16 min 0 1 0 1 -27.246 2 0 1 0 1 0 1 17 COL--C/11 max 0 1 0 1 169.742 3 0 1 0 1 0 1 ''18 min 0 1 0 1 -40.209 2 0 1 0 1 0 1 19 COL--C/12 max 0 1 0 1 179.976 1 0 1 0 1 ! 0 1 20 min 0 1 0 1 -80.099 4 0 1 0 1 0 1 21 COL--B/9 max 0 1 0 1 2.333 6 0 1 0 1 0 1 22 min 0 1 0 1 -3.4:59 7 0 1 0 1 0 1 23 coL--Big ~----e... max 0 1 35.738 8 4.901 1 0 1 0 1 0 1 24 .. _ min `` 0 1 -35.736 5 -12.959 4 0 1 0 1 0 1 25 ~BF -B=- max 19.584 3 0 1 0 1 0 1 0 1 0 1 26 ~~ '~ min -19.539 2 0 1 0 1 0 1 0 1 0 1 27 ~~8~""C''' max 18.488 3 0 ~ 1 0 1 0 1 0 1 0 1 28 ~~ _' ` min -1:8.443 2 0 1 0 ~ 1 0 1 0 1 0 1 29 .~ {;BF F :' max 18.469 4 0 1 0 1 0 1 0 1 0 1 30 min -18.42'5 1 0 1 0 1 0 1 0 1 0 1 31 = max 0 1 0 1 .003 4 0 1 0 1 0 1 32 ~ ~.. min ` 0 1 0 1 =:.002 1 0 1 0 1 0 1 33 ~~~ 5~~° max 0 1 11.413 6 .003 ~ 3 0 1 0 1 0 1 '34 w ~~ min `"0 1 -.11..39.8 7 -.002 2 0 1 0 1 0 1 35 b~rBF--G _= max 19.549 4 0 1 0 1 0 1 0 1 0 1 36 _P '_ _- min -1:9:507 1 0 1' 0 1 0 1 0 1 0 1 37 t r~~F ~-8_~~~' max 0 1 33.669 8 i 0 1 0 1 1 0 1 0 1 38 `~° ~' 's min 0 1 -33.663 5 0 1 0 1 0 1 0 1 39 COL--G/8 max 0 1 0 1 1.552 4 0 1 0 1 0 1 40 min 0 1 0 1 -1.575 1 0 1 0 1 0 1 41 N36 max 0 1 0 1 .986 3 0 1 0 1 0 1 42 ....y..,~,9~~;,<~, min 0 1 0 1 -.994 2 0 1 0 1 0 1 43 ~ :BFI=G r max 24.237 4 0 1 0 1 0 1 0 1 0 1 44 , ~v, min -24.309 1 0"' 1 0 1 0 1 0 1 0 1 45 `'' ~F.I=6: ~ max 23.831 3 0 1 0 1 0 1 0 1 0 1 46 __ _.~__ min -23:935 2 0 1 0 1 0 1`' 0 1 '0 ` ` 1" 47 ° BFl-8 `~ - max 0 1 25.442 7 0 1 0 1 0 1 0 1 48 .. ,.M.., min 0 1 -25.472 6 0 1 0" 1" 0 1 `` 0 1, 49 Bpi=11 ~~ A - -- max 0 1 29.55 8 0 1 0 1 0 1 0 1 50 _. .~:,.~ ~ min `0 1 -29.543 5 0 1 0 1 0 1 0 1 51 Totals: max 112.877 4 112.877 7 239.58 4 -52 min -112.877 1 -112.877 6 239.58 1 ~~~ ~n-c~rsT.r.~ ~ M EC.W.4I~.T~.4 L RISA-3D Version 5.Od [C:\...\...\Desktop\Rexburg Temple 2043591Tower\Rexburg Tower5.r3d] Page 1 ?~ es' ~~ ~~ r SAP2000 ~~ t 4/25/05 15:17:57 ~-t c~2 ~ ZE-v-s~ia_ o.... ~ r.1F.~J~'S ~v~ c.`f ~ pis 7A4~ _sr _ 1 f ?9 /. ~z it ~8 980 ~ 1T y ~2 ~ 6 ~ 6 ~ "~` 144-5~1~ 1 ~r ~ig.v67t- i~k23t yizZ~m ~~ ~~ [ y~lP " ~S'SS~~ `~ ~V O y~ `~v o ' d' rtr ~jV ~` . C r ~ ` r ~ T ~ , ~ r ~ ~ ~GS~~ yc ya r r ~~, , ~ ~ q ~~ ~ M ~ ~ ' ~ ~ h M,~M ~ ~` ~3~ R ~ ~b ~ ~ 6 ~ ~~ y t ~ ~.ot~k ,~E7~~ `~~ SAP2000 v8.2.7 - File:gridline8 ebf - X-Z Plane @ Y=0 -Kip, in, F Units 2 S,AP 2 0 ~ ~ 4/26/05 11:59:33 SAP2000 v8.2.7 - File:gridline8 ebf - X-Z Plane @ Y=0 -Kip, in, F Units kpff Consulting Engineers LDS Rexburg Idaho Temple LRFD Beam-Column Design for WF or HSS Sections Columns C-1 and F-1 from Footing to 2nd Level Member size WI2x96 ~ Section ~s Compact d = 12.71 in Sx = 131 in' A = 28.2 in2 Sy = 44.4 in' b~= 12.16 in Zx= 147 in' tr= 0.9 in ZY= 67.5 in' rx = 5.435 in Lb = 16 ft rY = .3.094 in FY = 50 ksi • • Compact Criteria 0.30~Es/Fy 12.77 Unbraced Length Criteria kl/r x = 62.05 < 200 kl/r r = 35.33 < 200 Lb min = 130.70 in Axial Dead load = 1.42.8 kip S2o = 2 Live load = 25 kip Sos = 0.4075 Snow load = 14 kip EQ load = 172.74 kip Em = 357.12 kip Load Combinations 1.4D = 199.92 D+L+S = 181.80 kip 1.2D+1.6S+1.OL = 218.76 D+L+wW = n/a kip 1.2D+1.6L+O.SS = 218.36 D+L+wW+S(2 = n/a kip 1.2D+1.OE+I.OL+0.2S = 371.90 D+L+S+wW/2 = n/a kip 0.9D+LOE = 301.26 D+L+S+E/1.4 = 305.19 kip ].2D+1.OL+Em= 553.48 0.9D+E/1.4= 251.91 kip 0.9D-Em = -228.60 kip uPL.rr°r P~ = 553.48 kip 7,,c = 0.820 F~~ = 37.75. ksi ~P„ = 904.99 kip P„ 0.6116 ~P~ Major Bending Minor B ending Yielding Yielding M„x = 120 k-in M„Y = ] 20 k-in ~M„x = 6615.0 k-in ~M,,,, = 2997.0 k-in Lateral-Torsional Buckling MA = 392.16 k-in Ma = 534.84 k-in Mc = 426.6 k-in M~ = 5240 k-in C6 = 0.31 L.p = 131.15 in 4 = 496.93 ~M,,,~ = 2511.58 k-in M 0.0478 M 0.0400 ~ n% ~ n v Combined Stresses If P„ - tP„> 0.2, then use Eq. H1-la Use Eq. H 1-la Eq. H1-la = P + 8 M"` ( + M"' <_ 1.0 = 0.690 <1.0 ~P 9 ~bM,.< ~bM y J P M~ < Mir . Eq. H1-lb = + + < 1.0 2~P„ ~aM,~.r ~nMno ~3 204359.00 5/23/2005 LRFD Beam-Column Design 4-12-2005.x1s Col C-1 F-1 low kP.ff Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Columns C-1 and F-1 from 2nd Level to Mechanical Level Member size W12x53 ~ Section is Compact d = 12.06 in Sx = 70.6 in' A = 15.6 in2 Sy = 19.2 in3 b~= 9.995 in Zx= 77.9 in' tr= 0.575 in Zy= 29.1 in' rx = 5.220 m Lb = 18 ft ry = 2.478 in F„ = 50 ksi LDS Rexburg Idaho Temple Compact Criteria 0.30yEs/Fy 12.04 Unbraced Length Criteria kl/rx= 87.]6 <200 kUr r = 41.38 < 200 Lb min = 107.43 in Axial Dead load = 30.3 kip 40 = 2 Live load = 0 kip Sps = 0.4075 Snow load = 7 kip EQ load = 0 kip Em = 2.469 kip Load Combinations 1.4D = 42.42 D+L+S = 37.30 kip 1.2D+1.6S+1.OL = 47.56 D+L+wW = n/a kip 1.2D+1.6L+O.SS = 39.86 D+L+wW+S/2 = n/a kip 1.2D+1.OE+I.OL+0.2S = 37.76 D+L+S+wW/2 = n/a kip 0.9D+1.OE = 27.27 D+L+S+E/1.4 = 37.30 kip 1.2D+1.OL+Em = 38.83 0.9D+E/1.4 = 27.27 kip 0.9D-E,„ = 24.80 kip Pn = 47.56 kip 7~c = 1.152 F~, = 28.72 ksi ¢Pn = 380.88 kip Pn 0.1249 ~Pn Major Bending Minor Bending Yielding Yielding M,,,~ = 120 k-in Mn,, = 120 k-in ~M~ = 3505.5 k-in mMn,, = 1296.0 k-in Lateral-Torsional Buckling MA = 392.16 k-in MB = 534.84 k-in Mc = 426.6 k-in M~ = 2824 k-in Ch = 0.31 L, = 105.04 in L~ = 306.503 ~M„x = 1656.83 k-in M"x Mn9 0.0724 ~Mnx ~Mnv 0.0926 Combined Stresses If Pn + fPn> 0.2, then use Eq. Hl-la Use Eq. H 1-]b P 8 M„, P 8 M r + + ( ( M~ 1.0 + < 9 ~P ~hMn. 45P 9 ~bM,,. ~bM~ J _ < P M,, P M~ r M~ y . . + ++ + 51.0 = 0.227 <1.0 2~I'„ ~nM„x 2~P, ~nM„x ~nM,.y ~~ 4' 204359.00 5/23/2005 LRFD Beam-Column Design 4-12-2005.x1s Col C-1 F-1 mid kpff Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Columns C-4 and F-4 from Footing to 2nd Level Member size W12X96 ~ Section is Compact d = 12.71 in Sx = 131 in A= 28.2 inZ Sy= 44.4 in3 b~= 12.16 in Zx = 147 in3 tt= 0.9 in Zy= 67.5 in3 r, = 5.435 in Lh = 16 ft ry = 3.094 in F„ = SO ksi ~~ LDS Rexburg Idaho Temple 204359.00 5/23/2005 Compact Criteria 0.30yEs/Fy 12.77 Unbraced Length Criteria kl/r x = 62.05 < 200 kl/r y = 35.33 < 200 Lb min = 130.70 in Axial Dead load = 198.5 kip S2a = 2 Live load = 58.7 kip Sos = 0.4075 Snow load = l6 kip EQ load = 172.74 kip Em = 361.66 kip Load Combinations 1.4D = 277.90 D+L+S = 273.20 kip 1.2D+1.65+1.OL = 322.50. D+L+wW = n/a kip 1.2D+1.6L+O.SS = 340.12 D+L+wW+S/2 = n/a kip 1.2D+1.OE+I.OL+0.2S = 472.84 D+L+S+wW/2 = n/a kip 0.9D+1.OE = 351.39 D+L+S+E/1.4 = 396.59 kip 1.2D+l.OL+Em _ 658.56 0.9D+E/1.4 = 302.04 kip 0.9D-E," _ -(83.01. kip tJPLiF,h P" _ .658.56 kip Rc = 0.820 F« = 37.75 ksi ~P" = 904.99 kip P" 0.7277 rpP" Major Bending Minor Bending Yielding Yielding M"x = 120 k-in M",, = 120 k-in ~M"x = 661 S.0 k-in ~M"v = 2997.0 k-in Lateral-Torsional Buckling MA = 392.16 k-in MB = 534.84 k-in Mc = 426.6 k-in M, = 5240 k-in Cb = 0.3 ] L," = 131.15 in ~ = 496.93 ~M"x = 2511.58 k-in "` ~ 0.0478 M 0.0400 Mnz n ~ v Combined Stresses If P" - fP"> 0.2, then use Eq. H1-la Use Eq. H 1-la Hl-la = P + 8 M"° + M y < E I 0 = ( 806 <1 0 0 q. ~P 9 ~bMn< ~bM r / _ . . . P M„ M"~ + Eq. HI-]b= + <_ 1.0 M 2 P, i ~b ~b ny M~~.r LRFD Beam-Column Design 4-12-200S.xls Col C-4 F-4 low I kP.ff Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Columns C-4 and F-4 from 2nd Level to Roof Member size W12X53 ~ Section is Compact d = 12.06 in Sx = 70.6 in' A = 15.6 inZ Sy = 19.2 in' br= 9.995 in Zx = 77.9 in' tr= 0.575 in Zy= 29.1 in' rx = 5.220 in Lb = 18 ft rY = 2.478 in FY = 50 ksi • Axial Dead load = 90.5 kip Live load = 10.2 kip Snow load = 16 kip EQ load = 37.34 kip Em = .82.06 kip Load Combinations 1.4D= 126.70 1.2D+1.6S+l.OL = 144.40 L2D+I.6L+O.SS = 132.92 1.2D+1.OE+I.OL+0.2S = 159.34 0.9D+I.OE = 118.79 1.2D+1.OL+Em = 200.86 0.9D-Em = -0.61. UYL1F"1' P" = 200.86 kip 7vc= 1.]52 F« = 28.72 ksi ~P" = 380.88 kip P" 0.5273 ,,AA Y'Pn S?.a = 2 Sps = 0.4075 LDS Rexburg Idaho Temple Compact Criteria 0.30vEs/Fy 12.04 Unbraced Length Criteria kl/r x = 87.16 < 200 kl/r r = 41.38 < 200 Lb min = 107.43 in D+L+S = 116.70 kip D+L+wW = n/a kip D+L+wW+S/2 = n/a kip D+L+S+wW/2 = n/a kip D+L+S+E/1.4 = 143.37 kip 0.9D+E/1.4= ]08.12 kip kip Major Bending Minor Bending Yielding Yielding M"x = 120 k-in M"r = 120 k-in ~M"z = 3505.5 k-in ~M",, = 1296.0 k-in Lateral-Torsional Buckling MA = 392.16 k-in MB = 534.84 k-in Mc = 426.6 k-in M~ = 2824 k-in Cb = 0.31 L., = 105.04 in 4 = 306.503 ~M"x = 1656.83 k-in M"" 0.0724 Mu° 0.0926 ~M"x ~M"~ Combined Stresses If P" + IP" > 0.2, then use Eq. Hl-la Use Eq. H]-la r ( "'' + + + ~ < 1.0 = 0.674 <1.0 9 9 ~ "r NI,,,. ~P l b l b ~P M b "l' JJ I 2~7'„ ~nM,,.r 2~P ~bMnx ~bM„~ ~~ 204359.00 5/23/2005 LRFD Beam-Column Design 4-12-2005.x1s Col C-4 F-4 high kP.ff Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Columns B-9 and G-9 from Footing to 2nd Level Member size W12x136 ~ Section is Compact d = 13.41 in Sx = 186 in' A = 39.9 inZ Sy = 64.2 {n' br= 12.4 in Zx= 214 in' tr= 1.25 in Zy= 98 {n' rx = 5.575 in Lb = 16 ft rY = 3.158 in FY = 50 ksi • • Axial Dead load = 109.6 kip 120 = 2 Live load = 28.8 kip SDS = 0.4075 Snow load = 13 kip EQ load = 198.59 kip Em = 406.7 I kip Load Combinations 1.4D= 753.44 1.2D+1.6S+1.OL = 181.12 1.2D+1.6L+O.SS = 184.10 1.2D+I.OE+1.OL+0.2S = 361.51 0.9D+1.OE = 297.23 1.2D+1.OL+Em = 566.43 0.9D-Em = -3(17.47 UPLIFT P" = 566.43 kip. 7,c= 0.803 F~~ _ 38.18 ksi ~P" _ .1294.98 kip P" 0.4374 ~P" Major Bending Yielding M"x = 120 k-in ~M", = 9630.0 k-in Lateral-Torsional Buckling MA = 392.16 k-in MB = 534.84 k-in Mc = 426.6 k-in M~ = 7440 k-in C6 = 0.31 1-a = 133.87 in L, = 667.704 ~M"x = 3519.52 k-in D+L+wW = n/a kip D+L+wW+S/2 = n/a kip D+L+S+wW/2 = n/a kip D+L+S+E/1.4 = 293.25 kip 0.9D+E/1.4 = 240.49 kip kip Minor Bending Yielding M"Y = (20 k-in ~M",, = 4333.5 k-in M"` 0.0341 M"9 0.0277 ~M"x ~M"v Combined Str esses If P" _ fP"> 0.2, then use Eq. H1-la Use Eq. Hl-la Eq. Hl-la= ~ +8(~ "~ + M"' <1.0 = 0.492 <1.0 P 9 bMn, ~bM y / P M"= M", ' Eq. HI-lb= + + 2S6P S6eM,~.~ _<1.0 ~aM,~y LDS Rexburg Idaho Temple Compact Criteria 0.30yEs/Fy 12.77 Unbraced Length Criteria kl/r x = 60.79 < 200 kl/r r = 34.44 < 200 Lb min = 133.28 in D+L+S = 151.40 kip ~~~ 204359.00 5/23/2005 LRFD Beam-Column Design 4-12-2005.x1s Col B-9 G-9 low kP.ff Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Columns B-9 and G-9 from 2nd Level to Mechanical Level Member size W12X106 ~ Section is Compact d = 12.89 in Sx = 145 in' A = 31.2 inZ SY = 49.3 in' br= 12.22 in Zx = 164 in' tf= 0.99 in Zy= 75.1 in' rx = 5.468 in Ls = 18 ft rY = 3.106 in F„ = 50 ksi • • Axial Dead load = 55.6 kip S2o = 2 Live load = 7.7 kip Sps = 0.4075 Snow load = 13 kip EQ load = 198.59 kip 78.71 .28.43 Em = 401.71 kip Load Combinations 1.4D = 77.84 1.2D+1.68+I.OL = 95.22 1.2D+1.6L+O.SS = 85.54 1.2D+1.OE+1.OL+0.28 = 275.61 0.9D+1.OE = 248.63 1.2D+1.OL+Em = 476.13 0.9D-Em = -351..67 IPL,1F'1' P" = 476.13 kip 2c = 0.919 F"~ = 35.13 ksi ~P„ = 931.77 kip P " 0.5110 ~P" Major Bending Yielding M"x = ] 20 k-in ~M„x = 7380.0 k-in Minor Bending Yielding M"y = 120 k-in ~M„ ~ = 3327.8 k-in Lateral-Torsional Buckling MA = 392.16 k-in Mg = 534.84 k-in Mc = 426.6 k-in M~ = 5800 k-in Cb = 0.31 L" = 131.65 in ~ = 537.601 ~M"x = 2871.24 k-in M"" 0.0418 M"'' 0.0361 ~M". ~M"~ Combined Stresses If P" _ fP„> 0.2, therruse Eq. H1-la Use Eq. H1-la P 8 M„~. P 8 M"~ + ( + ( M~ < 1.0 = 0.580 <1.0 + 9 ~I „ ~vMn< ~P 9 1~aMn. ~aM.y P M P M M,,,. "x „r 2~P,~ ~aMnx 2~P, ~nM,~.r ~nM,~y LDS Rexburg Idaho Temple Compact Criteria 0.30yEs/Fy 12.04 Unbraced Length Criteria kl/r , = 69.54 < 200 kl/r r = 39.50 < 200 Lb min = 131.34 in D+L+S = . 76.30 kip D+L+wW = n/a kip D+L+wW+S/2 = n/a kip D+L+S+wW/2 = n/a kip D+L+S+E/1.4 = 218.15 kip 0.9D+E/1.4 = 191.89 kip kip ~~~ 204359.00 5/23/2005 LRFD Beam-Column Design 4-12-2005.x1s Col B-9 G-9 mid kP.ff Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Columns B-9 and G-9 from Mechanical Level to Interstitial Member size w12X96 ~ Section is Compact d = 12.71 in Sx = 131 in' A = 28.2 inZ Sy = 44.4 in' bt= 12.16 in Zx= 147 in' tt= 0.9 in Zy= 67.5 in' r, = 5.435 in Lb = 18 ft ry = 3.094 in FY = 50 ksi LDS Rexburg Idaho Temple Compact Criteria 0.30,tEs/Fy 12.04 Unbraced Length Criteria kl/r x = 69.8 ] < 200 kl/r y = 39.74 < 200 Lb min = 130.70 in Axial Dead load = 55.6 kip S2o = 2 Live load = 7.7 kip Sos = 0.4075 Snow load = l3 kip EQ load = 9.05 kip 78.71 28.43 Em = 22.63 kip Load Combinations 1.4D = 77.84 D+L+S = 76.30 kip 1.2D+1.6S+1.OL = 95.22 D+L+wW = n/a kip 1.2D+1.6L+O.SS = 85.54 D+L+wW+S/2 = n/a kip 1.2D+1.OE+1.OL+0.2S = 86.07 D+L+S+wW/2 = n/a kip 0.9D+1.OE = 59.09 D+L+S+E/1.4 = 82.76 kip 1.2D+l.OL+Em = 97.05 0.9D+E/1.4 = 56.50 kip 0.9D-Em = 27.41 kip P" _ 97.05 kip ~,c = 0.923 F~, = 35.04 ksi ~P" = 839.92 kip P" 0.1155 ~P" Major Bending Minor B ending Yielding Yielding M"x = 120 k-in M"y = 120 k-in ~M"x = 6615.0 k-in ~M„Y = 2997.0 k-in Lateral-Torsional Buckling MA = 392.16 k-in MB = 534.84 k-in Mc = 426.6 k-in M~ = 5240 k-in Cb = 0.31 I-o = 131.15 in L~ = 496.93 ~M"x = 2613.97 k-in M"" M"'' 0.0459 ~Mnz ~Mnv 0.0400 Combined Stresses If P" _ fP" > 0.2, then use Eq. H1-la Use Eq. H 1-lb P 8 M,~,. P 8 Mn~ + ( ( M,~ ~ < 1 + 0 ,/ WP + 9 ,~/ .9 ~bMm~ Y'P ,~//, WbMn~ ,/ 'VbM^Y . P M;,,. P M"~ M,,,, + ++ + <_ 1.0 = 0.144 <I.0 2~1',~ 1~bM,~.r 2¢P,. ~bM,,.r ~bM~,y ~~~ 204359.00 5/23/2005 LRFD Beam-Column Design 4-12-2005.x16 Col B-9 G-9 top kP.ff Consulting Engineers LRFD Beam-Column Desi gn for WF or HS S Sections Columns B-11 and G-11 from Footing to 2nd Level Member size W12X136 ~ Section is Compact d = 13.41 in Sx = 186 in' A = 39.9 inZ Sy = 64.2 in' br= 12.4 in Zx= 214 in' tr= 1.25 in ZY= 98 in' rx = 5.575 in Lh = 16 ft r,, = 3.158 in F~ = 50 ksi • Axial Dead load = 153.E kip 520 = 2 Live load = 28.2 kip Sps = 0.4075 Snow load = 3.25 kip EQ load = 348.232 kip E,~ = 708.97 kip Load Combinations 1.4D = 214.90 1.2D+1.68+1.OL = 217.60 1.2D+1.6L+O.SS = 230.95 I.2D+LOE+LOL+0.2S = 561.28 0.9D+1.OE _ -222.59 1.2D+1.OL+Em = 921.37 0.9D-E,„ _ -570.82 UPL1P'1' P„ = 921.37 kip 7~c = 0.803 F~~ = 38.18 ksi ~P„ = 1294.98 kip P " 0.7115 ~P~ Major Bending Minor Bending Yielding Yielding M„x = 120 k-in M„Y = 120 k-in ~M„x = 9630.0 k-in ~M„Y = 4333.5 k-in Lateral-Torsional Buckling MA = 392. l6 k-in MB = 534.84 k-in Mc = 426.6 k-in M, = 7440 k-in C6 = 0.31 1-0 = 133.87 in L~ = 667.704 ~M,,, = 3519.52 k-in M01 .0.0341 M°° 0.0277 ~Mnx ~Mnv .Combined Stresses IfP~ - fP„> 0.2, then use Eq. H1-la Use Eq. H1-la Eq. HI-la = P + 8 M„`" ( + Mw <_ 1.0 = 0.766. <1.0 r6P 9 ~bMnr ~bM r J P M„x M„ ~ + Eq. H1-lb = + <_ 1. ~ 0 2 PP Mn.~ ~n ~a .y D+L+wW = n/a kip D+L+wW+S/2 = n/a kip D+L+S+wW/2 = n/a kip D+L+S+E/1.4 = 433.69 kip 0.9D+E/1.4 = . 386.89 kip kip LDS Rexburg Idaho Temple Compact Criteria 0.30yEs/Fy 12.77 Unbraced Length Criteria kl/r x = 60.79 < 200 kUr r = 34.44 < 200 Lb min = 133.28 in G it EQ tower 47.42 EQ bldg 194.05 242.60 D+L+S = 184.95 kip ~~~ 204359.00 5/23/2005 LRFD Beam-Column Design 4-12-2005.x1s Col B-11 G-11 low kpff Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Columns B-11 and G-11 from 2nd Level to Mechanical Level Member size LW12x106 ~ Section is Compact d = 12.89 in Sx = 145 in3 A = 31.2 in2 Sy = 49.3 in3 br= 12.22 in Zx = 164 in3 tr= 0.99 in ZY= 75.1 in3 r„ = 5.468 in Lb = 18 ft ry = 3.106 in FY = 50 ksi • • Axial Dead load = 1.03.1 kip Live load = 20.9 kip Snow load = 3.25 kip EQ load = 266.68 kip Em = 541.76 kip Load Combinations 1.4D= 144.34 1.2D+1.68+1.OL = 149.82 1.2D+1.6L+O.SS = 158.79 1.2D+1.OE+1.OL+0.28 = 411.95 0.9D+I.OE = 359.47 1.2D+1.OL+Em = 686.38 0.9D-Em = -448.97 iPLIF°T" P„ = 686.38 kip 2c= 0.919 F~~ = 35.13 ksi ~P„ = 931.77 kip P ° 0.7366 ~P„ Major Bending Yielding M„x = 1.20 k-in ~M,,, = 7380.0 k-in Lateral-Torsional Buckling MA = 392.16 k-in MB = . 534.84 k-in Mc = 426.6 k-in Mr = 5800 k-in Cb = 0.31 Lp = 131.65 in IT = 537.601 ~M„x = 2871.24 k-in Do= 2 Sos = 0.4075 LDS Rexburg Idaho Temple Compact Criteria 0.30vEs/Fy 12.04 Unbraced Length Criteria kl/r x = 69.54 < 200 kl/r r = 39.50 < 200 Lb min = 131.34 in G 11 EQ tower 47.42 EQ bldg 198.59 68.91 D+L+S = 127.25 kip D+L+wW = n/a kip D+L+wW+S/2 = n/a kip D+L+S+wW/2 = n/a kip D+L+S+E/1.4= 317.74 kip 0.9D+E/1.4= 283.28 kip kip Minor Bending Yielding M„Y = 120 k-in ~M„v = 3327.8 k-in ~Mn 0.0418 ~Mn 0.0361. v Combined Stresses If P,, + fP„> 0.2, then use Eq. HI-la Use Eq. H]-la P + 8 M,~. P + 8 M,,,. + M~ <_ 1.0 = 0.806 <1.0 ~P 9 (~nMar ~P 9 (~nMn, 1~nM r / 2~P; ~nM,~z 2~P ~nM,~x ~aM,o, ~~~~€ 204359.00 5/23/2005 LRFD Beam-Column Design 4-12-2005.x1s Col B-11 G-11 mid kP.ff Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Columns B-11 and G-11 from Mechanical Level to Interstitial Member size W12X96 ~ Section is Compact d = 12.71 in S, _ .131 ins A = 28.2 inZ Sy = 44.4 in3 br= 12.16 in Zx= 147 in3 tr= 0.9 in ZY= 67.5 in3 rx = 5.435 in Lb = 18 ft rY = 3.094 in F„ = 50 ksi • Axial Dead load = 1.7.7 kip S2o = 2 Live load = 1 kip Sps = 0.4075 Snow load = 3.25 kip EQ load = 9.05 kip Em = 19.54 kip Load Combinations 1.4D= 24.78 1.2D+1.6S+1.OL = 27.44 1.2D+1.6L+O.SS = 24.47 1.2D+1.OE+1.OL+0.2S = 31.94 0.9D+1.OE = 24.98 1.2D+1.OL+Em= 41.78 0.9D-Em = -3.61. lIYL1F'I' P„ = 41.78 kip 2c = 0.923 F« = 35.04 ksi ~P„ = 839.92 kip P „ 0.0497 ~P~ Major Bending Minor Bending Yielding Yielding M„x= 120 k-in M„Y= 120 k-in ~M„x = 6615.0 k-in ~M„~ = 2997.0 k-in Lateral-Torsional Buckling MA = 392.16 k-in Ma = 534.84 k-in Mc = 426.6 k-in M, = 5240 k-in Cb = 0.3 ] Lo = 131.15 in 4 = 496.93 ~M„x = 2613.97 k-in M"" 0.0459 Muv 0.0400 WMna ~Mnv Combined Stresses If P„ - fP„> 0.2, then use Eq. H1-la Use Eq. HL-Ib P + 8 M°° P + 8 Mux ( ( + Mw 0 < 1 ~P 9 ~vM..r ~1 „ 9 ~bM..r ~eM r . _ J P M,, r P Mur M„ . + + + + <_1 .0 = 0.111 <1.0 2~P 2~P„ ~eM„x ~aM„x 1bnM,,,. D+L+wW = n/a kip D+L+wW+S/2 = n/a kip D+L+S+wW/2 = n/a kip D+L+S+E/1.4 = 28.41 kip 0.9D+E/1.4 = 22.39. kip kip LDS Rexburg Idaho Temple Compact Criteria 0.30vEs/Fy 12.04 Unbraced Length Criteria kl/r x = 69.81 < 200 kl/r r = 39.74 < 200 Lb min = 130.70 in G I1 EQ tower 0.00 EQ bldg 9.05 0.00 D+L+S= 2].95 kip ~~~`~ 204359.00 5/23/2005 LRFD Beam-Column Design 4-12-2005.x1s Col B-11 G-1 I top ~i~~~ kPff LDS Rexburg Idaho Temple 204359.00 5/23/2005 Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Columns C-11 and F-11 from Footing to 2nd Level Member size W12X136 ~ Section is Compact d = 13.41 in Sx = 186 in3 A = 39.9 in2 Sy = .64.2 in3 b~= 12.4 in Zx = 214 in3 t~= 1.25 in Zy= 98 in3 rx = 5.575 in fro = 16 ft ry = 3.158 in FY = 50 ksi • Axial Dead load = 238.12 kip Live load = 33 kip Snow load = 6.5 kip EQ load = 226.356 kip Em = 472.12 kip Load Combinations 1.4D = 333.37 1.2D+1.6S+1.OL= 329.14 1.2D+1.6L+O.SS = 341.79 1.2D+1.OE+1.OL+0.2S = 546.40 0.9D+1.OE = 440.66 1.2D+1.OL+Em = 790.86 0.9D-Em = -257.87 UPLIF"I' P" = 790.86 kip 7vc = 0.803 F~,= 38.18 ksi ~P" = 1294.98 kip P " 0.6107 ~P" 520 = 2 Sps = 0.4075 Compact Criteria 0.30~Es/Fy 12.77 Unbraced Length Criteria kl/r x = 60.79 < 200 kl/r y = 34.44 < 200 Lb min = 133.28 in EQ tower 83.44 EQ bldg 142.92 D+L+S = 277.62 kip D+L+wW = n/a kip D+L+wW+S/2 = n/a kip D+L+S+wW/2 = n/a kip D+L+S+E/1.4= 439.30 kip 0.9D+E/1.4 = 375.99 kip kip Major Bending Minor Bending Yielding Yielding M"x = 120 k-in M"y = 120 k-in ~M„x = 9630.0 k-in ~M,,,, = 4333.5 k-in Lateral-Torsional Buckling MA = 392.16 k-in MB = 534.84 k-in Mc = 426.6 k-in M~ = 7440 k-in C6 = 0.31 Lro = 133.87 in ~ = 667.704 ~M"x = .3519.52 k-in M"" 0.0341 Mu° 0.0277 ~M"x ~Mnv Combined Stresses If P„ - fP„> 0.2, then use Eq. H1-la Use Eq. Hl-la Eq. HI-la= P +$ M"" C + M'" 1<_1.0 = 0:666 <1.0 ~P 9 ~bM"r ~aM.ry J P M"z M"v Eq. H1-1b= + + _<1 .0 2 P M •~b ~h q M,,.r LRFD Beam-Column Design 4-12-2005.x1s Col C-11 F-11 low kP.ff Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections > Columns C-11 and F-I1 from 2nd Level to Mechanical Level Member size w12x12o ~ Section is Compact d = 13.12 in Sx = 163 in' A = 35.3 in2 Sy = 56 in' br= ] 2.32 in Zx = 186 in' tr= 1.]05 in Zy= 85.4 in' rx = 5.506 in Lb = 19 ft ry = 3.126 in F„ = 50 ksi • • Axial Dead load = 168.02 kip 52o = 2 Live load = 15.1 kip Sps = 0.4075 Snow load = V.5 kip EQ load = 147.866 kip Em = 309.426 kip Load Combinations 1.4D = 235.23 1.2D+1.6S+1.OL = 227.12 1.2D+1.6L+O.SS = 229.03 1.2D+I.OE+1.OL+0.25 = 365.89 0.9D+1.OE = 299.08 1.2D+I.OL+Em = 526.15 0.9D-Em = -1.48.21. UPI.1F'I' P„ = 526.15 kip 2,c = 0.964 F« = 33.92 ksi ~P„ = 1017.73 kip P „ 0.5170 ~P„ Major Bending Minor Bending Yielding Yielding M„x = 120 k-in M„y = 120 k-in ~M„x = 8370.0 k-in ~M,,,, = 3780.0 k-in Lateral-Torsional Buckling MA = 392.16 k-in MB = 534.84 k-in Mc = 426.6 k-in M~ = 6520 k-in Cb = 0.31 I-a = 132.51 in L~ = 598.829 ~M„x = 3246.88 k-in 0.0370 M 0.0317 M % ~ ~ n v Combined Stresses IfP~ - fP„> 0.2, then use Eq. H1-la Use Eq. H1-la P + $ M°` P + 8 M"' ( ( M + '~ <_ 1.0 = 0.578 <1.0 ~P 9 ~aMn. ~P 9 ~bMn: ~hM,ry 2~I',~ ~nM,~a 2~P„ ~nM~~x ~aM„~, LDS Rexburg Idaho Temple Compact Criteria 0.30~Es/Fy 11.72 Unbraced Length Criteria kl/r x = 72.93 < 200 k]/r y = 41.41 < 200 Ly min = 132.42 in EQ tower 83.44 EQ bldg 64.43 D+L+S = 189.62 kip D+L+wW = n/a kip D+L+wW+S/2 = n/a kip D+L+S+wW/2 = n/a kip D+L+S+E/1.4 = 295.24 kip 0.9I)+E/1.4 = 256.84 kip kip 204359.00 5/23/2005 LRFD Beam-Column Design 4-12-2005.x1s Col C-1 t F-11 mid kpff Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Columns C-il an F-11 from Mechanical Level to Interstitial Member size w12X72 ~ Section is Compact d = 12.25 in Sx = 97.4 in' A= 2L1 inZ Sy= 32.4 in' br= 12.04 in Zx = 108 in3 tr= 0.67 in Zy= 49.2 in' r, = 5.319 in Lb = 18 ft ry = 3.040 in FY = 50 ksi LDS Rexburg Idaho Temple Compact Criteria 0.30~Es/Fy 12.04 Unbraced Length Criteria kUr x = 71.05 < 200 kl/r y = 40.61 < 200 Lb min = 129.41 in Axial Dead load = 28.9 kip S2o = 2 Live toad = 1.6 kip Sps = 0.4075 Snow load = GS kip EQ load = 0 kip Em = 2.36 kip Load Combinations 1.4D = 40.46 D+L+S = 37.00 kip 1.2D+1.6S+1.OL = 46.68 D+L+wW = n/a kip 1.2D+L6L+O.SS = 40.49 D+L+wW+S/2 = n/a kip 1.2D+LOE+1.OL+0.2S = 37.58 D+L+S+wW/2 = n/a kip 0.9D+1.OE = 26.01 D+L+S+E/1.4 = 37.00 kip 1.2D+].OL+Em= 38.64 0.9D+E/1.4= 26.01 kip 0.9D-Em = 23.65 kip P" = 46.68 kip 2c = 0.939 F"~ = 34.59 ksi rpP" = 620.46 kip P" 0.0752 ~P" Major Bending Minor Bending . Yielding Yielding M"x = 1.20 k-in M"y = 120 k-in ~M"„ = 4860.0 k-in ~M"„ = 2187.0 k-in Lateral-Torsional Buckling MA = 392. l6 k-in MB = 534.84 k-in Mc = 426.6 k-in M~ = 3896 k-in Cb = 0.31 L" = 128.86 in L,= 403.625 ~M"z = 2022.63 k-in M 0.0593 Mn 0.0549 ~ nX ~ Y Combined Stresses If P" _ fP"? 0.2, then use Eq. H1-la Use Eq. H 1-lb 8 M,~~ 8 M,,.. P P M~ < 1 0 + + + _ . P M P M"< M"v "x + ++ + < 1.0 = 0.152 <I.0 2¢P,. ~nM,,.~ 2~I',~ ~nM"x ~nM„~, ~_' 204359.00 5/23/2005 LRFD Beam-Column Design 4-12-2005.x1s Col C-11 F-11 top kP.ff Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Columns A.2-5 and G.8-5 from Main Level to 2nd Level Member size w12X96 ~~ Section is Compact d = 12.71 in Sx = 131 in3 A = 28.2 in2 Sy = 44.4 in3 br= 12.16 in Zx= 147 ins tr= 0.9 in ZY= 67.5 in3 rx = 5.435 in L6 = 15.5 ft rY = 3.094 in F„ = 50 ksi LDS Rexburg Idaho Temple Compact Criteria 0.30,tEs/Fy 12.98 Unbraced Length Criteria kl/r x = 60.11 < 200 kl/r r = 34.22 < 200 Lb min = 130.70 in Axial Dead load = 206.3 kip S2o = 2 Live load = 36 kip Sos = 0.4075 Snow load = 15 kip EQ load = 194 kip Em = 404.81 kip Load Combinations 1.4D = 288.82 D+L+S = 257.30 kip 1.2D+1.6S+1.OL= 307.56 D+L+wW= n/a kip 1.2D+1.6L+O.SS = 312.66 D+L+wW+S/2 = n/a kip 1.2D+1.OE+1.OL+0.2S = 480.56 D+L+S+wW/2 = n/a kip 0.9D+1.0E = 379.67 D+L+S+E/1.4 = 395.87 kip 1.2D+1.OL+Em = 688.37 0.9D+E/1.4 = 324.24 kip 0.9D-Em = -219.1.4 kip UPL1F'1' P~ = 688.37 kip 2,c = 0.794 F~~ = 38.41 ksi ~P„ = 920.76 kip P" 0.7476 ~P~ Major Bending Minor Bending Yielding Yielding M„x = 120 k-in M„Y = 120 k-in ~M,,,, = 6615.0 k-in ~M~Y = 2997.0 k-in Lateral-Torsional Buckling MA = 392.16 k-in MB = 534.84 k-in Mc = 426.6 k-in M~ = 5240 k-in Cb = 0.31 Lp= 131.15 in L~ = 496.93 ~M„~ = 2485.98 k-in ~Mnx 0.0483 ~MnY .0.0400 Combined Stresses If P„ + fP„ > 0.2, then use Eq. Hl-la Use Eq. Hl-la M~ <_ 1.0 = 0.826 <1.0 ~P 9 (~aM... ~aM~y P M~.. Muy < 1.0 Eq. H1-]b = Z~P,~ + ~nM~~: + ~nM~~3. ~~,: ~ ~ 204359.00 5/23/2005 LRFD Beam-Column Design 4-12-2005.x1s Col A.2-5 G.8-5 low kP.ff Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Columns A.2-5 and G.8-5 from 2nd Level to Mechanical Level Member size W12X53 ~ Section is Compact d = 12.06 in Sx = .70.6 ins A = 15.6 in2 SY = 19.2 in' br= 9.995 in Zx = 77.9 in' tr= 0.575 in Zy= 29.1 in' r, = 5.220 in Lti = 18 ft rY = 2.478 in FY = 50 ksi • • Axial Dead load = 71.3 kip Live load = 7.8 kip Snow load = I S kip EQ load = 50 kip Em = 105.81 kip Load Combinations 1.4D = 99.82 1.2D+1.68+1.OL = 117.36 1.2D+1.6L+O.SS = 105.54 1.2D+1.OE+l.OL+0.2S = 146.36 0.9D+1.OE = 114.17 1.2D+l.OL+Em = 199.17 0.9D-Em = -41..64 iPLtr"r, P„ = 199.17 kip 2c = 1.152 F« = 28.72 ksi ~P„ = 380.88 kip P " 0.5229 ~P„ Major Bending Yielding M„x = 120 k-in ~M„x = 3505.5 k-in S2o = 2 Sos = 0.4075 LDS Rexburg Idaho Temple Compact Criteria 0.30yEs/Fy 12.04 Unbraced Length Criteria kl/r , = 87.16 < 200 kUr r = 41.38 < 200 Lh min = 107.43 in D+L+S = 94.10 kip D+L+wW = n/a kip D+L+wW+S/2 = n/a kip D+L+S+wW/2 = n/a kip D+L+S+E/1.4 = 129.81 kip 0.9D+E/].4= 99.88 kip kip Minor Bending Yielding M,,,, = 120 k-in ~M„ ~ = 1296.0 k-in Lateral-Torsional Buckling MA = 39216 k-in Ma = 534.84 k-in M~ = 426.6 k-in M, = 2824 k-in Cb = 0.31 Lp = 105.04 in 4 = 306.503 ~M„x = 1656.83 k-in M"" 0.0724 M"'' 0.0926 ~Mnz ~Mnv Combined Stresses If P„ _ fP„> 0.2, then use Eq. H1-la Use Eq. H1-la P 8 r M„~ P 8 r Mu,. +- -+- 1 + M~ I <_ L0 = 0.670 <1.0 ~P 9 ~eMn, ~P 9 ~eMn~ J ~aM.y 2~P„ ~vM,,, 2¢P,~ ~bM,~.r ~nM„y o 204359.00 5/23/2005 LRFD Beam-Column Design 4-12-2005.x1s Col A.2-5 G.8-5 mid kp f~ LDS Rexburg Idaho Temple Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Columns C-5 and F-5 from Main Le vel to 2nd Level Member size W12X96 ~ Section is Compact Compact Criteria d = 12.71 in Sx = 131 in' 0.30vEs/Fy 12.98 A = 28.2 in2 Sy = 44.4 in3 b~= 12.16 in Zx= 147 in' t~= 0.9 in ZY= 67.5 in3 Unbraced Length Criteria r, _ .5.435 in kl/r „ = 60.11 < 200 Ly = 15.5 ft rY = 3.094 in kl/r y= 34.22 < 200 FY = 50 ksi Ly min = 130.70 in Axial Dead load = 230.5 kip 520 = 2 Live load = 48.8 kip Sps = 0.4075 Snow load = 16 kip EQ load = 179 kip Em = 376.79 kip Load Combinations 1.4D = 322.70 D+L+S = 295.30 kip 1.2D+1.6S+LOL = 351.00 D+L+wW = n/a kip 1.2D+1.6L+O.SS = 362.68 D+L+wW+S/2 = n!a kip 1.2D+1.OE+l.OL+0.2S = 507.60 D+L+S+wW/2 = n/a kip 0.9D+I.OE = 386.45 D+L+S+E/1.4 = 423.16 kip 1.2D+1.OL+E,~ = 702.19 0.9D+E/1.4 = 335.31 kip 0.9D-Em = -169.34 kip tJPL1F'1" P„ = 702.19 kip 7vc = 0.794 F~~ = 38.41 ksi ~P„ = 920.76 kip P " 0.7626 , AA WPn Major Bending Minor Bending Yielding Yielding M„x = 120 k-in M,,,, = 120 k-in ~M„x = 6615.0 k-in ~M„ ~ = 2997.0 k-in Lateral-Torsiaial Buckling MA = 392.16 k-in MB = 534.84 k-in Mc = 426.6 k-in M~ = 5240 k-in Cb = 0.31 Lo= 131.15 in L, = 496.93 ~M„x = 2485.98 k-in M 0.0483 M 0.0400 ~ nz ~ n v Combined Stresses IfP~ _ fP„> 0.2, then use Eq. Hl-la Use Eq. H 1-la 8 M P M Eq. H1-la= + "' ( y 51.0 = + ) 0.841 <1.0 (~P 9 ~bM"< ~bMny P M",. M"y Eq. Hl-Ib = + + ~ 1.0 2~P,~ ~aM,~.. ~aM,o. C 5 37.40 87.70 .~ c 204359.00 5/23/2005 LRFD Beam-Column Design 4-12-2005.x1s Col C-5 F-5 low kpff Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Columns C-5 and F-5 from 2nd Level to Mechanical Level Member size W12X53 ~ Section is Compact d = 12.06 in Sx = 70.6 in' A = 15.6 in2 Sy = 19.2 in' bf= 9.995 in Zx= 77.9 in' tr= 0.575 in Zy= 29.1 in' rx = 5.220 in Lb = 18 ft r,, = 2.478 in FY = 50 ksi Axial Dead load = .51.2 kip Live load = 4.8 kip Snow load = 16 kip EQ load = 33 kip Em = 70.17 kip Load Combinations 1.4D = 71.68 1.2D+1.6S+1.OL = 91.84 1.2D+1.6L+O.SS = 77.12 1.2D+1.OE+I.OL+0.2S = 102.44 0.9D+1.OE = 79.08 1.2D+I.OL+Em = 136.41 0.9D-Em = -24.09 i Pl,lr•~r P„ = 136.41 kip 7vc 1.152 F~, = 28.72 ksi ~P„ = 380.88 kip P ° 0.3582 ~P„ Major Bending Yielding M„x = 120 k-in ~M„x = 3505.5 k-in Lateral-Torsional Buckling MA = 392.16 k-in MB = .534.84 k-in Mc = 426.6 k-in M~ = 2824 k-in Cb = 0.31 Iv = 105.04 in Lr= 306.503 ~M„x = 1656.83 k-in ~~ r ~ LDS Rexburg Idaho Temple 204359.00 5/23/2005 Compact Criteria 0.30yEs/Fy 12.04 Unbraced Length Criteria kl/r x = 87.16 < 200 kl/r r = 41.38 < 200 Lb min = 107.43 in S2o = 2 SDS = 0.4075 D+L+S = 72.00 kip D+L+wW = n/a kip D+L+wW+S/2 = n/a kip D+L+S+wW/2 = n/a kip D+L+S+E/1.4 = 95.57 kip 0.9D+E/1.4 = 69.65 kip kip Minor Bending Yielding M„Y = 120 k-in ~M,,,,= 1296.0 k-in M"" 0.0724 M"'' 0.0926 ~Mnx ~M~v Combined Stresses If P„ _ fP„> 0.2, then use Eq. H1-la Use Eq. Hl-la P 8 M,,,. P 8 M,~r /~ ~' < 1.0 = 0.505 <1.0 ~P + 9 (~nMnr t~P + 9 (~bM,.. + ~nM,y P + M,,,. + P + Mss + M°'' <_ 1.0 2~P,~ ~eM,,.~ 2~P ~nM„x ~nM„v C 5 37.40 13.83 LRFD Beam-Column Design 4-12-2005.x1s Col C-5 F-5 mid kpff Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Columns C-5 and F-5 from 2nd Level to Mechanical Level Member size W12X40 ~ Section is Co mpact d = 11.94 in Sx = 51.9 in3 A = 11.8 inZ Sy = 11 in3 bt= 8.005 in Zx = 57.5 in3 tt= 0.515 in Zy= 16.8 in3 rx = 5.126 in Lb = 18 ft ry = 1.933 in Fy = 50 ksi , • • Axial Dead load = 51.2 kip Live load = 4.8 kip Snow load = l6 kip EQ load = ] 0 kip Em= 24.17 kip Load Combinations 1.4D = 71.68 1.2D+1.6S+1.OL = 91.84 1.2D+1.6L+O.SS = 77.12 1.2D+1.OE+1.OL+0.2S = 79.44 0.9D+1.0E = 56.08 1.2D+1.OL+Em = 90.41 0.9D-Em = 21.91 P„ = 91.84 kip 2c = 1.477 F~~ = 20.1 1 ksi QP„ = 201.70 kip P " .0.4553 ~P„ Major Bending Yielding M„„ = 120 k-in ~M,,, = 2587.5 k-in Lateral-Torsional Buckling MA = 392.16 k-in Ma = 534.84 k-in Mc = 426.6 k-in M~ = 2076 k-in Cb = 0.31 1-a = 81.94 in L, = 231.642 (PM„x = 1434.72 k-in S2o = 2 Sos = 0.4075 D+L+S = 72.00 kip D+L+wW = n/a kip D+L+wW+S/2 = n/a kip D+L+S+wW/2 = n/a kip D+L+S+E/1.4 = 79.14 kip 0.9D+E/1.4 = 53.22 kip kip Minor Bending Yielding M„y = 120 k-in ~M,,,, = 742.5 k-in M"" 0.0836 MU° 0.1616 ~M~. ~M~v Combined Stresses If P~ - fP„ > 0.2, then use Eq. Hl-la Use Eq. H1-la P + 8 M,,,. P + 8 Mug + M'ry < 1.0 = 0.673 <1.0 ~P 9 (~nM,.~ ~P 9 (1~nM... ~bM~ J 2~I'„ ~nM,,. 2~P,~ ~nM~~x ~nM,rv LDS Rexburg Idaho Temple 204359.00 5/23/2005 Compact Criteria 0.30.~s/Fy 12.04 Unbraced Length Criteria kl/r , = 111.73 < 200 kl/r y = 42.14 < 200 Lb min = 86.04 in C 5 18.72 9.05 LRFD Beam-Column Design 4-12-2005.x1s Col C-5 F-5 top 1_~~~ Rexburg Idaho Temple Consulting Engineers LRFD Beam-Column Design fo r WF or HSS Sections Grid 5 Brace on Main Level Member size W8X40 ~ d = 8.25 in SX = 35.5 in3 A = 11.7 in2 Sy = 12.2 in3 bf = 8.07 in Z,; = 39.8 in3 tf= 0.56 in Zy= 18.5 in3 rX = 3.533 in Lb = 19.75 ft ry = 2.049 in Fy = 50 ksi Slenderness kUr x = 115.69 < 5.87~s/Fy kUr y = 67.09 < 5.87,/EslFy Lb min = 86.74 in Compact Criteria 0.30,/Es/Fy 7.22 Section is Compact Axial Capacity P„ = 92 kip 103.99 4.48 ~,c = 1.529 Fir = 18.75 ksi ~P„ = 186.51 kip P„ ~ 0.4933 P„ ok ~~ ~°~ 204359.00 5/23/2005 SCBF Brace Design.xls Grid 5 Main • • ~pff Rexburg Idaho Temple Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Grid 5 Brace on 2nd Level Member size W8X48 d = 8.5 in SX = 43.3 in3 A = 14.1 in2 Sy = 15 in3 bf= 8.11 in ZX = 49 in3 tf= 0.685 in Zy= 22.9 in3 rX = 3.612 in Lb = 23 ft ry = 2.078 in Fy = 50 ksi Slenderness kUr X = 132.80 < 5.87,/ls/Fy kl/r y = 76.40 < 5.87~JEs/Fy Lb min = 87.17 in Compact Criteria 0.30,/Es/Fy 7.22 Section is Compact Axial Capacity P„ = 100 kip 111.63 17.35 ~,c = 1.755 Fir = 14.23 ksi ~P„ = 170.58 kip P„ 0.5863 ~Pn ok ~~~- ~ ~ 204359.00 5/23/2005 SCBF Brace Design.xls Grid 5 2nd • • kpff Rexburg Idaho Temple Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Grid 5 Brace on 3rd Level Member size W8X40 ~ d = 8.25 in SX = 35.5 in3 A = 11.7 in2 Sy = 12.2 in3 bf= 8.07 in ZX = 39.8 in3 tf = 0.56 in Zy = 18.5 in3 rX = 3.533 in Lb = 22 ft ry = 2.049 in Fy = 50 ksi Slenderness kUr X = 128.87 < 5.87,/Es/Fy kUr y = 74.73 < 5.87~s/Fy Lb min = 86.74 in Compact Criteria 0.30~s/Fy 7.22 Section is Compact Axial Capacity P„ = 67.5 kip 96.14 27.81 ~,c = 1.703 F~ = 15.11 ksi ~P„ = 150.31 kip P,, 0.4491 ~Pn ok 204359.00 5/23/2005 SCBF Brace Design.xls Grid 5 3rd ~" ~~~' kpff Rexburg Idaho Temple 204359.00 5/23/2005 Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Grid 5 Brace on Mechanical Mezzanine Member size HSS4X4X.2500 ~ d = 4 in Sx = 3.9 in3 A = 3.37 in2 Sy = 3.9 in3 bf = 4 in ZX = 4.97 in3 tf= 0.25 in Zy= 0 in3 rX = 1.521 in Lb = 17.333 ft ry = 1.521 in Fy = 46 ksi Slenderness kl/r X = 136.72 < 5.87,/~s/Fy kUr y = 136.72 < 5.87,JEs/Fy Lb min = 44.82 in Compact Criteria 0.64~s/Fy 16.07 Section is Compact Axial Capacity P„ = 19.82 kip 19.82 18.78 ~,c = 1.733 F~ = 13.43 ksi ~Pn = 38.47 kip P„ 0.5152 ~Pn ok • SCBF Brace Design.xls Grid 5 Mezz • ~i • ~pJJ Rexburg Idaho Temple Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Grids B and G Braces on Main Level Member size W8X40 ~ d = 8.25 in SX = 35.5 in3 A = 11.7 inZ Sy - 12.2 ms bf = 8.07 in ZX = 39.8 in3 tf = 0.56 m Zy = 18.5 in3 rX = 3.533 in Lb = 18.5 ft ry = 2.049 in Fy = 50 ksi Slenderness kUr ,; = 108.37 < 5.87,/IJs/Fy kl/r y = 62.84 < 5.87~s/Fy Lb min = 86.74 in Compact Criteria 0.30~s/Fy 7.22 Section is Compact Axial Capacity Pn = 135.82 kip 75.13 135.82 ~,c = 1.432 F~~ = 21.23 ksi ~Pn = 211.09 kip Pn ~P 0.6434 n ok ~?~- . ," 204359.00 5/23/2005 SCBF Brace Design.xls Grids B-G Main kpff Rexburg Idaho Temple Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Grids B and G Braces on 2nd Level Member size ~ W8X48 ~ d = 8.S in Sx = 43.3 in3 A = 14.1 in2 Sy = 1S in3 br = 8.11 in ZX = 49 in3 tf= 0.685 in Zy= 22.9 in3 rX = 3.612 in Lb = 21 ft ry = 2.078 in Fy = SO ksi Slenderness kUr X = 121.26 < 5.87~s/Fy kUr y = 69.76 < 5.87~s/Fy Lb min = 87.17 in Compact Criteria 0.30,/~s/Fy 7.22 Section is Compact Axial Capacity P„ = 139.6 kip ~,c = 1.603 F~~ = 17.07 ksi ~P„ = 204.61 kip P„ 0.6823 ~Pn ok • 70 139.60 ~. ``~.. ~~- 204359.00 S/23/2005 SCBF Brace Design.xls Grids B-G 2nd • • ~~~~ Rexburg Idaho Temple Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Grids B and G Braces on 3rd Level Member size W8X40 d = 8.25 in SX = 35.5. in3 A = 11.7 in2 Sy = 12.2 in3 bf= 8.07 in ZX = 39.8 in3 tf= 0.56 in Zy= 18.5 in3 rX = 3.533 in Lb = 21 ft ry = 2.049 in Fy = 50 ksi Slenderness kUr X = 123.01 < 5.87~s/Fy kUr y = 71.34 < 5.87,J1s/Fy Lb min = 86.74 in Compact Criteria 0.30,/ls/Fy 7.22 Section is Compact Axial Capacity P„ = 100.75 kip 38.55 100.75 ~c = 1.626 F~ = 16.59 ksi ~P„ = 164.97 kip P„ 0.6107 ~P„ ok 204359.00 5/23/2005 SCBF Brace Design.xls Grids B-G 3rd • • • 7~~~ Rexburg Idaho Temple Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Grids B and G Braces on Mechanical Mezzanine Member size W8X28 ~ d = 8.06 in SX = 24.3 in3 A = 8.25 in2 Sy = 6.63 in3 bf= 6.535 in ZX = 27.2 in3 tf= 0.465 in Zy = 10.1 in3 rX = 3.447 in Lb = 11 ft ry = 1.622 in Fy = 50 ksi Slenderness kl/r x = 81.39 < 5.87,/ls/Fy kl/r y = 38.30 < 5.87~s/Fy Lb min = 70.24 in Compact Criteria 0.30~/Es/Fy 7.22 Section is Compact Axial Capacity P„ = 25.27 kip 24.25 25.27 ~,c = 1.076 Fir = 30.84 ksi ~P„ = 216.25 kip P„ 0.1169 ~Pn ok r 204359.00 5/23/2005 SCBF Brace Design.xls Grids B-G Mezz ~pfJ Rexburg Idaho Temple Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Grids C and F Braces on Main Level Member size W10X77 ~ d = 10.6 in SX = 85.9 in3 A = 22.6 in2 Sy = 30.1 in3 bf = 10.19 in ZX = 97.6 in3 tf = 0.87 in Zy = 45.9 in3 rX = 4.487 in Lb = 19 ft - ry = 2.610 in Fy = 50 ksi Slenderness kUr X = 87.34 < 5.87,JEs/Fy kUr y = 50.81 < 5.87,/Es/Fy Lb min = 109.52 in Compact Criteria 0.30~IEs/Fy 7.22 Section is Compact Axial Capacity P„ = 215.07 kip 215.07. 192.05 ~,c = 1.154 Fir = 28.66 ksi ~P„ = 550.52 kip P„ ~P 0.3907 n ok • ,~ ~~ i`" 204359.00 5/23/2005 SCBF Brace Design.xls Grids C-F Main • • • ~!~~~ Rexburg Idaho Temple Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Grids C and F Braces on 2nd Level Member size W10X77 ~ d = 10.6 in Sx = 85.9 in3 A = 22.6 inz Sy = 30.1 in3 bf = 10.19 in Zx = 97.6 in3 tf = 0.87 m Zy = 45.9 in3 rX = 4.487 in Lb = 22.5 ft ry = 2.610 in Fy = 50 ksi Slenderness kl/r X = 103.43 < 5.87~s/Fy kUr y = 60.17 < 5.87,/~s/Fy Lb min = 109.52 in Compact Criteria 0.30~IEs/Fy 7.22 Section is Compact Axial Capacity P„ = 217.97 kip 217.97. 193.69 ~,c = 1.367 Fir = 22.91 ksi ~P„ = 440.07 kip P„ ~ 0.4953 P„ ok 204359.00 5/23/2005 SCBF Brace Design.xls Grids C-F 2nd ~pJf Rexburg Idaho Temple Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Grids C and F Braces on 3rd Level Member size ~ W10X68 ~ d = 10.4 in SX. = 75.7 in3 A = 20 inz Sy = 26.4 in3 bf = 10.13 in ZX = 85.3 in3 t f = .0.77 in Zy = 40.1 in3 rX = 4.43 8 in Lb = 21.5 ft ry = 2.588 in Fy = 50 ksi Slenderness kUr X = 99.67 < 5.87,/Es/Fy kUr y = 58.13 < 5.87~s/Fy Lb min = 108.88 in Compact Criteria 0.30,J~s/Fy 7.22 Section is Compact Axial Capacity Pn = 175.28 kip 175.28 151.64 ~,c = 1.317 F~ = 24.22 ksi ~P„ = 411.74 kip P„ 0.4257 n ~P ok • ,~ 204359.00 5/23/2005 SCBF Brace Design.xls Grids C-F 3rd. ~ ff Rexburg Idaho Temple 204359.00 p 5/23/2005 Consulting Engineers LRFD Beam-Column Design fo r WF or HSS Sections Grids C and F Braces on Mechanical Mezzanine Member size W10X68 ~ d = 10.4 in SX = 75.7 in3 A = 20 inZ Sy = 26.4 in3 bf = 10.13 in ZX = 85.3 in3 tf = 0.77 in Zy = 40.1 in3 rx = 4.438 in Lb = 21.5 ft ry = 2.588 in Fy = 50 ksi • Slenderness kUr x = 99.67 < 5.87~s/Fy kl/r y = 58.13 < 5.87~1Es/Fy Lb min = 108.88 in Compact Criteria 0.30~s/Fy 7.22 Section is Compact Axial Capacity P„ = 104.94 kip 104.94 38.07 ~,c = 1.317 F~~ = 24.22 ksi ~P„ = 411.74 kip P„ 0.2549 ~Pn ok • SCBF Brace Design.xls Grids C-F Mezz ~pfJ Oregon Central Computer Facility Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Grid 11 Brace on Main Level Member size W8X40 ~ d = 8.25 in SX = 35.5 in3 A = 11.7 in2 Sy = 12.2 in3 bf = 8.07 in ZX = 39.8 in3 tf= 0.56 in Zy= 18.5 in3 rx = 3.533 in Lb = 21 ft ry = 2.049 in Fy = 50 ksi Slenderness kl/r X = 123.01 < 5.87,/l:s/Fy kUr y = 71.34 < 5.87,/I/s/Fy Lb min = 86.74 in Compact Criteria 0.30,/Es/Fy 7.22 Section is Compact Axial Capacity P„ = 66.40 kip 23.10 66.40 ~,c = 1.626 FAT = 16.59 ksi ~P„ = 164.97 kip P„ 0.4025 ~Pn ok i 204316.00 5/23/2005 SCBF Brace Design.xls Grid 11 Main / t 1 _~JJ Oregon Central Computer Facility onsulting Engineers C LRFD Beam-Column Design for WF or HSS Sections Grid 11 Brace on 2nd Level Member size W10X49 ~ d = 9.98 in SX = 54.6 in3 A = 14.4 in2 Sy = 18.7 in3 bf = 10 in ZX = 60.4 in3 tf= 0.56 in Zy= 28.3 in3 rX = 4.346 in Lb = 20 ft ry = 2.547 in Fy = 50 ksi Slenderness kUr X = 94.24 < 5.87~s/Fy kUr y = 55.22 < 5.87,/ls/Fy Lb min = 107.48 in Compact Criteria 0.30,/~s/Fy 7.22 Section is Non-Compact -- :Resize Axial Capacity P„ = 51.28 kip 13.53 51.28 ~c = 1.246 F~ = 26.16 ksi ~P„ = 320.16 kip P„ ~ 0.1602 P„ ok • 204316.00 5/23/2005 SCBF Brace Design.xls Grid 11 2nd kpff Oregon Central Computer Facility Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Grid 11 Brace on 3rd Level Member size W10X49 ~ d = 9.98 in SX = 54.6 in3 A = 14.4 in2 Sy = 18.7 in3 bf = 10 in ZX = 60.4 in3 tf= 0.56 in Zy= 28.3 in3 rx = 4.346 in Lb = 19.5 ft ry = 2.547 in Fy = 50 ksi Slenderness kl/r X = 91.88 < 5.87,/ls/Fy kl/r y = 53.84 < 5.87,/lis/Fy Lb min = 107.48 in Compact Criteria 0.30,/1/s/Fy 7.22 Section is Non-Compac t -- Resize Axial Capacity P„ = 35.96 kip 0.76 35.96 ~,c = .1.214 Fcr = 27.01 ksi ~P„ _ 330.57 kip Pu ~ 0.1088 P„ ok • .,F. 204316.00 5/23/2005 SCBF Brace Design.xls Grid 11 3rd >>~~~ Oregon Central Computer Facility Consulting Engineers LRFD Beam-Column Design fo r WF or HSS Sections Grid 11 Brace on Mechanical Mezzanine Member size W8X40 ~ d = 8.25 in SX = 35.5 in3 A = 11.7 in2 Sy = 12.2 in3 bf = 8.07 in ZX = 39.8 in3 tf= 0.56 in Zy= 18.5 in3 rx = 3.533 in Lb = 13 ft ry = 2.049 in Fy = 50 ksi Slenderness kUr x = 76.15 < 5.87~s/Fy kUr y = 44.16 < 5.87,/lJs/Fy Lb min = 86.74 in Compact Criteria 0.30,/~s/Fy 7.22 Section is Compact Axial Capacity P„ = 25.89 kip 25.89 25.79 ~,c = 1.006 F~~ _ 32.75 ksi ~Pa = 325.71 kip P„ 0.0795 ~Pn ok • ~"` 204316.00 5/23/2005. SCBF Brace Design.xls Grid 11 Mezz • kp~ Consulting Engineers Portland, Oregon Braced Frame Connection Special Concentric with Wide Flange Braces Brace Size W 8x40 Depth = 8.25 in A= 11.7 in` tf = 0.56 in bf = 8.07 in LDS Rexburg Idaho Temple RY= 1.1 Fy = 50 ksi Fu = 65 ksi Tu = 643.5 kip Flange Plate Properties t = 1 in FY = 50 ksi F~ = 65 ksi Width = 8 in Length = 19.3 in S~ = 2.25 in SZ = 3 in S3 = 15.0 in S4 = 2 in Gage = 5 in Bolt Hole Diam = 15/16 in Failure Mechanisms Bolt Shear 649 kip Elongation of Bolt Holes .2,633 kip Block Shear of Beam Flange 1,103 kip Gusset Plate Properties tgusset = 1 In FY = 50 ksi F~ = 65 ksi Weld Length Weld size = 5/16. in Total weld = 92.5 in Weld per leg = 11.6 in Actual weld = 12 in Block Shear Plate ~R~ = 1039.7 kip 1086.4 kip Controlling 1039.7 kip ok Gusset Connection to Beam and Column 9 = 43 deg a = 48 in b= 0 in e~ = 0 in eb = 0 in a = 24.00 in a = 25.74 in r = 35.19 in V~ = 470.6 kip H~ = 0.0 kip Vb = 0.0 kip Hb = 438.9 kip Flange Plate Bolts Type A490 N cpF~ = 45 ksi Diameter 7/8 in Area 0.60 in2 Shear Strength 27.1 kips No. of Bolts 12 Section Fracture of FP 780 kip Block Shear of FP 1,969 kip Plate Tension Capacity Whitmore Length = 28.42 in ~T„ = 1,279 kip Gusset Plate Compression LP, = 15.5 in ~P„ = 108.30 kip kl/r = 64.4 ~ = 0.85 F~~ = 36.93 ksi ~P„ = 892.1 kip ok Gusset Edge Buckling Lfg = 18.1 in No Edg e Stiffener Req'd Flange Plate Net Section Fracture A„ = 6.875 in` U = 1.00 Ae = UAL = 6.88 in` ~R„ _ ~,4eF„ _ .670 .kip Weld Capacity to = 5/16 in ~R„ = 13.92 kip/in Demand/Capacity Ratio Beam = 0.96 Column = #DIV/0! 204359.00 5/23/2005 ~~ vert horiz 46.32 43.19 470.63 438.87 424.31 482.06 Brace Gusset 4-14-2005.x1s Grid 5 Main kp~ Consulting Engineers LDS Rexburg Idaho Temple Portland, Oregon Baseplate FY = 50 ksi Concrete Bearing Bolt Spacing Lat = 8 in f~ = 4000 psi T„ = 424 kip A~ = 576.0 in` MP, = 424.31 k-in AZ = 832.0 in` Smin = 9.984 in3 APP = 1412.2 klp tm~n = 2.23 In Pu = 424.3 klp t = 2 1/3 in Bearing is ok Anchor Bolts Bolt Size = 1 1/2 in Embedment = 42 in nbous = 8 Footing width = 1.5 ft Ase = 1.77 in` Footing depth = 18 ft f,,, = 75 ksi S2 = 1 Tension Spacing = 9 in Anchor Spacing ok P = 424.30948 kip AN = 324 in` P„ = 187 kip ANO = 792 in` NS = 596.41 kip y~, = 1.0 Nib = 262.60 kip Wz = 1.0 N~~ = 262.60 kip W3 = 1.25 NPR = 1433.60 kip y~, = 1.4 ~N„ = 262.60 kip Nb = 513530 Ib Ab,~ = 4 ~n` 0.31 NP = 128000 Ib N„/~N„ = 0.712 Intera ction with Shear Req'd Shear V = 482.06 kip c~ = 18 in V„ = 187 kip *Gradebeam present -- edge spacing is not an issue. Long Spacing = 8 in Lat Spacing = 8 in A~ = 1674 in` Ago = 1458 in` VS = 318.09 kip We = 1.0 V~b9 = 43.91 kip Ws = 1.0 VIP = 525.20 kip W~ = 1.4 ~V„ = 43.91 kip Vb = 27319 Ib 0.59 kcv = 2 V„/~V„ = 4.258 Shear is NO GOOD Combinations Concrete 4.97 No Good Steel 0.90 ok i 204359.00 5/23/2005 Brace Gusset 4-14-2005.x1s Grid 5 Main lti E ineers kp~ C LDS Rexburg Idaho Temple 204359.00 ng ng onsu 5/23/2005 Portland, Oregon ~~~ Base Plate Connection Gridlines 11-6 and 1 1-G Baseplate Fy = 50 ksi Concrete Bea ring Bolt Spacing Lat = 16.5 in f~ = 4000 psi T„ = 571 kip A~ = 440.8 in` Mpi = .1177.69 k-in Az = 7224.8 in` Sm;,, = 27.710 in3 ~Pp = 1798.3 kip tr,,;~ = 2.85 In Pu = 921.0 kip t = 2 8/9 in Bearing is ok Anchor Bolts Bolt Size = 1 1/4 in Embedment = 36 in nuns = 8 Footing width = 10 ft Ase = 1.23 in` Footing depth = 3.5 ft f,,, = 120 . ksi S2 = 1 Tension Spacing = 8 in Anchor Spacing ok P = 571 kip AN = 13456 in` P„ = 571 kip ANO = 11664 in` NS = Nib = 662.68 572.75 kip kip yr~ = Wz = 1.0 1.0 N~b9 = 572.75 kip 'Vs = 1.25 Np~ = 1433.60 kip Wa = 1.4 ~N~ _ 572.75 kip Nb = 397180 Ib Abp = 4 in` NP = 128000 Ib N„/~N„ = 0.997 Interaction with Shear Req'd Shear V = 0.00 kip c~ = 18 in V~ = 0 kip Long Spacing = 8 in Lat Spacing = 16.5 in A~ = 1903.5 in` Avo = 1458 in` VS = 353.43 kip Ws = 1.0 V~b9 = 45.58 kip Ws = 1.0 V~p = 1145.50 kip W~ = 1.4 ~V~ = 45.58 kip Vb = 24939 Ib 0.00 k~a = 2 V„/~V„ = 0.000 Full tension strength allowed Combinations Concrete 1.00 ok Steel 0.86 ok Brace Gusset 4-14-2005.x1s Grid 11 base n u kpff Consulting Engineers Portland, Oregon Gridlines 11-C and 11-F Baseplate Fy = 50 ksi Bolt Spacing Lat = 16.5. in T„ = 258 kip Mpi = 532.13 k-in Smin = 12.521 Ina tm;~ = 1.91 in t = 2 in Anchor Bolts Bolt Size = 1 1/4 in Embedment = 30 in Footing width = 10 ft Footing depth = 3.5 ft SZ = 1 LDS Rexburg Idaho Temple 204359.00 5/23/2005 Concrete Bearing f~ = 4000 psi A~ = 440.8 in` Az = 7224.8 in` ~Pp = 1798.3 kip Pu = 921.0 kip Bearing is ok nbo~ts = 8 ASe = 1.23 fin` f„t = 75 ksi Tension • i• Spacing = 8 in Anchor Spacing ok P = 258 .kip AN = 9604 in` P„ = 258 kip ANO = 8100 in` NS = 414.17 kip W~ = 1.0 Nib = 434.41 kip ~z = 1.0 N~b9 = 434.41 kip ~s = 1.25 NPR _ .1433.60 kip ~Va = 1.4 ~N„ = 414.17 kip Nb = 293102 Ib Ab,~ = 4 in` Np = 128000 Ib Nu/~N„ = 0.623 Intera ction with Shear Req'd Shear V = 0.00 kip c~ = 18 in V~ = 0 kip Long Spacing = 8 in Lat Spacing = 16.5 in Av = 1903.5 in` Avo = 1458 in` VS = 220.89 kip Ws = 1.0 V~b9 = 45.58 kip Ws = 1.0 VIP = 868.81 kip W~ = 1.4 ~V„ = 45.58 kip Vb = 24939 Ib 0.00 k~a = 2 V„/~V„ = 0.000 Full tension strength allowed Combinations Concrete 0.62 ok Steel 0.62 ok Brace Gusset 4-14-2005.x1s Grid 11 base • Project . Location Consulting Engineers Client Portland, Oregon 3~ a~.~ T~ 1~t~csl. ~~~~ G-t~ '"~~-''fey WIca~7o: ~n S.~-rat.e..~ c~F B Y Sheet No. Date ~~~ Revised Job No. Date ~P = ~. 6 FT. ~ = (o .`xso~ 9.gL?- - 2r!n, 570)~(o.3ST> = 17`1 . ~k +~ GaUYPs3t~5 ~~ 2 Cz,~~y>> z~tot so?~ 2~. 6 k e ~ ~ ~~.~ ~ a.lst=./Q~ ~ ~o.rs~(so~~c4.~)= Ilok > 4sk. :. t~a-~ ~s-~~ ,-,o-r co.}s,a~,;v. ~~-- M u = ~~ ~ e- : ~9~. sr<~(~~,~ ~ , 354- b-,.~ 2 ~ ___. ~~ar~ = 3~6~_,,...r • ~~~ = ~¢ Qg~~r t . r~Z ror ~ o . G'S~ ~` tY = ('o, dg~i'') ~5 ~~ - Z`1 , I k • ~"- _ `~'`' k cam, ~ 2q- .L, n . Z -•+* ~s~. ~cz f-(r- ( ~ ~P 3 v3Sb- _ _ _ __ __ _ _ _ -- - A+5 ~ 5~ I S, (. C ~ 7 ~ UE-S ~ ~ ST~~.~.1~ Tom, D~Ga~n /.il ~p f~oM ~i-D ~ i~c , n-rq--I !3F na u~7r Pv BY !. /~ ~ /. v ~, ~ o i z ~r ~ 3920 k-„~ 1 p . ~~2- e f . ~ ~---- -, -i drat><s~ ~-,~J h J 2~~ 3~ (~.r.,..ik [.~~tiF~. /. G.1''7eY I.~~Sa .lobs ~.~~ > ~~ ~. vp ' l ~? . S • Sheet No. Project By . Consultin En ineers Location Date ~ l~ g g Job No. Client Revised Portland, Oregon Date i7.4q ,~~ G.o$ P-AO: ~~...,- S ~~°.3SS~- S = 705. ~j y d ,~. 49 (9-. ~~ F~~2.. b. Oz. Pk0 % 5 L"LwJ." 5 ~"[CO. 3~5, r" ~'~/~ a.~9 % 2ArJ' L/nJE y ~NtG~PO~_AT%ar~ ~-A78/Lat, r~iQaE-s,-J4 0~ Lip-1k: ~,~ o.vLpwFr ~S~f o.o~(i,r)(so~~~_49s7Co.5~~ = 14.) k P.~~. ~ Z3 k s~ 5~~~~~7~,~~dw,,.~h, tea- w)2~z6 • h vs =d 3D ~ ; r7~~ ~?~ ~ "~. Z ZS FY 50 wia,~7a by ~,~ ~~~ rs c-~ Z~~. P~ ~9puv ~~ -3_~~ ~ ~(- ~.sa-~6~) = 3.~4~~® ~~r-~:s4(v.rz¢)~ - 61.2 Y wig ><50 ~ µ 45, 2 w~ + ~ ~~~T ~w ~~.~ 1.25R~ Vn = C1.2~~Ct.I )~~ ~.~~) = 2~ ~ k ~ ~~~~ ~M~~~t~ _ _ _ _ ~ ~ ~ ~ _292.3 k __ _ i~s~ ~ t6', ~~ g2ES µ,4s a9z.9~ - a_q~~ < 3zi,Sk- - ~•v • • • Project. . Location Consulting Engineers Client Portland, Oregon C~~/F`lIT'( LOS C~IJ c~-~-- '~q~v~t.S . l2~: t~~.-= 4ops~ ~~ ~ e ,~ s H ; N B .Sheet No. Y Q Date g~~3 Job No. Revised Date TR-r6 4G-~F ; (2't''.,~j ~ 5 ~.q a `'-6 + 7_~~ (Z4`-5 lo~-ro . b _r~ 4 i l ~ 2 ~ [~ K ~ r ~ to R _ ~ -+ (105-F Po = ~~~~Ctlos~) = a-~ ~~ r~ ~ zz- w, P~ Pte, PQ = ~ ~ ~~~¢noF = 53 rdao t 4, WL ~pl~ ~'~pp~~ C 1&zo ~.'1.?i,75 nn ,z DL =~jOps~ ~ 1~~ = (f'~Ox16.Sx2o.5~+~Zc~ ~2.25~ , ~~,,,, ~ 75~~ LL [40 (ZG-~~= lrm 3 / ~~~ = '~.1. ~ k ~12. I2.1~-, C~ ¢7~~ f`'~ fS6o.~.61A+, = G ZZ ~- ~,.J , ~j(~'Sk-i.~ ~~IrEMa,.~ r 5f Z ~-i,J, 3~q- k r..r ~ ~ _ ~ P _ pz- _ ,~ .^.t, N~ T-/L = 9~ psi P3 = r~L~`ID ~ Z43 5 ~~ 9> = I D ~3 ~~ "~ Jl L J ve~~~~ _ ''0.4~, t~ k ,- ~L~~too~(4y ` ~~ = 2-~? ~~ ~~~~o)( i~~_'°`~~xl' ~~ = `x'.83 ll Z %%%% W,_ DLCgo(~S~,js~: Selpl~~ ~~roa ~~~,? f I'~~- 557p(-~~ LL rfaD~2 ~ y ~°-4`°~ 67`~pF~~ I`~,c w r< ~ " 631 ~ - ,~, ~~- ~ -,,.~ • • Project . Location Consulting Engineers Client PorflandAregon '2pJ~ ~~(~ ~z W. DL,r = ~Ops~t ~~r.~.,,.,,~,. - A-4.~ k, 'ZB,7 k ~~, Mme. ~ ('aS~ k -,~.+ X379 !c -r,1 BY Sheet No. Date ~~'l"l Revised Job No. i Date ~ ~. ~ ~ ~ ~ z ~= 99-7P~~ ) 3 M U,~ ` 9 37 ~- „~ , 6 t o ~ ~ ,.~ • kP.ff Consulting Engineers LRFD Beam-Column Desi gn for WF or HSS Sections Columns A.2-8 and G.8-8 from Main Level to 2nd Level Member size W12X106 ~ Section is Compact d = 12.89 in Sx = 145 in' A = 31.2 inz Sy = 49.3 in3 b~= 12.22 in Zx= 164 inl tr= 0.99 in ZY= 75.1 ins rx = 5.468 in L6 = 15.5 R rY = 3.106 in F„ = 50 ksi • • LDS Rexburg Idaho Temple Compact Criteria 0.30~rEs/Fy 12.98 Unbraced Length Criteria kl/r x = 59.88 < 200 kl/r r = 34.01 < 200 Lb min = 131.34 in Axial Dead load = 206.3 kip 520 = 2 Live load = 36 kip Sns = 0.4075 Snow load = l5 kip EQ load = 177.87. kip Em = 372.55 kip Load Combinations 1.4D = 288.82 D+L+S = 257.30 kip 1.2D+1.6S+I AL = 307.56 D+L+wW = n/a kip 1.2D+I.6L+O.SS = 312.66 D+L+wW+S/2 = n/a kip 1.2D+1.OE+I.OL+0.2S = 464.43 D+L+S+wW/2 = n/a kip 0.9D+1.OE = 363.54 D+L+S+E/1.4 = 384.35 kip 1.2D+LOL+Em = 656.11 0.9D+E/1.4 = 312.72 kip 0.9D-Em = -186.88 kip UYI.1F'1' P„ = 656.11 kip 7,,c = 0.791 F~~ = 38.49 ksi ~P„ = 1020.75 kip P" 0.6428 rbP„ Major Bending Minor Bending Yielding Yielding M„x = 120 k-in M„y = 120 k-in ~M„x = 7380.0 k-in ~M,,,, = 3327.8 k-in Lateral-Torsional Buckling MA = 392. l6 k-in Ma = 534.84 k-in Mc = 426.6 k-in M, = 5800 k-in Cb = 0.31 Lo = 131.65 in L~ = 537.601 ~M„x = 2743.62 k-in M"` M"`' 0.0437 0.0361 ,,AA WMnx ,A WMnv Combined Stresses If P„ - fP„> 0.2, then use Eq. HI-la Use Eq. H 1-la P 8 M M`" Eq. H1-la = + "' + <_ 1.0 = 0.714 <1.0 ~P 9 ~bMn. ~bM~ P M„x Mir Eq. H1-lb ° + + < 1.0 2 P Mix M, ~b ~b ry ~~4~. 204359.00 5/23/2005 LRFD Beam-Column Design 4-12-2005.x1s Col A.2-8 G.8-8 low kP.ff Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Columns A.2-8 and G.8-8 from 2nd Level to Mechanical Level Member size Wt2x72 ~ Section is Compact d = 12.25 in Sx = 97.4 in' A = 21.1 inZ Sy = 32.4 in' br= 12.04 in Zx= 108 in' t~= 0.67 in ZY= 49.2 in' rx = 5.319 in Ly = 18 ft rY = 3.040 in Fy = 50 ksi • • Axial Dead load = 71.3 kip Live load = 7:8 kip Snow load = l5 kip EQ load = 78.75 kip Em = ] 63.31 kip Load Combinations 1.4D = 99.82 1.2D+1.6S+1.OL = 117.36 1.2D+1.6L+O.SS = 105.54 1.2D+I.OE+1.OL+0.2S = 175.11 0.9D+1.OE = 142.92 1.2D+1.OL+Em = 256.67 0.9D-Em = -99.1.4 L'PLIF'l. P„ = 256.67 kip 7,c= 0.939 F~~ = 34.59 ksi mP„ = 620.46 kip P ° 0.4137 ~P„ Major Bending Yielding M„x = 120 k-in tpM„x = 4860.0 k-in Lateral-Torsional Buckling MA = 392. l6 k-in MB = 534.84 k-in M~ = 426.6 k-in M~ = 3896 k-in Cy = 0.31 ~ = 128.86 in 4 = 403.625 ~M„x = 2022.63 k-in S2o = 2 Sos = 0.4075 4.22 0 LDS Rexburg Idaho Temple Compact Criteria 0.30,tEs/Fy 12.04 Unbraced Length Criteria kl/r x = 71.05 < 200 kl/r r = 40.61 < 200 Lb min = 129.41 in D+L+S = 94.10 kip D+L+wW = n/a kip D+L+wW+S/2 = n/a kip D+L+S+wW/2 = n/a kip D+L+S+E/1.4 = 150.35 kip 0.9D+E/1.4 = 120.42 kip kip Minor Bending Yielding M„Y = 120 k-in ~M,,,, = 2187.0 k-in ~Mn% 0.0593 ~Mn 0.0549 v Combined Stresses If P„ + fP„> 0.2, then use Eq. H1-la Use Eq. H1-la P 8 r M,,, P 8 r M"r M / -+- -+- + '~ <_ 1.0 = 0.515 <1.0 2~P„ ~nM,,., 2~P,~ ~nM~u ~nM,~~~ 204359.00 5/23/2005 LRFD Beam-Column Design 4-12-2005.x1s Col A.2-8 G.8-8 mid kP.ff Consulting Engineers LRFD Beam-Column Desi gn for WF or HSS Sections Columns C-8 and F-8 from Ma in Level to 2nd Level Member size W12X96 ~ Section is Compact d = 12.71 in Sx = 131 in3 A = 28.2 inZ Sy = 44.4 in' b~= 12.16 in Zx= 147 in' t~= 0.9 in ZY= 67.5 ins rx = 5.435 in L6 = 15.5 fl rY = 3.094 in FY = 50 ksi • Axial Dead load = 230.5 kip S2o = 2 Live load = 48.8 kip Sos = 0.4075 Snow load = 16 kip EQ load = 145.6 kip Em = 310.09 kip Load Combinations 1.4D = 322.70 1.2D+1.6S+1.OL = 351.00 1.2D+1.6L+O.SS = 362.68 1.2D+1.OE+1.OL+0.2S = 474.25 0.9D+1.OE = 353.10 1.2D+I.OL+Em = 635.49 0.9D-Em= -t02.64 ti PLSF'1' P„ = 635.49 kip Tc= 0.794 F~~ = 38.41 ksi ~P„ _ 920.76 kip P „ 0.6902 ~P~ Major Bending Yielding M„„ = 120 k-in ~M„x = 6615.0 k-in Lateral-Torsional Buckling MA = 392.16 k-in Ma = 534.84 k-in Mc = 426.6 k-in M~ = 5240 k-in Cb = 0.31 I-o = 131.15 in L, = 496.93 ~M„x = 2485.98 k-in D+L+wW = n/a kip D+L+wW+S/2 = n/a kip D+L+S+wW/2 = n/a kip D+L+S+E/1.4 = 399.34 kip 0.9D+E/1.4 = 311.49 kip kip Minor Bending Yielding M„y = 120 k-in ~M~,. = 2997.0 k-in ~Mn% 0.0483 ~Mn 0.0400 v Combined Stresses If P„ _ fP„> 0.2, then use Eq. HI-la Use Eq. Hl-la M~ < 1.0 = 0.769 <1.0 Eq. HI-la= ~I' +9(~ nr +~M l b b rry Eq. HI-Ib=-+ + 2~P„ ~nMn,- ~bM,~r ~~ ~-~ LDS Rexburg Idaho Temple .204359.00 5/23/2005 Compact Criteria 0.30./Es/Fy 12.98 Unbraced Length Criteria kl/r . = 60. I 1 < 200 kl/r r = 34.22 < 200 Lb min = 130.70 in D+L+S = 295.30 kip LRFD Beam-Column Design 4-12-2005.x1s Col C-8 F-8 low kP.ff Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Columns C-8 and F-8 from 2nd Level to Mechanical Level Member size W12X72 ~ Section is Compact d = 12.25 in Sx = 97.4 in' A = 21.1 inZ SY = 32.4 in' br= 12.04 in Zx = 108 in' tr= .0.67 in Zy= 49.2 in3 r, = 5.319 in ~ = 18 ft rY = 3.040 in F~ = 50 ksi • Axial Dead load = 51.2 kip S2o = 2 Live load = 4.8 .kip Sps = 0.4075 Snow load = l6 kip EQ load = 47.32 kip Em = 98.81 kip Load Combinations 1.4D= 71.68 1.2D+1.68+1.OL= 91.84 1.2D+1.6L+O.SS = 77.12 1.2D+1.OE+1.OL+0.28 = 116.76 0.9D+1.OE = 93.40 1.2D+1.OL+Em = 165.05 0.9D-E,~ _ -52.73 lPtdFT P„ = 165.05 kip 7vc = 0.939 F~, _ 34.59 ksi ~P~ = 620.46 kip P ° 0.2660 ~P„ Major Bending Yielding M„x = 120 k-in mM,,, = 4860.0 k-in Lateral-Torsional Buckling MA = 392. l6 k-in MB = 534.84 k-in Mc = 426.6 k-in M~ = 3896 k-in Cb = 0.31 L.p = 128.86 in ~ = 403.625 ~M,,,~ = 2022.63 k-in LDS Rexburg Idaho Temple Compact Criteria 0.30vEs/Fy 12.04 Unbraced Length Criteria kl/r , = 71.05 < 200 kl/r r = 40.61 < 200 Lb min = 129.41 in D+L+S = 72.00 kip D+L+wW = n/a kip D+L+wW+S/2 = n/a kip D+L+S+wW/2 = n/a kip D+L+S+E/1.4 = 105.80 kip 0.9D+E/1.4 = 79.88 kip kip Minor Bending Yielding M,,,, = 120 k-in ~M,,,, = 2187.0 k-in M 0.0593 Mn 0.0549 ~ n% ~ v Combined Stresses If P„ + fP„> 0.2, then use Eq. H1-la Use Eq. Hl-la P 8 M;,~. P 8 Mug + ( ( M~ < 1.0 = 0.368 <L0 + ~P 9 + 9 ~nMnr ~aMn, ~P ~aMm• P M1z P M~.< Mw~ 21b1',~ ~aM,~x 2~1„ ~nM,~x ~nMr~, ~~ 204359.00 5/23/2005 LRFD Beam-Column Design 4-12-2005.x1s Col C-8 F-8 mid kP.ff Consulting Engineers LRFD Beam-Column Design for WF or HSS Sections Columns C-8 and F-8 from Mechanical Level to Roof Member size W 12x40 ~ Section is Compact d = 11.94 in S„ = 51.9 in3 A = 11.8 inZ SY = 11 in3 bt= 8.005 in Zx= 57.5 in' tr= 0.515 in Zy= 16.8 in' rx = 5.126 in Lb = 18 ft rY = 1.933 in FY = 50 ksi LDS Rexburg Idaho Temple Compact Criteria 0.30yEs/Fy 12.04 Unbraced Length Criteria kl/r . = 111.73 < 200 kUr r = 42.14 < 200 Lb min = 86.04 in Axial Dead load = 51.2 kip Live load = 4.8 kip Snow load = l6 kip EQ load = 7.89 kip Em = 19.95 kip Load Combinations 1.4D= 71.68 1.2D+1.6S+1.OL = 91.84 1.2D+1.6L+O.SS= 77.]2 1.2D+1.OE+1.OL+0.2S = 77.33 0.9D+1.OE = 53.97 1.2D+l.OL+Em = 86.19 0.9D-Em = 26.13 P„ = 91.84 kip 2c= 1.477 F« = 20.11 ksi ~P„ = 201.70 kip P„ 0.4553 ~Pn Major Bending Yielding M"x = 120 k-in ~M„x = 2587.5 k-in Lateral-Torsional Buckling MA = 392.16 k-in Ma = 534.84 k-in Mc = 426.6 k-in M~ = 2076 k-in Cs = 0.31 I-c = 81.94 in ~ = 231.642 ~M~x = 1434.72 k-in S2o = 2 Sps = 0.4075 D+L+S = 72.00 kip D+L+wW = n/a kip D+L+wW+S/2 = n/a kip D+L+S+wW/2 = n/a kip D+L+S+E/1.4= 77.64 kip 0.9D+E/1.4 = 51.72 kip kip Minor Bending Yiel~ting M,,, = 120 k-in ~M„~ = 742.5 k-in ~Mn% 0.0836 ~Mn 0.1616 v Combined Stresses If P" _ fP„> 0.2, then use Eq. Hl-la Use Eq. H1-la P 8 Mu, P 8 M"~ M~ l< 1.0 = 0.673 <1.0 ~P + 9 (~bMn. ~P + 9 l ~aM,., + ~nMro J 2~P,~ ~eM„z 2~P 14aM"x ~eM„Y 204359.00 5/23/2005 LRFD Beam-Column Design 4-12-2005.x1s Col C-8 F-8 top kp~ Consulting Engineers LDS Rexburg Idaho Temple Portland, Oregon Eccentric Braced Frame Chevron style Beam Beam Size W14X48 ~ Depth = 13.79 in Ry = A = 14.1 in2 Fy = AW = ..4.28 in2 F„ _ tf = 0.595 in 1.1 50 ksi 65 ksi bf = 8.03 in Lb = 11.83 ft tW = 0.34 in kl/r X = 74.37 < 200 rX ° 5.86 in kl/r y = 24.21. < 200 ry = 1.91 in Axial P~ = 92.2 kip ~,~ = 0.983 F~~ = 33.40 ksi P„ 0.2303 ~P„ = 400.26 kip ~P~ Compactness GPs = 0.30,/E/Fy = 7.22 :Flange is Compact Web Compactness 56.63 Web is Compact Link e = 36 in Vp = 0.6FyA,~ = 128.5 kip Mp = 3920.0 k-in 2M~/e = 217.8 kip Axial Effects 0.15FyA9 = 105.75 kip Vpa = 128.52 kip MPa = 217.78 klp • Max Link Length = 46.49 in V„ = 71.0 kip ~V~ = 128.5 kip V„ 0.614 ~Vn P„Aw 0.39 V„A9 Rotation SXe = 0.3 in B = hX Cl + 2 e 1= 0.065 rad SX = 1.5 in l a = 142 in emaX = 0.08 rad height, h = 204 in 204359.00 5/23/2005 Eccentric Braced Frame.xls Beam LDS Rexburg Idaho Temple kp~ Consulting Engineers Portland, Oregon Link Stiffeners For 0.08 rad: 30tw-d/5 = 7.442 in For 0.02 rad: 52tw-d/5 = 14.922 in For 0.065 rad: 13 in Lateral Bracing of Link Ends P„ = 0.06RyFybftf = 15.8 kip Outside of Link Length RyV~ _ 141.4 kip MEQ = 2545 k-in M9,~~;~y = 363 k-in M„ = 2908 k-in Use Eq. Hl-la Eq. H1-la = ~ n + 8 ~ ~ `" + ~ `4' 1 _< 1.0 = 0.809 <1.0 Pn 9 bM„x bMny J M Eq. H1-lb =P/n + Mnx + Uy < 1.0 2'liPn ~bMnx ~6Mny • • 204359.00 5/23/2005 ~~ Eccentric Braced Frame.xls Beam kp~ Consulting Engineers LDS Rexburg Idaho Temple 6/23 2005 Portland, Oregon ~~ ~" Eccentric Braced Frame Chevron style Brace Brace Size wsxss • Depth = 8.75 in RY = 1.1 A = 17.1 in2 FY = 50 ksi AW = 3.64 in2 F„ = 65 ksi tf = 0.81 in bf = 8.22 in ~Ir height= 188.21 in t,,, = 0.51 in Clr width= 134.25 in rX = 3.65 in Lb = 231.18 in ry = 2.10 in kl/r X = 110.32 < 200 kl/r Y = 63.31 < 200 Axial VP = 128.52 kip Vb = 16.29 kip Vgraviry = 2.6 kip 1.25RyV„ = 201.7 kip P„ = 247.8 kip ~~ = 1.458 F~, = 20.58 ksi P„ 0.8284 ~P„ = 299.08 kip ~P„ Compactness BPS = 0.30,E/FY = 7.22 Flange is Compact Web Compactness 40.50 Web is Compact Flange Plate Properties t = 1 in Flange Plate Bolts Fy = 36 ksi Type A490 N F„ = 58 ksi ~F„ = 45 ksi Width = 8 in Diameter 7/8 in Length = 15.00 in Area 0.60 in2 S~ = 1.5 in Shear Strength 27.1 kips SZ = 3 in No. of Bolts 10 S3 = 12.0 in S4 = 1.5 in Gage = 5 in Bolt Hole Diam = 15/16 in Failure Mechanisms Bolt Shear 541 kip Section Fracture of FP 696 kip Elongation of Bolt Holes 1,958 kip Block Shear of FP 1,325 kip Block Shear of Beam Flange 1,281 kip Gusset Plate Properties Plate Tension Capaci ty ~~SSe, = 3/4 in Width = 13.00 in FY = 36 ksi F„ = 58 ksi ~T„ = 316 kip Weld Length Gusset Plate Compression Weld size = 5/16 in Lp, = 0 in Total weld = .43.0 in P„ _ 87.00 kip Weld per leg = 5.4 in kl/r = 0.0 Actual weld = 8 in ~, = 0.00 Fcr = 36.00 ksi Block Shear ~P„ = 298.4 kip Plate ~R„ = 545.1 kip ok Eccentric Braced Frame.xls Brace ,tom k LDS Rexburg Idaho Temple 204359.00 pll Consulting Engineers 5/23/2005 Portland, Oregon ~"'C t~"'~ 530.9 kip Gusset Edge Buckling Controlling 530.9 kip Lf9 = 16.0 in ok No Edge Stiffener Req'd Gusset Connection to Beam and Column Flange Plate Net Section Fracture 6 = 35 deg An = 7.125 in` a (beam) = 14 in U = 0.90 b (column) = 18 in Ae = UAn = 6.41 in` e~ = 6.375 in eb = 6.875 in ~Rn = ~AeF„ = 625 kip a = 4.74 in p = 9.00 in Weld Capacity r = 19.38 in to = 5/16 in V~ = 93.7 kip QRn = 1.3.92 kip/in H~ = 66.4 kip Vb = 71.6 kip Demand/Capacity Ratio Hb = 49.3 kip Beam= 0.45 Column = 0.46 Brace in Compression V~ = 115.1 kip Vbtension = 71.6 kip Ho = 81.5 kip Vb ~,,,P = 87.9 kip Vb = 87.9 klp He tendon = 66.4 klp Hb = 60.6 kip He comp = 81.5 klp Beam Column W 14x48 W 12x96 k = 1.375 k = 1.625 d= 13.79 d= 12.71 ff = 0.595 ff = 0.9 tw = 0.34 tw = 0.55 Web Local Yielding ~Rn = 296.4375 klp ~Rn = 606.719 kip 0.24 Web Yielding ok 0.11 Web Yielding ok Web Crippling ~Rn = 147.3766 kip ~Rn = 504.733 klp 0.6 Web Crippling ok 0.16 Web Crippling of Eccentric Braced Frame.xls Brace LDS Rexburg Idaho Temple kp~ Consulting Engineers Portland, Oregon Eccentric Braced Frame Chevron style Beam Beam Size W14X48 ~ Depth = 13.79 in Ry = A = 14.1 inZ Fy = A,~ = 4.28 inZ F„ _ tf = 0.595 in 1.1 50 ksi 65 ksi bf = 8.03 in Lb = 11.83 ft tW = 0.34 in kl/r x = 74.37 < 200 rX = 5.86 in kl/r y = 24.21 < 200 ry = 1.91 in Axial P„ = 122.1 kip 7L~ = 0.983 F~~ = 33.40 ksi P„ 0.3050 ~P~ = 400.26 kip ~Pn Compactness fps = 0.30,/E/Fy = 7.22 Flange is Compact Web Compactness 54.62 Web is Compact Link e = 36 in Vp = 0.6FyA~, = 128.5 kip MP = 3920.0 k-in 2Mp/e = 217.8 kip Axial Effects 0.15FyA9 = 105.75 kip Vpa = 126.58 kip MPa = 212.47 kip Max Link Lengfh = 46.54 in V„ = 94.5 kip ~V„ = 126.6 kip V„ 0.830 ~Un P„Aw 0.39 V„A9 Rotation r 8Xe = 0.252. in B _ hs I 1+2 e1= 0.055 rad Sx = 1.26 in 111 l a = 142 in t3maX = 0.08 rad height, h = 204. in 204359.00 5/23/2005 Eccentric Braced Frame.xls Mech Beam ICpff Consulting Engineers LDS Rexburg Idaho Temple 204359.00 5/23/2005 Portland, Oregon ~ ~° Link Stiffeners For 0.08 rad: 30tw-d/5 = 7.442 in For 0.02 rad: 52tw-d/5 = 14.922 in For 0.055 rad: 11 in Lateral Bracing of Link Ends P„ = 0.06RyFybftf= 15.8 kip Outside of Link Length RyV~ = 139.2 kip MEQ = 2506 k-in M9~~;~r = 365 k-in M„ = 2871 k-in Use Eq. H1-la P„ + 8 Eq. H1-la = M,~ + M'~ < 1.0 = 0.869 <1.0 ~j Y'Pn 9 ,/, `VbMnr ,/ Y'bMny °y + ~ ~ + Eq. H1-lb = ~ <_ 1.0 2 P n b nx ~ b ny • • Eccentric Braced Frame.xls Mech Beam i• kpff consulting Engineers LDS Rexburg Idaho Temple Portland, Oregon. Eccentric Braced Frame Chevron style Beam Beam Size Wi4x38 ~ Depth = 14.1 in Ry = 1.1 A = 11.2 in2 Fy = 50 ksi A~,, = 4.05 in2 F„ = 65 ksi tf = 0.515 in bf = 6.77 in Lb = 11.83 ft tW = 0.31 in kl/r x = 91.9 7 < 200 rX = 5.86 in kl/r y = 24.22 < 200 ry = 1.54 in Axial P„ = 61.2 kip ~,~ = 1.216 Fcr = 26.98 ksi P„ 0.2383 ~P„ = 256.80 kip ~P„ Compactness GPs = 0.30,E/Fy = 7.22 Flange is Compact Web Compactness 56.42 Web is Compact Link e = 36 in V„ = 109.2 kip Vp = 0.6FyAW = 121.6 kip MP = 3075.0 k-in 2Mp/e = 170.8 kip Axial Effects ~V~ = 121.6 kip 0.15FyA9 = 84 kip Vpa = 121.55 klp V„ 0.998 MPa = 170.83 kip ~V~ Max Link Length = 40.48 in P„AW 0.20 V ~ Rotation SXe = 0.334. in B = hx Cl + 2 e = 0.067 rad Sx = 1.67 in J l a = 142 in AmaX = 0.08 rad height, h = 222 in 204359.00 5/23/2005 ~~ Eccentric. Braced Frame.xls 3rd Beam k ~ Consultin En sneers ~ LDS Rexburg Idaho Temple 204359.00 /" g g 5/23/2005 Portland, Oregon ~ S--l Link Stiffeners For 0.08 rad: 30tw-d/5 = 6.48 in For 0.02 rad: 52tw-d/5 = 13.3 in For 0.067 rad: 8 in Lateral Bracing of Link Ends P~ = 0.06RyFybftf = 11.5 kip Outside of Link Length RyV~ = 133.7 kip MEQ = 2407 k-in Mgravity = 559 k-in M„ = 2966 k-in Use Eq. H1-la Eq. H1-la = I'u + 8 ~ M"x + M`0' l < 1.0 = 0.996 <1.0 ~P 9 ~bMnx ~bM,ry J Eq. H1-lb = Pu + M°x + Muy 5 1.0 2~Pn ~b Mnx ~bMny ~~ • Eccentric Braced Frame.xls 3rd Beam • • • LDS Rexburg Idaho Temple kpff consulting Engineers Portland, Oregon Eccentric Braced Frame Chevron style Beam Beam Size W14X48 ~ Depth = 13.79 in Ry = A = 14.1 in2 Fy = A~, = 4.28 inZ F~ _ tf = 0.595 in 1.1 50 ksi 65 ksi bf = 8.03 in Lb = 11.83 ft tW = 0.34 in kl/r x = 74.37 < 200 rx = 5.86 in kl/r y = 24.21 < 200 ry = 1.91 in Axial P„ = 65.5 kip ~~ = 0.983 F~~ = 33.40 ksi P„ 0.1636 ~P~ = 400.26 kip ~P~ Compactness BPS = 0.30,iE/Fy = 7.22 Flange is Compact Web Compactness .58.43 Web is Compact Link e = 36 in V„ = 112.2 kip VP = 0.6FyAW = .128.5 kip MP = 3920.0 k-in 2M~/e = 217.8 kip Axia! Effects ~V~ = 128.5 kip 0.15FyA9 = 105.75 kip Vpa = 128.52 .kip V„ 0.970 MPa = 217.78 kip ~V~ Max Link Length = 48.80 in P„AW 0.18 V„A9 Rotation SXe = 0.221 i n B = hx Cl + 2 e) = 0.053 rad Sx = 1.105 in J a = 142 in emax = 0.08 rad height, h = 186 in 204359.00 5/23/2005 ~ ~~ Eccentric Braced Frame.xls 2nd Beam k ~ LDS Rexburg Idaho Temple p Consulting Engineers Portland, Oregon Link Stiffeners For 0.08 rad: 30tw-d/5 = 7.442 in For 0.02 rad: 52tw-d/5 = 14.922 in For 0.053 rad: 11 in Lateral Bracing of Link Ends P~ = 0.06RYFybftf = 15.8 kip Outside of Link Length RyV~ = 141.4 kip MEQ = 2545 k-in M9~,,;~y = 879 k-in M„ = 3424 k-in Use Eq. H1-lb Eq. H1-la = P° + 8 M~ + M+0' <_ 1.0 ~P 9 ~bM~ ~bM"y P M"x M"'' " + + Eq. H1-lb = 2~1'" ~bM"x _< 1.0 ~nM"y • a = 0.868 <1.0 204359.00 5/23/2005 ~~ Eccentric Braced Frame.xls 2nd Beam i~pl1 Consulting Engineers Portland, Oregon Braced Frame Connection Eccentric with Wide Flange B races Brace Size W8x48 Depth = 8.5 in A = 14.1 in` tr = 0.685 in br= 8.11 in Tu = 344.0 kip Flange Plate Properties t = 3/4 in FY = 50 ksi Fu = 65 ksi Width = 8 in Length = 13.3 in S, = 2.25 in Sz = 3 in Ss = 9.0 in S,= 2 in Gage = 5 in Bolt Hole Diam = 15/16 in Failure Mechanisms Bolt Shear 433 kip Elongation of Bolt Holes 1,316 kip Block Shear of Beam Flange 1,018 kip Gusset Plate Properties tgusset - 3/4 In FY = 50 ksi Fu = 65 ksi Weld Length Weld size = 5/16 in Total weld = 49.4 in Weld per leg = 6.2 in Actual weld = 7 in Block Shear Plate ~R„ = 601.9 kip 588.4 kip Controlling 588.4 kip ok Gusset Connection to Beam a nd Column 6 = 37.4 deg a = 15 in b = 25.5 in e~ = 6.705 in eb = 0 in a = 3.04 in p = 12.75 in r = 16.05 V~ = 273.3 in kip H~ = 143.7 kip Vb = 0.0 kip Hb = 65.2 kip LDS Rexburg Idaho Temple RY= 1.1 FY = 50 ksi Fu = 65 ksi Flange Plate Bolts Type A490 N ~F„ = 45 ksi Diameter 7!8 in Area 0.60 in2 Shear Strength 27.1 kips No. of Bolts 8 Section Fracture of FP 585 kip Block Shear of FP 1,115 kip Plate Tension Capacity Width = 12.00 in ~Tn = 405 klp Gusset Plate Compression LP, = 0 in ~Pn = 344.00 kip kl/r = 0.0 ~. = 0.00 F~, = 50.00. ksi rpP„= 382.5 kip ok Gusset Edge Buckling Lfy = 13.5 in No Edge Stiffener Req'd Flange Plate Net Section Fracture An = 5.34375 in` U = 1.00 Ae = UAn = 5.34 in` ~Rn = ~AeFu = 521 kip Weld Capacity to = 5/16 In ~Rn = 13.92 kip/in Demand/Capacity Ratio Beam = 0.31 Column = 0.87 204359.00 5/23/2005 ~jt 235 30 5/16 Brace Gusset 4-14-2005.x1s Grid 8 Main • kp~ Consulting Engineers Portland, Oregon Baseplate FY = 50 ksi Bolt Spacing Lat = 8 in T„ = 334507 Ib MP, = 334.51 k-in Sm,,, = 6.690 in3 tmin = 1.83 In t = 2 in Anchor Bolts Bolt Size = 1 1/4 in Embedment = 36 in Footing width = 1.5 ft Footing depth = 18 ft S2 = 2 Tension Spacing = 9 in P = 334507 Ib P„ = 669014 Ib NS = 920.39 kip Nib = 227.08 kip N~b9 = 227.08 kip NP„ = 2240.00 kip ~N„ = 227.08 kip LDS Rexburg Idaho Temple Concrefe Bearing f~ = 5000 psi A~ = 576.0 in` Az = 792.0 in` APP = 1722.3 kip Pu = 803.7 kip Bearing is ok nna~5 = 10 A5e = 1.23 in` f~, = 75 ksi Anchor Spacing ok AN = 324 in` ANO = .792 in` W~ = 1.0 Wz = 1.0 Wa = 1.25 Wa = 1.4 Nb = .444061 Ib Ab,~ = 4 in` NP = 160000 Ib N„/~N„ = 2.946 Tension is NO GOOD Shear V = 70570 Ib V„ = 141140 Ib Long Spacing = 8 in Lat Spacing = 8 in VS = 441.79 kip V~b9 = 40.09 kip VIP = 454.15 kip ~V„ = 40.09 kip V„/~V„ = 3.521 Shear is NO GOOD • Combinations Concrete 6.47 No Good Steel 1.05 ok c~ = 18 in 'Grade beam present -- edge spacing is not an issue. A~ = 1674 in` Ago = 1458 in` Ws= 1.0 Ws = 1.0 W~ = 1.4 Vb = 24939 Ib ~P = 2 204359.00 5/23/2005 ~~~ ~ Brace Gusset 4-14-2005.x1s Grid 8 Main • Sheet No. Project BY / ~ i ~ Location Date T~IJ ~ neers Consulting Eng Job No. Client Revised PorilandAregon Date ,_ t • c 4'~ 3~ ~ ~ i~gf.3 ~ 1646 2.~~ mrD r l r ) Y 3l L / ~ ` 30-5/ ` 30.5 ~ r ; '~ ~P ~ ~° ~~}3`~~~)~7;31 + J~~ 3~` 5.637 ( \1l3 -~ ~7 ~SouD 1 ~~ ~~_ g,k ~ 5,37 k'U = o.c~7 ~3a = Zai.S~l-4° f?~ = 0.014 I - 2.Ibf3 a~g~s ~ b.t7~ +~.~~ o,v39--- ~~-z~5 ` a.b34- ~= 2.2~~ -o.9r9 +~ 2,~6$ = 3,SZ~ _ ~.1~? . - ! .( ~ 5.6/37 l ~--J3 ~ .lam L } ~ ~~)~ + /1 --~.= ~.OOa 4~ / }} *Z ~, 1S. _ ~.~.~ - ~~~ + wry ~2rf 2.24- o•~III ~ Z.I~`b 2,.~oq- r _ ! _ ~- ~ ~ 3:~ 0,2~-- :~ • Project By Shee t N o . Consulting Engineers Location Date / , ' ~f _ ~'" V Client Revised Job No. Portland Or , egon Date v ~ v ~ 64~ ~j d. ~ # ~" ~4.6~ i ~l`av ~~~ ¢ ~ ~ ~ . ~2 - 93.02 z~ ~= o. of o7S ~' I L 4'L' ~9.'~3 ~3 t6.q'G-~ pp ~ b. o~~ Zz f-'2 - ~}.~3 ~~`31t~~~=-2113 ~- IZ 4~~~ , 1~ `~ ~// 2 • ~o-~ _ I = 9.7~ a `~~~ ~ ~ 6-4g ~_ a.~~1-3~-- `3~~ G ~.6 7 1J ~~' ~~3~ ~(~33~- 3.~( ~ = i~ ~~~~ ~~~~~ _ X3.61 ~9 =o.o~3Sa ~`~ ~~ ~~3Y~1! 5~- ~.20 ~r - o_31Z39 .~- 2 r ~ d~rb - l,2jS `J~lttP 2 + 2 .+~ i~ ..-QjZ. 0.15 ra,Zfe+a.o7-F6.3~.~ o,cZ ~L Z r ~ - ~.jS~34 • d~ _ (~ Z~~r ~-~ ~= 52.74 ~, _ mot a`l ~ b = ! 5, ~ ~~ = o, -~33a (~7 b,iSto.bZ-~ 3 d ~ • Project By Sheet No. . Consulting Engineers Location Date Client Revised Job No. Por}Iand Ore on . g Date - C~ . p7 JT SZa q r dg-4-io = o,oo4F~ D,o~i-~a~~ ~-~'~C' ~g9.ro= O.((°vZ?~° 3 AA ~ ooTS,Fp.o~.~ ~r,-rz P b.aZl(~ ~6. t ~ I 1 ~f~ - ~L_7 f ~5-9-~~ ~- r.-iz a. (73x+ o,,ll$Z3~ 0.6Zr6S ~ ~- f / 3 • a= s~r~ - d~T~ ~- d~,~ _ ~'-~3~ - i, zl s+ 3. X93 = (I .~17 ~ f g~3 ~~ ~J _ rt.7r7 '" O. b • • [] Sheet No. Project By LocaTion Date ~ Consulting Engineers Job No. Client Revised Portland,Oregon Date S~'~~- t.~4Lt_.5 ~j -_ 331. °a -L `rmaQ~ . 33t `43 165,' k ~lc~ ~ "r ~-- = ~12~1Zr 3d~ ~'~°~° = ~ ~~, Z. f,~ ~ . D~ ~ = c~ .~ I'L ^[~2-T ~.Gb7v Hoe~Z 24c.r `' r ~ = ~"i'Yo.`I' ~- 'd Gvar~ar.-~5 ..~nT ~~'a/ wT ~}~r~~so, =(%Z~~'Zt3o~ft.67~ +o.ooZaC6c.=oo'~~ f ~ 2'x''7 v~s~~~T _ 8 (rz.9~(Z.67 ,~4~c~ ~ c. Cx~o(_(~,o~~~ s 3~4 .l ~ ~. t , (~ t<t~ - h - ~ D, ~ % .~- dam= ~ Q ~ 30 .~ GI ~ 2 ~ ~n.-rz-', ~.F( 7 ~--! +6 . ~n 5r ycy~Y.-'7 - YJ ~ ~ z ~ ~ , z57~ Z J 4~fia < o . vo 2~ C(oo~cr~~~ I ~ 5.4~ ._---- - ~ ~'. 5' k ~ ~ ~ Z~ ~~ ~~1 Y .~ F3 (t~t..d ~.~7)~Z~~~ ~' o,`~ zor/SE.aoC~?I (~~ ~ 23.E ~~ ~.zs~. rv,s _ 7 ) 2 ~ ~,~= 2 ~.z7 t L,'~ 7 z~ ~ 2 '3 > Z .. oG~ = 2 //h - ~.CXiZ,D ~~S 7j'r,., Y~"~c t~INyri,}- ~s = e7,00~pC/(7jla/ 1 _ O.~IL(N/~ ~; ~~Ci tZo • ~sti ~ 0.3~~~ $y4./ ~ ~ 1 ~ = o'~~}(55~C[~~~G~~ - (7 = t[.5r,.~' A-~ S76 J }Y~ ins, . ~w - 2(I } i>F)~~` = 552,,NZ A~, = ~Z = ~?ro,r~` A~.,`~2~~z~i= s ~~ = CZh ` Z C i • %z~~ ~56 - 3%x - I ~/_ ~= 1173 t.~i ~ = ~26~SE) = 1456rr' ~h. ° ~2~x ~~_ r.,ol, l JJJ ~ = ~o.~S~o_7~~o.`~S~Q~ZbZ - 7_~1-~ + (C~X~.o4~~ ~ SIB k • Sheet No. Project By ltin En ineers ~ C Location Date ~~ g g onsu Job No. Client Revised Portland,Oregon Date ~~~t,t~sE 5'" v- Ado ~a.~(E2-~-Erj 'f~'~~Ae>~ ~~~4vR~Trvn~~ ~dS'r- ~JGtt.C~J[~ L.Gt4c0 lo~ SI{~2 ~-~4t~. r~~STE.IL r4'( (..0~2_ ~P4~1_ S`~F~F~.T, y ~ T = ~, Fr AS - ~. I (5-0 ~r xrr.7~NL~ ~ ~3,~~ Gcm~k~~tav cgPA[=+`~ ~~ w43 +~9~ 6r2,4cE: "~ ~ ~~ "Cr TLS ~D.6S~r~rY ~_ (r. ~.xr`c',.S lZ~ .~ r.4-~2 =(~.sS~n•7XZl.z3) ~(D.~;~) C~~ ZU. (~ _ Zt,Z31c5, • • ~(Fk-'i~xr; c Ge~r.ir'I~~TS T .- ~~} 3.51-gs ~,->4~ - 470. G3 ~-- Cam. ~3~('~ill . 1) rj7N 4~ c 'C ~ . ~/ k try ~~~ ~vo,~~.-DTs Co,~3)(v~. r) c~s47 = 43.2 I~ oTA~ ~¢~s ~u = ~~ 9 k a3. Z = 4gZ. f k ~or~-~ 470. ~ - ~.~ = 421'. 3 k ~¢e-r iEr~°x v~ car~Gt -t ( ol`' Pl uk'3(EQ P-F~Nrni2C.~wt~,.~T TY r lp.`Y)~~G~J C~PaG'f1 ~S c~ ,a..,c~y ,1 ~} ti G~,3 ~- ~.~. t'~2oG v,J 4Z4.3t< ~_~ I- ~ n~ ~ r.2 a~ ~o ~ i24.3~ /d(6~,3~~ Z°C® +~~ = ~.oz(429 ~~)= 8.51 (~b H» YoIZ L~z J `Iv /la"~ ~) = 87J'Z-/~ /~~~ . o.o{ ~~/~~' i~,7J2 t,.)Z •~ GQ,.~Tl2c~.5 p~J~-t,.e~Ph-.Er+Z L F~Y.~ t4~,e -et G I~,aiy2 = '!j `~ µ t..~ `NG~~S~ Go~..JG2~>~~ CSmt3~,0 ~1t'+~sE~~ 9'2 r~ • Project . Location ~~Consulting Engineers Client Portland, Oregon Sheet No. B Y Dare Revised Job No. Date P,.~H.+Lr`<~fr `~er1~- Gcx..v~.n.-15 6~~5 A,Z~ g.~ Q~P = G~.4-t~_ ~rrw = 2i9. f ~ Gn..~~riZ. ''u~at'~j ~, = 2v ~ 20 _ 4o9,rt LGz _ G7G 1.3 ~°P~ ' ~ ~a.$s~Gq Az , _ <O.G~~O. SS~A~~(4~~(r 3) _ (o6o.xS jc_> GAS k- P~sEr(t T,~~~~~ S ~- !, ~ t-1 _ 438. z-_.-,~.., _ ro. ar r,..a' ~~ ' ~o. vss~C 50 ~.., ) ~P55 = n.~5~o.~SF~~. r~.~s(U;rsY~s`J~r'N~ _ X3.1 P~ 2t9.1 _ ~, g3 ~ 1. z a~ ~5~ [~) I`(~-'~~ FI~S`~- ~a~ ss • Pik' _ _ ___ P~=6~4k ~ky~~ o.oj45 v,pl~1~'3d>= 143 i„~i 3•-= Gwr-,r!~S Q ~ ~y ,.~ ((~k~~ u5E C2'~~~7 J~-T Sheet No. Project BV Location ~ Date ~~ ~ Consulting Engineers Job No. Client Revised PortlandAregon Date Er,~ rcrs G Pco..,,p = 702.2 !L ~. (D6o,~ k- y X2.2 k ~. ~r~ ~ cr~.EsS ~2~ . ! .P _ ~ 4.4x(` Z 3~g .o k-~,..( ~ ~ Sip ~' (o . `vS~~Svk~~~ .~,r = _ (. SS„~ --,d ~ 2~ , sa,.-.pry. .~ ~ bS ~= ~$~ (`la, . ~ F-j SS4 G2~~ ~S • ~r ~>0.~f'~¢-~ dS = 2~ ,~ Zia = ~7L r ~1 n.~~ - ~a.9~Cc-~7 ~a.go~b,~~Co.65;Y~1C67L - 7a4} ~- ~(~a~~^7.~¢/~ s • Sheet No. Project By . En Consultin ineers Location Date / `~"- V g g Job No. Client Revised Port landAregon Date C~~t~ g J= 3a9.s ~~,4~ ~ 3zg,s= ~bS k J ~ [ _ ~3t ar12).l'f°G'O = (i /• ~J ~/.,, _' Q - D_ o°Zo / ,,., ' e ~~ { - 9 3G. ~ k • `~~gE~...E,.rr =~'SYi4,~-~.tZ~/~.~ ~ c.ccz~C~~ro~~ IL~,s j.ls ~. oC~=3 (4.zs " s 4 z~ .~ k ~ 29.7 ~r ~ l~p,~p~ = ro~°s,~,4-.zs_,z).t ~ ~ ~s.z~>4z °~ v ~hMrG..sl= gCi2°)~z s ~ t fl.~z.(r.~~)1~~"' _ I.~S 2~ a'.s loc /. 2,~' l ~~ 274.vk _ Z~ S{~-~-~ l~~' , ` _ t°~~~~g~,(~t X07. z14 > 254,f3k rv o.cr3lc~~°ltfB7 = I _qg r~Z PJ' OJn-~DG1L-T ~r..rro 1 ~P o.S~D~B~"~-tGC/~-Qrs7~+~yt~t~ r ~a.~)~o.7o~~<c.8~~4-~~(9~ - lo.t3) 1 ~. Gcxz~o~ ro.g)~ = 2223, 5'~ > 6 S~, t k ~F • • Sheet No. Project BY . lti E i C Location Date ~~~ neers onsu ng ng Job No. Client Revised Portland, Oregon Date ~ ~ ~12h . ~. z~~~~ J„ U.,~ _ ~? ~ `~ BCE. = Z99 k ~P~ _ ~~ y~er~-L c~N•,e~w~ ~'- 3~0~,~ 52 , 2351 Y~_ ~cos5~= t8~.9-~ • I.JEt-fJ L~,c.kt'('-{ To i°~..=-~Q d2'~i' ~~~4-k G,4?a c, ~'~ ~ r~F d4~r¢ok1 1 i~ = 0.75~,7S~k /~ " (o.75xc~.~3~~7~X ~~ ~~~- ?Q.to ~`/g.~-r X57 0.~~(0.4~~~AS. = ~o,~5Xo.4~'7s~~ rr~ 3g `S' '-(f3o~T' pPinr4N~: J- 1~~.4b ~= I~~k 1~3 -~ w~~~~T, ~ Pu `1 ~ . V . 2 ~~~ ~~~ • C~~f 7~,6) C~k~~~ ~,v ~' _ Z35k _ ~,qZ ~~ 2^ 7 . _ __ ~ ___ _ s ~~ ~s~ C~~ I Yz ~ T, 5s4' 6E's~ sS ad.rb,e "C~n= ~„~ f ~~ - 3.92 -~S.E4-~ _ ~,9-/~1~,~ ~~b.zsFe.~) Co.~ 0.7~~(70~ • Project . Location Consulting Engineers Client Portland, Oregon 'iaTEti i-caQ C~uw.nlS T~~„„P , 65~ . ( k ~~~~ ~~~ ,4sr 20" % ~1'' ~ 6~ ,.~' ax ~ ~ ~ Z ~ Sheet No. B Y Date ~~ Job No. Revised Date $~P = x(0.85-~ ~ ~, ~~) = a. 6 (a. $~ )~4)~b~o) Cl.z~) = R ~~z ~ ~ 6~~ k ~ • s~ ~ ~ s ~ a ~ sn) = d.`t4 ,U M,.-~ ~ Zo ~t ~r~ ,, pis,-~e~ _ _ _ _ _ _ _ __ ,45-r , (~to ~ ~ 3 SZ r.jZ • • Project Location ~ Consulting Engineers Client PortlandAregon ~t~ ~~ ~-r!~s ~~~ 3~~ ~~ ~ 9zt .9- k P~~ ~ S7a. ~a k G~~'eErE ~st~+.~, at = ~ ~ Zo , ~ntr'" ~Z ' ~Z'`I~ = Sq'ff~r~Z B Y Sheet No. Date Revised Job No. Date t34-64- ~ ~" . ~ --. use Z ..U ..,.a,K dZ , '4"°° ~P ~ ~ (o.~s~'~Ft,~ ~ _ ~o.6)Co.~s~4X9-~~z~} = 1632 ~ > 9zl ~ .~ • pu~'>~ Tet~~u-,~-~~~~ Gp,,, pa ~ ssr~ ~sR Z~w o.`~ Y~ CoR~~~~L1,5~.5~ I . S¢ tJ 2 'z.- ~ ~ n' ~ ~~s _ [ t3.4t~tz 3.2 Z. ¢ - ~ ~ = ~-~ ~~ K~(~~~~1 3.9-1 r /2 q)i Cc, ~~~~.asX4xa~ _ _ _ _. ~~n~ _ ~17v?I~~~a ` 3 ""t ~p L Zp, SS E~yK. 5 0 • • Sheet No. Project BY Location Date ~~ ~ Consulting Engineers Job No. Client Revised Portland.Oregon Date ~2i'aS G1 F C'c~..,~' ?~l ~ • T~ •t~~ ~, _ ~21.Sxzo,S~~ 441 rN ~z ~gZ1(`7Z~" X464 r.-> Pest;7is. Ts{r~c,JFi55 G.n1r"~~Sre~ ~~ ~ / o,a ry ~x-+ 2 . 7~/ / s:a¢ d COX X 9 Zls ~s> ~.4~~~ -r~slo+-~ ~ , ~ s ~Srg 1~.5~ S? 2 k- e.~ S g ~ (0 55 r 6 ~t 2, S~ _ (°t ~ .~ `---- ~3~s c.>~ 2 ~`aE~ "`"'' , b ~2 o S Est, Sr0 • • kp~ Consulting Engineers Portland, Oregon Base Plate Connection Gridlines 11-B and 11-G Baseplate Fy = 50 ksi Bolt Spacing Lat = 16.5 in T~ = 571 kip Mpi = 1177.69 k-in Smin = 27.710 Ina tmin = 2.85 In t = 2 8/9 i n Anchor Bolts Bolt Size = 1 1 /4 in Embedment = 36 in Footing width = 10 ft Footing depth = 3.5 ft S2 = 1 LDS Rexburg Idaho Temple 204359.00 5/6/2005 ~~ l.~ Concrete Bearing f~ = 4000 psi A~ = 440.8 in` AZ = 7224.8 in` APP = 1798.3 kip Pu = 921.0 kip Bearing is ok nbo~ = 8 Ase = 1.23. In` f„t = 120. ksi Tension • Spacing = 8 in Anchor Spacing ok P = 571 kip AN = 13456 in` P„ = 571 kip ANO = 11664 in` NS = 662.68 kip ~~ = 1.0 Nib = 572.75 kip yrz = 1.0 Nnb9 = 572.75 kip yrs = 1.25. Npn = 1433.60 klp yr4 = 1.4 ~Nn = 572.75 klp Nb = 397180 Ib Ab~9 = 4 in` NP = 128000 Ib N„/~N~ = 0.997 Intera ction with Shear Req'd Shear V = 0.00 kip ci = 18 in V„ = 0 kip Long Spacing = 8 in Lat Spacing = 16.5 in A~ = 1903.5 in` Aga = 1458 in` VS = 353.43 kip yrs = 1.0 V~b9 = 45.58 kip yrs = 1.0 VIP = 1145.50 kip yr, = 1.4 ~Vn = 45.58 kip Vb = 24939 Ib 0.00 k~P = 2 V„i~V„ = 0.000 Full tension strength allowed Combinations Concrete 1.00 ok Steel 0.86 ok Brace Gusset 4-14-2005.x1s Grid 11 base • n u • kp~ Consulting Engineers Portland, Oregon Gridlines 11-C and 11-F Baseplate Fy = 50 ksi Bolt Spacing Lat = 16.5 in T~ = 258 kip Mpi = 532.13 k-in Smin = 12.521 in3 tmin = .1.91 In t = 2 in Anchor Bolts Bolt Size = 1 1 /4 in Embedment = 30 in Footing width = 10 ft Footing depth = 3.5 ft S2 = 1 Tension LDS Rexburg Idaho Temple Concrete Bearing f'~ = 4000 psi A~ = 440.8 in` AZ = 7224.8 in` ~Pp = 1798.3 kip Pu = 921.0 kip Bearing is ok nbons = 8 ASe = 1.23 in` f„t = 75 kSl Spacing = 8 in Anchor Spacing ok P = 258 kip AN = 9604 in` P„ _ 258 kip ANO = 8100 in` NS = 414.17 kip W~ = 1.0 Nib = 434.41 kip yf2 = 1.0 N~b9 = 434.41 kip Ws = 1.25 NPR = 1433.60 kip Wa = 1.4 ~Nn = 414.17 kip Nb = 293102 Ib Ab~9 = 4 in` NP = 128000 Ib N„/~Nn = 0.623 Intera ction with Shear Req'd Shear V = 0.00 kip c~ = 18 in V„ = 0 kip Long Spacing = 8 in Lat Spacing = 16.5 in A~ = 1903.5 in` Ago = 1458 in` VS = 220.89 kip Ws = 1.0 V~b9 = 45.58 kip yrs = 1.0 VIP = 868.81 kip W, = 1.4 ~Vn = 45.58 kip Vb = 24939 Ib .0.00 k~P = 2 V„/~Vn = 0.000 Full tension strength allowed Combinations Concrete 0.62 ok Steel 0.62 ok 204359.00 5/6/2005 ~~(~}' Brace Gusset 4-14-2005.x1s Grid 11 base ~~~~ Combined Footing Walls and frames on Gridline 5 Frame Loading Col DL = LL = E~rt = 1 247000 64000 -.194000 Ibs 2 262000 101000 179000 Ibs 3 247000 101000 -179000 Ibs 4 262000 64000 194000 Ibs Wall 1 74000 0 0 Ibs 2 74000 0 0 Ibs E~,;~ = 177634 Ibs E~;;= 154134 Ibs H = 17 ft D+L P columns = 1496000 Ibs P footing = 435600 Ibs P overburden = 0 Ibs Efy = 1931600 Ibs M eq = 0 Ib-ft e = 0.00 ft within kern bearing length = 88 ft Footing Dimensions dist L = 88 ft -39.17 w = 11 ft -13.50 t = 3 ft 13.50 39.17 Soil Properties Q allow = 6000 psf -27.92 ovrbrdn = 0 psf 27.92 D + L + E/1.4 P wlumns = 1496000 Ibs P footing = 435600 Ibs P overburden = 0 Ibs EFy = 1931600 Ibs M eq = 12179881 Ib-ft e = 6.31 ft bearing length = 88 ft Q max = 1995 psf < Q allow, ok Q max = 2853 psf Q min = 1138 psf 1.2D + O.SL + E 0.9D + E/1.4 P columns = 656800 Ibs P columns = 1049400 Ibs P footing = 522720 Ibs P footing = 392040 Ibs P overburden = 0 Ibs P overburden = 0 Ibs Efy = 1179520 Ibs EFy = 1441440 Ibs M eq = 5640056 Ib-ft M eq = 12179881 Ib-ft -12179881 e = 4.78 ft within kern e = 8.45 ft bearing length = 88 ft bearing length = 88.00 ft Q max = 1616 psf < Q allow, ok Q max = 2347 psf Q min = 631 psf within kern < Q allow, ok within kern < Q allow, ok Footing Shear ~Vn = 454.2 kip Vu = 450.2 kip Vu = 361.9 kip Vu/~Vn = 0.991 Footing Moment -End Mu = 49933.7 Mu = 31636.4 0 9 bd~ 0.0131 w = 0.0132 p = 0.00088 ~As = 0.46 sq.in/ft Footing Moment -Middle Mu = 39356.2 Mu = 31636.4 0 9 bd~ 0.0104 w = 0.0104 p =0.00069 A, = 0.36 sq.in/ft • ~~-~ Combined Footing Walls and frames on G ridline 8 Frame Loading. Col DL = LL = Ern = 1 206300 51000 -116240 Ibs 2 230500 64800 73210 Ibs 3 230500 64800 -73210 Ibs 4 206300 51000 116240 Ibs Wall 1 79000 0 0 Ibs 2 79000 0 0 Ibs E~~¢ = 174973 Ibs Ems;; = 154510 Ibs H= 19 ft D+L P columns = 1263200 Ibs P footing = 396000 Ibs P overburden = 0 Ibs Efy = 1659200 Ibs M eq = 0 Ib-ft e = 0.00 ft within kern bearing length = 88 ft Footing Dimensions dist L = 88 ft -39.17 w = 10 ft -12.50 t = 3 ft 12.50 39.17 Soil Properties Q allow = 6000 psf -27.92 ovrbrdn = 0 psf 27.92 D + L + E/1.4 P columns = 1263200 Ibs P footing = 396000 Ibs P overburden = 0 Ibs EFy = 1659200 Ibs M eq = 10506907 Ib-ft e = 6.33 ft bearing length = 88 ft Q max = 1885 psf < Q allow, ok Q max = 2700 psf Q min = 1071 psf 1.2D+0.5L+E 0.9D+E/1.4 P columns = 546120 Ibs P columns = 928440 Ibs P footing = 475200 Ibs P footing = 356400 Ibs P overburden = 0 Ibs P overburden = 0 Ibs Efy = 1021320 Ibs Efy = 1284840 lbs. M eq = 6260177 Ib-ft M eq = 10506907 Ib-ft -10506907 e = 6.13 ft within kern e = 8.18 ft bearing length = 88 ft bearing length = 88.00 ft Q max = 1646 psf < Q allow, ok Q max = 2274 psf Q min = 646 psf within kem < Q allow, ok within kern < Q allow, ok Footing Shear ~Vn = 412.9 kip Vu = 385.2 kip Vu = 307.8 kip Vu/~Vn = 0.933 Footing Moment -End Mu = 38265.7 Mu = 23974.2 0~_ 0.0101 ~ = 0.0101 p =0.00067 A~ = 0.35 sq.infft Footing Moment -Middle Mu = 30135.7 Mu = 23974.2 0- 9 b - 0.0079 w = 0.0080 p = 0.00053 A~ = 0.28 sq.infft • S~~ ~ Combined Footing Frame on Gridline 71 Frame Loading Col DL = LL = Ern = 611/G11 153500 31500 348230 Ibs C11/F11 238120 39500 226360 Ibs Eho,u = 0 Ibs Ems;, = 0 Ibs H = 17 ft D+L P columns = 462620 Ibs P footing = 130374.8 Ibs P overburden = 0 Ibs Efy = 592995 Ibs M eq = 686932 Ib-ft e = 1.16 ft bearing length = 24.8333 ft Q max = 3056 psf 1.2D+O.SL+E P columns = 610988 Ibs P footing = 156450 Ibs P overburden = 0 Ibs Efy = M eq = 767438 0 Ibs Ib-ft e = 0.00 ft bearing length = 24.8333 ft Q max = 3090 psf dist L = -7.42 w = 7.42 t = Q allow = ovrbrdn = Footing Dimensions 24.83 ft 10 ft 3.5 ft >oil Properties 6000 psf 0 psf D + L + E/1.4 P columns = 873041.43 Ibs P footing = 130374.83 Ibs P overburden = 0 Ibs EFy = 1003416.3 Ibs M eq = 41311 Ib-ft within kern e = 0.04 ft bearing length = 24.8333 ft < Q allow, ok Q max = 4081 psf Q min = 4000 psf 0.9D - E/1.4 P columns = 762879 Ibs P footing = 117337 Ibs P overburden = 0 Ibs EFy= 880217 Ibs M eq = -80782 Ib-ft 1210459 within kern e = 1.38 ft bearing length = 24.83 ft < Q allow, ok Q max = 4722 psf Footing Shear ~Vn = 490.3 kip Vu = 568.9 kip Vu = 142.46 kip Vu/~Vn = 1.160 Footing Moment -End Mu = 57845.35 Mu = 20606 0 9 bd~ 0.0108 w = 0.0109 p = 0.00073 As = 0.45 sq.in/ft within kern Footing Moment -Middle Mu = 106660.8 < Q allow, ok Mu = 55872.09 0 9 bd~ 0..0200 ~ = 0.0202 p = 0.00135 A, = 0.83 sq.in/ft within kern < Q allow, ok ~I ~_J ~~~~ Combined Footing Frame Loading Col DL = LL = E,~,, _ 1 370900 239000 0 Ibs 2 0 0 0 Ibs 3 0 0 0 Ibs 4 0 0 0 Ibs Wall 1 0 0 0 Ibs 2 0 0 0 Ibs E;~,~ = 327190 Ibs Ems;; = 243427 Ibs H = 17 ft D+L P columns = 609900 Ibs P footing = 211200 Ibs P overburden = 0 Ibs Efy = 821100 Ibs M eq = 0 Ib-ft e = 0.00 ft bearing length = 88 ft O max = 1166 psf 1.2D + O.SL + E P columns = 1129160 Ibs P footing = 253440 Ibs P overburden = 0 Ibs Efy = 1382600 Ibs M eq = 9700489 Ib-ft e = 7.02 ft bearing length = 88 ft O max = 2903 psf Wall on Gridline 13 Footing Dimensions dist L = 88 ft 0.00 w = 8 ft 0.00 t = 2 ft 0.00 0.00 Soil Properties O allow = 6000 psf 0.00 ovrbrdn = 0 psf 0.00 D + L + E/1.4 P columns = 609900 Ibs P footing = 2t 1200 Ibs P overburden = 0 Ibs EFy = 821100 Ibs M eq = 8111280 Ib-ft within kern e = 9.88 ft within kern bearing length = 88 ft < Q allow, ok Q max = 1952 psf < O allow, ok Q min = 381 psf 0.9D + E/1.4 P columns = 333810 Ibs P footing = 190080 Ibs P overburden = 0 Ibs Efy = 523890 Ibs M eq = 8111280 Ib-ft -8111280 within kern e = 15.48 ft Outside kern bearing length = 85.55 ft < Q allow, ok O max = 1531 psf < O allow, ok O min = 0 psf Footing Shear ~Vn = 206.4 kip Vu = 202.3 kip Vu = 159.7 kip Vu/~Vn = 0.980 Footing Moment -End Mu = 16737.6 Mu = 9404.31 0~- 0.0111 w = 0.0111 p = 0.00074 ~A, = 0.24 sq.in/ft Footing Moment -Middle Mu = 11991.6 Mu = 9404.31 0 9 bd~ 0.0079 w = 0.0080 p = 0.00053 A, = 0.17 sq.in/ft ~~t~ Combined Footing Frames on Gridlines B and G Frame Loading Col DL = LL = E,~rt = 69/G9 106000 42000 198590 Ibs 611/G11 153500 31500 348230 Ibs Walla 22950 0 0 Ibs Ehoriz = 0 Ibs Ems;, = 0 Ibs H = 17 ft D+L P columns = 355950 Ibs P footing = 204187.5 Ibs P overburden = 0 Ibs Efy = 560138 Ibs M eq = 1822865 Ib-ft e = 3.25 ft bearing length = 41.25 ft Q max = 1819 psf 1.2D+0.5L+E • P columns = 296400 Ibs P footing = 245025 Ibs P overburden = 0 Ibs Efy = 541425 Ibs M eq = 0 Ib-ft e = 0.00 ft bearing length = 41.25 ft Q max = 1193 psf Footing Dimensions Footing Shear. dist L = 41.25 ft 0Vn = 454.2 kip -4.79 w = 11 ft Vu = 437.0 kip 15.63 t = 3 ft Vu = 221.10 kip -15.63 Soil Properties Vu/~Vn = 0.962 Q allow = 6000 psf ovrbrdn = 0 psf D + L + E/1.4 P columns = 746535.71 Ibs P footing = 204187.5 Ibs P overburden = 0 Ibs EFy = 950723.21 Ibs M eq = 5029662 Ib-ft within kern e = 5.29 ft bearing length = 41.25 ft < Q allow, ok Q max = 3708 psf Q min = 483 psf 0.9D+E P columns = 644791 Ibs P footing = 183769 Ibs P overburden = 0 Ibs Efy = 828559 Ibs M eq = 4585532 Ib-ft -1828063 within kem e = 5.53 ft bearing length = 41.25 ft < Q allow, ok Q max = 3296 psf Footing Moment -End Mu = 64882.5 Mu = 18568 M , b~- 0.0171 0-~ w = 0.0172 p = 0.00115 ,45 = 0.60 sq.in/ft within kern Footing Moment -Mid Top Mu = 136539.4 < Q allow, ok Mu = 49515.15 0 9 bd~- 0.0359 w = 0.0367 p = 0.00245 AS = 7.27 sq.in/ft Footing Moment -Mid Bot Mu = 68269.68 Mu = 51538.29 within kern 0 9 bd~ 0.0180 < Q allow, ok w = 0.0181 p = 0.00121 A, = 0.63 sq.in/ft • ~~~ Combined Footing Frames on Gridlines C and F Frame Load ing Col DL = LL = E,~rt = C1/F1 143000 39000 173000 Ibs C4/F4 199000 75000 173000 Ibs Walls 0 0 0 Ibs Enoriz = 0 Ibs Esoa = 0 Ibs H = 17 ft D+L P columns = 456000 Ibs P footing = 171000 .Ibs P overburden = 0 Ibs Efy = 627000 Ibs M eq = 2198000 Ib-ft e = 3.51 ft within kern bearing length = 38 ft Footing Dimensions dist L = 38 ft -9.00 w = 10 ft 14.00 t = 3 ft 0.00 Soil Properties Q allow = 6000 psf ovrbrdn = 0 psf D + L + E/1.4 P columns = 703142.86 Ibs P footing = 171000 Ibs P overburden = 0 Ibs EFy = 874142.86 Ibs M eq = 2815857 Ib-ft e = 3.22 ft bearing length = 38 ft Q max = 2563 .psf < Q allow, ok Q max = 3470 psf Q min = 1130 psf 1.2D+O.SL+E 0.9D+E P columns = 382200 Ibs P columns = 554943 Ibs P footing = 205200 Ibs P footing = 153900 Ibs P overburden = Efy = 0 587400 Ibs Ibs P overburden = Efy = 0 708843 Ibs Ibs M eq = 0 Ib-ft M eq = 1966957 Ib-ft 731243 e = 0.00 ft within kem e = 2.77 ft bearing length = 38 ft bearing length = 38.00 ft Q max = 1546 psf < Q allow, ok Q max = 2683 psf within kern < Q allow, ok within kern < Q allow, ok Footing Shear ~Vn = 412.9 kip Vu = 416.9 kip Vu = 241.50 kip Vu/~Vn = 1.010 Footing Moment -End Mu = 49192.92 Mu = 21263 0.9~ 0.0129 w = 0.0130 p = 0.00087 A, = 0.45 sq.in/ft Footing Moment -Mid Top Mu = .144709.5 Mu = 70000.00 0~ 0.0381 w = 0.0390 p = 0.00260 As = 1.35 sq.in/ft Footing Moment -Mid Bot Mu = 72354.77 Mu = 70000.00 0~_ 0.0190 w = 0.0192 p = 0.00128 A, = 0.67 sq.in/ftl • ~~ Combined Footing Frames on Gridlines C and F Frame Loading Footing Dimensions Footing Shear Col DL = LL = E~~ = dist L = 18.333 ft ~Vn = 495.4 kip C12/F12 272000 35000 110000 Ibs -4.17 w = 12 ft Vu = 772.7 kip C11/F11 238120 39500 226360 Ibs 4.17 t = 3 ft Vu = 293.41 kip Walls 0 0 0 Ibs 0.00 E~,;~ = 0 Ibs Soil Properties Vu/~Vn = 1.560 Eso;i = 0 Ibs Q allow = 6000 psf H = 17 ft ovrbrdn = 0 psf Footing Moment -End D + L D + L + E/1.4 Mu = 95977.57 Mu = 32158 P columns = 584620 Ibs P columns = 824877.14 Ibs P footing = 98998.2 Ibs P footing = 98998.2 Ibs Mu P overburden = 0 Ibs P overburden = 0 Ibs 0.9- p b 0.0252 Efy = 683618 Ibs EFy = 923875.34 Ibs m = 0.0256 p = 0.00171 M eq = -122415 Ib-ft M eq = 223895 Ib-ft A, = 0.89 sq.in/ft e = -0.18 ft within kern e = 0.24 ft within kem bearing length = 18.333 ft bearing length = 18.333 ft Footing Moment -Mid Top Mu = 201346.6 Q max = 2925 psf < Q allow, ok Q max = 4533 psf < Q allow, ok Mu = 70871.26 Q min = 3866 psf 1.2D + O.SL + E 0.9D - E 0 9 bd~ 0.0530 w = 0.0547 P columns = 610988 Ibs P columns = 375994 Ibs p = 0.00365 P footing = 118798 Ibs P footing = 89098 Ibs P overburden = 0 Ibs P overburden = 0 Ibs A, = 1.90 sq.in/ft Efy = 729786 Ibs Efy = 465092 Ibs Footing Moment -Mid Bot M eq = 0 Ib-ft M eq = 219261 Ib-ft Mu = 100673.3 -473358 Mu = 70871.26 e = 0.00 ft within kern e = 1.02 ft within kern bearing length = 18.333 ft bearing length = 18.33 ft Mu 0 9P bd~ 0.0265 Q max = 3317 psf < Q allow, ok Q max = 2818 psf < Q allow, ok ~ = 0.0269 p = 0.00179 A, = 0.93 sq.in/ft • ~~ Combined Footing Frames on Gridlines C and F at Gridline 1 Frame Loading Col DL = LL = E,~rt = C12/F12 143000 39000 173000 Ibs C11/F11 143000 39000 173000 Ibs Walls 0 0 0 Ibs E;,o~ = 0 Ibs Ems;, = 0 Ibs H = 17 ft D+L P columns = 364000 Ibs P footing = 157500 Ibs P overburden = 0 Ibs Efy = 521500 Ibs M eq = 0 Ib-ft e = 0.00 ft bearing length = 35 ft O max = 1490 psf 1.2D+O.SL+E P columns = 382200 Ibs P footing = 189000 Ibs P overburden = Efy = 0 571200 Ibs Ibs M eq = 0 Ib-ft e = 0.00 ft bearing length = 35 ft O max = 1632 psf Footing Dimensions dist L = 35 ft -13.50 w = 10 ft 13.50 t = 3 ft 0.00 Soil Properties O allow = 6000 psf ovrbrdn = 0 psf D+L+E/1.4 P columns = 611142.86 Ibs P footing = 157500 Ibs P overburden = 0 Ibs EFy= 768642.86 Ibs M eq = 0 Ib-ft within kern e = 0.00 ft bearing length = 35 ft < Q allow, ok O max = 2196 psf O min = 2196 psf 0.9D - E P columns = 252271 Ibs P footing = 141750 Ibs P overburden = 0 Ibs Efy = 394021 Ibs M eq = -3336429 Ib-ft 3336429 within kern e = 8.47 ft bearing length = 27.10 ft < O allow, ok O max = 2908 psf Footing Shear ~Vn = 412.9 kip Vu = 307.5 kip Vu = 138.99 kip Vu/~Vn = 0.745 Footing Moment -End Mu = 31130.04 Mu = 12237 0.9 bd~ 0.0082 w = 0.0082 p = 0.00055 ~- 0.29 sq.in/ft within kern Footing Moment -Mid Top Mu = 102485.7 < O allow, ok Mu = 40285.71 0~ 0.0270 w = 0.0274 p = 0.00183 A, = 0.95 sq.inlft Footing Moment -Mid Bot Mu = 51242.86 Mu = 40285.71 Outside kem 0 9 bd~ 0.0135 < Q allow, ok w = 0.0136 p = 0.00091 Ag = 0.47 sq.in/ft F ~~~~ Combined Footing Walls on Gridlines A a nd H Frame Loading Col DL = LL = E, ~,, _ 1 510150 140760 0 Ibs 2 0 0 0 Ibs 3 0 0 0 Ibs 4 0 0 0 Ibs Wall 1 0 0 0 Ibs 2 0 0 0 Ibs E~,;Z = 434351 Ibs E~~ = 231079 ibs H= 17 ft D+L P columns = 650910 Ibs P footing = 90000 Ibs P overburden = 0 Ibs Efy = 740910 Ibs M eq = 0 Ib-ft e = 0.00 ft within kern bearing length = 160. ft Footing Dimensions dist L = 160 ft 0.00 w = 3 ft 0.00 t = 1.25 ft 0.00 0.00 Soil Properties Q allow = 6000 psf 0.00 ovrbrdn = 0 psf 0.00 D + L + E/1.4 P columns = 650910 Ibs P footing = 90000 Ibs P overburden = 0 Ibs EFy = 740910 Ibs M eq = 9202605 Ib-ft e = 12.42 ft bearing length = 160 ft within kern Q max = 1544 psf < Q allow, ok Q max = 2263 psf < Q allow, ok Q min = 825 psf t2D+0.5L+E 0.9D+E/1.4 P columns = 1365120 Ibs P columns = 459135 Ibs P footing = 108000 lbs. P footing = 81000 Ibs P overburden = 0 Ibs P overburden = 0 Ibs Efy = 1.473120 Ibs Efy = 540135 Ibs M eq = 11312310 Ib-ft M eq = 9202605 Ib-ft -9202605 e = 7.68 ft within kern e = 17.04 ft within kern bearing length = 160 ft bearing length = 160.00 ft Q max = 3953 psf < Q allow, ok Q max = 1844 psf < Q allow, ok Q min = 406 psf Footing Shear ~Vn = 42.6 kip Vu = 90.4 kip Vu = 76.8 kip Vu/~Vn = 2.124 Footing Moment -End Mu = 1583.76 Mu = 984.788 0~- 0.0033 w = 0.0033 p = 0.00022 As = 0.04 sq.in/ft Footing Moment -Middle Mu = 1162.27 Mu = 984.788 0~ 0.0024 w = 0.0024 p =0.00016 As = 0.03 sq.in/ft • • Project ___--- By She et N o . . Consulting Engineers Location Date ^^ ~ry ~ ~ ) ~~"" G-~ Client Revised Job No. Portland Ore on , g Date p 1 to C-nA. o S F~an1 4F'.~A c.~'..LdS 2 ~-~~ ~o _ l`f O~fc-y~~(lo ~~~ ~-Sr,v ~'~ _ ~•~ I~~ ~ i Il Z r.Jipa'Tt{ 3 i• P = ~ w ~,.~ . 2P _ 20¢70) : ~ 3°r I~ ~ K ~ ~ ~~6~c.aQ. 2 1~ l.~!'~-~4L ~ = v.?q ~c~' = ,} O,ZC32.Zx (! OP~~~ - '~d~',4-Pj~ U~~'rOLY1 z~24 , SSZZ 247~- ~., ~kd.> .~~ u.~aw 3 + ,~ ` 9'1g4 I~-~~rz~ ~t ~, w~ 3875 ?~~'E34 4r+Z6 v = may- 46. zs k - s~ti rte,-~r~~ ~-~Ysls ,=o~wr,-~i ~,K.~ = 2«. I k-+t - S~F ~~s}r.~ .4+~.Ja-L-t~~rj ro~e.,a,.~~ ~~ = 216.1 ~~a k-,,.~ = O.Zt~, Cry z o,ZSt~ s GJ ~ L. ~O. 2510 ~'~' \ 0 . ©(672i ` h,. ` G,S - ~~ = p.ol(~"73 ~~'r-'x'a.7Sr^~, = 6.1'4" Z w } ~ -i~^7 = l ~ (m. ~' = to . to rr~` • General Information Center Span 16.00 ft Moment of Inertia 1,000.000 in4 Left Cantilever ft Elastic Modulus 29,000 ksi Right Cantilever ft Beam End Fixity Pin-Pin Trapezoidal Loads Magnitude @ Left 4.926 k/ft 9.744 k/ft 2.474 k/ft k/ft Magnitude @ Right 3.875 k/ft 5.522 k/tt 2.124 k/ft k/ft Dist. To Left Side ft 6.000 ft 14.000 ft ft Dist. To Right Side 6.000 ft 14.000 ft 16.000 ft ft Query Values Center Location 0.000 ft Left Cant 0.000 ft Right Cant 0.000 ft Moment 0.00 k-ft 0.00 k-ft 0.00 k-ft .Shear 46.25 k 0.00 k 0.00 k Deflection 0.00000 in 0.00000 in 0.00000 in I:_- • Summary __ __ __ Moments... _ Shears... Reactions... Max + @ Center 216.17 k-ft at 8.18 ft @ Left 46.25 k @ Left 46.25 k Max - @ Center 0.00 k-ft at 0.00 ft @ Right 45.81 k @ Right 45.81 k Maximum 46.25 k @ Left Cant 0.00 k-ft @ Right Cant .0.00 k-ft Deflections... @ Center -0.334 in at 8.05 ft Maximum = 216.17 k-ft @ Left Cant. 0.000 in at 0.00 ft @ Right Cant 0.000 in at 0.00 ft ~JJ ~J i• Project ,~(~, By ~~ Sheet No. Location rA+/T Date ~.-~~ ~~~ Consulting Engineers ~.,~ ` Job No. Client /~,/~ ~ Revised PortlandAregon ~ v ~r Date t . I ~iiM'T GI f~A"* ~w P~ ` `~°~~~( j1 M~~6~.w I• ~e~ ~ y"°"s ~ ~; ~~ ~ = t~ ~ ~• _ _ _ __ ___ ~~l6 ~~ ~' #?~µ.~ ,.~- • • Sheet No. Project s By Location Date ~ Consulting Engineers Job No. Client Revised PortlandAregon ~~ E Date S~v~~ ~'= t, o G~ = ~ _ o ~7~~~ ~ -3} ~~ v.~G~GtZ~z, ~o_~~e~.9~r o~F!F ~~So~ 3l.S~~ -~ ~ 3S~s~ ~ - o.t~~-~4 = ~~.r'SxSo~k t4 = Za.S~ b = ~` . 3- • '- Wlar>wa,~-o 0.-~1~y ~a ` (o. 43 ~ .Q~ ,j g+la - f , 5) ~~- ~.~-fem. ~= I Za ~t ~~oQ-3 matzo '`~/~ -l.S~ -~ ~~ ~~ ., ~ ~'~ ~I ~ lac ~ 2 ~ t s~ ~ _ ~_ = 4 ~ ~Z ~ Z ~ . i~~ ~ 1,~ = f3Cz~ , (C~ ~ n~s~ _ 6~ _ + 3Sps~ • ~ ~-r~ Nrs `~ 3 ¢ +~~ - 6.5~ _ ~~043~ s ~2 V ~c' -1.5~ ~ 2.x(0 h~ _ 2~ sm ~= 4a,~ ~ ~~~ _ 4CZ ~c~ ~_ ~ ~. ~~ ~ SQL = (~~...,.~.~ ti~ ~ Z • Project . Location ~ Consulting Engineers Client Portland,Oregon ~~~ hd ~ a (0,43 ~ ~g ~ -,.S) r.sv~ Z `mod - ~~~-~`bl= (2Q.5~2 -f,-7j~ = 5'45ra~ • ~~~~ ~~ ¢ b.~3 3 K ~~-~ /n -1.5~ = q- ~o ~t 5 yam, e rJ tr-~t{~2.E Kti. = 2. r r r..~1~~~ Qom= (Zo ~t ,~~c,,.1 lira-~. sEC--rd,~ ~- rr~Ti~. c.c~a,~. B Sheet No. Y Date Job No. Revised Date ~r ~n Pit = qo ~~- (5,~.. ~,~r~-rr,~-~ e~~- - ~~~ t:~s dart En~T LE 5~.'..-T r,~ ~ ~Ti A~ L..a4p __ _ _ _ ~~ o¢~ 4~ 460 - /.f'' = ~,LG•~.- ~v= ~-ld~ 4'~z-6G):_ lo,~¢ -~ l1 ` • ~~~a- ~s ~a ~ a.43 ~ `~ ~ ` - ~s = 2. a 1 ~~ • Project . Location Consulting Engineers Client Portland, Oregon ~a : a,q~3;,J-Sg` ~- i. ~ = 3,13 ~t rr'zO. S~3 , ~ 3~ - ~i- ~s ~ Sheet No. By ~~ Date Job No. Revised Date pFAr`nJ >~J7P~- ,4(L~{~ y°~,v(L. ~T ~~ Lam! ~T ¢.Jr, `yea s a.k3 3 t`~2 ~ - t.5 = ~}-,~4~t ~~ `tea = 4C4.~~= I~ 4~ ---9. 19 ~t • +~.~~.~c4~e~P-~ 7G • G ~. -~ • • Column Second Floor Interaction Foundation To Interaction Designation To Roof Check Second Floor Check B-2, G-2 W 10x49 0.59 W 10x49 0.77 BF B-9, G-9 - BF B-11, G-11 C+/9, F-!9 W12x65 0.92 W12x87 0.73 BF C+/11, F-/11 C+/12, F-/12 W 12x87 0.90 W 12x96 0.96 D-6, E-6,'D-7,..E-7 W12x65 0.84 W12x87 0.83 A.4-6, G.6-6, A.4-7',' G.6-7 W 12x65 0.72 W 12x72 0.77 B-3, G-3 W 10x49 0.76 W 10x60 0.77 BF C-1, F-1 BF C-4, F-4 ',BF C-5, F-5, C+-8, F--8 A.2-3, G.8-3, A.2-10, G.8-10 W 12x65 0.85 W 12x72 0.81 BF A.2-5, G.8-5, A.2-8, G.8-8 • GGS • • Project: Raaburg Temple Floor Loads: DL Roof 169 Load 1: 50 psf Srow Load: 40 psf Clatldi 75 psf W uld: 0 psi Mechanical 152 Load t: 150 psf Loatl 2: 90 psf Claddi 75 psf W ind: 0 psf Third 154 Load 1: 90 psf Loatl 2: 0 psf Clatldi 75 psf Wind: 0 psf Second 115.5 Load 1: 90 psf Load 2: 0 psf Clatltli 75 psf W iM: 0 psf Main 100 Loatl 1: 90 psl Load 2: 0 ps( Claddi 75 psi wind: 0 psi Lower 84 LL 20 psi 0 Ps( 40 psf 40 psi t00 psi 0 psf 700 psf 0 psf 100 psi 0 psf W3 20GA w/ 3-1/2' LW Canc. Topping Fram6g CeiGrg Misc Mecb Panabns 45.8 15 10 5 10 85.8 • G~6 • • ~.-~. i• I• • ]]I O D r. a ~, I ~ Y Y _~ ._ s s .i'e '~' s s s s ,'~ ~ z x O O O U ¢a nay u°>a¢ E 'zz ~iz~ 3z ,., v m ~~ LL~= LLN I~: ~a~ ~ ii ~a = jb noa 00 LL `" quay o LL I:;I ~ ~~ u n °oy ~ ~.II Po 0 aa~ ?'' m~ o Sod o _ ~ ,,, I - m ~ o ~ ~ I U ~ ""l' - LL w ~ LL Yi J, ~'' i' "I ~ i~ -o ; a `o °' a ~ x x ~, ~ ~ 3 ~ .~ i .o o a< U z 3 !~ x m n ~ O -f~ ~ ~' c ~ ^i 3 O O tt = U j}' N u m ~ ~ ~ a a m nm~n ~ ~ 'u awLL ,7, ~ tN~~;,z ~ ~~ ~ ~~ ~f o0 I ~ 7 n E I' n n C i ~ LL N ry ry ~ y ~ S _ ._ ._ ._ ._ ~ 3 2 _ N I'', u u n n n ~. O Jy ~+ ¢ v ; y ' Y 1 y L ~ i ~ i ~ ~~ ~ ~_ m s s s s c u u u ~ ,~ r LL - ~,' LL a~ ~ m w ~ a ~.~, al ~! ° v, B ~ ~ ', i ~ a GG~ • lLL W ~ LL IL LL LL LL ~; y ~~ -. ~ O ~ ~:, a N C y~_ y y O O ~ ._ ss xr rY.,f' Y ecs U ' tl as m<m .°n¢¢ W~ .9 .- z z n Z m rv ~ Z ~ y~ ~ n d m }; v N G JU ~iLL H ,t ~ n Y n aw u ~o LL h _ '- ~ ,,, 0 0 d O S, o U a ~ • J ~ a~ m ~ U n 11 p LL N ~ p U U~ '. @$ N I 1 Y U ~ ~ ~ ~~ o ~ T ~ O p ~ ~' SE - - L U ~ y ° ~ ~ _ ^ m rS c c N C a LL '~ 4 ~ ~ Q J J Q Y Y J 3 '~ ~ ~ 1 Q Q U 3 z Y Y Y O ~ " c ~- '- '- '- '- 0 0 n _ = ? o ~ ~ n m i n n n ~ ~ ~ a at N ~ n z N~ y Z U U U ~i rv n ~ O O ~ ~ ~ n E E 5 I n n ~~~ ~ LL U f ~ I 9' " ~ C n M ~ 2 ~ ~ N ;, LL Q n ; ~ Y ,L J J ~~ G O N Y Y f ~ I N `~ ~ 2 ' s Y x s s c r x $ ~ ~ . S ~ r I F U , . , n r ~ I ol LL C _ U ~ G a n l 'd U n n u n- ° ~ ~ m m ~' x a IL LL ~~ 3; W O Z 2~ U u N ~ WW p J ~ ~ O ;:: ~~ • G ~ to LL ~ . _ • i 0 ~ ~ a a c 0 U m v 00 v" ., II7' _ ~ ~ C LL a LL ~~i m ~.. U _ d v V N L E n ~n ° a Ql Q Q Y Y C d U s s s ~ , as °e ¢u z z rv z - IL LL m N~ LL N` '^ ~ i m e` `:~ 3: o ~ n n $ '~ c ~~~N~~ U C p .~- N LL' C C N m LL gi gi "' J LL LL LL y i O ~, 00 xxs ~, YY ,•a °o~ z°n `~ a ~ v u o n LL: LL - ~1 W ~ a ~p LL ~ ~., LL O O O ~ Y l.. y, !; u n ~ ~ 4a 0 'V. O ~ ",'~ e _- C tL y ~ ~ m° ~ `e 0 3 ._ ._ ._ ._ ._ '. .- o ~ mu>N m ~~ tm ~`(n Z U E E o~ 1 I vU n~ -: I n E IL ~- i ~ -- a o ~~ ~~ ~ ~~ Q ~ ~ n _ Y J Vl • s ~ E u I z ~c ~~~ m ~ r ~~ m I ~ o z w - - d W m N " ` ~ a, ~ O N ~ a ~i gi m Y ~_ ~ ~ LL V tD O~ U ii 11 v I~. °' LL idLL c a ~ ~.; c 1 o `o ; m I. U u J U ~I $ ~~ ~ z z Y ~ `1 O .. ut W " c •. ~ ? v N n u n 1 P a LL 0 0 4' r 2 'j. YO. .._ _. ~I I I - y o 0 b N W r II =_ _ S n n IL ~~ m ~I w N ~~ • i• Q C C 7 _ O G N ~'' 0] y u a ~ J LL 3 li N L C N ~ ry N N ~ E in a ~ ~ 2 Ti O ~ ~ t °' ¢~ x y G c N~ y z v E E U U rv rv .. _ °° ~ .. ~~. F F 3 ~ u x ~ ~ rv ~ o c _ i ~ . 3 _ = u ~ ~ ~m~rv~ N H it > ~ _ YO.. 3 ~ ~ ~~ a s~ ~- x ~ a e~i ~ n m ¢ c Z Z O n~ a o g l U 3 °° U ~ y n n n o S ~ ~~~' _s°' 1 ....._. 0 LL ~ ~i c _ _ _ Y O y O O s s ~ s Y :~ Y1 r rv ~ ~ v o v n LL N ~O T ff u u r P ~ ~ LL O O ~ ~ ~ ~ _i '~~~, u u ~ o e ~ '~ - C y { L` C 0 ~ 'y 1 IITT Q Y o 3 `V U ~ _ _ 33 O .-___. ~,l y Y n ~ ~ m C n ^_ = O ._ ._ ._ ._ ._ i o o i. ~~ = V H y ~ t; w ~ ° g r ii ~' t C ~ ~~ ~ ^ rv y rv `D (O 9i LL '~~I n, ~ m m In l Y O " O 4 ~a ~ a ~ ~ g ; ~ ~?u o c LL LL 3 w ~ - 'o ~ ~ E ~i ~~I e ~ ~ _ u u LL x ~ G F'~. i• J Q a N .d. ~ r r O O X x ^ u+ m n N f Q ~ N N al < J `~ N N N V J d O c) th O ~ 0 ~ N m Oi 1n ~ ~ ~ ~ N N U ~ J a O M M ~V m ~ ~ O N Y J K ~ ~ e ~ c F J O O O O O L O N r: J W } ~i Z W 1 O ~ Q Q X Z ~ X I J IIII J ~. W (/) ~ LL p ~a Zo F J O H =J° _ N° ao SO _ °oc o00 f/1 ~- J~ Q ~0 a O N E inmr 0 0~ ~rnn O h min O u] rnon O N o~~n O J } _ m~~ KKKQ ~a y ~~ O NNy O H O na O O O e p O O O v v O O O a - U' E ~ °p of ~ B a r ci ~- N C a ~- o+ ~ N ~ ` = ~ J O B ~~ N C 9 0 a B~~ O a a B B~ N C 9 V~ B B~ D a D B B i - - i~~`! J w ~ W J _ pprn O cp R: ~ _ ,c~. CN L N c~ ~ d Ea L M. F- ~ v ~'~ O~ m ~ fn ~o N.O ~ ~ ~$ J ~.. ~ • • - LL w - ~~ " LL LL _ .. ...~ Y U1 _ _ O Q ' ~ ~ N C 7 _ m m s s ~e ~c I h h r s s ' 'i Y s Y Y O O O U. E a s ~ a H zz uiz~ $ a a z'z ~ ~ H m e v ro, m Y I ^ d ~ aan}} J U 11 V ~ ~ ~~ m V) ` LL Y L V II it a N LL LL ~ I W L LL ti~ fC O b LL b .-. ~ ~ N ip i O o ~ a O~ O U P .I Yi p Y o~ 3 o U Pa LL U U N N @ d Y U N L . p ~ ~ ~ iv o o U N N . o v ~ c H m c c N u gi u4 ~- c LL, ~ ~ , ' d ~ U v E II ~ n .- ¢ x Y O ~ C o Q ¢ Y Y ~ JI 3 fl O a a V ._ _ ~ Z Y Y O ~ N C ._ _ ._ ._ ._ O O ~ ry ~ _O u m In ~ ~ ~. ! n LLi W c N t rn ~ rn ~ . U E E U U N m ~~ I~ . o 0 E L 3 T ~ N H _._._._._ a a ~ 3 ~_ = 3 ~ f ~ ~ N O a o ~ p - Y ~ U! Y Y ~ - _ x x . .. .. : >< n .- $ I ' N _ ~, •= _ N E . E o n n n ~ n e u " g o U 4 LL ~ ~ K~ iJ ~ T m~ ~ V r U a_Y,Yi ~ LL 1T1, ` ~ V V V D C O U to m yy~~ ~ N u i LL a~~ 3.; ~ ~;i ~ 0 0 " u. _ ~ z W U N J GG I~ i• i• r~ ~ ~ ~ - ~ fl; LL. W y ~ ~ y`_ ,~ Y I Q 1 ~. O r_, I a h h ~; N ~,'i Y Y O O 7 O ._ s r x x~ x x s ~• ICI ~c x U a s m a m ° a a ~ E m ,- zz ~'z~ N I -3z ~ ,,, M d m t' v ~ a n ~ U n w n - O^ lL j, 'L u u IL LL N _ n u n a ~ d lL m< ~ o U~ n ° o li N °$ o U a I I Y ` u u ?~ rv e ^ ^ oU 's a ~ ~ N n (.. ~o o LL ~ ° ¢` ~`~ ~ m J U .. .. ~ rv o ' LL .. r C LL '~!µ'i. ~ N ~ h u LL ~ ST ~ ~ ~ I 'o ~ v E ~ 'm ? ~ II n ¢ c ~ ~ ~'~'. .. Y o y' a ¢ ~ x ti ~I 3 ~'~~ c U z 3 _ l x y O ' li rnrn m ~ N_ C c 0 o . Y~ IC r ~ ~ = = p U d M ~u°i e n ~ ~ .y I `~ II II q awu ' I ~ ~ 1~ = N ~ ~ ~ ~ U E E U U w n ° 0 ~ c li x U ., N ~ _._._._._ - ~ ~ 3 _ =_ e x `~ `~ .- ° °o °o S N ° ; Y O ~ ~ E( ~ as;ga Y i -'~ i . ; Ft~' ~4 ~,~ °o k ~ ~ i ~ i'. Y ~ ` Imo- °' P _ - -- x x x ~ azz- x ~c Y ~ 'r. x ti II I ~ U c, ~ ~ u N O g °O I Z r • LL LL m ~ z,' m IL ~.: n a ~ M `o ' ~ m b~~ m :~i . rv ± ~ ~O V I l a U m m b ]2 a ~ + ~ 0 g n 0 LL '.v LL it o n n n ~ a~~33 m 4 m °~„ ~ o w u N I v J ~ ~ E U ~.. ~ ,;~ N ~~ 7r ~~ ~ x CMG !~ • • • i• i• • - LL ~ `.. ~~ LL. LL LL - `..~ . `i Y Q '' O Q N C _- II y y p p 3 ._ s s ~ s s I s s O V E z z H z~ 3 o y m ~ m m e n m m al ~ ~ (j ~ li IL rv u ^ u ~ ~ LL mo f0 b n] a I . O o v ~ ~ ° '~ ~ _. ~ ~_ ~ a n u n `">`oSU ~ L a N u n wy S 3 o J LL I o a N y U y _ ~ ] O L - U ro e l iN _ li d N ~ m m fn ~ n (~ ~ ~ Q Y Y Q ~ ~ s ~ '~ y O I C E Q ~ JI ~ ° v __ 3 3 r ~ ,: Y s ` I II N Ifr m M C ._ ._ ._ ._ ._ ~ O In ~ = = O U n ^ n d N - ~minN m ~ ~ ~y x LL t II N~ N Z U U m U ~ `~ 0 0 ', O II U I.~. N N ~ K S 1 a 3 p n n n n II Q a 3 a- Y ~ ~ I '.. i..~ n W - r s s s m •- ~ __ E c ~ - _ Z LL ~ Q U ~ " m N c n u U n~~ ~ T ~ u 4 LL LL C d~~ 3 C y d ; ~ N ryry J ~ ~ V '. ~. t ~' • • 7 ILL W "" _ w ILL LL ,_ _ i _ _ _ Y ~ Q i - ~• O C O O 7 ._ x s s u s r x~ ~ ~ x a (' Q Q ro Q Omi N Q Q . E z'z ~3m N mzz ,., m m V y D) ~ U _ LL i~ T %~ o LL ~i N u ~ a u D "' 0 0 ~ ~ ~~ i I LL y ~ U m e og g~a o LL ~ I q II ~_ N II ^ o O U ~ 4 O s a o I =I ~~ o UV f e ~I oa N ~ Y t, d `~ ~ ~ ~ i L ~' m l a =tee =_ LL N y ~ t%1 ~ LL Yi $~ m C m GI f7 U -O ~ a ~ ~ m O ~ ~ Q Q Y Y C ~ JI 3 C Q 6 O U _ Z Z s Y y O ~ n N C _ _ 0 0 m ~ _ = ~ ~ u m ~ n~ vi n m ~ ~ I; A n a n n n n <N~Nz U U U rv n I' 0 0 0 11 o I II _ ; ^ V ~ _ ~ ~ ~ 3 I° ~ _ x- ~ >< ~ ~ N Yo ~ ~ ~ ~ n Q a 3° ~ Y ~' ~', =' ~' n r °i °o I Y Y ~n P~ ° i -~ ~ r x x s s ~ I ~~ -. ~ r LL I LL nx ~ Z' 'n ~ ~ o " ~ ° ~i ~ ~ y ` o -o I I u m m ~ 6 I 0 ~ ~ c LL LL v LL II 0 " ' c~ a~E` ` 3 ; ~ ~ ~ IiA t ~ a v rqi ~ .°~ ~ ~. i • • J J ,.., F Q O. O N 01 ~ 7 x ~ Q Y ~ J 4 J J Q ~ Y ~ O O O r ~ Q W n ~ ~ (O M N m ~ N lD O ~ ~ O N t0~1 t0 f~ N m ~ N U '"' ~ J W J s O O N O N ~ O o ~ ~ O ' . ~- v Y ~ ~E. F~ .a N O J d' J ~ O c O V O cp O ~O O t0 J f I~~, Y~ } Y o o o O o 0 ~ W N U F 0 0 0 0 W 5Z Q Q X r o 0 0 0 0 Z~ X Y 7 o 0 0 0 0 J y. LL N O ~ O O O N G O a J ~ Y O m O O O K H F- G ~ J~ N O a s O O 00 0 00 0 H ~ ~~ n O O N u~vr O N ~mn O ~ rn°r O N rn°r O ~ mon O c~ ' J Q ~~ N K ¢ .., o m o o~~ ~ o~ ~ o~ X 0 0 4 d U' (ap m B w 9 a D ~ N w ~ ~rn ~ N a r i V ' ~ ~ ~ B 3 B B B D a B o m ~ $ B~ B B x f ~ 1 d 0 J C U J J U J U J J () J J (J W UI m J _ ~? D N p C 7 O~ ~ N o ta+1 ~~ ~ O 3 J ~ ` y ~ ~ ~ N ~ ~ ~ J ~~ c~ i• Q E ~? E m m LL U L ~, i i• • E u ~~. m. - ~~- ~IL LL~LL u` .~.~ ,,~. :t' O O O _ xx YY - Yxs ~ sY a a $ a ~ ' a °o ~ 3z n zm zoom ,_{ ~ .. i' ~ ~ -», ,~ ~ U .. '~ ~ S w a u- lL L is n ~ d n ~ ip LL ~ ~ ] ~ e ?_ o ~ : w LL O O m 3 a o ~ 0 ° '~ a o v $ l~'~ n n n n n o ~L ~1.-. N V 3 O $ O .. ~; p r H ~ L ~ ~ or '] 0. < 1 r O^ ~ r5 _ LL ~ m ~ ~ ~ a ~ ; ~ _ Q ~ t o Yy e ~ ~ 3 _---- __ ~ ~ L, _ __ r ,~ 'oho g ~ ~ - _ o 3 5 a a ; `n Y N J J - Y Y o o r~ a ¢ z 3 Y '~ Y ~i u „ ~ m ~ C M N n ,~ = O n1 ^ry o n n N g °o ~ i ~ a m N M ~ ~ Ali` ~ r` LL ,`~1 C II I it m N~ N r '. U U U m~ o 0 ~ ~ ~ {,~'~ 'I ~ 3 r v P r -S 2 E d x ys I ~ t: u° _ r e p '~, i ,,; n u m N 0 0 0 s ~ ~}' ~ IL m ~ LL IL m L. E. V ~ W N N ~ N m ~~~ C a ~.d m o ~ 9i $ ~I, Y - ') ~ N LL d C II 11 N ~ m ~.; V d 1~ ~ a 2 ; '3 u '~ ~I zi o " ~` LL LL ~ ~ ~ 3 F, L O O E ~ ~~ fn J l r E~ ~r ~'L/ • • { LL W ~~ u7 n LL LL LL ~~ ~[ O ~i ili] i O ~ tl G Q nyi u~ ~: ~ Y Y _ O O ._ s s x s Y i Y FZ s O L1 ~ ~ Ve 3 3 N 3~ X 3 3 ~ o 0 v ~ 'm :,~ w u w ~ LL~ C C U LL S, b ~~ LL f0 m a ~ ~ 0 0 LL .. N o U a a o° aL _ Wy 0 0 ~ Y o C~ C c u ~- ~ rv o O_ r IL U w _ m - - Y~~S _ LL 1f ~ LL H gi ~` ~-)i~ N m ~, cn ' CZ n , ¢ s ',~ O 'c o C Q Q Y Y ~ ~ 3 ~:I ~J, O II ~i ~.~ II ~ ~ Z U ~ x Y Y ~~ ,III ~ ~ n n O n " c = O 0 0 = ~ w w n N nmu~n gym. ~ ~ ~ ~wLL I cy ~`rn Z U E E Nn '.t 00 r ~ V U ~ ~~ - ~ ~ a. I°,I LL ~-.~, ry _ ~ ~ -_ = I e ~ ~o o 3 ~ o 0 S a a 3 n- Y ~ ~ ~ ~ '~,` ~~ 00 { czc mg ~~~ ~`~ __ °~ x Y x I x x ~~ m w w c ~ o rs ~ - to ~~~ LL ~~ r - i u o `o '~ ~ c @ t ~, ~ I ~E~.. • • ~~~~ • • ,~ - - ~LL ~~ o N Q N E 0 E ~ ~ . fD m ~ C J LL -. o LL i U e . n ~ h n h ~ a a °c a u 3 z r z - „ ~ i i ~ li b < ~ ~ ~ t V U a ~ ~' ~ Ur n n u °o c a o $ ~ a~~ho~ °o j m LL ~ $ -- --- I o a x~x ~i ~ xs O O o o Z ~ ~ ~ ~ v v ii „N tp T o n a aLL O O ~ ~i N _ u u ~ ~ I m C IL G m e ~ n g ~ C J ~ ~ s ~ O T7 ~ 0 3 I C Q Q Y N J J l 4 E i Qa i 3 3 ~ a s O ° I ~ ~ " c ~ _ ~. u N n n n '~ I nmin rv~ ~ ~ ~4u c N ~ N r U E E U U ~ ~ m ..~I ~ ~ O 3 U c P R ~ _ _ __ ._ ._ _ ~ ~ ~ F = ? y 8 x N Y O I o ~ ~ .` ~ ~I .4 a a~ n N Y J J ~~ G G _ _ - ~[ s m _ rv _ _ ~ ' _ a Q m ~ s s x z yo Z ~ LL ~ ~ d '~ m N ~ •- n LL 9 ~ ~ p~ u " U 2 n n~~ ~ ~ .3 3 I~ = ~ o LL LL u _ ~ ~ E ~ w U N T ~ U h ~~ • • • ~- -'I w ~ ~ `'~I LL W ILL It ~ ~ IL !i. IL IL Y _ O O N Q C O O 3 ._ s z s s '~' s s s s r O E zz ~z~ 30~ ~'~ e'~ ~ ~ ~ ~ ~o d m m t(: ~ u W ~~ d ~~ ~~ LL o m C -~ U - LL ~L ~ _ f ~ T j D ~ T o ~ e< ~Sa~ o ~. ° ~ $v'n a ~ n u $~ a Wo o uu~ e~ h Y ~ Y f U ~ ] - U o ^ a ° o N LL ~ LL LL Vva c N ~ $ $ " ~ v v m f y E „ h _ ~ ~° ~ n Q x Y ~ ~~ a 2 ~ ~ Q Q Y Y ~ JI 3 O C O U ' v. ~ n x s s y _ .;, n n O M " c ., n = O .- o ? u _ _ ._ y - - n n n N ~m u`~iNn ~ ~ 'I ~aLL I cN ~~ ~ u UU `Fi ao I o~ ~ s ~ N~ ._ _ ._ ._ ._ - ~ $ ; x 3 ~ o o ~ ~ ~ I N o LL+ L ~ 0 0 e Q a Y 3 " m ' N s Y ~ ~ ~ it ~ ~ P .- rv _ _ _ - - a m u I 2 e~ .Y x s N o = n n ~ h rv LL 11 LL ~ ~ in ~ C C N gi m F ~ O G 11 ~ 11 U 1I ~~ a u ~ LL m v a~~ .g 3 I u (L,i `u 0 w v ~i LL LL ° c°v ~, ~~ ~~ ~J a m x a O Y H ° ~ ~ N o ~ 0 r 0 r J a J ~. O y ~ O O ~ O ~ O O O O O c7 N O t7 r O m N O lM r U U J Q W J x O O O tp O N O M O COJ O d ~ 1V N J d' J ~ ~ O ~ ~ ~ N o ~ e m O J ?~ o o O O o p } Y W N o 0 0 0 0 U H Z Z W Q D X~ X Y O o O 0 o 0 O 0 o o Z~ J s R' W h LL O O O O O p N Q Q O a~ J 0 s r O O O O O Z J a N O ~ p O O O O O O N Z J~ 0 n Q 0 0~ ~nvr ~j O N mr O N rn°n O N rn°n O In rn°r ~ O o '; ~ J } ' ~~ N O H O u0'1 O~ N O S N O S O O O _ ~ O ~ r B OI Ol -- N O C ~ ~ O ~ N ~ ry a J 9 $3m N .- a a a B$m . 9 a D $`8m N ._ a a a `8B~ ._ a o~ oB!~ d J C U J J U J J V J J V J J U W ~ U _ J W ~ pm 8 ~O ~ CN ~ N E ~ a ~'~ ~ O So N O ~~ J ~ ~ ~ ~ H~ N ~ ~ ~ J ~,~ ~.3 • • • LL W LL LL f Y L' O Q ~'. N ~ O O E ~ _ - - <x xs - xx - s ` xx o` U ¢ a °< a ~ a °o ~?. ~ E m.. ~ z3 ~z~ a zoo ~ „~ .- .- ~ q ~ d m e n ' y ~ n J~ u li I L N ~' ~ T ~ L o0 LL ~ LL~a m ` o o e~LL LL ~ t U ~ o'Y' gcaia o ii L ~ n~ >' o U ~ Yi a u n ~ o U U ~^ ~ o am y~ LL c q} e U N oo j o LL N `. . L U < ~ c " c@ ~ LL N m " ~ LL Yiu°i N N ~ ~ m v N d E n n ~ ~ ~ Y ~ _ n a ~ ~ d C Q K J 4 Y Y ~ Sl ~ ~ Z U _______ _. " x ~ a c e ~ = " o - - - - - o = u n n n d ~ m ~m~~~ ~ P x xe~ e LL L N~ N r U U U .- e I . 0 0 ~~ ~ n j E U I ; a N N i o ~ ~ 3 ~ ° ° o ~ N o ; 5 = Y ~ ~ b 0 0 ~ ~ L s s m °m N 4' f ~ v _ _ _ f ~ = y n cj ~.o°o °o °o - Z LL N m rv m ~ ~~~ a ¢, d m :. ~ 9 v ~O Oi LL -; ~ Q ~ c LL LL LL C II II II ~~ ~ U a~~ c 3 3 d £ u r 1W_ ~ ~ _ ~~ ~ I '~ 1 U rv rv U ~~ ~~ i• • • -- wLLu -- _ -- ~ o Y Y C c r x s s x s x ~=~ Y s O O G ._ ¢¢ ~¢~° io¢ ¢ i ::I o o ~ ~ Z ~ Z a ~ Z Z ~ ~ n ' v ~ G m ~ ~j ~ ii II N ii ~ ~ _ II Y ~I W ~ LL O N e ,-, ~ ~ o u T ° : O O o~o °~ ~ ° "T F[ ` II H II 'po ~ ~ U a ~ '~ N II ~ O o o ~ u h o si ~ E ~ Y p I oSY ~ ~°q~ ~ - U N^ d ~ >. O ] - L II ~ II y _ ~ ~e ~ a LL - e ~, IE w LL STS= _ _ ~ ~ ti m a ~, l a E n D, ~ Q o ~ F ; = Q Q ~ Y Y e ~ ~ I O ~, U P i .~ Y I ,S~ ~ m IC m n = F ~ O O yf _ P C ~ ~' 4 4 I1I{ 1,TN1~~ ~ ~~ ~~LL t"a"r ~ ~ uu ~a o0 4 0_ 3 ~ryry Q U ~ n N C~ a s r .~ ~ .n N ~ n i d O a LL `o it 3 ~ ~ ~ ~ I ~ N ~~ S. F s'. i Y. o I a Y J J ~ o 0 i Y x P m TNNi ~ ~ S x ~c x y E 0 U I' ~ i ~ n u 0 0 $ a LL Y, LL iy o G i ~ C a ~ m ~ 11 11 b C b I`! ~, u J o J !a .. ~,~C.,~ ~-~ I is i• i• J J Q Q ~ b M N ' ~- r XX O V < N O Q~ J Y V V r o ~ N O N N ~ O O ? E 1 f J d ~ y O M pp o r In N r M u'i N M N N ~ O O N J ~ O O 1("1 N D fA n N ~ n N ~- w ~ d Y ~ . J J d' e e e e ~ a ~ c00 t00 t00 t0 O J Y~ O } Y 0 o 0 0 0 0 0 0 0 0 W y v U F. Z Z 3W Q~ ~ X~ Z~ X y O o O 0 O 0 O 0 o 0 ~ s O o O O o LL H N Q Z4 O '~ Y ~ .... O O O O O r ~ ~ n N ° a < S ° ~ ° ~ N ~ J~ Q ~ O n o O u~ ~n v n ° o ~n ~ rn n o in rn° n o ~n rn° n o to m° n O J m Q ~ ~~ ~ Q •~ K~ O ~ O M B O O B O O O O O ~ E a O U W e- O ._ C ~ N C ~ N m ~ ~ N .~ l ~ N :_ LL a J~ a a~ a °m a a a~ a a~ x~ uj ~ U J C U J J U J '~ U J J U J J U d ~ ~ U a Z O W U a c~ c u`~ p ~ O cmp L N L M U ~ N O 30 OJ J ~ d .- ~ ~ N ~ ~ ~ J G~ 18 • ~~~ LL W ILL LL LL LL LL ,~ " ~, ,;, .a Y O Q I N a ;fib ~ i Y Y j ~ = ._ s s s s s s s y~ µ s m O O 0 U `<o as <ae 9,aa ° $ ~g ~ z 3 ~ 3~ X 3 3 f ~ ~ v m r, s 1 rn II ~ U " ~ O r N N 11 T ~= r 'IY' ; I N p P A LL ~ ,~ O o m ~ o ' n ~ ~ ~ lL U C U O~ o U A o LL v ~ u II 3 I °a ~ U ~ ^ ~~ ~ U U~ ~~ ~ ~ ~ L O ,~ ~ oa~ O ~ '~,j e~ Y U U ~ ~ m N O n ~ L U U ~ ~ O_ ~ ~ N C ~ m o~ IL LL C C a ~i rQ1 ••• .~ m LL i ~'f N N m E n n @ _ a ¢ Y Y ~ , V ' ~ i i { Y Y ~ ~ ~ ~ _ Yf C ', ' n 2 V ~~ !~~ n n I N m i ~ a- % ~ a f '~ IL ~ m nm II II II II II ~. II II II 11 h = N ~ N~ U E E V U i ° r In ~'~ 0 0 { ~ $ I ( I , T a a r 3 ~ N ~s ~~ _ ~ a r ~ o O q ; ~ ~ O F_ I O ~ a a~ y~ ~ Y J J .l N O O L " m yqj A T T II I' ~ " ~ ,L ~ i I _ _ _ i ~ Z C ~ Y x I r $ f~ r _ _ _. F I Y Y O Cz I^ U ~,~ 4 II n O O N O O O LL li OI ~ ~ ~ LL q I b N N ~ ~ d Y C W ~ ~ ~ : - . ~ _ ~ ~ 9 U LL O m ~ ~. LL .. ~ ~ ~ ~~ LL C 11 II II ~ V ~ ~ ° I E t, ~ L ~ .. _ W U m J _ r M '::. L __ i• • - ~ LL w -- ~~ , G - : ' ~ti~, Y (> .., .J ,.. __ _ ~ O N C ~.5' Y Y 0 0 ~ _ s z ~£' +e s s s s s O V' E A a s z 'z ~ a° N a p n a a m 'z z M m ,'~ m C ~ U - ~ u. S, ~ o ~ ~ u u N ~ a LL n o e ~ LL h n~ a ~ ` LL Y °'Y' U~ o oUa 0 ~ ~ O " o U ~ I N N ~ O LL U U N o o ~ m ~ y Q~ ~ o S. o t ~ e _ c o N LL ~r a LL N 1 7 ~ ry H ~ _ N C Q Q Y Y h ~ ~~ 3 ~ i ° a E ~ _ ~~ S S ~ ; , _ ZZ s Y O N u Y N m C 0 0 - r ~ .= = O = u m m h m m ~ ~ ~ ~ a u_ N ~ , _ l z N~ N Z U E E U U N m~ ., ~ o o L ~ F ~ LL N = ._ __ ._ ._ ._ '~' ?i = ~ ~ g ° N rv O O N 6 a ~ 5 I Y ~ J Y O G i ~ , - s Y m ~ ~ ~ rh = x E _ < x x Y r ~ n u ~ ~~ w m o ~ ~ 59„4, ~ - ~ ,_ m ~ I ~ 4 x LL U a u u~ c~ ~~ U ~~ ~ ~r .~ IL IL. ~ 3; ~~ N W ~ t$ a ~J ',N ~~ • • • J Q Q N O. F O 1~ C A W A o N n x ~ Q ~ ~ r r N N J 4 N O K f~ J'~ n ~ Y O o of ~ N ~ N N ~ M N m N ~ m ~ .-. W J n .... O 0 ~ 0 ~ 0 O m ~ ~ ~ O ~ d .[ ~ ~ ~ ~ L r. J K J ' V M e fOD ~ tOp e N 0 J ~~ , Y~ p } y W N 0 o 0 0 0 0 0 0 0 0 U H Z Z W ~ X c o 0 0 0 0 Z~ X y O O O O O J Y O O O O O W y Q Z O J ~ Y F O O O O O _....... Z. J¢ ~ N O.. y a O O r O O..... r O..O r w ~J~ Q ~ O a ooin m e n ~o~n rn r oow rn n ooin rn r oo~n m n O J Q ~~ N y. F- a ... O N O ~ O~ S O O 0 0 0 X 0 0 a O ~ C1 O1 m ~pp ( O C ~ N C ~ N C ~ N C r lV C LL D J O N _ ~ a ~~pp N 9 9 p C a BBB a a a BBB v a s BB° i r4 -~ U J U JJ(J JJU JJU JJU Z W O N C N 'O ~ C~ S C m b J ~ ~ ~ ~ ~ ~ ~ J ~~~~ ~~ • • ~ I r ILL W _ _ ILLLL _ ._. ~.~ I Y 0 Q C 3 - s s s s .x x s O O s x I O ~ ~ 2 Z rv Z m ~ o rv m : ~ a ~ w m m _ d m n ° li N~ ^ II o P~ LL F O` U ~ IL a ~ n ~ '~ a O w O O IL ~. ~ D b y p ~ o U n Q .~ , . u -o II Ooa N II P; '~ .Y U m ~ ~ vi i - L U e c a ~ a' °c w - ~ LL ~° $ = d ~ m ~ to W E ~ C~ Q Q Y Y ~ ~ 3 C 0 U i _ _ ._ ._ ._ ail ~- o ~ mm~~~, O Q Q 2 2 x s y O N m ~ C ~ n ^ = O ? u N II tl tl i a ~ u Yrn ~ m Z I U E E m~ .. U U E ~ ~ i~~~'' 13 y _ °o °o o o ~ ~ 'q' I rv x O v ~ n _ Y o ~ O ~ ~ p y~ Y s a W LL, ~ ~ 4 m K i U C a` a~~o 0 z U _ a ~ Z m ~ ~ ' _ s s s Z II LL ... ~ I` n ~ ~- ~ Y Y O I j N q LL I, o m s `o .Ili c LL LL LL U a~ E .3 ~ a - ~, U m ~ ~ E ~~ J U to .I ~~ ~~ • LL W i ~~ LL LL ~ Q ~ N C 3 _ s a[ s s O U a s ~ a E A zz ~'z~ m m u n n i ~ C J U o LL~ ~ L ~i ui d 'O °,'x gU1 ~ n n n c 3 a~ ~ ~ ~ ~ i O U U " LL o Y U U L ~ o L: n ~ " c c u h c c rv LL 9Y~- n N ~ E ... t ~' °o 'z m o ° ~i .: 9i i a LL m O O O a ~ n x x u a ~ t~ ~ o ~s ~ m ~ a L' _ ~ x Y ~a e C Q Q Y Y ~ ~ 3 O O U ~~na~~m_E m m in w ~ C N ~ N 0 0 3 ~ O o Q v ~ p - N 1 - i x r x LL ~ ~ ~ Y v ~ n ~ -~i U C a u ~ ~ u V V) Q LL Z ~ I ' x m ~ ~~ N M ~ = o o = u y x u n N ~ ~ LL U U U ~~ 0 0 0 3 iT ~ P v < LL ~' N c n _ $ ; 2 N YO i Y m ~ J 11 Y Y w - ~~ °' E ~r x y x I o x c n n n n n z o a - - m ~ o ~ ~ LL c U ~ u 1 m ~ ~ v - , ~ U ~ a G ~ ~ p '~~y ~N ~, ~~ ~. • • Q a in ~ ~ m r Q~ Y F A M G~0 ~ ~ I fI J Y 1 O N N ~ LL/ N O N J d O th o~ lh O ~ Y r M O r r U ~ ~ J O J 4 p O ~ N O a N N d Y A ~ J O J 7~ F I Y~ p } y W y o o o 0 O 0 o 0 0 0 U F Z Z W G i ~ X~ j~ X Y 0 o 0 0 0 0 0 0 0 0 J Y O O O O O ~. W y LL p N Q 1 Z ~ O J x O O O O O O ~.- H G ~~ n coy° °aa $o 00 00 p ~~ n ~i ar ~ rnn rno n rn°~ rn Or 6 O J m<~ ~' ° > ~~ m° a ~ ¢ ... o o o n o_ n o rn n o rn n o rn - t7 v a B .__ r iV ~ r <V C ~ IV W r tV C a'te' 'O J O ~~~ a k a ~~~ 9 a a BBB ~ 9~ BBB ~~ 9 BBB F- ~ -~ V F O U J ~ [[pp U t'~ m O C N o~ C m o d 30 W ~ ~.~~+ • • • 0 Q N C ' a a o a E m z'z Nza v m ~ r N .. .. N C fJ ~ J U N LL~ - t ~ LL m ~ ~ "' o ~ m 9 U ° ~ g cai ; s o o ~ ~ a~~~~~ ~ ~ ~ O LL U U o ? Y O O ~ ~ ~ ~ N LL YiuY d N i o E N ~ v C J ~ a Q Q Y Y e ~ F U { €, `. ~ ~ Y O Y' O O ~:' .x acs ;'~j ss .°n ¢_ a Ldili n z z '° ,,, N N T '~r,'~. d ~ IL O o ~ O LL ii ~', N M w a ~w NS ~ r;,~ L° y 0 x -'' O 3 Q 3 z l ._ ._ ._ ._ ._ i N n v ~ w o 0 LN ~`ln ~ U E E ~ U U ''~v' rv H ,, 3 a V ._ ._ ._ ._ ._ z r 3 L O O ~ ~ Oi O LL _ ~ . a N +~ +~ y ~~ O n n m ~ N ri N = p ? u V1 u N u ~~LL a ~ rv ~_ 2 O s Y o 0 ~ ~ ~ _ ~~~ W _ _ i .- rl .- ~ x '~' .~c p~ '.. ~ i x s Ox n n U ~~r~{ N u .~ ~ O O .. rv IL li xh LL .. i" y'. Y I=`, O O ~O C V C c a ~ ~ _; ;_ +~ r ~.w ~ vS J i GG 35 • i• .. ~ .~ Q I N c 7 O A _ ~ s s x s ~2 ~ uPi Z ~ d [D ~ n ~ S ~. : ~ -. v m o U LL y ~ S' o U ~I .o N Y ~. n a~~~o ~ v ooa °~ O U ~n q ° - m _ O c c LL LL ~ ~ v N v E ~ ~~ L: ~ o '? Q Q ~ ~ Y Y B O U LL LL LL y O Y' O O sxs 'f YY ~°n ¢_ < ~ n Z ~ n M ~ v y. ~, p B b ~ ~ ~ LL O O p M i ~ ~ Nei .p = r c °c LL 0 ~` O ,,. Q Q Z Z ~c ~c y n n ~ °o, P M ~ ~ ^ M ~? = O u N n u `° ` ~~u I '~ '---'-- j ', eo N e v r i"`~®' ~ ~ I c N ~ N r U U U i o it n ~ ~ ~ ~ a v 3 a - E s x x ~ I- N ~ ~ ~ h K -~i U G II c LL ~ O U li LL Z Y ~ O O 9 ~~ G I II 11 u a ~ ~ g O ~ ~ J ~~ "'~ ~ n o G n ~ $ ~ I F 5 3 a u PN c a ~ 2 $ 3 = y n O m ~ ' I ~ 7~r ¢~ u u u n~ - LL IL O 1.~ ~ ~y 2^1 OI X41 ~ m LL U ~' V! GG. ~ 6 • • J '~ j~ F d A F x y a J ~ N N 0~1 N ~ ' ~ ~ n O ~ Y J ~ y O m ~ ~ N O ~ N O! r N tD r U 7 J ~ J y O O O i~ ~ N O a ~ N O d Y ~ A J r ~ M ~ e N J Y x O Y Y W H O o o O 0 o 0 0 0 0 U H Z W 3 ro 0 X c X o o o 0 o 0 o 0 o 0 Y Z f -~ Y J O O O O O LL N ~g Z ° o v o o 0 0 0 ~ J 6 N O Y d' p 0 S O p 0 N ~ J~ O ZO n O N ~ivr Sj O N rnn O N rnor O N m°r O N rn°n 6 ~ O J ~ m 4 ~ ~ ~~ n m n m n ~' > ~~ N ~ F' ¢ ._. o o o o o - (7 a ~ a~ a B~~ a a a BBB a a a BBB a a a BBB a a a BBB ~gm e ,~I a Wf U _ J W ~n O) 3 ~ N N C N N a V a p 1~ C O o ~ OJ J 2' LaUi '- F~ N' ~ J GL 3~ i• i• ~~ -- ~, s a a ~ I O O c ~ ._ Ys xx YYx ~~ Ys o as oar ~°naa '~ E 'zz ~zN 3z ~^ ~ ~ ~ 3„ y ~ ~ ~ v y L N N N C. J U 'T 1'i VN O LL j `D A 'L N ~ f ~ m ~ a O O LL ~~ '~~a ~°LL FBI ~~ ~~ ~~ ooa ~ s~ ~. 's U o_ O j' ~A '~! d C N .. m N O LL .. ill 1/~ m li ~i r4i ~ _ ~'a ~ ; - J a N L ~~ ~ ~ Y Y O C a Y Y 3 :: E ~' a a o z z U ;' _ _ ± ~c x Y O ~~ ~ ~ n u N `~i ~ m m ~_ C [ c c ~ n _ O `ht ~_ b = U d u x N ~ m N °o °o o ~ a P u N~ N Z V U U rv e ~' 0 0 ~a- 1 n n E ,~ n n r ~ i ~NN i J J o c N s ~[ sr r_ '~ _ g = 0 - xs ~ xx 0 7~1 o u n 0 0 0 _ a. u r ~ `% a ~ ~ ~.- c m.- d 3 ~~ Fr K i N~ = C U b P LL !. G ~~ x n ~ m g LL v a~~ 3g ~;~~~ z - B ~ ~ c C V u J a~ o ~ ~ ~ ~ ~ ~~~ ~~ GG 38 • • ~~- N Q 7 1 _ O U E m d m p li '" ~ C N F C LL Y U 1y U ~ ~ o a a „~ N N d N !9 E r. to n ~ J s °' ' a ~ x S _E 0 U s ~ s s a s Q a S 'z 3 N 3 _ ~ o e C ~ o U~ z ~ ff' o U t U U O O N LL u ~ c c ry ~ ST $ -~ ~;,: ~, Y .-..~ .~ .L i ~ ~ j O O ~ ~ x ~ . ~ x $ a ¢ ~ N N iZZ ~ i; ' M v ~ u u tl P a n LL ip ~ ~ F e e o ~ LL_ ~ i ~ ' ~~ I u I S P 0 o q~ N ~ ¢ @ 9' LL N a i • ~ Q% S y ~ ~ 3 ; ; lV tbO V N ~~ c N~ m Z U E E N m U U ~ IT F . ~ .. fay ._ ,_ ._ __ ._ .c s 'i ff, ~ ~ ~ ~ N I ~i .. Q9 3a Y3Jn o ~ [ r~i 3 3 41 n . _ x LL 0 0 ~. vI Y ~, O I~': `: s s r a r' ~ _ - _ Y Y s Y Y ~ ~~~ _ C G I I I =,' tl II h V ^ ^ ~ L ~ _~ ~ ~N oo CY `. ~ u II II ~~ m 'fx u LL _ v a~~ F c_ 3 ; ~ ~ ;4,r ~ 0 ~~u .. LLu 0 _ ~~ U ~'^.'~.. i 'iY., '} GG. 3~t • • J J~ F a n V N m ~ m HI F r .-, .-. J O y r N .- M O m b N M N A (D N m ~ CD O J 7 .-. O J a W O N O N N ~ O O N ~ n N 0 Y ~ :. FN 9 A J 2 J \° a O iD N N a dp N O J >~ 0 0 0 0 0 p y y W y o 0 0 0 0 Z ~ Z W 5 m ~ X~ Z~ X y O o o O 0 O 0 o 0 0 ~ r I~~ J Y O O O O O W y LL p y Q zO Sa J J y O .. F O O O O O Z J~ ~ J n O o N 0 0 v a °o oa °o o $ 0 y ~ J~ p ~p a p N N ion ~j o N rnn o° N rn~n o O N m n ~ O~ Q O J Q ~~ N ' y. a ., 0 0 0 O O n 0 N ~ n O N N N n O N N N n O N N N n ~ E o am p r B~ .0 J a r (V ~ a a a r (V W a a a r N ~ a a a r N .c a a a ~ ~ B~~ JB~ BBB BBB BBB ~ ~~m ~~' W A O 'C N ~ a~ ' a C N o ~ C ~ N J ~ ~ ~ N ~ J LL.. ~ GG ~ • i• i• 5 _ ~ ~ N ~ LL W IL, LL Iii y Q ~V' C ; ~ Q 7 ._ s~ Y Y Y Y Y ~ Y Y rO' ?A' T a a o ¢ u~i 1°n ¢ ¢ ~. _ E zz ~3N 1~'z3 a „~ ,~ ~ ~ m ~. y fl' (n .1i N yItI~ ~ q N II ~.: J V ~' LL S. ~ IL IL .. ~ ~ LL ~ ~$ ~ O U a~ ~ v ~Y t I^ 1 O D U ~ 1~. ~ O ~ a~Ua8 ~ '`, r e i ~ ~ e~ ~~ ~ ° ~ $ - ~ ~ ~ IL y~~ U O '~ C ~ C L H LL ,'iY VJ: m y LL ~ Yi ~ N ~ d' E ,1 m (/1 a U ~ n Q ~ ~. ~. y ~ o ~ ~. ~ Q Q Y Y ~ ~ ~~, O E ~ a a 0 1 z z U . . ~a k ~ Y= Y -€ II II ~ ~ ~ o~ w~ - 1 ~ ~ N _^ = O ~i ._ _ _ _ _ O O ~i = h 3' n n n N N O ~ N ~~ ~~~ LL `( II II N II 11 II 11 II N N y `~~ O O ~ 1n ~ N Z U E E U U j 11_ ~ ~~ _` ~~ - ~~ - - - 3 "t = 3 m ~ c " ° o ~ ~ LL o ~ 'r~ as sa_ y a~, iO `~ oN `o ~ I o (n ~' Y Y ^- m ~ ~qq '~t' ~ •' _ s .7 Y Y CY1 ~ R < _ y V 4 ~ O O t LL~ - ~ LL D ~ u~ r b 1O r Y ~ C ~`)H~ tt i N~ - - U n 01 LL rc'i ~ j. i[ ~ ~ 11 II II II 191 '~ W d LL c a~ E~' ~ v o 3 3 ~ WI U vl LL LL -~ U ~jri r it ,~ GC 41 i• i• ~ ~ ,~ W -- - ~ _ _ - ; ~ _ 1.1-. ~ ,_, ,~ LL LL LL y O Q In C Y Y O O E _ xY xx- ~xY YY o U a s m a o ° a a o 3'z N3~ ~3z ~ n V ~ 1' ~ ~ 1 ry 1 Y ~ II J U N 4 II II LL~ ° ° II LL ~ ~ 'F Y ^ p 4 ~ LL ~~ O O LL y .. _ n [) ~'~ ~LL ° I O ST ~ a °° c~ n ° ~ ~ 5 n ~ U ~3~u"'i ° ~ In ° ~ 1 _~ n n ~ ~ oY' LL $ vv^ ~°o o Y 1 ~ v Y U d m ~ ~ N ° ° y C - L ~ n o ~ 1i ' ~ 5 (1 u, x _ v - ~ ~ LL r S Y - ~ lLL c ~ N @ i t i m v ~ _ a ~ II _ ~ I ~ ._ * : F . f ~ L b j ~ a ~ Y . ' t Y O ~ _ Q Y Y 3 i ~ .^_. C ` ~ k U ~~ 1i ryry ] [r T Y Y II II O Yhr a ~ ~ ~ C C Q` ._ ._ ._ ._ _ c o o v 1j 7~ „ n N = G _ ° d I I ~ ^ Y N °° N ~ ~ ~ f ~ a u IpI c~ n a ~ r ~ ; ` ~ n n n u n n n n i < y ~ y Z U U U n M . + * b ~ n O G . E o " ' ._ ._ ._ ._ ._ ~ ~ T 2 ~ ~ N O 4 1 n n n n n ~I ~~ a a ~a ~ a Y I ~ j l ~ ~ Y Y A r~ ~ - . ~ d£ 32 _ ~. . m Y m ~ Y ' ~ '. i ~ ~ _ ` _ ? .~ E ~ n Y t7 ~ ~ rv .-~j 67 ~ .. ~ ~ ^ N r ~ I ~ LL LL ~ r ~ ~ LL ~ ' %~I r_ LL . V . V~ Its ~ m ° p LL LLLL c a~~.;. ~ -i0 ~ ~ ~ y _ v ~ ~ E ~ I ^ z o ~ , , , $ ~ V Gc 4z • C • -~ J F a d N ~ ~ a0 ai t~ n O~ .Y.. f N ID m ~ ~ J Y J Q U Y M O N n O N a r O n m N O m n M ~ U ~ J O O O O O ~ J y ~ ~ m N r ~ O ~ d Y a' J e 0 e ~ J ' N ~ ~ t00 N O J }~ O } y W N O O O O O O O O O O U f Z W 5 ~ m 0 x Z~ X Y o o O 0 o 0 0 0 0 0 J Y O O O O O LL N 41 Q 2 ~ J '~ s U `. H O O O O O Z J d N O V A S a Or 0 O' O N ~- J~ ~O n O N u7 u~ ion 0 0~ ~rnn O~ N min O N m°n O N min Q O J Q ~~ N R' H Q .... } O o N N O N O O N O O N O O N O O - ~ F O ( (pp O C .~ J 'p ~ N~ A D O ~ N C Q a c ~ N~ C D D .- N W 0 9~ ~ m B~ BBB BBB BBB BBB _~ K m J C U JJU J J U J J (J J J U ~ D ,~~ ~ jl _ W W ~ ~~ B C N u ~ O p F~ ~ C N ~ ~ C ~ ~ o ~ J m N ~ J Gc43 i• i. ti, ~~~ ~~ __ - _~_ ~r _ ~n u. W .^~_.. ~ LL Y O (> J`: S ~ 'T O o C , ~ ._ s ~c Y.>: Ys s xx ~ ~: U #i E zz ~3H X33 Y, ,,, y m v II ~ Y p Y .I II ,v p r J U .~ LL S, L IL IL N ~`~' Q Q 19 m ~ Y C ,~„ LL O O LL ~~ ~ U~ n o~ u „,. 01 o Yi b r a o c 1F1 p Y 9_ n u o° 'oo a S, o~l P o i ~ o U a ' ~ ~I O U ~ ~ E E LL rv ~ ~ ~o e Y O_ ~ N O LL ~t _ L W C p ~ U ~ C ~ Y Y ry LL y. VI „ LL 191 9i "' ~ Jr N W m ^lfi ` u II ;. ~ a ~ ~ x `'. Y n ~ ~- O ~ ~ ~ ~ ~ a ~, 3 ~ ?: Y Y ~ § i ~~[H['. ry n u n ~ 5.~. ~ ~ C ~i„ rv N = p 0 0 ~., _ ~ N ~- r .n e .- Iv ~~ `'~~ n n u y ~„ t fA ~ N r V Y U U U ar o ~ IX o 0 I Fg u 5~: n n ~ LL _ ;~ ~~ e ~ ,* ~~i o o ~ ~ a o rl ~ ~mo Q o La o Y ~ ~ ~~~~ o 0 1;, s Y w~ op ~~~ °° _ ~_ ~~ sx ~ ~~ Y U p II ~~ 1~ N O O H r LL nq LL ~. ~ m Y G 3~~ LL '.7 a ~ ~_ _ c ~ n n n"" ~ i~tl s a LL i~i~ ~ a~~g ~ ~ s_t 3 ~ a a` wl u° r~i ~ o :ly N 1 µ~ 3x' ~~ ~+~ • • • LL LL O y Q rm C E ~ _ 0 A, •- m m' y C -~ C V `o LL Y U Q! i L H _ e r N ` d m E n i ~ n ~ i i +,~ - ~ 1 j ~' a ~ Ys o I U LL LL a a ~ a F z 3 p 3 tmp ~ ~ LL ~ j o ~ ~ v 3 ~ $ U ~ 3 "u ° ° ~ B U U ° o~a- o S. C C iy LL ~ ~ N m < N ~ N r 3 ~ ~ o ~ a o 3 a O_ ryyJ f/1 E s x s ~ v' n r K i N _ 0 a` u o _ LL LL ~ °_ U LL LL LL fjr y O ~~ O O s x ~ s x C~ "~3 L~~~ ,t ~. LL rv ~o T r, ~ 4a~ „ 0 0 o 3 ~ i M 4 P o y a 4 , ~~: e I~y •`.; l: O 3 ; ~~ i ~ Y 0 n " c w ^ ~ = O ? u at o c ' I~' n n u N !N~ 22LL ~f' '^~~ ~ U U U rv n ~; o 0 1 3 ~ n ~, r 4' n+ .. .. a = a ~ ~ '~ ~ rv t n K • Y I Y 4 `rY; , Ti Y O J J I ='. ~ x 0 0 Y .1~ ~ s s m ~ W ~ r ~~ ~ _ U u u ~ II II n g d ~ ~ L y U ; - ~ ~ o GC ~S • • Q i e o O ~ `. r ~ n v N O> 7 N J y J ~ d O r r n N f0 N N N ~ N CJ ~ r N W [V r ~ U ~ p J 6 W O ~ O ~ 0 W N 0 Ol O 0 a N ~ O ~ d x ~ F J a' o ~ e e ~ n J O N N V c p O J }~ p } y W H O o O 0 O 0 O 0 O 0 U ~ Z W 5 m ~ X~ Z~ ~( y 7 o o O 0 o o o O o O J y J .... LL H O O O O O N Q Q O J ~ x O O O O O . . H Z J 4 N O O~ p~ O O p 0 N ~ J~ ~O n ~ N limn Sj O N rnn O~ Simon O N m°r O N rn°r O J } d' Q m~ y K ~ Q ,- ~~ p ~ N O O N N N O O p N N O N O N B O O _ ~ v L f (~ ~~~ 9JD ~ N ~ aaD ~ N W O°D ~ N W CAD ~ N COD °,~s B~~ BJ~ BBB BBB BBB m al~~ J W O~ O 8 C N E C ~~ C O O ! J ~ ~ ~ ~ ~ ~ ~ ~ J i G ~ 4b '• • • _ w _ _ LL W __ __ _. .J .... ti Y p 0 a ~; ~T N C 7 _ _ ~ i~w' Y Y 0 0 5 x s s s YY.~ ti sY ' ~ ~.. m ' o o o Z ~ ~ ~ ~ ~ Z ,~j, n ~ ~ ~ ~ v r ~ Q] 1 Q~ ~ n J" II O II n N LL n u n N " { I ~ Y tl tl ~eLL ~ ~ LL oJOO ~a tO r O p - " O O p o~ U~~ U ° LL yl a~~~ N tl u o. .. O LL U U ~ A q ~ L o N o N ~ IL ~i 14i "' C N ~ ~ m 'l ~ C ~ _ s 'y Y O =~ a J ~ Q Y Y e ~ ~ 3 ' E j , U 3 z ~..~~ ~ ~ Y a n n ~ o ~ ~m c ^~ r = o 0 0 - = U n n n ' ~ u u n n n n n 'i t In ~` In Z U E E ~~~ III i II o ~y II II a ~ .~I N N I _ ~ a a ~ '; I _ ._ ._ ._ ._ s .~ ~ 3 .+,~ ~. i ~ ~ ~ o L J ~ +c G o fn ! Y Y I ',~ W ~ ~ r r ' _ m - - - _ sx Yx I ~ k~, U ~,!, _ tl i.li ~ LL D N ~ ~ Y ~ ~ '.'. ~ m u ._ I ~ ~ ~ LL :Js G n ~ 11 n II II n I -.~ u i a LL LL d v a~~ c_ !i E s z ~ o `o ; ~~U LL ~~ U SIN ~ 4~ • r~ - W -- w LL - `~: 7, 1~1. LL LL ~ LL LL LL LL ~ y O Q r' C 7 ._ s s s~ z Y .~ ~ +Y x s O O U ~±'~~ ^ ~ E ~ ~ z3 ~3p ~ ~3z ~+ A „ ' .~ v m II II II II n Y Y ~ ~' . . II ~ V ~~j - r f$ ~ LL s,~ LLli N ,w ~ ~ 4a a ~b LL ~~ :, t °~a m r ? ~ ~LL o 0 N ~ ~ n U J O o _ ~ Y R n o F N C II` I^ o a a~U~oU i N ~. .:j W O S~ r ` - L ~ ~ ~ ^ . . - U ~ ° ~ z cl' LL ~ w. ~ a L' ~ Y o n m , O ~ C a ~ Q Y Y ~ ~ ~ ~ : ..LI E ~ U .4~ 3 3 E ~ I ~ ~ C I I )~ M ~ = y O ._ ._ ._ ._ ._ '~ o e ~'- n x u N N ~• ~ ~ LL tY Y y~ y Z U E E U U rv~ 0 0 ff 5 _ ~ = LL a N rv ~ ,.. ~ _ S _ ~ C ~ ~ ~ ~ ~ ^ ~ y' .. O Q n 3~~ y n ~ J N Y Y o 0 ~ & W ^-. ' s s s s s ~,~ ~ n = 2 m U II Y ~ h pp 0 0 0 N - T ~ ~f LL !` m w ti N C r O . "~ ~~ ~>? C . .. V LL , j ~ ~ ryi,. i LL LL LL o u I ~ a~~ g °= ; 3 E R• ~~, Y L 0 ~ 0 ~ ~ ~ rj O P qq J j S ~ _ G C3P ~ • ~ Consulting Engineers Sheet No.: Project: Rexburg Temple Engineer: JTM Project No.: 204359 File: Steel column baseplate-LRFD.mcd Client: Architectural Nexus Date: 1/25/05 Subject: W 12x96 Rev.: Column dead load: Pp := 275•kips Concrete compressive strength: f~~ := 4•ksi Column liveload: PL := 150•kips Yield strength of steel: fy:= 36•ksi Width of column: bt•:= 12~in Width of baseplate: B :- 20•in Depth of column: d := 12•in Length of baseplate: N:= 20•in ~~:= 0.65 Area of concrete support: A, := (106•in)•(106•it Area of plate: At := B•N A} = 400 inz Factored load for concrete: Pu := 1.2•PD + 1.6•PL P„ = 570 k 1 z Pu Az ~~ 0.85•f~~, Minimum area of baseplate: A} m;n :_ P„ '4t_min := max(At_min) ~~ 0.85•f~_p 2 bf•d Al_min = 258 in Az ~~•0.85•f~~ -.pt .Design bearing capacity: ~Pn := min At ~Pn = 1768.Okips PU <_ ~Pn = 1 (ACI 10.17.1) 0 85•f 2A ~~ ~~ t P„ Service level bearing pressure: fp := 1=~ fp = 0.838ksi A} Effective cantilever dimensions: m:_ ~•(N-0.95•d) m=4.3in n:_ ~•~B-0.8•bf~ n=5.2in • bf• d nprime ~= 4 m c := max n a. •nprime nprime = 3 in c = 5.2 in Required baseplate thickness: Az 0.35•f~~; - Fp := min At Fp = 2.8 ksi 0.7•f~_p Transition coefficients: __ _ 4•d•bf P~ X := mi ~d + bf~z ~c'Pp X = 0.496 1 2 •~ ~, := min 1 + ~1 - X ~ = 0.824 1 2•P„ tp_min ~= c' tp_min = 1.54 in fp <_ Fp = 1 0.9•fy B•N G b P Z, ~ Consulting Engineers Sheet No.: Project: Rexburg Temple Engineer: JTM Project No.: 204359 File: Steel column baseplate-LRFD.mcd Client: Architectural Nexus Date: 1/25/05 Subject: W 12x87 Rev.: ^- Column dead load: Pll:= 272•kips Concrete compressive strength: f~~ := 4-ksi Column live load: PL := 93•kips Yield strength of steel 'fy:= 36•ksi . Width of column: br :- 12•in Width of baseplate: B := 20•in Depth of column: d :_ 12•in Length of baseplate: N := 20•in ~~:= 0.65 Area of concrete support: AZ :_ (106•in)•(106•ir. Area of plate: Al := B•N Al = 400in2 Factored load for concrete: Pn := 1.2•Pp + 1.6•PL P„ = 475.2k 1 2 pu A2 ~~ 0.85•f~~ Minimum area of baseplate: A~ min ~° pu At_m;n := max(At_min) ~~ 0.85•f~~ z b f• d A1_min = 215 in Az ~~ 0.85•f~~ -•A~ Design bearing capacity:. ~Pn := min A~ ~Pn = 1768.0 kips P„ <_ ~Pn = 1 (ACI 10.17.1) ~~•0.85•f~~ 2A1 Pu A2 Service level bearing pressure: fp = 1=~ 0.35•f~~ - fp = 0.699 ksi Fp := min Al Fp = 2.8 ksi Al-, 0.7• f~_p Effective cantilever dimensions: Transition coefficients: m :_ ~ •(N - 0.95•d) m = 4.3 in 4•d•b f P„ I n:= •~B-0.8•bf~ n=5.2in X := mi ~d + bf~z ~c•pp X = 0.414 2 1 bf• d l~prime ~= 4 nprime = 3 lri 2 •~ m ~.:= min I + V 1 - ^ ~. = 0.728 c := max n c = 5.2 in 1 a. • n prime 2.p~ Required baseplate thickness: tp tp_mm = 1.41 in min = c' fp <_ Fp = I _ 0.9•fy B•N C,(~,p 3 ~ Consulting Engineers Sheet No.: Pro'ect: Rexbur Tem le 1 9 p En ineer: JTM 9 PfOject NO.: 204359 File: Steel column baseplate-LRFD.mcd Client: Architectural Nexus Date: 1/25/05 Subject: W 10x49 Rev.: Column dead load: Pn := 150•kips Concrete compressive strength: f~~,:= 4•ksi Column live load: PL := 50~kips Yield strength of steel: fy:= 36•ksi Width of column: bt•:= 10•in Width of baseplate: B := 18•in Depth of column: d := 10•in Length of baseplate: N := 18•in ~~:= 0.65 Area of concrete support: AZ :_ (106•in)•(106•ir Area of plate: At := B•N At = 324inZ Factored load for concrete: Pn := 1.2•PD + 1.6•PL Pn = 260 k 1 2 pu A2 ~~ 0.85•fe~, Minimum area of baseplate: Ai min := pn At min := max(A~_min) ~~•0.85•f~~, bf•d Al_min = 118 in z AZ ~~ 0.85•f~ -•At Design bearing capacity: ~Pn := min ~ A~ ~Pn = 1432.1 kips P,, <.~pn = 1 (ACI 10.17.1) ~~ 0.85•fe~; 2At P, Service level bearing pressure: fp := 1-'~ A: Effective cantilever dimensions: - __ __ m :_ ~ •(N - 0.95•d) m = 4.25 in n :_ ~ •~B - 0.8•bf~ n =sin • bf•d nprime •_ 4 m c := max n 'nprime 0.35 • few fp = 0.472 ksi Fp := min 0.7•f~ Transition coefficients: _ _ _. Fp = 2.8 ksi 4•d•bf Pn X := mi ~d + bg~2 ~c'pp X = 0.279 1 nprime = 2.5 in 2 r- ~, := min 1 + ~(, v c=sin 1 2•P„ Required baseplate thickness: tp m;n := c• tp_m;,, = 1.11 in 0.9•fy B•N Az At ~, = 0.572 fp<_Fp=1 Gf,~4 • • • ~ Consulting Engineers Sheet No.: Project: Rexburg Temple Engineer: JTM PfOjeCt NO.: 204359 File: Steel column baseplate-LRFD.mcd Client: Architectural Nexus Date: 1/25/05 Subject: HSS 6x6 Rev.: Column dead load Column live load: Width of column: Depth of column: Area of plate: Factored load for concrete: Minimum area of baseplate: PD := 33•kips Concrete compressive strength: fe_p := 4 •ksi PL := 35•kips Yield strength of steel fy:= 36•ksi bf:= 6•in Width of baseplate: B := 8•in d := 6•in' Length of baseplate: N:= 13•in ~e:= 0.65 Area of concrete support: Az :_ (16,in)•(16•in) A~ := B•N A~ = 104inz Pu := 1.2•PD + 1.6•PL Pu = 98 k z I Pu Az ~~ 0.85•fe_p At_min ~= Pu ~~ 0.85•fe_p bf•d '~l_min ~= maX(Al_min) z Al_min = 44 in Az Desi n bearin ca acit ~~ 0.85•fe~; -•A~ g g p y: ~Pn := min Al ~P„ = 360.6 kips Pu < ~Pn,= 1 (ACI 10.17.1) ~~ 0.85•fe~; 2A~ P„ Service level bearing pressure: fp := 1=~ fp = 0.554ksi Al Effective cantilever dimensions: 1 rn := 2 •(N - 0.95•d) m = 3.65 in n :_ ~ •~B - 0.8•br~ n = 1.6 in bf•d nprime ~= 4 nprime = 1.5 itt m c :_ max n c = 3.65 in ~•' n prime Az 0.35•fe Fp := min ~ At Fp = 2.2 ksi 0.7• few Transition coefficients: 4•d•bf Pu X := min ~d + bf~z ~o'Pp X = 0.328 1 2•V ^ ~, := min I + 1 2•Pu Required baseplate thickness: tp_m;n := c• 0.9•fy B•N tp_min = 0.88 in ~, = 0.629 fp<_Fp=1 s F~ ~ Consulfina Engineers Sheet No.: Project: Rexburg Temple Engineer: JTM Project No.: 204359 File: Rc footing.mcd Client: Architectural Nexus Date: Subject: Footing A Rev.: G Footing geometry: Footing loads: Width of footing: B, := 3•ft+ bin Dead load: PDL := 20 kips Seismic load: PE := o•kips Length of footing: B2 := 3~fi~ + 6;n LIVe load: PLL := 25•L-ips PDL +PLL = 45 kips Width of loaded area: b ~4•in ~i:== Factored load: Pu := 1.2 Pp~ + 1.6 PLL + PE Pu = 64kips Material properties /Design p arameters: Length of loaded area: bt,, := 24•;n Concrete compressive strength: f~~ :_ 4•ksi Footing thickness: n:= 12in Steel yield strength: fy:= 60~ksi Distance to steel c.g.: drg := 4•in Strength reduction factors: Bending: ~b := 0.9 Depth of steel reinforcing: a:= b - aeg a=Bin P PDL +PLL + E i n Soil bearing pressure. (service): Soil bearing pressure (factored): Bearing capacity on concrete One-wav shear design: /Bz bp2 d1 Vul ~= Psoil_brng'I 2 -. 2 - 2J'BI ~Vnl ~= ~v'2' fc~'Psi'B I'a Psoil_bmg_service ~_ Bl•B2 Pu Psoil_bmg~= B •B 1 2 ~Pbrng'= ~bmg'(0.85•fc3/•bPl'bp2 Vu{ = 7.6kips ~Vn, = 36.1 kips - Vul ~ ~vnl - I Two-wav shear design: Vu 2w ~= Pu' 1 - BI'B2 ~Vn zw :_ (~v (F2C[Or• fc~~psi•bo d) Cantilever moment design: 1 I/Bz bpl 2 Mul = 2'Psoil_bmg'BI'I 2 - 4 BarAreal := 0.31 in2 _ B, Spacingl ;= 9•in As, := BarAreal~ Spacing ] Asl'fy 0.85•fe~ B, ~4s1 Asl Pnun < B; d = 1 B~'< p~~ = 1 Shear: ~~:= o.ss Psoil_bmg_service = 3.67ksf Bearing' ~bmg:= 0.7 Psoit_brng= 5.22ksf ~Pbmg = 1371 kips Pu < ~Pbmg' 1 f/Bl bpt d Vu2 ~= Psoil_brng'I 2 - 2 - 2 •B2 Vu2 = 7.6 kips ~Vn2 := ~v'2' f\c.p'Psi•B2•d ~Vn2 = 36.lkips ~ ~~, ': G~A'~~~ = i Vu zw = 26.8kips as := 40 bo := 2 (bpl + bPZ + 2 d~ bo = 10.667ft ~Vn_2w = 220.2kips Vu ~~y < ~V„ = I Factor = 4 2 Mul = 14.3ft•kips 1 rBt bp21 Mu2~= 2'Psoil_bmg'B2' J Miz= 14.3ft•kips 2 4 Asregd = 1.11 in2 BarArea2 := 0.31 •in2 2 Spacing2 := 9 in Asz := BarArea2• Asz = 1.447in2 B n As, = 1.45 in g2 Sp ~~ = 0.0043 E dd = 0.0043 B,•d As2 fy z' 0.85•fe~~Bz ~Mn2 :_ ~b' As2'fy' d - ~Mn2 = 50.1 ft•kips ~Mnl = $0.1 ft•kips 2, btu ~ ~MnL= .I `\`- ,'- - = i ~- ~ < h hinl.~ ;: m - 1 ti1,,, c ~~"lr~ = I L 1 SF~ ~ Consulting Engineers Sheet No.: Project: Rexburg Temple Engineer: JTM Project No.: 204359 File: RC footing.mcd Client: Architectural Nexus Date: Subject: Footing C Rev.: CJ Footing geometry: Footing loads: Width of footing: B, := 6 ft + oi„ Dead load: .PDL := 123•kips, Seismic load: Pg:= O kips Length of footing: BZ := 6.ft + Uin Live load: PLL := 23•kips PDL +PLL = 146kips Width of loaded area: b~, := 24 in Factored load: Pu := 12PDL + 1.6 PLL + PE Pu = 184.4kips Material properties /Design parameters: Length of .loaded area: bP~:= 24 in Footing thickness: ~,:= 12 in Concrete compressive strength: f~~ := 4~ksi Distance to steel c. 9•~ dig:=4;» Steel yield strength: fy := 60 ksi Strength reduction factors: Bending: ~b :- 0.9 Depth of steel reinforcing: a:= b - dig a =Bin PE Shear: ~~:= o.ss PDL t PLL + - Soil bearing pressure (service): pso;, b,,,g Serv;ce := service = 4.06ksf Bearing: ~bmg:= 0.7 1.4 Psoil bmg _ _ B _ _ B t z bmg:= rn Soil bearing pressure (factored): pso;, bmg=5.12ksf Psoil _ B,•BZ _ Bearing capacity on concrete: ~Pb,ng:= ~b,ng ~0.85•fc~)•bP,•bPZ ~Pb,,,g= 1371 kips P„ ~~f',,~, L = 1 One-wav s ear design: h 2 - ZZ _ 2~.B1 Vu, = 51.2kips Vul = Psoil_bmg'I I/ \I I'B2 ~'uz = 51.2kips Vu2 ~= Psoil_bmg'I - t - 2 2 Z 2 ~Vn, :_ ~v'2• fc~•psi•B,•d ~Vn, = 61.9kips ~Vr2:= ~v 2• fc_p•psi•Bz•d ~Vnz = 61.9kips Vu1S ~Vnl = ] Vu~ ~, (~Vn2 - i Two-wav shear design: Vu 2w ~= Pu' 1- Vu zw = 148kips as := 40 J Bl•Bz ~V •- ~ •~Factor• f si•b •d) ~V 220.2ki s bo:= 2•~bP, + b,iz + 2•d~ bo = 10.667ft \~, , , •: qw ] Factor = 4 - Cantilever moment design: _ _ 1 Bz bPl 2 I Mut = 96ft•kiPs Mul ~= 'Psoil bmg'Bl•I - 1 Bt bpzl2 I Muz = 96ft•kips - bmg'Bz'I Mug ~= 'Psoil 2 _ 2 4 \ J 2 4 2 _ l J p`sregd= 3in2 a BarArea2:= 0.44•in2 Bacfv'eal := 0.44•i Bz 2 B, 2 Spacingl := 9•in As, := BarAreal• As, = 3.52in Spacing? := 9 in Asz ;= BarAreaz• As2 = 3.52in Spacing2 Spacing 1 ~l = 0.0061 ~z = 0.0061 Asl'fy B, . d As2'fy Bz• d 0.85~t s c p 1 ~M"2'- ~b' A f• sz' y d_ 0.85•ec~•ez M 119.9ft•ki s ~ n2 = P ~M ~ nt ~= b' A f • sl' y _ d - Mn, = 119.9ft •kips 2 2 P ntin c = 1 < pmaY=.1 Mul ~ ~Mn7 = 1 hnr,n '~ __. = 1 --- ~; i?ns~ = i Mu?, < 1~~9 ~_ _ ~ B;~a e,~d ~ is,~,i r3,~~i 1 gF 3 ~ Consulting Engineers Sheet No.: Project: Rexburg Temple Engineer: JTM Project No.: 204359 File: RC footing.mcd Client: Architectural Nexus Date: Subject: Footing D Rev.: GJ Footing geometry: Footing loads: Width of footing: B, := 5.>Y + o;, Dead load: PpL := 175 kips Seismic load: PL;= o kips Length of footing: B~ := 8 it + Oin LIVe load: P~~ := 35•kips PpL +PLL = 210kips Width of loaded area: b l s• in t,t :_ Factored load: ~~ := 1.2•PDL + 1.6•PLL + PE Pu = 266kips Material properties /Design parameters: Length of loaded area: v 18•in uz _ Footing thickness: b:= ls•;n Concrete compressive strength: f~~ := 4 ksi Distance to steel c. g•: dig:=4•in Steel yield strength: fy:= 60~ksi Strength reduction factors: Bending: ~b:= 0.9 Depth of steel reinforcing: a:= n - a~g a = 14in • Soil bearing pressure (service): psoit_brng_service ~_ BrBz P~ Soil bearing pressure (factored): pso;,_bmg:= B 1' B2 Bearing capacity on concrete: ~Pbmg:= ~bmg ~0.85•fe~)•bpt•bpz One-wav shear design: l Vul ~= Psoil_bmg'f 2z - 2z - 2 I'BI Vut = 88.7kips ~Vnt :_ ~~•2• f\~~•psi•Bt•d / ~Vnt = 144.Skips Vut <~Vn1=. I. Two-wav shear design: r (bPi + d~•~bpz + d) 1 Vu 2w := Pu' I - B t Bz J ~Vn zw :_ ~~ ~Factor• fe~•psi•bo d) P PDL +PLL + E 1.4 Vu_zW = 236.4kips ~Vn zH, = 38S.3kips as := 40 bo:= 2•~bpt + biz + 2•d~ P„ ~ 4'P~~„r = i Vuz = 88.7kips ~viz= 144.Skips Vu2<~Vnz ~' i bo = 10.667ft V„ z~v < ~1'n zw = 1 Factor = 4 Cantilever moment design: 2 2 1 Bz bpt 1 bp2 BI 'Psoil_brng'Bt• Mut ~= - ( ) Mut = 218.Sft•klpS Mug = 'Psoil_lxng'Bz' ( - ) 2 2 4 2 2 4 'J BarArea] := Ot6 in Asregd= 4.44in2 BarArea2:= O.Gin2 Spacingl := 9•in Bt Ast := BarAreal • 2 ?st = 6.4in Bz Spacing? := 9 in Asz:= BarAreaz• Spacingl Spacingl ~' = 0.0048 Ast•fy B .a I Asz'fy 0.85 e B cam' 2 O.BS•fe~•Bt ~Mn2 ~_ fib' P`sz•fy d - ~Mnt _ ~b' p`st'fy' d - ~Mnt = 386.3ft~kips 2 A 2 A ~ ~ st 1 min < st < Pmax= 1 Mul.< ~Mnl I ; ,, _ Pmin < ~ ;, hi. ~t~= 1 .. B d I' B d 1' B d - F B ~ 2. Shear: ~~:= 0.85 Psoil_txng_service = 3.28ksf Bearing: ~~g:= 0.7 Psoil_bmg= 4.16ksf ~Pbmg = 771 kips f/Bt bPt d Vu2 ~= Psoil_b~ng'I 2 - 2 - ~ 'B2 ~Vnz ~_ ~d2• fe~•psi•Bz•d Muz = 218.Sft•kips t4z = 6.4in2 ~z = 0.0048 Bz•d ~Mnz = 386.3ft•kips ~li~~ ~\~~~ __ 1 ~ Consulting Engineers Sheet No.: Project: Rexburg Temple Engineer: JTM Project No.: 204359 Fiie: RC footing.mcd Client: Architectural Nexus Date: Subject: Footing E Rev.: F y' Footing geometry: Footing loads: Width of footing: B, := 9 ft+ oi„ Dead load: PoL := 275•kips Seismic load: PF := o•k;ps Length of footing: Bz := 9 It + Oin LIVe IOad: :PLL := 150 kips PDL +PLL = 425kips Width of loaded area: b ~o.;n P,:=~ Factored load: P„ := 1.2•FDL + LGP~L + PE Pu = 570kips Material properties /Design p arameters: Length of loaded area: buz := 20 in ` Footing thickness: b:= 21 in Concrete compressive strength: fc~ := 4 ksi Distance to steel c. Steel yield strength: ry := 6o ksi Depth of steel reinforcing: Strength reduction factors: Bending: d:= 1, -deg a = t7in ¢6:= 0.9 PE Shear: ~~,:= 0.85 PDL ~' PLL ~" - Soil bearing pressure (service): Psoit_brng_service := B B 1.4 Psoil_brng_service = 5.2Sksf Bearing: ~~„g:= 0.7 t z Soil bearing pressure (factored): Psoit_bmg = Pu B •B Psoil_bmg= 7.04ksf t z Bearing capacity on concrete: ~P b ~g;= ~brng (0.85•fc~,)•bPt•bpz ~P~g= 952kips P„ ~r'i;~„, = 1 One-wav sh ear design: e z - ~z - Z I'Bt bmg'I Vul ~= Psoil Vu, = 187.4krps ( l Vuz = Psoil bmg'I t - Zt - I'B2 ~'uz = 187.4kips Z _ _ 2 Z \ / ~Vni :_ ~v'2' fc~•psi•Bt•d ~Vn, = 197.4kips WVn2 ~= t~v 2• fc~•psi•Byd ~V~ = 197.4kips Vul ~ ~Vnl = 1 VuZ <.. 4~`~n, = 1 Two-wav shear desi gn: l (bPl + d/•(bpz + d~ Vn zw ~= Pn• ~ - C v~ zw = 503.1 kips aS := 40 B B t z J ~V - ~ •(Factor• f si•b •d) n_2w - v c~'P o ~V - 541 ki s ^_zw - P bo:= 2•~bPi + bP~ + 2 d~ bo = 12.333ft V;; 2w < ~V~ ,. - 1 Factor = 4 Cantilever moment design: __ _ _ _ _ 1 (Bz bPtl2 J Mul ~= 2'Psoil_brng:B,• 2 - Mu, = 528ft•kips 1 rBt bPZl2 Mug ~= 2'Psoil_bmg'B2•I 2 - 4 Muz = 528R•kips 4 \ ) BarAreal := 0.6•in2' Asreyd= 7.76in2 BarArca2 := 0.6~in2 Bt Spacingl::= 9•in Asl:= BarAreal• 2 .Ast = 7.2 in Spacing2:=9•in Asz:=BarArea2• BZ As2=7.2in2 Spacing2 Spacin g l ~' = 0.0039 ~z = 0.0039 As' ry B t • d ^sz'rr Bz• d 0.85•tc p e, ~M,~ :_ ~b• Asz•fy 0.85 tc •Bz d - ~ ~M~ = 531.7ft•kips ~Mnt :° ~b• As,~fy _ d - ~Mni = 531.7ft•kiPs 2 2 As1 Asl P.nun ~ = 1. < Pmax = 1 Mul <.(~Mnl -- i 1,;, ~,_ hmin '- _ ~ '~ hn =~ .CV9~? ~ ~:11~_ = i n~ Bt•d B1•d ll~~d L3_ d . 1 RAMSBEAM V2.0 - Gravity Beam Design Licensed to: KPFF Consulting Engineers-Port Job: Rexburg Temple Steel Code: LRFD SPAN INFORMATION: Main Level Girder Beam Size (User Selected) = W18X35 Fy = 50.0 ksi Total Beam Length (ft) = 23.50 OMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 3.50 3.50 Unit weight concrete (pcf) 125.00 125.00 f'c (ksi) 4.00 4.00 Decking Orientation parallel parallel Decking type VERCO W3 Formlok VE RCO W3 Formlok Distance to Adjacent (f t) Beam: 28.00 Beam: 15.00 beff (in) = 70.50 Y bar(in) = 18.46 Mnf (kip-ft) _ .612.67 Mn (kip-ft) = 519.78 C (kips) = 291.96 e (in) = 14.74 Ieff (in**4) = 1542.77 Itr (in**4) = 1881.67 Stud length (in) = 5.50 Stud diameter (in) = 0.75. Stud Capacity (kips) Qn = 23.4 # of studs per stud segment: Full = 23,1,23 Partial = 12,1,12 Actual = 12,1,12 Number of Stud Rows = 1, Percent of Full Composite Action = 54.53 LOADS: Self. Weight = 0.035 k/ft Point Loads (kips): Flange Bracing Dist DL Pre DL LL Top Bottom 7.83 13.44 9.81 14.50 Yes Yes 15.67 13.44 9.81 14.50 Yes Yes SHEAR (Ultimate): Max Vu 1.2DL+1.6LL (kips) = 39.82 0 .90Vn = 143.37 MOMENTS: Span Cond LoadCase Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft nter Pre DL 1.4DL 110.9 11.8 --- --- 0.90 249.38 enter Max + 1.2DL+1.6LL 310.8 11.8 --- --- 0.85 441.81 Controlling 1.2DL+1.6LL 310.8 11.8 --- --- 0.85 441.81 REACTIONS (Unfactored) (kips): Left Right Initial reaction 10.22 10.22 DL reaction 13.85 13.85 Max + LL reaction 14.50 14.50 Max + total reaction 28.35 28.35 DEFLECTIONS: Initial load (in) at 11.75 ft = -0.544 L/D = 518 Live load (in) at 11.75 ft = -0.258 L/D = 1093 Post Comp load (in) at 11.75 ft = -0.322 L/D = 875 Total load (in) at 11.75 ft = -0.867 L/D =- -325 GC3 ~ • RAMSBEAM V2.0 - Load Diagram 2 Licensed to: KPFF Consulting Engineers-Port G v Z Job: Rexburg Temple Steel Code: LRFD Beam Size = W18X35 Span information (f t): Main Level Girder Length = 23.50, Left Support at 0.00, Right Support at 23.50 Y Load Dist DL LL+ LL- Max Tot P1 7.83 13,440 14.500 0.000 27.940 P2 15.6.7 13.440 14.500 0.000 27.940 Wl 0.00 0.035 .0.000 0.000 0.035 W2 23.50 0.035 0.000 0.000 0.035 • • RAMSBEAM V2.0 - Vibration Analysis (hurray's Method) Licensed to: KPFF Consulting Engineers-Port ~j 6 3 Job: Rexburg Temple Steel Code: Code: LRFD Span information (ft): Main Level Girder Length = 23.50, Left Support at 0.00, Right Support at 23.50 Beam Size = W18X35 Percent of DL Applied = 100.00 Percent of LL Applied = 10.00 N-Effective Calculated = 1.0000 N-Effective Used = 1.0000 Composite properties for Vibration: Concrete thickness (in) Left = 3.50 Right = 3.50 Unit weight concrete (pcf ) Left = 125.00 Right = 125.00 f'c (ksi) Left = 4.00 Right = 4.00 Decking type Left = VERCO W3 Formlok Decking type Right = VERCO W3 Formlok beff for Vibration (in) = 258.00 Itr for Vibration (in**4) = 2398.83 Results: Frequency (hz) = 9.8205 Amplitude (in) = 0.0047 Method 1. Range on Modified R-M Scale: Upper Half of Slightly Perceptible Method 2. Required Damping: 4.1149 • • RPMSBEAM V2.0 - Gravity Beam Design T~icensed to: KPFF Consulting Engineers-Port G(3t-~' Job: Rexburg Temple Steel Code: LRFD SPAN INFORMATION: Main Level Girder Beam Size (User Selected) = W21X 44'r Fy = 50.0 ksi Total Beam Length (ft) = 23.50k~. ~OMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 3.50 3.50 Unit weight concrete (pcf) 125.00 125.00 f'c (ksi) 4.00 4.00 Decking Orientation parallel parallel Decking type V ERCO W3 Formlok VERCO W3 Formlok Distance to Adjacent (f t) Beam: 28.00 Beam: 15.00 beff (in) = 70.50 Y bar(in) = 20.23 Mnf (kip-ft) = 838.18 Mn (kip-ft) = 717.02 C (kips) = 338.67 e (in) = 16.12 Ieff (in**4) = 2261.67 Itr (in**4) = 2808.39 Stud length (in) _ 5.50 Stud diameter (in) = 0.75 Stud Capacity (kips) Qn = 23.4 # of studs per stud segment: Full = 28,1,28 P artial = 14,1,14 A ctual s,.„= 14, 1, 14 Number of Stud Rows = 1, Percent of Full Composite Action = 50.41 .LOADS: Self Weight = 0.044 k/ft Point Loads (kips): Flange Bracing Dist DL Pre DL LL Top Bottom 7.83 16.90 12.40 18.30 Yes Yes 15.67 16.90 12.40 18.30 Yes Yes SHEAR (Ultimate): Max Vu 1.2DL+1.6 LL (kips) = 50.18 0.90Vn = 195.24 MOMENTS: Span Cond LoadCase Mu Q Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft enter Pre DL 1.4DL 140.2 11.8 0.90 357.75 enter Max + 1.2DL+1.6LL 391.7 -__ __= 11.8 0.85 609.47.. Controlling 1.2DL+1.6LL 391.7 11.8 --- --- 0.85 609.47 REACTIONS (Unfactored) (kips): Left Right Initial reaction 12.92 12.92 DL reaction 17.42 17.42 Max + LL reaction 18.30 18.30 Max + total reaction 35.72 35.72 DEFLECTIONS: Initial load (in) at 11.75 ft = -0.416 L/D = 678 Live load (in) at 11.75 ft = -0.222 L/D = 1270 Post Comp load (in) at 11.75 ft = -0.277 L/D = 1019 Total load (in) at 11.75 ft = -0.693 ~~:L-/-D -= -4-07-- ~~ '~ ~ ~~ ~. ~'ILGI I,~ RPMSBEAM V2.0 - Load Diagram Licensed to: KPFF Consulting Engineers-Port G ~ s Job: Rexburg Temple Steel Code: LRFD Beam Size = W21X44 Span information (ft) Main Level Girder Length = 23.50, Left Support at 0.00, Right. Support at 23.50 Load Dist DL LL+ LL- Max Tot P1 7.83 16.900 18.300 0.000 35.200 P2 15.67 16.900 18.300 0.000 35.200 W1 0.00 0.044 0.000 0.000 0.044 W2 23.50 0.044 0.000 0.000 0.044 • RAMSBEAM V2.0 - Vibration Analysis (Murray's Method) Licensed to: KPFF Consulting Engineers-Port <j ~ ~j Job: Rexburg Temple Steel Code: Code: LRFD Span information (ft) Main Level Girder Length = 23.50, Left Support at 0.00, Right Support at 23.50 Beam Size = W21X44 Percent of DL Applied = 100.00 Percent of LL Applied = 10.00 N-Effective Calculated = 1.0000 N-Effective Used = 1.0000 Composite properties for Vibration: Concrete thickness (in) Left = 3.50 Right = 3.50 Unit weight concrete (pcf ) Left = 125.00 Right = 125.00 f'c (ksi) Left = 4.00 Right = 4.00 Decking type Left = VERCO W3 Formlok Decking type Right = VERCO W3 Formlok beff for Vibration (in) = 258.00 Itr for Vibration (in**4) = 3565.14 Results: Frequency (hz) =.10.6741 Amplitude (in) = 0.0033 Method 1. Range on Modified R-M Scale: Upper Half of Slightly Perceptible Method 2. Required Damping: 3.7319 • • ,MSBEAM V2.0 - Gravity Beam Design Licensed to: KPFF Consulting Engineers-Port Job: Rexburg Temple Steel Code: LRFD SPAN INFORMATION: Main Le?•el Beam Beam Size (Optimum) = 67 ~ Fy = 50.0 ksi Total Beam Length (f t) ~~SbO ~OMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 3.50 3.50 Unit weight concrete (pcf) 125.00 125.00 f'c (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type V ERCO W3 Formlok VERCO W3 Formlok Distance to Adjacent (f t) Beam: 8.50 Beam: 8.50 beff (in) = 84.00 Y bar(in) = 17.84 Mnf (kip-ft) = 437.53 Mn (kip-ft) = 362.12 C (kips) = 221.88 a (in) = 13.96 Ieff (in**4) _ 1059.10 Itr (in**4) = 1298.31 Stud length (in) = 5.50 Stud diameter (in) = 0.75 Stud Capacity (kips) Qn = 23.4 ~ ,, # of studs: Full = 33 Partia l = 19 Actual "19. Number of Stud Rows = 1, Perce nt of Full Com~i~site~ Action = 57.78 LOADS: Self Weight = 0.026 k/ft Line Loads (k/ft): Distl Dist2 DL1 DL2 Pre DL1 Pre DL2 LL1 LL2 0.00 28.00 0.765 0.765 0.553 0.553 0 .850 0.850 SHEAR (Ultimate): Max Vu 1.2DL+1.6 LL (kips) = 32.33 0 .90Vn = 104.38 MOMENTS: Span Cond LoadCase Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center Pre DL 1.4DL 79.5 14.0 --- --- 0.90 165.75 Center Max + 1.2DL+1.6LL 226.3 14.0 --- --- 0.85 307.80 ontrolling 1.2DL+1.6LL 226.3 ~ 14.0 --- --- 0.85 307.80 EACTIONS (Unfactored) (kips): Left Right Initial reaction 8.11 8.11 DL reaction 11.08 11.08 Max + ZL reaction 11.90 11.90 Max + total reaction 22.98 22.98 DEFLECTIONS: dumber -M,1~2,)~ Initial load (in) at 14.00 ft = -0.918 L/D = 366 Live load (in) at 14.00 ft = -0.383 L/D = 878 Post Comp load (in) at 14.00 ft = -0.478 L/D = 7 03 Total load (in) at 14.00 ft = -1.396 tZ~~D~. _ -?'`' '~~~' • ~~ ~ /KL4M 4 . .MSBEAM V2.0 - Load Diagram Licensed to: KPFF Consulting Engineers-Port Job: Rexburg Temple Steel Code: LRFD Beam Size = W16X26 Span information (ft): Main Level Beam Length = 28.00, Left Support at 0.00, Right Support at 28.00 Load Dist DL LL+ LL- Max Tot Wl 0.00 0.791 0.850 0.000 1.641 W2 28.00 0.791 0.850 0.000 1.641 • ~~~ • 1 .~SBEAM V2.0 - Vibration Analysis (Murray's Method) G~ Licensed to: KPFF Consulting Engineers-Port Job: Rexburg Temple Steel Code: Code: LRFD Span information (ft): Main Level Beam Length = 28.00, Left Support at 0.00, Right Support at 28.00 Beam Size = W16X26 Percent of DL Applied = 100.00 Percent of LL Applied = 10.00 N-Effective Calculated = 2.0318 N-Effective Used = 2.0318 Composite properties for Vibration: Concrete thickness (in) Left = 3.50 Right = 3.50 Unit weight concrete (pcf) Left = 125.00 Right = 125.00 f'c (ksi) Left = 4.00 Right = 4.00 Decking type Left = VERCO W3 Formlok Decking type Right = VERCO W3 Formlok beff for Vibration (in) = 102.00 Itr for Vibration (in**4) = 1350.63 Results: Frequency (hz) = 6.3283 Amplitude (in) = 0.0052 Method 1. Range on Modified R-M Scale: Upper Half of Slightly Perceptible Method 2. Required Damping: 3.6552 • • RAMSBEAM V2.0 - Gravity Beam Design L~..censed to: KPFF Consulting Engineers-Port Job: Rexburg Temple Steel Code: LRFD SPAN INFORMATION: Main Level Beam Beam Size (User Selected).. W12~:14 Fy = 50.0 ksi Total Beam Length (f t) _ 15 0'0''':` ~OMPOSITE PROPERTIES (Not Shoredj`:~ Left Right .Concrete thickness (in) 3.50 3.50 Unit weight concrete (pcf) 125.00 125.00 f'c (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok Distance to Adjacent (f t) Beam: 8.50 Beam: 8.50 beff (in) = 45.00 Y bar(in) = 14.43 Mnf (kip-ft) = 204.10 Mn (kip-ft) = 155.90 C (kips) = 105.10 e (in) = 12.11 Ieff (in**4) = 368.49 Itr (in**4) = 482.34 Stud length (in) = 5.50 Stud diameter (in) = 0.75 Stud Capacity (kips) Qn = 23.4 'F # of studs: Max = 15 Partial = 9 ~ctual. Q~s~ Number of Stud Rows = 1, Percent of Full C~mpouite Action 50.53 LOADS: Self Weight = 0.014 k/ft Line Loads (k/ft): Distl Dist2 DL1 DL2 Pre DL1 Pre DL2 LL1 LL2 0.00 15.00 0.765 0.765 0.553 0.553 0.850 0.850 SHEAR (Ultimate): Max Vu 1.2DL+1.6LL (kips) = 17.21 0.90Vn = 64.31 MOMENTS: Span Cond LoadCase Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center Pre DL 1.4DL 22.3 7.5 --- --- 0.90 65.25 Center Max + 1.2DL+1.6LL 64.5 7.5 --- --- 0.85 132.51 ontrolling 1.2DL+1.6LL 64.5 7.5 --- --- 0.85 132.51 ~EACTIONS (Unfactored) (kips): Left Right Initial reaction 4.25 4.25 DL reaction 5.84 5.84 Max + LL reaction 6.37 6.37 Max + total reaction 12.22 12.22 DEFLECTIONS: Initial load (in) at 7.50 ft = -0.251 L/D = 716 Live load (in) at 7.50 ft = -0.091 L/D = 1987 Post Comp load (in) at 7.50 ft = -0.113 L/D = 1590 Total load (in) at 7.50 ft = -0.365 cU/D - ~x~~~+~ C~13 Ib /~'ILCiM 2 RAMSBEAM V2.0 - Load Diagram Licensed to: KPFF Consulting Engineers-Port Job: Rexburg Temple Steel Code: LRFD Beam Size = W12X14 Span information (ft): Main Level Beam Length =.15.00, Left Support at 0.00, Right Support at 15.00 W1 Load Dist DL W1 0.00 0.779 W2 15.00 0.779 LL+ LL- Max Tot 0..850 0.000 1.629 0.850 0.000 1.629 C~ C~C3 ~ i • RAMSBEAM V2.0 - Vibration Analysis (hurray's Method) Licensed to: KPFF Consulting Engineers-Port (y (?j ~Z Job: Rexburg Temple Steel Code: Code: LRFD Span information (ft): Main Level Beam Length = 15.00, Left Support at 0.00, Right Support at 15.00 Beam. Size = W12X14 Percent of DL Applied = 100.00 Percent of LL Applied = 10.00 N-Effective Calculated = 1.8357 N-Effective Used = 1.8357 Composite properties for Vibration: Concrete thickness (in) Left = 3.50 Right = 3.50 Unit weight concrete (pcf) Left = 125.00 Right = 125.00 f'c (ksi) Left = 4.00 Right = 4.00 Decking type Left = VERCO W3 Formlok Decking type Right = VERCO W3 Formlok beff for Vibration (in) = 102.00 Itr for Vibration (in**4) = 597.56 Results: Frequency (hz) = 14.7685 Amplitude (in) = 0.0032 Method 1. Range on Modified R-M Scale: Upper Half of Slightly Perceptible Method 2. Required Damping: 4.1486 • • RAMSBEAM V2.0 - Gravity Beam Design Licensed to: KPFF Consulting Engineers-Port Job: Rexburg Temple Steel Code: LRFD SPAN INFORMATION: Main Level Beam Beam Size (User Selected) = W21X44 Fy = 50. 0 ksi Total Beam Length (ft) = 28.00 OMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 3.50 3.50 Unit weight concrete (pcf) 125.00 .125.00 f'c (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok Distance to Adjacent (ft) Beam: 8.50 Beam: 8.50 beff (in) = 84.00 Y bar(in) - 20.80 Mnf (kip-ft) = 849.99 Mn (kip-f t) = 714.23 C (kips) = 326.99 e (in) = 16.26 Ieff (in**4) _ 2320.89 Itr (in**4) = 2926.69 Stud length (in) = 5.50 Stud diameter (in) = 0.75 Stud Capacity (kips.) Qn = 23.4 # of studs: Full = 56 Partial = 28 Actual = 28 Number of Stud Rows = 1, Percent of Full Composite Action = 50.31 LOADS: Self Weight = 0.044 k/ft Line Loads (k/f t): Distl Dist2 DL1 DL2 P re DL1 Pre DL2 LL1 LL2 0.00 28.00 0.765 0.765 0.553 0.553 0.850 0.850 SHEAR (Ultimate): Max Vu 1.2DL+1.6LL (kips) = 32.63 0.90Vn = 195.24 MOMENTS: Span Cond LoadCase Center Pre DL 1.4DL Center Max + 1.2DL+1.6LL ontrolling 1.2DL+1.6LL FACTIONS (Unfactored) (kips): Initial reaction DL reaction Max + LL reaction Max + total reaction Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft 81.9 14.0 --- --- 0.90 357.75 228.4 14.0 --- --- 0.85 607.09 228.4 14.0 --- --- 0.85 607.09 Left Right 8.36 8.36 11.33 11.33 11.90 11.90 23.23 23.23 DEFLECTIONS: Initial load (in) at 14.00 ft = -0.338 L/D = 994 Live load (in) at 14.00 ft = -0.175. L/D = 1924 Post Comp load (in) at 14.00 ft = -0.218 L/D = 1540 Total load (in) at 14.00 ft = -0.556 L/D = 604 GL3 -3 • RAMSBEAM V2.0 - Load Diagram Licensed to: KPFF Consulting Engineers-Port Job: Rexburg Temple Steel Code: LRFD Beam Size = W21X44 Span information (f t): Main Level Beam Length = 28.00, Left Support at O.OO, Right Support at 28.00 Load Dist wl o.oo W2 28.00 • DL LL+ LL- Max Tot 0.809 0.850 0.000 1.659 0.809 0.850 0.000 1.659 G L3 ~ 4 • RAMSBEAM V2.0 - Vibration Analysis (Murray's Method) Licensed to: KPFF Consulting Engineers-Port ~ 6 I~j Job: Rexburg Temple Steel Code: Coder LRFD Span information (ft): Main Level Beam Length = 28.00, Left Support at 0.00, Right Support at 28.00 Beam Size = W21X44 Percent of DL Applied = 100.00 Percent of LL Applied = 10.00 N-Effective Calculated = 1.8972 N-Effective Used = 1.8972 Composite properties for Vibration: Concrete thickness (in) Left = 3.50 Right = 3.50 Unit weight concrete (pcf) Left = 125.00 Right = 125.00 f'c (ksi) Left = 4.00 Right = 4.00 Decking type Left = VERCO W3 Formlok Decking type Right = VERCO W3 Formlok beff for Vibration (in) = 102.00 Itr for Vibration (in**4) = 3059.26 Results: Frequency (hz) = 9.4273 Amplitude (in) = 0.0032 Method. 1. Range on Modified R-M Scale: Lower Half of Slightly Perceptible Method 2. Required Damping: 3.5602 • ,~ JOB 1'SEx~ t~G ~vr, x~' ~ Schiess & Associates JOB NUMBER SCALE CONSULTING ENGINEERS CALCULATED BY DATE CHECKED BY DATE SH EET~_OF Z~~L~R-nom ~iVrp~ fN± 0 86 ~ -- .~2 S-r,v~rr~o n/ -~~ W,,a s ~~r~ ~~ ~~ ~~ 1'YI ~x ~~ w 05 00205 Temple Cvv2 7~Z ac..c..L~' T-i-t ~r 1'-L o W ~1~.7?3 ~ c-~ ~~.~ ~ o h~ w , ~-.,~ /0O c~ Pry ~-~- -~ T~ ~. . ~-2~C; G ~4-r~~ ~ le-~j4 -,-~,-,~ ~. ~c ~ _- ~zo x x.30 = Z ~ ~, 6 o U s r i3c~r, ~~ ,~-~ z ~O x Zdo , S6, dD0 d~.r = / 7 7, ~ O U ~s~~a•~ As /~ X Zdr ~ - ~f Z a ~a 1S X 2g~ 1 ~lLoo t/ ~ X ~ 3c~ l ~~ l ~ 0 // X Z ~~ - 3 D~ b Z3 X ~~a t 7 ~Zp 12 X 32~ ~ 3900 3~,3~ ~ a ~ • JOB ~ ~ Schiess & Associates JOB NUMBER SCALE CONSULTING ENGINEERS CALCULATED BY DATE CHECKED BY DATE SHEET Z OF '~bT~G T,~rl ~l ~-z ~ ~i~~ ~ Z <.5, X18 D S ,~- .L~rL.~~ 64- ; ~ o./ ~Z i4 rz-- i4.7-- O~-s¢,~. ~-x,~ o d r 5 ~ ~ rir.~ ~-~ -ra ,sue- ~ 7- B_ ZS i~ ~2 ao~~ 0 2 ~, ~P~ ~•~~ Pte= ~ -~~,~~ ~~n ~o~t S wvu p 7719 C. D~.r4 i ~'~ w' G4 rZ-`.~ liC..S' ~51Co E X02 ~-O t~- i .~ 9 ~ ~ 70 D ZL b ~ ~ `'/~ D ~~~ ~ s wvrt t vJ C, -7-~-f t' L O w c-rjz (,G S /9-Ca ~~` G' T' ~0 N ~-f ~ C.-~2 / ~ d ~~E. Day ~~ ~, ?aD ~ Z ~ 30 = 99ys1; ~L ~ ~ ~G Lr70 C^5 h ~ i 1-~-4 t9c ~ iZh~-c^ill~ ~~, 000 C~t°Vj'I Q ~ !b ~ 7 C~/°t~ S,4C~ (~ _ / ~ ~.~-- 167 r~'/L- ~) 27~ ~ 117 ~ Schiess & Associates CONSULTING ENGINEER S JOB JOB NUMBER SCALE CALCULATED BY DATE CHECKED BY DATE SHEET~OF +~ ~"7L- Sohn c~ n~•v ~'Z= „L~2.12 . 3 3, !o ~o G'tl h5 tlnt~r~c- ~ Z 7 ~' ®~o~ ~'` 3~`, ~'y7 cam. f~ O N N E'Gi ~'D ~ ( ~ ~ ; Fz ~~ ~ PO e ~ 3 . os ~ ~ 2 ~, 2 ~ 8